Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * OMAP2 McSPI controller driver
4 *
5 * Copyright (C) 2005, 2006 Nokia Corporation
6 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
7 * Juha Yrjola <juha.yrjola@nokia.com>
8 */
9
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/module.h>
13#include <linux/device.h>
14#include <linux/delay.h>
15#include <linux/dma-mapping.h>
16#include <linux/dmaengine.h>
17#include <linux/pinctrl/consumer.h>
18#include <linux/platform_device.h>
19#include <linux/err.h>
20#include <linux/clk.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23#include <linux/pm_runtime.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/gcd.h>
27
28#include <linux/spi/spi.h>
29
30#include "internals.h"
31
32#include <linux/platform_data/spi-omap2-mcspi.h>
33
34#define OMAP2_MCSPI_MAX_FREQ 48000000
35#define OMAP2_MCSPI_MAX_DIVIDER 4096
36#define OMAP2_MCSPI_MAX_FIFODEPTH 64
37#define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
38#define SPI_AUTOSUSPEND_TIMEOUT 2000
39
40#define OMAP2_MCSPI_REVISION 0x00
41#define OMAP2_MCSPI_SYSSTATUS 0x14
42#define OMAP2_MCSPI_IRQSTATUS 0x18
43#define OMAP2_MCSPI_IRQENABLE 0x1c
44#define OMAP2_MCSPI_WAKEUPENABLE 0x20
45#define OMAP2_MCSPI_SYST 0x24
46#define OMAP2_MCSPI_MODULCTRL 0x28
47#define OMAP2_MCSPI_XFERLEVEL 0x7c
48
49/* per-channel banks, 0x14 bytes each, first is: */
50#define OMAP2_MCSPI_CHCONF0 0x2c
51#define OMAP2_MCSPI_CHSTAT0 0x30
52#define OMAP2_MCSPI_CHCTRL0 0x34
53#define OMAP2_MCSPI_TX0 0x38
54#define OMAP2_MCSPI_RX0 0x3c
55
56/* per-register bitmasks: */
57#define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
58
59#define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
60#define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
61#define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
62
63#define OMAP2_MCSPI_CHCONF_PHA BIT(0)
64#define OMAP2_MCSPI_CHCONF_POL BIT(1)
65#define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
66#define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
67#define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
68#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
69#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
70#define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
71#define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
72#define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
73#define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
74#define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
75#define OMAP2_MCSPI_CHCONF_IS BIT(18)
76#define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
77#define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
78#define OMAP2_MCSPI_CHCONF_FFET BIT(27)
79#define OMAP2_MCSPI_CHCONF_FFER BIT(28)
80#define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
81
82#define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
83#define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
84#define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
85#define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
86
87#define OMAP2_MCSPI_CHCTRL_EN BIT(0)
88#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
89
90#define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
91
92/* We have 2 DMA channels per CS, one for RX and one for TX */
93struct omap2_mcspi_dma {
94 struct dma_chan *dma_tx;
95 struct dma_chan *dma_rx;
96
97 struct completion dma_tx_completion;
98 struct completion dma_rx_completion;
99
100 char dma_rx_ch_name[14];
101 char dma_tx_ch_name[14];
102};
103
104/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
105 * cache operations; better heuristics consider wordsize and bitrate.
106 */
107#define DMA_MIN_BYTES 160
108
109
110/*
111 * Used for context save and restore, structure members to be updated whenever
112 * corresponding registers are modified.
113 */
114struct omap2_mcspi_regs {
115 u32 modulctrl;
116 u32 wakeupenable;
117 struct list_head cs;
118};
119
120struct omap2_mcspi {
121 struct completion txdone;
122 struct spi_controller *ctlr;
123 /* Virtual base address of the controller */
124 void __iomem *base;
125 unsigned long phys;
126 /* SPI1 has 4 channels, while SPI2 has 2 */
127 struct omap2_mcspi_dma *dma_channels;
128 struct device *dev;
129 struct omap2_mcspi_regs ctx;
130 struct clk *ref_clk;
131 int fifo_depth;
132 bool target_aborted;
133 unsigned int pin_dir:1;
134 size_t max_xfer_len;
135 u32 ref_clk_hz;
136 bool use_multi_mode;
137};
138
139struct omap2_mcspi_cs {
140 void __iomem *base;
141 unsigned long phys;
142 int word_len;
143 u16 mode;
144 struct list_head node;
145 /* Context save and restore shadow register */
146 u32 chconf0, chctrl0;
147};
148
149static inline void mcspi_write_reg(struct spi_controller *ctlr,
150 int idx, u32 val)
151{
152 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
153
154 writel_relaxed(val, mcspi->base + idx);
155}
156
157static inline u32 mcspi_read_reg(struct spi_controller *ctlr, int idx)
158{
159 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
160
161 return readl_relaxed(mcspi->base + idx);
162}
163
164static inline void mcspi_write_cs_reg(const struct spi_device *spi,
165 int idx, u32 val)
166{
167 struct omap2_mcspi_cs *cs = spi->controller_state;
168
169 writel_relaxed(val, cs->base + idx);
170}
171
172static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
173{
174 struct omap2_mcspi_cs *cs = spi->controller_state;
175
176 return readl_relaxed(cs->base + idx);
177}
178
179static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
180{
181 struct omap2_mcspi_cs *cs = spi->controller_state;
182
183 return cs->chconf0;
184}
185
186static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
187{
188 struct omap2_mcspi_cs *cs = spi->controller_state;
189
190 cs->chconf0 = val;
191 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
192 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
193}
194
195static inline int mcspi_bytes_per_word(int word_len)
196{
197 if (word_len <= 8)
198 return 1;
199 else if (word_len <= 16)
200 return 2;
201 else /* word_len <= 32 */
202 return 4;
203}
204
205static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
206 int is_read, int enable)
207{
208 u32 l, rw;
209
210 l = mcspi_cached_chconf0(spi);
211
212 if (is_read) /* 1 is read, 0 write */
213 rw = OMAP2_MCSPI_CHCONF_DMAR;
214 else
215 rw = OMAP2_MCSPI_CHCONF_DMAW;
216
217 if (enable)
218 l |= rw;
219 else
220 l &= ~rw;
221
222 mcspi_write_chconf0(spi, l);
223}
224
225static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
226{
227 struct omap2_mcspi_cs *cs = spi->controller_state;
228 u32 l;
229
230 l = cs->chctrl0;
231 if (enable)
232 l |= OMAP2_MCSPI_CHCTRL_EN;
233 else
234 l &= ~OMAP2_MCSPI_CHCTRL_EN;
235 cs->chctrl0 = l;
236 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
237 /* Flash post-writes */
238 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
239}
240
241static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
242{
243 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
244 u32 l;
245
246 /* The controller handles the inverted chip selects
247 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
248 * the inversion from the core spi_set_cs function.
249 */
250 if (spi->mode & SPI_CS_HIGH)
251 enable = !enable;
252
253 if (spi->controller_state) {
254 int err = pm_runtime_resume_and_get(mcspi->dev);
255 if (err < 0) {
256 dev_err(mcspi->dev, "failed to get sync: %d\n", err);
257 return;
258 }
259
260 l = mcspi_cached_chconf0(spi);
261
262 /* Only enable chip select manually if single mode is used */
263 if (mcspi->use_multi_mode) {
264 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
265 } else {
266 if (enable)
267 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
268 else
269 l |= OMAP2_MCSPI_CHCONF_FORCE;
270 }
271
272 mcspi_write_chconf0(spi, l);
273
274 pm_runtime_mark_last_busy(mcspi->dev);
275 pm_runtime_put_autosuspend(mcspi->dev);
276 }
277}
278
279static void omap2_mcspi_set_mode(struct spi_controller *ctlr)
280{
281 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
282 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
283 u32 l;
284
285 /*
286 * Choose host or target mode
287 */
288 l = mcspi_read_reg(ctlr, OMAP2_MCSPI_MODULCTRL);
289 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST);
290 if (spi_controller_is_target(ctlr)) {
291 l |= (OMAP2_MCSPI_MODULCTRL_MS);
292 } else {
293 l &= ~(OMAP2_MCSPI_MODULCTRL_MS);
294
295 /* Enable single mode if needed */
296 if (mcspi->use_multi_mode)
297 l &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
298 else
299 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
300 }
301 mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, l);
302
303 ctx->modulctrl = l;
304}
305
306static void omap2_mcspi_set_fifo(const struct spi_device *spi,
307 struct spi_transfer *t, int enable)
308{
309 struct spi_controller *ctlr = spi->controller;
310 struct omap2_mcspi_cs *cs = spi->controller_state;
311 struct omap2_mcspi *mcspi;
312 unsigned int wcnt;
313 int max_fifo_depth, bytes_per_word;
314 u32 chconf, xferlevel;
315
316 mcspi = spi_controller_get_devdata(ctlr);
317
318 chconf = mcspi_cached_chconf0(spi);
319 if (enable) {
320 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
321 if (t->len % bytes_per_word != 0)
322 goto disable_fifo;
323
324 if (t->rx_buf != NULL && t->tx_buf != NULL)
325 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
326 else
327 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
328
329 wcnt = t->len / bytes_per_word;
330 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
331 goto disable_fifo;
332
333 xferlevel = wcnt << 16;
334 if (t->rx_buf != NULL) {
335 chconf |= OMAP2_MCSPI_CHCONF_FFER;
336 xferlevel |= (bytes_per_word - 1) << 8;
337 }
338
339 if (t->tx_buf != NULL) {
340 chconf |= OMAP2_MCSPI_CHCONF_FFET;
341 xferlevel |= bytes_per_word - 1;
342 }
343
344 mcspi_write_reg(ctlr, OMAP2_MCSPI_XFERLEVEL, xferlevel);
345 mcspi_write_chconf0(spi, chconf);
346 mcspi->fifo_depth = max_fifo_depth;
347
348 return;
349 }
350
351disable_fifo:
352 if (t->rx_buf != NULL)
353 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
354
355 if (t->tx_buf != NULL)
356 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
357
358 mcspi_write_chconf0(spi, chconf);
359 mcspi->fifo_depth = 0;
360}
361
362static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
363{
364 unsigned long timeout;
365
366 timeout = jiffies + msecs_to_jiffies(1000);
367 while (!(readl_relaxed(reg) & bit)) {
368 if (time_after(jiffies, timeout)) {
369 if (!(readl_relaxed(reg) & bit))
370 return -ETIMEDOUT;
371 else
372 return 0;
373 }
374 cpu_relax();
375 }
376 return 0;
377}
378
379static int mcspi_wait_for_completion(struct omap2_mcspi *mcspi,
380 struct completion *x)
381{
382 if (spi_controller_is_target(mcspi->ctlr)) {
383 if (wait_for_completion_interruptible(x) ||
384 mcspi->target_aborted)
385 return -EINTR;
386 } else {
387 wait_for_completion(x);
388 }
389
390 return 0;
391}
392
393static void omap2_mcspi_rx_callback(void *data)
394{
395 struct spi_device *spi = data;
396 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
397 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
398
399 /* We must disable the DMA RX request */
400 omap2_mcspi_set_dma_req(spi, 1, 0);
401
402 complete(&mcspi_dma->dma_rx_completion);
403}
404
405static void omap2_mcspi_tx_callback(void *data)
406{
407 struct spi_device *spi = data;
408 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
409 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
410
411 /* We must disable the DMA TX request */
412 omap2_mcspi_set_dma_req(spi, 0, 0);
413
414 complete(&mcspi_dma->dma_tx_completion);
415}
416
417static void omap2_mcspi_tx_dma(struct spi_device *spi,
418 struct spi_transfer *xfer,
419 struct dma_slave_config cfg)
420{
421 struct omap2_mcspi *mcspi;
422 struct omap2_mcspi_dma *mcspi_dma;
423 struct dma_async_tx_descriptor *tx;
424
425 mcspi = spi_controller_get_devdata(spi->controller);
426 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
427
428 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
429
430 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
431 xfer->tx_sg.nents,
432 DMA_MEM_TO_DEV,
433 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
434 if (tx) {
435 tx->callback = omap2_mcspi_tx_callback;
436 tx->callback_param = spi;
437 dmaengine_submit(tx);
438 } else {
439 /* FIXME: fall back to PIO? */
440 }
441 dma_async_issue_pending(mcspi_dma->dma_tx);
442 omap2_mcspi_set_dma_req(spi, 0, 1);
443}
444
445static unsigned
446omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
447 struct dma_slave_config cfg,
448 unsigned es)
449{
450 struct omap2_mcspi *mcspi;
451 struct omap2_mcspi_dma *mcspi_dma;
452 unsigned int count, transfer_reduction = 0;
453 struct scatterlist *sg_out[2];
454 int nb_sizes = 0, out_mapped_nents[2], ret, x;
455 size_t sizes[2];
456 u32 l;
457 int elements = 0;
458 int word_len, element_count;
459 struct omap2_mcspi_cs *cs = spi->controller_state;
460 void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
461 struct dma_async_tx_descriptor *tx;
462
463 mcspi = spi_controller_get_devdata(spi->controller);
464 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
465 count = xfer->len;
466
467 /*
468 * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
469 * it mentions reducing DMA transfer length by one element in host
470 * normal mode.
