Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* The driver transmit and receive code */
   5
   6#include <linux/mm.h>
   7#include <linux/netdevice.h>
   8#include <linux/prefetch.h>
 
   9#include <linux/bpf_trace.h>
  10#include <net/dsfield.h>
  11#include <net/mpls.h>
  12#include <net/xdp.h>
  13#include "ice_txrx_lib.h"
  14#include "ice_lib.h"
  15#include "ice.h"
  16#include "ice_trace.h"
  17#include "ice_dcb_lib.h"
  18#include "ice_xsk.h"
  19#include "ice_eswitch.h"
  20
  21#define ICE_RX_HDR_SIZE		256
  22
  23#define FDIR_DESC_RXDID 0x40
  24#define ICE_FDIR_CLEAN_DELAY 10
  25
  26/**
  27 * ice_prgm_fdir_fltr - Program a Flow Director filter
  28 * @vsi: VSI to send dummy packet
  29 * @fdir_desc: flow director descriptor
  30 * @raw_packet: allocated buffer for flow director
  31 */
  32int
  33ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
  34		   u8 *raw_packet)
  35{
  36	struct ice_tx_buf *tx_buf, *first;
  37	struct ice_fltr_desc *f_desc;
  38	struct ice_tx_desc *tx_desc;
  39	struct ice_tx_ring *tx_ring;
  40	struct device *dev;
  41	dma_addr_t dma;
  42	u32 td_cmd;
  43	u16 i;
  44
  45	/* VSI and Tx ring */
  46	if (!vsi)
  47		return -ENOENT;
  48	tx_ring = vsi->tx_rings[0];
  49	if (!tx_ring || !tx_ring->desc)
  50		return -ENOENT;
  51	dev = tx_ring->dev;
  52
  53	/* we are using two descriptors to add/del a filter and we can wait */
  54	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
  55		if (!i)
  56			return -EAGAIN;
  57		msleep_interruptible(1);
  58	}
  59
  60	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
  61			     DMA_TO_DEVICE);
  62
  63	if (dma_mapping_error(dev, dma))
  64		return -EINVAL;
  65
  66	/* grab the next descriptor */
  67	i = tx_ring->next_to_use;
  68	first = &tx_ring->tx_buf[i];
  69	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
  70	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
  71
  72	i++;
  73	i = (i < tx_ring->count) ? i : 0;
  74	tx_desc = ICE_TX_DESC(tx_ring, i);
  75	tx_buf = &tx_ring->tx_buf[i];
  76
  77	i++;
  78	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  79
  80	memset(tx_buf, 0, sizeof(*tx_buf));
  81	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
  82	dma_unmap_addr_set(tx_buf, dma, dma);
  83
  84	tx_desc->buf_addr = cpu_to_le64(dma);
  85	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
  86		 ICE_TX_DESC_CMD_RE;
  87
  88	tx_buf->type = ICE_TX_BUF_DUMMY;
  89	tx_buf->raw_buf = raw_packet;
  90
  91	tx_desc->cmd_type_offset_bsz =
  92		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
  93
  94	/* Force memory write to complete before letting h/w know
  95	 * there are new descriptors to fetch.
  96	 */
  97	wmb();
  98
  99	/* mark the data descriptor to be watched */
 100	first->next_to_watch = tx_desc;
 101
 102	writel(tx_ring->next_to_use, tx_ring->tail);
 103
 104	return 0;
 105}
 106
 107/**
 108 * ice_unmap_and_free_tx_buf - Release a Tx buffer
 109 * @ring: the ring that owns the buffer
 110 * @tx_buf: the buffer to free
 111 */
 112static void
 113ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
 114{
 115	if (dma_unmap_len(tx_buf, len))
 
 
 
 
 
 
 
 
 
 
 
 
 116		dma_unmap_page(ring->dev,
 117			       dma_unmap_addr(tx_buf, dma),
 118			       dma_unmap_len(tx_buf, len),
 119			       DMA_TO_DEVICE);
 120
 121	switch (tx_buf->type) {
 122	case ICE_TX_BUF_DUMMY:
 123		devm_kfree(ring->dev, tx_buf->raw_buf);
 124		break;
 125	case ICE_TX_BUF_SKB:
 126		dev_kfree_skb_any(tx_buf->skb);
 127		break;
 128	case ICE_TX_BUF_XDP_TX:
 129		page_frag_free(tx_buf->raw_buf);
 130		break;
 131	case ICE_TX_BUF_XDP_XMIT:
 132		xdp_return_frame(tx_buf->xdpf);
 133		break;
 134	}
 135
 136	tx_buf->next_to_watch = NULL;
 137	tx_buf->type = ICE_TX_BUF_EMPTY;
 138	dma_unmap_len_set(tx_buf, len, 0);
 139	/* tx_buf must be completely set up in the transmit path */
 140}
 141
 142static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
 143{
 144	return netdev_get_tx_queue(ring->netdev, ring->q_index);
 145}
 146
 147/**
 148 * ice_clean_tx_ring - Free any empty Tx buffers
 149 * @tx_ring: ring to be cleaned
 150 */
 151void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
 152{
 153	u32 size;
 154	u16 i;
 155
 156	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 157		ice_xsk_clean_xdp_ring(tx_ring);
 158		goto tx_skip_free;
 159	}
 160
 161	/* ring already cleared, nothing to do */
 162	if (!tx_ring->tx_buf)
 163		return;
 164
 165	/* Free all the Tx ring sk_buffs */
 166	for (i = 0; i < tx_ring->count; i++)
 167		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
 168
 169tx_skip_free:
 170	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
 171
 172	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
 173		     PAGE_SIZE);
 174	/* Zero out the descriptor ring */
 175	memset(tx_ring->desc, 0, size);
 176
 177	tx_ring->next_to_use = 0;
 178	tx_ring->next_to_clean = 0;
 179
 180	if (!tx_ring->netdev)
 181		return;
 182
 183	/* cleanup Tx queue statistics */
 184	netdev_tx_reset_queue(txring_txq(tx_ring));
 185}
 186
 187/**
 188 * ice_free_tx_ring - Free Tx resources per queue
 189 * @tx_ring: Tx descriptor ring for a specific queue
 190 *
 191 * Free all transmit software resources
 192 */
 193void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
 194{
 195	u32 size;
 196
 197	ice_clean_tx_ring(tx_ring);
 198	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
 199	tx_ring->tx_buf = NULL;
 200
 201	if (tx_ring->desc) {
 202		size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
 203			     PAGE_SIZE);
 204		dmam_free_coherent(tx_ring->dev, size,
 205				   tx_ring->desc, tx_ring->dma);
 206		tx_ring->desc = NULL;
 207	}
 208}
 209
 210/**
 211 * ice_clean_tx_irq - Reclaim resources after transmit completes
 212 * @tx_ring: Tx ring to clean
 213 * @napi_budget: Used to determine if we are in netpoll
 214 *
 215 * Returns true if there's any budget left (e.g. the clean is finished)
 216 */
 217static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
 218{
 219	unsigned int total_bytes = 0, total_pkts = 0;
 220	unsigned int budget = ICE_DFLT_IRQ_WORK;
 221	struct ice_vsi *vsi = tx_ring->vsi;
 222	s16 i = tx_ring->next_to_clean;
 223	struct ice_tx_desc *tx_desc;
 224	struct ice_tx_buf *tx_buf;
 225
 226	/* get the bql data ready */
 227	netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
 228
 229	tx_buf = &tx_ring->tx_buf[i];
 230	tx_desc = ICE_TX_DESC(tx_ring, i);
 231	i -= tx_ring->count;
 232
 233	prefetch(&vsi->state);
 234
 235	do {
 236		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
 237
 238		/* if next_to_watch is not set then there is no work pending */
 239		if (!eop_desc)
 240			break;
 241
 242		/* follow the guidelines of other drivers */
 243		prefetchw(&tx_buf->skb->users);
 244
 245		smp_rmb();	/* prevent any other reads prior to eop_desc */
 246
 247		ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 248		/* if the descriptor isn't done, no work yet to do */
 249		if (!(eop_desc->cmd_type_offset_bsz &
 250		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
 251			break;
 252
 253		/* clear next_to_watch to prevent false hangs */
 254		tx_buf->next_to_watch = NULL;
 255
 256		/* update the statistics for this packet */
 257		total_bytes += tx_buf->bytecount;
 258		total_pkts += tx_buf->gso_segs;
 259
 260		/* free the skb */
 261		napi_consume_skb(tx_buf->skb, napi_budget);
 
 
 
 262
 263		/* unmap skb header data */
 264		dma_unmap_single(tx_ring->dev,
 265				 dma_unmap_addr(tx_buf, dma),
 266				 dma_unmap_len(tx_buf, len),
 267				 DMA_TO_DEVICE);
 268
 269		/* clear tx_buf data */
 270		tx_buf->type = ICE_TX_BUF_EMPTY;
 271		dma_unmap_len_set(tx_buf, len, 0);
 272
 273		/* unmap remaining buffers */
 274		while (tx_desc != eop_desc) {
 275			ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
 276			tx_buf++;
 277			tx_desc++;
 278			i++;
 279			if (unlikely(!i)) {
 280				i -= tx_ring->count;
 281				tx_buf = tx_ring->tx_buf;
 282				tx_desc = ICE_TX_DESC(tx_ring, 0);
 283			}
 284
 285			/* unmap any remaining paged data */
 286			if (dma_unmap_len(tx_buf, len)) {
 287				dma_unmap_page(tx_ring->dev,
 288					       dma_unmap_addr(tx_buf, dma),
 289					       dma_unmap_len(tx_buf, len),
 290					       DMA_TO_DEVICE);
 291				dma_unmap_len_set(tx_buf, len, 0);
 292			}
 293		}
 294		ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
 295
 296		/* move us one more past the eop_desc for start of next pkt */
 297		tx_buf++;
 298		tx_desc++;
 299		i++;
 300		if (unlikely(!i)) {
 301			i -= tx_ring->count;
 302			tx_buf = tx_ring->tx_buf;
 303			tx_desc = ICE_TX_DESC(tx_ring, 0);
 304		}
 305
 306		prefetch(tx_desc);
 307
 308		/* update budget accounting */
 309		budget--;
 310	} while (likely(budget));
 311
 312	i += tx_ring->count;
 313	tx_ring->next_to_clean = i;
 314
 315	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
 316	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
 
 
 
 
 
 317
 318#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 319	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
 320		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 321		/* Make sure that anybody stopping the queue after this
 322		 * sees the new next_to_clean.
 323		 */
 324		smp_mb();
 325		if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
 
 326		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
 327			netif_tx_wake_queue(txring_txq(tx_ring));
 328			++tx_ring->ring_stats->tx_stats.restart_q;
 
 329		}
 330	}
 331
 332	return !!budget;
 333}
 334
 335/**
 336 * ice_setup_tx_ring - Allocate the Tx descriptors
 337 * @tx_ring: the Tx ring to set up
 338 *
 339 * Return 0 on success, negative on error
 340 */
 341int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
 342{
 343	struct device *dev = tx_ring->dev;
 344	u32 size;
 345
 346	if (!dev)
 347		return -ENOMEM;
 348
 349	/* warn if we are about to overwrite the pointer */
 350	WARN_ON(tx_ring->tx_buf);
 351	tx_ring->tx_buf =
 352		devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
 353			     GFP_KERNEL);
 354	if (!tx_ring->tx_buf)
 355		return -ENOMEM;
 356
 357	/* round up to nearest page */
 358	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
 359		     PAGE_SIZE);
 360	tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
 361					    GFP_KERNEL);
 362	if (!tx_ring->desc) {
 363		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 364			size);
 365		goto err;
 366	}
 367
 368	tx_ring->next_to_use = 0;
 369	tx_ring->next_to_clean = 0;
 370	tx_ring->ring_stats->tx_stats.prev_pkt = -1;
 371	return 0;
 372
 373err:
 374	devm_kfree(dev, tx_ring->tx_buf);
 375	tx_ring->tx_buf = NULL;
 376	return -ENOMEM;
 377}
 378
 379/**
 380 * ice_clean_rx_ring - Free Rx buffers
 381 * @rx_ring: ring to be cleaned
 382 */
 383void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
 384{
 385	struct xdp_buff *xdp = &rx_ring->xdp;
 386	struct device *dev = rx_ring->dev;
 387	u32 size;
 388	u16 i;
 389
 390	/* ring already cleared, nothing to do */
 391	if (!rx_ring->rx_buf)
 392		return;
 393
 
 
 
 
 
 394	if (rx_ring->xsk_pool) {
 395		ice_xsk_clean_rx_ring(rx_ring);
 396		goto rx_skip_free;
 397	}
 398
 399	if (xdp->data) {
 400		xdp_return_buff(xdp);
 401		xdp->data = NULL;
 402	}
 403
 404	/* Free all the Rx ring sk_buffs */
 405	for (i = 0; i < rx_ring->count; i++) {
 406		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
 407
 408		if (!rx_buf->page)
 409			continue;
 410
 411		/* Invalidate cache lines that may have been written to by
 412		 * device so that we avoid corrupting memory.
 413		 */
 414		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
 415					      rx_buf->page_offset,
 416					      rx_ring->rx_buf_len,
 417					      DMA_FROM_DEVICE);
 418
 419		/* free resources associated with mapping */
 420		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
 421				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 422		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
 423
 424		rx_buf->page = NULL;
 425		rx_buf->page_offset = 0;
 426	}
 427
 428rx_skip_free:
 429	if (rx_ring->xsk_pool)
 430		memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
 431	else
 432		memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
 433
 434	/* Zero out the descriptor ring */
 435	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
 436		     PAGE_SIZE);
 437	memset(rx_ring->desc, 0, size);
 438
 439	rx_ring->next_to_alloc = 0;
 440	rx_ring->next_to_clean = 0;
 441	rx_ring->first_desc = 0;
 442	rx_ring->next_to_use = 0;
 443}
 444
 445/**
 446 * ice_free_rx_ring - Free Rx resources
 447 * @rx_ring: ring to clean the resources from
 448 *
 449 * Free all receive software resources
 450 */
 451void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
 452{
 453	u32 size;
 454
 455	ice_clean_rx_ring(rx_ring);
 456	if (rx_ring->vsi->type == ICE_VSI_PF)
 457		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 458			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 459	WRITE_ONCE(rx_ring->xdp_prog, NULL);
 460	if (rx_ring->xsk_pool) {
 461		kfree(rx_ring->xdp_buf);
 462		rx_ring->xdp_buf = NULL;
 463	} else {
 464		kfree(rx_ring->rx_buf);
 465		rx_ring->rx_buf = NULL;
 466	}
 467
 468	if (rx_ring->desc) {
 469		size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
 470			     PAGE_SIZE);
 471		dmam_free_coherent(rx_ring->dev, size,
 472				   rx_ring->desc, rx_ring->dma);
 473		rx_ring->desc = NULL;
 474	}
 475}
 476
 477/**
 478 * ice_setup_rx_ring - Allocate the Rx descriptors
 479 * @rx_ring: the Rx ring to set up
 480 *
 481 * Return 0 on success, negative on error
 482 */
 483int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
 484{
 485	struct device *dev = rx_ring->dev;
 486	u32 size;
 487
 488	if (!dev)
 489		return -ENOMEM;
 490
 491	/* warn if we are about to overwrite the pointer */
 492	WARN_ON(rx_ring->rx_buf);
 493	rx_ring->rx_buf =
 494		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
 
 495	if (!rx_ring->rx_buf)
 496		return -ENOMEM;
 497
 498	/* round up to nearest page */
 499	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
 500		     PAGE_SIZE);
 501	rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
 502					    GFP_KERNEL);
 503	if (!rx_ring->desc) {
 504		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 505			size);
 506		goto err;
 507	}
 508
 509	rx_ring->next_to_use = 0;
 510	rx_ring->next_to_clean = 0;
 511	rx_ring->first_desc = 0;
 512
 513	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 514		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
 515
 
 
 
 
 
 516	return 0;
 517
 518err:
 519	kfree(rx_ring->rx_buf);
 520	rx_ring->rx_buf = NULL;
 521	return -ENOMEM;
 522}
 523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524/**
 525 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
 526 * @rx_ring: Rx ring
 527 * @xdp: xdp_buff used as input to the XDP program
 528 * @xdp_prog: XDP program to run
 529 * @xdp_ring: ring to be used for XDP_TX action
 530 * @eop_desc: Last descriptor in packet to read metadata from
 531 *
 532 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
 533 */
 534static u32
 535ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
 536	    struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring,
 537	    union ice_32b_rx_flex_desc *eop_desc)
 538{
 539	unsigned int ret = ICE_XDP_PASS;
 
 540	u32 act;
 541
 542	if (!xdp_prog)
 543		goto exit;
 544
 545	ice_xdp_meta_set_desc(xdp, eop_desc);
 546
 547	act = bpf_prog_run_xdp(xdp_prog, xdp);
 548	switch (act) {
 549	case XDP_PASS:
 550		break;
 551	case XDP_TX:
 552		if (static_branch_unlikely(&ice_xdp_locking_key))
 553			spin_lock(&xdp_ring->tx_lock);
 554		ret = __ice_xmit_xdp_ring(xdp, xdp_ring, false);
 555		if (static_branch_unlikely(&ice_xdp_locking_key))
 556			spin_unlock(&xdp_ring->tx_lock);
 557		if (ret == ICE_XDP_CONSUMED)
 558			goto out_failure;
 559		break;
 560	case XDP_REDIRECT:
 561		if (xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog))
 
