Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/iopoll.h>
   7#include <linux/sched.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_phy.h"
  11
  12static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  13static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  14static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  15static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  16static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  17static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  18static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  19static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  20static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  21static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  22static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  23static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  24static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  25static int ixgbe_get_phy_id(struct ixgbe_hw *hw);
  26static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  27
  28/**
  29 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  30 *  @hw: pointer to the hardware structure
  31 *  @byte: byte to send
  32 *
  33 *  Returns an error code on error.
  34 **/
  35static int ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  36{
  37	int status;
  38
  39	status = ixgbe_clock_out_i2c_byte(hw, byte);
  40	if (status)
  41		return status;
  42	return ixgbe_get_i2c_ack(hw);
  43}
  44
  45/**
  46 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  47 *  @hw: pointer to the hardware structure
  48 *  @byte: pointer to a u8 to receive the byte
  49 *
  50 *  Returns an error code on error.
  51 **/
  52static int ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  53{
  54	int status;
  55
  56	status = ixgbe_clock_in_i2c_byte(hw, byte);
  57	if (status)
  58		return status;
  59	/* ACK */
  60	return ixgbe_clock_out_i2c_bit(hw, false);
  61}
  62
  63/**
  64 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  65 *  @add1: addend 1
  66 *  @add2: addend 2
  67 *
  68 *  Returns one's complement 8-bit sum.
  69 **/
  70static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  71{
  72	u16 sum = add1 + add2;
  73
  74	sum = (sum & 0xFF) + (sum >> 8);
  75	return sum & 0xFF;
  76}
  77
  78/**
  79 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
  80 *  @hw: pointer to the hardware structure
  81 *  @addr: I2C bus address to read from
  82 *  @reg: I2C device register to read from
  83 *  @val: pointer to location to receive read value
  84 *  @lock: true if to take and release semaphore
  85 *
  86 *  Returns an error code on error.
  87 */
  88int ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
  89					u16 reg, u16 *val, bool lock)
  90{
  91	u32 swfw_mask = hw->phy.phy_semaphore_mask;
  92	int max_retry = 3;
  93	int retry = 0;
  94	u8 csum_byte;
  95	u8 high_bits;
  96	u8 low_bits;
  97	u8 reg_high;
  98	u8 csum;
  99
 100	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 101	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 102	csum = ~csum;
 103	do {
 104		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 105			return -EBUSY;
 106		ixgbe_i2c_start(hw);
 107		/* Device Address and write indication */
 108		if (ixgbe_out_i2c_byte_ack(hw, addr))
 109			goto fail;
 110		/* Write bits 14:8 */
 111		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 112			goto fail;
 113		/* Write bits 7:0 */
 114		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 115			goto fail;
 116		/* Write csum */
 117		if (ixgbe_out_i2c_byte_ack(hw, csum))
 118			goto fail;
 119		/* Re-start condition */
 120		ixgbe_i2c_start(hw);
 121		/* Device Address and read indication */
 122		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 123			goto fail;
 124		/* Get upper bits */
 125		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 126			goto fail;
 127		/* Get low bits */
 128		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 129			goto fail;
 130		/* Get csum */
 131		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 132			goto fail;
 133		/* NACK */
 134		if (ixgbe_clock_out_i2c_bit(hw, false))
 135			goto fail;
 136		ixgbe_i2c_stop(hw);
 137		if (lock)
 138			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 139		*val = (high_bits << 8) | low_bits;
 140		return 0;
 141
 142fail:
 143		ixgbe_i2c_bus_clear(hw);
 144		if (lock)
 145			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 146		retry++;
 147		if (retry < max_retry)
 148			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 149		else
 150			hw_dbg(hw, "I2C byte read combined error.\n");
 151	} while (retry < max_retry);
 152
 153	return -EIO;
 154}
 155
 156/**
 157 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 158 *  @hw: pointer to the hardware structure
 159 *  @addr: I2C bus address to write to
 160 *  @reg: I2C device register to write to
 161 *  @val: value to write
 162 *  @lock: true if to take and release semaphore
 163 *
 164 *  Returns an error code on error.
 165 */
 166int ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 167					 u16 reg, u16 val, bool lock)
 168{
 169	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 170	int max_retry = 1;
 171	int retry = 0;
 172	u8 reg_high;
 173	u8 csum;
 174
 175	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 176	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 177	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 178	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 179	csum = ~csum;
 180	do {
 181		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 182			return -EBUSY;
 183		ixgbe_i2c_start(hw);
 184		/* Device Address and write indication */
 185		if (ixgbe_out_i2c_byte_ack(hw, addr))
 186			goto fail;
 187		/* Write bits 14:8 */
 188		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 189			goto fail;
 190		/* Write bits 7:0 */
 191		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 192			goto fail;
 193		/* Write data 15:8 */
 194		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 195			goto fail;
 196		/* Write data 7:0 */
 197		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 198			goto fail;
 199		/* Write csum */
 200		if (ixgbe_out_i2c_byte_ack(hw, csum))
 201			goto fail;
 202		ixgbe_i2c_stop(hw);
 203		if (lock)
 204			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 205		return 0;
 206
 207fail:
 208		ixgbe_i2c_bus_clear(hw);
 209		if (lock)
 210			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 211		retry++;
 212		if (retry < max_retry)
 213			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 214		else
 215			hw_dbg(hw, "I2C byte write combined error.\n");
 216	} while (retry < max_retry);
 217
 218	return -EIO;
 219}
 220
 221/**
 222 *  ixgbe_probe_phy - Probe a single address for a PHY
 223 *  @hw: pointer to hardware structure
 224 *  @phy_addr: PHY address to probe
 225 *
 226 *  Returns true if PHY found
 227 **/
 228static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
 229{
 230	u16 ext_ability = 0;
 231
 232	hw->phy.mdio.prtad = phy_addr;
 233	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
 234		return false;
 235
 236	if (ixgbe_get_phy_id(hw))
 237		return false;
 238
 239	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
 240
 241	if (hw->phy.type == ixgbe_phy_unknown) {
 242		hw->phy.ops.read_reg(hw,
 243				     MDIO_PMA_EXTABLE,
 244				     MDIO_MMD_PMAPMD,
 245				     &ext_ability);
 246		if (ext_ability &
 247		    (MDIO_PMA_EXTABLE_10GBT |
 248		     MDIO_PMA_EXTABLE_1000BT))
 249			hw->phy.type = ixgbe_phy_cu_unknown;
 250		else
 251			hw->phy.type = ixgbe_phy_generic;
 252	}
 253
 254	return true;
 255}
 256
 257/**
 258 *  ixgbe_identify_phy_generic - Get physical layer module
 259 *  @hw: pointer to hardware structure
 260 *
 261 *  Determines the physical layer module found on the current adapter.
 262 **/
 263int ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 264{
 265	u32 status = -EFAULT;
 266	u32 phy_addr;
 
 267
 268	if (!hw->phy.phy_semaphore_mask) {
 269		if (hw->bus.lan_id)
 270			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 271		else
 272			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 273	}
 274
 275	if (hw->phy.type != ixgbe_phy_unknown)
 276		return 0;
 277
 278	if (hw->phy.nw_mng_if_sel) {
 279		phy_addr = FIELD_GET(IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD,
 280				     hw->phy.nw_mng_if_sel);
 
 281		if (ixgbe_probe_phy(hw, phy_addr))
 282			return 0;
 283		else
 284			return -EFAULT;
 285	}
 286
 287	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 288		if (ixgbe_probe_phy(hw, phy_addr)) {
 289			status = 0;
 290			break;
 291		}
 292	}
 293
 294	/* Certain media types do not have a phy so an address will not
 295	 * be found and the code will take this path.  Caller has to
 296	 * decide if it is an error or not.
 297	 */
 298	if (status)
 299		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
 300
 301	return status;
 302}
 303
 304/**
 305 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 306 * @hw: pointer to the hardware structure
 307 *
 308 * This function checks the MMNGC.MNG_VETO bit to see if there are
 309 * any constraints on link from manageability.  For MAC's that don't
 310 * have this bit just return false since the link can not be blocked
 311 * via this method.
 312 **/
 313bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 314{
 315	u32 mmngc;
 316
 317	/* If we don't have this bit, it can't be blocking */
 318	if (hw->mac.type == ixgbe_mac_82598EB)
 319		return false;
 320
 321	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 322	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 323		hw_dbg(hw, "MNG_VETO bit detected.\n");
 324		return true;
 325	}
 326
 327	return false;
 328}
 329
 330/**
 331 *  ixgbe_get_phy_id - Get the phy type
 332 *  @hw: pointer to hardware structure
 333 *
 334 **/
 335static int ixgbe_get_phy_id(struct ixgbe_hw *hw)
 336{
 
 337	u16 phy_id_high = 0;
 338	u16 phy_id_low = 0;
 339	int status;
 340
 341	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 342				      &phy_id_high);
 343
 344	if (!status) {
 345		hw->phy.id = (u32)(phy_id_high << 16);
 346		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 347					      &phy_id_low);
 348		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 349		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 350	}
 351	return status;
 352}
 353
 354/**
 355 *  ixgbe_get_phy_type_from_id - Get the phy type
 356 *  @phy_id: hardware phy id
 357 *
 358 **/
 359static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 360{
 361	enum ixgbe_phy_type phy_type;
 362
 363	switch (phy_id) {
 364	case TN1010_PHY_ID:
 365		phy_type = ixgbe_phy_tn;
 366		break;
 367	case X550_PHY_ID2:
 368	case X550_PHY_ID3:
 369	case X540_PHY_ID:
 370		phy_type = ixgbe_phy_aq;
 371		break;
 372	case QT2022_PHY_ID:
 373		phy_type = ixgbe_phy_qt;
 374		break;
 375	case ATH_PHY_ID:
 376		phy_type = ixgbe_phy_nl;
 377		break;
 378	case X557_PHY_ID:
 379	case X557_PHY_ID2:
 380		phy_type = ixgbe_phy_x550em_ext_t;
 381		break;
 382	case BCM54616S_E_PHY_ID:
 383		phy_type = ixgbe_phy_ext_1g_t;
 384		break;
 385	default:
 386		phy_type = ixgbe_phy_unknown;
 387		break;
 388	}
 389
 390	return phy_type;
 391}
 392
 393/**
 394 *  ixgbe_reset_phy_generic - Performs a PHY reset
 395 *  @hw: pointer to hardware structure
 396 **/
 397int ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 398{
 399	u32 i;
 400	u16 ctrl = 0;
 401	int status = 0;
 402
 403	if (hw->phy.type == ixgbe_phy_unknown)
 404		status = ixgbe_identify_phy_generic(hw);
 405
 406	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 407		return status;
 408
 409	/* Don't reset PHY if it's shut down due to overtemp. */
 410	if (!hw->phy.reset_if_overtemp && hw->phy.ops.check_overtemp(hw))
 
 411		return 0;
 412
 413	/* Blocked by MNG FW so bail */
 414	if (ixgbe_check_reset_blocked(hw))
 415		return 0;
 416
 417	/*
 418	 * Perform soft PHY reset to the PHY_XS.
 419	 * This will cause a soft reset to the PHY
 420	 */
 421	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 422			      MDIO_MMD_PHYXS,
 423			      MDIO_CTRL1_RESET);
 424
 425	/*
 426	 * Poll for reset bit to self-clear indicating reset is complete.
 427	 * Some PHYs could take up to 3 seconds to complete and need about
 428	 * 1.7 usec delay after the reset is complete.
 429	 */
 430	for (i = 0; i < 30; i++) {
 431		msleep(100);
 432		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
 433			status = hw->phy.ops.read_reg(hw,
 434						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
 435						  MDIO_MMD_PMAPMD, &ctrl);
 436			if (status)
 437				return status;
 438
 439			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
 440				udelay(2);
 441				break;
 442			}
 443		} else {
 444			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 445						      MDIO_MMD_PHYXS, &ctrl);
 446			if (status)
 447				return status;
 448
 449			if (!(ctrl & MDIO_CTRL1_RESET)) {
 450				udelay(2);
 451				break;
 452			}
 453		}
 454	}
 455
 456	if (ctrl & MDIO_CTRL1_RESET) {
 457		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 458		return -EIO;
 459	}
 460
 461	return 0;
 462}
 463
 464/**
 465 *  ixgbe_read_phy_reg_mdi - read PHY register
 466 *  @hw: pointer to hardware structure
 467 *  @reg_addr: 32 bit address of PHY register to read
 468 *  @device_type: 5 bit device type
 469 *  @phy_data: Pointer to read data from PHY register
 470 *
 471 *  Reads a value from a specified PHY register without the SWFW lock
 472 **/
 473int ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 474			   u16 *phy_data)
 475{
 476	u32 i, data, command;
 477
 478	/* Setup and write the address cycle command */
 479	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 480		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 481		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 482		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 483
 484	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 485
 486	/* Check every 10 usec to see if the address cycle completed.
 487	 * The MDI Command bit will clear when the operation is
 488	 * complete
 489	 */
 490	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 491		udelay(10);
 492
 493		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 494		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 495				break;
 496	}
 497
 498
 499	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 500		hw_dbg(hw, "PHY address command did not complete.\n");
 501		return -EIO;
 502	}
 503
 504	/* Address cycle complete, setup and write the read
 505	 * command
 506	 */
 507	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 508		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 509		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 510		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 511
 512	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 513
 514	/* Check every 10 usec to see if the address cycle
 515	 * completed. The MDI Command bit will clear when the
 516	 * operation is complete
 517	 */
 518	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 519		udelay(10);
 520
 521		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 522		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 523			break;
 524	}
 525
 526	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 527		hw_dbg(hw, "PHY read command didn't complete\n");
 528		return -EIO;
 529	}
 530
 531	/* Read operation is complete.  Get the data
 532	 * from MSRWD
 533	 */
 534	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 535	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 536	*phy_data = (u16)(data);
 537
 538	return 0;
 539}
 540
 541/**
 542 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 543 *  using the SWFW lock - this function is needed in most cases
 544 *  @hw: pointer to hardware structure
 545 *  @reg_addr: 32 bit address of PHY register to read
 546 *  @device_type: 5 bit device type
 547 *  @phy_data: Pointer to read data from PHY register
 548 **/
 549int ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 550			       u32 device_type, u16 *phy_data)
 551{
 
 552	u32 gssr = hw->phy.phy_semaphore_mask;
 553	int status;
 554
 555	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 556		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 557						phy_data);
 558		hw->mac.ops.release_swfw_sync(hw, gssr);
 559	} else {
 560		return -EBUSY;
 561	}
 562
 563	return status;
 564}
 565
 566/**
 567 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 568 *  without SWFW lock
 569 *  @hw: pointer to hardware structure
 570 *  @reg_addr: 32 bit PHY register to write
 571 *  @device_type: 5 bit device type
 572 *  @phy_data: Data to write to the PHY register
 573 **/
 574int ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 575			    u16 phy_data)
 576{
 577	u32 i, command;
 578
 579	/* Put the data in the MDI single read and write data register*/
 580	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 581
 582	/* Setup and write the address cycle command */
 583	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 584		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 585		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 586		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 587
 588	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 589
 590	/*
 591	 * Check every 10 usec to see if the address cycle completed.
 592	 * The MDI Command bit will clear when the operation is
 593	 * complete
 594	 */
 595	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 596		udelay(10);
 597
 598		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 599		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 600			break;
 601	}
 602
 603	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 604		hw_dbg(hw, "PHY address cmd didn't complete\n");
 605		return -EIO;
 606	}
 607
 608	/*
 609	 * Address cycle complete, setup and write the write
 610	 * command
 611	 */
 612	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 613		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 614		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 615		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 616
 617	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 618
 619	/* Check every 10 usec to see if the address cycle
 620	 * completed. The MDI Command bit will clear when the
 621	 * operation is complete
 622	 */
 623	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 624		udelay(10);
 625
 626		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 627		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 628			break;
 629	}
 630
 631	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 632		hw_dbg(hw, "PHY write cmd didn't complete\n");
 633		return -EIO;
 634	}
 635
 636	return 0;
 637}
 638
 639/**
 640 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 641 *  using SWFW lock- this function is needed in most cases
 642 *  @hw: pointer to hardware structure
 643 *  @reg_addr: 32 bit PHY register to write
 644 *  @device_type: 5 bit device type
 645 *  @phy_data: Data to write to the PHY register
 646 **/
 647int ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 648				u32 device_type, u16 phy_data)
 649{
 
 650	u32 gssr = hw->phy.phy_semaphore_mask;
 651	int status;
 652
 653	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 654		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 655						 phy_data);
 656		hw->mac.ops.release_swfw_sync(hw, gssr);
 657	} else {
 658		return -EBUSY;
 659	}
 660
 661	return status;
 662}
 663
 664#define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
 665
 666/**
 667 *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
 668 *  @hw: pointer to hardware structure
 669 *  @cmd: command register value to write
 670 **/
 671static int ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
 672{
 673	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
 674
 675	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
 676				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
 677				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
 678}
 679
 680/**
 681 *  ixgbe_mii_bus_read_generic_c22 - Read a clause 22 register with gssr flags
 682 *  @hw: pointer to hardware structure
 683 *  @addr: address
 684 *  @regnum: register number
 685 *  @gssr: semaphore flags to acquire
 686 **/
 687static int ixgbe_mii_bus_read_generic_c22(struct ixgbe_hw *hw, int addr,
 688					  int regnum, u32 gssr)
 689{
 690	u32 hwaddr, cmd;
 691	int data;
 692
 693	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 694		return -EBUSY;
 695
 696	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 697	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 698	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
 699		IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
 
 
 
 
 
 700
 701	data = ixgbe_msca_cmd(hw, cmd);
 702	if (data < 0)
 703		goto mii_bus_read_done;
 704
 705	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 706	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 707
 708mii_bus_read_done:
 709	hw->mac.ops.release_swfw_sync(hw, gssr);
 710	return data;
 711}
 712
 713/**
 714 *  ixgbe_mii_bus_read_generic_c45 - Read a clause 45 register with gssr flags
 715 *  @hw: pointer to hardware structure
 716 *  @addr: address
 717 *  @devad: device address to read
 718 *  @regnum: register number
 719 *  @gssr: semaphore flags to acquire
 720 **/
 721static int ixgbe_mii_bus_read_generic_c45(struct ixgbe_hw *hw, int addr,
 722					  int devad, int regnum, u32 gssr)
 723{
 724	u32 hwaddr, cmd;
 725	int data;
 726
 727	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 728		return -EBUSY;
 729
 730	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 731	hwaddr |= devad << 16 | regnum;
 732	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 733
 734	data = ixgbe_msca_cmd(hw, cmd);
 735	if (data < 0)
 736		goto mii_bus_read_done;
 737
 738	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
 739	data = ixgbe_msca_cmd(hw, cmd);
 740	if (data < 0)
 741		goto mii_bus_read_done;
 742
 