471 */
472 if (mcspi->fifo_depth == 0)
473 transfer_reduction = es;
474
475 word_len = cs->word_len;
476 l = mcspi_cached_chconf0(spi);
477
478 if (word_len <= 8)
479 element_count = count;
480 else if (word_len <= 16)
481 element_count = count >> 1;
482 else /* word_len <= 32 */
483 element_count = count >> 2;
484
485
486 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
487
488 /*
489 * Reduce DMA transfer length by one more if McSPI is
490 * configured in turbo mode.
491 */
492 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
493 transfer_reduction += es;
494
495 if (transfer_reduction) {
496 /* Split sgl into two. The second sgl won't be used. */
497 sizes[0] = count - transfer_reduction;
498 sizes[1] = transfer_reduction;
499 nb_sizes = 2;
500 } else {
501 /*
502 * Don't bother splitting the sgl. This essentially
503 * clones the original sgl.
504 */
505 sizes[0] = count;
506 nb_sizes = 1;
507 }
508
509 ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes,
510 sizes, sg_out, out_mapped_nents, GFP_KERNEL);
511
512 if (ret < 0) {
513 dev_err(&spi->dev, "sg_split failed\n");
514 return 0;
515 }
516
517 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0],
518 out_mapped_nents[0], DMA_DEV_TO_MEM,
519 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
520 if (tx) {
521 tx->callback = omap2_mcspi_rx_callback;
522 tx->callback_param = spi;
523 dmaengine_submit(tx);
524 } else {
525 /* FIXME: fall back to PIO? */
526 }
527
528 dma_async_issue_pending(mcspi_dma->dma_rx);
529 omap2_mcspi_set_dma_req(spi, 1, 1);
530
531 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion);
532 if (ret || mcspi->target_aborted) {
533 dmaengine_terminate_sync(mcspi_dma->dma_rx);
534 omap2_mcspi_set_dma_req(spi, 1, 0);
535 return 0;
536 }
537
538 for (x = 0; x < nb_sizes; x++)
539 kfree(sg_out[x]);
540
541 if (mcspi->fifo_depth > 0)
542 return count;
543
544 /*
545 * Due to the DMA transfer length reduction the missing bytes must
546 * be read manually to receive all of the expected data.
547 */
548 omap2_mcspi_set_enable(spi, 0);
549
550 elements = element_count - 1;
551
552 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
553 elements--;
554
555 if (!mcspi_wait_for_reg_bit(chstat_reg,
556 OMAP2_MCSPI_CHSTAT_RXS)) {
557 u32 w;
558
559 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
560 if (word_len <= 8)
561 ((u8 *)xfer->rx_buf)[elements++] = w;
562 else if (word_len <= 16)
563 ((u16 *)xfer->rx_buf)[elements++] = w;
564 else /* word_len <= 32 */
565 ((u32 *)xfer->rx_buf)[elements++] = w;
566 } else {
567 int bytes_per_word = mcspi_bytes_per_word(word_len);
568 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
569 count -= (bytes_per_word << 1);
570 omap2_mcspi_set_enable(spi, 1);
571 return count;
572 }
573 }
574 if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
575 u32 w;
576
577 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
578 if (word_len <= 8)
579 ((u8 *)xfer->rx_buf)[elements] = w;
580 else if (word_len <= 16)
581 ((u16 *)xfer->rx_buf)[elements] = w;
582 else /* word_len <= 32 */
583 ((u32 *)xfer->rx_buf)[elements] = w;
584 } else {
585 dev_err(&spi->dev, "DMA RX last word empty\n");
586 count -= mcspi_bytes_per_word(word_len);
587 }
588 omap2_mcspi_set_enable(spi, 1);
589 return count;
590}
591
592static unsigned
593omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
594{
595 struct omap2_mcspi *mcspi;
596 struct omap2_mcspi_cs *cs = spi->controller_state;
597 struct omap2_mcspi_dma *mcspi_dma;
598 unsigned int count;
599 u8 *rx;
600 const u8 *tx;
601 struct dma_slave_config cfg;
602 enum dma_slave_buswidth width;
603 unsigned es;
604 void __iomem *chstat_reg;
605 void __iomem *irqstat_reg;
606 int wait_res;
607
608 mcspi = spi_controller_get_devdata(spi->controller);
609 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
610
611 if (cs->word_len <= 8) {
612 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
613 es = 1;
614 } else if (cs->word_len <= 16) {
615 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
616 es = 2;
617 } else {
618 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
619 es = 4;
620 }
621
622 count = xfer->len;
623
624 memset(&cfg, 0, sizeof(cfg));
625 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
626 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
627 cfg.src_addr_width = width;
628 cfg.dst_addr_width = width;
629 cfg.src_maxburst = 1;
630 cfg.dst_maxburst = 1;
631
632 rx = xfer->rx_buf;
633 tx = xfer->tx_buf;
634
635 mcspi->target_aborted = false;
636 reinit_completion(&mcspi_dma->dma_tx_completion);
637 reinit_completion(&mcspi_dma->dma_rx_completion);
638 reinit_completion(&mcspi->txdone);
639 if (tx) {
640 /* Enable EOW IRQ to know end of tx in target mode */
641 if (spi_controller_is_target(spi->controller))
642 mcspi_write_reg(spi->controller,
643 OMAP2_MCSPI_IRQENABLE,
644 OMAP2_MCSPI_IRQSTATUS_EOW);
645 omap2_mcspi_tx_dma(spi, xfer, cfg);
646 }
647
648 if (rx != NULL)
649 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
650
651 if (tx != NULL) {
652 int ret;
653
654 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion);
655 if (ret || mcspi->target_aborted) {
656 dmaengine_terminate_sync(mcspi_dma->dma_tx);
657 omap2_mcspi_set_dma_req(spi, 0, 0);
658 return 0;
659 }
660
661 if (spi_controller_is_target(mcspi->ctlr)) {
662 ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone);
663 if (ret || mcspi->target_aborted)
664 return 0;
665 }
666
667 if (mcspi->fifo_depth > 0) {
668 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
669
670 if (mcspi_wait_for_reg_bit(irqstat_reg,
671 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
672 dev_err(&spi->dev, "EOW timed out\n");
673
674 mcspi_write_reg(mcspi->ctlr, OMAP2_MCSPI_IRQSTATUS,
675 OMAP2_MCSPI_IRQSTATUS_EOW);
676 }
677
678 /* for TX_ONLY mode, be sure all words have shifted out */
679 if (rx == NULL) {
680 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
681 if (mcspi->fifo_depth > 0) {
682 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
683 OMAP2_MCSPI_CHSTAT_TXFFE);
684 if (wait_res < 0)
685 dev_err(&spi->dev, "TXFFE timed out\n");
686 } else {
687 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
688 OMAP2_MCSPI_CHSTAT_TXS);
689 if (wait_res < 0)
690 dev_err(&spi->dev, "TXS timed out\n");
691 }
692 if (wait_res >= 0 &&
693 (mcspi_wait_for_reg_bit(chstat_reg,
694 OMAP2_MCSPI_CHSTAT_EOT) < 0))
695 dev_err(&spi->dev, "EOT timed out\n");
696 }
697 }
698 return count;
699}
700
701static unsigned
702omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
703{
704 struct omap2_mcspi_cs *cs = spi->controller_state;
705 unsigned int count, c;
706 u32 l;
707 void __iomem *base = cs->base;
708 void __iomem *tx_reg;
709 void __iomem *rx_reg;
710 void __iomem *chstat_reg;
711 int word_len;
712
713 count = xfer->len;
714 c = count;
715 word_len = cs->word_len;
716
717 l = mcspi_cached_chconf0(spi);
718
719 /* We store the pre-calculated register addresses on stack to speed
720 * up the transfer loop. */
721 tx_reg = base + OMAP2_MCSPI_TX0;
722 rx_reg = base + OMAP2_MCSPI_RX0;
723 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
724
725 if (c < (word_len>>3))
726 return 0;
727
728 if (word_len <= 8) {
729 u8 *rx;
730 const u8 *tx;
731
732 rx = xfer->rx_buf;
733 tx = xfer->tx_buf;
734
735 do {
736 c -= 1;
737 if (tx != NULL) {
738 if (mcspi_wait_for_reg_bit(chstat_reg,
739 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
740 dev_err(&spi->dev, "TXS timed out\n");
741 goto out;
742 }
743 dev_vdbg(&spi->dev, "write-%d %02x\n",
744 word_len, *tx);
745 writel_relaxed(*tx++, tx_reg);
746 }
747 if (rx != NULL) {
748 if (mcspi_wait_for_reg_bit(chstat_reg,
749 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
750 dev_err(&spi->dev, "RXS timed out\n");
751 goto out;
752 }
753
754 if (c == 1 && tx == NULL &&
755 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
756 omap2_mcspi_set_enable(spi, 0);
757 *rx++ = readl_relaxed(rx_reg);
758 dev_vdbg(&spi->dev, "read-%d %02x\n",
759 word_len, *(rx - 1));
760 if (mcspi_wait_for_reg_bit(chstat_reg,
761 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
762 dev_err(&spi->dev,
763 "RXS timed out\n");
764 goto out;
765 }
766 c = 0;
767 } else if (c == 0 && tx == NULL) {
768 omap2_mcspi_set_enable(spi, 0);
769 }
770
771 *rx++ = readl_relaxed(rx_reg);
772 dev_vdbg(&spi->dev, "read-%d %02x\n",
773 word_len, *(rx - 1));
774 }
775 /* Add word delay between each word */
776 spi_delay_exec(&xfer->word_delay, xfer);
777 } while (c);
778 } else if (word_len <= 16) {
779 u16 *rx;
780 const u16 *tx;
781
782 rx = xfer->rx_buf;
783 tx = xfer->tx_buf;
784 do {
785 c -= 2;
786 if (tx != NULL) {
787 if (mcspi_wait_for_reg_bit(chstat_reg,
788 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
789 dev_err(&spi->dev, "TXS timed out\n");
790 goto out;
791 }
792 dev_vdbg(&spi->dev, "write-%d %04x\n",
793 word_len, *tx);
794 writel_relaxed(*tx++, tx_reg);
795 }
796 if (rx != NULL) {
797 if (mcspi_wait_for_reg_bit(chstat_reg,
798 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
799 dev_err(&spi->dev, "RXS timed out\n");
800 goto out;
801 }
802
803 if (c == 2 && tx == NULL &&
804 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
805 omap2_mcspi_set_enable(spi, 0);
806 *rx++ = readl_relaxed(rx_reg);
807 dev_vdbg(&spi->dev, "read-%d %04x\n",
808 word_len, *(rx - 1));
809 if (mcspi_wait_for_reg_bit(chstat_reg,
810 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
811 dev_err(&spi->dev,
812 "RXS timed out\n");
813 goto out;
814 }
815 c = 0;
816 } else if (c == 0 && tx == NULL) {
817 omap2_mcspi_set_enable(spi, 0);
818 }
819
820 *rx++ = readl_relaxed(rx_reg);
821 dev_vdbg(&spi->dev, "read-%d %04x\n",
822 word_len, *(rx - 1));
823 }
824 /* Add word delay between each word */
825 spi_delay_exec(&xfer->word_delay, xfer);
826 } while (c >= 2);
827 } else if (word_len <= 32) {
828 u32 *rx;
829 const u32 *tx;
830
831 rx = xfer->rx_buf;
832 tx = xfer->tx_buf;
833 do {
834 c -= 4;
835 if (tx != NULL) {
836 if (mcspi_wait_for_reg_bit(chstat_reg,
837 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
838 dev_err(&spi->dev, "TXS timed out\n");
839 goto out;
840 }
841 dev_vdbg(&spi->dev, "write-%d %08x\n",
842 word_len, *tx);
843 writel_relaxed(*tx++, tx_reg);
844 }
845 if (rx != NULL) {
846 if (mcspi_wait_for_reg_bit(chstat_reg,
847 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
848 dev_err(&spi->dev, "RXS timed out\n");
849 goto out;
850 }
851
852 if (c == 4 && tx == NULL &&
853 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
854 omap2_mcspi_set_enable(spi, 0);
855 *rx++ = readl_relaxed(rx_reg);
856 dev_vdbg(&spi->dev, "read-%d %08x\n",
857 word_len, *(rx - 1));
858 if (mcspi_wait_for_reg_bit(chstat_reg,
859 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
860 dev_err(&spi->dev,
861 "RXS timed out\n");
862 goto out;
863 }
864 c = 0;
865 } else if (c == 0 && tx == NULL) {
866 omap2_mcspi_set_enable(spi, 0);
867 }
868
869 *rx++ = readl_relaxed(rx_reg);
870 dev_vdbg(&spi->dev, "read-%d %08x\n",
871 word_len, *(rx - 1));
872 }
873 /* Add word delay between each word */
874 spi_delay_exec(&xfer->word_delay, xfer);
875 } while (c >= 4);
876 }
877
878 /* for TX_ONLY mode, be sure all words have shifted out */
879 if (xfer->rx_buf == NULL) {
880 if (mcspi_wait_for_reg_bit(chstat_reg,
881 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
882 dev_err(&spi->dev, "TXS timed out\n");
883 } else if (mcspi_wait_for_reg_bit(chstat_reg,
884 OMAP2_MCSPI_CHSTAT_EOT) < 0)
885 dev_err(&spi->dev, "EOT timed out\n");
886
887 /* disable chan to purge rx datas received in TX_ONLY transfer,
888 * otherwise these rx datas will affect the direct following
889 * RX_ONLY transfer.