 562			goto out_failure;
 563		ret = ICE_XDP_REDIR;
 564		break;
 565	default:
 566		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
 567		fallthrough;
 568	case XDP_ABORTED:
 569out_failure:
 570		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 571		fallthrough;
 572	case XDP_DROP:
 573		ret = ICE_XDP_CONSUMED;
 574	}
 575exit:
 576	return ret;
 577}
 578
 579/**
 580 * ice_xmit_xdp_ring - submit frame to XDP ring for transmission
 581 * @xdpf: XDP frame that will be converted to XDP buff
 582 * @xdp_ring: XDP ring for transmission
 583 */
 584static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf,
 585			     struct ice_tx_ring *xdp_ring)
 586{
 587	struct xdp_buff xdp;
 588
 589	xdp.data_hard_start = (void *)xdpf;
 590	xdp.data = xdpf->data;
 591	xdp.data_end = xdp.data + xdpf->len;
 592	xdp.frame_sz = xdpf->frame_sz;
 593	xdp.flags = xdpf->flags;
 594
 595	return __ice_xmit_xdp_ring(&xdp, xdp_ring, true);
 596}
 597
 598/**
 599 * ice_xdp_xmit - submit packets to XDP ring for transmission
 600 * @dev: netdev
 601 * @n: number of XDP frames to be transmitted
 602 * @frames: XDP frames to be transmitted
 603 * @flags: transmit flags
 604 *
 605 * Returns number of frames successfully sent. Failed frames
 606 * will be free'ed by XDP core.
 607 * For error cases, a negative errno code is returned and no-frames
 608 * are transmitted (caller must handle freeing frames).
 609 */
 610int
 611ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
 612	     u32 flags)
 613{
 614	struct ice_netdev_priv *np = netdev_priv(dev);
 615	unsigned int queue_index = smp_processor_id();
 616	struct ice_vsi *vsi = np->vsi;
 617	struct ice_tx_ring *xdp_ring;
 618	struct ice_tx_buf *tx_buf;
 619	int nxmit = 0, i;
 620
 621	if (test_bit(ICE_VSI_DOWN, vsi->state))
 622		return -ENETDOWN;
 623
 624	if (!ice_is_xdp_ena_vsi(vsi))
 625		return -ENXIO;
 626
 627	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
 628		return -EINVAL;
 629
 630	if (static_branch_unlikely(&ice_xdp_locking_key)) {
 631		queue_index %= vsi->num_xdp_txq;
 632		xdp_ring = vsi->xdp_rings[queue_index];
 633		spin_lock(&xdp_ring->tx_lock);
 634	} else {
 635		/* Generally, should not happen */
 636		if (unlikely(queue_index >= vsi->num_xdp_txq))
 637			return -ENXIO;
 638		xdp_ring = vsi->xdp_rings[queue_index];
 639	}
 640
 641	tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
 642	for (i = 0; i < n; i++) {
 643		const struct xdp_frame *xdpf = frames[i];
 644		int err;
 645
 646		err = ice_xmit_xdp_ring(xdpf, xdp_ring);
 647		if (err != ICE_XDP_TX)
 648			break;
 649		nxmit++;
 650	}
 651
 652	tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
 653	if (unlikely(flags & XDP_XMIT_FLUSH))
 654		ice_xdp_ring_update_tail(xdp_ring);
 655
 656	if (static_branch_unlikely(&ice_xdp_locking_key))
 657		spin_unlock(&xdp_ring->tx_lock);
 658
 659	return nxmit;
 660}
 661
 662/**
 663 * ice_alloc_mapped_page - recycle or make a new page
 664 * @rx_ring: ring to use
 665 * @bi: rx_buf struct to modify
 666 *
 667 * Returns true if the page was successfully allocated or
 668 * reused.
 669 */
 670static bool
 671ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
 672{
 673	struct page *page = bi->page;
 674	dma_addr_t dma;
 675
 676	/* since we are recycling buffers we should seldom need to alloc */
 677	if (likely(page))
 678		return true;
 679
 680	/* alloc new page for storage */
 681	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
 682	if (unlikely(!page)) {
 683		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
 684		return false;
 685	}
 686
 687	/* map page for use */
 688	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
 689				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 690
 691	/* if mapping failed free memory back to system since
 692	 * there isn't much point in holding memory we can't use
 693	 */
 694	if (dma_mapping_error(rx_ring->dev, dma)) {
 695		__free_pages(page, ice_rx_pg_order(rx_ring));
 696		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
 697		return false;
 698	}
 699
 700	bi->dma = dma;
 701	bi->page = page;
 702	bi->page_offset = rx_ring->rx_offset;
 703	page_ref_add(page, USHRT_MAX - 1);
 704	bi->pagecnt_bias = USHRT_MAX;
 705
 706	return true;
 707}
 708
 709/**
 710 * ice_alloc_rx_bufs - Replace used receive buffers
 711 * @rx_ring: ring to place buffers on
 712 * @cleaned_count: number of buffers to replace
 713 *
 714 * Returns false if all allocations were successful, true if any fail. Returning
 715 * true signals to the caller that we didn't replace cleaned_count buffers and
 716 * there is more work to do.
 717 *
 718 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
 719 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
 720 * multiple tail writes per call.
 721 */
 722bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count)
 723{
 724	union ice_32b_rx_flex_desc *rx_desc;
 725	u16 ntu = rx_ring->next_to_use;
 726	struct ice_rx_buf *bi;
 727
 728	/* do nothing if no valid netdev defined */
 729	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
 730	    !cleaned_count)
 731		return false;
 732
 733	/* get the Rx descriptor and buffer based on next_to_use */
 734	rx_desc = ICE_RX_DESC(rx_ring, ntu);
 735	bi = &rx_ring->rx_buf[ntu];
 736
 737	do {
 738		/* if we fail here, we have work remaining */
 739		if (!ice_alloc_mapped_page(rx_ring, bi))
 740			break;
 741
 742		/* sync the buffer for use by the device */
 743		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 744						 bi->page_offset,
 745						 rx_ring->rx_buf_len,
 746						 DMA_FROM_DEVICE);
 747
 748		/* Refresh the desc even if buffer_addrs didn't change
 749		 * because each write-back erases this info.
 750		 */
 751		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 752
 753		rx_desc++;
 754		bi++;
 755		ntu++;
 756		if (unlikely(ntu == rx_ring->count)) {
 757			rx_desc = ICE_RX_DESC(rx_ring, 0);
 758			bi = rx_ring->rx_buf;
 759			ntu = 0;
 760		}
 761
 762		/* clear the status bits for the next_to_use descriptor */
 763		rx_desc->wb.status_error0 = 0;
 764
 765		cleaned_count--;
 766	} while (cleaned_count);
 767
 768	if (rx_ring->next_to_use != ntu)
 769		ice_release_rx_desc(rx_ring, ntu);
 770
 771	return !!cleaned_count;
 772}
 773
 774/**
 775 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
 776 * @rx_buf: Rx buffer to adjust
 777 * @size: Size of adjustment
 778 *
 779 * Update the offset within page so that Rx buf will be ready to be reused.
 780 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
 781 * so the second half of page assigned to Rx buffer will be used, otherwise
 782 * the offset is moved by "size" bytes
 783 */
 784static void
 785ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
 786{
 787#if (PAGE_SIZE < 8192)
 788	/* flip page offset to other buffer */
 789	rx_buf->page_offset ^= size;
 790#else
 791	/* move offset up to the next cache line */
 792	rx_buf->page_offset += size;
 793#endif
 794}
 795
 796/**
 797 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
 798 * @rx_buf: buffer containing the page
 
 799 *
 800 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
 801 * which will assign the current buffer to the buffer that next_to_alloc is
 802 * pointing to; otherwise, the DMA mapping needs to be destroyed and
 803 * page freed
 804 */
 805static bool
 806ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
 807{
 808	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
 809	struct page *page = rx_buf->page;
 810
 811	/* avoid re-using remote and pfmemalloc pages */
 812	if (!dev_page_is_reusable(page))
 813		return false;
 814
 
 815	/* if we are only owner of page we can reuse it */
 816	if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1))
 817		return false;
 818#if (PAGE_SIZE >= 8192)
 819#define ICE_LAST_OFFSET \
 820	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_3072)
 821	if (rx_buf->page_offset > ICE_LAST_OFFSET)
 822		return false;
 823#endif /* PAGE_SIZE >= 8192) */
 824
 825	/* If we have drained the page fragment pool we need to update
 826	 * the pagecnt_bias and page count so that we fully restock the
 827	 * number of references the driver holds.
 828	 */
 829	if (unlikely(pagecnt_bias == 1)) {
 830		page_ref_add(page, USHRT_MAX - 1);
 831		rx_buf->pagecnt_bias = USHRT_MAX;
 832	}
 833
 834	return true;
 835}
 836
 837/**
 838 * ice_add_xdp_frag - Add contents of Rx buffer to xdp buf as a frag
 839 * @rx_ring: Rx descriptor ring to transact packets on
 840 * @xdp: xdp buff to place the data into
 841 * @rx_buf: buffer containing page to add
 
 842 * @size: packet length from rx_desc
 843 *
 844 * This function will add the data contained in rx_buf->page to the xdp buf.
 845 * It will just attach the page as a frag.
 
 846 */
 847static int
 848ice_add_xdp_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
 849		 struct ice_rx_buf *rx_buf, const unsigned int size)
 850{
 851	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
 
 
 
 
 852
 853	if (!size)
 854		return 0;
 855
 856	if (!xdp_buff_has_frags(xdp)) {
 857		sinfo->nr_frags = 0;
 858		sinfo->xdp_frags_size = 0;
 859		xdp_buff_set_frags_flag(xdp);
 860	}
 861
 862	if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS))
 863		return -ENOMEM;
 864
 865	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buf->page,
 866				   rx_buf->page_offset, size);
 867	sinfo->xdp_frags_size += size;
 868	/* remember frag count before XDP prog execution; bpf_xdp_adjust_tail()
 869	 * can pop off frags but driver has to handle it on its own
 870	 */
 871	rx_ring->nr_frags = sinfo->nr_frags;
 872
 873	if (page_is_pfmemalloc(rx_buf->page))
 874		xdp_buff_set_frag_pfmemalloc(xdp);
 875
 876	return 0;
 
 877}
 878
 879/**
 880 * ice_reuse_rx_page - page flip buffer and store it back on the ring
 881 * @rx_ring: Rx descriptor ring to store buffers on
 882 * @old_buf: donor buffer to have page reused
 883 *
 884 * Synchronizes page for reuse by the adapter
 885 */
 886static void
 887ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
 888{
 889	u16 nta = rx_ring->next_to_alloc;
 890	struct ice_rx_buf *new_buf;
 891
 892	new_buf = &rx_ring->rx_buf[nta];
 893
 894	/* update, and store next to alloc */
 895	nta++;
 896	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 897
 898	/* Transfer page from old buffer to new buffer.
 899	 * Move each member individually to avoid possible store
 900	 * forwarding stalls and unnecessary copy of skb.
 901	 */
 902	new_buf->dma = old_buf->dma;
 903	new_buf->page = old_buf->page;
 904	new_buf->page_offset = old_buf->page_offset;
 905	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
 906}
 907
 908/**
 909 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
 910 * @rx_ring: Rx descriptor ring to transact packets on
 911 * @size: size of buffer to add to skb
 912 * @ntc: index of next to clean element
 913 *
 914 * This function will pull an Rx buffer from the ring and synchronize it
 915 * for use by the CPU.
 916 */
 917static struct ice_rx_buf *
 918ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
 919	       const unsigned int ntc)
 920{
 921	struct ice_rx_buf *rx_buf;
 922
 923	rx_buf = &rx_ring->rx_buf[ntc];
 
 
 
 
 
 
 924	prefetchw(rx_buf->page);
 925
 926	if (!size)
 927		return rx_buf;
 928	/* we are reusing so sync this buffer for CPU use */
 929	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
 930				      rx_buf->page_offset, size,
 931				      DMA_FROM_DEVICE);
 932
 933	/* We have pulled a buffer for use, so decrement pagecnt_bias */
 934	rx_buf->pagecnt_bias--;
 935
 936	return rx_buf;
 937}
 938
 939/**
 940 * ice_get_pgcnts - grab page_count() for gathered fragments
 941 * @rx_ring: Rx descriptor ring to store the page counts on
 942 *
 943 * This function is intended to be called right before running XDP
 944 * program so that the page recycling mechanism will be able to take
 945 * a correct decision regarding underlying pages; this is done in such
 946 * way as XDP program can change the refcount of page
 947 */
 948static void ice_get_pgcnts(struct ice_rx_ring *rx_ring)
 949{
 950	u32 nr_frags = rx_ring->nr_frags + 1;
 951	u32 idx = rx_ring->first_desc;
 952	struct ice_rx_buf *rx_buf;
 953	u32 cnt = rx_ring->count;
 954
 955	for (int i = 0; i < nr_frags; i++) {
 956		rx_buf = &rx_ring->rx_buf[idx];
 957		rx_buf->pgcnt = page_count(rx_buf->page);
 958
 959		if (++idx == cnt)
 960			idx = 0;
 961	}
 962}
 963
 964/**
 965 * ice_build_skb - Build skb around an existing buffer
 966 * @rx_ring: Rx descriptor ring to transact packets on
 
 967 * @xdp: xdp_buff pointing to the data
 968 *
 969 * This function builds an skb around an existing XDP buffer, taking care
 970 * to set up the skb correctly and avoid any memcpy overhead. Driver has
 971 * already combined frags (if any) to skb_shared_info.
 972 */
 973static struct sk_buff *
 974ice_build_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
 
 975{
 976	u8 metasize = xdp->data - xdp->data_meta;
 977	struct skb_shared_info *sinfo = NULL;
 978	unsigned int nr_frags;
 
 
 
 
 
 979	struct sk_buff *skb;
 980
 981	if (unlikely(xdp_buff_has_frags(xdp))) {
 982		sinfo = xdp_get_shared_info_from_buff(xdp);
 983		nr_frags = sinfo->nr_frags;
 984	}
 985
 986	/* Prefetch first cache line of first page. If xdp->data_meta
 987	 * is unused, this points exactly as xdp->data, otherwise we
 988	 * likely have a consumer accessing first few bytes of meta
 989	 * data, and then actual data.
 990	 */
 991	net_prefetch(xdp->data_meta);
 992	/* build an skb around the page buffer */
 993	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
 994	if (unlikely(!skb))
 995		return NULL;
 996
 997	/* must to record Rx queue, otherwise OS features such as
 998	 * symmetric queue won't work
 999	 */
1000	skb_record_rx_queue(skb, rx_ring->q_index);
1001
1002	/* update pointers within the skb to store the data */
1003	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1004	__skb_put(skb, xdp->data_end - xdp->data);
1005	if (metasize)
1006		skb_metadata_set(skb, metasize);
1007
1008	if (unlikely(xdp_buff_has_frags(xdp)))
1009		xdp_update_skb_shared_info(skb, nr_frags,
1010					   sinfo->xdp_frags_size,
1011					   nr_frags * xdp->frame_sz,
1012					   xdp_buff_is_frag_pfmemalloc(xdp));
1013
1014	return skb;
1015}
1016
1017/**
1018 * ice_construct_skb - Allocate skb and populate it
1019 * @rx_ring: Rx descriptor ring to transact packets on
 
1020 * @xdp: xdp_buff pointing to the data
1021 *
1022 * This function allocates an skb. It then populates it with the page
1023 * data from the current receive descriptor, taking care to set up the
1024 * skb correctly.
1025 */
1026static struct sk_buff *
1027ice_construct_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
 
1028{
1029	unsigned int size = xdp->data_end - xdp->data;
1030	struct skb_shared_info *sinfo = NULL;
1031	struct ice_rx_buf *rx_buf;
1032	unsigned int nr_frags = 0;
1033	unsigned int headlen;
1034	struct sk_buff *skb;
1035
1036	/* prefetch first cache line of first page */
1037	net_prefetch(xdp->data);
1038
1039	if (unlikely(xdp_buff_has_frags(xdp))) {
1040		sinfo = xdp_get_shared_info_from_buff(xdp);
1041		nr_frags = sinfo->nr_frags;
1042	}
1043
1044	/* allocate a skb to store the frags */
1045	skb = napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE);
 
1046	if (unlikely(!skb))
1047		return NULL;
1048
1049	rx_buf = &rx_ring->rx_buf[rx_ring->first_desc];
1050	skb_record_rx_queue(skb, rx_ring->q_index);
1051	/* Determine available headroom for copy */
1052	headlen = size;
1053	if (headlen > ICE_RX_HDR_SIZE)
1054		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
1055
1056	/* align pull length to size of long to optimize memcpy performance */
1057	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
1058							 sizeof(long)));
1059
1060	/* if we exhaust the linear part then add what is left as a frag */
1061	size -= headlen;
1062	if (size) {
1063		/* besides adding here a partial frag, we are going to add
1064		 * frags from xdp_buff, make sure there is enough space for
1065		 * them
1066		 */
1067		if (unlikely(nr_frags >= MAX_SKB_FRAGS - 1)) {
1068			dev_kfree_skb(skb);
1069			return NULL;
1070		}
1071		skb_add_rx_frag(skb, 0, rx_buf->page,
1072				rx_buf->page_offset + headlen, size,
1073				xdp->frame_sz);
 
1074	} else {
1075		/* buffer is unused, restore biased page count in Rx buffer;
1076		 * data was copied onto skb's linear part so there's no
1077		 * need for adjusting page offset and we can reuse this buffer
1078		 * as-is
1079		 */
1080		rx_buf->pagecnt_bias++;
1081	}
1082
1083	if (unlikely(xdp_buff_has_frags(xdp))) {
1084		struct skb_shared_info *skinfo = skb_shinfo(skb);
1085
1086		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
1087		       sizeof(skb_frag_t) * nr_frags);
1088
1089		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
1090					   sinfo->xdp_frags_size,
1091					   nr_frags * xdp->frame_sz,
1092					   xdp_buff_is_frag_pfmemalloc(xdp));
1093	}
1094
1095	return skb;
1096}
1097
1098/**
1099 * ice_put_rx_buf - Clean up used buffer and either recycle or free
1100 * @rx_ring: Rx descriptor ring to transact packets on
1101 * @rx_buf: Rx buffer to pull data from
 
1102 *
1103 * This function will clean up the contents of the rx_buf. It will either
1104 * recycle the buffer or unmap it and free the associated resources.
 
1105 */
1106static void
1107ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf)
 
1108{
 
 
 
 
 
 
1109	if (!rx_buf)
1110		return;
1111
1112	if (ice_can_reuse_rx_page(rx_buf)) {
1113		/* hand second half of page back to the ring */
1114		ice_reuse_rx_page(rx_ring, rx_buf);
1115	} else {
1116		/* we are not reusing the buffer so unmap it */
1117		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1118				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1119				     ICE_RX_DMA_ATTR);
1120		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1121	}
1122
1123	/* clear contents of buffer_info */
1124	rx_buf->page = NULL;
1125}
1126
1127/**
1128 * ice_put_rx_mbuf - ice_put_rx_buf() caller, for all frame frags
1129 * @rx_ring: Rx ring with all the auxiliary data
1130 * @xdp: XDP buffer carrying linear + frags part
1131 * @xdp_xmit: XDP_TX/XDP_REDIRECT verdict storage
1132 * @ntc: a current next_to_clean value to be stored at rx_ring
1133 * @verdict: return code from XDP program execution
1134 *
1135 * Walk through gathered fragments and satisfy internal page
1136 * recycle mechanism; we take here an action related to verdict
1137 * returned by XDP program;
1138 */
1139static void ice_put_rx_mbuf(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
1140			    u32 *xdp_xmit, u32 ntc, u32 verdict)
1141{
1142	u32 nr_frags = rx_ring->nr_frags + 1;
1143	u32 idx = rx_ring->first_desc;
1144	u32 cnt = rx_ring->count;
1145	u32 post_xdp_frags = 1;
1146	struct ice_rx_buf *buf;
1147	int i;
1148
1149	if (unlikely(xdp_buff_has_frags(xdp)))
1150		post_xdp_frags += xdp_get_shared_info_from_buff(xdp)->nr_frags;
1151
1152	for (i = 0; i < post_xdp_frags; i++) {
1153		buf = &rx_ring->rx_buf[idx];
1154
1155		if (verdict & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1156			ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
1157			*xdp_xmit |= verdict;
1158		} else if (verdict & ICE_XDP_CONSUMED) {
1159			buf->pagecnt_bias++;
1160		} else if (verdict == ICE_XDP_PASS) {
1161			ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
1162		}
1163
1164		ice_put_rx_buf(rx_ring, buf);
1165
1166		if (++idx == cnt)
1167			idx = 0;
1168	}
1169	/* handle buffers that represented frags released by XDP prog;
1170	 * for these we keep pagecnt_bias as-is; refcount from struct page
1171	 * has been decremented within XDP prog and we do not have to increase
1172	 * the biased refcnt
1173	 */
1174	for (; i < nr_frags; i++) {
1175		buf = &rx_ring->rx_buf[idx];
1176		ice_put_rx_buf(rx_ring, buf);
1177		if (++idx == cnt)
1178			idx = 0;
1179	}
1180
1181	xdp->data = NULL;
1182	rx_ring->first_desc = ntc;
1183	rx_ring->nr_frags = 0;
1184}
1185
1186/**
1187 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1188 * @rx_ring: Rx descriptor ring to transact packets on
1189 * @budget: Total limit on number of packets to process
1190 *
1191 * This function provides a "bounce buffer" approach to Rx interrupt
1192 * processing. The advantage to this is that on systems that have
1193 * expensive overhead for IOMMU access this provides a means of avoiding
1194 * it by maintaining the mapping of the page to the system.
1195 *
1196 * Returns amount of work completed
1197 */
1198int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
1199{
1200	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
 