 743	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 744	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 745
 746mii_bus_read_done:
 747	hw->mac.ops.release_swfw_sync(hw, gssr);
 748	return data;
 749}
 750
 751/**
 752 *  ixgbe_mii_bus_write_generic_c22 - Write a clause 22 register with gssr flags
 753 *  @hw: pointer to hardware structure
 754 *  @addr: address
 755 *  @regnum: register number
 756 *  @val: value to write
 757 *  @gssr: semaphore flags to acquire
 758 **/
 759static int ixgbe_mii_bus_write_generic_c22(struct ixgbe_hw *hw, int addr,
 760					   int regnum, u16 val, u32 gssr)
 761{
 762	u32 hwaddr, cmd;
 763	int err;
 764
 765	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 766		return -EBUSY;
 767
 768	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 769
 770	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 771	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 772	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
 773		IXGBE_MSCA_MDI_COMMAND;
 774
 775	err = ixgbe_msca_cmd(hw, cmd);
 776
 777	hw->mac.ops.release_swfw_sync(hw, gssr);
 778	return err;
 779}
 780
 781/**
 782 *  ixgbe_mii_bus_write_generic_c45 - Write a clause 45 register with gssr flags
 783 *  @hw: pointer to hardware structure
 784 *  @addr: address
 785 *  @devad: device address to read
 786 *  @regnum: register number
 787 *  @val: value to write
 788 *  @gssr: semaphore flags to acquire
 789 **/
 790static int ixgbe_mii_bus_write_generic_c45(struct ixgbe_hw *hw, int addr,
 791					   int devad, int regnum, u16 val,
 792					   u32 gssr)
 793{
 794	u32 hwaddr, cmd;
 795	int err;
 796
 797	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 798		return -EBUSY;
 799
 800	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 801
 802	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 803	hwaddr |= devad << 16 | regnum;
 804	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 805
 
 
 
 806	err = ixgbe_msca_cmd(hw, cmd);
 807	if (err < 0)
 808		goto mii_bus_write_done;
 809
 810	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
 811	err = ixgbe_msca_cmd(hw, cmd);
 812
 813mii_bus_write_done:
 814	hw->mac.ops.release_swfw_sync(hw, gssr);
 815	return err;
 816}
 817
 818/**
 819 *  ixgbe_mii_bus_read_c22 - Read a clause 22 register
 820 *  @bus: pointer to mii_bus structure which points to our driver private
 821 *  @addr: address
 822 *  @regnum: register number
 823 **/
 824static int ixgbe_mii_bus_read_c22(struct mii_bus *bus, int addr, int regnum)
 825{
 826	struct ixgbe_adapter *adapter = bus->priv;
 827	struct ixgbe_hw *hw = &adapter->hw;
 828	u32 gssr = hw->phy.phy_semaphore_mask;
 829
 830	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 831}
 832
 833/**
 834 *  ixgbe_mii_bus_read_c45 - Read a clause 45 register
 835 *  @bus: pointer to mii_bus structure which points to our driver private
 836 *  @devad: device address to read
 837 *  @addr: address
 838 *  @regnum: register number
 839 **/
 840static int ixgbe_mii_bus_read_c45(struct mii_bus *bus, int devad, int addr,
 841				  int regnum)
 842{
 843	struct ixgbe_adapter *adapter = bus->priv;
 844	struct ixgbe_hw *hw = &adapter->hw;
 845	u32 gssr = hw->phy.phy_semaphore_mask;
 846
 847	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 848}
 849
 850/**
 851 *  ixgbe_mii_bus_write_c22 - Write a clause 22 register
 852 *  @bus: pointer to mii_bus structure which points to our driver private
 853 *  @addr: address
 854 *  @regnum: register number
 855 *  @val: value to write
 856 **/
 857static int ixgbe_mii_bus_write_c22(struct mii_bus *bus, int addr, int regnum,
 858				   u16 val)
 859{
 860	struct ixgbe_adapter *adapter = bus->priv;
 861	struct ixgbe_hw *hw = &adapter->hw;
 862	u32 gssr = hw->phy.phy_semaphore_mask;
 863
 864	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 865}
 866
 867/**
 868 *  ixgbe_mii_bus_write_c45 - Write a clause 45 register
 869 *  @bus: pointer to mii_bus structure which points to our driver private
 870 *  @addr: address
 871 *  @devad: device address to read
 872 *  @regnum: register number
 873 *  @val: value to write
 874 **/
 875static int ixgbe_mii_bus_write_c45(struct mii_bus *bus, int addr, int devad,
 876				   int regnum, u16 val)
 877{
 878	struct ixgbe_adapter *adapter = bus->priv;
 879	struct ixgbe_hw *hw = &adapter->hw;
 880	u32 gssr = hw->phy.phy_semaphore_mask;
 881
 882	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 883					       gssr);
 884}
 885
 886/**
 887 *  ixgbe_x550em_a_mii_bus_read_c22 - Read a clause 22 register on x550em_a
 888 *  @bus: pointer to mii_bus structure which points to our driver private
 889 *  @addr: address
 890 *  @regnum: register number
 891 **/
 892static int ixgbe_x550em_a_mii_bus_read_c22(struct mii_bus *bus, int addr,
 893					   int regnum)
 894{
 895	struct ixgbe_adapter *adapter = bus->priv;
 896	struct ixgbe_hw *hw = &adapter->hw;
 897	u32 gssr = hw->phy.phy_semaphore_mask;
 898
 899	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 900	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 901}
 902
 903/**
 904 *  ixgbe_x550em_a_mii_bus_read_c45 - Read a clause 45 register on x550em_a
 905 *  @bus: pointer to mii_bus structure which points to our driver private
 906 *  @addr: address
 907 *  @devad: device address to read
 908 *  @regnum: register number
 909 **/
 910static int ixgbe_x550em_a_mii_bus_read_c45(struct mii_bus *bus, int addr,
 911					   int devad, int regnum)
 912{
 913	struct ixgbe_adapter *adapter = bus->priv;
 914	struct ixgbe_hw *hw = &adapter->hw;
 915	u32 gssr = hw->phy.phy_semaphore_mask;
 916
 917	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 918	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 919}
 920
 921/**
 922 *  ixgbe_x550em_a_mii_bus_write_c22 - Write a clause 22 register on x550em_a
 923 *  @bus: pointer to mii_bus structure which points to our driver private
 924 *  @addr: address
 925 *  @regnum: register number
 926 *  @val: value to write
 927 **/
 928static int ixgbe_x550em_a_mii_bus_write_c22(struct mii_bus *bus, int addr,
 929					    int regnum, u16 val)
 930{
 931	struct ixgbe_adapter *adapter = bus->priv;
 932	struct ixgbe_hw *hw = &adapter->hw;
 933	u32 gssr = hw->phy.phy_semaphore_mask;
 934
 935	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 936	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 937}
 938
 939/**
 940 *  ixgbe_x550em_a_mii_bus_write_c45 - Write a clause 45 register on x550em_a
 941 *  @bus: pointer to mii_bus structure which points to our driver private
 942 *  @addr: address
 943 *  @devad: device address to read
 944 *  @regnum: register number
 945 *  @val: value to write
 946 **/
 947static int ixgbe_x550em_a_mii_bus_write_c45(struct mii_bus *bus, int addr,
 948					    int devad, int regnum, u16 val)
 949{
 950	struct ixgbe_adapter *adapter = bus->priv;
 951	struct ixgbe_hw *hw = &adapter->hw;
 952	u32 gssr = hw->phy.phy_semaphore_mask;
 953
 954	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 955	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 956					       gssr);
 957}
 958
 959/**
 960 * ixgbe_get_first_secondary_devfn - get first device downstream of root port
 961 * @devfn: PCI_DEVFN of root port on domain 0, bus 0
 962 *
 963 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
 964 * on domain 0, bus 0, devfn = 'devfn'
 965 **/
 966static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
 967{
 968	struct pci_dev *rp_pdev;
 969	int bus;
 970
 971	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
 972	if (rp_pdev && rp_pdev->subordinate) {
 973		bus = rp_pdev->subordinate->number;
 974		pci_dev_put(rp_pdev);
 975		return pci_get_domain_bus_and_slot(0, bus, 0);
 976	}
 977
 978	pci_dev_put(rp_pdev);
 979	return NULL;
 980}
 981
 982/**
 983 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
 984 * @hw: pointer to hardware structure
 985 *
 986 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
 987 * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
 988 * but we only want to register one MDIO bus.
 989 **/
 990static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
 991{
 992	struct ixgbe_adapter *adapter = hw->back;
 993	struct pci_dev *pdev = adapter->pdev;
 994	struct pci_dev *func0_pdev;
 995	bool has_mii = false;
 996
 997	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
 998	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
 999	 * It's not valid for function 0 to be disabled and function 1 is up,
1000	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
1001	 * of those two root ports
1002	 */
1003	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
1004	if (func0_pdev) {
1005		if (func0_pdev == pdev)
1006			has_mii = true;
1007		goto out;
 
1008	}
1009	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
1010	if (func0_pdev == pdev)
1011		has_mii = true;
1012
1013out:
1014	pci_dev_put(func0_pdev);
1015	return has_mii;
1016}
1017
1018/**
1019 * ixgbe_mii_bus_init - mii_bus structure setup
1020 * @hw: pointer to hardware structure
1021 *
1022 * Returns 0 on success, negative on failure
1023 *
1024 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
1025 **/
1026int ixgbe_mii_bus_init(struct ixgbe_hw *hw)
1027{
1028	int (*write_c22)(struct mii_bus *bus, int addr, int regnum, u16 val);
1029	int (*read_c22)(struct mii_bus *bus, int addr, int regnum);
1030	int (*write_c45)(struct mii_bus *bus, int addr, int devad, int regnum,
1031			 u16 val);
1032	int (*read_c45)(struct mii_bus *bus, int addr, int devad, int regnum);
1033	struct ixgbe_adapter *adapter = hw->back;
1034	struct pci_dev *pdev = adapter->pdev;
1035	struct device *dev = &adapter->netdev->dev;
1036	struct mii_bus *bus;
1037
1038	switch (hw->device_id) {
1039	/* C3000 SoCs */
1040	case IXGBE_DEV_ID_X550EM_A_KR:
1041	case IXGBE_DEV_ID_X550EM_A_KR_L:
1042	case IXGBE_DEV_ID_X550EM_A_SFP_N:
1043	case IXGBE_DEV_ID_X550EM_A_SGMII:
1044	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
1045	case IXGBE_DEV_ID_X550EM_A_10G_T:
1046	case IXGBE_DEV_ID_X550EM_A_SFP:
1047	case IXGBE_DEV_ID_X550EM_A_1G_T:
1048	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
1049		if (!ixgbe_x550em_a_has_mii(hw))
1050			return 0;
1051		read_c22 = ixgbe_x550em_a_mii_bus_read_c22;
1052		write_c22 = ixgbe_x550em_a_mii_bus_write_c22;
1053		read_c45 = ixgbe_x550em_a_mii_bus_read_c45;
1054		write_c45 = ixgbe_x550em_a_mii_bus_write_c45;
1055		break;
1056	default:
1057		read_c22 = ixgbe_mii_bus_read_c22;
1058		write_c22 = ixgbe_mii_bus_write_c22;
1059		read_c45 = ixgbe_mii_bus_read_c45;
1060		write_c45 = ixgbe_mii_bus_write_c45;
1061		break;
1062	}
1063
1064	bus = devm_mdiobus_alloc(dev);
1065	if (!bus)
1066		return -ENOMEM;
1067
1068	bus->read = read_c22;
1069	bus->write = write_c22;
1070	bus->read_c45 = read_c45;
1071	bus->write_c45 = write_c45;
1072
1073	/* Use the position of the device in the PCI hierarchy as the id */
1074	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
1075		 pci_name(pdev));
1076
1077	bus->name = "ixgbe-mdio";
1078	bus->priv = adapter;
1079	bus->parent = dev;
1080	bus->phy_mask = GENMASK(31, 0);
1081
1082	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
1083	 * unfortunately that causes some clause 22 frames to be sent with
1084	 * clause 45 addressing.  We don't want that.
1085	 */
1086	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
1087
1088	adapter->mii_bus = bus;
1089	return mdiobus_register(bus);
1090}
1091
1092/**
1093 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
1094 *  @hw: pointer to hardware structure
1095 *
1096 *  Restart autonegotiation and PHY and waits for completion.
1097 **/
1098int ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
1099{
 
1100	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1101	ixgbe_link_speed speed;
1102	bool autoneg = false;
1103	int status = 0;
1104
1105	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1106
1107	/* Set or unset auto-negotiation 10G advertisement */
1108	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
1109
1110	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1111	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
1112	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
1113		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1114
1115	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
1116
1117	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1118			     MDIO_MMD_AN, &autoneg_reg);
1119
1120	if (hw->mac.type == ixgbe_mac_X550) {
1121		/* Set or unset auto-negotiation 5G advertisement */
1122		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
1123		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
1124		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
1125			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
1126
1127		/* Set or unset auto-negotiation 2.5G advertisement */
1128		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
1129		if ((hw->phy.autoneg_advertised &
1130		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1131		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1132			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1133	}
1134
1135	/* Set or unset auto-negotiation 1G advertisement */
1136	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1137	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1138	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1139		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1140
1141	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1142			      MDIO_MMD_AN, autoneg_reg);
1143
1144	/* Set or unset auto-negotiation 100M advertisement */
1145	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
1146
1147	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1148	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1149	    (speed & IXGBE_LINK_SPEED_100_FULL))
1150		autoneg_reg |= ADVERTISE_100FULL;
1151
1152	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1153
1154	/* Blocked by MNG FW so don't reset PHY */
1155	if (ixgbe_check_reset_blocked(hw))
1156		return 0;
1157
1158	/* Restart PHY autonegotiation and wait for completion */
1159	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1160			     MDIO_MMD_AN, &autoneg_reg);
1161
1162	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1163
1164	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1165			      MDIO_MMD_AN, autoneg_reg);
1166
1167	return status;
1168}
1169
1170/**
1171 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1172 *  @hw: pointer to hardware structure
1173 *  @speed: new link speed
1174 *  @autoneg_wait_to_complete: unused
1175 **/
1176int ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1177				       ixgbe_link_speed speed,
1178				       bool autoneg_wait_to_complete)
1179{
1180	/* Clear autoneg_advertised and set new values based on input link
1181	 * speed.
1182	 */
1183	hw->phy.autoneg_advertised = 0;
1184
1185	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1186		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1187
1188	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1189		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1190
1191	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1192		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1193
1194	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1195		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1196
1197	if (speed & IXGBE_LINK_SPEED_100_FULL)
1198		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1199
1200	if (speed & IXGBE_LINK_SPEED_10_FULL)
1201		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1202
1203	/* Setup link based on the new speed settings */
1204	if (hw->phy.ops.setup_link)
1205		hw->phy.ops.setup_link(hw);
1206
1207	return 0;
1208}
1209
1210/**
1211 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1212 * @hw: pointer to hardware structure
1213 *
1214 * Determines the supported link capabilities by reading the PHY auto
1215 * negotiation register.
1216 */
1217static int ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1218{
1219	u16 speed_ability;
1220	int status;
1221
1222	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1223				      &speed_ability);
1224	if (status)
1225		return status;
1226
1227	if (speed_ability & MDIO_SPEED_10G)
1228		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1229	if (speed_ability & MDIO_PMA_SPEED_1000)
1230		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1231	if (speed_ability & MDIO_PMA_SPEED_100)
1232		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1233
1234	switch (hw->mac.type) {
1235	case ixgbe_mac_X550:
1236		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1237		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1238		break;
1239	case ixgbe_mac_X550EM_x:
1240	case ixgbe_mac_x550em_a:
1241		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1242		break;
1243	default:
1244		break;
1245	}
1246
1247	return 0;
1248}
1249
1250/**
1251 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1252 * @hw: pointer to hardware structure
1253 * @speed: pointer to link speed
1254 * @autoneg: boolean auto-negotiation value
1255 */
1256int ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1257					       ixgbe_link_speed *speed,
1258					       bool *autoneg)
1259{
1260	int status = 0;
1261
1262	*autoneg = true;
1263	if (!hw->phy.speeds_supported)
1264		status = ixgbe_get_copper_speeds_supported(hw);
1265
1266	*speed = hw->phy.speeds_supported;
1267	return status;
1268}
1269
1270/**
1271 *  ixgbe_check_phy_link_tnx - Determine link and speed status
1272 *  @hw: pointer to hardware structure
1273 *  @speed: link speed
1274 *  @link_up: status of link
1275 *
1276 *  Reads the VS1 register to determine if link is up and the current speed for
1277 *  the PHY.
1278 **/
1279int ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1280			     bool *link_up)
1281{
 
 
1282	u32 max_time_out = 10;
1283	u16 phy_speed = 0;
1284	u16 phy_link = 0;
 
1285	u16 phy_data = 0;
1286	u32 time_out;
1287	int status;
1288
1289	/* Initialize speed and link to default case */
1290	*link_up = false;
1291	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1292
1293	/*
1294	 * Check current speed and link status of the PHY register.
1295	 * This is a vendor specific register and may have to
1296	 * be changed for other copper PHYs.
1297	 */
1298	for (time_out = 0; time_out < max_time_out; time_out++) {
1299		udelay(10);
1300		status = hw->phy.ops.read_reg(hw,
1301					      MDIO_STAT1,
1302					      MDIO_MMD_VEND1,
1303					      &phy_data);
1304		phy_link = phy_data &
1305			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1306		phy_speed = phy_data &
1307			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1308		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1309			*link_up = true;
1310			if (phy_speed ==
1311			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1312				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1313			break;
1314		}
1315	}
1316
1317	return status;
1318}
1319
1320/**
1321 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1322 *	@hw: pointer to hardware structure
1323 *
1324 *	Restart autonegotiation and PHY and waits for completion.
1325 *      This function always returns success, this is nessary since
1326 *	it is called via a function pointer that could call other
1327 *	functions that could return an error.
1328 **/
1329int ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1330{
1331	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1332	bool autoneg = false;
1333	ixgbe_link_speed speed;
1334
1335	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1336
1337	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1338		/* Set or unset auto-negotiation 10G advertisement */
1339		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1340				     MDIO_MMD_AN,
1341				     &autoneg_reg);
1342
1343		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1344		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1345			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1346
1347		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1348				      MDIO_MMD_AN,
1349				      autoneg_reg);
1350	}
1351
1352	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1353		/* Set or unset auto-negotiation 1G advertisement */
1354		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1355				     MDIO_MMD_AN,
1356				     &autoneg_reg);
1357
1358		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1359		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1360			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1361
1362		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1363				      MDIO_MMD_AN,
1364				      autoneg_reg);
1365	}
1366
1367	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1368		/* Set or unset auto-negotiation 100M advertisement */
1369		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1370				     MDIO_MMD_AN,
1371				     &autoneg_reg);
1372
1373		autoneg_reg &= ~(ADVERTISE_100FULL |
1374				 ADVERTISE_100HALF);
1375		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1376			autoneg_reg |= ADVERTISE_100FULL;
1377
1378		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1379				      MDIO_MMD_AN,
1380				      autoneg_reg);
1381	}
1382
1383	/* Blocked by MNG FW so don't reset PHY */
1384	if (ixgbe_check_reset_blocked(hw))
1385		return 0;
1386
1387	/* Restart PHY autonegotiation and wait for completion */
1388	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1389			     MDIO_MMD_AN, &autoneg_reg);
1390
1391	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1392
1393	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1394			      MDIO_MMD_AN, autoneg_reg);
1395	return 0;
1396}
1397
1398/**
1399 *  ixgbe_reset_phy_nl - Performs a PHY reset
1400 *  @hw: pointer to hardware structure
1401 **/
1402int ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1403{
1404	u16 phy_offset, control, eword, edata, block_crc;
1405	u16 list_offset, data_offset;
1406	bool end_data = false;
 