890 */
891 omap2_mcspi_set_enable(spi, 0);
892 }
893out:
894 omap2_mcspi_set_enable(spi, 1);
895 return count - c;
896}
897
898static u32 omap2_mcspi_calc_divisor(u32 speed_hz, u32 ref_clk_hz)
899{
900 u32 div;
901
902 for (div = 0; div < 15; div++)
903 if (speed_hz >= (ref_clk_hz >> div))
904 return div;
905
906 return 15;
907}
908
909/* called only when no transfer is active to this device */
910static int omap2_mcspi_setup_transfer(struct spi_device *spi,
911 struct spi_transfer *t)
912{
913 struct omap2_mcspi_cs *cs = spi->controller_state;
914 struct omap2_mcspi *mcspi;
915 u32 ref_clk_hz, l = 0, clkd = 0, div, extclk = 0, clkg = 0;
916 u8 word_len = spi->bits_per_word;
917 u32 speed_hz = spi->max_speed_hz;
918
919 mcspi = spi_controller_get_devdata(spi->controller);
920
921 if (t != NULL && t->bits_per_word)
922 word_len = t->bits_per_word;
923
924 cs->word_len = word_len;
925
926 if (t && t->speed_hz)
927 speed_hz = t->speed_hz;
928
929 ref_clk_hz = mcspi->ref_clk_hz;
930 speed_hz = min_t(u32, speed_hz, ref_clk_hz);
931 if (speed_hz < (ref_clk_hz / OMAP2_MCSPI_MAX_DIVIDER)) {
932 clkd = omap2_mcspi_calc_divisor(speed_hz, ref_clk_hz);
933 speed_hz = ref_clk_hz >> clkd;
934 clkg = 0;
935 } else {
936 div = (ref_clk_hz + speed_hz - 1) / speed_hz;
937 speed_hz = ref_clk_hz / div;
938 clkd = (div - 1) & 0xf;
939 extclk = (div - 1) >> 4;
940 clkg = OMAP2_MCSPI_CHCONF_CLKG;
941 }
942
943 l = mcspi_cached_chconf0(spi);
944
945 /* standard 4-wire host mode: SCK, MOSI/out, MISO/in, nCS
946 * REVISIT: this controller could support SPI_3WIRE mode.
947 */
948 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
949 l &= ~OMAP2_MCSPI_CHCONF_IS;
950 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
951 l |= OMAP2_MCSPI_CHCONF_DPE0;
952 } else {
953 l |= OMAP2_MCSPI_CHCONF_IS;
954 l |= OMAP2_MCSPI_CHCONF_DPE1;
955 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
956 }
957
958 /* wordlength */
959 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
960 l |= (word_len - 1) << 7;
961
962 /* set chipselect polarity; manage with FORCE */
963 if (!(spi->mode & SPI_CS_HIGH))
964 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
965 else
966 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
967
968 /* set clock divisor */
969 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
970 l |= clkd << 2;
971
972 /* set clock granularity */
973 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
974 l |= clkg;
975 if (clkg) {
976 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
977 cs->chctrl0 |= extclk << 8;
978 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
979 }
980
981 /* set SPI mode 0..3 */
982 if (spi->mode & SPI_CPOL)
983 l |= OMAP2_MCSPI_CHCONF_POL;
984 else
985 l &= ~OMAP2_MCSPI_CHCONF_POL;
986 if (spi->mode & SPI_CPHA)
987 l |= OMAP2_MCSPI_CHCONF_PHA;
988 else
989 l &= ~OMAP2_MCSPI_CHCONF_PHA;
990
991 mcspi_write_chconf0(spi, l);
992
993 cs->mode = spi->mode;
994
995 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
996 speed_hz,
997 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
998 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
999
1000 return 0;
1001}
1002
1003/*
1004 * Note that we currently allow DMA only if we get a channel
1005 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
1006 */
1007static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi,
1008 struct omap2_mcspi_dma *mcspi_dma)
1009{
1010 int ret = 0;
1011
1012 mcspi_dma->dma_rx = dma_request_chan(mcspi->dev,
1013 mcspi_dma->dma_rx_ch_name);
1014 if (IS_ERR(mcspi_dma->dma_rx)) {
1015 ret = PTR_ERR(mcspi_dma->dma_rx);
1016 mcspi_dma->dma_rx = NULL;
1017 goto no_dma;
1018 }
1019
1020 mcspi_dma->dma_tx = dma_request_chan(mcspi->dev,
1021 mcspi_dma->dma_tx_ch_name);
1022 if (IS_ERR(mcspi_dma->dma_tx)) {
1023 ret = PTR_ERR(mcspi_dma->dma_tx);
1024 mcspi_dma->dma_tx = NULL;
1025 dma_release_channel(mcspi_dma->dma_rx);
1026 mcspi_dma->dma_rx = NULL;
1027 }
1028
1029 init_completion(&mcspi_dma->dma_rx_completion);
1030 init_completion(&mcspi_dma->dma_tx_completion);
1031
1032no_dma:
1033 return ret;
1034}
1035
1036static void omap2_mcspi_release_dma(struct spi_controller *ctlr)
1037{
1038 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1039 struct omap2_mcspi_dma *mcspi_dma;
1040 int i;
1041
1042 for (i = 0; i < ctlr->num_chipselect; i++) {
1043 mcspi_dma = &mcspi->dma_channels[i];
1044
1045 if (mcspi_dma->dma_rx) {
1046 dma_release_channel(mcspi_dma->dma_rx);
1047 mcspi_dma->dma_rx = NULL;
1048 }
1049 if (mcspi_dma->dma_tx) {
1050 dma_release_channel(mcspi_dma->dma_tx);
1051 mcspi_dma->dma_tx = NULL;
1052 }
1053 }
1054}
1055
1056static void omap2_mcspi_cleanup(struct spi_device *spi)
1057{
1058 struct omap2_mcspi_cs *cs;
1059
1060 if (spi->controller_state) {
1061 /* Unlink controller state from context save list */
1062 cs = spi->controller_state;
1063 list_del(&cs->node);
1064
1065 kfree(cs);
1066 }
1067}
1068
1069static int omap2_mcspi_setup(struct spi_device *spi)
1070{
1071 bool initial_setup = false;
1072 int ret;
1073 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
1074 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1075 struct omap2_mcspi_cs *cs = spi->controller_state;
1076
1077 if (!cs) {
1078 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1079 if (!cs)
1080 return -ENOMEM;
1081 cs->base = mcspi->base + spi_get_chipselect(spi, 0) * 0x14;
1082 cs->phys = mcspi->phys + spi_get_chipselect(spi, 0) * 0x14;
1083 cs->mode = 0;
1084 cs->chconf0 = 0;
1085 cs->chctrl0 = 0;
1086 spi->controller_state = cs;
1087 /* Link this to context save list */
1088 list_add_tail(&cs->node, &ctx->cs);
1089 initial_setup = true;
1090 }
1091
1092 ret = pm_runtime_resume_and_get(mcspi->dev);
1093 if (ret < 0) {
1094 if (initial_setup)
1095 omap2_mcspi_cleanup(spi);
1096
1097 return ret;
1098 }
1099
1100 ret = omap2_mcspi_setup_transfer(spi, NULL);
1101 if (ret && initial_setup)
1102 omap2_mcspi_cleanup(spi);
1103
1104 pm_runtime_mark_last_busy(mcspi->dev);
1105 pm_runtime_put_autosuspend(mcspi->dev);
1106
1107 return ret;
1108}
1109
1110static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data)
1111{
1112 struct omap2_mcspi *mcspi = data;
1113 u32 irqstat;
1114
1115 irqstat = mcspi_read_reg(mcspi->ctlr, OMAP2_MCSPI_IRQSTATUS);
1116 if (!irqstat)
1117 return IRQ_NONE;
1118
1119 /* Disable IRQ and wakeup target xfer task */
1120 mcspi_write_reg(mcspi->ctlr, OMAP2_MCSPI_IRQENABLE, 0);
1121 if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW)
1122 complete(&mcspi->txdone);
1123
1124 return IRQ_HANDLED;
1125}
1126
1127static int omap2_mcspi_target_abort(struct spi_controller *ctlr)
1128{
1129 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1130 struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels;
1131
1132 mcspi->target_aborted = true;
1133 complete(&mcspi_dma->dma_rx_completion);
1134 complete(&mcspi_dma->dma_tx_completion);
1135 complete(&mcspi->txdone);
1136
1137 return 0;
1138}
1139
1140static int omap2_mcspi_transfer_one(struct spi_controller *ctlr,
1141 struct spi_device *spi,
1142 struct spi_transfer *t)
1143{
1144
1145 /* We only enable one channel at a time -- the one whose message is
1146 * -- although this controller would gladly
1147 * arbitrate among multiple channels. This corresponds to "single
1148 * channel" host mode. As a side effect, we need to manage the
1149 * chipselect with the FORCE bit ... CS != channel enable.
1150 */
1151
1152 struct omap2_mcspi *mcspi;
1153 struct omap2_mcspi_dma *mcspi_dma;
1154 struct omap2_mcspi_cs *cs;
1155 struct omap2_mcspi_device_config *cd;
1156 int par_override = 0;
1157 int status = 0;
1158 u32 chconf;
1159
1160 mcspi = spi_controller_get_devdata(ctlr);
1161 mcspi_dma = mcspi->dma_channels + spi_get_chipselect(spi, 0);
1162 cs = spi->controller_state;
1163 cd = spi->controller_data;
1164
1165 /*
1166 * The target driver could have changed spi->mode in which case
1167 * it will be different from cs->mode (the current hardware setup).
1168 * If so, set par_override (even though its not a parity issue) so
1169 * omap2_mcspi_setup_transfer will be called to configure the hardware
1170 * with the correct mode on the first iteration of the loop below.
1171 */
1172 if (spi->mode != cs->mode)
1173 par_override = 1;
1174
1175 omap2_mcspi_set_enable(spi, 0);
1176
1177 if (spi_get_csgpiod(spi, 0))
1178 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1179
1180 if (par_override ||
1181 (t->speed_hz != spi->max_speed_hz) ||
1182 (t->bits_per_word != spi->bits_per_word)) {
1183 par_override = 1;
1184 status = omap2_mcspi_setup_transfer(spi, t);
1185 if (status < 0)
1186 goto out;
1187 if (t->speed_hz == spi->max_speed_hz &&
1188 t->bits_per_word == spi->bits_per_word)
1189 par_override = 0;
1190 }
1191
1192 chconf = mcspi_cached_chconf0(spi);
1193 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1194 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1195
1196 if (t->tx_buf == NULL)
1197 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1198 else if (t->rx_buf == NULL)
1199 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1200
1201 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1202 /* Turbo mode is for more than one word */
1203 if (t->len > ((cs->word_len + 7) >> 3))
1204 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1205 }
1206
1207 mcspi_write_chconf0(spi, chconf);
1208
1209 if (t->len) {
1210 unsigned count;
1211
1212 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1213 spi_xfer_is_dma_mapped(ctlr, spi, t))
1214 omap2_mcspi_set_fifo(spi, t, 1);
1215
1216 omap2_mcspi_set_enable(spi, 1);
1217
1218 /* RX_ONLY mode needs dummy data in TX reg */
1219 if (t->tx_buf == NULL)
1220 writel_relaxed(0, cs->base
1221 + OMAP2_MCSPI_TX0);
1222
1223 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1224 spi_xfer_is_dma_mapped(ctlr, spi, t))
1225 count = omap2_mcspi_txrx_dma(spi, t);
1226 else
1227 count = omap2_mcspi_txrx_pio(spi, t);
1228
1229 if (count != t->len) {
1230 status = -EIO;
1231 goto out;
1232 }
1233 }
1234
1235 omap2_mcspi_set_enable(spi, 0);
1236
1237 if (mcspi->fifo_depth > 0)
1238 omap2_mcspi_set_fifo(spi, t, 0);
1239
1240out:
1241 /* Restore defaults if they were overriden */
1242 if (par_override) {
1243 par_override = 0;
1244 status = omap2_mcspi_setup_transfer(spi, NULL);
1245 }
1246
1247 omap2_mcspi_set_enable(spi, 0);
1248
1249 if (spi_get_csgpiod(spi, 0))
1250 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1251
1252 if (mcspi->fifo_depth > 0 && t)
1253 omap2_mcspi_set_fifo(spi, t, 0);
1254
1255 return status;
1256}
1257
1258static int omap2_mcspi_prepare_message(struct spi_controller *ctlr,
1259 struct spi_message *msg)
1260{
1261 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1262 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1263 struct omap2_mcspi_cs *cs;
1264 struct spi_transfer *tr;
1265 u8 bits_per_word;
1266
1267 /*
1268 * The conditions are strict, it is mandatory to check each transfer of the list to see if
1269 * multi-mode is applicable.