1201	unsigned int offset = rx_ring->rx_offset;
1202	struct xdp_buff *xdp = &rx_ring->xdp;
1203	struct ice_tx_ring *xdp_ring = NULL;
1204	struct bpf_prog *xdp_prog = NULL;
1205	u32 ntc = rx_ring->next_to_clean;
1206	u32 cached_ntu, xdp_verdict;
1207	u32 cnt = rx_ring->count;
1208	u32 xdp_xmit = 0;
1209	bool failure;
1210
1211	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1212	if (xdp_prog) {
1213		xdp_ring = rx_ring->xdp_ring;
1214		cached_ntu = xdp_ring->next_to_use;
1215	}
1216
1217	/* start the loop to process Rx packets bounded by 'budget' */
1218	while (likely(total_rx_pkts < (unsigned int)budget)) {
1219		union ice_32b_rx_flex_desc *rx_desc;
1220		struct ice_rx_buf *rx_buf;
1221		struct sk_buff *skb;
1222		unsigned int size;
1223		u16 stat_err_bits;
1224		u16 vlan_tci;
 
 
1225
1226		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1227		rx_desc = ICE_RX_DESC(rx_ring, ntc);
1228
1229		/* status_error_len will always be zero for unused descriptors
1230		 * because it's cleared in cleanup, and overlaps with hdr_addr
1231		 * which is always zero because packet split isn't used, if the
1232		 * hardware wrote DD then it will be non-zero
1233		 */
1234		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1235		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
1236			break;
1237
1238		/* This memory barrier is needed to keep us from reading
1239		 * any other fields out of the rx_desc until we know the
1240		 * DD bit is set.
1241		 */
1242		dma_rmb();
1243
1244		ice_trace(clean_rx_irq, rx_ring, rx_desc);
1245		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1246			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1247
1248			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1249			    ctrl_vsi->vf)
1250				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1251			if (++ntc == cnt)
1252				ntc = 0;
1253			rx_ring->first_desc = ntc;
1254			continue;
1255		}
1256
1257		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1258			ICE_RX_FLX_DESC_PKT_LEN_M;
1259
1260		/* retrieve a buffer from the ring */
1261		rx_buf = ice_get_rx_buf(rx_ring, size, ntc);
1262
1263		if (!xdp->data) {
1264			void *hard_start;
1265
1266			hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1267				     offset;
1268			xdp_prepare_buff(xdp, hard_start, offset, size, !!offset);
1269			xdp_buff_clear_frags_flag(xdp);
1270		} else if (ice_add_xdp_frag(rx_ring, xdp, rx_buf, size)) {
1271			ice_put_rx_mbuf(rx_ring, xdp, NULL, ntc, ICE_XDP_CONSUMED);
1272			break;
1273		}
1274		if (++ntc == cnt)
1275			ntc = 0;
1276
1277		/* skip if it is NOP desc */
1278		if (ice_is_non_eop(rx_ring, rx_desc))
1279			continue;
 
 
 
 
1280
1281		ice_get_pgcnts(rx_ring);
1282		xdp_verdict = ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_desc);
1283		if (xdp_verdict == ICE_XDP_PASS)
1284			goto construct_skb;
1285		total_rx_bytes += xdp_get_buff_len(xdp);
1286		total_rx_pkts++;
1287
1288		ice_put_rx_mbuf(rx_ring, xdp, &xdp_xmit, ntc, xdp_verdict);
 
 
 
 
 
 
 
 
 
 
1289
 
 
1290		continue;
1291construct_skb:
1292		if (likely(ice_ring_uses_build_skb(rx_ring)))
1293			skb = ice_build_skb(rx_ring, xdp);
1294		else
1295			skb = ice_construct_skb(rx_ring, xdp);
 
 
 
 
1296		/* exit if we failed to retrieve a buffer */
1297		if (!skb) {
1298			rx_ring->ring_stats->rx_stats.alloc_page_failed++;
1299			xdp_verdict = ICE_XDP_CONSUMED;
 
 
1300		}
1301		ice_put_rx_mbuf(rx_ring, xdp, &xdp_xmit, ntc, xdp_verdict);
1302
1303		if (!skb)
1304			break;
 
 
 
 
1305
1306		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1307		if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
1308					      stat_err_bits))) {
1309			dev_kfree_skb_any(skb);
1310			continue;
1311		}
1312
1313		vlan_tci = ice_get_vlan_tci(rx_desc);
 
 
1314
1315		/* pad the skb if needed, to make a valid ethernet frame */
1316		if (eth_skb_pad(skb))
 
1317			continue;
 
1318
1319		/* probably a little skewed due to removing CRC */
1320		total_rx_bytes += skb->len;
1321
1322		/* populate checksum, VLAN, and protocol */
1323		ice_process_skb_fields(rx_ring, rx_desc, skb);
 
 
 
1324
1325		ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1326		/* send completed skb up the stack */
1327		ice_receive_skb(rx_ring, skb, vlan_tci);
 
1328
1329		/* update budget accounting */
1330		total_rx_pkts++;
1331	}
1332
1333	rx_ring->next_to_clean = ntc;
1334	/* return up to cleaned_count buffers to hardware */
1335	failure = ice_alloc_rx_bufs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring));
1336
1337	if (xdp_xmit)
1338		ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu);
 
1339
1340	if (rx_ring->ring_stats)
1341		ice_update_rx_ring_stats(rx_ring, total_rx_pkts,
1342					 total_rx_bytes);
1343
1344	/* guarantee a trip back through this routine if there was a failure */
1345	return failure ? budget : (int)total_rx_pkts;
1346}
1347
1348static void __ice_update_sample(struct ice_q_vector *q_vector,
1349				struct ice_ring_container *rc,
1350				struct dim_sample *sample,
1351				bool is_tx)
1352{
1353	u64 packets = 0, bytes = 0;
1354
1355	if (is_tx) {
1356		struct ice_tx_ring *tx_ring;
1357
1358		ice_for_each_tx_ring(tx_ring, *rc) {
1359			struct ice_ring_stats *ring_stats;
1360
1361			ring_stats = tx_ring->ring_stats;
1362			if (!ring_stats)
1363				continue;
1364			packets += ring_stats->stats.pkts;
1365			bytes += ring_stats->stats.bytes;
1366		}
1367	} else {
1368		struct ice_rx_ring *rx_ring;
1369
1370		ice_for_each_rx_ring(rx_ring, *rc) {
1371			struct ice_ring_stats *ring_stats;
1372
1373			ring_stats = rx_ring->ring_stats;
1374			if (!ring_stats)
1375				continue;
1376			packets += ring_stats->stats.pkts;
1377			bytes += ring_stats->stats.bytes;
1378		}
1379	}
1380
1381	dim_update_sample(q_vector->total_events, packets, bytes, sample);
1382	sample->comp_ctr = 0;
1383
1384	/* if dim settings get stale, like when not updated for 1
1385	 * second or longer, force it to start again. This addresses the
1386	 * frequent case of an idle queue being switched to by the
1387	 * scheduler. The 1,000 here means 1,000 milliseconds.
1388	 */
1389	if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
1390		rc->dim.state = DIM_START_MEASURE;
1391}
1392
1393/**
1394 * ice_net_dim - Update net DIM algorithm
1395 * @q_vector: the vector associated with the interrupt
1396 *
1397 * Create a DIM sample and notify net_dim() so that it can possibly decide
1398 * a new ITR value based on incoming packets, bytes, and interrupts.
1399 *
1400 * This function is a no-op if the ring is not configured to dynamic ITR.
1401 */
1402static void ice_net_dim(struct ice_q_vector *q_vector)
1403{
1404	struct ice_ring_container *tx = &q_vector->tx;
1405	struct ice_ring_container *rx = &q_vector->rx;
1406
1407	if (ITR_IS_DYNAMIC(tx)) {
1408		struct dim_sample dim_sample;
 
 
 
 
 
 
 
 
 
 
1409
1410		__ice_update_sample(q_vector, tx, &dim_sample, true);
1411		net_dim(&tx->dim, &dim_sample);
1412	}
1413
1414	if (ITR_IS_DYNAMIC(rx)) {
1415		struct dim_sample dim_sample;
 
 
 
 
 
 
 
 
 
 
1416
1417		__ice_update_sample(q_vector, rx, &dim_sample, false);
1418		net_dim(&rx->dim, &dim_sample);
1419	}
1420}
1421
1422/**
1423 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1424 * @itr_idx: interrupt throttling index
1425 * @itr: interrupt throttling value in usecs
1426 */
1427static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1428{
1429	/* The ITR value is reported in microseconds, and the register value is
1430	 * recorded in 2 microsecond units. For this reason we only need to
1431	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1432	 * granularity as a shift instead of division. The mask makes sure the
1433	 * ITR value is never odd so we don't accidentally write into the field
1434	 * prior to the ITR field.
1435	 */
1436	itr &= ICE_ITR_MASK;
1437
1438	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1439		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1440		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1441}
1442
1443/**
1444 * ice_enable_interrupt - re-enable MSI-X interrupt
1445 * @q_vector: the vector associated with the interrupt to enable
1446 *
1447 * If the VSI is down, the interrupt will not be re-enabled. Also,
1448 * when enabling the interrupt always reset the wb_on_itr to false
1449 * and trigger a software interrupt to clean out internal state.
 
1450 */
1451static void ice_enable_interrupt(struct ice_q_vector *q_vector)
1452{
1453	struct ice_vsi *vsi = q_vector->vsi;
1454	bool wb_en = q_vector->wb_on_itr;
1455	u32 itr_val;
1456
1457	if (test_bit(ICE_DOWN, vsi->state))
1458		return;
1459
1460	/* trigger an ITR delayed software interrupt when exiting busy poll, to
1461	 * make sure to catch any pending cleanups that might have been missed
1462	 * due to interrupt state transition. If busy poll or poll isn't
1463	 * enabled, then don't update ITR, and just enable the interrupt.
1464	 */
1465	if (!wb_en) {
1466		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1467	} else {
1468		q_vector->wb_on_itr = false;
1469
1470		/* do two things here with a single write. Set up the third ITR
1471		 * index to be used for software interrupt moderation, and then
1472		 * trigger a software interrupt with a rate limit of 20K on
1473		 * software interrupts, this will help avoid high interrupt
1474		 * loads due to frequently polling and exiting polling.
1475		 */
1476		itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
 
 
 
 
1477		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1478			   ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
1479			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1480	}
1481	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1482}
1483
1484/**
1485 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1486 * @q_vector: q_vector to set WB_ON_ITR on
1487 *
1488 * We need to tell hardware to write-back completed descriptors even when
1489 * interrupts are disabled. Descriptors will be written back on cache line
1490 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1491 * descriptors may not be written back if they don't fill a cache line until
1492 * the next interrupt.
1493 *
1494 * This sets the write-back frequency to whatever was set previously for the
1495 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1496 * aren't meddling with the INTENA_M bit.
1497 */
1498static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1499{
1500	struct ice_vsi *vsi = q_vector->vsi;
1501
1502	/* already in wb_on_itr mode no need to change it */
1503	if (q_vector->wb_on_itr)
1504		return;
1505
1506	/* use previously set ITR values for all of the ITR indices by
1507	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1508	 * be static in non-adaptive mode (user configured)
1509	 */
1510	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1511	     FIELD_PREP(GLINT_DYN_CTL_ITR_INDX_M, ICE_ITR_NONE) |
1512	     FIELD_PREP(GLINT_DYN_CTL_INTENA_MSK_M, 1) |
1513	     FIELD_PREP(GLINT_DYN_CTL_WB_ON_ITR_M, 1));
1514
1515	q_vector->wb_on_itr = true;
1516}
1517
1518/**
1519 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1520 * @napi: napi struct with our devices info in it
1521 * @budget: amount of work driver is allowed to do this pass, in packets
1522 *
1523 * This function will clean all queues associated with a q_vector.
1524 *
1525 * Returns the amount of work done
1526 */
1527int ice_napi_poll(struct napi_struct *napi, int budget)
1528{
1529	struct ice_q_vector *q_vector =
1530				container_of(napi, struct ice_q_vector, napi);
1531	struct ice_tx_ring *tx_ring;
1532	struct ice_rx_ring *rx_ring;
1533	bool clean_complete = true;
 
1534	int budget_per_ring;
1535	int work_done = 0;
1536
1537	/* Since the actual Tx work is minimal, we can give the Tx a larger
1538	 * budget and be more aggressive about cleaning up the Tx descriptors.
1539	 */
1540	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
1541		struct xsk_buff_pool *xsk_pool = READ_ONCE(tx_ring->xsk_pool);
1542		bool wd;
1543
1544		if (xsk_pool)
1545			wd = ice_xmit_zc(tx_ring, xsk_pool);
1546		else if (ice_ring_is_xdp(tx_ring))
1547			wd = true;
1548		else
1549			wd = ice_clean_tx_irq(tx_ring, budget);
1550
1551		if (!wd)
1552			clean_complete = false;
1553	}
1554
1555	/* Handle case where we are called by netpoll with a budget of 0 */
1556	if (unlikely(budget <= 0))
1557		return budget;
1558
1559	/* normally we have 1 Rx ring per q_vector */
1560	if (unlikely(q_vector->num_ring_rx > 1))
1561		/* We attempt to distribute budget to each Rx queue fairly, but
1562		 * don't allow the budget to go below 1 because that would exit
1563		 * polling early.
1564		 */
1565		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1566	else
1567		/* Max of 1 Rx ring in this q_vector so give it the budget */
1568		budget_per_ring = budget;
1569
1570	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
1571		struct xsk_buff_pool *xsk_pool = READ_ONCE(rx_ring->xsk_pool);
1572		int cleaned;
1573
1574		/* A dedicated path for zero-copy allows making a single
1575		 * comparison in the irq context instead of many inside the
1576		 * ice_clean_rx_irq function and makes the codebase cleaner.
1577		 */
1578		cleaned = rx_ring->xsk_pool ?
1579			  ice_clean_rx_irq_zc(rx_ring, xsk_pool, budget_per_ring) :
1580			  ice_clean_rx_irq(rx_ring, budget_per_ring);
1581		work_done += cleaned;
1582		/* if we clean as many as budgeted, we must not be done */
1583		if (cleaned >= budget_per_ring)
1584			clean_complete = false;
1585	}
1586
1587	/* If work not completed, return budget and polling will return */
1588	if (!clean_complete) {
1589		/* Set the writeback on ITR so partial completions of
1590		 * cache-lines will still continue even if we're polling.
1591		 */
1592		ice_set_wb_on_itr(q_vector);
1593		return budget;
1594	}
1595
1596	/* Exit the polling mode, but don't re-enable interrupts if stack might
1597	 * poll us due to busy-polling
1598	 */
1599	if (napi_complete_done(napi, work_done)) {
1600		ice_net_dim(q_vector);
1601		ice_enable_interrupt(q_vector);
1602	} else {
1603		ice_set_wb_on_itr(q_vector);
1604	}
1605
1606	return min_t(int, work_done, budget - 1);
1607}
1608
1609/**
1610 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1611 * @tx_ring: the ring to be checked
1612 * @size: the size buffer we want to assure is available
1613 *
1614 * Returns -EBUSY if a stop is needed, else 0
1615 */
1616static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1617{
1618	netif_tx_stop_queue(txring_txq(tx_ring));
1619	/* Memory barrier before checking head and tail */
1620	smp_mb();
1621
1622	/* Check again in a case another CPU has just made room available. */
1623	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1624		return -EBUSY;
1625
1626	/* A reprieve! - use start_queue because it doesn't call schedule */
1627	netif_tx_start_queue(txring_txq(tx_ring));
1628	++tx_ring->ring_stats->tx_stats.restart_q;
1629	return 0;
1630}
1631
1632/**
1633 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1634 * @tx_ring: the ring to be checked
1635 * @size:    the size buffer we want to assure is available
1636 *
1637 * Returns 0 if stop is not needed
1638 */
1639static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1640{
1641	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1642		return 0;
1643
1644	return __ice_maybe_stop_tx(tx_ring, size);
1645}
1646
1647/**
1648 * ice_tx_map - Build the Tx descriptor
1649 * @tx_ring: ring to send buffer on
1650 * @first: first buffer info buffer to use
1651 * @off: pointer to struct that holds offload parameters
1652 *
1653 * This function loops over the skb data pointed to by *first
1654 * and gets a physical address for each memory location and programs
1655 * it and the length into the transmit descriptor.
1656 */
1657static void
1658ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
1659	   struct ice_tx_offload_params *off)
1660{
1661	u64 td_offset, td_tag, td_cmd;
1662	u16 i = tx_ring->next_to_use;
1663	unsigned int data_len, size;
1664	struct ice_tx_desc *tx_desc;
1665	struct ice_tx_buf *tx_buf;
1666	struct sk_buff *skb;
1667	skb_frag_t *frag;
1668	dma_addr_t dma;
1669	bool kick;
1670
1671	td_tag = off->td_l2tag1;
1672	td_cmd = off->td_cmd;
1673	td_offset = off->td_offset;
1674	skb = first->skb;
1675
1676	data_len = skb->data_len;
1677	size = skb_headlen(skb);
1678
1679	tx_desc = ICE_TX_DESC(tx_ring, i);
1680
1681	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1682		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1683		td_tag = first->vid;
 
1684	}
1685
1686	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1687
1688	tx_buf = first;
1689
1690	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1691		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1692
1693		if (dma_mapping_error(tx_ring->dev, dma))
1694			goto dma_error;
1695
1696		/* record length, and DMA address */
1697		dma_unmap_len_set(tx_buf, len, size);
1698		dma_unmap_addr_set(tx_buf, dma, dma);
1699
1700		/* align size to end of page */
1701		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1702		tx_desc->buf_addr = cpu_to_le64(dma);
1703
1704		/* account for data chunks larger than the hardware
1705		 * can handle
1706		 */
1707		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1708			tx_desc->cmd_type_offset_bsz =
1709				ice_build_ctob(td_cmd, td_offset, max_data,
1710					       td_tag);
1711
1712			tx_desc++;
1713			i++;
1714
1715			if (i == tx_ring->count) {
1716				tx_desc = ICE_TX_DESC(tx_ring, 0);
1717				i = 0;
1718			}
1719
1720			dma += max_data;
1721			size -= max_data;
1722
1723			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1724			tx_desc->buf_addr = cpu_to_le64(dma);
1725		}
1726
1727		if (likely(!data_len))
1728			break;
1729
1730		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1731							      size, td_tag);
1732
1733		tx_desc++;
1734		i++;
1735
1736		if (i == tx_ring->count) {
1737			tx_desc = ICE_TX_DESC(tx_ring, 0);
1738			i = 0;
1739		}
1740
1741		size = skb_frag_size(frag);
1742		data_len -= size;
1743
1744		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1745				       DMA_TO_DEVICE);
1746
1747		tx_buf = &tx_ring->tx_buf[i];
1748		tx_buf->type = ICE_TX_BUF_FRAG;
1749	}
1750
 
 
 
