Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* The driver transmit and receive code */
   5
   6#include <linux/mm.h>
   7#include <linux/netdevice.h>
   8#include <linux/prefetch.h>
 
   9#include <linux/bpf_trace.h>
  10#include <net/dsfield.h>
  11#include <net/mpls.h>
  12#include <net/xdp.h>
  13#include "ice_txrx_lib.h"
  14#include "ice_lib.h"
  15#include "ice.h"
  16#include "ice_trace.h"
  17#include "ice_dcb_lib.h"
  18#include "ice_xsk.h"
  19#include "ice_eswitch.h"
  20
  21#define ICE_RX_HDR_SIZE		256
  22
  23#define FDIR_DESC_RXDID 0x40
  24#define ICE_FDIR_CLEAN_DELAY 10
  25
  26/**
  27 * ice_prgm_fdir_fltr - Program a Flow Director filter
  28 * @vsi: VSI to send dummy packet
  29 * @fdir_desc: flow director descriptor
  30 * @raw_packet: allocated buffer for flow director
  31 */
  32int
  33ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
  34		   u8 *raw_packet)
  35{
  36	struct ice_tx_buf *tx_buf, *first;
  37	struct ice_fltr_desc *f_desc;
  38	struct ice_tx_desc *tx_desc;
  39	struct ice_tx_ring *tx_ring;
  40	struct device *dev;
  41	dma_addr_t dma;
  42	u32 td_cmd;
  43	u16 i;
  44
  45	/* VSI and Tx ring */
  46	if (!vsi)
  47		return -ENOENT;
  48	tx_ring = vsi->tx_rings[0];
  49	if (!tx_ring || !tx_ring->desc)
  50		return -ENOENT;
  51	dev = tx_ring->dev;
  52
  53	/* we are using two descriptors to add/del a filter and we can wait */
  54	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
  55		if (!i)
  56			return -EAGAIN;
  57		msleep_interruptible(1);
  58	}
  59
  60	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
  61			     DMA_TO_DEVICE);
  62
  63	if (dma_mapping_error(dev, dma))
  64		return -EINVAL;
  65
  66	/* grab the next descriptor */
  67	i = tx_ring->next_to_use;
  68	first = &tx_ring->tx_buf[i];
  69	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
  70	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
  71
  72	i++;
  73	i = (i < tx_ring->count) ? i : 0;
  74	tx_desc = ICE_TX_DESC(tx_ring, i);
  75	tx_buf = &tx_ring->tx_buf[i];
  76
  77	i++;
  78	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  79
  80	memset(tx_buf, 0, sizeof(*tx_buf));
  81	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
  82	dma_unmap_addr_set(tx_buf, dma, dma);
  83
  84	tx_desc->buf_addr = cpu_to_le64(dma);
  85	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
  86		 ICE_TX_DESC_CMD_RE;
  87
  88	tx_buf->type = ICE_TX_BUF_DUMMY;
  89	tx_buf->raw_buf = raw_packet;
  90
  91	tx_desc->cmd_type_offset_bsz =
  92		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
  93
  94	/* Force memory write to complete before letting h/w know
  95	 * there are new descriptors to fetch.
  96	 */
  97	wmb();
  98
  99	/* mark the data descriptor to be watched */
 100	first->next_to_watch = tx_desc;
 101
 102	writel(tx_ring->next_to_use, tx_ring->tail);
 103
 104	return 0;
 105}
 106
 107/**
 108 * ice_unmap_and_free_tx_buf - Release a Tx buffer
 109 * @ring: the ring that owns the buffer
 110 * @tx_buf: the buffer to free
 111 */
 112static void
 113ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
 114{
 115	if (dma_unmap_len(tx_buf, len))
 
 
 
 
 
 
 
 
 
 
 
 
 116		dma_unmap_page(ring->dev,
 117			       dma_unmap_addr(tx_buf, dma),
 118			       dma_unmap_len(tx_buf, len),
 119			       DMA_TO_DEVICE);
 120
 121	switch (tx_buf->type) {
 122	case ICE_TX_BUF_DUMMY:
 123		devm_kfree(ring->dev, tx_buf->raw_buf);
 124		break;
 125	case ICE_TX_BUF_SKB:
 126		dev_kfree_skb_any(tx_buf->skb);
 127		break;
 128	case ICE_TX_BUF_XDP_TX:
 129		page_frag_free(tx_buf->raw_buf);
 130		break;
 131	case ICE_TX_BUF_XDP_XMIT:
 132		xdp_return_frame(tx_buf->xdpf);
 133		break;
 134	}
 135
 136	tx_buf->next_to_watch = NULL;
 137	tx_buf->type = ICE_TX_BUF_EMPTY;
 138	dma_unmap_len_set(tx_buf, len, 0);
 139	/* tx_buf must be completely set up in the transmit path */
 140}
 141
 142static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
 143{
 144	return netdev_get_tx_queue(ring->netdev, ring->q_index);
 145}
 146
 147/**
 148 * ice_clean_tx_ring - Free any empty Tx buffers
 149 * @tx_ring: ring to be cleaned
 150 */
 151void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
 152{
 153	u32 size;
 154	u16 i;
 155
 156	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 157		ice_xsk_clean_xdp_ring(tx_ring);
 158		goto tx_skip_free;
 159	}
 160
 161	/* ring already cleared, nothing to do */
 162	if (!tx_ring->tx_buf)
 163		return;
 164
 165	/* Free all the Tx ring sk_buffs */
 166	for (i = 0; i < tx_ring->count; i++)
 167		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
 168
 169tx_skip_free:
 170	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
 171
 172	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
 173		     PAGE_SIZE);
 174	/* Zero out the descriptor ring */
 175	memset(tx_ring->desc, 0, size);
 176
 177	tx_ring->next_to_use = 0;
 178	tx_ring->next_to_clean = 0;
 179
 180	if (!tx_ring->netdev)
 181		return;
 182
 183	/* cleanup Tx queue statistics */
 184	netdev_tx_reset_queue(txring_txq(tx_ring));
 185}
 186
 187/**
 188 * ice_free_tx_ring - Free Tx resources per queue
 189 * @tx_ring: Tx descriptor ring for a specific queue
 190 *
 191 * Free all transmit software resources
 192 */
 193void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
 194{
 195	u32 size;
 196
 197	ice_clean_tx_ring(tx_ring);
 198	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
 199	tx_ring->tx_buf = NULL;
 200
 201	if (tx_ring->desc) {
 202		size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
 203			     PAGE_SIZE);
 204		dmam_free_coherent(tx_ring->dev, size,
 205				   tx_ring->desc, tx_ring->dma);
 206		tx_ring->desc = NULL;
 207	}
 208}
 209
 210/**
 211 * ice_clean_tx_irq - Reclaim resources after transmit completes
 212 * @tx_ring: Tx ring to clean
 213 * @napi_budget: Used to determine if we are in netpoll
 214 *
 215 * Returns true if there's any budget left (e.g. the clean is finished)
 216 */
 217static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
 218{
 219	unsigned int total_bytes = 0, total_pkts = 0;
 220	unsigned int budget = ICE_DFLT_IRQ_WORK;
 221	struct ice_vsi *vsi = tx_ring->vsi;
 222	s16 i = tx_ring->next_to_clean;
 223	struct ice_tx_desc *tx_desc;
 224	struct ice_tx_buf *tx_buf;
 225
 226	/* get the bql data ready */
 227	netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
 228
 229	tx_buf = &tx_ring->tx_buf[i];
 230	tx_desc = ICE_TX_DESC(tx_ring, i);
 231	i -= tx_ring->count;
 232
 233	prefetch(&vsi->state);
 234
 235	do {
 236		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
 237
 238		/* if next_to_watch is not set then there is no work pending */
 239		if (!eop_desc)
 240			break;
 241
 242		/* follow the guidelines of other drivers */
 243		prefetchw(&tx_buf->skb->users);
 244
 245		smp_rmb();	/* prevent any other reads prior to eop_desc */
 246
 247		ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 248		/* if the descriptor isn't done, no work yet to do */
 249		if (!(eop_desc->cmd_type_offset_bsz &
 250		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
 251			break;
 252
 253		/* clear next_to_watch to prevent false hangs */
 254		tx_buf->next_to_watch = NULL;
 255
 256		/* update the statistics for this packet */
 257		total_bytes += tx_buf->bytecount;
 258		total_pkts += tx_buf->gso_segs;
 259
 260		/* free the skb */
 261		napi_consume_skb(tx_buf->skb, napi_budget);
 
 
 
 262
 263		/* unmap skb header data */
 264		dma_unmap_single(tx_ring->dev,
 265				 dma_unmap_addr(tx_buf, dma),
 266				 dma_unmap_len(tx_buf, len),
 267				 DMA_TO_DEVICE);
 268
 269		/* clear tx_buf data */
 270		tx_buf->type = ICE_TX_BUF_EMPTY;
 271		dma_unmap_len_set(tx_buf, len, 0);
 272
 273		/* unmap remaining buffers */
 274		while (tx_desc != eop_desc) {
 275			ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
 276			tx_buf++;
 277			tx_desc++;
 278			i++;
 279			if (unlikely(!i)) {
 280				i -= tx_ring->count;
 281				tx_buf = tx_ring->tx_buf;
 282				tx_desc = ICE_TX_DESC(tx_ring, 0);
 283			}
 284
 285			/* unmap any remaining paged data */
 286			if (dma_unmap_len(tx_buf, len)) {
 287				dma_unmap_page(tx_ring->dev,
 288					       dma_unmap_addr(tx_buf, dma),
 289					       dma_unmap_len(tx_buf, len),
 290					       DMA_TO_DEVICE);
 291				dma_unmap_len_set(tx_buf, len, 0);
 292			}
 293		}
 294		ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
 295
 296		/* move us one more past the eop_desc for start of next pkt */
 297		tx_buf++;
 298		tx_desc++;
 299		i++;
 300		if (unlikely(!i)) {
 301			i -= tx_ring->count;
 302			tx_buf = tx_ring->tx_buf;
 303			tx_desc = ICE_TX_DESC(tx_ring, 0);
 304		}
 305
 306		prefetch(tx_desc);
 307
 308		/* update budget accounting */
 309		budget--;
 310	} while (likely(budget));
 311
 312	i += tx_ring->count;
 313	tx_ring->next_to_clean = i;
 314
 315	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
 316	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
 
 
 
 
 
 317
 318#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 319	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
 320		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 321		/* Make sure that anybody stopping the queue after this
 322		 * sees the new next_to_clean.
 323		 */
 324		smp_mb();
 325		if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
 326		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
 327			netif_tx_wake_queue(txring_txq(tx_ring));
 328			++tx_ring->ring_stats->tx_stats.restart_q;
 
 
 329		}
 330	}
 331
 332	return !!budget;
 333}
 334
 335/**
 336 * ice_setup_tx_ring - Allocate the Tx descriptors
 337 * @tx_ring: the Tx ring to set up
 338 *
 339 * Return 0 on success, negative on error
 340 */
 341int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
 342{
 343	struct device *dev = tx_ring->dev;
 344	u32 size;
 345
 346	if (!dev)
 347		return -ENOMEM;
 348
 349	/* warn if we are about to overwrite the pointer */
 350	WARN_ON(tx_ring->tx_buf);
 351	tx_ring->tx_buf =
 352		devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
 353			     GFP_KERNEL);
 354	if (!tx_ring->tx_buf)
 355		return -ENOMEM;
 356
 357	/* round up to nearest page */
 358	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
 359		     PAGE_SIZE);
 360	tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
 361					    GFP_KERNEL);
 362	if (!tx_ring->desc) {
 363		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 364			size);
 365		goto err;
 366	}
 367
 368	tx_ring->next_to_use = 0;
 369	tx_ring->next_to_clean = 0;
 370	tx_ring->ring_stats->tx_stats.prev_pkt = -1;
 371	return 0;
 372
 373err:
 374	devm_kfree(dev, tx_ring->tx_buf);
 375	tx_ring->tx_buf = NULL;
 376	return -ENOMEM;
 377}
 378
 379/**
 380 * ice_clean_rx_ring - Free Rx buffers
 381 * @rx_ring: ring to be cleaned
 382 */
 383void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
 384{
 385	struct xdp_buff *xdp = &rx_ring->xdp;
 386	struct device *dev = rx_ring->dev;
 387	u32 size;
 388	u16 i;
 389
 390	/* ring already cleared, nothing to do */
 391	if (!rx_ring->rx_buf)
 392		return;
 393
 394	if (rx_ring->xsk_pool) {
 395		ice_xsk_clean_rx_ring(rx_ring);
 396		goto rx_skip_free;
 397	}
 398
 399	if (xdp->data) {
 400		xdp_return_buff(xdp);
 401		xdp->data = NULL;
 402	}
 403
 404	/* Free all the Rx ring sk_buffs */
 405	for (i = 0; i < rx_ring->count; i++) {
 406		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
 407
 
 
 
 
 408		if (!rx_buf->page)
 409			continue;
 410
 411		/* Invalidate cache lines that may have been written to by
 412		 * device so that we avoid corrupting memory.
 413		 */
 414		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
 415					      rx_buf->page_offset,
 416					      rx_ring->rx_buf_len,
 417					      DMA_FROM_DEVICE);
 418
 419		/* free resources associated with mapping */
 420		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
 421				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 422		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
 423
 424		rx_buf->page = NULL;
 425		rx_buf->page_offset = 0;
 426	}
 427
 428rx_skip_free:
 429	if (rx_ring->xsk_pool)
 430		memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
 431	else
 432		memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
 433
 434	/* Zero out the descriptor ring */
 435	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
 436		     PAGE_SIZE);
 437	memset(rx_ring->desc, 0, size);
 438
 439	rx_ring->next_to_alloc = 0;
 440	rx_ring->next_to_clean = 0;
 441	rx_ring->first_desc = 0;
 442	rx_ring->next_to_use = 0;
 443}
 444
 445/**
 446 * ice_free_rx_ring - Free Rx resources
 447 * @rx_ring: ring to clean the resources from
 448 *
 449 * Free all receive software resources
 450 */
 451void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
 452{
 453	u32 size;
 454
 455	ice_clean_rx_ring(rx_ring);
 456	if (rx_ring->vsi->type == ICE_VSI_PF)
 457		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 458			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 459	WRITE_ONCE(rx_ring->xdp_prog, NULL);
 460	if (rx_ring->xsk_pool) {
 461		kfree(rx_ring->xdp_buf);
 462		rx_ring->xdp_buf = NULL;
 463	} else {
 464		kfree(rx_ring->rx_buf);
 465		rx_ring->rx_buf = NULL;
 466	}
 467
 468	if (rx_ring->desc) {
 469		size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
 470			     PAGE_SIZE);
 471		dmam_free_coherent(rx_ring->dev, size,
 472				   rx_ring->desc, rx_ring->dma);
 473		rx_ring->desc = NULL;
 474	}
 475}
 476
 477/**
 478 * ice_setup_rx_ring - Allocate the Rx descriptors
 479 * @rx_ring: the Rx ring to set up
 480 *
 481 * Return 0 on success, negative on error
 482 */
 483int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
 484{
 485	struct device *dev = rx_ring->dev;
 486	u32 size;
 487
 488	if (!dev)
 489		return -ENOMEM;
 490
 491	/* warn if we are about to overwrite the pointer */
 492	WARN_ON(rx_ring->rx_buf);
 493	rx_ring->rx_buf =
 494		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
 
 495	if (!rx_ring->rx_buf)
 496		return -ENOMEM;
 497
 498	/* round up to nearest page */
 499	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
 500		     PAGE_SIZE);
 501	rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
 502					    GFP_KERNEL);
 503	if (!rx_ring->desc) {
 504		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 505			size);
 506		goto err;
 507	}
 508
 509	rx_ring->next_to_use = 0;
 510	rx_ring->next_to_clean = 0;
 511	rx_ring->first_desc = 0;
 512
 513	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 514		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
 515
 
 
 
 
 
 516	return 0;
 517
 518err:
 519	kfree(rx_ring->rx_buf);
 520	rx_ring->rx_buf = NULL;
 521	return -ENOMEM;
 522}
 523
 524/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
 526 * @rx_ring: Rx ring
 527 * @xdp: xdp_buff used as input to the XDP program
 528 * @xdp_prog: XDP program to run
 529 * @xdp_ring: ring to be used for XDP_TX action
 530 * @eop_desc: Last descriptor in packet to read metadata from
 531 *
 532 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
 533 */
 534static u32
 535ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
 536	    struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring,
 537	    union ice_32b_rx_flex_desc *eop_desc)
 538{
 539	unsigned int ret = ICE_XDP_PASS;
 
 540	u32 act;
 541
 542	if (!xdp_prog)
 543		goto exit;
 544
 545	ice_xdp_meta_set_desc(xdp, eop_desc);
 546
 547	act = bpf_prog_run_xdp(xdp_prog, xdp);
 548	switch (act) {
 549	case XDP_PASS:
 550		break;
 551	case XDP_TX:
 552		if (static_branch_unlikely(&ice_xdp_locking_key))
 553			spin_lock(&xdp_ring->tx_lock);
 554		ret = __ice_xmit_xdp_ring(xdp, xdp_ring, false);
 555		if (static_branch_unlikely(&ice_xdp_locking_key))
 556			spin_unlock(&xdp_ring->tx_lock);
 557		if (ret == ICE_XDP_CONSUMED)
 558			goto out_failure;
 559		break;
 560	case XDP_REDIRECT:
 561		if (xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog))
 562			goto out_failure;
 563		ret = ICE_XDP_REDIR;
 564		break;
 565	default:
 566		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
 567		fallthrough;
 568	case XDP_ABORTED:
 569out_failure:
 570		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 571		fallthrough;
 572	case XDP_DROP:
 573		ret = ICE_XDP_CONSUMED;
 