1270 */
1271 mcspi->use_multi_mode = true;
1272 list_for_each_entry(tr, &msg->transfers, transfer_list) {
1273 if (!tr->bits_per_word)
1274 bits_per_word = msg->spi->bits_per_word;
1275 else
1276 bits_per_word = tr->bits_per_word;
1277
1278 /*
1279 * Check if this transfer contains only one word;
1280 */
1281 if (bits_per_word < 8 && tr->len == 1) {
1282 /* multi-mode is applicable, only one word (1..7 bits) */
1283 } else if (bits_per_word >= 8 && tr->len == bits_per_word / 8) {
1284 /* multi-mode is applicable, only one word (8..32 bits) */
1285 } else {
1286 /* multi-mode is not applicable: more than one word in the transfer */
1287 mcspi->use_multi_mode = false;
1288 }
1289
1290 /* Check if transfer asks to change the CS status after the transfer */
1291 if (!tr->cs_change)
1292 mcspi->use_multi_mode = false;
1293
1294 /*
1295 * If at least one message is not compatible, switch back to single mode
1296 *
1297 * The bits_per_word of certain transfer can be different, but it will have no
1298 * impact on the signal itself.
1299 */
1300 if (!mcspi->use_multi_mode)
1301 break;
1302 }
1303
1304 omap2_mcspi_set_mode(ctlr);
1305
1306 /* In single mode only a single channel can have the FORCE bit enabled
1307 * in its chconf0 register.
1308 * Scan all channels and disable them except the current one.
1309 * A FORCE can remain from a last transfer having cs_change enabled
1310 *
1311 * In multi mode all FORCE bits must be disabled.
1312 */
1313 list_for_each_entry(cs, &ctx->cs, node) {
1314 if (msg->spi->controller_state == cs && !mcspi->use_multi_mode) {
1315 continue;
1316 }
1317
1318 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1319 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1320 writel_relaxed(cs->chconf0,
1321 cs->base + OMAP2_MCSPI_CHCONF0);
1322 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1323 }
1324 }
1325
1326 return 0;
1327}
1328
1329static bool omap2_mcspi_can_dma(struct spi_controller *ctlr,
1330 struct spi_device *spi,
1331 struct spi_transfer *xfer)
1332{
1333 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
1334 struct omap2_mcspi_dma *mcspi_dma =
1335 &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
1336
1337 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx)
1338 return false;
1339
1340 if (spi_controller_is_target(ctlr))
1341 return true;
1342
1343 ctlr->dma_rx = mcspi_dma->dma_rx;
1344 ctlr->dma_tx = mcspi_dma->dma_tx;
1345
1346 return (xfer->len >= DMA_MIN_BYTES);
1347}
1348
1349static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi)
1350{
1351 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
1352 struct omap2_mcspi_dma *mcspi_dma =
1353 &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
1354
1355 if (mcspi->max_xfer_len && mcspi_dma->dma_rx)
1356 return mcspi->max_xfer_len;
1357
1358 return SIZE_MAX;
1359}
1360
1361static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi)
1362{
1363 struct spi_controller *ctlr = mcspi->ctlr;
1364 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1365 int ret = 0;
1366
1367 ret = pm_runtime_resume_and_get(mcspi->dev);
1368 if (ret < 0)
1369 return ret;
1370
1371 mcspi_write_reg(ctlr, OMAP2_MCSPI_WAKEUPENABLE,
1372 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1373 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1374
1375 omap2_mcspi_set_mode(ctlr);
1376 pm_runtime_mark_last_busy(mcspi->dev);
1377 pm_runtime_put_autosuspend(mcspi->dev);
1378 return 0;
1379}
1380
1381static int omap_mcspi_runtime_suspend(struct device *dev)
1382{
1383 int error;
1384
1385 error = pinctrl_pm_select_idle_state(dev);
1386 if (error)
1387 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1388
1389 return 0;
1390}
1391
1392/*
1393 * When SPI wake up from off-mode, CS is in activate state. If it was in
1394 * inactive state when driver was suspend, then force it to inactive state at
1395 * wake up.
1396 */
1397static int omap_mcspi_runtime_resume(struct device *dev)
1398{
1399 struct spi_controller *ctlr = dev_get_drvdata(dev);
1400 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1401 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1402 struct omap2_mcspi_cs *cs;
1403 int error;
1404
1405 error = pinctrl_pm_select_default_state(dev);
1406 if (error)
1407 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1408
1409 /* McSPI: context restore */
1410 mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
1411 mcspi_write_reg(ctlr, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
1412
1413 list_for_each_entry(cs, &ctx->cs, node) {
1414 /*
1415 * We need to toggle CS state for OMAP take this
1416 * change in account.
1417 */
1418 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1419 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1420 writel_relaxed(cs->chconf0,
1421 cs->base + OMAP2_MCSPI_CHCONF0);
1422 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1423 writel_relaxed(cs->chconf0,
1424 cs->base + OMAP2_MCSPI_CHCONF0);
1425 } else {
1426 writel_relaxed(cs->chconf0,
1427 cs->base + OMAP2_MCSPI_CHCONF0);
1428 }
1429 }
1430
1431 return 0;
1432}
1433
1434static struct omap2_mcspi_platform_config omap2_pdata = {
1435 .regs_offset = 0,
1436};
1437
1438static struct omap2_mcspi_platform_config omap4_pdata = {
1439 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1440};
1441
1442static struct omap2_mcspi_platform_config am654_pdata = {
1443 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1444 .max_xfer_len = SZ_4K - 1,
1445};
1446
1447static const struct of_device_id omap_mcspi_of_match[] = {
1448 {
1449 .compatible = "ti,omap2-mcspi",
1450 .data = &omap2_pdata,
1451 },
1452 {
1453 .compatible = "ti,omap4-mcspi",
1454 .data = &omap4_pdata,
1455 },
1456 {
1457 .compatible = "ti,am654-mcspi",
1458 .data = &am654_pdata,
1459 },
1460 { },
1461};
1462MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1463
1464static int omap2_mcspi_probe(struct platform_device *pdev)
1465{
1466 struct spi_controller *ctlr;
1467 const struct omap2_mcspi_platform_config *pdata;
1468 struct omap2_mcspi *mcspi;
1469 struct resource *r;
1470 int status = 0, i;
1471 u32 regs_offset = 0;
1472 struct device_node *node = pdev->dev.of_node;
1473 const struct of_device_id *match;
1474
1475 if (of_property_read_bool(node, "spi-slave"))
1476 ctlr = spi_alloc_target(&pdev->dev, sizeof(*mcspi));
1477 else
1478 ctlr = spi_alloc_host(&pdev->dev, sizeof(*mcspi));
1479 if (!ctlr)
1480 return -ENOMEM;
1481
1482 /* the spi->mode bits understood by this driver: */
1483 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1484 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1485 ctlr->setup = omap2_mcspi_setup;
1486 ctlr->auto_runtime_pm = true;
1487 ctlr->prepare_message = omap2_mcspi_prepare_message;
1488 ctlr->can_dma = omap2_mcspi_can_dma;
1489 ctlr->transfer_one = omap2_mcspi_transfer_one;
1490 ctlr->set_cs = omap2_mcspi_set_cs;
1491 ctlr->cleanup = omap2_mcspi_cleanup;
1492 ctlr->target_abort = omap2_mcspi_target_abort;
1493 ctlr->dev.of_node = node;
1494 ctlr->use_gpio_descriptors = true;
1495
1496 platform_set_drvdata(pdev, ctlr);
1497
1498 mcspi = spi_controller_get_devdata(ctlr);
1499 mcspi->ctlr = ctlr;
1500
1501 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1502 if (match) {
1503 u32 num_cs = 1; /* default number of chipselect */
1504 pdata = match->data;
1505
1506 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1507 ctlr->num_chipselect = num_cs;
1508 if (of_property_read_bool(node, "ti,pindir-d0-out-d1-in"))
1509 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1510 } else {
1511 pdata = dev_get_platdata(&pdev->dev);
1512 ctlr->num_chipselect = pdata->num_cs;
1513 mcspi->pin_dir = pdata->pin_dir;
1514 }
1515 regs_offset = pdata->regs_offset;
1516 if (pdata->max_xfer_len) {
1517 mcspi->max_xfer_len = pdata->max_xfer_len;
1518 ctlr->max_transfer_size = omap2_mcspi_max_xfer_size;
1519 }
1520
1521 mcspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r);
1522 if (IS_ERR(mcspi->base)) {
1523 status = PTR_ERR(mcspi->base);
1524 goto free_ctlr;
1525 }
1526 mcspi->phys = r->start + regs_offset;
1527 mcspi->base += regs_offset;
1528
1529 mcspi->dev = &pdev->dev;
1530
1531 INIT_LIST_HEAD(&mcspi->ctx.cs);
1532
1533 mcspi->dma_channels = devm_kcalloc(&pdev->dev, ctlr->num_chipselect,
1534 sizeof(struct omap2_mcspi_dma),
1535 GFP_KERNEL);
1536 if (mcspi->dma_channels == NULL) {
1537 status = -ENOMEM;
1538 goto free_ctlr;
1539 }
1540
1541 for (i = 0; i < ctlr->num_chipselect; i++) {
1542 sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1543 sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1544
1545 status = omap2_mcspi_request_dma(mcspi,
1546 &mcspi->dma_channels[i]);
1547 if (status == -EPROBE_DEFER)
1548 goto free_ctlr;
1549 }
1550
1551 status = platform_get_irq(pdev, 0);
1552 if (status < 0)
1553 goto free_ctlr;
1554 init_completion(&mcspi->txdone);
1555 status = devm_request_irq(&pdev->dev, status,
1556 omap2_mcspi_irq_handler, 0, pdev->name,
1557 mcspi);
1558 if (status) {
1559 dev_err(&pdev->dev, "Cannot request IRQ");
1560 goto free_ctlr;
1561 }
1562
1563 mcspi->ref_clk = devm_clk_get_optional_enabled(&pdev->dev, NULL);
1564 if (IS_ERR(mcspi->ref_clk)) {
1565 status = PTR_ERR(mcspi->ref_clk);
1566 dev_err_probe(&pdev->dev, status, "Failed to get ref_clk");
1567 goto free_ctlr;
1568 }
1569 if (mcspi->ref_clk)
1570 mcspi->ref_clk_hz = clk_get_rate(mcspi->ref_clk);
1571 else
1572 mcspi->ref_clk_hz = OMAP2_MCSPI_MAX_FREQ;
1573 ctlr->max_speed_hz = mcspi->ref_clk_hz;
1574 ctlr->min_speed_hz = mcspi->ref_clk_hz >> 15;
1575
1576 pm_runtime_use_autosuspend(&pdev->dev);
1577 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1578 pm_runtime_enable(&pdev->dev);
1579
1580 status = omap2_mcspi_controller_setup(mcspi);
1581 if (status < 0)
1582 goto disable_pm;
1583
1584 status = devm_spi_register_controller(&pdev->dev, ctlr);
1585 if (status < 0)
1586 goto disable_pm;
1587
1588 return status;
1589
1590disable_pm:
1591 pm_runtime_dont_use_autosuspend(&pdev->dev);
1592 pm_runtime_put_sync(&pdev->dev);
1593 pm_runtime_disable(&pdev->dev);
1594free_ctlr:
1595 omap2_mcspi_release_dma(ctlr);
1596 spi_controller_put(ctlr);
1597 return status;
1598}
1599
1600static void omap2_mcspi_remove(struct platform_device *pdev)
1601{
1602 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1603 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1604
1605 omap2_mcspi_release_dma(ctlr);
1606
1607 pm_runtime_dont_use_autosuspend(mcspi->dev);
1608 pm_runtime_put_sync(mcspi->dev);
1609 pm_runtime_disable(&pdev->dev);
1610}
1611
1612/* work with hotplug and coldplug */
1613MODULE_ALIAS("platform:omap2_mcspi");
1614
1615static int __maybe_unused omap2_mcspi_suspend(struct device *dev)
1616{
1617 struct spi_controller *ctlr = dev_get_drvdata(dev);
1618 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1619 int error;
1620
1621 error = pinctrl_pm_select_sleep_state(dev);
1622 if (error)
1623 dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1624 __func__, error);
1625
1626 error = spi_controller_suspend(ctlr);
1627 if (error)
1628 dev_warn(mcspi->dev, "%s: controller suspend failed: %i\n",
1629 __func__, error);
1630
1631 return pm_runtime_force_suspend(dev);
1632}
1633
1634static int __maybe_unused omap2_mcspi_resume(struct device *dev)
1635{
1636 struct spi_controller *ctlr = dev_get_drvdata(dev);
1637 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1638 int error;
1639
1640 error = spi_controller_resume(ctlr);
1641 if (error)
1642 dev_warn(mcspi->dev, "%s: controller resume failed: %i\n",
1643 __func__, error);
1644
1645 return pm_runtime_force_resume(dev);
1646}
1647
1648static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1649 SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend,
1650 omap2_mcspi_resume)
1651 .runtime_suspend = omap_mcspi_runtime_suspend,
1652 .runtime_resume = omap_mcspi_runtime_resume,
1653};
1654
1655static struct platform_driver omap2_mcspi_driver = {
1656 .driver = {
1657 .name = "omap2_mcspi",
1658 .pm = &omap2_mcspi_pm_ops,
1659 .of_match_table = omap_mcspi_of_match,
1660 },
1661 .probe = omap2_mcspi_probe,
1662 .remove = omap2_mcspi_remove,
1663};
1664
1665module_platform_driver(omap2_mcspi_driver);
1666MODULE_DESCRIPTION("OMAP2 McSPI controller driver");
1667MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * OMAP2 McSPI controller driver
4 *
5 * Copyright (C) 2005, 2006 Nokia Corporation
6 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
7 * Juha Yrjola <juha.yrjola@nokia.com>
8 */
9
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/module.h>
13#include <linux/device.h>
14#include <linux/delay.h>
15#include <linux/dma-mapping.h>