1751	/* record SW timestamp if HW timestamp is not available */
1752	skb_tx_timestamp(first->skb);
1753
1754	i++;
1755	if (i == tx_ring->count)
1756		i = 0;
1757
1758	/* write last descriptor with RS and EOP bits */
1759	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1760	tx_desc->cmd_type_offset_bsz =
1761			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1762
1763	/* Force memory writes to complete before letting h/w know there
1764	 * are new descriptors to fetch.
1765	 *
1766	 * We also use this memory barrier to make certain all of the
1767	 * status bits have been updated before next_to_watch is written.
1768	 */
1769	wmb();
1770
1771	/* set next_to_watch value indicating a packet is present */
1772	first->next_to_watch = tx_desc;
1773
1774	tx_ring->next_to_use = i;
1775
1776	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1777
1778	/* notify HW of packet */
1779	kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
1780				      netdev_xmit_more());
1781	if (kick)
1782		/* notify HW of packet */
1783		writel(i, tx_ring->tail);
1784
1785	return;
1786
1787dma_error:
1788	/* clear DMA mappings for failed tx_buf map */
1789	for (;;) {
1790		tx_buf = &tx_ring->tx_buf[i];
1791		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1792		if (tx_buf == first)
1793			break;
1794		if (i == 0)
1795			i = tx_ring->count;
1796		i--;
1797	}
1798
1799	tx_ring->next_to_use = i;
1800}
1801
1802/**
1803 * ice_tx_csum - Enable Tx checksum offloads
1804 * @first: pointer to the first descriptor
1805 * @off: pointer to struct that holds offload parameters
1806 *
1807 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1808 */
1809static
1810int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1811{
1812	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1813	struct sk_buff *skb = first->skb;
1814	union {
1815		struct iphdr *v4;
1816		struct ipv6hdr *v6;
1817		unsigned char *hdr;
1818	} ip;
1819	union {
1820		struct tcphdr *tcp;
1821		unsigned char *hdr;
1822	} l4;
1823	__be16 frag_off, protocol;
1824	unsigned char *exthdr;
1825	u32 offset, cmd = 0;
1826	u8 l4_proto = 0;
1827
1828	if (skb->ip_summed != CHECKSUM_PARTIAL)
1829		return 0;
1830
1831	protocol = vlan_get_protocol(skb);
1832
1833	if (eth_p_mpls(protocol)) {
1834		ip.hdr = skb_inner_network_header(skb);
1835		l4.hdr = skb_checksum_start(skb);
1836	} else {
1837		ip.hdr = skb_network_header(skb);
1838		l4.hdr = skb_transport_header(skb);
1839	}
1840
1841	/* compute outer L2 header size */
1842	l2_len = ip.hdr - skb->data;
1843	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1844
1845	/* set the tx_flags to indicate the IP protocol type. this is
1846	 * required so that checksum header computation below is accurate.
1847	 */
1848	if (ip.v4->version == 4)
1849		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1850	else if (ip.v6->version == 6)
1851		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1852
1853	if (skb->encapsulation) {
1854		bool gso_ena = false;
1855		u32 tunnel = 0;
1856
1857		/* define outer network header type */
1858		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1859			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1860				  ICE_TX_CTX_EIPT_IPV4 :
1861				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1862			l4_proto = ip.v4->protocol;
1863		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1864			int ret;
1865
1866			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1867			exthdr = ip.hdr + sizeof(*ip.v6);
1868			l4_proto = ip.v6->nexthdr;
1869			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1870					       &l4_proto, &frag_off);
1871			if (ret < 0)
1872				return -1;
1873		}
1874
1875		/* define outer transport */
1876		switch (l4_proto) {
1877		case IPPROTO_UDP:
1878			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1879			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1880			break;
1881		case IPPROTO_GRE:
1882			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1883			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1884			break;
1885		case IPPROTO_IPIP:
1886		case IPPROTO_IPV6:
1887			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1888			l4.hdr = skb_inner_network_header(skb);
1889			break;
1890		default:
1891			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1892				return -1;
1893
1894			skb_checksum_help(skb);
1895			return 0;
1896		}
1897
1898		/* compute outer L3 header size */
1899		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1900			  ICE_TXD_CTX_QW0_EIPLEN_S;
1901
1902		/* switch IP header pointer from outer to inner header */
1903		ip.hdr = skb_inner_network_header(skb);
1904
1905		/* compute tunnel header size */
1906		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1907			   ICE_TXD_CTX_QW0_NATLEN_S;
1908
1909		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1910		/* indicate if we need to offload outer UDP header */
1911		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1912		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1913			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1914
1915		/* record tunnel offload values */
1916		off->cd_tunnel_params |= tunnel;
1917
1918		/* set DTYP=1 to indicate that it's an Tx context descriptor
1919		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1920		 */
1921		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1922
1923		/* switch L4 header pointer from outer to inner */
1924		l4.hdr = skb_inner_transport_header(skb);
1925		l4_proto = 0;
1926
1927		/* reset type as we transition from outer to inner headers */
1928		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1929		if (ip.v4->version == 4)
1930			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1931		if (ip.v6->version == 6)
1932			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1933	}
1934
1935	/* Enable IP checksum offloads */
1936	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1937		l4_proto = ip.v4->protocol;
1938		/* the stack computes the IP header already, the only time we
1939		 * need the hardware to recompute it is in the case of TSO.
1940		 */
1941		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1942			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1943		else
1944			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1945
1946	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1947		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1948		exthdr = ip.hdr + sizeof(*ip.v6);
1949		l4_proto = ip.v6->nexthdr;
1950		if (l4.hdr != exthdr)
1951			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1952					 &frag_off);
1953	} else {
1954		return -1;
1955	}
1956
1957	/* compute inner L3 header size */
1958	l3_len = l4.hdr - ip.hdr;
1959	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1960
1961	/* Enable L4 checksum offloads */
1962	switch (l4_proto) {
1963	case IPPROTO_TCP:
1964		/* enable checksum offloads */
1965		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1966		l4_len = l4.tcp->doff;
1967		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1968		break;
1969	case IPPROTO_UDP:
1970		/* enable UDP checksum offload */
1971		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1972		l4_len = (sizeof(struct udphdr) >> 2);
1973		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1974		break;
1975	case IPPROTO_SCTP:
1976		/* enable SCTP checksum offload */
1977		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1978		l4_len = sizeof(struct sctphdr) >> 2;
1979		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1980		break;
1981
1982	default:
1983		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1984			return -1;
1985		skb_checksum_help(skb);
1986		return 0;
1987	}
1988
1989	off->td_cmd |= cmd;
1990	off->td_offset |= offset;
1991	return 1;
1992}
1993
1994/**
1995 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1996 * @tx_ring: ring to send buffer on
1997 * @first: pointer to struct ice_tx_buf
1998 *
1999 * Checks the skb and set up correspondingly several generic transmit flags
2000 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2001 */
2002static void
2003ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
2004{
2005	struct sk_buff *skb = first->skb;
2006
2007	/* nothing left to do, software offloaded VLAN */
2008	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
2009		return;
2010
2011	/* the VLAN ethertype/tpid is determined by VSI configuration and netdev
2012	 * feature flags, which the driver only allows either 802.1Q or 802.1ad
2013	 * VLAN offloads exclusively so we only care about the VLAN ID here
2014	 */
2015	if (skb_vlan_tag_present(skb)) {
2016		first->vid = skb_vlan_tag_get(skb);
2017		if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
2018			first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
2019		else
2020			first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
2021	}
2022
2023	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
2024}
2025
2026/**
2027 * ice_tso - computes mss and TSO length to prepare for TSO
2028 * @first: pointer to struct ice_tx_buf
2029 * @off: pointer to struct that holds offload parameters
2030 *
2031 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
2032 */
2033static
2034int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2035{
2036	struct sk_buff *skb = first->skb;
2037	union {
2038		struct iphdr *v4;
2039		struct ipv6hdr *v6;
2040		unsigned char *hdr;
2041	} ip;
2042	union {
2043		struct tcphdr *tcp;
2044		struct udphdr *udp;
2045		unsigned char *hdr;
2046	} l4;
2047	u64 cd_mss, cd_tso_len;
2048	__be16 protocol;
2049	u32 paylen;
2050	u8 l4_start;
2051	int err;
2052
2053	if (skb->ip_summed != CHECKSUM_PARTIAL)
2054		return 0;
2055
2056	if (!skb_is_gso(skb))
2057		return 0;
2058
2059	err = skb_cow_head(skb, 0);
2060	if (err < 0)
2061		return err;
2062
2063	protocol = vlan_get_protocol(skb);
2064
2065	if (eth_p_mpls(protocol))
2066		ip.hdr = skb_inner_network_header(skb);
2067	else
2068		ip.hdr = skb_network_header(skb);
2069	l4.hdr = skb_checksum_start(skb);
2070
2071	/* initialize outer IP header fields */
2072	if (ip.v4->version == 4) {
2073		ip.v4->tot_len = 0;
2074		ip.v4->check = 0;
2075	} else {
2076		ip.v6->payload_len = 0;
2077	}
2078
2079	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2080					 SKB_GSO_GRE_CSUM |
2081					 SKB_GSO_IPXIP4 |
2082					 SKB_GSO_IPXIP6 |
2083					 SKB_GSO_UDP_TUNNEL |
2084					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2085		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2086		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2087			l4.udp->len = 0;
2088
2089			/* determine offset of outer transport header */
2090			l4_start = (u8)(l4.hdr - skb->data);
2091
2092			/* remove payload length from outer checksum */
2093			paylen = skb->len - l4_start;
2094			csum_replace_by_diff(&l4.udp->check,
2095					     (__force __wsum)htonl(paylen));
2096		}
2097
2098		/* reset pointers to inner headers */
 
 
2099		ip.hdr = skb_inner_network_header(skb);
2100		l4.hdr = skb_inner_transport_header(skb);
2101
2102		/* initialize inner IP header fields */
2103		if (ip.v4->version == 4) {
2104			ip.v4->tot_len = 0;
2105			ip.v4->check = 0;
2106		} else {
2107			ip.v6->payload_len = 0;
2108		}
2109	}
2110
2111	/* determine offset of transport header */
2112	l4_start = (u8)(l4.hdr - skb->data);
2113
2114	/* remove payload length from checksum */
2115	paylen = skb->len - l4_start;
2116
2117	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2118		csum_replace_by_diff(&l4.udp->check,
2119				     (__force __wsum)htonl(paylen));
2120		/* compute length of UDP segmentation header */
2121		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2122	} else {
2123		csum_replace_by_diff(&l4.tcp->check,
2124				     (__force __wsum)htonl(paylen));
2125		/* compute length of TCP segmentation header */
2126		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2127	}
2128
2129	/* update gso_segs and bytecount */
2130	first->gso_segs = skb_shinfo(skb)->gso_segs;
2131	first->bytecount += (first->gso_segs - 1) * off->header_len;
2132
2133	cd_tso_len = skb->len - off->header_len;
2134	cd_mss = skb_shinfo(skb)->gso_size;
2135
2136	/* record cdesc_qw1 with TSO parameters */
2137	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2138			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2139			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2140			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2141	first->tx_flags |= ICE_TX_FLAGS_TSO;
2142	return 1;
2143}
2144
2145/**
2146 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2147 * @size: transmit request size in bytes
2148 *
2149 * Due to hardware alignment restrictions (4K alignment), we need to
2150 * assume that we can have no more than 12K of data per descriptor, even
2151 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2152 * Thus, we need to divide by 12K. But division is slow! Instead,
2153 * we decompose the operation into shifts and one relatively cheap
2154 * multiply operation.
2155 *
2156 * To divide by 12K, we first divide by 4K, then divide by 3:
2157 *     To divide by 4K, shift right by 12 bits
2158 *     To divide by 3, multiply by 85, then divide by 256
2159 *     (Divide by 256 is done by shifting right by 8 bits)
2160 * Finally, we add one to round up. Because 256 isn't an exact multiple of
2161 * 3, we'll underestimate near each multiple of 12K. This is actually more
2162 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2163 * segment. For our purposes this is accurate out to 1M which is orders of
2164 * magnitude greater than our largest possible GSO size.
2165 *
2166 * This would then be implemented as:
2167 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2168 *
2169 * Since multiplication and division are commutative, we can reorder
2170 * operations into:
2171 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2172 */
2173static unsigned int ice_txd_use_count(unsigned int size)
2174{
2175	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2176}
2177
2178/**
2179 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2180 * @skb: send buffer
2181 *
2182 * Returns number of data descriptors needed for this skb.
2183 */
2184static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2185{
2186	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2187	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2188	unsigned int count = 0, size = skb_headlen(skb);
2189
2190	for (;;) {
2191		count += ice_txd_use_count(size);
2192
2193		if (!nr_frags--)
2194			break;
2195
2196		size = skb_frag_size(frag++);
2197	}
2198
2199	return count;
2200}
2201
2202/**
2203 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2204 * @skb: send buffer
2205 *
2206 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2207 * and so we need to figure out the cases where we need to linearize the skb.
2208 *
2209 * For TSO we need to count the TSO header and segment payload separately.
2210 * As such we need to check cases where we have 7 fragments or more as we
2211 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2212 * the segment payload in the first descriptor, and another 7 for the
2213 * fragments.
2214 */
2215static bool __ice_chk_linearize(struct sk_buff *skb)
2216{
2217	const skb_frag_t *frag, *stale;
2218	int nr_frags, sum;
2219
2220	/* no need to check if number of frags is less than 7 */
2221	nr_frags = skb_shinfo(skb)->nr_frags;
2222	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2223		return false;
2224
2225	/* We need to walk through the list and validate that each group
2226	 * of 6 fragments totals at least gso_size.
2227	 */
2228	nr_frags -= ICE_MAX_BUF_TXD - 2;
2229	frag = &skb_shinfo(skb)->frags[0];
2230
2231	/* Initialize size to the negative value of gso_size minus 1. We
2232	 * use this as the worst case scenario in which the frag ahead
2233	 * of us only provides one byte which is why we are limited to 6
2234	 * descriptors for a single transmit as the header and previous
2235	 * fragment are already consuming 2 descriptors.
2236	 */
2237	sum = 1 - skb_shinfo(skb)->gso_size;
2238
2239	/* Add size of frags 0 through 4 to create our initial sum */
2240	sum += skb_frag_size(frag++);
2241	sum += skb_frag_size(frag++);
2242	sum += skb_frag_size(frag++);
2243	sum += skb_frag_size(frag++);
2244	sum += skb_frag_size(frag++);
2245
2246	/* Walk through fragments adding latest fragment, testing it, and
2247	 * then removing stale fragments from the sum.
2248	 */
2249	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2250		int stale_size = skb_frag_size(stale);
2251
2252		sum += skb_frag_size(frag++);
2253
2254		/* The stale fragment may present us with a smaller
2255		 * descriptor than the actual fragment size. To account
2256		 * for that we need to remove all the data on the front and
2257		 * figure out what the remainder would be in the last
2258		 * descriptor associated with the fragment.
2259		 */
2260		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2261			int align_pad = -(skb_frag_off(stale)) &
2262					(ICE_MAX_READ_REQ_SIZE - 1);
2263
2264			sum -= align_pad;
2265			stale_size -= align_pad;
2266
2267			do {
2268				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2269				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2270			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2271		}
2272
2273		/* if sum is negative we failed to make sufficient progress */
2274		if (sum < 0)
2275			return true;
2276
2277		if (!nr_frags--)
2278			break;
2279
2280		sum -= stale_size;
2281	}
2282
2283	return false;
2284}
2285
2286/**
2287 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2288 * @skb:      send buffer
2289 * @count:    number of buffers used
2290 *
2291 * Note: Our HW can't scatter-gather more than 8 fragments to build
2292 * a packet on the wire and so we need to figure out the cases where we
2293 * need to linearize the skb.
2294 */
2295static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2296{
2297	/* Both TSO and single send will work if count is less than 8 */
2298	if (likely(count < ICE_MAX_BUF_TXD))
2299		return false;
2300
2301	if (skb_is_gso(skb))
2302		return __ice_chk_linearize(skb);
2303
2304	/* we can support up to 8 data buffers for a single send */
2305	return count != ICE_MAX_BUF_TXD;
2306}
2307
2308/**
2309 * ice_tstamp - set up context descriptor for hardware timestamp
2310 * @tx_ring: pointer to the Tx ring to send buffer on
2311 * @skb: pointer to the SKB we're sending
2312 * @first: Tx buffer
2313 * @off: Tx offload parameters
2314 */
2315static void
2316ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
2317	   struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2318{
2319	s8 idx;
2320
2321	/* only timestamp the outbound packet if the user has requested it */
2322	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2323		return;
2324
 
 
 