 574	}
 575exit:
 576	return ret;
 577}
 578
 579/**
 580 * ice_xmit_xdp_ring - submit frame to XDP ring for transmission
 581 * @xdpf: XDP frame that will be converted to XDP buff
 582 * @xdp_ring: XDP ring for transmission
 583 */
 584static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf,
 585			     struct ice_tx_ring *xdp_ring)
 586{
 587	struct xdp_buff xdp;
 588
 589	xdp.data_hard_start = (void *)xdpf;
 590	xdp.data = xdpf->data;
 591	xdp.data_end = xdp.data + xdpf->len;
 592	xdp.frame_sz = xdpf->frame_sz;
 593	xdp.flags = xdpf->flags;
 594
 595	return __ice_xmit_xdp_ring(&xdp, xdp_ring, true);
 596}
 597
 598/**
 599 * ice_xdp_xmit - submit packets to XDP ring for transmission
 600 * @dev: netdev
 601 * @n: number of XDP frames to be transmitted
 602 * @frames: XDP frames to be transmitted
 603 * @flags: transmit flags
 604 *
 605 * Returns number of frames successfully sent. Failed frames
 606 * will be free'ed by XDP core.
 607 * For error cases, a negative errno code is returned and no-frames
 608 * are transmitted (caller must handle freeing frames).
 609 */
 610int
 611ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
 612	     u32 flags)
 613{
 614	struct ice_netdev_priv *np = netdev_priv(dev);
 615	unsigned int queue_index = smp_processor_id();
 616	struct ice_vsi *vsi = np->vsi;
 617	struct ice_tx_ring *xdp_ring;
 618	struct ice_tx_buf *tx_buf;
 619	int nxmit = 0, i;
 620
 621	if (test_bit(ICE_VSI_DOWN, vsi->state))
 622		return -ENETDOWN;
 623
 624	if (!ice_is_xdp_ena_vsi(vsi))
 625		return -ENXIO;
 626
 627	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
 628		return -EINVAL;
 629
 630	if (static_branch_unlikely(&ice_xdp_locking_key)) {
 631		queue_index %= vsi->num_xdp_txq;
 632		xdp_ring = vsi->xdp_rings[queue_index];
 633		spin_lock(&xdp_ring->tx_lock);
 634	} else {
 635		/* Generally, should not happen */
 636		if (unlikely(queue_index >= vsi->num_xdp_txq))
 637			return -ENXIO;
 638		xdp_ring = vsi->xdp_rings[queue_index];
 639	}
 640
 641	tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
 642	for (i = 0; i < n; i++) {
 643		const struct xdp_frame *xdpf = frames[i];
 644		int err;
 645
 646		err = ice_xmit_xdp_ring(xdpf, xdp_ring);
 647		if (err != ICE_XDP_TX)
 648			break;
 649		nxmit++;
 
 650	}
 651
 652	tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
 653	if (unlikely(flags & XDP_XMIT_FLUSH))
 654		ice_xdp_ring_update_tail(xdp_ring);
 655
 656	if (static_branch_unlikely(&ice_xdp_locking_key))
 657		spin_unlock(&xdp_ring->tx_lock);
 658
 659	return nxmit;
 660}
 661
 662/**
 663 * ice_alloc_mapped_page - recycle or make a new page
 664 * @rx_ring: ring to use
 665 * @bi: rx_buf struct to modify
 666 *
 667 * Returns true if the page was successfully allocated or
 668 * reused.
 669 */
 670static bool
 671ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
 672{
 673	struct page *page = bi->page;
 674	dma_addr_t dma;
 675
 676	/* since we are recycling buffers we should seldom need to alloc */
 677	if (likely(page))
 678		return true;
 679
 680	/* alloc new page for storage */
 681	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
 682	if (unlikely(!page)) {
 683		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
 684		return false;
 685	}
 686
 687	/* map page for use */
 688	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
 689				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 690
 691	/* if mapping failed free memory back to system since
 692	 * there isn't much point in holding memory we can't use
 693	 */
 694	if (dma_mapping_error(rx_ring->dev, dma)) {
 695		__free_pages(page, ice_rx_pg_order(rx_ring));
 696		rx_ring->ring_stats->rx_stats.alloc_page_failed++;
 697		return false;
 698	}
 699
 700	bi->dma = dma;
 701	bi->page = page;
 702	bi->page_offset = rx_ring->rx_offset;
 703	page_ref_add(page, USHRT_MAX - 1);
 704	bi->pagecnt_bias = USHRT_MAX;
 705
 706	return true;
 707}
 708
 709/**
 710 * ice_alloc_rx_bufs - Replace used receive buffers
 711 * @rx_ring: ring to place buffers on
 712 * @cleaned_count: number of buffers to replace
 713 *
 714 * Returns false if all allocations were successful, true if any fail. Returning
 715 * true signals to the caller that we didn't replace cleaned_count buffers and
 716 * there is more work to do.
 717 *
 718 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
 719 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
 720 * multiple tail writes per call.
 721 */
 722bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count)
 723{
 724	union ice_32b_rx_flex_desc *rx_desc;
 725	u16 ntu = rx_ring->next_to_use;
 726	struct ice_rx_buf *bi;
 727
 728	/* do nothing if no valid netdev defined */
 729	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
 730	    !cleaned_count)
 731		return false;
 732
 733	/* get the Rx descriptor and buffer based on next_to_use */
 734	rx_desc = ICE_RX_DESC(rx_ring, ntu);
 735	bi = &rx_ring->rx_buf[ntu];
 736
 737	do {
 738		/* if we fail here, we have work remaining */
 739		if (!ice_alloc_mapped_page(rx_ring, bi))
 740			break;
 741
 742		/* sync the buffer for use by the device */
 743		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 744						 bi->page_offset,
 745						 rx_ring->rx_buf_len,
 746						 DMA_FROM_DEVICE);
 747
 748		/* Refresh the desc even if buffer_addrs didn't change
 749		 * because each write-back erases this info.
 750		 */
 751		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 752
 753		rx_desc++;
 754		bi++;
 755		ntu++;
 756		if (unlikely(ntu == rx_ring->count)) {
 757			rx_desc = ICE_RX_DESC(rx_ring, 0);
 758			bi = rx_ring->rx_buf;
 759			ntu = 0;
 760		}
 761
 762		/* clear the status bits for the next_to_use descriptor */
 763		rx_desc->wb.status_error0 = 0;
 764
 765		cleaned_count--;
 766	} while (cleaned_count);
 767
 768	if (rx_ring->next_to_use != ntu)
 769		ice_release_rx_desc(rx_ring, ntu);
 770
 771	return !!cleaned_count;
 772}
 773
 774/**
 
 
 
 
 
 
 
 
 
 775 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
 776 * @rx_buf: Rx buffer to adjust
 777 * @size: Size of adjustment
 778 *
 779 * Update the offset within page so that Rx buf will be ready to be reused.
 780 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
 781 * so the second half of page assigned to Rx buffer will be used, otherwise
 782 * the offset is moved by "size" bytes
 783 */
 784static void
 785ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
 786{
 787#if (PAGE_SIZE < 8192)
 788	/* flip page offset to other buffer */
 789	rx_buf->page_offset ^= size;
 790#else
 791	/* move offset up to the next cache line */
 792	rx_buf->page_offset += size;
 793#endif
 794}
 795
 796/**
 797 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
 798 * @rx_buf: buffer containing the page
 799 *
 800 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
 801 * which will assign the current buffer to the buffer that next_to_alloc is
 802 * pointing to; otherwise, the DMA mapping needs to be destroyed and
 803 * page freed
 804 */
 805static bool
 806ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
 807{
 808	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
 809	struct page *page = rx_buf->page;
 810
 811	/* avoid re-using remote and pfmemalloc pages */
 812	if (!dev_page_is_reusable(page))
 813		return false;
 814
 
 815	/* if we are only owner of page we can reuse it */
 816	if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1))
 817		return false;
 818#if (PAGE_SIZE >= 8192)
 819#define ICE_LAST_OFFSET \
 820	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_3072)
 821	if (rx_buf->page_offset > ICE_LAST_OFFSET)
 822		return false;
 823#endif /* PAGE_SIZE >= 8192) */
 824
 825	/* If we have drained the page fragment pool we need to update
 826	 * the pagecnt_bias and page count so that we fully restock the
 827	 * number of references the driver holds.
 828	 */
 829	if (unlikely(pagecnt_bias == 1)) {
 830		page_ref_add(page, USHRT_MAX - 1);
 831		rx_buf->pagecnt_bias = USHRT_MAX;
 832	}
 833
 834	return true;
 835}
 836
 837/**
 838 * ice_add_xdp_frag - Add contents of Rx buffer to xdp buf as a frag
 839 * @rx_ring: Rx descriptor ring to transact packets on
 840 * @xdp: xdp buff to place the data into
 841 * @rx_buf: buffer containing page to add
 
 842 * @size: packet length from rx_desc
 843 *
 844 * This function will add the data contained in rx_buf->page to the xdp buf.
 845 * It will just attach the page as a frag.
 
 846 */
 847static int
 848ice_add_xdp_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
 849		 struct ice_rx_buf *rx_buf, const unsigned int size)
 850{
 851	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
 
 
 
 
 852
 853	if (!size)
 854		return 0;
 855
 856	if (!xdp_buff_has_frags(xdp)) {
 857		sinfo->nr_frags = 0;
 858		sinfo->xdp_frags_size = 0;
 859		xdp_buff_set_frags_flag(xdp);
 860	}
 861
 862	if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS))
 863		return -ENOMEM;
 864
 865	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buf->page,
 866				   rx_buf->page_offset, size);
 867	sinfo->xdp_frags_size += size;
 868	/* remember frag count before XDP prog execution; bpf_xdp_adjust_tail()
 869	 * can pop off frags but driver has to handle it on its own
 870	 */
 871	rx_ring->nr_frags = sinfo->nr_frags;
 872
 873	if (page_is_pfmemalloc(rx_buf->page))
 874		xdp_buff_set_frag_pfmemalloc(xdp);
 875
 876	return 0;
 
 877}
 878
 879/**
 880 * ice_reuse_rx_page - page flip buffer and store it back on the ring
 881 * @rx_ring: Rx descriptor ring to store buffers on
 882 * @old_buf: donor buffer to have page reused
 883 *
 884 * Synchronizes page for reuse by the adapter
 885 */
 886static void
 887ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
 888{
 889	u16 nta = rx_ring->next_to_alloc;
 890	struct ice_rx_buf *new_buf;
 891
 892	new_buf = &rx_ring->rx_buf[nta];
 893
 894	/* update, and store next to alloc */
 895	nta++;
 896	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 897
 898	/* Transfer page from old buffer to new buffer.
 899	 * Move each member individually to avoid possible store
 900	 * forwarding stalls and unnecessary copy of skb.
 901	 */
 902	new_buf->dma = old_buf->dma;
 903	new_buf->page = old_buf->page;
 904	new_buf->page_offset = old_buf->page_offset;
 905	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
 906}
 907
 908/**
 909 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
 910 * @rx_ring: Rx descriptor ring to transact packets on
 
 911 * @size: size of buffer to add to skb
 912 * @ntc: index of next to clean element
 913 *
 914 * This function will pull an Rx buffer from the ring and synchronize it
 915 * for use by the CPU.
 916 */
 917static struct ice_rx_buf *
 918ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
 919	       const unsigned int ntc)
 920{
 921	struct ice_rx_buf *rx_buf;
 922
 923	rx_buf = &rx_ring->rx_buf[ntc];
 924	prefetchw(rx_buf->page);
 
 925
 926	if (!size)
 927		return rx_buf;
 928	/* we are reusing so sync this buffer for CPU use */
 929	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
 930				      rx_buf->page_offset, size,
 931				      DMA_FROM_DEVICE);
 932
 933	/* We have pulled a buffer for use, so decrement pagecnt_bias */
 934	rx_buf->pagecnt_bias--;
 935
 936	return rx_buf;
 937}
 938
 939/**
 940 * ice_get_pgcnts - grab page_count() for gathered fragments
 941 * @rx_ring: Rx descriptor ring to store the page counts on
 942 *
 943 * This function is intended to be called right before running XDP
 944 * program so that the page recycling mechanism will be able to take
 945 * a correct decision regarding underlying pages; this is done in such
 946 * way as XDP program can change the refcount of page
 947 */
 948static void ice_get_pgcnts(struct ice_rx_ring *rx_ring)
 949{
 950	u32 nr_frags = rx_ring->nr_frags + 1;
 951	u32 idx = rx_ring->first_desc;
 952	struct ice_rx_buf *rx_buf;
 953	u32 cnt = rx_ring->count;
 954
 955	for (int i = 0; i < nr_frags; i++) {
 956		rx_buf = &rx_ring->rx_buf[idx];
 957		rx_buf->pgcnt = page_count(rx_buf->page);
 958
 959		if (++idx == cnt)
 960			idx = 0;
 961	}
 962}
 963
 964/**
 965 * ice_build_skb - Build skb around an existing buffer
 966 * @rx_ring: Rx descriptor ring to transact packets on
 
 967 * @xdp: xdp_buff pointing to the data
 968 *
 969 * This function builds an skb around an existing XDP buffer, taking care
 970 * to set up the skb correctly and avoid any memcpy overhead. Driver has
 971 * already combined frags (if any) to skb_shared_info.
 972 */
 973static struct sk_buff *
 974ice_build_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
 
 975{
 976	u8 metasize = xdp->data - xdp->data_meta;
 977	struct skb_shared_info *sinfo = NULL;
 978	unsigned int nr_frags;
 
 
 
 
 
 979	struct sk_buff *skb;
 980
 981	if (unlikely(xdp_buff_has_frags(xdp))) {
 982		sinfo = xdp_get_shared_info_from_buff(xdp);
 983		nr_frags = sinfo->nr_frags;
 984	}
 985
 986	/* Prefetch first cache line of first page. If xdp->data_meta
 987	 * is unused, this points exactly as xdp->data, otherwise we
 988	 * likely have a consumer accessing first few bytes of meta
 989	 * data, and then actual data.
 990	 */
 991	net_prefetch(xdp->data_meta);
 
 
 
 992	/* build an skb around the page buffer */
 993	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
 994	if (unlikely(!skb))
 995		return NULL;
 996
 997	/* must to record Rx queue, otherwise OS features such as
 998	 * symmetric queue won't work
 999	 */
1000	skb_record_rx_queue(skb, rx_ring->q_index);
1001
1002	/* update pointers within the skb to store the data */
1003	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1004	__skb_put(skb, xdp->data_end - xdp->data);
1005	if (metasize)
1006		skb_metadata_set(skb, metasize);
1007
1008	if (unlikely(xdp_buff_has_frags(xdp)))
1009		xdp_update_skb_shared_info(skb, nr_frags,
1010					   sinfo->xdp_frags_size,
1011					   nr_frags * xdp->frame_sz,
1012					   xdp_buff_is_frag_pfmemalloc(xdp));
1013
1014	return skb;
1015}
1016
1017/**
1018 * ice_construct_skb - Allocate skb and populate it
1019 * @rx_ring: Rx descriptor ring to transact packets on
 
1020 * @xdp: xdp_buff pointing to the data
1021 *
1022 * This function allocates an skb. It then populates it with the page
1023 * data from the current receive descriptor, taking care to set up the
1024 * skb correctly.
1025 */
1026static struct sk_buff *
1027ice_construct_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
 
1028{
1029	unsigned int size = xdp->data_end - xdp->data;
1030	struct skb_shared_info *sinfo = NULL;
1031	struct ice_rx_buf *rx_buf;
1032	unsigned int nr_frags = 0;
1033	unsigned int headlen;
1034	struct sk_buff *skb;
1035
1036	/* prefetch first cache line of first page */
1037	net_prefetch(xdp->data);
1038
1039	if (unlikely(xdp_buff_has_frags(xdp))) {
1040		sinfo = xdp_get_shared_info_from_buff(xdp);
1041		nr_frags = sinfo->nr_frags;
1042	}
1043
1044	/* allocate a skb to store the frags */
1045	skb = napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE);
 
1046	if (unlikely(!skb))
1047		return NULL;
1048
1049	rx_buf = &rx_ring->rx_buf[rx_ring->first_desc];
1050	skb_record_rx_queue(skb, rx_ring->q_index);
1051	/* Determine available headroom for copy */
1052	headlen = size;
1053	if (headlen > ICE_RX_HDR_SIZE)
1054		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
1055
1056	/* align pull length to size of long to optimize memcpy performance */
1057	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
1058							 sizeof(long)));
1059
1060	/* if we exhaust the linear part then add what is left as a frag */
1061	size -= headlen;
1062	if (size) {
1063		/* besides adding here a partial frag, we are going to add
1064		 * frags from xdp_buff, make sure there is enough space for
1065		 * them
1066		 */
1067		if (unlikely(nr_frags >= MAX_SKB_FRAGS - 1)) {
1068			dev_kfree_skb(skb);
1069			return NULL;
1070		}
1071		skb_add_rx_frag(skb, 0, rx_buf->page,
1072				rx_buf->page_offset + headlen, size,
1073				xdp->frame_sz);
 
1074	} else {
1075		/* buffer is unused, restore biased page count in Rx buffer;
1076		 * data was copied onto skb's linear part so there's no
1077		 * need for adjusting page offset and we can reuse this buffer
1078		 * as-is
1079		 */
1080		rx_buf->pagecnt_bias++;
1081	}
1082
1083	if (unlikely(xdp_buff_has_frags(xdp))) {
1084		struct skb_shared_info *skinfo = skb_shinfo(skb);
1085
1086		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
1087		       sizeof(skb_frag_t) * nr_frags);
1088
1089		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
1090					   sinfo->xdp_frags_size,
1091					   nr_frags * xdp->frame_sz,
1092					   xdp_buff_is_frag_pfmemalloc(xdp));
1093	}
1094
1095	return skb;
1096}
1097
1098/**
1099 * ice_put_rx_buf - Clean up used buffer and either recycle or free
1100 * @rx_ring: Rx descriptor ring to transact packets on
1101 * @rx_buf: Rx buffer to pull data from
1102 *
1103 * This function will clean up the contents of the rx_buf. It will either
1104 * recycle the buffer or unmap it and free the associated resources.
 