1407	u16 phy_data = 0;
1408	int ret_val;
1409	u32 i;
1410
1411	/* Blocked by MNG FW so bail */
1412	if (ixgbe_check_reset_blocked(hw))
1413		return 0;
1414
1415	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1416
1417	/* reset the PHY and poll for completion */
1418	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1419			      (phy_data | MDIO_CTRL1_RESET));
1420
1421	for (i = 0; i < 100; i++) {
1422		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1423				     &phy_data);
1424		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1425			break;
1426		usleep_range(10000, 20000);
1427	}
1428
1429	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1430		hw_dbg(hw, "PHY reset did not complete.\n");
1431		return -EIO;
1432	}
1433
1434	/* Get init offsets */
1435	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1436						      &data_offset);
1437	if (ret_val)
1438		return ret_val;
1439
1440	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1441	data_offset++;
1442	while (!end_data) {
1443		/*
1444		 * Read control word from PHY init contents offset
1445		 */
1446		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1447		if (ret_val)
1448			goto err_eeprom;
1449		control = FIELD_GET(IXGBE_CONTROL_MASK_NL, eword);
 
1450		edata = eword & IXGBE_DATA_MASK_NL;
1451		switch (control) {
1452		case IXGBE_DELAY_NL:
1453			data_offset++;
1454			hw_dbg(hw, "DELAY: %d MS\n", edata);
1455			usleep_range(edata * 1000, edata * 2000);
1456			break;
1457		case IXGBE_DATA_NL:
1458			hw_dbg(hw, "DATA:\n");
1459			data_offset++;
1460			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1461						      &phy_offset);
1462			if (ret_val)
1463				goto err_eeprom;
1464			for (i = 0; i < edata; i++) {
1465				ret_val = hw->eeprom.ops.read(hw, data_offset,
1466							      &eword);
1467				if (ret_val)
1468					goto err_eeprom;
1469				hw->phy.ops.write_reg(hw, phy_offset,
1470						      MDIO_MMD_PMAPMD, eword);
1471				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1472				       phy_offset);
1473				data_offset++;
1474				phy_offset++;
1475			}
1476			break;
1477		case IXGBE_CONTROL_NL:
1478			data_offset++;
1479			hw_dbg(hw, "CONTROL:\n");
1480			if (edata == IXGBE_CONTROL_EOL_NL) {
1481				hw_dbg(hw, "EOL\n");
1482				end_data = true;
1483			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1484				hw_dbg(hw, "SOL\n");
1485			} else {
1486				hw_dbg(hw, "Bad control value\n");
1487				return -EIO;
1488			}
1489			break;
1490		default:
1491			hw_dbg(hw, "Bad control type\n");
1492			return -EIO;
1493		}
1494	}
1495
1496	return ret_val;
1497
1498err_eeprom:
1499	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1500	return -EIO;
1501}
1502
1503/**
1504 *  ixgbe_identify_module_generic - Identifies module type
1505 *  @hw: pointer to hardware structure
1506 *
1507 *  Determines HW type and calls appropriate function.
1508 **/
1509int ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1510{
1511	switch (hw->mac.ops.get_media_type(hw)) {
1512	case ixgbe_media_type_fiber:
1513		return ixgbe_identify_sfp_module_generic(hw);
1514	case ixgbe_media_type_fiber_qsfp:
1515		return ixgbe_identify_qsfp_module_generic(hw);
1516	default:
1517		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1518		return -ENOENT;
1519	}
1520
1521	return -ENOENT;
1522}
1523
1524/**
1525 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1526 *  @hw: pointer to hardware structure
1527 *
1528 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1529 **/
1530int ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1531{
1532	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1533	struct ixgbe_adapter *adapter = hw->back;
1534	u8 oui_bytes[3] = {0, 0, 0};
1535	u8 bitrate_nominal = 0;
1536	u8 comp_codes_10g = 0;
1537	u8 comp_codes_1g = 0;
1538	u16 enforce_sfp = 0;
1539	u32 vendor_oui = 0;
 
1540	u8 identifier = 0;
 
 
 
1541	u8 cable_tech = 0;
1542	u8 cable_spec = 0;
1543	int status;
1544
1545	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1546		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1547		return -ENOENT;
1548	}
1549
1550	/* LAN ID is needed for sfp_type determination */
1551	hw->mac.ops.set_lan_id(hw);
1552
1553	status = hw->phy.ops.read_i2c_eeprom(hw,
1554					     IXGBE_SFF_IDENTIFIER,
1555					     &identifier);
1556
1557	if (status)
1558		goto err_read_i2c_eeprom;
1559
1560	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1561		hw->phy.type = ixgbe_phy_sfp_unsupported;
1562		return -EOPNOTSUPP;
1563	}
1564	status = hw->phy.ops.read_i2c_eeprom(hw,
1565					     IXGBE_SFF_1GBE_COMP_CODES,
1566					     &comp_codes_1g);
1567
1568	if (status)
1569		goto err_read_i2c_eeprom;
1570
1571	status = hw->phy.ops.read_i2c_eeprom(hw,
1572					     IXGBE_SFF_10GBE_COMP_CODES,
1573					     &comp_codes_10g);
1574
1575	if (status)
1576		goto err_read_i2c_eeprom;
1577	status = hw->phy.ops.read_i2c_eeprom(hw,
1578					     IXGBE_SFF_CABLE_TECHNOLOGY,
1579					     &cable_tech);
1580	if (status)
1581		goto err_read_i2c_eeprom;
1582
1583	status = hw->phy.ops.read_i2c_eeprom(hw,
1584					     IXGBE_SFF_BITRATE_NOMINAL,
1585					     &bitrate_nominal);
1586	if (status)
1587		goto err_read_i2c_eeprom;
1588
1589	 /* ID Module
1590	  * =========
1591	  * 0   SFP_DA_CU
1592	  * 1   SFP_SR
1593	  * 2   SFP_LR
1594	  * 3   SFP_DA_CORE0 - 82599-specific
1595	  * 4   SFP_DA_CORE1 - 82599-specific
1596	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1597	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1598	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1599	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1600	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1601	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1602	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1603	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1604	  */
1605	if (hw->mac.type == ixgbe_mac_82598EB) {
1606		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1607			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1608		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1609			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1610		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1611			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1612		else
1613			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1614	} else {
1615		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1616			if (hw->bus.lan_id == 0)
1617				hw->phy.sfp_type =
1618					     ixgbe_sfp_type_da_cu_core0;
1619			else
1620				hw->phy.sfp_type =
1621					     ixgbe_sfp_type_da_cu_core1;
1622		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1623			hw->phy.ops.read_i2c_eeprom(
1624					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1625					&cable_spec);
1626			if (cable_spec &
1627			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1628				if (hw->bus.lan_id == 0)
1629					hw->phy.sfp_type =
1630					ixgbe_sfp_type_da_act_lmt_core0;
1631				else
1632					hw->phy.sfp_type =
1633					ixgbe_sfp_type_da_act_lmt_core1;
1634			} else {
1635				hw->phy.sfp_type =
1636						ixgbe_sfp_type_unknown;
1637			}
1638		} else if (comp_codes_10g &
1639			   (IXGBE_SFF_10GBASESR_CAPABLE |
1640			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1641			if (hw->bus.lan_id == 0)
1642				hw->phy.sfp_type =
1643					      ixgbe_sfp_type_srlr_core0;
1644			else
1645				hw->phy.sfp_type =
1646					      ixgbe_sfp_type_srlr_core1;
1647		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1648			if (hw->bus.lan_id == 0)
1649				hw->phy.sfp_type =
1650					ixgbe_sfp_type_1g_cu_core0;
1651			else
1652				hw->phy.sfp_type =
1653					ixgbe_sfp_type_1g_cu_core1;
1654		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1655			if (hw->bus.lan_id == 0)
1656				hw->phy.sfp_type =
1657					ixgbe_sfp_type_1g_sx_core0;
1658			else
1659				hw->phy.sfp_type =
1660					ixgbe_sfp_type_1g_sx_core1;
1661		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1662			if (hw->bus.lan_id == 0)
1663				hw->phy.sfp_type =
1664					ixgbe_sfp_type_1g_lx_core0;
1665			else
1666				hw->phy.sfp_type =
1667					ixgbe_sfp_type_1g_lx_core1;
1668		/* Support only Ethernet 1000BASE-BX10, checking the Bit Rate
1669		 * Nominal Value as per SFF-8472 by convention 1.25 Gb/s should
1670		 * be rounded up to 0Dh (13 in units of 100 MBd) for 1000BASE-BX
1671		 */
1672		} else if ((comp_codes_1g & IXGBE_SFF_BASEBX10_CAPABLE) &&
1673			   (bitrate_nominal == 0xD)) {
1674			if (hw->bus.lan_id == 0)
1675				hw->phy.sfp_type =
1676					ixgbe_sfp_type_1g_bx_core0;
1677			else
1678				hw->phy.sfp_type =
1679					ixgbe_sfp_type_1g_bx_core1;
1680		} else {
1681			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1682		}
1683	}
1684
1685	if (hw->phy.sfp_type != stored_sfp_type)
1686		hw->phy.sfp_setup_needed = true;
1687
1688	/* Determine if the SFP+ PHY is dual speed or not. */
1689	hw->phy.multispeed_fiber = false;
1690	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1691	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1692	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1693	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1694		hw->phy.multispeed_fiber = true;
1695
1696	/* Determine PHY vendor */
1697	if (hw->phy.type != ixgbe_phy_nl) {
1698		hw->phy.id = identifier;
1699		status = hw->phy.ops.read_i2c_eeprom(hw,
1700					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1701					    &oui_bytes[0]);
1702
1703		if (status != 0)
1704			goto err_read_i2c_eeprom;
1705
1706		status = hw->phy.ops.read_i2c_eeprom(hw,
1707					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1708					    &oui_bytes[1]);
1709
1710		if (status != 0)
1711			goto err_read_i2c_eeprom;
1712
1713		status = hw->phy.ops.read_i2c_eeprom(hw,
1714					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1715					    &oui_bytes[2]);
1716
1717		if (status != 0)
1718			goto err_read_i2c_eeprom;
1719
1720		vendor_oui =
1721		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1722		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1723		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1724
1725		switch (vendor_oui) {
1726		case IXGBE_SFF_VENDOR_OUI_TYCO:
1727			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1728				hw->phy.type =
1729					    ixgbe_phy_sfp_passive_tyco;
1730			break;
1731		case IXGBE_SFF_VENDOR_OUI_FTL:
1732			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1733				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1734			else
1735				hw->phy.type = ixgbe_phy_sfp_ftl;
1736			break;
1737		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1738			hw->phy.type = ixgbe_phy_sfp_avago;
1739			break;
1740		case IXGBE_SFF_VENDOR_OUI_INTEL:
1741			hw->phy.type = ixgbe_phy_sfp_intel;
1742			break;
1743		default:
1744			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1745				hw->phy.type =
1746					 ixgbe_phy_sfp_passive_unknown;
1747			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1748				hw->phy.type =
1749					ixgbe_phy_sfp_active_unknown;
1750			else
1751				hw->phy.type = ixgbe_phy_sfp_unknown;
1752			break;
1753		}
1754	}
1755
1756	/* Allow any DA cable vendor */
1757	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1758	    IXGBE_SFF_DA_ACTIVE_CABLE))
1759		return 0;
1760
1761	/* Verify supported 1G SFP modules */
1762	if (comp_codes_10g == 0 &&
1763	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1764	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1765	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1766	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1767	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1768	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1769	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1770	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1771		hw->phy.type = ixgbe_phy_sfp_unsupported;
1772		return -EOPNOTSUPP;
1773	}
1774
1775	/* Anything else 82598-based is supported */
1776	if (hw->mac.type == ixgbe_mac_82598EB)
1777		return 0;
1778
1779	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1780	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1781	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1782	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1783	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1784	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1785	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1786	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1787	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1788	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1789		/* Make sure we're a supported PHY type */
1790		if (hw->phy.type == ixgbe_phy_sfp_intel)
1791			return 0;
1792		if (hw->allow_unsupported_sfp) {
1793			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1794			return 0;
1795		}
1796		hw_dbg(hw, "SFP+ module not supported\n");
1797		hw->phy.type = ixgbe_phy_sfp_unsupported;
1798		return -EOPNOTSUPP;
1799	}
1800	return 0;
1801
1802err_read_i2c_eeprom:
1803	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1804	if (hw->phy.type != ixgbe_phy_nl) {
1805		hw->phy.id = 0;
1806		hw->phy.type = ixgbe_phy_unknown;
1807	}
1808	return -ENOENT;
1809}
1810
1811/**
1812 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1813 * @hw: pointer to hardware structure
1814 *
1815 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1816 **/
1817static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1818{
1819	struct ixgbe_adapter *adapter = hw->back;
1820	int status;
1821	u32 vendor_oui = 0;
1822	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1823	u8 identifier = 0;
1824	u8 comp_codes_1g = 0;
1825	u8 comp_codes_10g = 0;
1826	u8 oui_bytes[3] = {0, 0, 0};
1827	u16 enforce_sfp = 0;
1828	u8 connector = 0;
1829	u8 cable_length = 0;
1830	u8 device_tech = 0;
1831	bool active_cable = false;
1832
1833	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1834		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1835		return -ENOENT;
1836	}
1837
1838	/* LAN ID is needed for sfp_type determination */
1839	hw->mac.ops.set_lan_id(hw);
1840
1841	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1842					     &identifier);
1843
1844	if (status != 0)
1845		goto err_read_i2c_eeprom;
1846
1847	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1848		hw->phy.type = ixgbe_phy_sfp_unsupported;
1849		return -EOPNOTSUPP;
1850	}
1851
1852	hw->phy.id = identifier;
1853
1854	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1855					     &comp_codes_10g);
1856
1857	if (status != 0)
1858		goto err_read_i2c_eeprom;
1859
1860	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1861					     &comp_codes_1g);
1862
1863	if (status != 0)
1864		goto err_read_i2c_eeprom;
1865
1866	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1867		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1868		if (hw->bus.lan_id == 0)
1869			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1870		else
1871			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1872	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1873				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1874		if (hw->bus.lan_id == 0)
1875			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1876		else
1877			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1878	} else {
1879		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1880			active_cable = true;
1881
1882		if (!active_cable) {
1883			/* check for active DA cables that pre-date
1884			 * SFF-8436 v3.6
1885			 */
1886			hw->phy.ops.read_i2c_eeprom(hw,
1887					IXGBE_SFF_QSFP_CONNECTOR,
1888					&connector);
1889
1890			hw->phy.ops.read_i2c_eeprom(hw,
1891					IXGBE_SFF_QSFP_CABLE_LENGTH,
1892					&cable_length);
1893
1894			hw->phy.ops.read_i2c_eeprom(hw,
1895					IXGBE_SFF_QSFP_DEVICE_TECH,
1896					&device_tech);
1897
1898			if ((connector ==
1899				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1900			    (cable_length > 0) &&
1901			    ((device_tech >> 4) ==
1902				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1903				active_cable = true;
1904		}
1905
1906		if (active_cable) {
1907			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1908			if (hw->bus.lan_id == 0)
1909				hw->phy.sfp_type =
1910						ixgbe_sfp_type_da_act_lmt_core0;
1911			else
1912				hw->phy.sfp_type =
1913						ixgbe_sfp_type_da_act_lmt_core1;
1914		} else {
1915			/* unsupported module type */
1916			hw->phy.type = ixgbe_phy_sfp_unsupported;
1917			return -EOPNOTSUPP;
1918		}
1919	}
1920
1921	if (hw->phy.sfp_type != stored_sfp_type)
1922		hw->phy.sfp_setup_needed = true;
1923
1924	/* Determine if the QSFP+ PHY is dual speed or not. */
1925	hw->phy.multispeed_fiber = false;
1926	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1927	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1928	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1929	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1930		hw->phy.multispeed_fiber = true;
1931
1932	/* Determine PHY vendor for optical modules */
1933	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1934			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1935		status = hw->phy.ops.read_i2c_eeprom(hw,
1936					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1937					&oui_bytes[0]);
1938
1939		if (status != 0)
1940			goto err_read_i2c_eeprom;
1941
1942		status = hw->phy.ops.read_i2c_eeprom(hw,
1943					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1944					&oui_bytes[1]);
1945
1946		if (status != 0)
1947			goto err_read_i2c_eeprom;
1948
1949		status = hw->phy.ops.read_i2c_eeprom(hw,
1950					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1951					&oui_bytes[2]);
1952
1953		if (status != 0)
1954			goto err_read_i2c_eeprom;
1955
1956		vendor_oui =
1957			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1958			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1959			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1960
1961		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1962			hw->phy.type = ixgbe_phy_qsfp_intel;
1963		else
1964			hw->phy.type = ixgbe_phy_qsfp_unknown;
1965
1966		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1967		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1968			/* Make sure we're a supported PHY type */
1969			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1970				return 0;
1971			if (hw->allow_unsupported_sfp) {
1972				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1973				return 0;
1974			}
1975			hw_dbg(hw, "QSFP module not supported\n");
1976			hw->phy.type = ixgbe_phy_sfp_unsupported;
1977			return -EOPNOTSUPP;
1978		}
1979		return 0;
1980	}
1981	return 0;
1982
1983err_read_i2c_eeprom:
1984	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1985	hw->phy.id = 0;
1986	hw->phy.type = ixgbe_phy_unknown;
1987
1988	return -ENOENT;
1989}
1990
1991/**
1992 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1993 *  @hw: pointer to hardware structure
1994 *  @list_offset: offset to the SFP ID list
1995 *  @data_offset: offset to the SFP data block
1996 *
1997 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1998 *  so it returns the offsets to the phy init sequence block.
1999 **/
2000int ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
2001					u16 *list_offset,
2002					u16 *data_offset)
2003{
2004	u16 sfp_id;
2005	u16 sfp_type = hw->phy.sfp_type;
2006
2007	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
2008		return -EOPNOTSUPP;
2009
2010	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2011		return -ENOENT;
2012
2013	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
2014	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
2015		return -EOPNOTSUPP;
2016
2017	/*
2018	 * Limiting active cables and 1G Phys must be initialized as
2019	 * SR modules
2020	 */
2021	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
2022	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
2023	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
2024	    sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
2025	    sfp_type == ixgbe_sfp_type_1g_bx_core0)
2026		sfp_type = ixgbe_sfp_type_srlr_core0;
2027	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
2028		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
2029		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
2030		 sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
2031		 sfp_type == ixgbe_sfp_type_1g_bx_core1)
2032		sfp_type = ixgbe_sfp_type_srlr_core1;
2033
2034	/* Read offset to PHY init contents */
2035	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
2036		hw_err(hw, "eeprom read at %d failed\n",
2037		       IXGBE_PHY_INIT_OFFSET_NL);
2038		return -EIO;
2039	}
2040
2041	if ((!*list_offset) || (*list_offset == 0xFFFF))
2042		return -EIO;
2043
2044	/* Shift offset to first ID word */
2045	(*list_offset)++;
2046
2047	/*
2048	 * Find the matching SFP ID in the EEPROM
2049	 * and program the init sequence
2050	 */
2051	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2052		goto err_phy;
2053
2054	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
2055		if (sfp_id == sfp_type) {
2056			(*list_offset)++;
2057			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
2058				goto err_phy;
2059			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
2060				hw_dbg(hw, "SFP+ module not supported\n");
2061				return -EOPNOTSUPP;
2062			} else {
2063				break;
2064			}
2065		} else {
2066			(*list_offset) += 2;
2067			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2068				goto err_phy;
2069		}
2070	}
2071
2072	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
2073		hw_dbg(hw, "No matching SFP+ module found\n");
2074		return -EOPNOTSUPP;
2075	}
2076
2077	return 0;
2078
2079err_phy:
2080	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
2081	return -EIO;
2082}
2083
2084/**
2085 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
2086 *  @hw: pointer to hardware structure
2087 *  @byte_offset: EEPROM byte offset to read
2088 *  @eeprom_data: value read
2089 *
2090 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
2091 **/
2092int ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2093				  u8 *eeprom_data)
2094{
2095	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2096					 IXGBE_I2C_EEPROM_DEV_ADDR,
2097					 eeprom_data);
2098}
2099
2100/**
2101 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
2102 *  @hw: pointer to hardware structure
2103 *  @byte_offset: byte offset at address 0xA2
2104 *  @sff8472_data: value read
2105 *
2106 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
2107 **/
2108int ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
2109				   u8 *sff8472_data)
2110{
2111	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2112					 IXGBE_I2C_EEPROM_DEV_ADDR2,
2113					 sff8472_data);
2114}
2115
2116/**
2117 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
2118 *  @hw: pointer to hardware structure
2119 *  @byte_offset: EEPROM byte offset to write
2120 *  @eeprom_data: value to write
2121 *
2122 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
2123 **/
2124int ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2125				   u8 eeprom_data)
2126{
2127	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
2128					  IXGBE_I2C_EEPROM_DEV_ADDR,
2129					  eeprom_data);
2130}
2131
2132/**
2133 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
2134 * @hw: pointer to hardware structure
2135 * @offset: eeprom offset to be read
2136 * @addr: I2C address to be read
2137 */
2138static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
2139{
2140	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
2141	    offset == IXGBE_SFF_IDENTIFIER &&
2142	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2143		return true;
2144	return false;
2145}
2146
2147/**
2148 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
2149 *  @hw: pointer to hardware structure
2150 *  @byte_offset: byte offset to read
2151 *  @dev_addr: device address
2152 *  @data: value read
2153 *  @lock: true if to take and release semaphore
2154 *
2155 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2156 *  a specified device address.
2157 */
2158static int ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2159					   u8 dev_addr, u8 *data, bool lock)
2160{
2161	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2162	u32 max_retry = 10;
2163	bool nack = true;
2164	u32 retry = 0;
2165	int status;
 