2325	/* Tx timestamps cannot be sampled when doing TSO */
2326	if (first->tx_flags & ICE_TX_FLAGS_TSO)
2327		return;
2328
2329	/* Grab an open timestamp slot */
2330	idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2331	if (idx < 0) {
2332		tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++;
2333		return;
2334	}
2335
2336	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2337			     (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2338			     ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2339	first->tx_flags |= ICE_TX_FLAGS_TSYN;
2340}
2341
2342/**
2343 * ice_xmit_frame_ring - Sends buffer on Tx ring
2344 * @skb: send buffer
2345 * @tx_ring: ring to send buffer on
2346 *
2347 * Returns NETDEV_TX_OK if sent, else an error code
2348 */
2349static netdev_tx_t
2350ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
2351{
2352	struct ice_tx_offload_params offload = { 0 };
2353	struct ice_vsi *vsi = tx_ring->vsi;
2354	struct ice_tx_buf *first;
2355	struct ethhdr *eth;
2356	unsigned int count;
2357	int tso, csum;
2358
2359	ice_trace(xmit_frame_ring, tx_ring, skb);
2360
2361	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
2362		goto out_drop;
2363
2364	count = ice_xmit_desc_count(skb);
2365	if (ice_chk_linearize(skb, count)) {
2366		if (__skb_linearize(skb))
2367			goto out_drop;
2368		count = ice_txd_use_count(skb->len);
2369		tx_ring->ring_stats->tx_stats.tx_linearize++;
2370	}
2371
2372	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2373	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2374	 *       + 4 desc gap to avoid the cache line where head is,
2375	 *       + 1 desc for context descriptor,
2376	 * otherwise try next time
2377	 */
2378	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2379			      ICE_DESCS_FOR_CTX_DESC)) {
2380		tx_ring->ring_stats->tx_stats.tx_busy++;
2381		return NETDEV_TX_BUSY;
2382	}
2383
2384	/* prefetch for bql data which is infrequently used */
2385	netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
2386
2387	offload.tx_ring = tx_ring;
2388
2389	/* record the location of the first descriptor for this packet */
2390	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2391	first->skb = skb;
2392	first->type = ICE_TX_BUF_SKB;
2393	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2394	first->gso_segs = 1;
2395	first->tx_flags = 0;
2396
2397	/* prepare the VLAN tagging flags for Tx */
2398	ice_tx_prepare_vlan_flags(tx_ring, first);
2399	if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2400		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2401					(ICE_TX_CTX_DESC_IL2TAG2 <<
2402					ICE_TXD_CTX_QW1_CMD_S));
2403		offload.cd_l2tag2 = first->vid;
2404	}
2405
2406	/* set up TSO offload */
2407	tso = ice_tso(first, &offload);
2408	if (tso < 0)
2409		goto out_drop;
2410
2411	/* always set up Tx checksum offload */
2412	csum = ice_tx_csum(first, &offload);
2413	if (csum < 0)
2414		goto out_drop;
2415
2416	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2417	eth = (struct ethhdr *)skb_mac_header(skb);
2418	if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2419		      eth->h_proto == htons(ETH_P_LLDP)) &&
2420		     vsi->type == ICE_VSI_PF &&
2421		     vsi->port_info->qos_cfg.is_sw_lldp))
2422		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2423					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2424					ICE_TXD_CTX_QW1_CMD_S);
2425
2426	ice_tstamp(tx_ring, skb, first, &offload);
2427	if (ice_is_switchdev_running(vsi->back) && vsi->type != ICE_VSI_SF)
2428		ice_eswitch_set_target_vsi(skb, &offload);
2429
2430	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2431		struct ice_tx_ctx_desc *cdesc;
2432		u16 i = tx_ring->next_to_use;
2433
2434		/* grab the next descriptor */
2435		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2436		i++;
2437		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2438
2439		/* setup context descriptor */
2440		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2441		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2442		cdesc->rsvd = cpu_to_le16(0);
2443		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2444	}
2445
2446	ice_tx_map(tx_ring, first, &offload);
2447	return NETDEV_TX_OK;
2448
2449out_drop:
2450	ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2451	dev_kfree_skb_any(skb);
2452	return NETDEV_TX_OK;
2453}
2454
2455/**
2456 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2457 * @skb: send buffer
2458 * @netdev: network interface device structure
2459 *
2460 * Returns NETDEV_TX_OK if sent, else an error code
2461 */
2462netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2463{
2464	struct ice_netdev_priv *np = netdev_priv(netdev);
2465	struct ice_vsi *vsi = np->vsi;
2466	struct ice_tx_ring *tx_ring;
2467
2468	tx_ring = vsi->tx_rings[skb->queue_mapping];
2469
2470	/* hardware can't handle really short frames, hardware padding works
2471	 * beyond this point
2472	 */
2473	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2474		return NETDEV_TX_OK;
2475
2476	return ice_xmit_frame_ring(skb, tx_ring);
2477}
2478
2479/**
2480 * ice_get_dscp_up - return the UP/TC value for a SKB
2481 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
2482 * @skb: SKB to query for info to determine UP/TC
2483 *
2484 * This function is to only be called when the PF is in L3 DSCP PFC mode
2485 */
2486static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
2487{
2488	u8 dscp = 0;
2489
2490	if (skb->protocol == htons(ETH_P_IP))
2491		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
2492	else if (skb->protocol == htons(ETH_P_IPV6))
2493		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
2494
2495	return dcbcfg->dscp_map[dscp];
2496}
2497
2498u16
2499ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
2500		 struct net_device *sb_dev)
2501{
2502	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2503	struct ice_dcbx_cfg *dcbcfg;
2504
2505	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
2506	if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
2507		skb->priority = ice_get_dscp_up(dcbcfg, skb);
2508
2509	return netdev_pick_tx(netdev, skb, sb_dev);
2510}
2511
2512/**
2513 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2514 * @tx_ring: tx_ring to clean
2515 */
2516void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
2517{
2518	struct ice_vsi *vsi = tx_ring->vsi;
2519	s16 i = tx_ring->next_to_clean;
2520	int budget = ICE_DFLT_IRQ_WORK;
2521	struct ice_tx_desc *tx_desc;
2522	struct ice_tx_buf *tx_buf;
2523
2524	tx_buf = &tx_ring->tx_buf[i];
2525	tx_desc = ICE_TX_DESC(tx_ring, i);
2526	i -= tx_ring->count;
2527
2528	do {
2529		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2530
2531		/* if next_to_watch is not set then there is no pending work */
2532		if (!eop_desc)
2533			break;
2534
2535		/* prevent any other reads prior to eop_desc */
2536		smp_rmb();
2537
2538		/* if the descriptor isn't done, no work to do */
2539		if (!(eop_desc->cmd_type_offset_bsz &
2540		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2541			break;
2542
2543		/* clear next_to_watch to prevent false hangs */
2544		tx_buf->next_to_watch = NULL;
2545		tx_desc->buf_addr = 0;
2546		tx_desc->cmd_type_offset_bsz = 0;
2547
2548		/* move past filter desc */
2549		tx_buf++;
2550		tx_desc++;
2551		i++;
2552		if (unlikely(!i)) {
2553			i -= tx_ring->count;
2554			tx_buf = tx_ring->tx_buf;
2555			tx_desc = ICE_TX_DESC(tx_ring, 0);
2556		}
2557
2558		/* unmap the data header */
2559		if (dma_unmap_len(tx_buf, len))
2560			dma_unmap_single(tx_ring->dev,
2561					 dma_unmap_addr(tx_buf, dma),
2562					 dma_unmap_len(tx_buf, len),
2563					 DMA_TO_DEVICE);
2564		if (tx_buf->type == ICE_TX_BUF_DUMMY)
2565			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2566
2567		/* clear next_to_watch to prevent false hangs */
2568		tx_buf->type = ICE_TX_BUF_EMPTY;
2569		tx_buf->tx_flags = 0;
2570		tx_buf->next_to_watch = NULL;
2571		dma_unmap_len_set(tx_buf, len, 0);
2572		tx_desc->buf_addr = 0;
2573		tx_desc->cmd_type_offset_bsz = 0;
2574
2575		/* move past eop_desc for start of next FD desc */
2576		tx_buf++;
2577		tx_desc++;
2578		i++;
2579		if (unlikely(!i)) {
2580			i -= tx_ring->count;
2581			tx_buf = tx_ring->tx_buf;
2582			tx_desc = ICE_TX_DESC(tx_ring, 0);
2583		}
2584
2585		budget--;
2586	} while (likely(budget));
2587
2588	i += tx_ring->count;
2589	tx_ring->next_to_clean = i;
2590
2591	/* re-enable interrupt if needed */
2592	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2593}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* The driver transmit and receive code */
   5
 
 
   6#include <linux/prefetch.h>
   7#include <linux/mm.h>
   8#include <linux/bpf_trace.h>
 
 
   9#include <net/xdp.h>
  10#include "ice_txrx_lib.h"
  11#include "ice_lib.h"
  12#include "ice.h"
  13#include "ice_trace.h"
  14#include "ice_dcb_lib.h"
  15#include "ice_xsk.h"
 
  16
  17#define ICE_RX_HDR_SIZE		256
  18
  19#define FDIR_DESC_RXDID 0x40
  20#define ICE_FDIR_CLEAN_DELAY 10
  21
  22/**
  23 * ice_prgm_fdir_fltr - Program a Flow Director filter
  24 * @vsi: VSI to send dummy packet
  25 * @fdir_desc: flow director descriptor
  26 * @raw_packet: allocated buffer for flow director
  27 */
  28int
  29ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
  30		   u8 *raw_packet)
  31{
  32	struct ice_tx_buf *tx_buf, *first;
  33	struct ice_fltr_desc *f_desc;
  34	struct ice_tx_desc *tx_desc;
  35	struct ice_ring *tx_ring;
  36	struct device *dev;
  37	dma_addr_t dma;
  38	u32 td_cmd;
  39	u16 i;
  40
  41	/* VSI and Tx ring */
  42	if (!vsi)
  43		return -ENOENT;
  44	tx_ring = vsi->tx_rings[0];
  45	if (!tx_ring || !tx_ring->desc)
  46		return -ENOENT;
  47	dev = tx_ring->dev;
  48
  49	/* we are using two descriptors to add/del a filter and we can wait */
  50	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
  51		if (!i)
  52			return -EAGAIN;
  53		msleep_interruptible(1);
  54	}
  55
  56	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
  57			     DMA_TO_DEVICE);
  58
  59	if (dma_mapping_error(dev, dma))
  60		return -EINVAL;
  61
  62	/* grab the next descriptor */
  63	i = tx_ring->next_to_use;
  64	first = &tx_ring->tx_buf[i];
  65	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
  66	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
  67
  68	i++;
  69	i = (i < tx_ring->count) ? i : 0;
  70	tx_desc = ICE_TX_DESC(tx_ring, i);
  71	tx_buf = &tx_ring->tx_buf[i];
  72
  73	i++;
  74	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  75
  76	memset(tx_buf, 0, sizeof(*tx_buf));
  77	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
  78	dma_unmap_addr_set(tx_buf, dma, dma);
  79
  80	tx_desc->buf_addr = cpu_to_le64(dma);
  81	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
  82		 ICE_TX_DESC_CMD_RE;
  83
  84	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
  85	tx_buf->raw_buf = raw_packet;
  86
  87	tx_desc->cmd_type_offset_bsz =
  88		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
  89
  90	/* Force memory write to complete before letting h/w know
  91	 * there are new descriptors to fetch.
  92	 */
  93	wmb();
  94
  95	/* mark the data descriptor to be watched */
  96	first->next_to_watch = tx_desc;
  97
  98	writel(tx_ring->next_to_use, tx_ring->tail);
  99
 100	return 0;
 101}
 102
 103/**
 104 * ice_unmap_and_free_tx_buf - Release a Tx buffer
 105 * @ring: the ring that owns the buffer
 106 * @tx_buf: the buffer to free
 107 */
 108static void
 109ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
 110{
 111	if (tx_buf->skb) {
 112		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
 113			devm_kfree(ring->dev, tx_buf->raw_buf);
 114		else if (ice_ring_is_xdp(ring))
 115			page_frag_free(tx_buf->raw_buf);
 116		else
 117			dev_kfree_skb_any(tx_buf->skb);
 118		if (dma_unmap_len(tx_buf, len))
 119			dma_unmap_single(ring->dev,
 120					 dma_unmap_addr(tx_buf, dma),
 121					 dma_unmap_len(tx_buf, len),
 122					 DMA_TO_DEVICE);
 123	} else if (dma_unmap_len(tx_buf, len)) {
 124		dma_unmap_page(ring->dev,
 125			       dma_unmap_addr(tx_buf, dma),
 126			       dma_unmap_len(tx_buf, len),
 127			       DMA_TO_DEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128	}
 129
 130	tx_buf->next_to_watch = NULL;
 131	tx_buf->skb = NULL;
 132	dma_unmap_len_set(tx_buf, len, 0);
 133	/* tx_buf must be completely set up in the transmit path */
 134}
 135
 136static struct netdev_queue *txring_txq(const struct ice_ring *ring)
 137{
 138	return netdev_get_tx_queue(ring->netdev, ring->q_index);
 139}
 140
 141/**
 142 * ice_clean_tx_ring - Free any empty Tx buffers
 143 * @tx_ring: ring to be cleaned
 144 */
 145void ice_clean_tx_ring(struct ice_ring *tx_ring)
 146{
 
 147	u16 i;
 148
 149	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 150		ice_xsk_clean_xdp_ring(tx_ring);
 151		goto tx_skip_free;
 152	}
 153
 154	/* ring already cleared, nothing to do */
 155	if (!tx_ring->tx_buf)
 156		return;
 157
 158	/* Free all the Tx ring sk_buffs */
 159	for (i = 0; i < tx_ring->count; i++)
 160		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
 161
 162tx_skip_free:
 163	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
 164
 
 
 165	/* Zero out the descriptor ring */
 166	memset(tx_ring->desc, 0, tx_ring->size);
 167
 168	tx_ring->next_to_use = 0;
 169	tx_ring->next_to_clean = 0;
 170
 171	if (!tx_ring->netdev)
 172		return;
 173
 174	/* cleanup Tx queue statistics */
 175	netdev_tx_reset_queue(txring_txq(tx_ring));
 176}
 177
 178/**
 179 * ice_free_tx_ring - Free Tx resources per queue
 180 * @tx_ring: Tx descriptor ring for a specific queue
 181 *
 182 * Free all transmit software resources
 183 */
 184void ice_free_tx_ring(struct ice_ring *tx_ring)
 185{
 
 
 186	ice_clean_tx_ring(tx_ring);
 187	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
 188	tx_ring->tx_buf = NULL;
 189
 190	if (tx_ring->desc) {
 191		dmam_free_coherent(tx_ring->dev, tx_ring->size,
 
 
 192				   tx_ring->desc, tx_ring->dma);
 193		tx_ring->desc = NULL;
 194	}
 195}
 196
 197/**
 198 * ice_clean_tx_irq - Reclaim resources after transmit completes
 199 * @tx_ring: Tx ring to clean
 200 * @napi_budget: Used to determine if we are in netpoll
 201 *
 202 * Returns true if there's any budget left (e.g. the clean is finished)
 203 */
 204static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
 205{
 206	unsigned int total_bytes = 0, total_pkts = 0;
 207	unsigned int budget = ICE_DFLT_IRQ_WORK;
 208	struct ice_vsi *vsi = tx_ring->vsi;
 209	s16 i = tx_ring->next_to_clean;
 210	struct ice_tx_desc *tx_desc;
 211	struct ice_tx_buf *tx_buf;
 212
 
 
 
 213	tx_buf = &tx_ring->tx_buf[i];
 214	tx_desc = ICE_TX_DESC(tx_ring, i);
 215	i -= tx_ring->count;
 216
 217	prefetch(&vsi->state);
 218
 219	do {
 220		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
 221
 222		/* if next_to_watch is not set then there is no work pending */
 223		if (!eop_desc)
 224			break;
 225
 
 
 
 226		smp_rmb();	/* prevent any other reads prior to eop_desc */
 227
 228		ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 229		/* if the descriptor isn't done, no work yet to do */
 230		if (!(eop_desc->cmd_type_offset_bsz &
 231		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
 232			break;
 233
 234		/* clear next_to_watch to prevent false hangs */
 235		tx_buf->next_to_watch = NULL;
 236
 237		/* update the statistics for this packet */
 238		total_bytes += tx_buf->bytecount;
 239		total_pkts += tx_buf->gso_segs;
 240
 241		if (ice_ring_is_xdp(tx_ring))
 242			page_frag_free(tx_buf->raw_buf);
 243		else
 244			/* free the skb */
 245			napi_consume_skb(tx_buf->skb, napi_budget);
 246
 247		/* unmap skb header data */
 248		dma_unmap_single(tx_ring->dev,
 249				 dma_unmap_addr(tx_buf, dma),
 250				 dma_unmap_len(tx_buf, len),
 251				 DMA_TO_DEVICE);
 252
 253		/* clear tx_buf data */
 254		tx_buf->skb = NULL;
 255		dma_unmap_len_set(tx_buf, len, 0);
 256
 257		/* unmap remaining buffers */
 258		while (tx_desc != eop_desc) {
 259			ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
 260			tx_buf++;
 261			tx_desc++;
 262			i++;
 263			if (unlikely(!i)) {
 264				i -= tx_ring->count;
 265				tx_buf = tx_ring->tx_buf;
 266				tx_desc = ICE_TX_DESC(tx_ring, 0);
 267			}
 268
 269			/* unmap any remaining paged data */
 270			if (dma_unmap_len(tx_buf, len)) {
 271				dma_unmap_page(tx_ring->dev,
 272					       dma_unmap_addr(tx_buf, dma),
 273					       dma_unmap_len(tx_buf, len),
 274					       DMA_TO_DEVICE);
 275				dma_unmap_len_set(tx_buf, len, 0);
 276			}
 277		}
 278		ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
 279
 280		/* move us one more past the eop_desc for start of next pkt */
 281		tx_buf++;
 282		tx_desc++;
 283		i++;
 284		if (unlikely(!i)) {
 285			i -= tx_ring->count;
 286			tx_buf = tx_ring->tx_buf;
 287			tx_desc = ICE_TX_DESC(tx_ring, 0);
 288		}
 289
 290		prefetch(tx_desc);
 291
 292		/* update budget accounting */
 293		budget--;
 294	} while (likely(budget));
 295
 296	i += tx_ring->count;
 297	tx_ring->next_to_clean = i;
 298
 299	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
 300
 301	if (ice_ring_is_xdp(tx_ring))
 302		return !!budget;
 303
 304	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
 305				  total_bytes);
 306
 307#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 308	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
 309		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 310		/* Make sure that anybody stopping the queue after this
 311		 * sees the new next_to_clean.
 312		 */
 313		smp_mb();
 314		if (__netif_subqueue_stopped(tx_ring->netdev,
 315					     tx_ring->q_index) &&
 316		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
 317			netif_wake_subqueue(tx_ring->netdev,
 318					    tx_ring->q_index);
 319			++tx_ring->tx_stats.restart_q;
 320		}
 321	}
 322
 323	return !!budget;
 324}
 325
 326/**
 327 * ice_setup_tx_ring - Allocate the Tx descriptors
 328 * @tx_ring: the Tx ring to set up
 329 *
 330 * Return 0 on success, negative on error
 331 */
 332int ice_setup_tx_ring(struct ice_ring *tx_ring)
 333{
 334	struct device *dev = tx_ring->dev;
 
 335
 336	if (!dev)
 337		return -ENOMEM;
 338
 339	/* warn if we are about to overwrite the pointer */
 340	WARN_ON(tx_ring->tx_buf);
 341	tx_ring->tx_buf =
 342		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
 343			     GFP_KERNEL);
 344	if (!tx_ring->tx_buf)
 345		return -ENOMEM;
 346
 347	/* round up to nearest page */
 348	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
 349			      PAGE_SIZE);
 350	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
 351					    GFP_KERNEL);
 352	if (!tx_ring->desc) {
 353		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 354			tx_ring->size);
 355		goto err;
 356	}
 357
 358	tx_ring->next_to_use = 0;
 359	tx_ring->next_to_clean = 0;
 360	tx_ring->tx_stats.prev_pkt = -1;
 361	return 0;
 362
 363err:
 364	devm_kfree(dev, tx_ring->tx_buf);
 365	tx_ring->tx_buf = NULL;
 366	return -ENOMEM;
 367}
 368
 369/**
 370 * ice_clean_rx_ring - Free Rx buffers
 371 * @rx_ring: ring to be cleaned
 372 */
 373void ice_clean_rx_ring(struct ice_ring *rx_ring)
 374{
 
 375	struct device *dev = rx_ring->dev;
 
 376	u16 i;
 377
 378	/* ring already cleared, nothing to do */
 379	if (!rx_ring->rx_buf)
 380		return;
 381
 382	if (rx_ring->skb) {
 383		dev_kfree_skb(rx_ring->skb);
 384		rx_ring->skb = NULL;
 385	}
 386
 387	if (rx_ring->xsk_pool) {
 388		ice_xsk_clean_rx_ring(rx_ring);
 389		goto rx_skip_free;
 390	}
 391
 
 
 
 
 
 392	/* Free all the Rx ring sk_buffs */
 393	for (i = 0; i < rx_ring->count; i++) {
 394		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
 395
 396		if (!rx_buf->page)
 397			continue;
 398
 399		/* Invalidate cache lines that may have been written to by
 400		 * device so that we avoid corrupting memory.
 401		 */
 402		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
 403					      rx_buf->page_offset,
 404					      rx_ring->rx_buf_len,
 405					      DMA_FROM_DEVICE);
 406
 407		/* free resources associated with mapping */
 408		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
 409				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 410		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
 411
 412		rx_buf->page = NULL;
 413		rx_buf->page_offset = 0;
 414	}
 415
 416rx_skip_free:
 417	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
 
 
 
 418
 419	/* Zero out the descriptor ring */
 420	memset(rx_ring->desc, 0, rx_ring->size);
 
 
 421
 422	rx_ring->next_to_alloc = 0;
 423	rx_ring->next_to_clean = 0;
 
 424	rx_ring->next_to_use = 0;
 425}
 426
 427/**
 428 * ice_free_rx_ring - Free Rx resources
 429 * @rx_ring: ring to clean the resources from
 430 *
 431 * Free all receive software resources
 432 */
 433void ice_free_rx_ring(struct ice_ring *rx_ring)
 434{
 
 
 435	ice_clean_rx_ring(rx_ring);
 436	if (rx_ring->vsi->type == ICE_VSI_PF)
 437		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 438			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 439	rx_ring->xdp_prog = NULL;
 440	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
 441	rx_ring->rx_buf = NULL;
 
 
 
 
 
 442
 443	if (rx_ring->desc) {
 444		dmam_free_coherent(rx_ring->dev, rx_ring->size,
 