1105 */
1106static void
1107ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf)
1108{
 
 
 
 
 
 
1109	if (!rx_buf)
1110		return;
1111
1112	if (ice_can_reuse_rx_page(rx_buf)) {
1113		/* hand second half of page back to the ring */
1114		ice_reuse_rx_page(rx_ring, rx_buf);
1115	} else {
1116		/* we are not reusing the buffer so unmap it */
1117		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1118				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1119				     ICE_RX_DMA_ATTR);
1120		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1121	}
1122
1123	/* clear contents of buffer_info */
1124	rx_buf->page = NULL;
 
1125}
1126
1127/**
1128 * ice_put_rx_mbuf - ice_put_rx_buf() caller, for all frame frags
1129 * @rx_ring: Rx ring with all the auxiliary data
1130 * @xdp: XDP buffer carrying linear + frags part
1131 * @xdp_xmit: XDP_TX/XDP_REDIRECT verdict storage
1132 * @ntc: a current next_to_clean value to be stored at rx_ring
1133 * @verdict: return code from XDP program execution
1134 *
1135 * Walk through gathered fragments and satisfy internal page
1136 * recycle mechanism; we take here an action related to verdict
1137 * returned by XDP program;
1138 */
1139static void ice_put_rx_mbuf(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
1140			    u32 *xdp_xmit, u32 ntc, u32 verdict)
1141{
1142	u32 nr_frags = rx_ring->nr_frags + 1;
1143	u32 idx = rx_ring->first_desc;
1144	u32 cnt = rx_ring->count;
1145	u32 post_xdp_frags = 1;
1146	struct ice_rx_buf *buf;
1147	int i;
1148
1149	if (unlikely(xdp_buff_has_frags(xdp)))
1150		post_xdp_frags += xdp_get_shared_info_from_buff(xdp)->nr_frags;
1151
1152	for (i = 0; i < post_xdp_frags; i++) {
1153		buf = &rx_ring->rx_buf[idx];
1154
1155		if (verdict & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1156			ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
1157			*xdp_xmit |= verdict;
1158		} else if (verdict & ICE_XDP_CONSUMED) {
1159			buf->pagecnt_bias++;
1160		} else if (verdict == ICE_XDP_PASS) {
1161			ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
1162		}
1163
1164		ice_put_rx_buf(rx_ring, buf);
1165
1166		if (++idx == cnt)
1167			idx = 0;
1168	}
1169	/* handle buffers that represented frags released by XDP prog;
1170	 * for these we keep pagecnt_bias as-is; refcount from struct page
1171	 * has been decremented within XDP prog and we do not have to increase
1172	 * the biased refcnt
1173	 */
1174	for (; i < nr_frags; i++) {
1175		buf = &rx_ring->rx_buf[idx];
1176		ice_put_rx_buf(rx_ring, buf);
1177		if (++idx == cnt)
1178			idx = 0;
1179	}
1180
1181	xdp->data = NULL;
1182	rx_ring->first_desc = ntc;
1183	rx_ring->nr_frags = 0;
1184}
1185
1186/**
1187 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1188 * @rx_ring: Rx descriptor ring to transact packets on
1189 * @budget: Total limit on number of packets to process
1190 *
1191 * This function provides a "bounce buffer" approach to Rx interrupt
1192 * processing. The advantage to this is that on systems that have
1193 * expensive overhead for IOMMU access this provides a means of avoiding
1194 * it by maintaining the mapping of the page to the system.
1195 *
1196 * Returns amount of work completed
1197 */
1198int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
1199{
1200	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1201	unsigned int offset = rx_ring->rx_offset;
1202	struct xdp_buff *xdp = &rx_ring->xdp;
1203	struct ice_tx_ring *xdp_ring = NULL;
1204	struct bpf_prog *xdp_prog = NULL;
1205	u32 ntc = rx_ring->next_to_clean;
1206	u32 cached_ntu, xdp_verdict;
1207	u32 cnt = rx_ring->count;
1208	u32 xdp_xmit = 0;
1209	bool failure;
1210
1211	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1212	if (xdp_prog) {
1213		xdp_ring = rx_ring->xdp_ring;
1214		cached_ntu = xdp_ring->next_to_use;
1215	}
1216
1217	/* start the loop to process Rx packets bounded by 'budget' */
1218	while (likely(total_rx_pkts < (unsigned int)budget)) {
1219		union ice_32b_rx_flex_desc *rx_desc;
1220		struct ice_rx_buf *rx_buf;
1221		struct sk_buff *skb;
1222		unsigned int size;
1223		u16 stat_err_bits;
1224		u16 vlan_tci;
 
1225
1226		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1227		rx_desc = ICE_RX_DESC(rx_ring, ntc);
1228
1229		/* status_error_len will always be zero for unused descriptors
1230		 * because it's cleared in cleanup, and overlaps with hdr_addr
1231		 * which is always zero because packet split isn't used, if the
1232		 * hardware wrote DD then it will be non-zero
1233		 */
1234		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1235		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
1236			break;
1237
1238		/* This memory barrier is needed to keep us from reading
1239		 * any other fields out of the rx_desc until we know the
1240		 * DD bit is set.
1241		 */
1242		dma_rmb();
1243
1244		ice_trace(clean_rx_irq, rx_ring, rx_desc);
1245		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1246			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1247
1248			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1249			    ctrl_vsi->vf)
1250				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1251			if (++ntc == cnt)
1252				ntc = 0;
1253			rx_ring->first_desc = ntc;
1254			continue;
1255		}
1256
1257		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1258			ICE_RX_FLX_DESC_PKT_LEN_M;
1259
1260		/* retrieve a buffer from the ring */
1261		rx_buf = ice_get_rx_buf(rx_ring, size, ntc);
1262
1263		if (!xdp->data) {
1264			void *hard_start;
1265
1266			hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1267				     offset;
1268			xdp_prepare_buff(xdp, hard_start, offset, size, !!offset);
1269			xdp_buff_clear_frags_flag(xdp);
1270		} else if (ice_add_xdp_frag(rx_ring, xdp, rx_buf, size)) {
1271			ice_put_rx_mbuf(rx_ring, xdp, NULL, ntc, ICE_XDP_CONSUMED);
1272			break;
1273		}
1274		if (++ntc == cnt)
1275			ntc = 0;
1276
1277		/* skip if it is NOP desc */
1278		if (ice_is_non_eop(rx_ring, rx_desc))
1279			continue;
 
 
 
 
 
1280
1281		ice_get_pgcnts(rx_ring);
1282		xdp_verdict = ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_desc);
1283		if (xdp_verdict == ICE_XDP_PASS)
 
1284			goto construct_skb;
1285		total_rx_bytes += xdp_get_buff_len(xdp);
1286		total_rx_pkts++;
1287
1288		ice_put_rx_mbuf(rx_ring, xdp, &xdp_xmit, ntc, xdp_verdict);
 
 
 
 
 
 
 
 
 
 
 
1289
 
 
1290		continue;
1291construct_skb:
1292		if (likely(ice_ring_uses_build_skb(rx_ring)))
1293			skb = ice_build_skb(rx_ring, xdp);
1294		else
1295			skb = ice_construct_skb(rx_ring, xdp);
 
 
 
 
1296		/* exit if we failed to retrieve a buffer */
1297		if (!skb) {
1298			rx_ring->ring_stats->rx_stats.alloc_page_failed++;
1299			xdp_verdict = ICE_XDP_CONSUMED;
 
 
1300		}
1301		ice_put_rx_mbuf(rx_ring, xdp, &xdp_xmit, ntc, xdp_verdict);
1302
1303		if (!skb)
1304			break;
 
 
 
 
1305
1306		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1307		if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
1308					      stat_err_bits))) {
1309			dev_kfree_skb_any(skb);
1310			continue;
1311		}
1312
1313		vlan_tci = ice_get_vlan_tci(rx_desc);
 
 
1314
1315		/* pad the skb if needed, to make a valid ethernet frame */
1316		if (eth_skb_pad(skb))
 
1317			continue;
 
1318
1319		/* probably a little skewed due to removing CRC */
1320		total_rx_bytes += skb->len;
1321
1322		/* populate checksum, VLAN, and protocol */
1323		ice_process_skb_fields(rx_ring, rx_desc, skb);
 
 
 
1324
1325		ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1326		/* send completed skb up the stack */
1327		ice_receive_skb(rx_ring, skb, vlan_tci);
1328
1329		/* update budget accounting */
1330		total_rx_pkts++;
1331	}
1332
1333	rx_ring->next_to_clean = ntc;
1334	/* return up to cleaned_count buffers to hardware */
1335	failure = ice_alloc_rx_bufs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring));
1336
1337	if (xdp_xmit)
1338		ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu);
1339
1340	if (rx_ring->ring_stats)
1341		ice_update_rx_ring_stats(rx_ring, total_rx_pkts,
1342					 total_rx_bytes);
1343
1344	/* guarantee a trip back through this routine if there was a failure */
1345	return failure ? budget : (int)total_rx_pkts;
1346}
1347
1348static void __ice_update_sample(struct ice_q_vector *q_vector,
1349				struct ice_ring_container *rc,
1350				struct dim_sample *sample,
1351				bool is_tx)
1352{
1353	u64 packets = 0, bytes = 0;
1354
1355	if (is_tx) {
1356		struct ice_tx_ring *tx_ring;
1357
1358		ice_for_each_tx_ring(tx_ring, *rc) {
1359			struct ice_ring_stats *ring_stats;
1360
1361			ring_stats = tx_ring->ring_stats;
1362			if (!ring_stats)
1363				continue;
1364			packets += ring_stats->stats.pkts;
1365			bytes += ring_stats->stats.bytes;
1366		}
1367	} else {
1368		struct ice_rx_ring *rx_ring;
1369
1370		ice_for_each_rx_ring(rx_ring, *rc) {
1371			struct ice_ring_stats *ring_stats;
1372
1373			ring_stats = rx_ring->ring_stats;
1374			if (!ring_stats)
1375				continue;
1376			packets += ring_stats->stats.pkts;
1377			bytes += ring_stats->stats.bytes;
1378		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379	}
1380
1381	dim_update_sample(q_vector->total_events, packets, bytes, sample);
1382	sample->comp_ctr = 0;
 
 
1383
1384	/* if dim settings get stale, like when not updated for 1
1385	 * second or longer, force it to start again. This addresses the
1386	 * frequent case of an idle queue being switched to by the
1387	 * scheduler. The 1,000 here means 1,000 milliseconds.
1388	 */
1389	if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
1390		rc->dim.state = DIM_START_MEASURE;
1391}
1392
1393/**
1394 * ice_net_dim - Update net DIM algorithm
1395 * @q_vector: the vector associated with the interrupt
1396 *
1397 * Create a DIM sample and notify net_dim() so that it can possibly decide
1398 * a new ITR value based on incoming packets, bytes, and interrupts.
1399 *
1400 * This function is a no-op if the ring is not configured to dynamic ITR.
 
 
 
 
 
 
1401 */
1402static void ice_net_dim(struct ice_q_vector *q_vector)
 
1403{
1404	struct ice_ring_container *tx = &q_vector->tx;
1405	struct ice_ring_container *rx = &q_vector->rx;
 
1406
1407	if (ITR_IS_DYNAMIC(tx)) {
1408		struct dim_sample dim_sample;
1409
1410		__ice_update_sample(q_vector, tx, &dim_sample, true);
1411		net_dim(&tx->dim, &dim_sample);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1412	}
1413
1414	if (ITR_IS_DYNAMIC(rx)) {
1415		struct dim_sample dim_sample;
 
 
 
 
 
 
 
 
1416
1417		__ice_update_sample(q_vector, rx, &dim_sample, false);
1418		net_dim(&rx->dim, &dim_sample);
 
 
 
 
 
 
 
 
 
1419	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1420}
1421
1422/**
1423 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1424 * @itr_idx: interrupt throttling index
1425 * @itr: interrupt throttling value in usecs
1426 */
1427static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1428{
1429	/* The ITR value is reported in microseconds, and the register value is
1430	 * recorded in 2 microsecond units. For this reason we only need to
1431	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1432	 * granularity as a shift instead of division. The mask makes sure the
1433	 * ITR value is never odd so we don't accidentally write into the field
1434	 * prior to the ITR field.
1435	 */
1436	itr &= ICE_ITR_MASK;
1437
1438	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1439		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1440		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1441}
1442
 
 
 
 
 
 
 
 
 
1443/**
1444 * ice_enable_interrupt - re-enable MSI-X interrupt
1445 * @q_vector: the vector associated with the interrupt to enable
1446 *
1447 * If the VSI is down, the interrupt will not be re-enabled. Also,
1448 * when enabling the interrupt always reset the wb_on_itr to false
1449 * and trigger a software interrupt to clean out internal state.
1450 */
1451static void ice_enable_interrupt(struct ice_q_vector *q_vector)
1452{
 
 
1453	struct ice_vsi *vsi = q_vector->vsi;
1454	bool wb_en = q_vector->wb_on_itr;
1455	u32 itr_val;
1456
1457	if (test_bit(ICE_DOWN, vsi->state))
 
 
 
 
 
 
 
 
 
 
 
 
 
1458		return;
 
1459
1460	/* trigger an ITR delayed software interrupt when exiting busy poll, to
1461	 * make sure to catch any pending cleanups that might have been missed
1462	 * due to interrupt state transition. If busy poll or poll isn't
1463	 * enabled, then don't update ITR, and just enable the interrupt.
1464	 */
1465	if (!wb_en) {
1466		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1467	} else {
1468		q_vector->wb_on_itr = false;
1469
1470		/* do two things here with a single write. Set up the third ITR
1471		 * index to be used for software interrupt moderation, and then
1472		 * trigger a software interrupt with a rate limit of 20K on
1473		 * software interrupts, this will help avoid high interrupt
1474		 * loads due to frequently polling and exiting polling.
 
 
 
 
 
 
 
1475		 */
1476		itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
1477		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1478			   ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
1479			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
 
 
 
 
 
 
 
 
 
1480	}
1481	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
 
 
 
 
1482}
1483
1484/**
1485 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1486 * @q_vector: q_vector to set WB_ON_ITR on
1487 *
1488 * We need to tell hardware to write-back completed descriptors even when
1489 * interrupts are disabled. Descriptors will be written back on cache line
1490 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1491 * descriptors may not be written back if they don't fill a cache line until
1492 * the next interrupt.
1493 *
1494 * This sets the write-back frequency to whatever was set previously for the
1495 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1496 * aren't meddling with the INTENA_M bit.
1497 */
1498static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1499{
1500	struct ice_vsi *vsi = q_vector->vsi;
1501
1502	/* already in wb_on_itr mode no need to change it */
1503	if (q_vector->wb_on_itr)
1504		return;
1505
1506	/* use previously set ITR values for all of the ITR indices by
1507	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1508	 * be static in non-adaptive mode (user configured)
1509	 */
1510	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1511	     FIELD_PREP(GLINT_DYN_CTL_ITR_INDX_M, ICE_ITR_NONE) |
1512	     FIELD_PREP(GLINT_DYN_CTL_INTENA_MSK_M, 1) |
1513	     FIELD_PREP(GLINT_DYN_CTL_WB_ON_ITR_M, 1));
 
1514
1515	q_vector->wb_on_itr = true;
1516}
1517
1518/**
1519 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1520 * @napi: napi struct with our devices info in it
1521 * @budget: amount of work driver is allowed to do this pass, in packets
1522 *
1523 * This function will clean all queues associated with a q_vector.
1524 *
1525 * Returns the amount of work done
1526 */
1527int ice_napi_poll(struct napi_struct *napi, int budget)
1528{
1529	struct ice_q_vector *q_vector =
1530				container_of(napi, struct ice_q_vector, napi);
1531	struct ice_tx_ring *tx_ring;
1532	struct ice_rx_ring *rx_ring;
1533	bool clean_complete = true;
 