16#include <linux/dmaengine.h>
17#include <linux/pinctrl/consumer.h>
18#include <linux/platform_device.h>
19#include <linux/err.h>
20#include <linux/clk.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23#include <linux/pm_runtime.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/gcd.h>
27
28#include <linux/spi/spi.h>
29
30#include <linux/platform_data/spi-omap2-mcspi.h>
31
32#define OMAP2_MCSPI_MAX_FREQ 48000000
33#define OMAP2_MCSPI_MAX_DIVIDER 4096
34#define OMAP2_MCSPI_MAX_FIFODEPTH 64
35#define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
36#define SPI_AUTOSUSPEND_TIMEOUT 2000
37
38#define OMAP2_MCSPI_REVISION 0x00
39#define OMAP2_MCSPI_SYSSTATUS 0x14
40#define OMAP2_MCSPI_IRQSTATUS 0x18
41#define OMAP2_MCSPI_IRQENABLE 0x1c
42#define OMAP2_MCSPI_WAKEUPENABLE 0x20
43#define OMAP2_MCSPI_SYST 0x24
44#define OMAP2_MCSPI_MODULCTRL 0x28
45#define OMAP2_MCSPI_XFERLEVEL 0x7c
46
47/* per-channel banks, 0x14 bytes each, first is: */
48#define OMAP2_MCSPI_CHCONF0 0x2c
49#define OMAP2_MCSPI_CHSTAT0 0x30
50#define OMAP2_MCSPI_CHCTRL0 0x34
51#define OMAP2_MCSPI_TX0 0x38
52#define OMAP2_MCSPI_RX0 0x3c
53
54/* per-register bitmasks: */
55#define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
56
57#define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
58#define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
59#define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
60
61#define OMAP2_MCSPI_CHCONF_PHA BIT(0)
62#define OMAP2_MCSPI_CHCONF_POL BIT(1)
63#define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
64#define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
65#define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
66#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
67#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
68#define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
69#define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
70#define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
71#define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
72#define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
73#define OMAP2_MCSPI_CHCONF_IS BIT(18)
74#define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
75#define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
76#define OMAP2_MCSPI_CHCONF_FFET BIT(27)
77#define OMAP2_MCSPI_CHCONF_FFER BIT(28)
78#define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
79
80#define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
81#define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
82#define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
83#define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
84
85#define OMAP2_MCSPI_CHCTRL_EN BIT(0)
86#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
87
88#define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
89
90/* We have 2 DMA channels per CS, one for RX and one for TX */
91struct omap2_mcspi_dma {
92 struct dma_chan *dma_tx;
93 struct dma_chan *dma_rx;
94
95 struct completion dma_tx_completion;
96 struct completion dma_rx_completion;
97
98 char dma_rx_ch_name[14];
99 char dma_tx_ch_name[14];
100};
101
102/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
103 * cache operations; better heuristics consider wordsize and bitrate.
104 */
105#define DMA_MIN_BYTES 160
106
107
108/*
109 * Used for context save and restore, structure members to be updated whenever
110 * corresponding registers are modified.
111 */
112struct omap2_mcspi_regs {
113 u32 modulctrl;
114 u32 wakeupenable;
115 struct list_head cs;
116};
117
118struct omap2_mcspi {
119 struct completion txdone;
120 struct spi_master *master;
121 /* Virtual base address of the controller */
122 void __iomem *base;
123 unsigned long phys;
124 /* SPI1 has 4 channels, while SPI2 has 2 */
125 struct omap2_mcspi_dma *dma_channels;
126 struct device *dev;
127 struct omap2_mcspi_regs ctx;
128 int fifo_depth;
129 bool slave_aborted;
130 unsigned int pin_dir:1;
131 size_t max_xfer_len;
132};
133
134struct omap2_mcspi_cs {
135 void __iomem *base;
136 unsigned long phys;
137 int word_len;
138 u16 mode;
139 struct list_head node;
140 /* Context save and restore shadow register */
141 u32 chconf0, chctrl0;
142};
143
144static inline void mcspi_write_reg(struct spi_master *master,
145 int idx, u32 val)
146{
147 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
148
149 writel_relaxed(val, mcspi->base + idx);
150}
151
152static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
153{
154 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
155
156 return readl_relaxed(mcspi->base + idx);
157}
158
159static inline void mcspi_write_cs_reg(const struct spi_device *spi,
160 int idx, u32 val)
161{
162 struct omap2_mcspi_cs *cs = spi->controller_state;
163
164 writel_relaxed(val, cs->base + idx);
165}
166
167static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
168{
169 struct omap2_mcspi_cs *cs = spi->controller_state;
170
171 return readl_relaxed(cs->base + idx);
172}
173
174static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
175{
176 struct omap2_mcspi_cs *cs = spi->controller_state;
177
178 return cs->chconf0;
179}
180
181static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
182{
183 struct omap2_mcspi_cs *cs = spi->controller_state;
184
185 cs->chconf0 = val;
186 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
187 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
188}
189
190static inline int mcspi_bytes_per_word(int word_len)
191{
192 if (word_len <= 8)
193 return 1;
194 else if (word_len <= 16)
195 return 2;
196 else /* word_len <= 32 */
197 return 4;
198}
199
200static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
201 int is_read, int enable)
202{
203 u32 l, rw;
204
205 l = mcspi_cached_chconf0(spi);
206
207 if (is_read) /* 1 is read, 0 write */
208 rw = OMAP2_MCSPI_CHCONF_DMAR;
209 else
210 rw = OMAP2_MCSPI_CHCONF_DMAW;
211
212 if (enable)
213 l |= rw;
214 else
215 l &= ~rw;
216
217 mcspi_write_chconf0(spi, l);
218}
219
220static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
221{
222 struct omap2_mcspi_cs *cs = spi->controller_state;
223 u32 l;
224
225 l = cs->chctrl0;
226 if (enable)
227 l |= OMAP2_MCSPI_CHCTRL_EN;
228 else
229 l &= ~OMAP2_MCSPI_CHCTRL_EN;
230 cs->chctrl0 = l;
231 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
232 /* Flash post-writes */
233 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
234}
235
236static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
237{
238 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
239 u32 l;
240
241 /* The controller handles the inverted chip selects
242 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
243 * the inversion from the core spi_set_cs function.
244 */
245 if (spi->mode & SPI_CS_HIGH)
246 enable = !enable;
247
248 if (spi->controller_state) {
249 int err = pm_runtime_get_sync(mcspi->dev);
250 if (err < 0) {
251 pm_runtime_put_noidle(mcspi->dev);
252 dev_err(mcspi->dev, "failed to get sync: %d\n", err);
253 return;
254 }
255
256 l = mcspi_cached_chconf0(spi);
257
258 if (enable)
259 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
260 else
261 l |= OMAP2_MCSPI_CHCONF_FORCE;
262
263 mcspi_write_chconf0(spi, l);
264
265 pm_runtime_mark_last_busy(mcspi->dev);
266 pm_runtime_put_autosuspend(mcspi->dev);
267 }
268}
269
270static void omap2_mcspi_set_mode(struct spi_master *master)
271{
272 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
273 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
274 u32 l;
275
276 /*
277 * Choose master or slave mode
278 */
279 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
280 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST);
281 if (spi_controller_is_slave(master)) {
282 l |= (OMAP2_MCSPI_MODULCTRL_MS);
283 } else {
284 l &= ~(OMAP2_MCSPI_MODULCTRL_MS);
285 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
286 }
287 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
288
289 ctx->modulctrl = l;
290}
291
292static void omap2_mcspi_set_fifo(const struct spi_device *spi,
293 struct spi_transfer *t, int enable)
294{
295 struct spi_master *master = spi->master;
296 struct omap2_mcspi_cs *cs = spi->controller_state;
297 struct omap2_mcspi *mcspi;
298 unsigned int wcnt;
299 int max_fifo_depth, bytes_per_word;
300 u32 chconf, xferlevel;
301
302 mcspi = spi_master_get_devdata(master);
303
304 chconf = mcspi_cached_chconf0(spi);
305 if (enable) {
306 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
307 if (t->len % bytes_per_word != 0)
308 goto disable_fifo;
309
310 if (t->rx_buf != NULL && t->tx_buf != NULL)
311 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
312 else
313 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
314
315 wcnt = t->len / bytes_per_word;
316 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
317 goto disable_fifo;
318
319 xferlevel = wcnt << 16;
320 if (t->rx_buf != NULL) {
321 chconf |= OMAP2_MCSPI_CHCONF_FFER;
322 xferlevel |= (bytes_per_word - 1) << 8;
323 }
324
325 if (t->tx_buf != NULL) {
326 chconf |= OMAP2_MCSPI_CHCONF_FFET;
327 xferlevel |= bytes_per_word - 1;
328 }
329
330 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
331 mcspi_write_chconf0(spi, chconf);
332 mcspi->fifo_depth = max_fifo_depth;
333
334 return;
335 }
336
337disable_fifo:
338 if (t->rx_buf != NULL)
339 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
340
341 if (t->tx_buf != NULL)
342 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
343
344 mcspi_write_chconf0(spi, chconf);
345 mcspi->fifo_depth = 0;
346}
347
348static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
349{
350 unsigned long timeout;
351
352 timeout = jiffies + msecs_to_jiffies(1000);
353 while (!(readl_relaxed(reg) & bit)) {
354 if (time_after(jiffies, timeout)) {
355 if (!(readl_relaxed(reg) & bit))
356 return -ETIMEDOUT;
357 else
358 return 0;
359 }
360 cpu_relax();
361 }
362 return 0;
363}
364
365static int mcspi_wait_for_completion(struct omap2_mcspi *mcspi,
366 struct completion *x)
367{
368 if (spi_controller_is_slave(mcspi->master)) {
369 if (wait_for_completion_interruptible(x) ||
370 mcspi->slave_aborted)
371 return -EINTR;
372 } else {
373 wait_for_completion(x);
374 }
375
376 return 0;
377}
378
379static void omap2_mcspi_rx_callback(void *data)
380{
381 struct spi_device *spi = data;
382 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
383 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
384
385 /* We must disable the DMA RX request */
386 omap2_mcspi_set_dma_req(spi, 1, 0);
387
388 complete(&mcspi_dma->dma_rx_completion);
389}
390
391static void omap2_mcspi_tx_callback(void *data)
392{
393 struct spi_device *spi = data;
394 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
395 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
396
397 /* We must disable the DMA TX request */
398 omap2_mcspi_set_dma_req(spi, 0, 0);
399
400 complete(&mcspi_dma->dma_tx_completion);
401}
402
403static void omap2_mcspi_tx_dma(struct spi_device *spi,
404 struct spi_transfer *xfer,
405 struct dma_slave_config cfg)
406{
407 struct omap2_mcspi *mcspi;
408 struct omap2_mcspi_dma *mcspi_dma;
409 struct dma_async_tx_descriptor *tx;
410
411 mcspi = spi_master_get_devdata(spi->master);
412 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
413
414 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
415
416 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
417 xfer->tx_sg.nents,
418 DMA_MEM_TO_DEV,
419 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
420 if (tx) {
421 tx->callback = omap2_mcspi_tx_callback;
422 tx->callback_param = spi;
423 dmaengine_submit(tx);
424 } else {
425 /* FIXME: fall back to PIO? */
426 }
427 dma_async_issue_pending(mcspi_dma->dma_tx);
428 omap2_mcspi_set_dma_req(spi, 0, 1);
429}
430
431static unsigned
432omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
433 struct dma_slave_config cfg,
434 unsigned es)
435{
436 struct omap2_mcspi *mcspi;
437 struct omap2_mcspi_dma *mcspi_dma;
438 unsigned int count, transfer_reduction = 0;
439 struct scatterlist *sg_out[2];
440 int nb_sizes = 0, out_mapped_nents[2], ret, x;
441 size_t sizes[2];
442 u32 l;
443 int elements = 0;
444 int word_len, element_count;
445 struct omap2_mcspi_cs *cs = spi->controller_state;
446 void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
447 struct dma_async_tx_descriptor *tx;
448
449 mcspi = spi_master_get_devdata(spi->master);
450 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
451 count = xfer->len;
452
453 /*
454 * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
455 * it mentions reducing DMA transfer length by one element in master
456 * normal mode.