 
 445				   rx_ring->desc, rx_ring->dma);
 446		rx_ring->desc = NULL;
 447	}
 448}
 449
 450/**
 451 * ice_setup_rx_ring - Allocate the Rx descriptors
 452 * @rx_ring: the Rx ring to set up
 453 *
 454 * Return 0 on success, negative on error
 455 */
 456int ice_setup_rx_ring(struct ice_ring *rx_ring)
 457{
 458	struct device *dev = rx_ring->dev;
 
 459
 460	if (!dev)
 461		return -ENOMEM;
 462
 463	/* warn if we are about to overwrite the pointer */
 464	WARN_ON(rx_ring->rx_buf);
 465	rx_ring->rx_buf =
 466		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
 467			     GFP_KERNEL);
 468	if (!rx_ring->rx_buf)
 469		return -ENOMEM;
 470
 471	/* round up to nearest page */
 472	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
 473			      PAGE_SIZE);
 474	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
 475					    GFP_KERNEL);
 476	if (!rx_ring->desc) {
 477		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 478			rx_ring->size);
 479		goto err;
 480	}
 481
 482	rx_ring->next_to_use = 0;
 483	rx_ring->next_to_clean = 0;
 
 484
 485	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 486		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
 487
 488	if (rx_ring->vsi->type == ICE_VSI_PF &&
 489	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 490		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
 491				     rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
 492			goto err;
 493	return 0;
 494
 495err:
 496	devm_kfree(dev, rx_ring->rx_buf);
 497	rx_ring->rx_buf = NULL;
 498	return -ENOMEM;
 499}
 500
 501static unsigned int
 502ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size)
 503{
 504	unsigned int truesize;
 505
 506#if (PAGE_SIZE < 8192)
 507	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
 508#else
 509	truesize = rx_ring->rx_offset ?
 510		SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
 511		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
 512		SKB_DATA_ALIGN(size);
 513#endif
 514	return truesize;
 515}
 516
 517/**
 518 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
 519 * @rx_ring: Rx ring
 520 * @xdp: xdp_buff used as input to the XDP program
 521 * @xdp_prog: XDP program to run
 
 
 522 *
 523 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
 524 */
 525static int
 526ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
 527	    struct bpf_prog *xdp_prog)
 
 528{
 529	struct ice_ring *xdp_ring;
 530	int err, result;
 531	u32 act;
 532
 
 
 
 
 
 533	act = bpf_prog_run_xdp(xdp_prog, xdp);
 534	switch (act) {
 535	case XDP_PASS:
 536		return ICE_XDP_PASS;
 537	case XDP_TX:
 538		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
 539		result = ice_xmit_xdp_buff(xdp, xdp_ring);
 540		if (result == ICE_XDP_CONSUMED)
 
 
 
 541			goto out_failure;
 542		return result;
 543	case XDP_REDIRECT:
 544		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
 545		if (err)
 546			goto out_failure;
 547		return ICE_XDP_REDIR;
 
 548	default:
 549		bpf_warn_invalid_xdp_action(act);
 550		fallthrough;
 551	case XDP_ABORTED:
 552out_failure:
 553		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 554		fallthrough;
 555	case XDP_DROP:
 556		return ICE_XDP_CONSUMED;
 557	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558}
 559
 560/**
 561 * ice_xdp_xmit - submit packets to XDP ring for transmission
 562 * @dev: netdev
 563 * @n: number of XDP frames to be transmitted
 564 * @frames: XDP frames to be transmitted
 565 * @flags: transmit flags
 566 *
 567 * Returns number of frames successfully sent. Failed frames
 568 * will be free'ed by XDP core.
 569 * For error cases, a negative errno code is returned and no-frames
 570 * are transmitted (caller must handle freeing frames).
 571 */
 572int
 573ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
 574	     u32 flags)
 575{
 576	struct ice_netdev_priv *np = netdev_priv(dev);
 577	unsigned int queue_index = smp_processor_id();
 578	struct ice_vsi *vsi = np->vsi;
 579	struct ice_ring *xdp_ring;
 
 580	int nxmit = 0, i;
 581
 582	if (test_bit(ICE_VSI_DOWN, vsi->state))
 583		return -ENETDOWN;
 584
 585	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
 586		return -ENXIO;
 587
 588	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
 589		return -EINVAL;
 590
 591	xdp_ring = vsi->xdp_rings[queue_index];
 
 
 
 
 
 
 
 
 
 
 
 592	for (i = 0; i < n; i++) {
 593		struct xdp_frame *xdpf = frames[i];
 594		int err;
 595
 596		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
 597		if (err != ICE_XDP_TX)
 598			break;
 599		nxmit++;
 600	}
 601
 
 602	if (unlikely(flags & XDP_XMIT_FLUSH))
 603		ice_xdp_ring_update_tail(xdp_ring);
 604
 
 
 
 605	return nxmit;
 606}
 607
 608/**
 609 * ice_alloc_mapped_page - recycle or make a new page
 610 * @rx_ring: ring to use
 611 * @bi: rx_buf struct to modify
 612 *
 613 * Returns true if the page was successfully allocated or
 614 * reused.
 615 */
 616static bool
 617ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
 618{
 619	struct page *page = bi->page;
 620	dma_addr_t dma;
 621
 622	/* since we are recycling buffers we should seldom need to alloc */
 623	if (likely(page))
 624		return true;
 625
 626	/* alloc new page for storage */
 627	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
 628	if (unlikely(!page)) {
 629		rx_ring->rx_stats.alloc_page_failed++;
 630		return false;
 631	}
 632
 633	/* map page for use */
 634	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
 635				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 636
 637	/* if mapping failed free memory back to system since
 638	 * there isn't much point in holding memory we can't use
 639	 */
 640	if (dma_mapping_error(rx_ring->dev, dma)) {
 641		__free_pages(page, ice_rx_pg_order(rx_ring));
 642		rx_ring->rx_stats.alloc_page_failed++;
 643		return false;
 644	}
 645
 646	bi->dma = dma;
 647	bi->page = page;
 648	bi->page_offset = rx_ring->rx_offset;
 649	page_ref_add(page, USHRT_MAX - 1);
 650	bi->pagecnt_bias = USHRT_MAX;
 651
 652	return true;
 653}
 654
 655/**
 656 * ice_alloc_rx_bufs - Replace used receive buffers
 657 * @rx_ring: ring to place buffers on
 658 * @cleaned_count: number of buffers to replace
 659 *
 660 * Returns false if all allocations were successful, true if any fail. Returning
 661 * true signals to the caller that we didn't replace cleaned_count buffers and
 662 * there is more work to do.
 663 *
 664 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
 665 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
 666 * multiple tail writes per call.
 667 */
 668bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
 669{
 670	union ice_32b_rx_flex_desc *rx_desc;
 671	u16 ntu = rx_ring->next_to_use;
 672	struct ice_rx_buf *bi;
 673
 674	/* do nothing if no valid netdev defined */
 675	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
 676	    !cleaned_count)
 677		return false;
 678
 679	/* get the Rx descriptor and buffer based on next_to_use */
 680	rx_desc = ICE_RX_DESC(rx_ring, ntu);
 681	bi = &rx_ring->rx_buf[ntu];
 682
 683	do {
 684		/* if we fail here, we have work remaining */
 685		if (!ice_alloc_mapped_page(rx_ring, bi))
 686			break;
 687
 688		/* sync the buffer for use by the device */
 689		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 690						 bi->page_offset,
 691						 rx_ring->rx_buf_len,
 692						 DMA_FROM_DEVICE);
 693
 694		/* Refresh the desc even if buffer_addrs didn't change
 695		 * because each write-back erases this info.
 696		 */
 697		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 698
 699		rx_desc++;
 700		bi++;
 701		ntu++;
 702		if (unlikely(ntu == rx_ring->count)) {
 703			rx_desc = ICE_RX_DESC(rx_ring, 0);
 704			bi = rx_ring->rx_buf;
 705			ntu = 0;
 706		}
 707
 708		/* clear the status bits for the next_to_use descriptor */
 709		rx_desc->wb.status_error0 = 0;
 710
 711		cleaned_count--;
 712	} while (cleaned_count);
 713
 714	if (rx_ring->next_to_use != ntu)
 715		ice_release_rx_desc(rx_ring, ntu);
 716
 717	return !!cleaned_count;
 718}
 719
 720/**
 721 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
 722 * @rx_buf: Rx buffer to adjust
 723 * @size: Size of adjustment
 724 *
 725 * Update the offset within page so that Rx buf will be ready to be reused.
 726 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
 727 * so the second half of page assigned to Rx buffer will be used, otherwise
 728 * the offset is moved by "size" bytes
 729 */
 730static void
 731ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
 732{
 733#if (PAGE_SIZE < 8192)
 734	/* flip page offset to other buffer */
 735	rx_buf->page_offset ^= size;
 736#else
 737	/* move offset up to the next cache line */
 738	rx_buf->page_offset += size;
 739#endif
 740}
 741
 742/**
 743 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
 744 * @rx_buf: buffer containing the page
 745 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
 746 *
 747 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
 748 * which will assign the current buffer to the buffer that next_to_alloc is
 749 * pointing to; otherwise, the DMA mapping needs to be destroyed and
 750 * page freed
 751 */
 752static bool
 753ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
 754{
 755	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
 756	struct page *page = rx_buf->page;
 757
 758	/* avoid re-using remote and pfmemalloc pages */
 759	if (!dev_page_is_reusable(page))
 760		return false;
 761
 762#if (PAGE_SIZE < 8192)
 763	/* if we are only owner of page we can reuse it */
 764	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
 765		return false;
 766#else
 767#define ICE_LAST_OFFSET \
 768	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
 769	if (rx_buf->page_offset > ICE_LAST_OFFSET)
 770		return false;
 771#endif /* PAGE_SIZE < 8192) */
 772
 773	/* If we have drained the page fragment pool we need to update
 774	 * the pagecnt_bias and page count so that we fully restock the
 775	 * number of references the driver holds.
 776	 */
 777	if (unlikely(pagecnt_bias == 1)) {
 778		page_ref_add(page, USHRT_MAX - 1);
 779		rx_buf->pagecnt_bias = USHRT_MAX;
 780	}
 781
 782	return true;
 783}
 784
 785/**
 786 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
 787 * @rx_ring: Rx descriptor ring to transact packets on
 
 788 * @rx_buf: buffer containing page to add
 789 * @skb: sk_buff to place the data into
 790 * @size: packet length from rx_desc
 791 *
 792 * This function will add the data contained in rx_buf->page to the skb.
 793 * It will just attach the page as a frag to the skb.
 794 * The function will then update the page offset.
 795 */
 796static void
 797ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 798		struct sk_buff *skb, unsigned int size)
 799{
 800#if (PAGE_SIZE >= 8192)
 801	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
 802#else
 803	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 804#endif
 805
 806	if (!size)
 807		return;
 808	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
 809			rx_buf->page_offset, size, truesize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810
 811	/* page is being used so we must update the page offset */
 812	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 813}
 814
 815/**
 816 * ice_reuse_rx_page - page flip buffer and store it back on the ring
 817 * @rx_ring: Rx descriptor ring to store buffers on
 818 * @old_buf: donor buffer to have page reused
 819 *
 820 * Synchronizes page for reuse by the adapter
 821 */
 822static void
 823ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
 824{
 825	u16 nta = rx_ring->next_to_alloc;
 826	struct ice_rx_buf *new_buf;
 827
 828	new_buf = &rx_ring->rx_buf[nta];
 829
 830	/* update, and store next to alloc */
 831	nta++;
 832	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 833
 834	/* Transfer page from old buffer to new buffer.
 835	 * Move each member individually to avoid possible store
 836	 * forwarding stalls and unnecessary copy of skb.
 837	 */
 838	new_buf->dma = old_buf->dma;
 839	new_buf->page = old_buf->page;
 840	new_buf->page_offset = old_buf->page_offset;
 841	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
 842}
 843
 844/**
 845 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
 846 * @rx_ring: Rx descriptor ring to transact packets on
 847 * @size: size of buffer to add to skb
 848 * @rx_buf_pgcnt: rx_buf page refcount
 849 *
 850 * This function will pull an Rx buffer from the ring and synchronize it
 851 * for use by the CPU.
 852 */
 853static struct ice_rx_buf *
 854ice_get_rx_buf(struct ice_ring *rx_ring, const unsigned int size,
 855	       int *rx_buf_pgcnt)
 856{
 857	struct ice_rx_buf *rx_buf;
 858
 859	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
 860	*rx_buf_pgcnt =
 861#if (PAGE_SIZE < 8192)
 862		page_count(rx_buf->page);
 863#else
 864		0;
 865#endif
 866	prefetchw(rx_buf->page);
 867
 868	if (!size)
 869		return rx_buf;
 870	/* we are reusing so sync this buffer for CPU use */
 871	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
 872				      rx_buf->page_offset, size,
 873				      DMA_FROM_DEVICE);
 874
 875	/* We have pulled a buffer for use, so decrement pagecnt_bias */
 876	rx_buf->pagecnt_bias--;
 877
 878	return rx_buf;
 879}
 880
 881/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882 * ice_build_skb - Build skb around an existing buffer
 883 * @rx_ring: Rx descriptor ring to transact packets on
 884 * @rx_buf: Rx buffer to pull data from
 885 * @xdp: xdp_buff pointing to the data
 886 *
 887 * This function builds an skb around an existing Rx buffer, taking care
 888 * to set up the skb correctly and avoid any memcpy overhead.
 
 889 */
 890static struct sk_buff *
 891ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 892	      struct xdp_buff *xdp)
 893{
 894	u8 metasize = xdp->data - xdp->data_meta;
 895#if (PAGE_SIZE < 8192)
 896	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 897#else
 898	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
 899				SKB_DATA_ALIGN(xdp->data_end -
 900					       xdp->data_hard_start);
 901#endif
 902	struct sk_buff *skb;
 903
 
 
 
 
 
 904	/* Prefetch first cache line of first page. If xdp->data_meta
 905	 * is unused, this points exactly as xdp->data, otherwise we
 906	 * likely have a consumer accessing first few bytes of meta
 907	 * data, and then actual data.
 908	 */
 909	net_prefetch(xdp->data_meta);
 910	/* build an skb around the page buffer */
 911	skb = build_skb(xdp->data_hard_start, truesize);
 912	if (unlikely(!skb))
 913		return NULL;
 914
 915	/* must to record Rx queue, otherwise OS features such as
 916	 * symmetric queue won't work
 917	 */
 918	skb_record_rx_queue(skb, rx_ring->q_index);
 919
 920	/* update pointers within the skb to store the data */
 921	skb_reserve(skb, xdp->data - xdp->data_hard_start);
 922	__skb_put(skb, xdp->data_end - xdp->data);
 923	if (metasize)
 924		skb_metadata_set(skb, metasize);
 925
 926	/* buffer is used by skb, update page_offset */
 927	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 
 
 
 928
 929	return skb;
 930}
 931
 932/**
 933 * ice_construct_skb - Allocate skb and populate it
 934 * @rx_ring: Rx descriptor ring to transact packets on
 935 * @rx_buf: Rx buffer to pull data from
 936 * @xdp: xdp_buff pointing to the data
 937 *
 938 * This function allocates an skb. It then populates it with the page
 939 * data from the current receive descriptor, taking care to set up the
 940 * skb correctly.
 941 */
 942static struct sk_buff *
 943ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 944		  struct xdp_buff *xdp)
 945{
 946	unsigned int size = xdp->data_end - xdp->data;
 
 
 
 947	unsigned int headlen;
 948	struct sk_buff *skb;
 949
 950	/* prefetch first cache line of first page */
 951	net_prefetch(xdp->data);
 952
 
 
 
 
 
 953	/* allocate a skb to store the frags */
 954	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
 955			       GFP_ATOMIC | __GFP_NOWARN);
 956	if (unlikely(!skb))
 957		return NULL;
 958
 
 959	skb_record_rx_queue(skb, rx_ring->q_index);
 960	/* Determine available headroom for copy */
 961	headlen = size;
 962	if (headlen > ICE_RX_HDR_SIZE)
 963		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
 964
 965	/* align pull length to size of long to optimize memcpy performance */
 966	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
 967							 sizeof(long)));
 968
 969	/* if we exhaust the linear part then add what is left as a frag */
 970	size -= headlen;
 971	if (size) {
 972#if (PAGE_SIZE >= 8192)
 973		unsigned int truesize = SKB_DATA_ALIGN(size);
 974#else
 975		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 976#endif
 
 
 
 977		skb_add_rx_frag(skb, 0, rx_buf->page,
 978				rx_buf->page_offset + headlen, size, truesize);
 979		/* buffer is used by skb, update page_offset */
 980		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 981	} else {
 982		/* buffer is unused, reset bias back to rx_buf; data was copied
 983		 * onto skb's linear part so there's no need for adjusting
 984		 * page offset and we can reuse this buffer as-is
 
 985		 */
 986		rx_buf->pagecnt_bias++;
 987	}
 988
 
 
 
 
 
 
 
 
 
 
 
 
 989	return skb;
 990}
 991
 992/**
 993 * ice_put_rx_buf - Clean up used buffer and either recycle or free
 994 * @rx_ring: Rx descriptor ring to transact packets on
 995 * @rx_buf: Rx buffer to pull data from
 996 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
 997 *
 998 * This function will update next_to_clean and then clean up the contents
 999 * of the rx_buf. It will either recycle the buffer or unmap it and free
1000 * the associated resources.
1001 */
1002static void
1003ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
1004	       int rx_buf_pgcnt)
1005{
1006	u16 ntc = rx_ring->next_to_clean + 1;
1007
1008	/* fetch, update, and store next to clean */
1009	ntc = (ntc < rx_ring->count) ? ntc : 0;
1010	rx_ring->next_to_clean = ntc;
1011
1012	if (!rx_buf)
1013		return;
1014
1015	if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
1016		/* hand second half of page back to the ring */
1017		ice_reuse_rx_page(rx_ring, rx_buf);
1018	} else {
1019		/* we are not reusing the buffer so unmap it */
1020		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1021				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1022				     ICE_RX_DMA_ATTR);
1023		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1024	}
1025
1026	/* clear contents of buffer_info */
1027	rx_buf->page = NULL;
1028}
1029
1030/**
1031 * ice_is_non_eop - process handling of non-EOP buffers
1032 * @rx_ring: Rx ring being processed
1033 * @rx_desc: Rx descriptor for current buffer
1034 *
1035 * If the buffer is an EOP buffer, this function exits returning false,
1036 * otherwise return true indicating that this is in fact a non-EOP buffer.
1037 */
1038static bool
1039ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc)
1040{
1041	/* if we are the last buffer then there is nothing else to do */
1042#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1043	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
1044		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045
1046	rx_ring->rx_stats.non_eop_descs++;
1047
1048	return true;
1049}
1050
1051/**
1052 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1053 * @rx_ring: Rx descriptor ring to transact packets on
1054 * @budget: Total limit on number of packets to process
1055 *
1056 * This function provides a "bounce buffer" approach to Rx interrupt
1057 * processing. The advantage to this is that on systems that have
1058 * expensive overhead for IOMMU access this provides a means of avoiding
1059 * it by maintaining the mapping of the page to the system.
1060 *
1061 * Returns amount of work completed
1062 */
1063int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1064{
1065	unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0;
1066	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1067	unsigned int offset = rx_ring->rx_offset;
1068	unsigned int xdp_res, xdp_xmit = 0;
1069	struct sk_buff *skb = rx_ring->skb;
1070	struct bpf_prog *xdp_prog = NULL;
1071	struct xdp_buff xdp;
 