2166
2167	if (hw->mac.type >= ixgbe_mac_X550)
2168		max_retry = 3;
2169	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2170		max_retry = IXGBE_SFP_DETECT_RETRIES;
2171
2172	*data = 0;
2173
2174	do {
2175		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2176			return -EBUSY;
2177
2178		ixgbe_i2c_start(hw);
2179
2180		/* Device Address and write indication */
2181		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2182		if (status != 0)
2183			goto fail;
2184
2185		status = ixgbe_get_i2c_ack(hw);
2186		if (status != 0)
2187			goto fail;
2188
2189		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2190		if (status != 0)
2191			goto fail;
2192
2193		status = ixgbe_get_i2c_ack(hw);
2194		if (status != 0)
2195			goto fail;
2196
2197		ixgbe_i2c_start(hw);
2198
2199		/* Device Address and read indication */
2200		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2201		if (status != 0)
2202			goto fail;
2203
2204		status = ixgbe_get_i2c_ack(hw);
2205		if (status != 0)
2206			goto fail;
2207
2208		status = ixgbe_clock_in_i2c_byte(hw, data);
2209		if (status != 0)
2210			goto fail;
2211
2212		status = ixgbe_clock_out_i2c_bit(hw, nack);
2213		if (status != 0)
2214			goto fail;
2215
2216		ixgbe_i2c_stop(hw);
2217		if (lock)
2218			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2219		return 0;
2220
2221fail:
2222		ixgbe_i2c_bus_clear(hw);
2223		if (lock) {
2224			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2225			msleep(100);
2226		}
2227		retry++;
2228		if (retry < max_retry)
2229			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2230		else
2231			hw_dbg(hw, "I2C byte read error.\n");
2232
2233	} while (retry < max_retry);
2234
2235	return status;
2236}
2237
2238/**
2239 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2240 *  @hw: pointer to hardware structure
2241 *  @byte_offset: byte offset to read
2242 *  @dev_addr: device address
2243 *  @data: value read
2244 *
2245 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2246 *  a specified device address.
2247 */
2248int ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2249				u8 dev_addr, u8 *data)
2250{
2251	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2252					       data, true);
2253}
2254
2255/**
2256 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2257 *  @hw: pointer to hardware structure
2258 *  @byte_offset: byte offset to read
2259 *  @dev_addr: device address
2260 *  @data: value read
2261 *
2262 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2263 *  a specified device address.
2264 */
2265int ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2266					 u8 dev_addr, u8 *data)
2267{
2268	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2269					       data, false);
2270}
2271
2272/**
2273 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2274 *  @hw: pointer to hardware structure
2275 *  @byte_offset: byte offset to write
2276 *  @dev_addr: device address
2277 *  @data: value to write
2278 *  @lock: true if to take and release semaphore
2279 *
2280 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2281 *  a specified device address.
2282 */
2283static int ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2284					    u8 dev_addr, u8 data, bool lock)
2285{
2286	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2287	u32 max_retry = 1;
2288	u32 retry = 0;
2289	int status;
2290
2291	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2292		return -EBUSY;
2293
2294	do {
2295		ixgbe_i2c_start(hw);
2296
2297		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2298		if (status != 0)
2299			goto fail;
2300
2301		status = ixgbe_get_i2c_ack(hw);
2302		if (status != 0)
2303			goto fail;
2304
2305		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2306		if (status != 0)
2307			goto fail;
2308
2309		status = ixgbe_get_i2c_ack(hw);
2310		if (status != 0)
2311			goto fail;
2312
2313		status = ixgbe_clock_out_i2c_byte(hw, data);
2314		if (status != 0)
2315			goto fail;
2316
2317		status = ixgbe_get_i2c_ack(hw);
2318		if (status != 0)
2319			goto fail;
2320
2321		ixgbe_i2c_stop(hw);
2322		if (lock)
2323			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2324		return 0;
2325
2326fail:
2327		ixgbe_i2c_bus_clear(hw);
2328		retry++;
2329		if (retry < max_retry)
2330			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2331		else
2332			hw_dbg(hw, "I2C byte write error.\n");
2333	} while (retry < max_retry);
2334
2335	if (lock)
2336		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2337
2338	return status;
2339}
2340
2341/**
2342 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2343 *  @hw: pointer to hardware structure
2344 *  @byte_offset: byte offset to write
2345 *  @dev_addr: device address
2346 *  @data: value to write
2347 *
2348 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2349 *  a specified device address.
2350 */
2351int ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2352				 u8 dev_addr, u8 data)
2353{
2354	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2355						data, true);
2356}
2357
2358/**
2359 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2360 *  @hw: pointer to hardware structure
2361 *  @byte_offset: byte offset to write
2362 *  @dev_addr: device address
2363 *  @data: value to write
2364 *
2365 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2366 *  a specified device address.
2367 */
2368int ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2369					  u8 dev_addr, u8 data)
2370{
2371	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2372						data, false);
2373}
2374
2375/**
2376 *  ixgbe_i2c_start - Sets I2C start condition
2377 *  @hw: pointer to hardware structure
2378 *
2379 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2380 *  Set bit-bang mode on X550 hardware.
2381 **/
2382static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2383{
2384	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2385
2386	i2cctl |= IXGBE_I2C_BB_EN(hw);
2387
2388	/* Start condition must begin with data and clock high */
2389	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2390	ixgbe_raise_i2c_clk(hw, &i2cctl);
2391
2392	/* Setup time for start condition (4.7us) */
2393	udelay(IXGBE_I2C_T_SU_STA);
2394
2395	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2396
2397	/* Hold time for start condition (4us) */
2398	udelay(IXGBE_I2C_T_HD_STA);
2399
2400	ixgbe_lower_i2c_clk(hw, &i2cctl);
2401
2402	/* Minimum low period of clock is 4.7 us */
2403	udelay(IXGBE_I2C_T_LOW);
2404
2405}
2406
2407/**
2408 *  ixgbe_i2c_stop - Sets I2C stop condition
2409 *  @hw: pointer to hardware structure
2410 *
2411 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2412 *  Disables bit-bang mode and negates data output enable on X550
2413 *  hardware.
2414 **/
2415static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2416{
2417	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2418	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2419	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2420	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2421
2422	/* Stop condition must begin with data low and clock high */
2423	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2424	ixgbe_raise_i2c_clk(hw, &i2cctl);
2425
2426	/* Setup time for stop condition (4us) */
2427	udelay(IXGBE_I2C_T_SU_STO);
2428
2429	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2430
2431	/* bus free time between stop and start (4.7us)*/
2432	udelay(IXGBE_I2C_T_BUF);
2433
2434	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2435		i2cctl &= ~bb_en_bit;
2436		i2cctl |= data_oe_bit | clk_oe_bit;
2437		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2438		IXGBE_WRITE_FLUSH(hw);
2439	}
2440}
2441
2442/**
2443 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2444 *  @hw: pointer to hardware structure
2445 *  @data: data byte to clock in
2446 *
2447 *  Clocks in one byte data via I2C data/clock
2448 **/
2449static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2450{
 
2451	bool bit = false;
2452	int i;
2453
2454	*data = 0;
2455	for (i = 7; i >= 0; i--) {
2456		ixgbe_clock_in_i2c_bit(hw, &bit);
2457		*data |= bit << i;
2458	}
2459
2460	return 0;
2461}
2462
2463/**
2464 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2465 *  @hw: pointer to hardware structure
2466 *  @data: data byte clocked out
2467 *
2468 *  Clocks out one byte data via I2C data/clock
2469 **/
2470static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2471{
2472	bool bit = false;
2473	int status;
2474	u32 i2cctl;
2475	int i;
2476
2477	for (i = 7; i >= 0; i--) {
2478		bit = (data >> i) & 0x1;
2479		status = ixgbe_clock_out_i2c_bit(hw, bit);
2480
2481		if (status != 0)
2482			break;
2483	}
2484
2485	/* Release SDA line (set high) */
2486	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2487	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2488	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2489	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2490	IXGBE_WRITE_FLUSH(hw);
2491
2492	return status;
2493}
2494
2495/**
2496 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2497 *  @hw: pointer to hardware structure
2498 *
2499 *  Clocks in/out one bit via I2C data/clock
2500 **/
2501static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2502{
2503	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2504	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
 
 
 
2505	u32 timeout = 10;
2506	bool ack = true;
2507	int status = 0;
2508	u32 i = 0;
2509
2510	if (data_oe_bit) {
2511		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2512		i2cctl |= data_oe_bit;
2513		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2514		IXGBE_WRITE_FLUSH(hw);
2515	}
2516	ixgbe_raise_i2c_clk(hw, &i2cctl);
2517
2518	/* Minimum high period of clock is 4us */
2519	udelay(IXGBE_I2C_T_HIGH);
2520
2521	/* Poll for ACK.  Note that ACK in I2C spec is
2522	 * transition from 1 to 0 */
2523	for (i = 0; i < timeout; i++) {
2524		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2525		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2526
2527		udelay(1);
2528		if (ack == 0)
2529			break;
2530	}
2531
2532	if (ack == 1) {
2533		hw_dbg(hw, "I2C ack was not received.\n");
2534		status = -EIO;
2535	}
2536
2537	ixgbe_lower_i2c_clk(hw, &i2cctl);
2538
2539	/* Minimum low period of clock is 4.7 us */
2540	udelay(IXGBE_I2C_T_LOW);
2541
2542	return status;
2543}
2544
2545/**
2546 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2547 *  @hw: pointer to hardware structure
2548 *  @data: read data value
2549 *
2550 *  Clocks in one bit via I2C data/clock
2551 **/
2552static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2553{
2554	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2555	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2556
2557	if (data_oe_bit) {
2558		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2559		i2cctl |= data_oe_bit;
2560		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2561		IXGBE_WRITE_FLUSH(hw);
2562	}
2563	ixgbe_raise_i2c_clk(hw, &i2cctl);
2564
2565	/* Minimum high period of clock is 4us */
2566	udelay(IXGBE_I2C_T_HIGH);
2567
2568	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2569	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2570
2571	ixgbe_lower_i2c_clk(hw, &i2cctl);
2572
2573	/* Minimum low period of clock is 4.7 us */
2574	udelay(IXGBE_I2C_T_LOW);
2575
2576	return 0;
2577}
2578
2579/**
2580 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2581 *  @hw: pointer to hardware structure
2582 *  @data: data value to write
2583 *
2584 *  Clocks out one bit via I2C data/clock
2585 **/
2586static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2587{
 
2588	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2589	int status;
2590
2591	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2592	if (status == 0) {
2593		ixgbe_raise_i2c_clk(hw, &i2cctl);
2594
2595		/* Minimum high period of clock is 4us */
2596		udelay(IXGBE_I2C_T_HIGH);
2597
2598		ixgbe_lower_i2c_clk(hw, &i2cctl);
2599
2600		/* Minimum low period of clock is 4.7 us.
2601		 * This also takes care of the data hold time.
2602		 */
2603		udelay(IXGBE_I2C_T_LOW);
2604	} else {
2605		hw_dbg(hw, "I2C data was not set to %X\n", data);
2606		return -EIO;
2607	}
2608
2609	return 0;
2610}
2611/**
2612 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2613 *  @hw: pointer to hardware structure
2614 *  @i2cctl: Current value of I2CCTL register
2615 *
2616 *  Raises the I2C clock line '0'->'1'
2617 *  Negates the I2C clock output enable on X550 hardware.
2618 **/
2619static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2620{
2621	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2622	u32 i = 0;
2623	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2624	u32 i2cctl_r = 0;
2625
2626	if (clk_oe_bit) {
2627		*i2cctl |= clk_oe_bit;
2628		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2629	}
2630
2631	for (i = 0; i < timeout; i++) {
2632		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2633		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2634		IXGBE_WRITE_FLUSH(hw);
2635		/* SCL rise time (1000ns) */
2636		udelay(IXGBE_I2C_T_RISE);
2637
2638		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2639		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2640			break;
2641	}
2642}
2643
2644/**
2645 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2646 *  @hw: pointer to hardware structure
2647 *  @i2cctl: Current value of I2CCTL register
2648 *
2649 *  Lowers the I2C clock line '1'->'0'
2650 *  Asserts the I2C clock output enable on X550 hardware.
2651 **/
2652static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2653{
2654
2655	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2656	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2657
2658	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2659	IXGBE_WRITE_FLUSH(hw);
2660
2661	/* SCL fall time (300ns) */
2662	udelay(IXGBE_I2C_T_FALL);
2663}
2664
2665/**
2666 *  ixgbe_set_i2c_data - Sets the I2C data bit
2667 *  @hw: pointer to hardware structure
2668 *  @i2cctl: Current value of I2CCTL register
2669 *  @data: I2C data value (0 or 1) to set
2670 *
2671 *  Sets the I2C data bit
2672 *  Asserts the I2C data output enable on X550 hardware.
2673 **/
2674static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2675{
2676	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2677
2678	if (data)
2679		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2680	else
2681		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2682	*i2cctl &= ~data_oe_bit;
2683
2684	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2685	IXGBE_WRITE_FLUSH(hw);
2686
2687	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2688	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2689
2690	if (!data)	/* Can't verify data in this case */
2691		return 0;
2692	if (data_oe_bit) {
2693		*i2cctl |= data_oe_bit;
2694		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2695		IXGBE_WRITE_FLUSH(hw);
2696	}
2697
2698	/* Verify data was set correctly */
2699	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2700	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2701		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2702		return -EIO;
2703	}
2704
2705	return 0;
2706}
2707
2708/**
2709 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2710 *  @hw: pointer to hardware structure
2711 *  @i2cctl: Current value of I2CCTL register
2712 *
2713 *  Returns the I2C data bit value
2714 *  Negates the I2C data output enable on X550 hardware.
2715 **/
2716static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2717{
2718	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2719
2720	if (data_oe_bit) {
2721		*i2cctl |= data_oe_bit;
2722		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2723		IXGBE_WRITE_FLUSH(hw);
2724		udelay(IXGBE_I2C_T_FALL);
2725	}
2726
2727	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2728		return true;
2729	return false;
2730}
2731
2732/**
2733 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2734 *  @hw: pointer to hardware structure
2735 *
2736 *  Clears the I2C bus by sending nine clock pulses.
2737 *  Used when data line is stuck low.
2738 **/
2739static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2740{
2741	u32 i2cctl;
2742	u32 i;
2743
2744	ixgbe_i2c_start(hw);
2745	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2746
2747	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2748
2749	for (i = 0; i < 9; i++) {
2750		ixgbe_raise_i2c_clk(hw, &i2cctl);
2751
2752		/* Min high period of clock is 4us */
2753		udelay(IXGBE_I2C_T_HIGH);
2754
2755		ixgbe_lower_i2c_clk(hw, &i2cctl);
2756
2757		/* Min low period of clock is 4.7us*/
2758		udelay(IXGBE_I2C_T_LOW);
2759	}
2760
2761	ixgbe_i2c_start(hw);
2762
2763	/* Put the i2c bus back to default state */
2764	ixgbe_i2c_stop(hw);
2765}
2766
2767/**
2768 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2769 *  @hw: pointer to hardware structure
2770 *
2771 *  Checks if the LASI temp alarm status was triggered due to overtemp
2772 *
2773 *  Return true when an overtemp event detected, otherwise false.
2774 **/
2775bool ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2776{
2777	u16 phy_data = 0;
2778	u32 status;
2779
2780	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2781		return false;
2782
2783	/* Check that the LASI temp alarm status was triggered */
2784	status = hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2785				      MDIO_MMD_PMAPMD, &phy_data);
2786	if (status)
2787		return false;
 