1534	int budget_per_ring;
1535	int work_done = 0;
1536
1537	/* Since the actual Tx work is minimal, we can give the Tx a larger
1538	 * budget and be more aggressive about cleaning up the Tx descriptors.
1539	 */
1540	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
1541		struct xsk_buff_pool *xsk_pool = READ_ONCE(tx_ring->xsk_pool);
1542		bool wd;
1543
1544		if (xsk_pool)
1545			wd = ice_xmit_zc(tx_ring, xsk_pool);
1546		else if (ice_ring_is_xdp(tx_ring))
1547			wd = true;
1548		else
1549			wd = ice_clean_tx_irq(tx_ring, budget);
1550
1551		if (!wd)
1552			clean_complete = false;
1553	}
1554
1555	/* Handle case where we are called by netpoll with a budget of 0 */
1556	if (unlikely(budget <= 0))
1557		return budget;
1558
1559	/* normally we have 1 Rx ring per q_vector */
1560	if (unlikely(q_vector->num_ring_rx > 1))
1561		/* We attempt to distribute budget to each Rx queue fairly, but
1562		 * don't allow the budget to go below 1 because that would exit
1563		 * polling early.
1564		 */
1565		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1566	else
1567		/* Max of 1 Rx ring in this q_vector so give it the budget */
1568		budget_per_ring = budget;
1569
1570	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
1571		struct xsk_buff_pool *xsk_pool = READ_ONCE(rx_ring->xsk_pool);
1572		int cleaned;
1573
1574		/* A dedicated path for zero-copy allows making a single
1575		 * comparison in the irq context instead of many inside the
1576		 * ice_clean_rx_irq function and makes the codebase cleaner.
1577		 */
1578		cleaned = rx_ring->xsk_pool ?
1579			  ice_clean_rx_irq_zc(rx_ring, xsk_pool, budget_per_ring) :
1580			  ice_clean_rx_irq(rx_ring, budget_per_ring);
1581		work_done += cleaned;
1582		/* if we clean as many as budgeted, we must not be done */
1583		if (cleaned >= budget_per_ring)
1584			clean_complete = false;
1585	}
1586
1587	/* If work not completed, return budget and polling will return */
1588	if (!clean_complete) {
1589		/* Set the writeback on ITR so partial completions of
1590		 * cache-lines will still continue even if we're polling.
1591		 */
1592		ice_set_wb_on_itr(q_vector);
1593		return budget;
1594	}
1595
1596	/* Exit the polling mode, but don't re-enable interrupts if stack might
1597	 * poll us due to busy-polling
1598	 */
1599	if (napi_complete_done(napi, work_done)) {
1600		ice_net_dim(q_vector);
1601		ice_enable_interrupt(q_vector);
1602	} else {
1603		ice_set_wb_on_itr(q_vector);
1604	}
1605
1606	return min_t(int, work_done, budget - 1);
1607}
1608
1609/**
1610 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1611 * @tx_ring: the ring to be checked
1612 * @size: the size buffer we want to assure is available
1613 *
1614 * Returns -EBUSY if a stop is needed, else 0
1615 */
1616static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1617{
1618	netif_tx_stop_queue(txring_txq(tx_ring));
1619	/* Memory barrier before checking head and tail */
1620	smp_mb();
1621
1622	/* Check again in a case another CPU has just made room available. */
1623	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1624		return -EBUSY;
1625
1626	/* A reprieve! - use start_queue because it doesn't call schedule */
1627	netif_tx_start_queue(txring_txq(tx_ring));
1628	++tx_ring->ring_stats->tx_stats.restart_q;
1629	return 0;
1630}
1631
1632/**
1633 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1634 * @tx_ring: the ring to be checked
1635 * @size:    the size buffer we want to assure is available
1636 *
1637 * Returns 0 if stop is not needed
1638 */
1639static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1640{
1641	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1642		return 0;
1643
1644	return __ice_maybe_stop_tx(tx_ring, size);
1645}
1646
1647/**
1648 * ice_tx_map - Build the Tx descriptor
1649 * @tx_ring: ring to send buffer on
1650 * @first: first buffer info buffer to use
1651 * @off: pointer to struct that holds offload parameters
1652 *
1653 * This function loops over the skb data pointed to by *first
1654 * and gets a physical address for each memory location and programs
1655 * it and the length into the transmit descriptor.
1656 */
1657static void
1658ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
1659	   struct ice_tx_offload_params *off)
1660{
1661	u64 td_offset, td_tag, td_cmd;
1662	u16 i = tx_ring->next_to_use;
1663	unsigned int data_len, size;
1664	struct ice_tx_desc *tx_desc;
1665	struct ice_tx_buf *tx_buf;
1666	struct sk_buff *skb;
1667	skb_frag_t *frag;
1668	dma_addr_t dma;
1669	bool kick;
1670
1671	td_tag = off->td_l2tag1;
1672	td_cmd = off->td_cmd;
1673	td_offset = off->td_offset;
1674	skb = first->skb;
1675
1676	data_len = skb->data_len;
1677	size = skb_headlen(skb);
1678
1679	tx_desc = ICE_TX_DESC(tx_ring, i);
1680
1681	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1682		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1683		td_tag = first->vid;
 
1684	}
1685
1686	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1687
1688	tx_buf = first;
1689
1690	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1691		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1692
1693		if (dma_mapping_error(tx_ring->dev, dma))
1694			goto dma_error;
1695
1696		/* record length, and DMA address */
1697		dma_unmap_len_set(tx_buf, len, size);
1698		dma_unmap_addr_set(tx_buf, dma, dma);
1699
1700		/* align size to end of page */
1701		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1702		tx_desc->buf_addr = cpu_to_le64(dma);
1703
1704		/* account for data chunks larger than the hardware
1705		 * can handle
1706		 */
1707		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1708			tx_desc->cmd_type_offset_bsz =
1709				ice_build_ctob(td_cmd, td_offset, max_data,
1710					       td_tag);
1711
1712			tx_desc++;
1713			i++;
1714
1715			if (i == tx_ring->count) {
1716				tx_desc = ICE_TX_DESC(tx_ring, 0);
1717				i = 0;
1718			}
1719
1720			dma += max_data;
1721			size -= max_data;
1722
1723			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1724			tx_desc->buf_addr = cpu_to_le64(dma);
1725		}
1726
1727		if (likely(!data_len))
1728			break;
1729
1730		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1731							      size, td_tag);
1732
1733		tx_desc++;
1734		i++;
1735
1736		if (i == tx_ring->count) {
1737			tx_desc = ICE_TX_DESC(tx_ring, 0);
1738			i = 0;
1739		}
1740
1741		size = skb_frag_size(frag);
1742		data_len -= size;
1743
1744		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1745				       DMA_TO_DEVICE);
1746
1747		tx_buf = &tx_ring->tx_buf[i];
1748		tx_buf->type = ICE_TX_BUF_FRAG;
1749	}
1750
 
 
 
1751	/* record SW timestamp if HW timestamp is not available */
1752	skb_tx_timestamp(first->skb);
1753
1754	i++;
1755	if (i == tx_ring->count)
1756		i = 0;
1757
1758	/* write last descriptor with RS and EOP bits */
1759	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1760	tx_desc->cmd_type_offset_bsz =
1761			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1762
1763	/* Force memory writes to complete before letting h/w know there
1764	 * are new descriptors to fetch.
1765	 *
1766	 * We also use this memory barrier to make certain all of the
1767	 * status bits have been updated before next_to_watch is written.
1768	 */
1769	wmb();
1770
1771	/* set next_to_watch value indicating a packet is present */
1772	first->next_to_watch = tx_desc;
1773
1774	tx_ring->next_to_use = i;
1775
1776	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1777
1778	/* notify HW of packet */
1779	kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
1780				      netdev_xmit_more());
1781	if (kick)
1782		/* notify HW of packet */
1783		writel(i, tx_ring->tail);
1784
1785	return;
1786
1787dma_error:
1788	/* clear DMA mappings for failed tx_buf map */
1789	for (;;) {
1790		tx_buf = &tx_ring->tx_buf[i];
1791		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1792		if (tx_buf == first)
1793			break;
1794		if (i == 0)
1795			i = tx_ring->count;
1796		i--;
1797	}
1798
1799	tx_ring->next_to_use = i;
1800}
1801
1802/**
1803 * ice_tx_csum - Enable Tx checksum offloads
1804 * @first: pointer to the first descriptor
1805 * @off: pointer to struct that holds offload parameters
1806 *
1807 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1808 */
1809static
1810int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1811{
1812	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1813	struct sk_buff *skb = first->skb;
1814	union {
1815		struct iphdr *v4;
1816		struct ipv6hdr *v6;
1817		unsigned char *hdr;
1818	} ip;
1819	union {
1820		struct tcphdr *tcp;
1821		unsigned char *hdr;
1822	} l4;
1823	__be16 frag_off, protocol;
1824	unsigned char *exthdr;
1825	u32 offset, cmd = 0;
1826	u8 l4_proto = 0;
1827
1828	if (skb->ip_summed != CHECKSUM_PARTIAL)
1829		return 0;
1830
1831	protocol = vlan_get_protocol(skb);
1832
1833	if (eth_p_mpls(protocol)) {
1834		ip.hdr = skb_inner_network_header(skb);
1835		l4.hdr = skb_checksum_start(skb);
1836	} else {
1837		ip.hdr = skb_network_header(skb);
1838		l4.hdr = skb_transport_header(skb);
1839	}
1840
1841	/* compute outer L2 header size */
1842	l2_len = ip.hdr - skb->data;
1843	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1844
1845	/* set the tx_flags to indicate the IP protocol type. this is
1846	 * required so that checksum header computation below is accurate.
1847	 */
1848	if (ip.v4->version == 4)
1849		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1850	else if (ip.v6->version == 6)
1851		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1852
1853	if (skb->encapsulation) {
1854		bool gso_ena = false;
1855		u32 tunnel = 0;
1856
1857		/* define outer network header type */
1858		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1859			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1860				  ICE_TX_CTX_EIPT_IPV4 :
1861				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1862			l4_proto = ip.v4->protocol;
1863		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1864			int ret;
1865
1866			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1867			exthdr = ip.hdr + sizeof(*ip.v6);
1868			l4_proto = ip.v6->nexthdr;
1869			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1870					       &l4_proto, &frag_off);
1871			if (ret < 0)
1872				return -1;
1873		}
1874
1875		/* define outer transport */
1876		switch (l4_proto) {
1877		case IPPROTO_UDP:
1878			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1879			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1880			break;
1881		case IPPROTO_GRE:
1882			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1883			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1884			break;
1885		case IPPROTO_IPIP:
1886		case IPPROTO_IPV6:
1887			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1888			l4.hdr = skb_inner_network_header(skb);
1889			break;
1890		default:
1891			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1892				return -1;
1893
1894			skb_checksum_help(skb);
1895			return 0;
1896		}
1897
1898		/* compute outer L3 header size */
1899		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1900			  ICE_TXD_CTX_QW0_EIPLEN_S;
1901
1902		/* switch IP header pointer from outer to inner header */
1903		ip.hdr = skb_inner_network_header(skb);
1904
1905		/* compute tunnel header size */
1906		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1907			   ICE_TXD_CTX_QW0_NATLEN_S;
1908
1909		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1910		/* indicate if we need to offload outer UDP header */
1911		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1912		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1913			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1914
1915		/* record tunnel offload values */
1916		off->cd_tunnel_params |= tunnel;
1917
1918		/* set DTYP=1 to indicate that it's an Tx context descriptor
1919		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1920		 */
1921		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1922
1923		/* switch L4 header pointer from outer to inner */
1924		l4.hdr = skb_inner_transport_header(skb);
1925		l4_proto = 0;
1926
1927		/* reset type as we transition from outer to inner headers */
1928		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1929		if (ip.v4->version == 4)
1930			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1931		if (ip.v6->version == 6)
1932			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1933	}
1934
1935	/* Enable IP checksum offloads */
1936	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1937		l4_proto = ip.v4->protocol;
1938		/* the stack computes the IP header already, the only time we
1939		 * need the hardware to recompute it is in the case of TSO.
1940		 */
1941		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1942			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1943		else
1944			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1945
1946	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1947		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1948		exthdr = ip.hdr + sizeof(*ip.v6);
1949		l4_proto = ip.v6->nexthdr;
1950		if (l4.hdr != exthdr)
1951			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1952					 &frag_off);
1953	} else {
1954		return -1;
1955	}
1956
1957	/* compute inner L3 header size */
1958	l3_len = l4.hdr - ip.hdr;
1959	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1960
1961	/* Enable L4 checksum offloads */
1962	switch (l4_proto) {
1963	case IPPROTO_TCP:
1964		/* enable checksum offloads */
1965		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1966		l4_len = l4.tcp->doff;
1967		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1968		break;
1969	case IPPROTO_UDP:
1970		/* enable UDP checksum offload */
1971		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1972		l4_len = (sizeof(struct udphdr) >> 2);
1973		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1974		break;
1975	case IPPROTO_SCTP:
1976		/* enable SCTP checksum offload */
1977		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1978		l4_len = sizeof(struct sctphdr) >> 2;
1979		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1980		break;
1981
1982	default:
1983		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1984			return -1;
1985		skb_checksum_help(skb);
1986		return 0;
1987	}
1988
1989	off->td_cmd |= cmd;
1990	off->td_offset |= offset;
1991	return 1;
1992}
1993
1994/**
1995 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1996 * @tx_ring: ring to send buffer on
1997 * @first: pointer to struct ice_tx_buf
1998 *
1999 * Checks the skb and set up correspondingly several generic transmit flags
2000 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2001 */
2002static void
2003ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
2004{
2005	struct sk_buff *skb = first->skb;
2006
2007	/* nothing left to do, software offloaded VLAN */
2008	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
2009		return;
2010
2011	/* the VLAN ethertype/tpid is determined by VSI configuration and netdev
2012	 * feature flags, which the driver only allows either 802.1Q or 802.1ad
2013	 * VLAN offloads exclusively so we only care about the VLAN ID here
2014	 */
2015	if (skb_vlan_tag_present(skb)) {
2016		first->vid = skb_vlan_tag_get(skb);
2017		if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
2018			first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
2019		else
2020			first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
2021	}
2022
2023	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
2024}
2025
2026/**
2027 * ice_tso - computes mss and TSO length to prepare for TSO
2028 * @first: pointer to struct ice_tx_buf
2029 * @off: pointer to struct that holds offload parameters
2030 *
2031 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
2032 */
2033static
2034int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2035{
2036	struct sk_buff *skb = first->skb;
2037	union {
2038		struct iphdr *v4;
2039		struct ipv6hdr *v6;
2040		unsigned char *hdr;
2041	} ip;
2042	union {
2043		struct tcphdr *tcp;
2044		struct udphdr *udp;
2045		unsigned char *hdr;
2046	} l4;
2047	u64 cd_mss, cd_tso_len;
2048	__be16 protocol;
2049	u32 paylen;
2050	u8 l4_start;
2051	int err;
2052
2053	if (skb->ip_summed != CHECKSUM_PARTIAL)
2054		return 0;
2055
2056	if (!skb_is_gso(skb))
2057		return 0;
2058
2059	err = skb_cow_head(skb, 0);
2060	if (err < 0)
2061		return err;
2062
2063	protocol = vlan_get_protocol(skb);
2064
2065	if (eth_p_mpls(protocol))
2066		ip.hdr = skb_inner_network_header(skb);
2067	else
2068		ip.hdr = skb_network_header(skb);
2069	l4.hdr = skb_checksum_start(skb);
2070
2071	/* initialize outer IP header fields */
2072	if (ip.v4->version == 4) {
2073		ip.v4->tot_len = 0;
2074		ip.v4->check = 0;
2075	} else {
2076		ip.v6->payload_len = 0;
2077	}
2078
2079	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2080					 SKB_GSO_GRE_CSUM |
2081					 SKB_GSO_IPXIP4 |
2082					 SKB_GSO_IPXIP6 |
2083					 SKB_GSO_UDP_TUNNEL |
2084					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2085		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2086		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2087			l4.udp->len = 0;
2088
2089			/* determine offset of outer transport header */
2090			l4_start = (u8)(l4.hdr - skb->data);
2091
2092			/* remove payload length from outer checksum */
2093			paylen = skb->len - l4_start;
2094			csum_replace_by_diff(&l4.udp->check,
2095					     (__force __wsum)htonl(paylen));
2096		}
2097
2098		/* reset pointers to inner headers */
 