 
 
1072	bool failure;
1073
1074	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1075#if (PAGE_SIZE < 8192)
1076	frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1077#endif
1078	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1079
1080	/* start the loop to process Rx packets bounded by 'budget' */
1081	while (likely(total_rx_pkts < (unsigned int)budget)) {
1082		union ice_32b_rx_flex_desc *rx_desc;
1083		struct ice_rx_buf *rx_buf;
1084		unsigned char *hard_start;
1085		unsigned int size;
1086		u16 stat_err_bits;
1087		int rx_buf_pgcnt;
1088		u16 vlan_tag = 0;
1089		u16 rx_ptype;
1090
1091		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1092		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1093
1094		/* status_error_len will always be zero for unused descriptors
1095		 * because it's cleared in cleanup, and overlaps with hdr_addr
1096		 * which is always zero because packet split isn't used, if the
1097		 * hardware wrote DD then it will be non-zero
1098		 */
1099		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1100		if (!ice_test_staterr(rx_desc, stat_err_bits))
1101			break;
1102
1103		/* This memory barrier is needed to keep us from reading
1104		 * any other fields out of the rx_desc until we know the
1105		 * DD bit is set.
1106		 */
1107		dma_rmb();
1108
1109		ice_trace(clean_rx_irq, rx_ring, rx_desc);
1110		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1111			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1112
1113			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1114			    ctrl_vsi->vf_id != ICE_INVAL_VFID)
1115				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1116			ice_put_rx_buf(rx_ring, NULL, 0);
1117			cleaned_count++;
 
1118			continue;
1119		}
1120
1121		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1122			ICE_RX_FLX_DESC_PKT_LEN_M;
1123
1124		/* retrieve a buffer from the ring */
1125		rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt);
 
 
 
1126
1127		if (!size) {
1128			xdp.data = NULL;
1129			xdp.data_end = NULL;
1130			xdp.data_hard_start = NULL;
1131			xdp.data_meta = NULL;
1132			goto construct_skb;
 
1133		}
 
 
1134
1135		hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1136			     offset;
1137		xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1138#if (PAGE_SIZE > 4096)
1139		/* At larger PAGE_SIZE, frame_sz depend on len size */
1140		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1141#endif
1142
1143		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1144		if (!xdp_prog)
 
1145			goto construct_skb;
 
 
1146
1147		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1148		if (!xdp_res)
1149			goto construct_skb;
1150		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1151			xdp_xmit |= xdp_res;
1152			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1153		} else {
1154			rx_buf->pagecnt_bias++;
1155		}
1156		total_rx_bytes += size;
1157		total_rx_pkts++;
1158
1159		cleaned_count++;
1160		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1161		continue;
1162construct_skb:
1163		if (skb) {
1164			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1165		} else if (likely(xdp.data)) {
1166			if (ice_ring_uses_build_skb(rx_ring))
1167				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1168			else
1169				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1170		}
1171		/* exit if we failed to retrieve a buffer */
1172		if (!skb) {
1173			rx_ring->rx_stats.alloc_buf_failed++;
1174			if (rx_buf)
1175				rx_buf->pagecnt_bias++;
1176			break;
1177		}
 
1178
1179		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1180		cleaned_count++;
1181
1182		/* skip if it is NOP desc */
1183		if (ice_is_non_eop(rx_ring, rx_desc))
1184			continue;
1185
1186		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1187		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
 
1188			dev_kfree_skb_any(skb);
1189			continue;
1190		}
1191
1192		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1193		if (ice_test_staterr(rx_desc, stat_err_bits))
1194			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1195
1196		/* pad the skb if needed, to make a valid ethernet frame */
1197		if (eth_skb_pad(skb)) {
1198			skb = NULL;
1199			continue;
1200		}
1201
1202		/* probably a little skewed due to removing CRC */
1203		total_rx_bytes += skb->len;
1204
1205		/* populate checksum, VLAN, and protocol */
1206		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1207			ICE_RX_FLEX_DESC_PTYPE_M;
1208
1209		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1210
1211		ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1212		/* send completed skb up the stack */
1213		ice_receive_skb(rx_ring, skb, vlan_tag);
1214		skb = NULL;
1215
1216		/* update budget accounting */
1217		total_rx_pkts++;
1218	}
1219
 
1220	/* return up to cleaned_count buffers to hardware */
1221	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1222
1223	if (xdp_prog)
1224		ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1225	rx_ring->skb = skb;
1226
1227	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
 
 
1228
1229	/* guarantee a trip back through this routine if there was a failure */
1230	return failure ? budget : (int)total_rx_pkts;
1231}
1232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233/**
1234 * ice_net_dim - Update net DIM algorithm
1235 * @q_vector: the vector associated with the interrupt
1236 *
1237 * Create a DIM sample and notify net_dim() so that it can possibly decide
1238 * a new ITR value based on incoming packets, bytes, and interrupts.
1239 *
1240 * This function is a no-op if the ring is not configured to dynamic ITR.
1241 */
1242static void ice_net_dim(struct ice_q_vector *q_vector)
1243{
1244	struct ice_ring_container *tx = &q_vector->tx;
1245	struct ice_ring_container *rx = &q_vector->rx;
1246
1247	if (ITR_IS_DYNAMIC(tx)) {
1248		struct dim_sample dim_sample = {};
1249		u64 packets = 0, bytes = 0;
1250		struct ice_ring *ring;
1251
1252		ice_for_each_ring(ring, q_vector->tx) {
1253			packets += ring->stats.pkts;
1254			bytes += ring->stats.bytes;
1255		}
1256
1257		dim_update_sample(q_vector->total_events, packets, bytes,
1258				  &dim_sample);
1259
1260		net_dim(&tx->dim, dim_sample);
 
1261	}
1262
1263	if (ITR_IS_DYNAMIC(rx)) {
1264		struct dim_sample dim_sample = {};
1265		u64 packets = 0, bytes = 0;
1266		struct ice_ring *ring;
1267
1268		ice_for_each_ring(ring, q_vector->rx) {
1269			packets += ring->stats.pkts;
1270			bytes += ring->stats.bytes;
1271		}
1272
1273		dim_update_sample(q_vector->total_events, packets, bytes,
1274				  &dim_sample);
1275
1276		net_dim(&rx->dim, dim_sample);
 
1277	}
1278}
1279
1280/**
1281 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1282 * @itr_idx: interrupt throttling index
1283 * @itr: interrupt throttling value in usecs
1284 */
1285static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1286{
1287	/* The ITR value is reported in microseconds, and the register value is
1288	 * recorded in 2 microsecond units. For this reason we only need to
1289	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1290	 * granularity as a shift instead of division. The mask makes sure the
1291	 * ITR value is never odd so we don't accidentally write into the field
1292	 * prior to the ITR field.
1293	 */
1294	itr &= ICE_ITR_MASK;
1295
1296	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1297		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1298		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1299}
1300
1301/**
1302 * ice_update_ena_itr - Update ITR moderation and re-enable MSI-X interrupt
1303 * @q_vector: the vector associated with the interrupt to enable
1304 *
1305 * Update the net_dim() algorithm and re-enable the interrupt associated with
1306 * this vector.
1307 *
1308 * If the VSI is down, the interrupt will not be re-enabled.
1309 */
1310static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1311{
1312	struct ice_vsi *vsi = q_vector->vsi;
1313	bool wb_en = q_vector->wb_on_itr;
1314	u32 itr_val;
1315
1316	if (test_bit(ICE_DOWN, vsi->state))
1317		return;
1318
1319	/* When exiting WB_ON_ITR, let ITR resume its normal
1320	 * interrupts-enabled path.
 
 
1321	 */
1322	if (wb_en)
 
 
1323		q_vector->wb_on_itr = false;
1324
1325	/* This will do nothing if dynamic updates are not enabled. */
1326	ice_net_dim(q_vector);
1327
1328	/* net_dim() updates ITR out-of-band using a work item */
1329	itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1330	/* trigger an immediate software interrupt when exiting
1331	 * busy poll, to make sure to catch any pending cleanups
1332	 * that might have been missed due to interrupt state
1333	 * transition.
1334	 */
1335	if (wb_en) {
1336		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1337			   GLINT_DYN_CTL_SW_ITR_INDX_M |
1338			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1339	}
1340	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1341}
1342
1343/**
1344 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1345 * @q_vector: q_vector to set WB_ON_ITR on
1346 *
1347 * We need to tell hardware to write-back completed descriptors even when
1348 * interrupts are disabled. Descriptors will be written back on cache line
1349 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1350 * descriptors may not be written back if they don't fill a cache line until
1351 * the next interrupt.
1352 *
1353 * This sets the write-back frequency to whatever was set previously for the
1354 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1355 * aren't meddling with the INTENA_M bit.
1356 */
1357static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1358{
1359	struct ice_vsi *vsi = q_vector->vsi;
1360
1361	/* already in wb_on_itr mode no need to change it */
1362	if (q_vector->wb_on_itr)
1363		return;
1364
1365	/* use previously set ITR values for all of the ITR indices by
1366	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1367	 * be static in non-adaptive mode (user configured)
1368	 */
1369	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1370	     ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1371	      GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1372	     GLINT_DYN_CTL_WB_ON_ITR_M);
1373
1374	q_vector->wb_on_itr = true;
1375}
1376
1377/**
1378 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1379 * @napi: napi struct with our devices info in it
1380 * @budget: amount of work driver is allowed to do this pass, in packets
1381 *
1382 * This function will clean all queues associated with a q_vector.
1383 *
1384 * Returns the amount of work done
1385 */
1386int ice_napi_poll(struct napi_struct *napi, int budget)
1387{
1388	struct ice_q_vector *q_vector =
1389				container_of(napi, struct ice_q_vector, napi);
 
 
1390	bool clean_complete = true;
1391	struct ice_ring *ring;
1392	int budget_per_ring;
1393	int work_done = 0;
1394
1395	/* Since the actual Tx work is minimal, we can give the Tx a larger
1396	 * budget and be more aggressive about cleaning up the Tx descriptors.
1397	 */
1398	ice_for_each_ring(ring, q_vector->tx) {
1399		bool wd = ring->xsk_pool ?
1400			  ice_clean_tx_irq_zc(ring, budget) :
1401			  ice_clean_tx_irq(ring, budget);
 
 
 
 
 
 
1402
1403		if (!wd)
1404			clean_complete = false;
1405	}
1406
1407	/* Handle case where we are called by netpoll with a budget of 0 */
1408	if (unlikely(budget <= 0))
1409		return budget;
1410
1411	/* normally we have 1 Rx ring per q_vector */
1412	if (unlikely(q_vector->num_ring_rx > 1))
1413		/* We attempt to distribute budget to each Rx queue fairly, but
1414		 * don't allow the budget to go below 1 because that would exit
1415		 * polling early.
1416		 */
1417		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1418	else
1419		/* Max of 1 Rx ring in this q_vector so give it the budget */
1420		budget_per_ring = budget;
1421
1422	ice_for_each_ring(ring, q_vector->rx) {
 
1423		int cleaned;
1424
1425		/* A dedicated path for zero-copy allows making a single
1426		 * comparison in the irq context instead of many inside the
1427		 * ice_clean_rx_irq function and makes the codebase cleaner.
1428		 */
1429		cleaned = ring->xsk_pool ?
1430			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
1431			  ice_clean_rx_irq(ring, budget_per_ring);
1432		work_done += cleaned;
1433		/* if we clean as many as budgeted, we must not be done */
1434		if (cleaned >= budget_per_ring)
1435			clean_complete = false;
1436	}
1437
1438	/* If work not completed, return budget and polling will return */
1439	if (!clean_complete) {
1440		/* Set the writeback on ITR so partial completions of
1441		 * cache-lines will still continue even if we're polling.
1442		 */
1443		ice_set_wb_on_itr(q_vector);
1444		return budget;
1445	}
1446
1447	/* Exit the polling mode, but don't re-enable interrupts if stack might
1448	 * poll us due to busy-polling
1449	 */
1450	if (likely(napi_complete_done(napi, work_done)))
1451		ice_update_ena_itr(q_vector);
1452	else
 
1453		ice_set_wb_on_itr(q_vector);
 
1454
1455	return min_t(int, work_done, budget - 1);
1456}
1457
1458/**
1459 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1460 * @tx_ring: the ring to be checked
1461 * @size: the size buffer we want to assure is available
1462 *
1463 * Returns -EBUSY if a stop is needed, else 0
1464 */
1465static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1466{
1467	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1468	/* Memory barrier before checking head and tail */
1469	smp_mb();
1470
1471	/* Check again in a case another CPU has just made room available. */
1472	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1473		return -EBUSY;
1474
1475	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1476	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1477	++tx_ring->tx_stats.restart_q;
1478	return 0;
1479}
1480
1481/**
1482 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1483 * @tx_ring: the ring to be checked
1484 * @size:    the size buffer we want to assure is available
1485 *
1486 * Returns 0 if stop is not needed
1487 */
1488static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1489{
1490	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1491		return 0;
1492
1493	return __ice_maybe_stop_tx(tx_ring, size);
1494}
1495
1496/**
1497 * ice_tx_map - Build the Tx descriptor
1498 * @tx_ring: ring to send buffer on
1499 * @first: first buffer info buffer to use
1500 * @off: pointer to struct that holds offload parameters
1501 *
1502 * This function loops over the skb data pointed to by *first
1503 * and gets a physical address for each memory location and programs
1504 * it and the length into the transmit descriptor.
1505 */
1506static void
1507ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1508	   struct ice_tx_offload_params *off)
1509{
1510	u64 td_offset, td_tag, td_cmd;
1511	u16 i = tx_ring->next_to_use;
1512	unsigned int data_len, size;
1513	struct ice_tx_desc *tx_desc;
1514	struct ice_tx_buf *tx_buf;
1515	struct sk_buff *skb;
1516	skb_frag_t *frag;
1517	dma_addr_t dma;
 
1518
1519	td_tag = off->td_l2tag1;
1520	td_cmd = off->td_cmd;
1521	td_offset = off->td_offset;
1522	skb = first->skb;
1523
1524	data_len = skb->data_len;
1525	size = skb_headlen(skb);
1526
1527	tx_desc = ICE_TX_DESC(tx_ring, i);
1528
1529	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1530		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1531		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1532			  ICE_TX_FLAGS_VLAN_S;
1533	}
1534
1535	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1536
1537	tx_buf = first;
1538
1539	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1540		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1541
1542		if (dma_mapping_error(tx_ring->dev, dma))
1543			goto dma_error;
1544
1545		/* record length, and DMA address */
1546		dma_unmap_len_set(tx_buf, len, size);
1547		dma_unmap_addr_set(tx_buf, dma, dma);
1548
1549		/* align size to end of page */
1550		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1551		tx_desc->buf_addr = cpu_to_le64(dma);
1552
1553		/* account for data chunks larger than the hardware
1554		 * can handle
1555		 */
1556		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1557			tx_desc->cmd_type_offset_bsz =
1558				ice_build_ctob(td_cmd, td_offset, max_data,
1559					       td_tag);
1560
1561			tx_desc++;
1562			i++;
1563
1564			if (i == tx_ring->count) {
1565				tx_desc = ICE_TX_DESC(tx_ring, 0);
1566				i = 0;
1567			}
1568
1569			dma += max_data;
1570			size -= max_data;
1571
1572			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1573			tx_desc->buf_addr = cpu_to_le64(dma);
1574		}
1575
1576		if (likely(!data_len))
1577			break;
1578
1579		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1580							      size, td_tag);
1581
1582		tx_desc++;
1583		i++;
1584
1585		if (i == tx_ring->count) {
1586			tx_desc = ICE_TX_DESC(tx_ring, 0);
1587			i = 0;
1588		}
1589
1590		size = skb_frag_size(frag);
1591		data_len -= size;
1592
1593		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1594				       DMA_TO_DEVICE);
1595
1596		tx_buf = &tx_ring->tx_buf[i];
 
1597	}
1598
1599	/* record bytecount for BQL */
1600	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1601
1602	/* record SW timestamp if HW timestamp is not available */
1603	skb_tx_timestamp(first->skb);
1604
1605	i++;
1606	if (i == tx_ring->count)
1607		i = 0;
1608
1609	/* write last descriptor with RS and EOP bits */
1610	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1611	tx_desc->cmd_type_offset_bsz =
1612			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1613
1614	/* Force memory writes to complete before letting h/w know there
1615	 * are new descriptors to fetch.
1616	 *
1617	 * We also use this memory barrier to make certain all of the
1618	 * status bits have been updated before next_to_watch is written.
1619	 */
1620	wmb();
1621
1622	/* set next_to_watch value indicating a packet is present */
1623	first->next_to_watch = tx_desc;
1624
1625	tx_ring->next_to_use = i;
1626
1627	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1628
1629	/* notify HW of packet */
1630	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
 
 
 
1631		writel(i, tx_ring->tail);
1632
1633	return;
1634
1635dma_error:
1636	/* clear DMA mappings for failed tx_buf map */
1637	for (;;) {
1638		tx_buf = &tx_ring->tx_buf[i];
1639		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1640		if (tx_buf == first)
1641			break;
1642		if (i == 0)
1643			i = tx_ring->count;
1644		i--;
1645	}
1646
1647	tx_ring->next_to_use = i;
1648}
1649
1650/**
1651 * ice_tx_csum - Enable Tx checksum offloads
1652 * @first: pointer to the first descriptor
1653 * @off: pointer to struct that holds offload parameters
1654 *
1655 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1656 */
1657static
1658int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1659{
1660	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1661	struct sk_buff *skb = first->skb;
1662	union {
1663		struct iphdr *v4;
1664		struct ipv6hdr *v6;
1665		unsigned char *hdr;
1666	} ip;
1667	union {
1668		struct tcphdr *tcp;
1669		unsigned char *hdr;
1670	} l4;
1671	__be16 frag_off, protocol;
1672	unsigned char *exthdr;
1673	u32 offset, cmd = 0;
1674	u8 l4_proto = 0;
1675
1676	if (skb->ip_summed != CHECKSUM_PARTIAL)
1677		return 0;
1678
1679	ip.hdr = skb_network_header(skb);
1680	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
 
 
1681
1682	/* compute outer L2 header size */
1683	l2_len = ip.hdr - skb->data;
1684	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1685
1686	protocol = vlan_get_protocol(skb);
1687
1688	if (protocol == htons(ETH_P_IP))
 