2788
2789	return !!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM);
2790}
2791
2792/** ixgbe_set_copper_phy_power - Control power for copper phy
2793 *  @hw: pointer to hardware structure
2794 *  @on: true for on, false for off
2795 **/
2796int ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2797{
2798	u32 status;
2799	u16 reg;
2800
2801	/* Bail if we don't have copper phy */
2802	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2803		return 0;
2804
2805	if (!on && ixgbe_mng_present(hw))
2806		return 0;
2807
2808	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2809	if (status)
2810		return status;
2811
2812	if (on) {
2813		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2814	} else {
2815		if (ixgbe_check_reset_blocked(hw))
2816			return 0;
2817		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2818	}
2819
2820	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2821	return status;
2822}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/iopoll.h>
   7#include <linux/sched.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_phy.h"
  11
  12static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  13static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  14static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  15static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  16static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  17static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  18static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  19static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  20static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  21static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  22static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  23static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  24static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  25static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
  26static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  27
  28/**
  29 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  30 *  @hw: pointer to the hardware structure
  31 *  @byte: byte to send
  32 *
  33 *  Returns an error code on error.
  34 **/
  35static s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  36{
  37	s32 status;
  38
  39	status = ixgbe_clock_out_i2c_byte(hw, byte);
  40	if (status)
  41		return status;
  42	return ixgbe_get_i2c_ack(hw);
  43}
  44
  45/**
  46 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  47 *  @hw: pointer to the hardware structure
  48 *  @byte: pointer to a u8 to receive the byte
  49 *
  50 *  Returns an error code on error.
  51 **/
  52static s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  53{
  54	s32 status;
  55
  56	status = ixgbe_clock_in_i2c_byte(hw, byte);
  57	if (status)
  58		return status;
  59	/* ACK */
  60	return ixgbe_clock_out_i2c_bit(hw, false);
  61}
  62
  63/**
  64 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  65 *  @add1: addend 1
  66 *  @add2: addend 2
  67 *
  68 *  Returns one's complement 8-bit sum.
  69 **/
  70static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  71{
  72	u16 sum = add1 + add2;
  73
  74	sum = (sum & 0xFF) + (sum >> 8);
  75	return sum & 0xFF;
  76}
  77
  78/**
  79 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
  80 *  @hw: pointer to the hardware structure
  81 *  @addr: I2C bus address to read from
  82 *  @reg: I2C device register to read from
  83 *  @val: pointer to location to receive read value
  84 *  @lock: true if to take and release semaphore
  85 *
  86 *  Returns an error code on error.
  87 */
  88s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
  89					u16 reg, u16 *val, bool lock)
  90{
  91	u32 swfw_mask = hw->phy.phy_semaphore_mask;
  92	int max_retry = 3;
  93	int retry = 0;
  94	u8 csum_byte;
  95	u8 high_bits;
  96	u8 low_bits;
  97	u8 reg_high;
  98	u8 csum;
  99
 100	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 101	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 102	csum = ~csum;
 103	do {
 104		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 105			return IXGBE_ERR_SWFW_SYNC;
 106		ixgbe_i2c_start(hw);
 107		/* Device Address and write indication */
 108		if (ixgbe_out_i2c_byte_ack(hw, addr))
 109			goto fail;
 110		/* Write bits 14:8 */
 111		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 112			goto fail;
 113		/* Write bits 7:0 */
 114		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 115			goto fail;
 116		/* Write csum */
 117		if (ixgbe_out_i2c_byte_ack(hw, csum))
 118			goto fail;
 119		/* Re-start condition */
 120		ixgbe_i2c_start(hw);
 121		/* Device Address and read indication */
 122		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 123			goto fail;
 124		/* Get upper bits */
 125		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 126			goto fail;
 127		/* Get low bits */
 128		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 129			goto fail;
 130		/* Get csum */
 131		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 132			goto fail;
 133		/* NACK */
 134		if (ixgbe_clock_out_i2c_bit(hw, false))
 135			goto fail;
 136		ixgbe_i2c_stop(hw);
 137		if (lock)
 138			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 139		*val = (high_bits << 8) | low_bits;
 140		return 0;
 141
 142fail:
 143		ixgbe_i2c_bus_clear(hw);
 144		if (lock)
 145			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 146		retry++;
 147		if (retry < max_retry)
 148			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 149		else
 150			hw_dbg(hw, "I2C byte read combined error.\n");
 151	} while (retry < max_retry);
 152
 153	return IXGBE_ERR_I2C;
 154}
 155
 156/**
 157 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 158 *  @hw: pointer to the hardware structure
 159 *  @addr: I2C bus address to write to
 160 *  @reg: I2C device register to write to
 161 *  @val: value to write
 162 *  @lock: true if to take and release semaphore
 163 *
 164 *  Returns an error code on error.
 165 */
 166s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 167					 u16 reg, u16 val, bool lock)
 168{
 169	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 170	int max_retry = 1;
 171	int retry = 0;
 172	u8 reg_high;
 173	u8 csum;
 174
 175	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 176	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 177	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 178	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 179	csum = ~csum;
 180	do {
 181		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 182			return IXGBE_ERR_SWFW_SYNC;
 183		ixgbe_i2c_start(hw);
 184		/* Device Address and write indication */
 185		if (ixgbe_out_i2c_byte_ack(hw, addr))
 186			goto fail;
 187		/* Write bits 14:8 */
 188		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 189			goto fail;
 190		/* Write bits 7:0 */
 191		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 192			goto fail;
 193		/* Write data 15:8 */
 194		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 195			goto fail;
 196		/* Write data 7:0 */
 197		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 198			goto fail;
 199		/* Write csum */
 200		if (ixgbe_out_i2c_byte_ack(hw, csum))
 201			goto fail;
 202		ixgbe_i2c_stop(hw);
 203		if (lock)
 204			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 205		return 0;
 206
 207fail:
 208		ixgbe_i2c_bus_clear(hw);
 209		if (lock)
 210			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 211		retry++;
 212		if (retry < max_retry)
 213			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 214		else
 215			hw_dbg(hw, "I2C byte write combined error.\n");
 216	} while (retry < max_retry);
 217
 218	return IXGBE_ERR_I2C;
 219}
 220
 221/**
 222 *  ixgbe_probe_phy - Probe a single address for a PHY
 223 *  @hw: pointer to hardware structure
 224 *  @phy_addr: PHY address to probe
 225 *
 226 *  Returns true if PHY found
 227 **/
 228static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
 229{
 230	u16 ext_ability = 0;
 231
 232	hw->phy.mdio.prtad = phy_addr;
 233	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
 234		return false;
 235
 236	if (ixgbe_get_phy_id(hw))
 237		return false;
 238
 239	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
 240
 241	if (hw->phy.type == ixgbe_phy_unknown) {
 242		hw->phy.ops.read_reg(hw,
 243				     MDIO_PMA_EXTABLE,
 244				     MDIO_MMD_PMAPMD,
 245				     &ext_ability);
 246		if (ext_ability &
 247		    (MDIO_PMA_EXTABLE_10GBT |
 248		     MDIO_PMA_EXTABLE_1000BT))
 249			hw->phy.type = ixgbe_phy_cu_unknown;
 250		else
 251			hw->phy.type = ixgbe_phy_generic;
 252	}
 253
 254	return true;
 255}
 256
 257/**
 258 *  ixgbe_identify_phy_generic - Get physical layer module
 259 *  @hw: pointer to hardware structure
 260 *
 261 *  Determines the physical layer module found on the current adapter.
 262 **/
 263s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 264{
 
 265	u32 phy_addr;
 266	u32 status = IXGBE_ERR_PHY_ADDR_INVALID;
 267
 268	if (!hw->phy.phy_semaphore_mask) {
 269		if (hw->bus.lan_id)
 270			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 271		else
 272			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 273	}
 274
 275	if (hw->phy.type != ixgbe_phy_unknown)
 276		return 0;
 277
 278	if (hw->phy.nw_mng_if_sel) {
 279		phy_addr = (hw->phy.nw_mng_if_sel &
 280			    IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD) >>
 281			   IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD_SHIFT;
 282		if (ixgbe_probe_phy(hw, phy_addr))
 283			return 0;
 284		else
 285			return IXGBE_ERR_PHY_ADDR_INVALID;
 286	}
 287
 288	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 289		if (ixgbe_probe_phy(hw, phy_addr)) {
 290			status = 0;
 291			break;
 292		}
 293	}
 294
 295	/* Certain media types do not have a phy so an address will not
 296	 * be found and the code will take this path.  Caller has to
 297	 * decide if it is an error or not.
 298	 */
 299	if (status)
 300		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
 301
 302	return status;
 303}
 304
 305/**
 306 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 307 * @hw: pointer to the hardware structure
 308 *
 309 * This function checks the MMNGC.MNG_VETO bit to see if there are
 310 * any constraints on link from manageability.  For MAC's that don't
 311 * have this bit just return false since the link can not be blocked
 312 * via this method.
 313 **/
 314bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 315{
 316	u32 mmngc;
 317
 318	/* If we don't have this bit, it can't be blocking */
 319	if (hw->mac.type == ixgbe_mac_82598EB)
 320		return false;
 321
 322	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 323	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 324		hw_dbg(hw, "MNG_VETO bit detected.\n");
 325		return true;
 326	}
 327
 328	return false;
 329}
 330
 331/**
 332 *  ixgbe_get_phy_id - Get the phy type
 333 *  @hw: pointer to hardware structure
 334 *
 335 **/
 336static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
 337{
 338	s32 status;
 339	u16 phy_id_high = 0;
 340	u16 phy_id_low = 0;
 
 341
 342	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 343				      &phy_id_high);
 344
 345	if (!status) {
 346		hw->phy.id = (u32)(phy_id_high << 16);
 347		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 348					      &phy_id_low);
 349		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 350		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 351	}
 352	return status;
 353}
 354
 355/**
 356 *  ixgbe_get_phy_type_from_id - Get the phy type
 357 *  @phy_id: hardware phy id
 358 *
 359 **/
 360static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 361{
 362	enum ixgbe_phy_type phy_type;
 363
 364	switch (phy_id) {
 365	case TN1010_PHY_ID:
 366		phy_type = ixgbe_phy_tn;
 367		break;
 368	case X550_PHY_ID2:
 369	case X550_PHY_ID3:
 370	case X540_PHY_ID:
 371		phy_type = ixgbe_phy_aq;
 372		break;
 373	case QT2022_PHY_ID:
 374		phy_type = ixgbe_phy_qt;
 375		break;
 376	case ATH_PHY_ID:
 377		phy_type = ixgbe_phy_nl;
 378		break;
 379	case X557_PHY_ID:
 380	case X557_PHY_ID2:
 381		phy_type = ixgbe_phy_x550em_ext_t;
 382		break;
 383	case BCM54616S_E_PHY_ID:
 384		phy_type = ixgbe_phy_ext_1g_t;
 385		break;
 386	default:
 387		phy_type = ixgbe_phy_unknown;
 388		break;
 389	}
 390
 391	return phy_type;
 392}
 393
 394/**
 395 *  ixgbe_reset_phy_generic - Performs a PHY reset
 396 *  @hw: pointer to hardware structure
 397 **/
 398s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 399{
 400	u32 i;
 401	u16 ctrl = 0;
 402	s32 status = 0;
 403
 404	if (hw->phy.type == ixgbe_phy_unknown)
 405		status = ixgbe_identify_phy_generic(hw);
 406
 407	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 408		return status;
 409
 410	/* Don't reset PHY if it's shut down due to overtemp. */
 411	if (!hw->phy.reset_if_overtemp &&
 412	    (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
 413		return 0;
 414
 415	/* Blocked by MNG FW so bail */
 416	if (ixgbe_check_reset_blocked(hw))
 417		return 0;
 418
 419	/*
 420	 * Perform soft PHY reset to the PHY_XS.
 421	 * This will cause a soft reset to the PHY
 422	 */
 423	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 424			      MDIO_MMD_PHYXS,
 425			      MDIO_CTRL1_RESET);
 426
 427	/*
 428	 * Poll for reset bit to self-clear indicating reset is complete.
 429	 * Some PHYs could take up to 3 seconds to complete and need about
 430	 * 1.7 usec delay after the reset is complete.
 431	 */
 432	for (i = 0; i < 30; i++) {
 433		msleep(100);
 434		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
 435			status = hw->phy.ops.read_reg(hw,
 436						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
 437						  MDIO_MMD_PMAPMD, &ctrl);
 438			if (status)
 439				return status;
 440
 441			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
 442				udelay(2);
 443				break;
 444			}
 445		} else {
 446			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 447						      MDIO_MMD_PHYXS, &ctrl);
 448			if (status)
 449				return status;
 450
 451			if (!(ctrl & MDIO_CTRL1_RESET)) {
 452				udelay(2);
 453				break;
 454			}
 455		}
 456	}
 457
 458	if (ctrl & MDIO_CTRL1_RESET) {
 459		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 460		return IXGBE_ERR_RESET_FAILED;
 461	}
 462
 463	return 0;
 464}
 465
 466/**
 467 *  ixgbe_read_phy_reg_mdi - read PHY register
 468 *  @hw: pointer to hardware structure
 469 *  @reg_addr: 32 bit address of PHY register to read
 470 *  @device_type: 5 bit device type
 471 *  @phy_data: Pointer to read data from PHY register
 472 *
 473 *  Reads a value from a specified PHY register without the SWFW lock
 474 **/
 475s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 476		       u16 *phy_data)
 477{
 478	u32 i, data, command;
 479
 480	/* Setup and write the address cycle command */
 481	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 482		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 483		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 484		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 485
 486	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 487
 488	/* Check every 10 usec to see if the address cycle completed.
 489	 * The MDI Command bit will clear when the operation is
 490	 * complete
 491	 */
 492	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 493		udelay(10);
 494
 495		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 496		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 497				break;
 498	}
 499
 500
 501	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 502		hw_dbg(hw, "PHY address command did not complete.\n");
 503		return IXGBE_ERR_PHY;
 504	}
 505
 506	/* Address cycle complete, setup and write the read
 507	 * command
 508	 */
 509	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 510		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 511		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 512		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 513
 514	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 515
 516	/* Check every 10 usec to see if the address cycle
 517	 * completed. The MDI Command bit will clear when the
 518	 * operation is complete
 519	 */
 520	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 521		udelay(10);
 522
 523		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 524		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 525			break;
 526	}
 527
 528	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 529		hw_dbg(hw, "PHY read command didn't complete\n");
 530		return IXGBE_ERR_PHY;
 531	}
 532
 533	/* Read operation is complete.  Get the data
 534	 * from MSRWD
 535	 */
 536	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 537	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 538	*phy_data = (u16)(data);
 539
 540	return 0;
 541}
 542
 543/**
 544 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 545 *  using the SWFW lock - this function is needed in most cases
 546 *  @hw: pointer to hardware structure
 547 *  @reg_addr: 32 bit address of PHY register to read
 548 *  @device_type: 5 bit device type
 549 *  @phy_data: Pointer to read data from PHY register
 550 **/
 551s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 552			       u32 device_type, u16 *phy_data)
 553{
 554	s32 status;
 555	u32 gssr = hw->phy.phy_semaphore_mask;
 
 556
 557	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 558		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 559						phy_data);
 560		hw->mac.ops.release_swfw_sync(hw, gssr);
 561	} else {
 562		return IXGBE_ERR_SWFW_SYNC;
 563	}
 564
 565	return status;
 566}
 567
 568/**
 569 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 570 *  without SWFW lock
 571 *  @hw: pointer to hardware structure
 572 *  @reg_addr: 32 bit PHY register to write
 573 *  @device_type: 5 bit device type
 574 *  @phy_data: Data to write to the PHY register
 575 **/
 576s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
 577				u32 device_type, u16 phy_data)
 578{
 579	u32 i, command;
 580
 581	/* Put the data in the MDI single read and write data register*/
 582	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 583
 584	/* Setup and write the address cycle command */
 585	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 586		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 587		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 588		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 589
 590	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 591
 592	/*
 593	 * Check every 10 usec to see if the address cycle completed.
 594	 * The MDI Command bit will clear when the operation is
 595	 * complete
 596	 */
 597	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 598		udelay(10);
 599
 600		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 601		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 602			break;
 603	}
 604
 605	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 606		hw_dbg(hw, "PHY address cmd didn't complete\n");
 607		return IXGBE_ERR_PHY;
 608	}
 609
 610	/*
 611	 * Address cycle complete, setup and write the write
 612	 * command
 613	 */
 614	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 615		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 616		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 617		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 618
 619	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 620
 621	/* Check every 10 usec to see if the address cycle
 622	 * completed. The MDI Command bit will clear when the
 623	 * operation is complete
 624	 */
 625	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 626		udelay(10);
 627
 628		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 629		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 630			break;
 631	}
 632
 633	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 634		hw_dbg(hw, "PHY write cmd didn't complete\n");
 635		return IXGBE_ERR_PHY;
 636	}
 637
 638	return 0;
 639}
 640
 641/**
 642 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 643 *  using SWFW lock- this function is needed in most cases
 644 *  @hw: pointer to hardware structure
 645 *  @reg_addr: 32 bit PHY register to write
 646 *  @device_type: 5 bit device type
 647 *  @phy_data: Data to write to the PHY register
 648 **/
 649s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 650				u32 device_type, u16 phy_data)
 651{
 652	s32 status;
 653	u32 gssr = hw->phy.phy_semaphore_mask;
 