457 */
458 if (mcspi->fifo_depth == 0)
459 transfer_reduction = es;
460
461 word_len = cs->word_len;
462 l = mcspi_cached_chconf0(spi);
463
464 if (word_len <= 8)
465 element_count = count;
466 else if (word_len <= 16)
467 element_count = count >> 1;
468 else /* word_len <= 32 */
469 element_count = count >> 2;
470
471
472 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
473
474 /*
475 * Reduce DMA transfer length by one more if McSPI is
476 * configured in turbo mode.
477 */
478 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
479 transfer_reduction += es;
480
481 if (transfer_reduction) {
482 /* Split sgl into two. The second sgl won't be used. */
483 sizes[0] = count - transfer_reduction;
484 sizes[1] = transfer_reduction;
485 nb_sizes = 2;
486 } else {
487 /*
488 * Don't bother splitting the sgl. This essentially
489 * clones the original sgl.
490 */
491 sizes[0] = count;
492 nb_sizes = 1;
493 }
494
495 ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes,
496 sizes, sg_out, out_mapped_nents, GFP_KERNEL);
497
498 if (ret < 0) {
499 dev_err(&spi->dev, "sg_split failed\n");
500 return 0;
501 }
502
503 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0],
504 out_mapped_nents[0], DMA_DEV_TO_MEM,
505 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
506 if (tx) {
507 tx->callback = omap2_mcspi_rx_callback;
508 tx->callback_param = spi;
509 dmaengine_submit(tx);
510 } else {
511 /* FIXME: fall back to PIO? */
512 }
513
514 dma_async_issue_pending(mcspi_dma->dma_rx);
515 omap2_mcspi_set_dma_req(spi, 1, 1);
516
517 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion);
518 if (ret || mcspi->slave_aborted) {
519 dmaengine_terminate_sync(mcspi_dma->dma_rx);
520 omap2_mcspi_set_dma_req(spi, 1, 0);
521 return 0;
522 }
523
524 for (x = 0; x < nb_sizes; x++)
525 kfree(sg_out[x]);
526
527 if (mcspi->fifo_depth > 0)
528 return count;
529
530 /*
531 * Due to the DMA transfer length reduction the missing bytes must
532 * be read manually to receive all of the expected data.
533 */
534 omap2_mcspi_set_enable(spi, 0);
535
536 elements = element_count - 1;
537
538 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
539 elements--;
540
541 if (!mcspi_wait_for_reg_bit(chstat_reg,
542 OMAP2_MCSPI_CHSTAT_RXS)) {
543 u32 w;
544
545 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
546 if (word_len <= 8)
547 ((u8 *)xfer->rx_buf)[elements++] = w;
548 else if (word_len <= 16)
549 ((u16 *)xfer->rx_buf)[elements++] = w;
550 else /* word_len <= 32 */
551 ((u32 *)xfer->rx_buf)[elements++] = w;
552 } else {
553 int bytes_per_word = mcspi_bytes_per_word(word_len);
554 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
555 count -= (bytes_per_word << 1);
556 omap2_mcspi_set_enable(spi, 1);
557 return count;
558 }
559 }
560 if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
561 u32 w;
562
563 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
564 if (word_len <= 8)
565 ((u8 *)xfer->rx_buf)[elements] = w;
566 else if (word_len <= 16)
567 ((u16 *)xfer->rx_buf)[elements] = w;
568 else /* word_len <= 32 */
569 ((u32 *)xfer->rx_buf)[elements] = w;
570 } else {
571 dev_err(&spi->dev, "DMA RX last word empty\n");
572 count -= mcspi_bytes_per_word(word_len);
573 }
574 omap2_mcspi_set_enable(spi, 1);
575 return count;
576}
577
578static unsigned
579omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
580{
581 struct omap2_mcspi *mcspi;
582 struct omap2_mcspi_cs *cs = spi->controller_state;
583 struct omap2_mcspi_dma *mcspi_dma;
584 unsigned int count;
585 u8 *rx;
586 const u8 *tx;
587 struct dma_slave_config cfg;
588 enum dma_slave_buswidth width;
589 unsigned es;
590 void __iomem *chstat_reg;
591 void __iomem *irqstat_reg;
592 int wait_res;
593
594 mcspi = spi_master_get_devdata(spi->master);
595 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
596
597 if (cs->word_len <= 8) {
598 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
599 es = 1;
600 } else if (cs->word_len <= 16) {
601 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
602 es = 2;
603 } else {
604 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
605 es = 4;
606 }
607
608 count = xfer->len;
609
610 memset(&cfg, 0, sizeof(cfg));
611 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
612 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
613 cfg.src_addr_width = width;
614 cfg.dst_addr_width = width;
615 cfg.src_maxburst = 1;
616 cfg.dst_maxburst = 1;
617
618 rx = xfer->rx_buf;
619 tx = xfer->tx_buf;
620
621 mcspi->slave_aborted = false;
622 reinit_completion(&mcspi_dma->dma_tx_completion);
623 reinit_completion(&mcspi_dma->dma_rx_completion);
624 reinit_completion(&mcspi->txdone);
625 if (tx) {
626 /* Enable EOW IRQ to know end of tx in slave mode */
627 if (spi_controller_is_slave(spi->master))
628 mcspi_write_reg(spi->master,
629 OMAP2_MCSPI_IRQENABLE,
630 OMAP2_MCSPI_IRQSTATUS_EOW);
631 omap2_mcspi_tx_dma(spi, xfer, cfg);
632 }
633
634 if (rx != NULL)
635 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
636
637 if (tx != NULL) {
638 int ret;
639
640 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion);
641 if (ret || mcspi->slave_aborted) {
642 dmaengine_terminate_sync(mcspi_dma->dma_tx);
643 omap2_mcspi_set_dma_req(spi, 0, 0);
644 return 0;
645 }
646
647 if (spi_controller_is_slave(mcspi->master)) {
648 ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone);
649 if (ret || mcspi->slave_aborted)
650 return 0;
651 }
652
653 if (mcspi->fifo_depth > 0) {
654 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
655
656 if (mcspi_wait_for_reg_bit(irqstat_reg,
657 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
658 dev_err(&spi->dev, "EOW timed out\n");
659
660 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
661 OMAP2_MCSPI_IRQSTATUS_EOW);
662 }
663
664 /* for TX_ONLY mode, be sure all words have shifted out */
665 if (rx == NULL) {
666 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
667 if (mcspi->fifo_depth > 0) {
668 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
669 OMAP2_MCSPI_CHSTAT_TXFFE);
670 if (wait_res < 0)
671 dev_err(&spi->dev, "TXFFE timed out\n");
672 } else {
673 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
674 OMAP2_MCSPI_CHSTAT_TXS);
675 if (wait_res < 0)
676 dev_err(&spi->dev, "TXS timed out\n");
677 }
678 if (wait_res >= 0 &&
679 (mcspi_wait_for_reg_bit(chstat_reg,
680 OMAP2_MCSPI_CHSTAT_EOT) < 0))
681 dev_err(&spi->dev, "EOT timed out\n");
682 }
683 }
684 return count;
685}
686
687static unsigned
688omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
689{
690 struct omap2_mcspi_cs *cs = spi->controller_state;
691 unsigned int count, c;
692 u32 l;
693 void __iomem *base = cs->base;
694 void __iomem *tx_reg;
695 void __iomem *rx_reg;
696 void __iomem *chstat_reg;
697 int word_len;
698
699 count = xfer->len;
700 c = count;
701 word_len = cs->word_len;
702
703 l = mcspi_cached_chconf0(spi);
704
705 /* We store the pre-calculated register addresses on stack to speed
706 * up the transfer loop. */
707 tx_reg = base + OMAP2_MCSPI_TX0;
708 rx_reg = base + OMAP2_MCSPI_RX0;
709 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
710
711 if (c < (word_len>>3))
712 return 0;
713
714 if (word_len <= 8) {
715 u8 *rx;
716 const u8 *tx;
717
718 rx = xfer->rx_buf;
719 tx = xfer->tx_buf;
720
721 do {
722 c -= 1;
723 if (tx != NULL) {
724 if (mcspi_wait_for_reg_bit(chstat_reg,
725 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
726 dev_err(&spi->dev, "TXS timed out\n");
727 goto out;
728 }
729 dev_vdbg(&spi->dev, "write-%d %02x\n",
730 word_len, *tx);
731 writel_relaxed(*tx++, tx_reg);
732 }
733 if (rx != NULL) {
734 if (mcspi_wait_for_reg_bit(chstat_reg,
735 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
736 dev_err(&spi->dev, "RXS timed out\n");
737 goto out;
738 }
739
740 if (c == 1 && tx == NULL &&
741 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
742 omap2_mcspi_set_enable(spi, 0);
743 *rx++ = readl_relaxed(rx_reg);
744 dev_vdbg(&spi->dev, "read-%d %02x\n",
745 word_len, *(rx - 1));
746 if (mcspi_wait_for_reg_bit(chstat_reg,
747 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
748 dev_err(&spi->dev,
749 "RXS timed out\n");
750 goto out;
751 }
752 c = 0;
753 } else if (c == 0 && tx == NULL) {
754 omap2_mcspi_set_enable(spi, 0);
755 }
756
757 *rx++ = readl_relaxed(rx_reg);
758 dev_vdbg(&spi->dev, "read-%d %02x\n",
759 word_len, *(rx - 1));
760 }
761 } while (c);
762 } else if (word_len <= 16) {
763 u16 *rx;
764 const u16 *tx;
765
766 rx = xfer->rx_buf;
767 tx = xfer->tx_buf;
768 do {
769 c -= 2;
770 if (tx != NULL) {
771 if (mcspi_wait_for_reg_bit(chstat_reg,
772 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
773 dev_err(&spi->dev, "TXS timed out\n");
774 goto out;
775 }
776 dev_vdbg(&spi->dev, "write-%d %04x\n",
777 word_len, *tx);
778 writel_relaxed(*tx++, tx_reg);
779 }
780 if (rx != NULL) {
781 if (mcspi_wait_for_reg_bit(chstat_reg,
782 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
783 dev_err(&spi->dev, "RXS timed out\n");
784 goto out;
785 }
786
787 if (c == 2 && tx == NULL &&
788 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
789 omap2_mcspi_set_enable(spi, 0);
790 *rx++ = readl_relaxed(rx_reg);
791 dev_vdbg(&spi->dev, "read-%d %04x\n",
792 word_len, *(rx - 1));
793 if (mcspi_wait_for_reg_bit(chstat_reg,
794 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
795 dev_err(&spi->dev,
796 "RXS timed out\n");
797 goto out;
798 }
799 c = 0;
800 } else if (c == 0 && tx == NULL) {
801 omap2_mcspi_set_enable(spi, 0);
802 }
803
804 *rx++ = readl_relaxed(rx_reg);
805 dev_vdbg(&spi->dev, "read-%d %04x\n",
806 word_len, *(rx - 1));
807 }
808 } while (c >= 2);
809 } else if (word_len <= 32) {
810 u32 *rx;
811 const u32 *tx;
812
813 rx = xfer->rx_buf;
814 tx = xfer->tx_buf;
815 do {
816 c -= 4;
817 if (tx != NULL) {
818 if (mcspi_wait_for_reg_bit(chstat_reg,
819 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
820 dev_err(&spi->dev, "TXS timed out\n");
821 goto out;
822 }
823 dev_vdbg(&spi->dev, "write-%d %08x\n",
824 word_len, *tx);
825 writel_relaxed(*tx++, tx_reg);
826 }
827 if (rx != NULL) {
828 if (mcspi_wait_for_reg_bit(chstat_reg,
829 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
830 dev_err(&spi->dev, "RXS timed out\n");
831 goto out;
832 }
833
834 if (c == 4 && tx == NULL &&
835 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
836 omap2_mcspi_set_enable(spi, 0);
837 *rx++ = readl_relaxed(rx_reg);
838 dev_vdbg(&spi->dev, "read-%d %08x\n",
839 word_len, *(rx - 1));
840 if (mcspi_wait_for_reg_bit(chstat_reg,
841 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
842 dev_err(&spi->dev,
843 "RXS timed out\n");
844 goto out;
845 }
846 c = 0;
847 } else if (c == 0 && tx == NULL) {
848 omap2_mcspi_set_enable(spi, 0);
849 }
850
851 *rx++ = readl_relaxed(rx_reg);
852 dev_vdbg(&spi->dev, "read-%d %08x\n",
853 word_len, *(rx - 1));
854 }
855 } while (c >= 4);
856 }
857
858 /* for TX_ONLY mode, be sure all words have shifted out */
859 if (xfer->rx_buf == NULL) {
860 if (mcspi_wait_for_reg_bit(chstat_reg,
861 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
862 dev_err(&spi->dev, "TXS timed out\n");
863 } else if (mcspi_wait_for_reg_bit(chstat_reg,
864 OMAP2_MCSPI_CHSTAT_EOT) < 0)
865 dev_err(&spi->dev, "EOT timed out\n");
866
867 /* disable chan to purge rx datas received in TX_ONLY transfer,
868 * otherwise these rx datas will affect the direct following
869 * RX_ONLY transfer.