1689		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1690	else if (protocol == htons(ETH_P_IPV6))
1691		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1692
1693	if (skb->encapsulation) {
1694		bool gso_ena = false;
1695		u32 tunnel = 0;
1696
1697		/* define outer network header type */
1698		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1699			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1700				  ICE_TX_CTX_EIPT_IPV4 :
1701				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1702			l4_proto = ip.v4->protocol;
1703		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1704			int ret;
1705
1706			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1707			exthdr = ip.hdr + sizeof(*ip.v6);
1708			l4_proto = ip.v6->nexthdr;
1709			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1710					       &l4_proto, &frag_off);
1711			if (ret < 0)
1712				return -1;
1713		}
1714
1715		/* define outer transport */
1716		switch (l4_proto) {
1717		case IPPROTO_UDP:
1718			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1719			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1720			break;
1721		case IPPROTO_GRE:
1722			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1723			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1724			break;
1725		case IPPROTO_IPIP:
1726		case IPPROTO_IPV6:
1727			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1728			l4.hdr = skb_inner_network_header(skb);
1729			break;
1730		default:
1731			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1732				return -1;
1733
1734			skb_checksum_help(skb);
1735			return 0;
1736		}
1737
1738		/* compute outer L3 header size */
1739		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1740			  ICE_TXD_CTX_QW0_EIPLEN_S;
1741
1742		/* switch IP header pointer from outer to inner header */
1743		ip.hdr = skb_inner_network_header(skb);
1744
1745		/* compute tunnel header size */
1746		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1747			   ICE_TXD_CTX_QW0_NATLEN_S;
1748
1749		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1750		/* indicate if we need to offload outer UDP header */
1751		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1752		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1753			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1754
1755		/* record tunnel offload values */
1756		off->cd_tunnel_params |= tunnel;
1757
1758		/* set DTYP=1 to indicate that it's an Tx context descriptor
1759		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1760		 */
1761		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1762
1763		/* switch L4 header pointer from outer to inner */
1764		l4.hdr = skb_inner_transport_header(skb);
1765		l4_proto = 0;
1766
1767		/* reset type as we transition from outer to inner headers */
1768		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1769		if (ip.v4->version == 4)
1770			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1771		if (ip.v6->version == 6)
1772			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1773	}
1774
1775	/* Enable IP checksum offloads */
1776	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1777		l4_proto = ip.v4->protocol;
1778		/* the stack computes the IP header already, the only time we
1779		 * need the hardware to recompute it is in the case of TSO.
1780		 */
1781		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1782			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1783		else
1784			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1785
1786	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1787		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1788		exthdr = ip.hdr + sizeof(*ip.v6);
1789		l4_proto = ip.v6->nexthdr;
1790		if (l4.hdr != exthdr)
1791			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1792					 &frag_off);
1793	} else {
1794		return -1;
1795	}
1796
1797	/* compute inner L3 header size */
1798	l3_len = l4.hdr - ip.hdr;
1799	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1800
1801	/* Enable L4 checksum offloads */
1802	switch (l4_proto) {
1803	case IPPROTO_TCP:
1804		/* enable checksum offloads */
1805		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1806		l4_len = l4.tcp->doff;
1807		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1808		break;
1809	case IPPROTO_UDP:
1810		/* enable UDP checksum offload */
1811		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1812		l4_len = (sizeof(struct udphdr) >> 2);
1813		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1814		break;
1815	case IPPROTO_SCTP:
1816		/* enable SCTP checksum offload */
1817		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1818		l4_len = sizeof(struct sctphdr) >> 2;
1819		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1820		break;
1821
1822	default:
1823		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1824			return -1;
1825		skb_checksum_help(skb);
1826		return 0;
1827	}
1828
1829	off->td_cmd |= cmd;
1830	off->td_offset |= offset;
1831	return 1;
1832}
1833
1834/**
1835 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1836 * @tx_ring: ring to send buffer on
1837 * @first: pointer to struct ice_tx_buf
1838 *
1839 * Checks the skb and set up correspondingly several generic transmit flags
1840 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1841 */
1842static void
1843ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1844{
1845	struct sk_buff *skb = first->skb;
1846
1847	/* nothing left to do, software offloaded VLAN */
1848	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1849		return;
1850
1851	/* currently, we always assume 802.1Q for VLAN insertion as VLAN
1852	 * insertion for 802.1AD is not supported
 
1853	 */
1854	if (skb_vlan_tag_present(skb)) {
1855		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1856		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
 
 
 
1857	}
1858
1859	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1860}
1861
1862/**
1863 * ice_tso - computes mss and TSO length to prepare for TSO
1864 * @first: pointer to struct ice_tx_buf
1865 * @off: pointer to struct that holds offload parameters
1866 *
1867 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1868 */
1869static
1870int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1871{
1872	struct sk_buff *skb = first->skb;
1873	union {
1874		struct iphdr *v4;
1875		struct ipv6hdr *v6;
1876		unsigned char *hdr;
1877	} ip;
1878	union {
1879		struct tcphdr *tcp;
1880		struct udphdr *udp;
1881		unsigned char *hdr;
1882	} l4;
1883	u64 cd_mss, cd_tso_len;
 
1884	u32 paylen;
1885	u8 l4_start;
1886	int err;
1887
1888	if (skb->ip_summed != CHECKSUM_PARTIAL)
1889		return 0;
1890
1891	if (!skb_is_gso(skb))
1892		return 0;
1893
1894	err = skb_cow_head(skb, 0);
1895	if (err < 0)
1896		return err;
1897
1898	/* cppcheck-suppress unreadVariable */
1899	ip.hdr = skb_network_header(skb);
1900	l4.hdr = skb_transport_header(skb);
 
 
 
 
1901
1902	/* initialize outer IP header fields */
1903	if (ip.v4->version == 4) {
1904		ip.v4->tot_len = 0;
1905		ip.v4->check = 0;
1906	} else {
1907		ip.v6->payload_len = 0;
1908	}
1909
1910	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1911					 SKB_GSO_GRE_CSUM |
1912					 SKB_GSO_IPXIP4 |
1913					 SKB_GSO_IPXIP6 |
1914					 SKB_GSO_UDP_TUNNEL |
1915					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1916		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1917		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1918			l4.udp->len = 0;
1919
1920			/* determine offset of outer transport header */
1921			l4_start = (u8)(l4.hdr - skb->data);
1922
1923			/* remove payload length from outer checksum */
1924			paylen = skb->len - l4_start;
1925			csum_replace_by_diff(&l4.udp->check,
1926					     (__force __wsum)htonl(paylen));
1927		}
1928
1929		/* reset pointers to inner headers */
1930
1931		/* cppcheck-suppress unreadVariable */
1932		ip.hdr = skb_inner_network_header(skb);
1933		l4.hdr = skb_inner_transport_header(skb);
1934
1935		/* initialize inner IP header fields */
1936		if (ip.v4->version == 4) {
1937			ip.v4->tot_len = 0;
1938			ip.v4->check = 0;
1939		} else {
1940			ip.v6->payload_len = 0;
1941		}
1942	}
1943
1944	/* determine offset of transport header */
1945	l4_start = (u8)(l4.hdr - skb->data);
1946
1947	/* remove payload length from checksum */
1948	paylen = skb->len - l4_start;
1949
1950	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1951		csum_replace_by_diff(&l4.udp->check,
1952				     (__force __wsum)htonl(paylen));
1953		/* compute length of UDP segmentation header */
1954		off->header_len = (u8)sizeof(l4.udp) + l4_start;
1955	} else {
1956		csum_replace_by_diff(&l4.tcp->check,
1957				     (__force __wsum)htonl(paylen));
1958		/* compute length of TCP segmentation header */
1959		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
1960	}
1961
1962	/* update gso_segs and bytecount */
1963	first->gso_segs = skb_shinfo(skb)->gso_segs;
1964	first->bytecount += (first->gso_segs - 1) * off->header_len;
1965
1966	cd_tso_len = skb->len - off->header_len;
1967	cd_mss = skb_shinfo(skb)->gso_size;
1968
1969	/* record cdesc_qw1 with TSO parameters */
1970	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
1971			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1972			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1973			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
1974	first->tx_flags |= ICE_TX_FLAGS_TSO;
1975	return 1;
1976}
1977
1978/**
1979 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
1980 * @size: transmit request size in bytes
1981 *
1982 * Due to hardware alignment restrictions (4K alignment), we need to
1983 * assume that we can have no more than 12K of data per descriptor, even
1984 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1985 * Thus, we need to divide by 12K. But division is slow! Instead,
1986 * we decompose the operation into shifts and one relatively cheap
1987 * multiply operation.
1988 *
1989 * To divide by 12K, we first divide by 4K, then divide by 3:
1990 *     To divide by 4K, shift right by 12 bits
1991 *     To divide by 3, multiply by 85, then divide by 256
1992 *     (Divide by 256 is done by shifting right by 8 bits)
1993 * Finally, we add one to round up. Because 256 isn't an exact multiple of
1994 * 3, we'll underestimate near each multiple of 12K. This is actually more
1995 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1996 * segment. For our purposes this is accurate out to 1M which is orders of
1997 * magnitude greater than our largest possible GSO size.
1998 *
1999 * This would then be implemented as:
2000 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2001 *
2002 * Since multiplication and division are commutative, we can reorder
2003 * operations into:
2004 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2005 */
2006static unsigned int ice_txd_use_count(unsigned int size)
2007{
2008	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2009}
2010
2011/**
2012 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2013 * @skb: send buffer
2014 *
2015 * Returns number of data descriptors needed for this skb.
2016 */
2017static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2018{
2019	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2020	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2021	unsigned int count = 0, size = skb_headlen(skb);
2022
2023	for (;;) {
2024		count += ice_txd_use_count(size);
2025
2026		if (!nr_frags--)
2027			break;
2028
2029		size = skb_frag_size(frag++);
2030	}
2031
2032	return count;
2033}
2034
2035/**
2036 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2037 * @skb: send buffer
2038 *
2039 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2040 * and so we need to figure out the cases where we need to linearize the skb.
2041 *
2042 * For TSO we need to count the TSO header and segment payload separately.
2043 * As such we need to check cases where we have 7 fragments or more as we
2044 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2045 * the segment payload in the first descriptor, and another 7 for the
2046 * fragments.
2047 */
2048static bool __ice_chk_linearize(struct sk_buff *skb)
2049{
2050	const skb_frag_t *frag, *stale;
2051	int nr_frags, sum;
2052
2053	/* no need to check if number of frags is less than 7 */
2054	nr_frags = skb_shinfo(skb)->nr_frags;
2055	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2056		return false;
2057
2058	/* We need to walk through the list and validate that each group
2059	 * of 6 fragments totals at least gso_size.
2060	 */
2061	nr_frags -= ICE_MAX_BUF_TXD - 2;
2062	frag = &skb_shinfo(skb)->frags[0];
2063
2064	/* Initialize size to the negative value of gso_size minus 1. We
2065	 * use this as the worst case scenario in which the frag ahead
2066	 * of us only provides one byte which is why we are limited to 6
2067	 * descriptors for a single transmit as the header and previous
2068	 * fragment are already consuming 2 descriptors.
2069	 */
2070	sum = 1 - skb_shinfo(skb)->gso_size;
2071
2072	/* Add size of frags 0 through 4 to create our initial sum */
2073	sum += skb_frag_size(frag++);
2074	sum += skb_frag_size(frag++);
2075	sum += skb_frag_size(frag++);
2076	sum += skb_frag_size(frag++);
2077	sum += skb_frag_size(frag++);
2078
2079	/* Walk through fragments adding latest fragment, testing it, and
2080	 * then removing stale fragments from the sum.
2081	 */
2082	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2083		int stale_size = skb_frag_size(stale);
2084
2085		sum += skb_frag_size(frag++);
2086
2087		/* The stale fragment may present us with a smaller
2088		 * descriptor than the actual fragment size. To account
2089		 * for that we need to remove all the data on the front and
2090		 * figure out what the remainder would be in the last
2091		 * descriptor associated with the fragment.
2092		 */
2093		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2094			int align_pad = -(skb_frag_off(stale)) &
2095					(ICE_MAX_READ_REQ_SIZE - 1);
2096
2097			sum -= align_pad;
2098			stale_size -= align_pad;
2099
2100			do {
2101				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2102				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2103			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2104		}
2105
2106		/* if sum is negative we failed to make sufficient progress */
2107		if (sum < 0)
2108			return true;
2109
2110		if (!nr_frags--)
2111			break;
2112
2113		sum -= stale_size;
2114	}
2115
2116	return false;
2117}
2118
2119/**
2120 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2121 * @skb:      send buffer
2122 * @count:    number of buffers used
2123 *
2124 * Note: Our HW can't scatter-gather more than 8 fragments to build
2125 * a packet on the wire and so we need to figure out the cases where we
2126 * need to linearize the skb.
2127 */
2128static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2129{
2130	/* Both TSO and single send will work if count is less than 8 */
2131	if (likely(count < ICE_MAX_BUF_TXD))
2132		return false;
2133
2134	if (skb_is_gso(skb))
2135		return __ice_chk_linearize(skb);
2136
2137	/* we can support up to 8 data buffers for a single send */
2138	return count != ICE_MAX_BUF_TXD;
2139}
2140
2141/**
2142 * ice_tstamp - set up context descriptor for hardware timestamp
2143 * @tx_ring: pointer to the Tx ring to send buffer on
2144 * @skb: pointer to the SKB we're sending
2145 * @first: Tx buffer
2146 * @off: Tx offload parameters
2147 */
2148static void
2149ice_tstamp(struct ice_ring *tx_ring, struct sk_buff *skb,
2150	   struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2151{
2152	s8 idx;
2153
2154	/* only timestamp the outbound packet if the user has requested it */
2155	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2156		return;
2157
2158	if (!tx_ring->ptp_tx)
2159		return;
2160
2161	/* Tx timestamps cannot be sampled when doing TSO */
2162	if (first->tx_flags & ICE_TX_FLAGS_TSO)
2163		return;
2164
2165	/* Grab an open timestamp slot */
2166	idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2167	if (idx < 0)
 
2168		return;
 
2169
2170	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2171			     (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2172			     ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2173	first->tx_flags |= ICE_TX_FLAGS_TSYN;
2174}
2175
2176/**
2177 * ice_xmit_frame_ring - Sends buffer on Tx ring
2178 * @skb: send buffer
2179 * @tx_ring: ring to send buffer on
2180 *
2181 * Returns NETDEV_TX_OK if sent, else an error code
2182 */
2183static netdev_tx_t
2184ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2185{
2186	struct ice_tx_offload_params offload = { 0 };
2187	struct ice_vsi *vsi = tx_ring->vsi;
2188	struct ice_tx_buf *first;
2189	struct ethhdr *eth;
2190	unsigned int count;
2191	int tso, csum;
2192
2193	ice_trace(xmit_frame_ring, tx_ring, skb);
2194
 
 
 
2195	count = ice_xmit_desc_count(skb);
2196	if (ice_chk_linearize(skb, count)) {
2197		if (__skb_linearize(skb))
2198			goto out_drop;
2199		count = ice_txd_use_count(skb->len);
2200		tx_ring->tx_stats.tx_linearize++;
2201	}
2202
2203	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2204	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2205	 *       + 4 desc gap to avoid the cache line where head is,
2206	 *       + 1 desc for context descriptor,
2207	 * otherwise try next time
2208	 */
2209	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2210			      ICE_DESCS_FOR_CTX_DESC)) {
2211		tx_ring->tx_stats.tx_busy++;
2212		return NETDEV_TX_BUSY;
2213	}
2214
 
 
 
2215	offload.tx_ring = tx_ring;
2216
2217	/* record the location of the first descriptor for this packet */
2218	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2219	first->skb = skb;
 
2220	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2221	first->gso_segs = 1;
2222	first->tx_flags = 0;
2223
2224	/* prepare the VLAN tagging flags for Tx */
2225	ice_tx_prepare_vlan_flags(tx_ring, first);
 
 
 
 
 
 
2226
2227	/* set up TSO offload */
2228	tso = ice_tso(first, &offload);
2229	if (tso < 0)
2230		goto out_drop;
2231
2232	/* always set up Tx checksum offload */
2233	csum = ice_tx_csum(first, &offload);
2234	if (csum < 0)
2235		goto out_drop;
2236
2237	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2238	eth = (struct ethhdr *)skb_mac_header(skb);
2239	if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2240		      eth->h_proto == htons(ETH_P_LLDP)) &&
2241		     vsi->type == ICE_VSI_PF &&
2242		     vsi->port_info->qos_cfg.is_sw_lldp))
2243		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2244					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2245					ICE_TXD_CTX_QW1_CMD_S);
2246
2247	ice_tstamp(tx_ring, skb, first, &offload);
 
 
2248
2249	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2250		struct ice_tx_ctx_desc *cdesc;
2251		u16 i = tx_ring->next_to_use;
2252
2253		/* grab the next descriptor */
2254		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2255		i++;
2256		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2257
2258		/* setup context descriptor */
2259		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2260		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2261		cdesc->rsvd = cpu_to_le16(0);
2262		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2263	}
2264
2265	ice_tx_map(tx_ring, first, &offload);
2266	return NETDEV_TX_OK;
2267
2268out_drop:
2269	ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2270	dev_kfree_skb_any(skb);
2271	return NETDEV_TX_OK;
2272}
2273
2274/**
2275 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2276 * @skb: send buffer
2277 * @netdev: network interface device structure
2278 *
2279 * Returns NETDEV_TX_OK if sent, else an error code
2280 */
2281netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2282{
2283	struct ice_netdev_priv *np = netdev_priv(netdev);
2284	struct ice_vsi *vsi = np->vsi;
2285	struct ice_ring *tx_ring;
2286
2287	tx_ring = vsi->tx_rings[skb->queue_mapping];
2288
2289	/* hardware can't handle really short frames, hardware padding works
2290	 * beyond this point
2291	 */
2292	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2293		return NETDEV_TX_OK;
2294
2295	return ice_xmit_frame_ring(skb, tx_ring);
2296}
2297
2298/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2299 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2300 * @tx_ring: tx_ring to clean
2301 */
2302void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
2303{
2304	struct ice_vsi *vsi = tx_ring->vsi;
2305	s16 i = tx_ring->next_to_clean;
2306	int budget = ICE_DFLT_IRQ_WORK;
2307	struct ice_tx_desc *tx_desc;
2308	struct ice_tx_buf *tx_buf;
2309
2310	tx_buf = &tx_ring->tx_buf[i];
2311	tx_desc = ICE_TX_DESC(tx_ring, i);
2312	i -= tx_ring->count;
2313
2314	do {
2315		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2316
2317		/* if next_to_watch is not set then there is no pending work */
2318		if (!eop_desc)
2319			break;
2320
2321		/* prevent any other reads prior to eop_desc */
2322		smp_rmb();
2323
2324		/* if the descriptor isn't done, no work to do */
2325		if (!(eop_desc->cmd_type_offset_bsz &
2326		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2327			break;
2328
2329		/* clear next_to_watch to prevent false hangs */
2330		tx_buf->next_to_watch = NULL;
2331		tx_desc->buf_addr = 0;
2332		tx_desc->cmd_type_offset_bsz = 0;
2333
2334		/* move past filter desc */
2335		tx_buf++;
2336		tx_desc++;
2337		i++;
2338		if (unlikely(!i)) {
2339			i -= tx_ring->count;
2340			tx_buf = tx_ring->tx_buf;
2341			tx_desc = ICE_TX_DESC(tx_ring, 0);
2342		}
2343
2344		/* unmap the data header */
2345		if (dma_unmap_len(tx_buf, len))
2346			dma_unmap_single(tx_ring->dev,
2347					 dma_unmap_addr(tx_buf, dma),
2348					 dma_unmap_len(tx_buf, len),
2349					 DMA_TO_DEVICE);
2350		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2351			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2352
2353		/* clear next_to_watch to prevent false hangs */
2354		tx_buf->raw_buf = NULL;
2355		tx_buf->tx_flags = 0;
2356		tx_buf->next_to_watch = NULL;
2357		dma_unmap_len_set(tx_buf, len, 0);
2358		tx_desc->buf_addr = 0;
2359		tx_desc->cmd_type_offset_bsz = 0;
2360
2361		/* move past eop_desc for start of next FD desc */
2362		tx_buf++;
2363		tx_desc++;
2364		i++;
2365		if (unlikely(!i)) {
2366			i -= tx_ring->count;
2367			tx_buf = tx_ring->tx_buf;
2368			tx_desc = ICE_TX_DESC(tx_ring, 0);
2369		}
2370
2371		budget--;
2372	} while (likely(budget));
2373
2374	i += tx_ring->count;
2375	tx_ring->next_to_clean = i;
2376
2377	/* re-enable interrupt if needed */
2378	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2379}