 654
 655	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 656		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 657						 phy_data);
 658		hw->mac.ops.release_swfw_sync(hw, gssr);
 659	} else {
 660		return IXGBE_ERR_SWFW_SYNC;
 661	}
 662
 663	return status;
 664}
 665
 666#define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
 667
 668/**
 669 *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
 670 *  @hw: pointer to hardware structure
 671 *  @cmd: command register value to write
 672 **/
 673static s32 ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
 674{
 675	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
 676
 677	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
 678				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
 679				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
 680}
 681
 682/**
 683 *  ixgbe_mii_bus_read_generic - Read a clause 22/45 register with gssr flags
 684 *  @hw: pointer to hardware structure
 685 *  @addr: address
 686 *  @regnum: register number
 687 *  @gssr: semaphore flags to acquire
 688 **/
 689static s32 ixgbe_mii_bus_read_generic(struct ixgbe_hw *hw, int addr,
 690				      int regnum, u32 gssr)
 691{
 692	u32 hwaddr, cmd;
 693	s32 data;
 694
 695	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 696		return -EBUSY;
 697
 698	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 699	if (regnum & MII_ADDR_C45) {
 700		hwaddr |= regnum & GENMASK(21, 0);
 701		cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 702	} else {
 703		hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 704		cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
 705			IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
 706	}
 707
 708	data = ixgbe_msca_cmd(hw, cmd);
 709	if (data < 0)
 710		goto mii_bus_read_done;
 711
 712	/* For a clause 45 access the address cycle just completed, we still
 713	 * need to do the read command, otherwise just get the data
 714	 */
 715	if (!(regnum & MII_ADDR_C45))
 716		goto do_mii_bus_read;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717
 718	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
 719	data = ixgbe_msca_cmd(hw, cmd);
 720	if (data < 0)
 721		goto mii_bus_read_done;
 722
 723do_mii_bus_read:
 724	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 725	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 726
 727mii_bus_read_done:
 728	hw->mac.ops.release_swfw_sync(hw, gssr);
 729	return data;
 730}
 731
 732/**
 733 *  ixgbe_mii_bus_write_generic - Write a clause 22/45 register with gssr flags
 734 *  @hw: pointer to hardware structure
 735 *  @addr: address
 736 *  @regnum: register number
 737 *  @val: value to write
 738 *  @gssr: semaphore flags to acquire
 739 **/
 740static s32 ixgbe_mii_bus_write_generic(struct ixgbe_hw *hw, int addr,
 741				       int regnum, u16 val, u32 gssr)
 742{
 743	u32 hwaddr, cmd;
 744	s32 err;
 745
 746	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 747		return -EBUSY;
 748
 749	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 750
 751	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 752	if (regnum & MII_ADDR_C45) {
 753		hwaddr |= regnum & GENMASK(21, 0);
 754		cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 755	} else {
 756		hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 757		cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
 758			IXGBE_MSCA_MDI_COMMAND;
 759	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760
 761	/* For clause 45 this is an address cycle, for clause 22 this is the
 762	 * entire transaction
 763	 */
 764	err = ixgbe_msca_cmd(hw, cmd);
 765	if (err < 0 || !(regnum & MII_ADDR_C45))
 766		goto mii_bus_write_done;
 767
 768	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
 769	err = ixgbe_msca_cmd(hw, cmd);
 770
 771mii_bus_write_done:
 772	hw->mac.ops.release_swfw_sync(hw, gssr);
 773	return err;
 774}
 775
 776/**
 777 *  ixgbe_mii_bus_read - Read a clause 22/45 register
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778 *  @bus: pointer to mii_bus structure which points to our driver private
 779 *  @addr: address
 780 *  @regnum: register number
 
 781 **/
 782static s32 ixgbe_mii_bus_read(struct mii_bus *bus, int addr, int regnum)
 
 783{
 784	struct ixgbe_adapter *adapter = bus->priv;
 785	struct ixgbe_hw *hw = &adapter->hw;
 786	u32 gssr = hw->phy.phy_semaphore_mask;
 787
 788	return ixgbe_mii_bus_read_generic(hw, addr, regnum, gssr);
 789}
 790
 791/**
 792 *  ixgbe_mii_bus_write - Write a clause 22/45 register
 793 *  @bus: pointer to mii_bus structure which points to our driver private
 794 *  @addr: address
 
 795 *  @regnum: register number
 796 *  @val: value to write
 797 **/
 798static s32 ixgbe_mii_bus_write(struct mii_bus *bus, int addr, int regnum,
 799			       u16 val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800{
 801	struct ixgbe_adapter *adapter = bus->priv;
 802	struct ixgbe_hw *hw = &adapter->hw;
 803	u32 gssr = hw->phy.phy_semaphore_mask;
 804
 805	return ixgbe_mii_bus_write_generic(hw, addr, regnum, val, gssr);
 
 806}
 807
 808/**
 809 *  ixgbe_x550em_a_mii_bus_read - Read a clause 22/45 register on x550em_a
 810 *  @bus: pointer to mii_bus structure which points to our driver private
 811 *  @addr: address
 812 *  @regnum: register number
 
 813 **/
 814static s32 ixgbe_x550em_a_mii_bus_read(struct mii_bus *bus, int addr,
 815				       int regnum)
 816{
 817	struct ixgbe_adapter *adapter = bus->priv;
 818	struct ixgbe_hw *hw = &adapter->hw;
 819	u32 gssr = hw->phy.phy_semaphore_mask;
 820
 821	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 822	return ixgbe_mii_bus_read_generic(hw, addr, regnum, gssr);
 823}
 824
 825/**
 826 *  ixgbe_x550em_a_mii_bus_write - Write a clause 22/45 register on x550em_a
 827 *  @bus: pointer to mii_bus structure which points to our driver private
 828 *  @addr: address
 
 829 *  @regnum: register number
 830 *  @val: value to write
 831 **/
 832static s32 ixgbe_x550em_a_mii_bus_write(struct mii_bus *bus, int addr,
 833					int regnum, u16 val)
 834{
 835	struct ixgbe_adapter *adapter = bus->priv;
 836	struct ixgbe_hw *hw = &adapter->hw;
 837	u32 gssr = hw->phy.phy_semaphore_mask;
 838
 839	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 840	return ixgbe_mii_bus_write_generic(hw, addr, regnum, val, gssr);
 
 841}
 842
 843/**
 844 * ixgbe_get_first_secondary_devfn - get first device downstream of root port
 845 * @devfn: PCI_DEVFN of root port on domain 0, bus 0
 846 *
 847 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
 848 * on domain 0, bus 0, devfn = 'devfn'
 849 **/
 850static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
 851{
 852	struct pci_dev *rp_pdev;
 853	int bus;
 854
 855	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
 856	if (rp_pdev && rp_pdev->subordinate) {
 857		bus = rp_pdev->subordinate->number;
 
 858		return pci_get_domain_bus_and_slot(0, bus, 0);
 859	}
 860
 
 861	return NULL;
 862}
 863
 864/**
 865 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
 866 * @hw: pointer to hardware structure
 867 *
 868 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
 869 * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
 870 * but we only want to register one MDIO bus.
 871 **/
 872static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
 873{
 874	struct ixgbe_adapter *adapter = hw->back;
 875	struct pci_dev *pdev = adapter->pdev;
 876	struct pci_dev *func0_pdev;
 
 877
 878	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
 879	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
 880	 * It's not valid for function 0 to be disabled and function 1 is up,
 881	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
 882	 * of those two root ports
 883	 */
 884	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
 885	if (func0_pdev) {
 886		if (func0_pdev == pdev)
 887			return true;
 888		else
 889			return false;
 890	}
 891	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
 892	if (func0_pdev == pdev)
 893		return true;
 894
 895	return false;
 
 
 896}
 897
 898/**
 899 * ixgbe_mii_bus_init - mii_bus structure setup
 900 * @hw: pointer to hardware structure
 901 *
 902 * Returns 0 on success, negative on failure
 903 *
 904 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
 905 **/
 906s32 ixgbe_mii_bus_init(struct ixgbe_hw *hw)
 907{
 908	s32 (*write)(struct mii_bus *bus, int addr, int regnum, u16 val);
 909	s32 (*read)(struct mii_bus *bus, int addr, int regnum);
 
 
 
 910	struct ixgbe_adapter *adapter = hw->back;
 911	struct pci_dev *pdev = adapter->pdev;
 912	struct device *dev = &adapter->netdev->dev;
 913	struct mii_bus *bus;
 914
 915	switch (hw->device_id) {
 916	/* C3000 SoCs */
 917	case IXGBE_DEV_ID_X550EM_A_KR:
 918	case IXGBE_DEV_ID_X550EM_A_KR_L:
 919	case IXGBE_DEV_ID_X550EM_A_SFP_N:
 920	case IXGBE_DEV_ID_X550EM_A_SGMII:
 921	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
 922	case IXGBE_DEV_ID_X550EM_A_10G_T:
 923	case IXGBE_DEV_ID_X550EM_A_SFP:
 924	case IXGBE_DEV_ID_X550EM_A_1G_T:
 925	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
 926		if (!ixgbe_x550em_a_has_mii(hw))
 927			return 0;
 928		read = &ixgbe_x550em_a_mii_bus_read;
 929		write = &ixgbe_x550em_a_mii_bus_write;
 
 
 930		break;
 931	default:
 932		read = &ixgbe_mii_bus_read;
 933		write = &ixgbe_mii_bus_write;
 
 
 934		break;
 935	}
 936
 937	bus = devm_mdiobus_alloc(dev);
 938	if (!bus)
 939		return -ENOMEM;
 940
 941	bus->read = read;
 942	bus->write = write;
 
 
 943
 944	/* Use the position of the device in the PCI hierarchy as the id */
 945	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
 946		 pci_name(pdev));
 947
 948	bus->name = "ixgbe-mdio";
 949	bus->priv = adapter;
 950	bus->parent = dev;
 951	bus->phy_mask = GENMASK(31, 0);
 952
 953	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
 954	 * unfortunately that causes some clause 22 frames to be sent with
 955	 * clause 45 addressing.  We don't want that.
 956	 */
 957	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
 958
 959	adapter->mii_bus = bus;
 960	return mdiobus_register(bus);
 961}
 962
 963/**
 964 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
 965 *  @hw: pointer to hardware structure
 966 *
 967 *  Restart autonegotiation and PHY and waits for completion.
 968 **/
 969s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
 970{
 971	s32 status = 0;
 972	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
 
 973	bool autoneg = false;
 974	ixgbe_link_speed speed;
 975
 976	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
 977
 978	/* Set or unset auto-negotiation 10G advertisement */
 979	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
 980
 981	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
 982	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
 983	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
 984		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
 985
 986	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
 987
 988	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
 989			     MDIO_MMD_AN, &autoneg_reg);
 990
 991	if (hw->mac.type == ixgbe_mac_X550) {
 992		/* Set or unset auto-negotiation 5G advertisement */
 993		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
 994		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
 995		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
 996			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
 997
 998		/* Set or unset auto-negotiation 2.5G advertisement */
 999		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
1000		if ((hw->phy.autoneg_advertised &
1001		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1002		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1003			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1004	}
1005
1006	/* Set or unset auto-negotiation 1G advertisement */
1007	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1008	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1009	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1010		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1011
1012	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1013			      MDIO_MMD_AN, autoneg_reg);
1014
1015	/* Set or unset auto-negotiation 100M advertisement */
1016	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
1017
1018	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1019	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1020	    (speed & IXGBE_LINK_SPEED_100_FULL))
1021		autoneg_reg |= ADVERTISE_100FULL;
1022
1023	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1024
1025	/* Blocked by MNG FW so don't reset PHY */
1026	if (ixgbe_check_reset_blocked(hw))
1027		return 0;
1028
1029	/* Restart PHY autonegotiation and wait for completion */
1030	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1031			     MDIO_MMD_AN, &autoneg_reg);
1032
1033	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1034
1035	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1036			      MDIO_MMD_AN, autoneg_reg);
1037
1038	return status;
1039}
1040
1041/**
1042 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1043 *  @hw: pointer to hardware structure
1044 *  @speed: new link speed
1045 *  @autoneg_wait_to_complete: unused
1046 **/
1047s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1048				       ixgbe_link_speed speed,
1049				       bool autoneg_wait_to_complete)
1050{
1051	/* Clear autoneg_advertised and set new values based on input link
1052	 * speed.
1053	 */
1054	hw->phy.autoneg_advertised = 0;
1055
1056	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1057		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1058
1059	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1060		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1061
1062	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1063		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1064
1065	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1066		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1067
1068	if (speed & IXGBE_LINK_SPEED_100_FULL)
1069		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1070
1071	if (speed & IXGBE_LINK_SPEED_10_FULL)
1072		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1073
1074	/* Setup link based on the new speed settings */
1075	if (hw->phy.ops.setup_link)
1076		hw->phy.ops.setup_link(hw);
1077
1078	return 0;
1079}
1080
1081/**
1082 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1083 * @hw: pointer to hardware structure
1084 *
1085 * Determines the supported link capabilities by reading the PHY auto
1086 * negotiation register.
1087 */
1088static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1089{
1090	u16 speed_ability;
1091	s32 status;
1092
1093	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1094				      &speed_ability);
1095	if (status)
1096		return status;
1097
1098	if (speed_ability & MDIO_SPEED_10G)
1099		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1100	if (speed_ability & MDIO_PMA_SPEED_1000)
1101		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1102	if (speed_ability & MDIO_PMA_SPEED_100)
1103		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1104
1105	switch (hw->mac.type) {
1106	case ixgbe_mac_X550:
1107		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1108		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1109		break;
1110	case ixgbe_mac_X550EM_x:
1111	case ixgbe_mac_x550em_a:
1112		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1113		break;
1114	default:
1115		break;
1116	}
1117
1118	return 0;
1119}
1120
1121/**
1122 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1123 * @hw: pointer to hardware structure
1124 * @speed: pointer to link speed
1125 * @autoneg: boolean auto-negotiation value
1126 */
1127s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1128					       ixgbe_link_speed *speed,
1129					       bool *autoneg)
1130{
1131	s32 status = 0;
1132
1133	*autoneg = true;
1134	if (!hw->phy.speeds_supported)
1135		status = ixgbe_get_copper_speeds_supported(hw);
1136
1137	*speed = hw->phy.speeds_supported;
1138	return status;
1139}
1140
1141/**
1142 *  ixgbe_check_phy_link_tnx - Determine link and speed status
1143 *  @hw: pointer to hardware structure
1144 *  @speed: link speed
1145 *  @link_up: status of link
1146 *
1147 *  Reads the VS1 register to determine if link is up and the current speed for
1148 *  the PHY.
1149 **/
1150s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1151			     bool *link_up)
1152{
1153	s32 status;
1154	u32 time_out;
1155	u32 max_time_out = 10;
 
1156	u16 phy_link = 0;
1157	u16 phy_speed = 0;
1158	u16 phy_data = 0;
 
 
1159
1160	/* Initialize speed and link to default case */
1161	*link_up = false;
1162	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1163
1164	/*
1165	 * Check current speed and link status of the PHY register.
1166	 * This is a vendor specific register and may have to
1167	 * be changed for other copper PHYs.
1168	 */
1169	for (time_out = 0; time_out < max_time_out; time_out++) {
1170		udelay(10);
1171		status = hw->phy.ops.read_reg(hw,
1172					      MDIO_STAT1,
1173					      MDIO_MMD_VEND1,
1174					      &phy_data);
1175		phy_link = phy_data &
1176			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1177		phy_speed = phy_data &
1178			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1179		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1180			*link_up = true;
1181			if (phy_speed ==
1182			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1183				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1184			break;
1185		}
1186	}
1187
1188	return status;
1189}
1190
1191/**
1192 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1193 *	@hw: pointer to hardware structure
1194 *
1195 *	Restart autonegotiation and PHY and waits for completion.
1196 *      This function always returns success, this is nessary since
1197 *	it is called via a function pointer that could call other
1198 *	functions that could return an error.
1199 **/
1200s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1201{
1202	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1203	bool autoneg = false;
1204	ixgbe_link_speed speed;
1205
1206	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1207
1208	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1209		/* Set or unset auto-negotiation 10G advertisement */
1210		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1211				     MDIO_MMD_AN,
1212				     &autoneg_reg);
1213
1214		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1215		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1216			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1217
1218		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1219				      MDIO_MMD_AN,
1220				      autoneg_reg);
1221	}
1222
1223	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1224		/* Set or unset auto-negotiation 1G advertisement */
1225		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1226				     MDIO_MMD_AN,
1227				     &autoneg_reg);
1228
1229		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1230		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1231			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1232
1233		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1234				      MDIO_MMD_AN,
1235				      autoneg_reg);
1236	}
1237
1238	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1239		/* Set or unset auto-negotiation 100M advertisement */
1240		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1241				     MDIO_MMD_AN,
1242				     &autoneg_reg);
1243
1244		autoneg_reg &= ~(ADVERTISE_100FULL |
1245				 ADVERTISE_100HALF);
1246		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1247			autoneg_reg |= ADVERTISE_100FULL;
1248
1249		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1250				      MDIO_MMD_AN,
1251				      autoneg_reg);
1252	}
1253
1254	/* Blocked by MNG FW so don't reset PHY */
1255	if (ixgbe_check_reset_blocked(hw))
1256		return 0;
1257
1258	/* Restart PHY autonegotiation and wait for completion */
1259	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1260			     MDIO_MMD_AN, &autoneg_reg);
1261
1262	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1263
1264	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1265			      MDIO_MMD_AN, autoneg_reg);
1266	return 0;
1267}
1268
1269/**
1270 *  ixgbe_reset_phy_nl - Performs a PHY reset
1271 *  @hw: pointer to hardware structure
1272 **/
1273s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1274{
1275	u16 phy_offset, control, eword, edata, block_crc;
 