 
2099		ip.hdr = skb_inner_network_header(skb);
2100		l4.hdr = skb_inner_transport_header(skb);
2101
2102		/* initialize inner IP header fields */
2103		if (ip.v4->version == 4) {
2104			ip.v4->tot_len = 0;
2105			ip.v4->check = 0;
2106		} else {
2107			ip.v6->payload_len = 0;
2108		}
2109	}
2110
2111	/* determine offset of transport header */
2112	l4_start = (u8)(l4.hdr - skb->data);
2113
2114	/* remove payload length from checksum */
2115	paylen = skb->len - l4_start;
2116
2117	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2118		csum_replace_by_diff(&l4.udp->check,
2119				     (__force __wsum)htonl(paylen));
2120		/* compute length of UDP segmentation header */
2121		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2122	} else {
2123		csum_replace_by_diff(&l4.tcp->check,
2124				     (__force __wsum)htonl(paylen));
2125		/* compute length of TCP segmentation header */
2126		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2127	}
2128
2129	/* update gso_segs and bytecount */
2130	first->gso_segs = skb_shinfo(skb)->gso_segs;
2131	first->bytecount += (first->gso_segs - 1) * off->header_len;
2132
2133	cd_tso_len = skb->len - off->header_len;
2134	cd_mss = skb_shinfo(skb)->gso_size;
2135
2136	/* record cdesc_qw1 with TSO parameters */
2137	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2138			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2139			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2140			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2141	first->tx_flags |= ICE_TX_FLAGS_TSO;
2142	return 1;
2143}
2144
2145/**
2146 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2147 * @size: transmit request size in bytes
2148 *
2149 * Due to hardware alignment restrictions (4K alignment), we need to
2150 * assume that we can have no more than 12K of data per descriptor, even
2151 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2152 * Thus, we need to divide by 12K. But division is slow! Instead,
2153 * we decompose the operation into shifts and one relatively cheap
2154 * multiply operation.
2155 *
2156 * To divide by 12K, we first divide by 4K, then divide by 3:
2157 *     To divide by 4K, shift right by 12 bits
2158 *     To divide by 3, multiply by 85, then divide by 256
2159 *     (Divide by 256 is done by shifting right by 8 bits)
2160 * Finally, we add one to round up. Because 256 isn't an exact multiple of
2161 * 3, we'll underestimate near each multiple of 12K. This is actually more
2162 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2163 * segment. For our purposes this is accurate out to 1M which is orders of
2164 * magnitude greater than our largest possible GSO size.
2165 *
2166 * This would then be implemented as:
2167 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2168 *
2169 * Since multiplication and division are commutative, we can reorder
2170 * operations into:
2171 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2172 */
2173static unsigned int ice_txd_use_count(unsigned int size)
2174{
2175	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2176}
2177
2178/**
2179 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2180 * @skb: send buffer
2181 *
2182 * Returns number of data descriptors needed for this skb.
2183 */
2184static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2185{
2186	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2187	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2188	unsigned int count = 0, size = skb_headlen(skb);
2189
2190	for (;;) {
2191		count += ice_txd_use_count(size);
2192
2193		if (!nr_frags--)
2194			break;
2195
2196		size = skb_frag_size(frag++);
2197	}
2198
2199	return count;
2200}
2201
2202/**
2203 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2204 * @skb: send buffer
2205 *
2206 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2207 * and so we need to figure out the cases where we need to linearize the skb.
2208 *
2209 * For TSO we need to count the TSO header and segment payload separately.
2210 * As such we need to check cases where we have 7 fragments or more as we
2211 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2212 * the segment payload in the first descriptor, and another 7 for the
2213 * fragments.
2214 */
2215static bool __ice_chk_linearize(struct sk_buff *skb)
2216{
2217	const skb_frag_t *frag, *stale;
2218	int nr_frags, sum;
2219
2220	/* no need to check if number of frags is less than 7 */
2221	nr_frags = skb_shinfo(skb)->nr_frags;
2222	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2223		return false;
2224
2225	/* We need to walk through the list and validate that each group
2226	 * of 6 fragments totals at least gso_size.
2227	 */
2228	nr_frags -= ICE_MAX_BUF_TXD - 2;
2229	frag = &skb_shinfo(skb)->frags[0];
2230
2231	/* Initialize size to the negative value of gso_size minus 1. We
2232	 * use this as the worst case scenario in which the frag ahead
2233	 * of us only provides one byte which is why we are limited to 6
2234	 * descriptors for a single transmit as the header and previous
2235	 * fragment are already consuming 2 descriptors.
2236	 */
2237	sum = 1 - skb_shinfo(skb)->gso_size;
2238
2239	/* Add size of frags 0 through 4 to create our initial sum */
2240	sum += skb_frag_size(frag++);
2241	sum += skb_frag_size(frag++);
2242	sum += skb_frag_size(frag++);
2243	sum += skb_frag_size(frag++);
2244	sum += skb_frag_size(frag++);
2245
2246	/* Walk through fragments adding latest fragment, testing it, and
2247	 * then removing stale fragments from the sum.
2248	 */
2249	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2250		int stale_size = skb_frag_size(stale);
2251
2252		sum += skb_frag_size(frag++);
2253
2254		/* The stale fragment may present us with a smaller
2255		 * descriptor than the actual fragment size. To account
2256		 * for that we need to remove all the data on the front and
2257		 * figure out what the remainder would be in the last
2258		 * descriptor associated with the fragment.
2259		 */
2260		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2261			int align_pad = -(skb_frag_off(stale)) &
2262					(ICE_MAX_READ_REQ_SIZE - 1);
2263
2264			sum -= align_pad;
2265			stale_size -= align_pad;
2266
2267			do {
2268				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2269				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2270			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2271		}
2272
2273		/* if sum is negative we failed to make sufficient progress */
2274		if (sum < 0)
2275			return true;
2276
2277		if (!nr_frags--)
2278			break;
2279
2280		sum -= stale_size;
2281	}
2282
2283	return false;
2284}
2285
2286/**
2287 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2288 * @skb:      send buffer
2289 * @count:    number of buffers used
2290 *
2291 * Note: Our HW can't scatter-gather more than 8 fragments to build
2292 * a packet on the wire and so we need to figure out the cases where we
2293 * need to linearize the skb.
2294 */
2295static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2296{
2297	/* Both TSO and single send will work if count is less than 8 */
2298	if (likely(count < ICE_MAX_BUF_TXD))
2299		return false;
2300
2301	if (skb_is_gso(skb))
2302		return __ice_chk_linearize(skb);
2303
2304	/* we can support up to 8 data buffers for a single send */
2305	return count != ICE_MAX_BUF_TXD;
2306}
2307
2308/**
2309 * ice_tstamp - set up context descriptor for hardware timestamp
2310 * @tx_ring: pointer to the Tx ring to send buffer on
2311 * @skb: pointer to the SKB we're sending
2312 * @first: Tx buffer
2313 * @off: Tx offload parameters
2314 */
2315static void
2316ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
2317	   struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2318{
2319	s8 idx;
2320
2321	/* only timestamp the outbound packet if the user has requested it */
2322	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2323		return;
2324
2325	/* Tx timestamps cannot be sampled when doing TSO */
2326	if (first->tx_flags & ICE_TX_FLAGS_TSO)
2327		return;
2328
2329	/* Grab an open timestamp slot */
2330	idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2331	if (idx < 0) {
2332		tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++;
2333		return;
2334	}
2335
2336	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2337			     (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2338			     ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2339	first->tx_flags |= ICE_TX_FLAGS_TSYN;
2340}
2341
2342/**
2343 * ice_xmit_frame_ring - Sends buffer on Tx ring
2344 * @skb: send buffer
2345 * @tx_ring: ring to send buffer on
2346 *
2347 * Returns NETDEV_TX_OK if sent, else an error code
2348 */
2349static netdev_tx_t
2350ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
2351{
2352	struct ice_tx_offload_params offload = { 0 };
2353	struct ice_vsi *vsi = tx_ring->vsi;
2354	struct ice_tx_buf *first;
2355	struct ethhdr *eth;
2356	unsigned int count;
2357	int tso, csum;
2358
2359	ice_trace(xmit_frame_ring, tx_ring, skb);
2360
2361	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
2362		goto out_drop;
2363
2364	count = ice_xmit_desc_count(skb);
2365	if (ice_chk_linearize(skb, count)) {
2366		if (__skb_linearize(skb))
2367			goto out_drop;
2368		count = ice_txd_use_count(skb->len);
2369		tx_ring->ring_stats->tx_stats.tx_linearize++;
2370	}
2371
2372	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2373	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2374	 *       + 4 desc gap to avoid the cache line where head is,
2375	 *       + 1 desc for context descriptor,
2376	 * otherwise try next time
2377	 */
2378	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2379			      ICE_DESCS_FOR_CTX_DESC)) {
2380		tx_ring->ring_stats->tx_stats.tx_busy++;
2381		return NETDEV_TX_BUSY;
2382	}
2383
2384	/* prefetch for bql data which is infrequently used */
2385	netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
2386
2387	offload.tx_ring = tx_ring;
2388
2389	/* record the location of the first descriptor for this packet */
2390	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2391	first->skb = skb;
2392	first->type = ICE_TX_BUF_SKB;
2393	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2394	first->gso_segs = 1;
2395	first->tx_flags = 0;
2396
2397	/* prepare the VLAN tagging flags for Tx */
2398	ice_tx_prepare_vlan_flags(tx_ring, first);
2399	if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2400		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2401					(ICE_TX_CTX_DESC_IL2TAG2 <<
2402					ICE_TXD_CTX_QW1_CMD_S));
2403		offload.cd_l2tag2 = first->vid;
2404	}
2405
2406	/* set up TSO offload */
2407	tso = ice_tso(first, &offload);
2408	if (tso < 0)
2409		goto out_drop;
2410
2411	/* always set up Tx checksum offload */
2412	csum = ice_tx_csum(first, &offload);
2413	if (csum < 0)
2414		goto out_drop;
2415
2416	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2417	eth = (struct ethhdr *)skb_mac_header(skb);
2418	if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2419		      eth->h_proto == htons(ETH_P_LLDP)) &&
2420		     vsi->type == ICE_VSI_PF &&
2421		     vsi->port_info->qos_cfg.is_sw_lldp))
2422		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2423					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2424					ICE_TXD_CTX_QW1_CMD_S);
2425
2426	ice_tstamp(tx_ring, skb, first, &offload);
2427	if (ice_is_switchdev_running(vsi->back) && vsi->type != ICE_VSI_SF)
2428		ice_eswitch_set_target_vsi(skb, &offload);
2429
2430	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2431		struct ice_tx_ctx_desc *cdesc;
2432		u16 i = tx_ring->next_to_use;
2433
2434		/* grab the next descriptor */
2435		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2436		i++;
2437		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2438
2439		/* setup context descriptor */
2440		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2441		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2442		cdesc->rsvd = cpu_to_le16(0);
2443		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2444	}
2445
2446	ice_tx_map(tx_ring, first, &offload);
2447	return NETDEV_TX_OK;
2448
2449out_drop:
2450	ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2451	dev_kfree_skb_any(skb);
2452	return NETDEV_TX_OK;
2453}
2454
2455/**
2456 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2457 * @skb: send buffer
2458 * @netdev: network interface device structure
2459 *
2460 * Returns NETDEV_TX_OK if sent, else an error code
2461 */
2462netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2463{
2464	struct ice_netdev_priv *np = netdev_priv(netdev);
2465	struct ice_vsi *vsi = np->vsi;
2466	struct ice_tx_ring *tx_ring;
2467
2468	tx_ring = vsi->tx_rings[skb->queue_mapping];
2469
2470	/* hardware can't handle really short frames, hardware padding works
2471	 * beyond this point
2472	 */
2473	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2474		return NETDEV_TX_OK;
2475
2476	return ice_xmit_frame_ring(skb, tx_ring);
2477}
2478
2479/**
2480 * ice_get_dscp_up - return the UP/TC value for a SKB
2481 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
2482 * @skb: SKB to query for info to determine UP/TC
2483 *
2484 * This function is to only be called when the PF is in L3 DSCP PFC mode
2485 */
2486static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
2487{
2488	u8 dscp = 0;
2489
2490	if (skb->protocol == htons(ETH_P_IP))
2491		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
2492	else if (skb->protocol == htons(ETH_P_IPV6))
2493		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
2494
2495	return dcbcfg->dscp_map[dscp];
2496}
2497
2498u16
2499ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
2500		 struct net_device *sb_dev)
2501{
2502	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2503	struct ice_dcbx_cfg *dcbcfg;
2504
2505	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
2506	if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
2507		skb->priority = ice_get_dscp_up(dcbcfg, skb);
2508
2509	return netdev_pick_tx(netdev, skb, sb_dev);
2510}
2511
2512/**
2513 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2514 * @tx_ring: tx_ring to clean
2515 */
2516void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
2517{
2518	struct ice_vsi *vsi = tx_ring->vsi;
2519	s16 i = tx_ring->next_to_clean;
2520	int budget = ICE_DFLT_IRQ_WORK;
2521	struct ice_tx_desc *tx_desc;
2522	struct ice_tx_buf *tx_buf;
2523
2524	tx_buf = &tx_ring->tx_buf[i];
2525	tx_desc = ICE_TX_DESC(tx_ring, i);
2526	i -= tx_ring->count;
2527
2528	do {
2529		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2530
2531		/* if next_to_watch is not set then there is no pending work */
2532		if (!eop_desc)
2533			break;
2534
2535		/* prevent any other reads prior to eop_desc */
2536		smp_rmb();
2537
2538		/* if the descriptor isn't done, no work to do */
2539		if (!(eop_desc->cmd_type_offset_bsz &
2540		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2541			break;
2542
2543		/* clear next_to_watch to prevent false hangs */
2544		tx_buf->next_to_watch = NULL;
2545		tx_desc->buf_addr = 0;
2546		tx_desc->cmd_type_offset_bsz = 0;
2547
2548		/* move past filter desc */
2549		tx_buf++;
2550		tx_desc++;
2551		i++;
2552		if (unlikely(!i)) {
2553			i -= tx_ring->count;
2554			tx_buf = tx_ring->tx_buf;
2555			tx_desc = ICE_TX_DESC(tx_ring, 0);
2556		}
2557
2558		/* unmap the data header */
2559		if (dma_unmap_len(tx_buf, len))
2560			dma_unmap_single(tx_ring->dev,
2561					 dma_unmap_addr(tx_buf, dma),
2562					 dma_unmap_len(tx_buf, len),
2563					 DMA_TO_DEVICE);
2564		if (tx_buf->type == ICE_TX_BUF_DUMMY)
2565			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2566
2567		/* clear next_to_watch to prevent false hangs */
2568		tx_buf->type = ICE_TX_BUF_EMPTY;
2569		tx_buf->tx_flags = 0;
2570		tx_buf->next_to_watch = NULL;
2571		dma_unmap_len_set(tx_buf, len, 0);
2572		tx_desc->buf_addr = 0;
2573		tx_desc->cmd_type_offset_bsz = 0;
2574
2575		/* move past eop_desc for start of next FD desc */
2576		tx_buf++;
2577		tx_desc++;
2578		i++;
2579		if (unlikely(!i)) {
2580			i -= tx_ring->count;
2581			tx_buf = tx_ring->tx_buf;
2582			tx_desc = ICE_TX_DESC(tx_ring, 0);
2583		}
2584
2585		budget--;
2586	} while (likely(budget));
2587
2588	i += tx_ring->count;
2589	tx_ring->next_to_clean = i;
2590
2591	/* re-enable interrupt if needed */
2592	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2593}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* The driver transmit and receive code */
   5
 
 
   6#include <linux/prefetch.h>
   7#include <linux/mm.h>
   8#include <linux/bpf_trace.h>
 
 
   9#include <net/xdp.h>
  10#include "ice_txrx_lib.h"
  11#include "ice_lib.h"
  12#include "ice.h"
 
  13#include "ice_dcb_lib.h"
  14#include "ice_xsk.h"
 
  15
  16#define ICE_RX_HDR_SIZE		256
  17
  18#define FDIR_DESC_RXDID 0x40
  19#define ICE_FDIR_CLEAN_DELAY 10
  20
  21/**
  22 * ice_prgm_fdir_fltr - Program a Flow Director filter
  23 * @vsi: VSI to send dummy packet
  24 * @fdir_desc: flow director descriptor
  25 * @raw_packet: allocated buffer for flow director
  26 */
  27int
  28ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
  29		   u8 *raw_packet)
  30{
  31	struct ice_tx_buf *tx_buf, *first;
  32	struct ice_fltr_desc *f_desc;
  33	struct ice_tx_desc *tx_desc;
  34	struct ice_ring *tx_ring;
  35	struct device *dev;
  36	dma_addr_t dma;
  37	u32 td_cmd;
  38	u16 i;
  39
  40	/* VSI and Tx ring */
  41	if (!vsi)
  42		return -ENOENT;
  43	tx_ring = vsi->tx_rings[0];
  44	if (!tx_ring || !tx_ring->desc)
  45		return -ENOENT;
  46	dev = tx_ring->dev;
  47
  48	/* we are using two descriptors to add/del a filter and we can wait */
  49	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
  50		if (!i)
  51			return -EAGAIN;
  52		msleep_interruptible(1);
  53	}
  54
  55	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
  56			     DMA_TO_DEVICE);
  57
  58	if (dma_mapping_error(dev, dma))
  59		return -EINVAL;
  60
  61	/* grab the next descriptor */
  62	i = tx_ring->next_to_use;
  63	first = &tx_ring->tx_buf[i];
  64	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
  65	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
  66
  67	i++;
  68	i = (i < tx_ring->count) ? i : 0;
  69	tx_desc = ICE_TX_DESC(tx_ring, i);
  70	tx_buf = &tx_ring->tx_buf[i];
  71
  72	i++;
  73	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  74
  75	memset(tx_buf, 0, sizeof(*tx_buf));
  76	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
  77	dma_unmap_addr_set(tx_buf, dma, dma);
  78
  79	tx_desc->buf_addr = cpu_to_le64(dma);
  80	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
  81		 ICE_TX_DESC_CMD_RE;
  82
  83	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
  84	tx_buf->raw_buf = raw_packet;
  85
  86	tx_desc->cmd_type_offset_bsz =
  87		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
  88
  89	/* Force memory write to complete before letting h/w know
  90	 * there are new descriptors to fetch.
  91	 */
  92	wmb();
  93
  94	/* mark the data descriptor to be watched */
  95	first->next_to_watch = tx_desc;
  96
  97	writel(tx_ring->next_to_use, tx_ring->tail);
  98
  99	return 0;
 100}
 101
 102/**
 103 * ice_unmap_and_free_tx_buf - Release a Tx buffer
 104 * @ring: the ring that owns the buffer
 105 * @tx_buf: the buffer to free
 106 */
 107static void
 108ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
 109{
 110	if (tx_buf->skb) {
 111		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
 112			devm_kfree(ring->dev, tx_buf->raw_buf);
 113		else if (ice_ring_is_xdp(ring))
 114			page_frag_free(tx_buf->raw_buf);
 115		else
 116			dev_kfree_skb_any(tx_buf->skb);
 117		if (dma_unmap_len(tx_buf, len))
 118			dma_unmap_single(ring->dev,
 119					 dma_unmap_addr(tx_buf, dma),
 120					 dma_unmap_len(tx_buf, len),
 121					 DMA_TO_DEVICE);
 122	} else if (dma_unmap_len(tx_buf, len)) {
 123		dma_unmap_page(ring->dev,
 124			       dma_unmap_addr(tx_buf, dma),
 125			       dma_unmap_len(tx_buf, len),
 126			       DMA_TO_DEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127	}
 128
 129	tx_buf->next_to_watch = NULL;
 130	tx_buf->skb = NULL;
 131	dma_unmap_len_set(tx_buf, len, 0);
 132	/* tx_buf must be completely set up in the transmit path */
 133}
 134
 135static struct netdev_queue *txring_txq(const struct ice_ring *ring)
 136{
 137	return netdev_get_tx_queue(ring->netdev, ring->q_index);
 138}
 139
 140/**
 141 * ice_clean_tx_ring - Free any empty Tx buffers
 142 * @tx_ring: ring to be cleaned
 143 */
 144void ice_clean_tx_ring(struct ice_ring *tx_ring)
 145{
 
 146	u16 i;
 147
 148	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
 149		ice_xsk_clean_xdp_ring(tx_ring);
 150		goto tx_skip_free;
 151	}
 152
 153	/* ring already cleared, nothing to do */
 154	if (!tx_ring->tx_buf)
 155		return;
 156
 157	/* Free all the Tx ring sk_buffs */
 158	for (i = 0; i < tx_ring->count; i++)
 159		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
 160
 161tx_skip_free:
 162	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
 163
 
 
 164	/* Zero out the descriptor ring */
 165	memset(tx_ring->desc, 0, tx_ring->size);
 166
 167	tx_ring->next_to_use = 0;
 168	tx_ring->next_to_clean = 0;
 169
 170	if (!tx_ring->netdev)
 171		return;
 172
 173	/* cleanup Tx queue statistics */
 174	netdev_tx_reset_queue(txring_txq(tx_ring));
 175}
 176
 177/**
 178 * ice_free_tx_ring - Free Tx resources per queue
 179 * @tx_ring: Tx descriptor ring for a specific queue
 180 *
 181 * Free all transmit software resources
 182 */
 183void ice_free_tx_ring(struct ice_ring *tx_ring)
 184{
 
 
 185	ice_clean_tx_ring(tx_ring);
 186	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
 187	tx_ring->tx_buf = NULL;
 188
 189	if (tx_ring->desc) {
 190		dmam_free_coherent(tx_ring->dev, tx_ring->size,
 
 
 191				   tx_ring->desc, tx_ring->dma);
 192		tx_ring->desc = NULL;
 193	}
 194}
 195
 196/**
 197 * ice_clean_tx_irq - Reclaim resources after transmit completes
 198 * @tx_ring: Tx ring to clean
 199 * @napi_budget: Used to determine if we are in netpoll
 200 *
 201 * Returns true if there's any budget left (e.g. the clean is finished)
 202 */
 203static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
 204{
 205	unsigned int total_bytes = 0, total_pkts = 0;
 206	unsigned int budget = ICE_DFLT_IRQ_WORK;
 207	struct ice_vsi *vsi = tx_ring->vsi;
 208	s16 i = tx_ring->next_to_clean;
 209	struct ice_tx_desc *tx_desc;
 210	struct ice_tx_buf *tx_buf;
 211
 