870 */
871 omap2_mcspi_set_enable(spi, 0);
872 }
873out:
874 omap2_mcspi_set_enable(spi, 1);
875 return count - c;
876}
877
878static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
879{
880 u32 div;
881
882 for (div = 0; div < 15; div++)
883 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
884 return div;
885
886 return 15;
887}
888
889/* called only when no transfer is active to this device */
890static int omap2_mcspi_setup_transfer(struct spi_device *spi,
891 struct spi_transfer *t)
892{
893 struct omap2_mcspi_cs *cs = spi->controller_state;
894 struct omap2_mcspi *mcspi;
895 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
896 u8 word_len = spi->bits_per_word;
897 u32 speed_hz = spi->max_speed_hz;
898
899 mcspi = spi_master_get_devdata(spi->master);
900
901 if (t != NULL && t->bits_per_word)
902 word_len = t->bits_per_word;
903
904 cs->word_len = word_len;
905
906 if (t && t->speed_hz)
907 speed_hz = t->speed_hz;
908
909 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
910 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
911 clkd = omap2_mcspi_calc_divisor(speed_hz);
912 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
913 clkg = 0;
914 } else {
915 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
916 speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
917 clkd = (div - 1) & 0xf;
918 extclk = (div - 1) >> 4;
919 clkg = OMAP2_MCSPI_CHCONF_CLKG;
920 }
921
922 l = mcspi_cached_chconf0(spi);
923
924 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
925 * REVISIT: this controller could support SPI_3WIRE mode.
926 */
927 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
928 l &= ~OMAP2_MCSPI_CHCONF_IS;
929 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
930 l |= OMAP2_MCSPI_CHCONF_DPE0;
931 } else {
932 l |= OMAP2_MCSPI_CHCONF_IS;
933 l |= OMAP2_MCSPI_CHCONF_DPE1;
934 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
935 }
936
937 /* wordlength */
938 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
939 l |= (word_len - 1) << 7;
940
941 /* set chipselect polarity; manage with FORCE */
942 if (!(spi->mode & SPI_CS_HIGH))
943 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
944 else
945 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
946
947 /* set clock divisor */
948 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
949 l |= clkd << 2;
950
951 /* set clock granularity */
952 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
953 l |= clkg;
954 if (clkg) {
955 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
956 cs->chctrl0 |= extclk << 8;
957 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
958 }
959
960 /* set SPI mode 0..3 */
961 if (spi->mode & SPI_CPOL)
962 l |= OMAP2_MCSPI_CHCONF_POL;
963 else
964 l &= ~OMAP2_MCSPI_CHCONF_POL;
965 if (spi->mode & SPI_CPHA)
966 l |= OMAP2_MCSPI_CHCONF_PHA;
967 else
968 l &= ~OMAP2_MCSPI_CHCONF_PHA;
969
970 mcspi_write_chconf0(spi, l);
971
972 cs->mode = spi->mode;
973
974 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
975 speed_hz,
976 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
977 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
978
979 return 0;
980}
981
982/*
983 * Note that we currently allow DMA only if we get a channel
984 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
985 */
986static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi,
987 struct omap2_mcspi_dma *mcspi_dma)
988{
989 int ret = 0;
990
991 mcspi_dma->dma_rx = dma_request_chan(mcspi->dev,
992 mcspi_dma->dma_rx_ch_name);
993 if (IS_ERR(mcspi_dma->dma_rx)) {
994 ret = PTR_ERR(mcspi_dma->dma_rx);
995 mcspi_dma->dma_rx = NULL;
996 goto no_dma;
997 }
998
999 mcspi_dma->dma_tx = dma_request_chan(mcspi->dev,
1000 mcspi_dma->dma_tx_ch_name);
1001 if (IS_ERR(mcspi_dma->dma_tx)) {
1002 ret = PTR_ERR(mcspi_dma->dma_tx);
1003 mcspi_dma->dma_tx = NULL;
1004 dma_release_channel(mcspi_dma->dma_rx);
1005 mcspi_dma->dma_rx = NULL;
1006 }
1007
1008 init_completion(&mcspi_dma->dma_rx_completion);
1009 init_completion(&mcspi_dma->dma_tx_completion);
1010
1011no_dma:
1012 return ret;
1013}
1014
1015static void omap2_mcspi_release_dma(struct spi_master *master)
1016{
1017 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1018 struct omap2_mcspi_dma *mcspi_dma;
1019 int i;
1020
1021 for (i = 0; i < master->num_chipselect; i++) {
1022 mcspi_dma = &mcspi->dma_channels[i];
1023
1024 if (mcspi_dma->dma_rx) {
1025 dma_release_channel(mcspi_dma->dma_rx);
1026 mcspi_dma->dma_rx = NULL;
1027 }
1028 if (mcspi_dma->dma_tx) {
1029 dma_release_channel(mcspi_dma->dma_tx);
1030 mcspi_dma->dma_tx = NULL;
1031 }
1032 }
1033}
1034
1035static void omap2_mcspi_cleanup(struct spi_device *spi)
1036{
1037 struct omap2_mcspi_cs *cs;
1038
1039 if (spi->controller_state) {
1040 /* Unlink controller state from context save list */
1041 cs = spi->controller_state;
1042 list_del(&cs->node);
1043
1044 kfree(cs);
1045 }
1046}
1047
1048static int omap2_mcspi_setup(struct spi_device *spi)
1049{
1050 bool initial_setup = false;
1051 int ret;
1052 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1053 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1054 struct omap2_mcspi_cs *cs = spi->controller_state;
1055
1056 if (!cs) {
1057 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1058 if (!cs)
1059 return -ENOMEM;
1060 cs->base = mcspi->base + spi->chip_select * 0x14;
1061 cs->phys = mcspi->phys + spi->chip_select * 0x14;
1062 cs->mode = 0;
1063 cs->chconf0 = 0;
1064 cs->chctrl0 = 0;
1065 spi->controller_state = cs;
1066 /* Link this to context save list */
1067 list_add_tail(&cs->node, &ctx->cs);
1068 initial_setup = true;
1069 }
1070
1071 ret = pm_runtime_get_sync(mcspi->dev);
1072 if (ret < 0) {
1073 pm_runtime_put_noidle(mcspi->dev);
1074 if (initial_setup)
1075 omap2_mcspi_cleanup(spi);
1076
1077 return ret;
1078 }
1079
1080 ret = omap2_mcspi_setup_transfer(spi, NULL);
1081 if (ret && initial_setup)
1082 omap2_mcspi_cleanup(spi);
1083
1084 pm_runtime_mark_last_busy(mcspi->dev);
1085 pm_runtime_put_autosuspend(mcspi->dev);
1086
1087 return ret;
1088}
1089
1090static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data)
1091{
1092 struct omap2_mcspi *mcspi = data;
1093 u32 irqstat;
1094
1095 irqstat = mcspi_read_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS);
1096 if (!irqstat)
1097 return IRQ_NONE;
1098
1099 /* Disable IRQ and wakeup slave xfer task */
1100 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQENABLE, 0);
1101 if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW)
1102 complete(&mcspi->txdone);
1103
1104 return IRQ_HANDLED;
1105}
1106
1107static int omap2_mcspi_slave_abort(struct spi_master *master)
1108{
1109 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1110 struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels;
1111
1112 mcspi->slave_aborted = true;
1113 complete(&mcspi_dma->dma_rx_completion);
1114 complete(&mcspi_dma->dma_tx_completion);
1115 complete(&mcspi->txdone);
1116
1117 return 0;
1118}
1119
1120static int omap2_mcspi_transfer_one(struct spi_master *master,
1121 struct spi_device *spi,
1122 struct spi_transfer *t)
1123{
1124
1125 /* We only enable one channel at a time -- the one whose message is
1126 * -- although this controller would gladly
1127 * arbitrate among multiple channels. This corresponds to "single
1128 * channel" master mode. As a side effect, we need to manage the
1129 * chipselect with the FORCE bit ... CS != channel enable.
1130 */
1131
1132 struct omap2_mcspi *mcspi;
1133 struct omap2_mcspi_dma *mcspi_dma;
1134 struct omap2_mcspi_cs *cs;
1135 struct omap2_mcspi_device_config *cd;
1136 int par_override = 0;
1137 int status = 0;
1138 u32 chconf;
1139
1140 mcspi = spi_master_get_devdata(master);
1141 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1142 cs = spi->controller_state;
1143 cd = spi->controller_data;
1144
1145 /*
1146 * The slave driver could have changed spi->mode in which case
1147 * it will be different from cs->mode (the current hardware setup).
1148 * If so, set par_override (even though its not a parity issue) so
1149 * omap2_mcspi_setup_transfer will be called to configure the hardware
1150 * with the correct mode on the first iteration of the loop below.