1276	bool end_data = false;
1277	u16 list_offset, data_offset;
1278	u16 phy_data = 0;
1279	s32 ret_val;
1280	u32 i;
1281
1282	/* Blocked by MNG FW so bail */
1283	if (ixgbe_check_reset_blocked(hw))
1284		return 0;
1285
1286	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1287
1288	/* reset the PHY and poll for completion */
1289	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1290			      (phy_data | MDIO_CTRL1_RESET));
1291
1292	for (i = 0; i < 100; i++) {
1293		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1294				     &phy_data);
1295		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1296			break;
1297		usleep_range(10000, 20000);
1298	}
1299
1300	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1301		hw_dbg(hw, "PHY reset did not complete.\n");
1302		return IXGBE_ERR_PHY;
1303	}
1304
1305	/* Get init offsets */
1306	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1307						      &data_offset);
1308	if (ret_val)
1309		return ret_val;
1310
1311	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1312	data_offset++;
1313	while (!end_data) {
1314		/*
1315		 * Read control word from PHY init contents offset
1316		 */
1317		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1318		if (ret_val)
1319			goto err_eeprom;
1320		control = (eword & IXGBE_CONTROL_MASK_NL) >>
1321			   IXGBE_CONTROL_SHIFT_NL;
1322		edata = eword & IXGBE_DATA_MASK_NL;
1323		switch (control) {
1324		case IXGBE_DELAY_NL:
1325			data_offset++;
1326			hw_dbg(hw, "DELAY: %d MS\n", edata);
1327			usleep_range(edata * 1000, edata * 2000);
1328			break;
1329		case IXGBE_DATA_NL:
1330			hw_dbg(hw, "DATA:\n");
1331			data_offset++;
1332			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1333						      &phy_offset);
1334			if (ret_val)
1335				goto err_eeprom;
1336			for (i = 0; i < edata; i++) {
1337				ret_val = hw->eeprom.ops.read(hw, data_offset,
1338							      &eword);
1339				if (ret_val)
1340					goto err_eeprom;
1341				hw->phy.ops.write_reg(hw, phy_offset,
1342						      MDIO_MMD_PMAPMD, eword);
1343				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1344				       phy_offset);
1345				data_offset++;
1346				phy_offset++;
1347			}
1348			break;
1349		case IXGBE_CONTROL_NL:
1350			data_offset++;
1351			hw_dbg(hw, "CONTROL:\n");
1352			if (edata == IXGBE_CONTROL_EOL_NL) {
1353				hw_dbg(hw, "EOL\n");
1354				end_data = true;
1355			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1356				hw_dbg(hw, "SOL\n");
1357			} else {
1358				hw_dbg(hw, "Bad control value\n");
1359				return IXGBE_ERR_PHY;
1360			}
1361			break;
1362		default:
1363			hw_dbg(hw, "Bad control type\n");
1364			return IXGBE_ERR_PHY;
1365		}
1366	}
1367
1368	return ret_val;
1369
1370err_eeprom:
1371	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1372	return IXGBE_ERR_PHY;
1373}
1374
1375/**
1376 *  ixgbe_identify_module_generic - Identifies module type
1377 *  @hw: pointer to hardware structure
1378 *
1379 *  Determines HW type and calls appropriate function.
1380 **/
1381s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1382{
1383	switch (hw->mac.ops.get_media_type(hw)) {
1384	case ixgbe_media_type_fiber:
1385		return ixgbe_identify_sfp_module_generic(hw);
1386	case ixgbe_media_type_fiber_qsfp:
1387		return ixgbe_identify_qsfp_module_generic(hw);
1388	default:
1389		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1390		return IXGBE_ERR_SFP_NOT_PRESENT;
1391	}
1392
1393	return IXGBE_ERR_SFP_NOT_PRESENT;
1394}
1395
1396/**
1397 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1398 *  @hw: pointer to hardware structure
1399 *
1400 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1401 **/
1402s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1403{
 
1404	struct ixgbe_adapter *adapter = hw->back;
1405	s32 status;
 
 
 
 
1406	u32 vendor_oui = 0;
1407	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1408	u8 identifier = 0;
1409	u8 comp_codes_1g = 0;
1410	u8 comp_codes_10g = 0;
1411	u8 oui_bytes[3] = {0, 0, 0};
1412	u8 cable_tech = 0;
1413	u8 cable_spec = 0;
1414	u16 enforce_sfp = 0;
1415
1416	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1417		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1418		return IXGBE_ERR_SFP_NOT_PRESENT;
1419	}
1420
1421	/* LAN ID is needed for sfp_type determination */
1422	hw->mac.ops.set_lan_id(hw);
1423
1424	status = hw->phy.ops.read_i2c_eeprom(hw,
1425					     IXGBE_SFF_IDENTIFIER,
1426					     &identifier);
1427
1428	if (status)
1429		goto err_read_i2c_eeprom;
1430
1431	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1432		hw->phy.type = ixgbe_phy_sfp_unsupported;
1433		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1434	}
1435	status = hw->phy.ops.read_i2c_eeprom(hw,
1436					     IXGBE_SFF_1GBE_COMP_CODES,
1437					     &comp_codes_1g);
1438
1439	if (status)
1440		goto err_read_i2c_eeprom;
1441
1442	status = hw->phy.ops.read_i2c_eeprom(hw,
1443					     IXGBE_SFF_10GBE_COMP_CODES,
1444					     &comp_codes_10g);
1445
1446	if (status)
1447		goto err_read_i2c_eeprom;
1448	status = hw->phy.ops.read_i2c_eeprom(hw,
1449					     IXGBE_SFF_CABLE_TECHNOLOGY,
1450					     &cable_tech);
 
 
1451
 
 
 
1452	if (status)
1453		goto err_read_i2c_eeprom;
1454
1455	 /* ID Module
1456	  * =========
1457	  * 0   SFP_DA_CU
1458	  * 1   SFP_SR
1459	  * 2   SFP_LR
1460	  * 3   SFP_DA_CORE0 - 82599-specific
1461	  * 4   SFP_DA_CORE1 - 82599-specific
1462	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1463	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1464	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1465	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1466	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1467	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1468	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1469	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1470	  */
1471	if (hw->mac.type == ixgbe_mac_82598EB) {
1472		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1473			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1474		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1475			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1476		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1477			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1478		else
1479			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1480	} else {
1481		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1482			if (hw->bus.lan_id == 0)
1483				hw->phy.sfp_type =
1484					     ixgbe_sfp_type_da_cu_core0;
1485			else
1486				hw->phy.sfp_type =
1487					     ixgbe_sfp_type_da_cu_core1;
1488		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1489			hw->phy.ops.read_i2c_eeprom(
1490					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1491					&cable_spec);
1492			if (cable_spec &
1493			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1494				if (hw->bus.lan_id == 0)
1495					hw->phy.sfp_type =
1496					ixgbe_sfp_type_da_act_lmt_core0;
1497				else
1498					hw->phy.sfp_type =
1499					ixgbe_sfp_type_da_act_lmt_core1;
1500			} else {
1501				hw->phy.sfp_type =
1502						ixgbe_sfp_type_unknown;
1503			}
1504		} else if (comp_codes_10g &
1505			   (IXGBE_SFF_10GBASESR_CAPABLE |
1506			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1507			if (hw->bus.lan_id == 0)
1508				hw->phy.sfp_type =
1509					      ixgbe_sfp_type_srlr_core0;
1510			else
1511				hw->phy.sfp_type =
1512					      ixgbe_sfp_type_srlr_core1;
1513		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1514			if (hw->bus.lan_id == 0)
1515				hw->phy.sfp_type =
1516					ixgbe_sfp_type_1g_cu_core0;
1517			else
1518				hw->phy.sfp_type =
1519					ixgbe_sfp_type_1g_cu_core1;
1520		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1521			if (hw->bus.lan_id == 0)
1522				hw->phy.sfp_type =
1523					ixgbe_sfp_type_1g_sx_core0;
1524			else
1525				hw->phy.sfp_type =
1526					ixgbe_sfp_type_1g_sx_core1;
1527		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1528			if (hw->bus.lan_id == 0)
1529				hw->phy.sfp_type =
1530					ixgbe_sfp_type_1g_lx_core0;
1531			else
1532				hw->phy.sfp_type =
1533					ixgbe_sfp_type_1g_lx_core1;
 
 
 
 
 
 
 
 
 
 
 
 
1534		} else {
1535			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1536		}
1537	}
1538
1539	if (hw->phy.sfp_type != stored_sfp_type)
1540		hw->phy.sfp_setup_needed = true;
1541
1542	/* Determine if the SFP+ PHY is dual speed or not. */
1543	hw->phy.multispeed_fiber = false;
1544	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1545	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1546	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1547	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1548		hw->phy.multispeed_fiber = true;
1549
1550	/* Determine PHY vendor */
1551	if (hw->phy.type != ixgbe_phy_nl) {
1552		hw->phy.id = identifier;
1553		status = hw->phy.ops.read_i2c_eeprom(hw,
1554					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1555					    &oui_bytes[0]);
1556
1557		if (status != 0)
1558			goto err_read_i2c_eeprom;
1559
1560		status = hw->phy.ops.read_i2c_eeprom(hw,
1561					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1562					    &oui_bytes[1]);
1563
1564		if (status != 0)
1565			goto err_read_i2c_eeprom;
1566
1567		status = hw->phy.ops.read_i2c_eeprom(hw,
1568					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1569					    &oui_bytes[2]);
1570
1571		if (status != 0)
1572			goto err_read_i2c_eeprom;
1573
1574		vendor_oui =
1575		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1576		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1577		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1578
1579		switch (vendor_oui) {
1580		case IXGBE_SFF_VENDOR_OUI_TYCO:
1581			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1582				hw->phy.type =
1583					    ixgbe_phy_sfp_passive_tyco;
1584			break;
1585		case IXGBE_SFF_VENDOR_OUI_FTL:
1586			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1587				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1588			else
1589				hw->phy.type = ixgbe_phy_sfp_ftl;
1590			break;
1591		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1592			hw->phy.type = ixgbe_phy_sfp_avago;
1593			break;
1594		case IXGBE_SFF_VENDOR_OUI_INTEL:
1595			hw->phy.type = ixgbe_phy_sfp_intel;
1596			break;
1597		default:
1598			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1599				hw->phy.type =
1600					 ixgbe_phy_sfp_passive_unknown;
1601			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1602				hw->phy.type =
1603					ixgbe_phy_sfp_active_unknown;
1604			else
1605				hw->phy.type = ixgbe_phy_sfp_unknown;
1606			break;
1607		}
1608	}
1609
1610	/* Allow any DA cable vendor */
1611	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1612	    IXGBE_SFF_DA_ACTIVE_CABLE))
1613		return 0;
1614
1615	/* Verify supported 1G SFP modules */
1616	if (comp_codes_10g == 0 &&
1617	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1618	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1619	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1620	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1621	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1622	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
 
 
1623		hw->phy.type = ixgbe_phy_sfp_unsupported;
1624		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1625	}
1626
1627	/* Anything else 82598-based is supported */
1628	if (hw->mac.type == ixgbe_mac_82598EB)
1629		return 0;
1630
1631	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1632	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1633	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1634	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1635	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1636	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1637	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1638	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
 
 
1639		/* Make sure we're a supported PHY type */
1640		if (hw->phy.type == ixgbe_phy_sfp_intel)
1641			return 0;
1642		if (hw->allow_unsupported_sfp) {
1643			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1644			return 0;
1645		}
1646		hw_dbg(hw, "SFP+ module not supported\n");
1647		hw->phy.type = ixgbe_phy_sfp_unsupported;
1648		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1649	}
1650	return 0;
1651
1652err_read_i2c_eeprom:
1653	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1654	if (hw->phy.type != ixgbe_phy_nl) {
1655		hw->phy.id = 0;
1656		hw->phy.type = ixgbe_phy_unknown;
1657	}
1658	return IXGBE_ERR_SFP_NOT_PRESENT;
1659}
1660
1661/**
1662 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1663 * @hw: pointer to hardware structure
1664 *
1665 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1666 **/
1667static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1668{
1669	struct ixgbe_adapter *adapter = hw->back;
1670	s32 status;
1671	u32 vendor_oui = 0;
1672	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1673	u8 identifier = 0;
1674	u8 comp_codes_1g = 0;
1675	u8 comp_codes_10g = 0;
1676	u8 oui_bytes[3] = {0, 0, 0};
1677	u16 enforce_sfp = 0;
1678	u8 connector = 0;
1679	u8 cable_length = 0;
1680	u8 device_tech = 0;
1681	bool active_cable = false;
1682
1683	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1684		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1685		return IXGBE_ERR_SFP_NOT_PRESENT;
1686	}
1687
1688	/* LAN ID is needed for sfp_type determination */
1689	hw->mac.ops.set_lan_id(hw);
1690
1691	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1692					     &identifier);
1693
1694	if (status != 0)
1695		goto err_read_i2c_eeprom;
1696
1697	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1698		hw->phy.type = ixgbe_phy_sfp_unsupported;
1699		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1700	}
1701
1702	hw->phy.id = identifier;
1703
1704	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1705					     &comp_codes_10g);
1706
1707	if (status != 0)
1708		goto err_read_i2c_eeprom;
1709
1710	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1711					     &comp_codes_1g);
1712
1713	if (status != 0)
1714		goto err_read_i2c_eeprom;
1715
1716	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1717		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1718		if (hw->bus.lan_id == 0)
1719			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1720		else
1721			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1722	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1723				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1724		if (hw->bus.lan_id == 0)
1725			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1726		else
1727			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1728	} else {
1729		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1730			active_cable = true;
1731
1732		if (!active_cable) {
1733			/* check for active DA cables that pre-date
1734			 * SFF-8436 v3.6
1735			 */
1736			hw->phy.ops.read_i2c_eeprom(hw,
1737					IXGBE_SFF_QSFP_CONNECTOR,
1738					&connector);
1739
1740			hw->phy.ops.read_i2c_eeprom(hw,
1741					IXGBE_SFF_QSFP_CABLE_LENGTH,
1742					&cable_length);
1743
1744			hw->phy.ops.read_i2c_eeprom(hw,
1745					IXGBE_SFF_QSFP_DEVICE_TECH,
1746					&device_tech);
1747
1748			if ((connector ==
1749				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1750			    (cable_length > 0) &&
1751			    ((device_tech >> 4) ==
1752				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1753				active_cable = true;
1754		}
1755
1756		if (active_cable) {
1757			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1758			if (hw->bus.lan_id == 0)
1759				hw->phy.sfp_type =
1760						ixgbe_sfp_type_da_act_lmt_core0;
1761			else
1762				hw->phy.sfp_type =
1763						ixgbe_sfp_type_da_act_lmt_core1;
1764		} else {
1765			/* unsupported module type */
1766			hw->phy.type = ixgbe_phy_sfp_unsupported;
1767			return IXGBE_ERR_SFP_NOT_SUPPORTED;
1768		}
1769	}
1770
1771	if (hw->phy.sfp_type != stored_sfp_type)
1772		hw->phy.sfp_setup_needed = true;
1773
1774	/* Determine if the QSFP+ PHY is dual speed or not. */
1775	hw->phy.multispeed_fiber = false;
1776	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1777	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1778	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1779	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1780		hw->phy.multispeed_fiber = true;
1781
1782	/* Determine PHY vendor for optical modules */
1783	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1784			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1785		status = hw->phy.ops.read_i2c_eeprom(hw,
1786					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1787					&oui_bytes[0]);
1788
1789		if (status != 0)
1790			goto err_read_i2c_eeprom;
1791
1792		status = hw->phy.ops.read_i2c_eeprom(hw,
1793					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1794					&oui_bytes[1]);
1795
1796		if (status != 0)
1797			goto err_read_i2c_eeprom;
1798
1799		status = hw->phy.ops.read_i2c_eeprom(hw,
1800					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1801					&oui_bytes[2]);
1802
1803		if (status != 0)
1804			goto err_read_i2c_eeprom;
1805
1806		vendor_oui =
1807			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1808			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1809			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1810
1811		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1812			hw->phy.type = ixgbe_phy_qsfp_intel;
1813		else
1814			hw->phy.type = ixgbe_phy_qsfp_unknown;
1815
1816		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1817		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1818			/* Make sure we're a supported PHY type */
1819			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1820				return 0;
1821			if (hw->allow_unsupported_sfp) {
1822				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1823				return 0;
1824			}
1825			hw_dbg(hw, "QSFP module not supported\n");
1826			hw->phy.type = ixgbe_phy_sfp_unsupported;
1827			return IXGBE_ERR_SFP_NOT_SUPPORTED;
1828		}
1829		return 0;
1830	}
1831	return 0;
1832
1833err_read_i2c_eeprom:
1834	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1835	hw->phy.id = 0;
1836	hw->phy.type = ixgbe_phy_unknown;
1837
1838	return IXGBE_ERR_SFP_NOT_PRESENT;
1839}
1840
1841/**
1842 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1843 *  @hw: pointer to hardware structure
1844 *  @list_offset: offset to the SFP ID list
1845 *  @data_offset: offset to the SFP data block
1846 *
1847 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1848 *  so it returns the offsets to the phy init sequence block.
1849 **/
1850s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1851					u16 *list_offset,
1852					u16 *data_offset)
1853{
1854	u16 sfp_id;
1855	u16 sfp_type = hw->phy.sfp_type;
1856
1857	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1858		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1859
1860	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1861		return IXGBE_ERR_SFP_NOT_PRESENT;
1862
1863	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1864	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1865		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1866
1867	/*
1868	 * Limiting active cables and 1G Phys must be initialized as
1869	 * SR modules
1870	 */
1871	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1872	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1873	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1874	    sfp_type == ixgbe_sfp_type_1g_sx_core0)
 
1875		sfp_type = ixgbe_sfp_type_srlr_core0;
1876	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1877		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1878		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1879		 sfp_type == ixgbe_sfp_type_1g_sx_core1)
 