 
 
 212	tx_buf = &tx_ring->tx_buf[i];
 213	tx_desc = ICE_TX_DESC(tx_ring, i);
 214	i -= tx_ring->count;
 215
 216	prefetch(&vsi->state);
 217
 218	do {
 219		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
 220
 221		/* if next_to_watch is not set then there is no work pending */
 222		if (!eop_desc)
 223			break;
 224
 
 
 
 225		smp_rmb();	/* prevent any other reads prior to eop_desc */
 226
 
 227		/* if the descriptor isn't done, no work yet to do */
 228		if (!(eop_desc->cmd_type_offset_bsz &
 229		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
 230			break;
 231
 232		/* clear next_to_watch to prevent false hangs */
 233		tx_buf->next_to_watch = NULL;
 234
 235		/* update the statistics for this packet */
 236		total_bytes += tx_buf->bytecount;
 237		total_pkts += tx_buf->gso_segs;
 238
 239		if (ice_ring_is_xdp(tx_ring))
 240			page_frag_free(tx_buf->raw_buf);
 241		else
 242			/* free the skb */
 243			napi_consume_skb(tx_buf->skb, napi_budget);
 244
 245		/* unmap skb header data */
 246		dma_unmap_single(tx_ring->dev,
 247				 dma_unmap_addr(tx_buf, dma),
 248				 dma_unmap_len(tx_buf, len),
 249				 DMA_TO_DEVICE);
 250
 251		/* clear tx_buf data */
 252		tx_buf->skb = NULL;
 253		dma_unmap_len_set(tx_buf, len, 0);
 254
 255		/* unmap remaining buffers */
 256		while (tx_desc != eop_desc) {
 
 257			tx_buf++;
 258			tx_desc++;
 259			i++;
 260			if (unlikely(!i)) {
 261				i -= tx_ring->count;
 262				tx_buf = tx_ring->tx_buf;
 263				tx_desc = ICE_TX_DESC(tx_ring, 0);
 264			}
 265
 266			/* unmap any remaining paged data */
 267			if (dma_unmap_len(tx_buf, len)) {
 268				dma_unmap_page(tx_ring->dev,
 269					       dma_unmap_addr(tx_buf, dma),
 270					       dma_unmap_len(tx_buf, len),
 271					       DMA_TO_DEVICE);
 272				dma_unmap_len_set(tx_buf, len, 0);
 273			}
 274		}
 
 275
 276		/* move us one more past the eop_desc for start of next pkt */
 277		tx_buf++;
 278		tx_desc++;
 279		i++;
 280		if (unlikely(!i)) {
 281			i -= tx_ring->count;
 282			tx_buf = tx_ring->tx_buf;
 283			tx_desc = ICE_TX_DESC(tx_ring, 0);
 284		}
 285
 286		prefetch(tx_desc);
 287
 288		/* update budget accounting */
 289		budget--;
 290	} while (likely(budget));
 291
 292	i += tx_ring->count;
 293	tx_ring->next_to_clean = i;
 294
 295	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
 296
 297	if (ice_ring_is_xdp(tx_ring))
 298		return !!budget;
 299
 300	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
 301				  total_bytes);
 302
 303#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 304	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
 305		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 306		/* Make sure that anybody stopping the queue after this
 307		 * sees the new next_to_clean.
 308		 */
 309		smp_mb();
 310		if (__netif_subqueue_stopped(tx_ring->netdev,
 311					     tx_ring->q_index) &&
 312		    !test_bit(__ICE_DOWN, vsi->state)) {
 313			netif_wake_subqueue(tx_ring->netdev,
 314					    tx_ring->q_index);
 315			++tx_ring->tx_stats.restart_q;
 316		}
 317	}
 318
 319	return !!budget;
 320}
 321
 322/**
 323 * ice_setup_tx_ring - Allocate the Tx descriptors
 324 * @tx_ring: the Tx ring to set up
 325 *
 326 * Return 0 on success, negative on error
 327 */
 328int ice_setup_tx_ring(struct ice_ring *tx_ring)
 329{
 330	struct device *dev = tx_ring->dev;
 
 331
 332	if (!dev)
 333		return -ENOMEM;
 334
 335	/* warn if we are about to overwrite the pointer */
 336	WARN_ON(tx_ring->tx_buf);
 337	tx_ring->tx_buf =
 338		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
 339			     GFP_KERNEL);
 340	if (!tx_ring->tx_buf)
 341		return -ENOMEM;
 342
 343	/* round up to nearest page */
 344	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
 345			      PAGE_SIZE);
 346	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
 347					    GFP_KERNEL);
 348	if (!tx_ring->desc) {
 349		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 350			tx_ring->size);
 351		goto err;
 352	}
 353
 354	tx_ring->next_to_use = 0;
 355	tx_ring->next_to_clean = 0;
 356	tx_ring->tx_stats.prev_pkt = -1;
 357	return 0;
 358
 359err:
 360	devm_kfree(dev, tx_ring->tx_buf);
 361	tx_ring->tx_buf = NULL;
 362	return -ENOMEM;
 363}
 364
 365/**
 366 * ice_clean_rx_ring - Free Rx buffers
 367 * @rx_ring: ring to be cleaned
 368 */
 369void ice_clean_rx_ring(struct ice_ring *rx_ring)
 370{
 
 371	struct device *dev = rx_ring->dev;
 
 372	u16 i;
 373
 374	/* ring already cleared, nothing to do */
 375	if (!rx_ring->rx_buf)
 376		return;
 377
 378	if (rx_ring->xsk_umem) {
 379		ice_xsk_clean_rx_ring(rx_ring);
 380		goto rx_skip_free;
 381	}
 382
 
 
 
 
 
 383	/* Free all the Rx ring sk_buffs */
 384	for (i = 0; i < rx_ring->count; i++) {
 385		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
 386
 387		if (rx_buf->skb) {
 388			dev_kfree_skb(rx_buf->skb);
 389			rx_buf->skb = NULL;
 390		}
 391		if (!rx_buf->page)
 392			continue;
 393
 394		/* Invalidate cache lines that may have been written to by
 395		 * device so that we avoid corrupting memory.
 396		 */
 397		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
 398					      rx_buf->page_offset,
 399					      rx_ring->rx_buf_len,
 400					      DMA_FROM_DEVICE);
 401
 402		/* free resources associated with mapping */
 403		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
 404				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 405		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
 406
 407		rx_buf->page = NULL;
 408		rx_buf->page_offset = 0;
 409	}
 410
 411rx_skip_free:
 412	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
 
 
 
 413
 414	/* Zero out the descriptor ring */
 415	memset(rx_ring->desc, 0, rx_ring->size);
 
 
 416
 417	rx_ring->next_to_alloc = 0;
 418	rx_ring->next_to_clean = 0;
 
 419	rx_ring->next_to_use = 0;
 420}
 421
 422/**
 423 * ice_free_rx_ring - Free Rx resources
 424 * @rx_ring: ring to clean the resources from
 425 *
 426 * Free all receive software resources
 427 */
 428void ice_free_rx_ring(struct ice_ring *rx_ring)
 429{
 
 
 430	ice_clean_rx_ring(rx_ring);
 431	if (rx_ring->vsi->type == ICE_VSI_PF)
 432		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 433			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 434	rx_ring->xdp_prog = NULL;
 435	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
 436	rx_ring->rx_buf = NULL;
 
 
 
 
 
 437
 438	if (rx_ring->desc) {
 439		dmam_free_coherent(rx_ring->dev, rx_ring->size,
 
 
 440				   rx_ring->desc, rx_ring->dma);
 441		rx_ring->desc = NULL;
 442	}
 443}
 444
 445/**
 446 * ice_setup_rx_ring - Allocate the Rx descriptors
 447 * @rx_ring: the Rx ring to set up
 448 *
 449 * Return 0 on success, negative on error
 450 */
 451int ice_setup_rx_ring(struct ice_ring *rx_ring)
 452{
 453	struct device *dev = rx_ring->dev;
 
 454
 455	if (!dev)
 456		return -ENOMEM;
 457
 458	/* warn if we are about to overwrite the pointer */
 459	WARN_ON(rx_ring->rx_buf);
 460	rx_ring->rx_buf =
 461		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
 462			     GFP_KERNEL);
 463	if (!rx_ring->rx_buf)
 464		return -ENOMEM;
 465
 466	/* round up to nearest page */
 467	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
 468			      PAGE_SIZE);
 469	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
 470					    GFP_KERNEL);
 471	if (!rx_ring->desc) {
 472		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 473			rx_ring->size);
 474		goto err;
 475	}
 476
 477	rx_ring->next_to_use = 0;
 478	rx_ring->next_to_clean = 0;
 
 479
 480	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 481		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
 482
 483	if (rx_ring->vsi->type == ICE_VSI_PF &&
 484	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 485		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
 486				     rx_ring->q_index))
 487			goto err;
 488	return 0;
 489
 490err:
 491	devm_kfree(dev, rx_ring->rx_buf);
 492	rx_ring->rx_buf = NULL;
 493	return -ENOMEM;
 494}
 495
 496/**
 497 * ice_rx_offset - Return expected offset into page to access data
 498 * @rx_ring: Ring we are requesting offset of
 499 *
 500 * Returns the offset value for ring into the data buffer.
 501 */
 502static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
 503{
 504	if (ice_ring_uses_build_skb(rx_ring))
 505		return ICE_SKB_PAD;
 506	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 507		return XDP_PACKET_HEADROOM;
 508
 509	return 0;
 510}
 511
 512static unsigned int
 513ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size)
 514{
 515	unsigned int truesize;
 516
 517#if (PAGE_SIZE < 8192)
 518	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
 519#else
 520	truesize = ice_rx_offset(rx_ring) ?
 521		SKB_DATA_ALIGN(ice_rx_offset(rx_ring) + size) +
 522		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
 523		SKB_DATA_ALIGN(size);
 524#endif
 525	return truesize;
 526}
 527
 528/**
 529 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
 530 * @rx_ring: Rx ring
 531 * @xdp: xdp_buff used as input to the XDP program
 532 * @xdp_prog: XDP program to run
 
 
 533 *
 534 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
 535 */
 536static int
 537ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
 538	    struct bpf_prog *xdp_prog)
 
 539{
 540	int err, result = ICE_XDP_PASS;
 541	struct ice_ring *xdp_ring;
 542	u32 act;
 543
 
 
 
 
 
 544	act = bpf_prog_run_xdp(xdp_prog, xdp);
 545	switch (act) {
 546	case XDP_PASS:
 547		break;
 548	case XDP_TX:
 549		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
 550		result = ice_xmit_xdp_buff(xdp, xdp_ring);
 
 
 
 
 
 551		break;
 552	case XDP_REDIRECT:
 553		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
 554		result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
 
 555		break;
 556	default:
 557		bpf_warn_invalid_xdp_action(act);
 558		fallthrough;
 559	case XDP_ABORTED:
 
 560		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 561		fallthrough;
 562	case XDP_DROP:
 563		result = ICE_XDP_CONSUMED;
 564		break;
 565	}
 
 
 
 566
 567	return result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568}
 569
 570/**
 571 * ice_xdp_xmit - submit packets to XDP ring for transmission
 572 * @dev: netdev
 573 * @n: number of XDP frames to be transmitted
 574 * @frames: XDP frames to be transmitted
 575 * @flags: transmit flags
 576 *
 577 * Returns number of frames successfully sent. Frames that fail are
 578 * free'ed via XDP return API.
 579 * For error cases, a negative errno code is returned and no-frames
 580 * are transmitted (caller must handle freeing frames).
 581 */
 582int
 583ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
 584	     u32 flags)
 585{
 586	struct ice_netdev_priv *np = netdev_priv(dev);
 587	unsigned int queue_index = smp_processor_id();
 588	struct ice_vsi *vsi = np->vsi;
 589	struct ice_ring *xdp_ring;
 590	int drops = 0, i;
 
 591
 592	if (test_bit(__ICE_DOWN, vsi->state))
 593		return -ENETDOWN;
 594
 595	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
 596		return -ENXIO;
 597
 598	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
 599		return -EINVAL;
 600
 601	xdp_ring = vsi->xdp_rings[queue_index];
 
 
 
 
 
 
 
 
 
 
 
 602	for (i = 0; i < n; i++) {
 603		struct xdp_frame *xdpf = frames[i];
 604		int err;
 605
 606		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
 607		if (err != ICE_XDP_TX) {
 608			xdp_return_frame_rx_napi(xdpf);
 609			drops++;
 610		}
 611	}
 612
 
 613	if (unlikely(flags & XDP_XMIT_FLUSH))
 614		ice_xdp_ring_update_tail(xdp_ring);
 615
 616	return n - drops;
 
 
 
 617}
 618
 619/**
 620 * ice_alloc_mapped_page - recycle or make a new page
 621 * @rx_ring: ring to use
 622 * @bi: rx_buf struct to modify
 623 *
 624 * Returns true if the page was successfully allocated or
 625 * reused.
 626 */
 627static bool
 628ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
 629{
 630	struct page *page = bi->page;
 631	dma_addr_t dma;
 632
 633	/* since we are recycling buffers we should seldom need to alloc */
 634	if (likely(page))
 635		return true;
 636
 637	/* alloc new page for storage */
 638	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
 639	if (unlikely(!page)) {
 640		rx_ring->rx_stats.alloc_page_failed++;
 641		return false;
 642	}
 643
 644	/* map page for use */
 645	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
 646				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 647
 648	/* if mapping failed free memory back to system since
 649	 * there isn't much point in holding memory we can't use
 650	 */
 651	if (dma_mapping_error(rx_ring->dev, dma)) {
 652		__free_pages(page, ice_rx_pg_order(rx_ring));
 653		rx_ring->rx_stats.alloc_page_failed++;
 654		return false;
 655	}
 656
 657	bi->dma = dma;
 658	bi->page = page;
 659	bi->page_offset = ice_rx_offset(rx_ring);
 660	page_ref_add(page, USHRT_MAX - 1);
 661	bi->pagecnt_bias = USHRT_MAX;
 662
 663	return true;
 664}
 665
 666/**
 667 * ice_alloc_rx_bufs - Replace used receive buffers
 668 * @rx_ring: ring to place buffers on
 669 * @cleaned_count: number of buffers to replace
 670 *
 671 * Returns false if all allocations were successful, true if any fail. Returning
 672 * true signals to the caller that we didn't replace cleaned_count buffers and
 673 * there is more work to do.
 674 *
 675 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
 676 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
 677 * multiple tail writes per call.
 678 */
 679bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
 680{
 681	union ice_32b_rx_flex_desc *rx_desc;
 682	u16 ntu = rx_ring->next_to_use;
 683	struct ice_rx_buf *bi;
 684
 685	/* do nothing if no valid netdev defined */
 686	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
 687	    !cleaned_count)
 688		return false;
 689
 690	/* get the Rx descriptor and buffer based on next_to_use */
 691	rx_desc = ICE_RX_DESC(rx_ring, ntu);
 692	bi = &rx_ring->rx_buf[ntu];
 693
 694	do {
 695		/* if we fail here, we have work remaining */
 696		if (!ice_alloc_mapped_page(rx_ring, bi))
 697			break;
 698
 699		/* sync the buffer for use by the device */
 700		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 701						 bi->page_offset,
 702						 rx_ring->rx_buf_len,
 703						 DMA_FROM_DEVICE);
 704
 705		/* Refresh the desc even if buffer_addrs didn't change
 706		 * because each write-back erases this info.
 707		 */
 708		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 709
 710		rx_desc++;
 711		bi++;
 712		ntu++;
 713		if (unlikely(ntu == rx_ring->count)) {
 714			rx_desc = ICE_RX_DESC(rx_ring, 0);
 715			bi = rx_ring->rx_buf;
 716			ntu = 0;
 717		}
 718
 719		/* clear the status bits for the next_to_use descriptor */
 720		rx_desc->wb.status_error0 = 0;
 721
 722		cleaned_count--;
 723	} while (cleaned_count);
 724
 725	if (rx_ring->next_to_use != ntu)
 726		ice_release_rx_desc(rx_ring, ntu);
 727
 728	return !!cleaned_count;
 729}
 730
 731/**
 732 * ice_page_is_reserved - check if reuse is possible
 733 * @page: page struct to check
 734 */
 735static bool ice_page_is_reserved(struct page *page)
 736{
 737	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 738}
 739
 740/**
 741 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
 742 * @rx_buf: Rx buffer to adjust
 743 * @size: Size of adjustment
 744 *
 745 * Update the offset within page so that Rx buf will be ready to be reused.
 746 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
 747 * so the second half of page assigned to Rx buffer will be used, otherwise
 748 * the offset is moved by "size" bytes
 749 */
 750static void
 751ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
 752{
 753#if (PAGE_SIZE < 8192)
 754	/* flip page offset to other buffer */
 755	rx_buf->page_offset ^= size;
 756#else
 757	/* move offset up to the next cache line */
 758	rx_buf->page_offset += size;
 759#endif
 760}
 761
 762/**
 763 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
 764 * @rx_buf: buffer containing the page
 765 *
 766 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
 767 * which will assign the current buffer to the buffer that next_to_alloc is
 768 * pointing to; otherwise, the DMA mapping needs to be destroyed and
 769 * page freed
 770 */
 771static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
 
 772{
 773	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
 774	struct page *page = rx_buf->page;
 775
 776	/* avoid re-using remote pages */
 777	if (unlikely(ice_page_is_reserved(page)))
 778		return false;
 779
 780#if (PAGE_SIZE < 8192)
 781	/* if we are only owner of page we can reuse it */
 782	if (unlikely((page_count(page) - pagecnt_bias) > 1))
 783		return false;
 784#else
 785#define ICE_LAST_OFFSET \
 786	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
 787	if (rx_buf->page_offset > ICE_LAST_OFFSET)
 788		return false;
 789#endif /* PAGE_SIZE < 8192) */
 790
 791	/* If we have drained the page fragment pool we need to update
 792	 * the pagecnt_bias and page count so that we fully restock the
 793	 * number of references the driver holds.
 794	 */
 795	if (unlikely(pagecnt_bias == 1)) {
 796		page_ref_add(page, USHRT_MAX - 1);
 797		rx_buf->pagecnt_bias = USHRT_MAX;
 798	}
 799
 800	return true;
 801}
 802
 803/**
 804 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
 805 * @rx_ring: Rx descriptor ring to transact packets on
 