1151 */
1152 if (spi->mode != cs->mode)
1153 par_override = 1;
1154
1155 omap2_mcspi_set_enable(spi, 0);
1156
1157 if (spi->cs_gpiod)
1158 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1159
1160 if (par_override ||
1161 (t->speed_hz != spi->max_speed_hz) ||
1162 (t->bits_per_word != spi->bits_per_word)) {
1163 par_override = 1;
1164 status = omap2_mcspi_setup_transfer(spi, t);
1165 if (status < 0)
1166 goto out;
1167 if (t->speed_hz == spi->max_speed_hz &&
1168 t->bits_per_word == spi->bits_per_word)
1169 par_override = 0;
1170 }
1171 if (cd && cd->cs_per_word) {
1172 chconf = mcspi->ctx.modulctrl;
1173 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1174 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1175 mcspi->ctx.modulctrl =
1176 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1177 }
1178
1179 chconf = mcspi_cached_chconf0(spi);
1180 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1181 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1182
1183 if (t->tx_buf == NULL)
1184 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1185 else if (t->rx_buf == NULL)
1186 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1187
1188 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1189 /* Turbo mode is for more than one word */
1190 if (t->len > ((cs->word_len + 7) >> 3))
1191 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1192 }
1193
1194 mcspi_write_chconf0(spi, chconf);
1195
1196 if (t->len) {
1197 unsigned count;
1198
1199 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1200 master->cur_msg_mapped &&
1201 master->can_dma(master, spi, t))
1202 omap2_mcspi_set_fifo(spi, t, 1);
1203
1204 omap2_mcspi_set_enable(spi, 1);
1205
1206 /* RX_ONLY mode needs dummy data in TX reg */
1207 if (t->tx_buf == NULL)
1208 writel_relaxed(0, cs->base
1209 + OMAP2_MCSPI_TX0);
1210
1211 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1212 master->cur_msg_mapped &&
1213 master->can_dma(master, spi, t))
1214 count = omap2_mcspi_txrx_dma(spi, t);
1215 else
1216 count = omap2_mcspi_txrx_pio(spi, t);
1217
1218 if (count != t->len) {
1219 status = -EIO;
1220 goto out;
1221 }
1222 }
1223
1224 omap2_mcspi_set_enable(spi, 0);
1225
1226 if (mcspi->fifo_depth > 0)
1227 omap2_mcspi_set_fifo(spi, t, 0);
1228
1229out:
1230 /* Restore defaults if they were overriden */
1231 if (par_override) {
1232 par_override = 0;
1233 status = omap2_mcspi_setup_transfer(spi, NULL);
1234 }
1235
1236 if (cd && cd->cs_per_word) {
1237 chconf = mcspi->ctx.modulctrl;
1238 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1239 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1240 mcspi->ctx.modulctrl =
1241 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1242 }
1243
1244 omap2_mcspi_set_enable(spi, 0);
1245
1246 if (spi->cs_gpiod)
1247 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1248
1249 if (mcspi->fifo_depth > 0 && t)
1250 omap2_mcspi_set_fifo(spi, t, 0);
1251
1252 return status;
1253}
1254
1255static int omap2_mcspi_prepare_message(struct spi_master *master,
1256 struct spi_message *msg)
1257{
1258 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1259 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1260 struct omap2_mcspi_cs *cs;
1261
1262 /* Only a single channel can have the FORCE bit enabled
1263 * in its chconf0 register.
1264 * Scan all channels and disable them except the current one.
1265 * A FORCE can remain from a last transfer having cs_change enabled
1266 */
1267 list_for_each_entry(cs, &ctx->cs, node) {
1268 if (msg->spi->controller_state == cs)
1269 continue;
1270
1271 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1272 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1273 writel_relaxed(cs->chconf0,
1274 cs->base + OMAP2_MCSPI_CHCONF0);
1275 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1276 }
1277 }
1278
1279 return 0;
1280}
1281
1282static bool omap2_mcspi_can_dma(struct spi_master *master,
1283 struct spi_device *spi,
1284 struct spi_transfer *xfer)
1285{
1286 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1287 struct omap2_mcspi_dma *mcspi_dma =
1288 &mcspi->dma_channels[spi->chip_select];
1289
1290 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx)
1291 return false;
1292
1293 if (spi_controller_is_slave(master))
1294 return true;
1295
1296 master->dma_rx = mcspi_dma->dma_rx;
1297 master->dma_tx = mcspi_dma->dma_tx;
1298
1299 return (xfer->len >= DMA_MIN_BYTES);
1300}
1301
1302static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi)
1303{
1304 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1305 struct omap2_mcspi_dma *mcspi_dma =
1306 &mcspi->dma_channels[spi->chip_select];
1307
1308 if (mcspi->max_xfer_len && mcspi_dma->dma_rx)
1309 return mcspi->max_xfer_len;
1310
1311 return SIZE_MAX;
1312}
1313
1314static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi)
1315{
1316 struct spi_master *master = mcspi->master;
1317 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1318 int ret = 0;
1319
1320 ret = pm_runtime_get_sync(mcspi->dev);
1321 if (ret < 0) {
1322 pm_runtime_put_noidle(mcspi->dev);
1323
1324 return ret;
1325 }
1326
1327 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1328 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1329 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1330
1331 omap2_mcspi_set_mode(master);
1332 pm_runtime_mark_last_busy(mcspi->dev);
1333 pm_runtime_put_autosuspend(mcspi->dev);
1334 return 0;
1335}
1336
1337static int omap_mcspi_runtime_suspend(struct device *dev)
1338{
1339 int error;
1340
1341 error = pinctrl_pm_select_idle_state(dev);
1342 if (error)
1343 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1344
1345 return 0;
1346}
1347
1348/*
1349 * When SPI wake up from off-mode, CS is in activate state. If it was in
1350 * inactive state when driver was suspend, then force it to inactive state at
1351 * wake up.
1352 */
1353static int omap_mcspi_runtime_resume(struct device *dev)
1354{
1355 struct spi_master *master = dev_get_drvdata(dev);
1356 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1357 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1358 struct omap2_mcspi_cs *cs;
1359 int error;
1360
1361 error = pinctrl_pm_select_default_state(dev);
1362 if (error)
1363 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1364
1365 /* McSPI: context restore */
1366 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
1367 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
1368
1369 list_for_each_entry(cs, &ctx->cs, node) {
1370 /*
1371 * We need to toggle CS state for OMAP take this
1372 * change in account.
1373 */
1374 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1375 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1376 writel_relaxed(cs->chconf0,
1377 cs->base + OMAP2_MCSPI_CHCONF0);
1378 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1379 writel_relaxed(cs->chconf0,
1380 cs->base + OMAP2_MCSPI_CHCONF0);
1381 } else {
1382 writel_relaxed(cs->chconf0,
1383 cs->base + OMAP2_MCSPI_CHCONF0);
1384 }
1385 }
1386
1387 return 0;
1388}
1389
1390static struct omap2_mcspi_platform_config omap2_pdata = {
1391 .regs_offset = 0,
1392};
1393
1394static struct omap2_mcspi_platform_config omap4_pdata = {
1395 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1396};
1397
1398static struct omap2_mcspi_platform_config am654_pdata = {
1399 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1400 .max_xfer_len = SZ_4K - 1,
1401};
1402
1403static const struct of_device_id omap_mcspi_of_match[] = {
1404 {
1405 .compatible = "ti,omap2-mcspi",
1406 .data = &omap2_pdata,
1407 },
1408 {
1409 .compatible = "ti,omap4-mcspi",
1410 .data = &omap4_pdata,
1411 },
1412 {
1413 .compatible = "ti,am654-mcspi",
1414 .data = &am654_pdata,
1415 },
1416 { },
1417};
1418MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1419
1420static int omap2_mcspi_probe(struct platform_device *pdev)
1421{
1422 struct spi_master *master;
1423 const struct omap2_mcspi_platform_config *pdata;
1424 struct omap2_mcspi *mcspi;
1425 struct resource *r;
1426 int status = 0, i;
1427 u32 regs_offset = 0;
1428 struct device_node *node = pdev->dev.of_node;
1429 const struct of_device_id *match;
1430
1431 if (of_property_read_bool(node, "spi-slave"))
1432 master = spi_alloc_slave(&pdev->dev, sizeof(*mcspi));
1433 else
1434 master = spi_alloc_master(&pdev->dev, sizeof(*mcspi));
1435 if (!master)
1436 return -ENOMEM;
1437
1438 /* the spi->mode bits understood by this driver: */
1439 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1440 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1441 master->setup = omap2_mcspi_setup;
1442 master->auto_runtime_pm = true;
1443 master->prepare_message = omap2_mcspi_prepare_message;
1444 master->can_dma = omap2_mcspi_can_dma;
1445 master->transfer_one = omap2_mcspi_transfer_one;
1446 master->set_cs = omap2_mcspi_set_cs;
1447 master->cleanup = omap2_mcspi_cleanup;
1448 master->slave_abort = omap2_mcspi_slave_abort;
1449 master->dev.of_node = node;
1450 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1451 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1452 master->use_gpio_descriptors = true;
1453
1454 platform_set_drvdata(pdev, master);
1455
1456 mcspi = spi_master_get_devdata(master);
1457 mcspi->master = master;
1458
1459 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1460 if (match) {
1461 u32 num_cs = 1; /* default number of chipselect */
1462 pdata = match->data;
1463
1464 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1465 master->num_chipselect = num_cs;
1466 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1467 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1468 } else {
1469 pdata = dev_get_platdata(&pdev->dev);
1470 master->num_chipselect = pdata->num_cs;
1471 mcspi->pin_dir = pdata->pin_dir;
1472 }
1473 regs_offset = pdata->regs_offset;
1474 if (pdata->max_xfer_len) {
1475 mcspi->max_xfer_len = pdata->max_xfer_len;
1476 master->max_transfer_size = omap2_mcspi_max_xfer_size;
1477 }
1478
1479 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1480 mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1481 if (IS_ERR(mcspi->base)) {
1482 status = PTR_ERR(mcspi->base);
1483 goto free_master;
1484 }
1485 mcspi->phys = r->start + regs_offset;
1486 mcspi->base += regs_offset;
1487
1488 mcspi->dev = &pdev->dev;
1489
1490 INIT_LIST_HEAD(&mcspi->ctx.cs);
1491
1492 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1493 sizeof(struct omap2_mcspi_dma),
1494 GFP_KERNEL);
1495 if (mcspi->dma_channels == NULL) {
1496 status = -ENOMEM;
1497 goto free_master;
1498 }
1499
1500 for (i = 0; i < master->num_chipselect; i++) {
1501 sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1502 sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1503
1504 status = omap2_mcspi_request_dma(mcspi,
1505 &mcspi->dma_channels[i]);
1506 if (status == -EPROBE_DEFER)
1507 goto free_master;
1508 }
1509
1510 status = platform_get_irq(pdev, 0);
1511 if (status == -EPROBE_DEFER)
1512 goto free_master;
1513 if (status < 0) {
1514 dev_err(&pdev->dev, "no irq resource found\n");
1515 goto free_master;
1516 }
1517 init_completion(&mcspi->txdone);
1518 status = devm_request_irq(&pdev->dev, status,
1519 omap2_mcspi_irq_handler, 0, pdev->name,
1520 mcspi);
1521 if (status) {
1522 dev_err(&pdev->dev, "Cannot request IRQ");
1523 goto free_master;
1524 }
1525
1526 pm_runtime_use_autosuspend(&pdev->dev);
1527 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1528 pm_runtime_enable(&pdev->dev);
1529
1530 status = omap2_mcspi_controller_setup(mcspi);
1531 if (status < 0)
1532 goto disable_pm;
1533
1534 status = devm_spi_register_controller(&pdev->dev, master);
1535 if (status < 0)
1536 goto disable_pm;
1537
1538 return status;
1539
1540disable_pm:
1541 pm_runtime_dont_use_autosuspend(&pdev->dev);
1542 pm_runtime_put_sync(&pdev->dev);
1543 pm_runtime_disable(&pdev->dev);
1544free_master:
1545 omap2_mcspi_release_dma(master);
1546 spi_master_put(master);
1547 return status;
1548}
1549
1550static int omap2_mcspi_remove(struct platform_device *pdev)
1551{
1552 struct spi_master *master = platform_get_drvdata(pdev);
1553 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1554
1555 omap2_mcspi_release_dma(master);
1556
1557 pm_runtime_dont_use_autosuspend(mcspi->dev);
1558 pm_runtime_put_sync(mcspi->dev);
1559 pm_runtime_disable(&pdev->dev);
1560
1561 return 0;
1562}
1563
1564/* work with hotplug and coldplug */
1565MODULE_ALIAS("platform:omap2_mcspi");
1566
1567static int __maybe_unused omap2_mcspi_suspend(struct device *dev)
1568{
1569 struct spi_master *master = dev_get_drvdata(dev);
1570 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1571 int error;
1572
1573 error = pinctrl_pm_select_sleep_state(dev);
1574 if (error)
1575 dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1576 __func__, error);
1577
1578 error = spi_master_suspend(master);
1579 if (error)
1580 dev_warn(mcspi->dev, "%s: master suspend failed: %i\n",
1581 __func__, error);
1582
1583 return pm_runtime_force_suspend(dev);
1584}
1585
1586static int __maybe_unused omap2_mcspi_resume(struct device *dev)
1587{
1588 struct spi_master *master = dev_get_drvdata(dev);
1589 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1590 int error;
1591
1592 error = spi_master_resume(master);
1593 if (error)
1594 dev_warn(mcspi->dev, "%s: master resume failed: %i\n",
1595 __func__, error);
1596
1597 return pm_runtime_force_resume(dev);
1598}
1599
1600static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1601 SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend,
1602 omap2_mcspi_resume)
1603 .runtime_suspend = omap_mcspi_runtime_suspend,
1604 .runtime_resume = omap_mcspi_runtime_resume,
1605};
1606
1607static struct platform_driver omap2_mcspi_driver = {
1608 .driver = {
1609 .name = "omap2_mcspi",
1610 .pm = &omap2_mcspi_pm_ops,
1611 .of_match_table = omap_mcspi_of_match,
1612 },
1613 .probe = omap2_mcspi_probe,
1614 .remove = omap2_mcspi_remove,
1615};
1616
1617module_platform_driver(omap2_mcspi_driver);
1618MODULE_LICENSE("GPL");