1880		sfp_type = ixgbe_sfp_type_srlr_core1;
1881
1882	/* Read offset to PHY init contents */
1883	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
1884		hw_err(hw, "eeprom read at %d failed\n",
1885		       IXGBE_PHY_INIT_OFFSET_NL);
1886		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1887	}
1888
1889	if ((!*list_offset) || (*list_offset == 0xFFFF))
1890		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1891
1892	/* Shift offset to first ID word */
1893	(*list_offset)++;
1894
1895	/*
1896	 * Find the matching SFP ID in the EEPROM
1897	 * and program the init sequence
1898	 */
1899	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1900		goto err_phy;
1901
1902	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1903		if (sfp_id == sfp_type) {
1904			(*list_offset)++;
1905			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
1906				goto err_phy;
1907			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1908				hw_dbg(hw, "SFP+ module not supported\n");
1909				return IXGBE_ERR_SFP_NOT_SUPPORTED;
1910			} else {
1911				break;
1912			}
1913		} else {
1914			(*list_offset) += 2;
1915			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1916				goto err_phy;
1917		}
1918	}
1919
1920	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1921		hw_dbg(hw, "No matching SFP+ module found\n");
1922		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1923	}
1924
1925	return 0;
1926
1927err_phy:
1928	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
1929	return IXGBE_ERR_PHY;
1930}
1931
1932/**
1933 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1934 *  @hw: pointer to hardware structure
1935 *  @byte_offset: EEPROM byte offset to read
1936 *  @eeprom_data: value read
1937 *
1938 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
1939 **/
1940s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1941				  u8 *eeprom_data)
1942{
1943	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1944					 IXGBE_I2C_EEPROM_DEV_ADDR,
1945					 eeprom_data);
1946}
1947
1948/**
1949 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
1950 *  @hw: pointer to hardware structure
1951 *  @byte_offset: byte offset at address 0xA2
1952 *  @sff8472_data: value read
1953 *
1954 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
1955 **/
1956s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
1957				   u8 *sff8472_data)
1958{
1959	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1960					 IXGBE_I2C_EEPROM_DEV_ADDR2,
1961					 sff8472_data);
1962}
1963
1964/**
1965 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1966 *  @hw: pointer to hardware structure
1967 *  @byte_offset: EEPROM byte offset to write
1968 *  @eeprom_data: value to write
1969 *
1970 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
1971 **/
1972s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1973				   u8 eeprom_data)
1974{
1975	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1976					  IXGBE_I2C_EEPROM_DEV_ADDR,
1977					  eeprom_data);
1978}
1979
1980/**
1981 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
1982 * @hw: pointer to hardware structure
1983 * @offset: eeprom offset to be read
1984 * @addr: I2C address to be read
1985 */
1986static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
1987{
1988	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
1989	    offset == IXGBE_SFF_IDENTIFIER &&
1990	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1991		return true;
1992	return false;
1993}
1994
1995/**
1996 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
1997 *  @hw: pointer to hardware structure
1998 *  @byte_offset: byte offset to read
1999 *  @dev_addr: device address
2000 *  @data: value read
2001 *  @lock: true if to take and release semaphore
2002 *
2003 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2004 *  a specified device address.
2005 */
2006static s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2007					   u8 dev_addr, u8 *data, bool lock)
2008{
2009	s32 status;
2010	u32 max_retry = 10;
 
2011	u32 retry = 0;
2012	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2013	bool nack = true;
2014
2015	if (hw->mac.type >= ixgbe_mac_X550)
2016		max_retry = 3;
2017	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2018		max_retry = IXGBE_SFP_DETECT_RETRIES;
2019
2020	*data = 0;
2021
2022	do {
2023		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2024			return IXGBE_ERR_SWFW_SYNC;
2025
2026		ixgbe_i2c_start(hw);
2027
2028		/* Device Address and write indication */
2029		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2030		if (status != 0)
2031			goto fail;
2032
2033		status = ixgbe_get_i2c_ack(hw);
2034		if (status != 0)
2035			goto fail;
2036
2037		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2038		if (status != 0)
2039			goto fail;
2040
2041		status = ixgbe_get_i2c_ack(hw);
2042		if (status != 0)
2043			goto fail;
2044
2045		ixgbe_i2c_start(hw);
2046
2047		/* Device Address and read indication */
2048		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2049		if (status != 0)
2050			goto fail;
2051
2052		status = ixgbe_get_i2c_ack(hw);
2053		if (status != 0)
2054			goto fail;
2055
2056		status = ixgbe_clock_in_i2c_byte(hw, data);
2057		if (status != 0)
2058			goto fail;
2059
2060		status = ixgbe_clock_out_i2c_bit(hw, nack);
2061		if (status != 0)
2062			goto fail;
2063
2064		ixgbe_i2c_stop(hw);
2065		if (lock)
2066			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2067		return 0;
2068
2069fail:
2070		ixgbe_i2c_bus_clear(hw);
2071		if (lock) {
2072			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2073			msleep(100);
2074		}
2075		retry++;
2076		if (retry < max_retry)
2077			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2078		else
2079			hw_dbg(hw, "I2C byte read error.\n");
2080
2081	} while (retry < max_retry);
2082
2083	return status;
2084}
2085
2086/**
2087 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2088 *  @hw: pointer to hardware structure
2089 *  @byte_offset: byte offset to read
2090 *  @dev_addr: device address
2091 *  @data: value read
2092 *
2093 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2094 *  a specified device address.
2095 */
2096s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2097				u8 dev_addr, u8 *data)
2098{
2099	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2100					       data, true);
2101}
2102
2103/**
2104 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2105 *  @hw: pointer to hardware structure
2106 *  @byte_offset: byte offset to read
2107 *  @dev_addr: device address
2108 *  @data: value read
2109 *
2110 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2111 *  a specified device address.
2112 */
2113s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2114					 u8 dev_addr, u8 *data)
2115{
2116	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2117					       data, false);
2118}
2119
2120/**
2121 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2122 *  @hw: pointer to hardware structure
2123 *  @byte_offset: byte offset to write
2124 *  @dev_addr: device address
2125 *  @data: value to write
2126 *  @lock: true if to take and release semaphore
2127 *
2128 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2129 *  a specified device address.
2130 */
2131static s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2132					    u8 dev_addr, u8 data, bool lock)
2133{
2134	s32 status;
2135	u32 max_retry = 1;
2136	u32 retry = 0;
2137	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2138
2139	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2140		return IXGBE_ERR_SWFW_SYNC;
2141
2142	do {
2143		ixgbe_i2c_start(hw);
2144
2145		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2146		if (status != 0)
2147			goto fail;
2148
2149		status = ixgbe_get_i2c_ack(hw);
2150		if (status != 0)
2151			goto fail;
2152
2153		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2154		if (status != 0)
2155			goto fail;
2156
2157		status = ixgbe_get_i2c_ack(hw);
2158		if (status != 0)
2159			goto fail;
2160
2161		status = ixgbe_clock_out_i2c_byte(hw, data);
2162		if (status != 0)
2163			goto fail;
2164
2165		status = ixgbe_get_i2c_ack(hw);
2166		if (status != 0)
2167			goto fail;
2168
2169		ixgbe_i2c_stop(hw);
2170		if (lock)
2171			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2172		return 0;
2173
2174fail:
2175		ixgbe_i2c_bus_clear(hw);
2176		retry++;
2177		if (retry < max_retry)
2178			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2179		else
2180			hw_dbg(hw, "I2C byte write error.\n");
2181	} while (retry < max_retry);
2182
2183	if (lock)
2184		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2185
2186	return status;
2187}
2188
2189/**
2190 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2191 *  @hw: pointer to hardware structure
2192 *  @byte_offset: byte offset to write
2193 *  @dev_addr: device address
2194 *  @data: value to write
2195 *
2196 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2197 *  a specified device address.
2198 */
2199s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2200				 u8 dev_addr, u8 data)
2201{
2202	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2203						data, true);
2204}
2205
2206/**
2207 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2208 *  @hw: pointer to hardware structure
2209 *  @byte_offset: byte offset to write
2210 *  @dev_addr: device address
2211 *  @data: value to write
2212 *
2213 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2214 *  a specified device address.
2215 */
2216s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2217					  u8 dev_addr, u8 data)
2218{
2219	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2220						data, false);
2221}
2222
2223/**
2224 *  ixgbe_i2c_start - Sets I2C start condition
2225 *  @hw: pointer to hardware structure
2226 *
2227 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2228 *  Set bit-bang mode on X550 hardware.
2229 **/
2230static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2231{
2232	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2233
2234	i2cctl |= IXGBE_I2C_BB_EN(hw);
2235
2236	/* Start condition must begin with data and clock high */
2237	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2238	ixgbe_raise_i2c_clk(hw, &i2cctl);
2239
2240	/* Setup time for start condition (4.7us) */
2241	udelay(IXGBE_I2C_T_SU_STA);
2242
2243	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2244
2245	/* Hold time for start condition (4us) */
2246	udelay(IXGBE_I2C_T_HD_STA);
2247
2248	ixgbe_lower_i2c_clk(hw, &i2cctl);
2249
2250	/* Minimum low period of clock is 4.7 us */
2251	udelay(IXGBE_I2C_T_LOW);
2252
2253}
2254
2255/**
2256 *  ixgbe_i2c_stop - Sets I2C stop condition
2257 *  @hw: pointer to hardware structure
2258 *
2259 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2260 *  Disables bit-bang mode and negates data output enable on X550
2261 *  hardware.
2262 **/
2263static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2264{
2265	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2266	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2267	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2268	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2269
2270	/* Stop condition must begin with data low and clock high */
2271	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2272	ixgbe_raise_i2c_clk(hw, &i2cctl);
2273
2274	/* Setup time for stop condition (4us) */
2275	udelay(IXGBE_I2C_T_SU_STO);
2276
2277	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2278
2279	/* bus free time between stop and start (4.7us)*/
2280	udelay(IXGBE_I2C_T_BUF);
2281
2282	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2283		i2cctl &= ~bb_en_bit;
2284		i2cctl |= data_oe_bit | clk_oe_bit;
2285		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2286		IXGBE_WRITE_FLUSH(hw);
2287	}
2288}
2289
2290/**
2291 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2292 *  @hw: pointer to hardware structure
2293 *  @data: data byte to clock in
2294 *
2295 *  Clocks in one byte data via I2C data/clock
2296 **/
2297static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2298{
2299	s32 i;
2300	bool bit = false;
 
2301
2302	*data = 0;
2303	for (i = 7; i >= 0; i--) {
2304		ixgbe_clock_in_i2c_bit(hw, &bit);
2305		*data |= bit << i;
2306	}
2307
2308	return 0;
2309}
2310
2311/**
2312 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2313 *  @hw: pointer to hardware structure
2314 *  @data: data byte clocked out
2315 *
2316 *  Clocks out one byte data via I2C data/clock
2317 **/
2318static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2319{
2320	s32 status;
2321	s32 i;
2322	u32 i2cctl;
2323	bool bit = false;
2324
2325	for (i = 7; i >= 0; i--) {
2326		bit = (data >> i) & 0x1;
2327		status = ixgbe_clock_out_i2c_bit(hw, bit);
2328
2329		if (status != 0)
2330			break;
2331	}
2332
2333	/* Release SDA line (set high) */
2334	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2335	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2336	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2337	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2338	IXGBE_WRITE_FLUSH(hw);
2339
2340	return status;
2341}
2342
2343/**
2344 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2345 *  @hw: pointer to hardware structure
2346 *
2347 *  Clocks in/out one bit via I2C data/clock
2348 **/
2349static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2350{
 
2351	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2352	s32 status = 0;
2353	u32 i = 0;
2354	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2355	u32 timeout = 10;
2356	bool ack = true;
 
 
2357
2358	if (data_oe_bit) {
2359		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2360		i2cctl |= data_oe_bit;
2361		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2362		IXGBE_WRITE_FLUSH(hw);
2363	}
2364	ixgbe_raise_i2c_clk(hw, &i2cctl);
2365
2366	/* Minimum high period of clock is 4us */
2367	udelay(IXGBE_I2C_T_HIGH);
2368
2369	/* Poll for ACK.  Note that ACK in I2C spec is
2370	 * transition from 1 to 0 */
2371	for (i = 0; i < timeout; i++) {
2372		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2373		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2374
2375		udelay(1);
2376		if (ack == 0)
2377			break;
2378	}
2379
2380	if (ack == 1) {
2381		hw_dbg(hw, "I2C ack was not received.\n");
2382		status = IXGBE_ERR_I2C;
2383	}
2384
2385	ixgbe_lower_i2c_clk(hw, &i2cctl);
2386
2387	/* Minimum low period of clock is 4.7 us */
2388	udelay(IXGBE_I2C_T_LOW);
2389
2390	return status;
2391}
2392
2393/**
2394 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2395 *  @hw: pointer to hardware structure
2396 *  @data: read data value
2397 *
2398 *  Clocks in one bit via I2C data/clock
2399 **/
2400static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2401{
2402	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2403	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2404
2405	if (data_oe_bit) {
2406		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2407		i2cctl |= data_oe_bit;
2408		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2409		IXGBE_WRITE_FLUSH(hw);
2410	}
2411	ixgbe_raise_i2c_clk(hw, &i2cctl);
2412
2413	/* Minimum high period of clock is 4us */
2414	udelay(IXGBE_I2C_T_HIGH);
2415
2416	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2417	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2418
2419	ixgbe_lower_i2c_clk(hw, &i2cctl);
2420
2421	/* Minimum low period of clock is 4.7 us */
2422	udelay(IXGBE_I2C_T_LOW);
2423
2424	return 0;
2425}
2426
2427/**
2428 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2429 *  @hw: pointer to hardware structure
2430 *  @data: data value to write
2431 *
2432 *  Clocks out one bit via I2C data/clock
2433 **/
2434static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2435{
2436	s32 status;
2437	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
 
2438
2439	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2440	if (status == 0) {
2441		ixgbe_raise_i2c_clk(hw, &i2cctl);
2442
2443		/* Minimum high period of clock is 4us */
2444		udelay(IXGBE_I2C_T_HIGH);
2445
2446		ixgbe_lower_i2c_clk(hw, &i2cctl);
2447
2448		/* Minimum low period of clock is 4.7 us.
2449		 * This also takes care of the data hold time.
2450		 */
2451		udelay(IXGBE_I2C_T_LOW);
2452	} else {
2453		hw_dbg(hw, "I2C data was not set to %X\n", data);
2454		return IXGBE_ERR_I2C;
2455	}
2456
2457	return 0;
2458}
2459/**
2460 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2461 *  @hw: pointer to hardware structure
2462 *  @i2cctl: Current value of I2CCTL register
2463 *
2464 *  Raises the I2C clock line '0'->'1'
2465 *  Negates the I2C clock output enable on X550 hardware.
2466 **/
2467static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2468{
2469	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2470	u32 i = 0;
2471	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2472	u32 i2cctl_r = 0;
2473
2474	if (clk_oe_bit) {
2475		*i2cctl |= clk_oe_bit;
2476		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2477	}
2478
2479	for (i = 0; i < timeout; i++) {
2480		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2481		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2482		IXGBE_WRITE_FLUSH(hw);
2483		/* SCL rise time (1000ns) */
2484		udelay(IXGBE_I2C_T_RISE);
2485
2486		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2487		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2488			break;
2489	}
2490}
2491
2492/**
2493 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2494 *  @hw: pointer to hardware structure
2495 *  @i2cctl: Current value of I2CCTL register
2496 *
2497 *  Lowers the I2C clock line '1'->'0'
2498 *  Asserts the I2C clock output enable on X550 hardware.
2499 **/
2500static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2501{
2502
2503	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2504	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2505
2506	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2507	IXGBE_WRITE_FLUSH(hw);
2508
2509	/* SCL fall time (300ns) */
2510	udelay(IXGBE_I2C_T_FALL);
2511}
2512
2513/**
2514 *  ixgbe_set_i2c_data - Sets the I2C data bit
2515 *  @hw: pointer to hardware structure
2516 *  @i2cctl: Current value of I2CCTL register
2517 *  @data: I2C data value (0 or 1) to set
2518 *
2519 *  Sets the I2C data bit
2520 *  Asserts the I2C data output enable on X550 hardware.
2521 **/
2522static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2523{
2524	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2525
2526	if (data)
2527		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2528	else
2529		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2530	*i2cctl &= ~data_oe_bit;
2531
2532	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2533	IXGBE_WRITE_FLUSH(hw);
2534
2535	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2536	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2537
2538	if (!data)	/* Can't verify data in this case */
2539		return 0;
2540	if (data_oe_bit) {
2541		*i2cctl |= data_oe_bit;
2542		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2543		IXGBE_WRITE_FLUSH(hw);
2544	}
2545
2546	/* Verify data was set correctly */
2547	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2548	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2549		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2550		return IXGBE_ERR_I2C;
2551	}
2552
2553	return 0;
2554}
2555
2556/**
2557 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2558 *  @hw: pointer to hardware structure
2559 *  @i2cctl: Current value of I2CCTL register
2560 *
2561 *  Returns the I2C data bit value
2562 *  Negates the I2C data output enable on X550 hardware.
2563 **/
2564static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2565{
2566	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2567
2568	if (data_oe_bit) {
2569		*i2cctl |= data_oe_bit;
2570		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2571		IXGBE_WRITE_FLUSH(hw);
2572		udelay(IXGBE_I2C_T_FALL);
2573	}
2574
2575	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2576		return true;
2577	return false;
2578}
2579
2580/**
2581 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2582 *  @hw: pointer to hardware structure
2583 *
2584 *  Clears the I2C bus by sending nine clock pulses.
2585 *  Used when data line is stuck low.
2586 **/
2587static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2588{
2589	u32 i2cctl;
2590	u32 i;
2591
2592	ixgbe_i2c_start(hw);
2593	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2594
2595	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2596
2597	for (i = 0; i < 9; i++) {
2598		ixgbe_raise_i2c_clk(hw, &i2cctl);
2599
2600		/* Min high period of clock is 4us */
2601		udelay(IXGBE_I2C_T_HIGH);
2602
2603		ixgbe_lower_i2c_clk(hw, &i2cctl);
2604
2605		/* Min low period of clock is 4.7us*/
2606		udelay(IXGBE_I2C_T_LOW);
2607	}
2608
2609	ixgbe_i2c_start(hw);
2610
2611	/* Put the i2c bus back to default state */
2612	ixgbe_i2c_stop(hw);
2613}
2614
2615/**
2616 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2617 *  @hw: pointer to hardware structure
2618 *
2619 *  Checks if the LASI temp alarm status was triggered due to overtemp
 
 
2620 **/
2621s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2622{
2623	u16 phy_data = 0;
 
2624
2625	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2626		return 0;
2627
2628	/* Check that the LASI temp alarm status was triggered */
2629	hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2630			     MDIO_MMD_PMAPMD, &phy_data);
2631
2632	if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
2633		return 0;
2634
2635	return IXGBE_ERR_OVERTEMP;
2636}
2637
2638/** ixgbe_set_copper_phy_power - Control power for copper phy
2639 *  @hw: pointer to hardware structure
2640 *  @on: true for on, false for off
2641 **/
2642s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2643{
2644	u32 status;
2645	u16 reg;
2646
2647	/* Bail if we don't have copper phy */
2648	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2649		return 0;
2650
2651	if (!on && ixgbe_mng_present(hw))
2652		return 0;
2653
2654	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2655	if (status)
2656		return status;
2657
2658	if (on) {
2659		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2660	} else {
2661		if (ixgbe_check_reset_blocked(hw))
2662			return 0;
2663		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2664	}
2665
2666	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2667	return status;
2668}