 806 * @rx_buf: buffer containing page to add
 807 * @skb: sk_buff to place the data into
 808 * @size: packet length from rx_desc
 809 *
 810 * This function will add the data contained in rx_buf->page to the skb.
 811 * It will just attach the page as a frag to the skb.
 812 * The function will then update the page offset.
 813 */
 814static void
 815ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 816		struct sk_buff *skb, unsigned int size)
 817{
 818#if (PAGE_SIZE >= 8192)
 819	unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring));
 820#else
 821	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 822#endif
 823
 824	if (!size)
 825		return;
 826	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
 827			rx_buf->page_offset, size, truesize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 828
 829	/* page is being used so we must update the page offset */
 830	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 831}
 832
 833/**
 834 * ice_reuse_rx_page - page flip buffer and store it back on the ring
 835 * @rx_ring: Rx descriptor ring to store buffers on
 836 * @old_buf: donor buffer to have page reused
 837 *
 838 * Synchronizes page for reuse by the adapter
 839 */
 840static void
 841ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
 842{
 843	u16 nta = rx_ring->next_to_alloc;
 844	struct ice_rx_buf *new_buf;
 845
 846	new_buf = &rx_ring->rx_buf[nta];
 847
 848	/* update, and store next to alloc */
 849	nta++;
 850	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 851
 852	/* Transfer page from old buffer to new buffer.
 853	 * Move each member individually to avoid possible store
 854	 * forwarding stalls and unnecessary copy of skb.
 855	 */
 856	new_buf->dma = old_buf->dma;
 857	new_buf->page = old_buf->page;
 858	new_buf->page_offset = old_buf->page_offset;
 859	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
 860}
 861
 862/**
 863 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
 864 * @rx_ring: Rx descriptor ring to transact packets on
 865 * @skb: skb to be used
 866 * @size: size of buffer to add to skb
 
 867 *
 868 * This function will pull an Rx buffer from the ring and synchronize it
 869 * for use by the CPU.
 870 */
 871static struct ice_rx_buf *
 872ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
 873	       const unsigned int size)
 874{
 875	struct ice_rx_buf *rx_buf;
 876
 877	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
 878	prefetchw(rx_buf->page);
 879	*skb = rx_buf->skb;
 880
 881	if (!size)
 882		return rx_buf;
 883	/* we are reusing so sync this buffer for CPU use */
 884	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
 885				      rx_buf->page_offset, size,
 886				      DMA_FROM_DEVICE);
 887
 888	/* We have pulled a buffer for use, so decrement pagecnt_bias */
 889	rx_buf->pagecnt_bias--;
 890
 891	return rx_buf;
 892}
 893
 894/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895 * ice_build_skb - Build skb around an existing buffer
 896 * @rx_ring: Rx descriptor ring to transact packets on
 897 * @rx_buf: Rx buffer to pull data from
 898 * @xdp: xdp_buff pointing to the data
 899 *
 900 * This function builds an skb around an existing Rx buffer, taking care
 901 * to set up the skb correctly and avoid any memcpy overhead.
 
 902 */
 903static struct sk_buff *
 904ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 905	      struct xdp_buff *xdp)
 906{
 907	u8 metasize = xdp->data - xdp->data_meta;
 908#if (PAGE_SIZE < 8192)
 909	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 910#else
 911	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
 912				SKB_DATA_ALIGN(xdp->data_end -
 913					       xdp->data_hard_start);
 914#endif
 915	struct sk_buff *skb;
 916
 
 
 
 
 
 917	/* Prefetch first cache line of first page. If xdp->data_meta
 918	 * is unused, this points exactly as xdp->data, otherwise we
 919	 * likely have a consumer accessing first few bytes of meta
 920	 * data, and then actual data.
 921	 */
 922	prefetch(xdp->data_meta);
 923#if L1_CACHE_BYTES < 128
 924	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
 925#endif
 926	/* build an skb around the page buffer */
 927	skb = build_skb(xdp->data_hard_start, truesize);
 928	if (unlikely(!skb))
 929		return NULL;
 930
 931	/* must to record Rx queue, otherwise OS features such as
 932	 * symmetric queue won't work
 933	 */
 934	skb_record_rx_queue(skb, rx_ring->q_index);
 935
 936	/* update pointers within the skb to store the data */
 937	skb_reserve(skb, xdp->data - xdp->data_hard_start);
 938	__skb_put(skb, xdp->data_end - xdp->data);
 939	if (metasize)
 940		skb_metadata_set(skb, metasize);
 941
 942	/* buffer is used by skb, update page_offset */
 943	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 
 
 
 944
 945	return skb;
 946}
 947
 948/**
 949 * ice_construct_skb - Allocate skb and populate it
 950 * @rx_ring: Rx descriptor ring to transact packets on
 951 * @rx_buf: Rx buffer to pull data from
 952 * @xdp: xdp_buff pointing to the data
 953 *
 954 * This function allocates an skb. It then populates it with the page
 955 * data from the current receive descriptor, taking care to set up the
 956 * skb correctly.
 957 */
 958static struct sk_buff *
 959ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 960		  struct xdp_buff *xdp)
 961{
 962	unsigned int size = xdp->data_end - xdp->data;
 
 
 
 963	unsigned int headlen;
 964	struct sk_buff *skb;
 965
 966	/* prefetch first cache line of first page */
 967	prefetch(xdp->data);
 968#if L1_CACHE_BYTES < 128
 969	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
 970#endif /* L1_CACHE_BYTES */
 
 
 971
 972	/* allocate a skb to store the frags */
 973	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
 974			       GFP_ATOMIC | __GFP_NOWARN);
 975	if (unlikely(!skb))
 976		return NULL;
 977
 
 978	skb_record_rx_queue(skb, rx_ring->q_index);
 979	/* Determine available headroom for copy */
 980	headlen = size;
 981	if (headlen > ICE_RX_HDR_SIZE)
 982		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
 983
 984	/* align pull length to size of long to optimize memcpy performance */
 985	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
 986							 sizeof(long)));
 987
 988	/* if we exhaust the linear part then add what is left as a frag */
 989	size -= headlen;
 990	if (size) {
 991#if (PAGE_SIZE >= 8192)
 992		unsigned int truesize = SKB_DATA_ALIGN(size);
 993#else
 994		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 995#endif
 
 
 
 996		skb_add_rx_frag(skb, 0, rx_buf->page,
 997				rx_buf->page_offset + headlen, size, truesize);
 998		/* buffer is used by skb, update page_offset */
 999		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1000	} else {
1001		/* buffer is unused, reset bias back to rx_buf; data was copied
1002		 * onto skb's linear part so there's no need for adjusting
1003		 * page offset and we can reuse this buffer as-is
 
1004		 */
1005		rx_buf->pagecnt_bias++;
1006	}
1007
 
 
 
 
 
 
 
 
 
 
 
 
1008	return skb;
1009}
1010
1011/**
1012 * ice_put_rx_buf - Clean up used buffer and either recycle or free
1013 * @rx_ring: Rx descriptor ring to transact packets on
1014 * @rx_buf: Rx buffer to pull data from
1015 *
1016 * This function will update next_to_clean and then clean up the contents
1017 * of the rx_buf. It will either recycle the buffer or unmap it and free
1018 * the associated resources.
1019 */
1020static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
 
1021{
1022	u16 ntc = rx_ring->next_to_clean + 1;
1023
1024	/* fetch, update, and store next to clean */
1025	ntc = (ntc < rx_ring->count) ? ntc : 0;
1026	rx_ring->next_to_clean = ntc;
1027
1028	if (!rx_buf)
1029		return;
1030
1031	if (ice_can_reuse_rx_page(rx_buf)) {
1032		/* hand second half of page back to the ring */
1033		ice_reuse_rx_page(rx_ring, rx_buf);
1034	} else {
1035		/* we are not reusing the buffer so unmap it */
1036		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1037				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1038				     ICE_RX_DMA_ATTR);
1039		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1040	}
1041
1042	/* clear contents of buffer_info */
1043	rx_buf->page = NULL;
1044	rx_buf->skb = NULL;
1045}
1046
1047/**
1048 * ice_is_non_eop - process handling of non-EOP buffers
1049 * @rx_ring: Rx ring being processed
1050 * @rx_desc: Rx descriptor for current buffer
1051 * @skb: Current socket buffer containing buffer in progress
1052 *
1053 * If the buffer is an EOP buffer, this function exits returning false,
1054 * otherwise return true indicating that this is in fact a non-EOP buffer.
1055 */
1056static bool
1057ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
1058	       struct sk_buff *skb)
1059{
1060	/* if we are the last buffer then there is nothing else to do */
1061#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1062	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
1063		return false;
1064
1065	/* place skb in next buffer to be received */
1066	rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
1067	rx_ring->rx_stats.non_eop_descs++;
1068
1069	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070}
1071
1072/**
1073 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1074 * @rx_ring: Rx descriptor ring to transact packets on
1075 * @budget: Total limit on number of packets to process
1076 *
1077 * This function provides a "bounce buffer" approach to Rx interrupt
1078 * processing. The advantage to this is that on systems that have
1079 * expensive overhead for IOMMU access this provides a means of avoiding
1080 * it by maintaining the mapping of the page to the system.
1081 *
1082 * Returns amount of work completed
1083 */
1084int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1085{
1086	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1087	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1088	unsigned int xdp_res, xdp_xmit = 0;
 
1089	struct bpf_prog *xdp_prog = NULL;
1090	struct xdp_buff xdp;
 
 
 
1091	bool failure;
1092
1093	xdp.rxq = &rx_ring->xdp_rxq;
1094	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1095#if (PAGE_SIZE < 8192)
1096	xdp.frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1097#endif
1098
1099	/* start the loop to process Rx packets bounded by 'budget' */
1100	while (likely(total_rx_pkts < (unsigned int)budget)) {
1101		union ice_32b_rx_flex_desc *rx_desc;
1102		struct ice_rx_buf *rx_buf;
1103		struct sk_buff *skb;
1104		unsigned int size;
1105		u16 stat_err_bits;
1106		u16 vlan_tag = 0;
1107		u8 rx_ptype;
1108
1109		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1110		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1111
1112		/* status_error_len will always be zero for unused descriptors
1113		 * because it's cleared in cleanup, and overlaps with hdr_addr
1114		 * which is always zero because packet split isn't used, if the
1115		 * hardware wrote DD then it will be non-zero
1116		 */
1117		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1118		if (!ice_test_staterr(rx_desc, stat_err_bits))
1119			break;
1120
1121		/* This memory barrier is needed to keep us from reading
1122		 * any other fields out of the rx_desc until we know the
1123		 * DD bit is set.
1124		 */
1125		dma_rmb();
1126
 
1127		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1128			ice_put_rx_buf(rx_ring, NULL);
1129			cleaned_count++;
 
 
 
 
 
 
1130			continue;
1131		}
1132
1133		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1134			ICE_RX_FLX_DESC_PKT_LEN_M;
1135
1136		/* retrieve a buffer from the ring */
1137		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1138
1139		if (!size) {
1140			xdp.data = NULL;
1141			xdp.data_end = NULL;
1142			xdp.data_hard_start = NULL;
1143			xdp.data_meta = NULL;
1144			goto construct_skb;
 
 
 
 
1145		}
 
 
1146
1147		xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
1148		xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
1149		xdp.data_meta = xdp.data;
1150		xdp.data_end = xdp.data + size;
1151#if (PAGE_SIZE > 4096)
1152		/* At larger PAGE_SIZE, frame_sz depend on len size */
1153		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1154#endif
1155
1156		rcu_read_lock();
1157		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1158		if (!xdp_prog) {
1159			rcu_read_unlock();
1160			goto construct_skb;
1161		}
 
1162
1163		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1164		rcu_read_unlock();
1165		if (!xdp_res)
1166			goto construct_skb;
1167		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1168			xdp_xmit |= xdp_res;
1169			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1170		} else {
1171			rx_buf->pagecnt_bias++;
1172		}
1173		total_rx_bytes += size;
1174		total_rx_pkts++;
1175
1176		cleaned_count++;
1177		ice_put_rx_buf(rx_ring, rx_buf);
1178		continue;
1179construct_skb:
1180		if (skb) {
1181			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1182		} else if (likely(xdp.data)) {
1183			if (ice_ring_uses_build_skb(rx_ring))
1184				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1185			else
1186				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1187		}
1188		/* exit if we failed to retrieve a buffer */
1189		if (!skb) {
1190			rx_ring->rx_stats.alloc_buf_failed++;
1191			if (rx_buf)
1192				rx_buf->pagecnt_bias++;
1193			break;
1194		}
 
1195
1196		ice_put_rx_buf(rx_ring, rx_buf);
1197		cleaned_count++;
1198
1199		/* skip if it is NOP desc */
1200		if (ice_is_non_eop(rx_ring, rx_desc, skb))
1201			continue;
1202
1203		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1204		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
 
1205			dev_kfree_skb_any(skb);
1206			continue;
1207		}
1208
1209		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1210		if (ice_test_staterr(rx_desc, stat_err_bits))
1211			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1212
1213		/* pad the skb if needed, to make a valid ethernet frame */
1214		if (eth_skb_pad(skb)) {
1215			skb = NULL;
1216			continue;
1217		}
1218
1219		/* probably a little skewed due to removing CRC */
1220		total_rx_bytes += skb->len;
1221
1222		/* populate checksum, VLAN, and protocol */
1223		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1224			ICE_RX_FLEX_DESC_PTYPE_M;
1225
1226		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1227
 
1228		/* send completed skb up the stack */
1229		ice_receive_skb(rx_ring, skb, vlan_tag);
1230
1231		/* update budget accounting */
1232		total_rx_pkts++;
1233	}
1234
 
1235	/* return up to cleaned_count buffers to hardware */
1236	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1237
1238	if (xdp_prog)
1239		ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1240
1241	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
 
 
1242
1243	/* guarantee a trip back through this routine if there was a failure */
1244	return failure ? budget : (int)total_rx_pkts;
1245}
1246
1247/**
1248 * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1249 * @port_info: port_info structure containing the current link speed
1250 * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1251 * @itr: ITR value to update
1252 *
1253 * Calculate how big of an increment should be applied to the ITR value passed
1254 * in based on wmem_default, SKB overhead, ethernet overhead, and the current
1255 * link speed.
1256 *
1257 * The following is a calculation derived from:
1258 *  wmem_default / (size + overhead) = desired_pkts_per_int
1259 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1260 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1261 *
1262 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1263 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1264 * formula down to:
1265 *
1266 *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1267 * ITR = -------------------------------------------- * --------------
1268 *			     rate			pkt_size + 640
1269 */
1270static unsigned int
1271ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1272				 unsigned int avg_pkt_size,
1273				 unsigned int itr)
1274{
1275	switch (port_info->phy.link_info.link_speed) {
1276	case ICE_AQ_LINK_SPEED_100GB:
1277		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1278				    avg_pkt_size + 640);
1279		break;
1280	case ICE_AQ_LINK_SPEED_50GB:
1281		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1282				    avg_pkt_size + 640);
1283		break;
1284	case ICE_AQ_LINK_SPEED_40GB:
1285		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1286				    avg_pkt_size + 640);
1287		break;
1288	case ICE_AQ_LINK_SPEED_25GB:
1289		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1290				    avg_pkt_size + 640);
1291		break;
1292	case ICE_AQ_LINK_SPEED_20GB:
1293		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1294				    avg_pkt_size + 640);
1295		break;
1296	case ICE_AQ_LINK_SPEED_10GB:
1297	default:
1298		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1299				    avg_pkt_size + 640);
1300		break;
1301	}
1302
1303	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1304		itr &= ICE_ITR_ADAPTIVE_LATENCY;
1305		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1306	}
1307
1308	return itr;
 
 
 
 
 
 
1309}
1310
1311/**
1312 * ice_update_itr - update the adaptive ITR value based on statistics
1313 * @q_vector: structure containing interrupt and ring information
1314 * @rc: structure containing ring performance data
 
 
1315 *
1316 * Stores a new ITR value based on packets and byte
1317 * counts during the last interrupt.  The advantage of per interrupt
1318 * computation is faster updates and more accurate ITR for the current
1319 * traffic pattern.  Constants in this function were computed
1320 * based on theoretical maximum wire speed and thresholds were set based
1321 * on testing data as well as attempting to minimize response time
1322 * while increasing bulk throughput.
1323 */
1324static void
1325ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1326{
1327	unsigned long next_update = jiffies;
1328	unsigned int packets, bytes, itr;
1329	bool container_is_rx;
1330
1331	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1332		return;
1333
1334	/* If itr_countdown is set it means we programmed an ITR within
1335	 * the last 4 interrupt cycles. This has a side effect of us
1336	 * potentially firing an early interrupt. In order to work around
1337	 * this we need to throw out any data received for a few
1338	 * interrupts following the update.
1339	 */
1340	if (q_vector->itr_countdown) {
1341		itr = rc->target_itr;
1342		goto clear_counts;
1343	}
1344
1345	container_is_rx = (&q_vector->rx == rc);
1346	/* For Rx we want to push the delay up and default to low latency.
1347	 * for Tx we want to pull the delay down and default to high latency.
1348	 */
1349	itr = container_is_rx ?
1350		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1351		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1352
1353	/* If we didn't update within up to 1 - 2 jiffies we can assume
1354	 * that either packets are coming in so slow there hasn't been
1355	 * any work, or that there is so much work that NAPI is dealing
1356	 * with interrupt moderation and we don't need to do anything.
1357	 */
1358	if (time_after(next_update, rc->next_update))
1359		goto clear_counts;
1360
1361	prefetch(q_vector->vsi->port_info);
1362
1363	packets = rc->total_pkts;
1364	bytes = rc->total_bytes;
1365
1366	if (container_is_rx) {
1367		/* If Rx there are 1 to 4 packets and bytes are less than
1368		 * 9000 assume insufficient data to use bulk rate limiting
1369		 * approach unless Tx is already in bulk rate limiting. We
1370		 * are likely latency driven.
1371		 */
1372		if (packets && packets < 4 && bytes < 9000 &&
1373		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1374			itr = ICE_ITR_ADAPTIVE_LATENCY;
1375			goto adjust_by_size_and_speed;
1376		}
1377	} else if (packets < 4) {
1378		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1379		 * bulk mode and we are receiving 4 or fewer packets just
1380		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1381		 * that the Rx can relax.
1382		 */
1383		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1384		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1385		    ICE_ITR_ADAPTIVE_MAX_USECS)
1386			goto clear_counts;
1387	} else if (packets > 32) {
1388		/* If we have processed over 32 packets in a single interrupt
1389		 * for Tx assume we need to switch over to "bulk" mode.
1390		 */
1391		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1392	}
1393
1394	/* We have no packets to actually measure against. This means
1395	 * either one of the other queues on this vector is active or
1396	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1397	 *
1398	 * Between 4 and 56 we can assume that our current interrupt delay
1399	 * is only slightly too low. As such we should increase it by a small
1400	 * fixed amount.
1401	 */
1402	if (packets < 56) {
1403		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1404		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1405			itr &= ICE_ITR_ADAPTIVE_LATENCY;
1406			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1407		}
1408		goto clear_counts;
1409	}
1410
1411	if (packets <= 256) {
1412		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1413		itr &= ICE_ITR_MASK;
1414
1415		/* Between 56 and 112 is our "goldilocks" zone where we are
1416		 * working out "just right". Just report that our current
1417		 * ITR is good for us.
1418		 */
1419		if (packets <= 112)
1420			goto clear_counts;
1421
1422		/* If packet count is 128 or greater we are likely looking
1423		 * at a slight overrun of the delay we want. Try halving
1424		 * our delay to see if that will cut the number of packets
1425		 * in half per interrupt.
1426		 */
1427		itr >>= 1;
1428		itr &= ICE_ITR_MASK;
1429		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1430			itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1431
1432		goto clear_counts;
1433	}
1434
1435	/* The paths below assume we are dealing with a bulk ITR since
1436	 * number of packets is greater than 256. We are just going to have
1437	 * to compute a value and try to bring the count under control,
1438	 * though for smaller packet sizes there isn't much we can do as
1439	 * NAPI polling will likely be kicking in sooner rather than later.
1440	 */
1441	itr = ICE_ITR_ADAPTIVE_BULK;
1442
1443adjust_by_size_and_speed:
1444
1445	/* based on checks above packets cannot be 0 so division is safe */
1446	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1447					       bytes / packets, itr);
1448
1449clear_counts:
1450	/* write back value */
1451	rc->target_itr = itr;
1452
1453	/* next update should occur within next jiffy */
1454	rc->next_update = next_update + 1;
1455
1456	rc->total_bytes = 0;
1457	rc->total_pkts = 0;
1458}
1459
1460/**
1461 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1462 * @itr_idx: interrupt throttling index
1463 * @itr: interrupt throttling value in usecs
1464 */
1465static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1466{
1467	/* The ITR value is reported in microseconds, and the register value is
1468	 * recorded in 2 microsecond units. For this reason we only need to
1469	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1470	 * granularity as a shift instead of division. The mask makes sure the
1471	 * ITR value is never odd so we don't accidentally write into the field
1472	 * prior to the ITR field.
1473	 */
1474	itr &= ICE_ITR_MASK;
1475
1476	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1477		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1478		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1479}
1480
1481/* The act of updating the ITR will cause it to immediately trigger. In order
1482 * to prevent this from throwing off adaptive update statistics we defer the
1483 * update so that it can only happen so often. So after either Tx or Rx are
1484 * updated we make the adaptive scheme wait until either the ITR completely
1485 * expires via the next_update expiration or we have been through at least
1486 * 3 interrupts.
1487 */
1488#define ITR_COUNTDOWN_START 3
1489
1490/**
1491 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1492 * @q_vector: q_vector for which ITR is being updated and interrupt enabled
 
 
 
 
1493 */
1494static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1495{
1496	struct ice_ring_container *tx = &q_vector->tx;
1497	struct ice_ring_container *rx = &q_vector->rx;
1498	struct ice_vsi *vsi = q_vector->vsi;
 
1499	u32 itr_val;
1500
1501	/* when exiting WB_ON_ITR lets set a low ITR value and trigger
1502	 * interrupts to expire right away in case we have more work ready to go
1503	 * already
1504	 */
1505	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
1506		itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
1507		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1508		/* set target back to last user set value */
1509		rx->target_itr = rx->itr_setting;
1510		/* set current to what we just wrote and dynamic if needed */
1511		rx->current_itr = ICE_WB_ON_ITR_USECS |
1512			(rx->itr_setting & ICE_ITR_DYNAMIC);
1513		/* allow normal interrupt flow to start */
1514		q_vector->itr_countdown = 0;
1515		return;
1516	}
1517
1518	/* This will do nothing if dynamic updates are not enabled */
1519	ice_update_itr(q_vector, tx);
1520	ice_update_itr(q_vector, rx);
1521
1522	/* This block of logic allows us to get away with only updating
1523	 * one ITR value with each interrupt. The idea is to perform a
1524	 * pseudo-lazy update with the following criteria.
1525	 *
1526	 * 1. Rx is given higher priority than Tx if both are in same state
1527	 * 2. If we must reduce an ITR that is given highest priority.
1528	 * 3. We then give priority to increasing ITR based on amount.
1529	 */
1530	if (rx->target_itr < rx->current_itr) {
1531		/* Rx ITR needs to be reduced, this is highest priority */
1532		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1533		rx->current_itr = rx->target_itr;
1534		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1535	} else if ((tx->target_itr < tx->current_itr) ||
1536		   ((rx->target_itr - rx->current_itr) <
1537		    (tx->target_itr - tx->current_itr))) {
1538		/* Tx ITR needs to be reduced, this is second priority
1539		 * Tx ITR needs to be increased more than Rx, fourth priority
1540		 */
1541		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1542		tx->current_itr = tx->target_itr;
1543		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1544	} else if (rx->current_itr != rx->target_itr) {
1545		/* Rx ITR needs to be increased, third priority */
1546		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1547		rx->current_itr = rx->target_itr;
1548		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1549	} else {
1550		/* Still have to re-enable the interrupts */
1551		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1552		if (q_vector->itr_countdown)
1553			q_vector->itr_countdown--;
1554	}
1555
1556	if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
1557		wr32(&q_vector->vsi->back->hw,
1558		     GLINT_DYN_CTL(q_vector->reg_idx),
1559		     itr_val);
1560}
1561
1562/**
1563 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1564 * @q_vector: q_vector to set WB_ON_ITR on
1565 *
1566 * We need to tell hardware to write-back completed descriptors even when
1567 * interrupts are disabled. Descriptors will be written back on cache line
1568 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1569 * descriptors may not be written back if they don't fill a cache line until the
1570 * next interrupt.
1571 *
1572 * This sets the write-back frequency to 2 microseconds as that is the minimum
1573 * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
1574 * make sure hardware knows we aren't meddling with the INTENA_M bit.
1575 */
1576static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1577{
1578	struct ice_vsi *vsi = q_vector->vsi;
1579
1580	/* already in WB_ON_ITR mode no need to change it */
1581	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1582		return;
1583
1584	if (q_vector->num_ring_rx)
1585		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1586		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1587						 ICE_RX_ITR));
1588
1589	if (q_vector->num_ring_tx)
1590		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1591		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1592						 ICE_TX_ITR));
1593
1594	q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1595}
1596
1597/**
1598 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1599 * @napi: napi struct with our devices info in it
1600 * @budget: amount of work driver is allowed to do this pass, in packets
1601 *
1602 * This function will clean all queues associated with a q_vector.
1603 *
1604 * Returns the amount of work done
1605 */
1606int ice_napi_poll(struct napi_struct *napi, int budget)
1607{
1608	struct ice_q_vector *q_vector =
1609				container_of(napi, struct ice_q_vector, napi);
 
 
1610	bool clean_complete = true;
1611	struct ice_ring *ring;
1612	int budget_per_ring;
1613	int work_done = 0;
1614
1615	/* Since the actual Tx work is minimal, we can give the Tx a larger
1616	 * budget and be more aggressive about cleaning up the Tx descriptors.
1617	 */
1618	ice_for_each_ring(ring, q_vector->tx) {
1619		bool wd = ring->xsk_umem ?
1620			  ice_clean_tx_irq_zc(ring, budget) :
1621			  ice_clean_tx_irq(ring, budget);
 
 
 
 
 
 
1622
1623		if (!wd)
1624			clean_complete = false;
1625	}
1626
1627	/* Handle case where we are called by netpoll with a budget of 0 */
1628	if (unlikely(budget <= 0))
1629		return budget;
1630
1631	/* normally we have 1 Rx ring per q_vector */
1632	if (unlikely(q_vector->num_ring_rx > 1))
1633		/* We attempt to distribute budget to each Rx queue fairly, but
1634		 * don't allow the budget to go below 1 because that would exit
1635		 * polling early.
1636		 */
1637		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1638	else
1639		/* Max of 1 Rx ring in this q_vector so give it the budget */
1640		budget_per_ring = budget;
1641
1642	ice_for_each_ring(ring, q_vector->rx) {
 
1643		int cleaned;
1644
1645		/* A dedicated path for zero-copy allows making a single
1646		 * comparison in the irq context instead of many inside the
1647		 * ice_clean_rx_irq function and makes the codebase cleaner.
1648		 */
1649		cleaned = ring->xsk_umem ?
1650			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
1651			  ice_clean_rx_irq(ring, budget_per_ring);
1652		work_done += cleaned;
1653		/* if we clean as many as budgeted, we must not be done */
1654		if (cleaned >= budget_per_ring)
1655			clean_complete = false;
1656	}
1657
1658	/* If work not completed, return budget and polling will return */
1659	if (!clean_complete)
 
 
 
 
1660		return budget;
 
1661
1662	/* Exit the polling mode, but don't re-enable interrupts if stack might
1663	 * poll us due to busy-polling
1664	 */
1665	if (likely(napi_complete_done(napi, work_done)))
1666		ice_update_ena_itr(q_vector);
1667	else
 
1668		ice_set_wb_on_itr(q_vector);
 
1669
1670	return min_t(int, work_done, budget - 1);
1671}
1672
1673/**
1674 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1675 * @tx_ring: the ring to be checked
1676 * @size: the size buffer we want to assure is available
1677 *
1678 * Returns -EBUSY if a stop is needed, else 0
1679 */
1680static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1681{
1682	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1683	/* Memory barrier before checking head and tail */
1684	smp_mb();
1685
1686	/* Check again in a case another CPU has just made room available. */
1687	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1688		return -EBUSY;
1689
1690	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1691	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1692	++tx_ring->tx_stats.restart_q;
1693	return 0;
1694}
1695
1696/**
1697 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1698 * @tx_ring: the ring to be checked
1699 * @size:    the size buffer we want to assure is available
1700 *
1701 * Returns 0 if stop is not needed
1702 */
1703static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1704{
1705	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1706		return 0;
1707
1708	return __ice_maybe_stop_tx(tx_ring, size);
1709}
1710
1711/**
1712 * ice_tx_map - Build the Tx descriptor
1713 * @tx_ring: ring to send buffer on
1714 * @first: first buffer info buffer to use
1715 * @off: pointer to struct that holds offload parameters
1716 *
1717 * This function loops over the skb data pointed to by *first
1718 * and gets a physical address for each memory location and programs
1719 * it and the length into the transmit descriptor.
1720 */
1721static void
1722ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1723	   struct ice_tx_offload_params *off)
1724{
1725	u64 td_offset, td_tag, td_cmd;
1726	u16 i = tx_ring->next_to_use;
1727	unsigned int data_len, size;
1728	struct ice_tx_desc *tx_desc;
1729	struct ice_tx_buf *tx_buf;
1730	struct sk_buff *skb;
1731	skb_frag_t *frag;
1732	dma_addr_t dma;
 
1733
1734	td_tag = off->td_l2tag1;
1735	td_cmd = off->td_cmd;
1736	td_offset = off->td_offset;
1737	skb = first->skb;
1738
1739	data_len = skb->data_len;
1740	size = skb_headlen(skb);
1741
1742	tx_desc = ICE_TX_DESC(tx_ring, i);
1743
1744	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1745		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1746		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1747			  ICE_TX_FLAGS_VLAN_S;
1748	}
1749
1750	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1751
1752	tx_buf = first;
1753
1754	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1755		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1756
1757		if (dma_mapping_error(tx_ring->dev, dma))
1758			goto dma_error;
1759
1760		/* record length, and DMA address */
1761		dma_unmap_len_set(tx_buf, len, size);
1762		dma_unmap_addr_set(tx_buf, dma, dma);
1763
1764		/* align size to end of page */
1765		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1766		tx_desc->buf_addr = cpu_to_le64(dma);
1767
1768		/* account for data chunks larger than the hardware
1769		 * can handle
1770		 */
1771		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1772			tx_desc->cmd_type_offset_bsz =
1773				ice_build_ctob(td_cmd, td_offset, max_data,
1774					       td_tag);
1775
1776			tx_desc++;
1777			i++;
1778
1779			if (i == tx_ring->count) {
1780				tx_desc = ICE_TX_DESC(tx_ring, 0);
1781				i = 0;
1782			}
1783
1784			dma += max_data;
1785			size -= max_data;
1786
1787			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1788			tx_desc->buf_addr = cpu_to_le64(dma);
1789		}
1790
1791		if (likely(!data_len))
1792			break;
1793
1794		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1795							      size, td_tag);
1796
1797		tx_desc++;
1798		i++;
1799
1800		if (i == tx_ring->count) {
1801			tx_desc = ICE_TX_DESC(tx_ring, 0);
1802			i = 0;
1803		}
1804
1805		size = skb_frag_size(frag);
1806		data_len -= size;
1807
1808		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1809				       DMA_TO_DEVICE);
1810
1811		tx_buf = &tx_ring->tx_buf[i];
 
1812	}
1813
1814	/* record bytecount for BQL */
1815	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1816
1817	/* record SW timestamp if HW timestamp is not available */
1818	skb_tx_timestamp(first->skb);
1819
1820	i++;
1821	if (i == tx_ring->count)
1822		i = 0;
1823
1824	/* write last descriptor with RS and EOP bits */
1825	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1826	tx_desc->cmd_type_offset_bsz =
1827			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1828
1829	/* Force memory writes to complete before letting h/w know there
1830	 * are new descriptors to fetch.
1831	 *
1832	 * We also use this memory barrier to make certain all of the
1833	 * status bits have been updated before next_to_watch is written.
1834	 */
1835	wmb();
1836
1837	/* set next_to_watch value indicating a packet is present */
1838	first->next_to_watch = tx_desc;
1839
1840	tx_ring->next_to_use = i;
1841
1842	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1843
1844	/* notify HW of packet */
1845	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
 
 
 
1846		writel(i, tx_ring->tail);
1847
1848	return;
1849
1850dma_error:
1851	/* clear DMA mappings for failed tx_buf map */
1852	for (;;) {
1853		tx_buf = &tx_ring->tx_buf[i];
1854		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1855		if (tx_buf == first)
1856			break;
1857		if (i == 0)
1858			i = tx_ring->count;
1859		i--;
1860	}
1861
1862	tx_ring->next_to_use = i;
1863}
1864
1865/**
1866 * ice_tx_csum - Enable Tx checksum offloads
1867 * @first: pointer to the first descriptor
1868 * @off: pointer to struct that holds offload parameters
1869 *
1870 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1871 */
1872static
1873int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1874{
1875	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1876	struct sk_buff *skb = first->skb;
1877	union {
1878		struct iphdr *v4;
1879		struct ipv6hdr *v6;
1880		unsigned char *hdr;
1881	} ip;
1882	union {
1883		struct tcphdr *tcp;
1884		unsigned char *hdr;
1885	} l4;
1886	__be16 frag_off, protocol;
1887	unsigned char *exthdr;
1888	u32 offset, cmd = 0;
1889	u8 l4_proto = 0;
1890
1891	if (skb->ip_summed != CHECKSUM_PARTIAL)
1892		return 0;
1893
1894	ip.hdr = skb_network_header(skb);
1895	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
 
 
1896
1897	/* compute outer L2 header size */
1898	l2_len = ip.hdr - skb->data;
1899	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1900
1901	protocol = vlan_get_protocol(skb);
1902
1903	if (protocol == htons(ETH_P_IP))
 
1904		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1905	else if (protocol == htons(ETH_P_IPV6))
1906		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1907
1908	if (skb->encapsulation) {
1909		bool gso_ena = false;
1910		u32 tunnel = 0;
1911
1912		/* define outer network header type */
1913		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1914			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1915				  ICE_TX_CTX_EIPT_IPV4 :
1916				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1917			l4_proto = ip.v4->protocol;
1918		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
 
 
1919			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1920			exthdr = ip.hdr + sizeof(*ip.v6);
1921			l4_proto = ip.v6->nexthdr;
1922			if (l4.hdr != exthdr)
1923				ipv6_skip_exthdr(skb, exthdr - skb->data,
1924						 &l4_proto, &frag_off);
 
1925		}
1926
1927		/* define outer transport */
1928		switch (l4_proto) {
1929		case IPPROTO_UDP:
1930			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1931			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1932			break;
1933		case IPPROTO_GRE:
1934			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1935			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1936			break;
1937		case IPPROTO_IPIP:
1938		case IPPROTO_IPV6:
1939			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1940			l4.hdr = skb_inner_network_header(skb);
1941			break;
1942		default:
1943			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1944				return -1;
1945
1946			skb_checksum_help(skb);
1947			return 0;
1948		}
1949
1950		/* compute outer L3 header size */
1951		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1952			  ICE_TXD_CTX_QW0_EIPLEN_S;
1953
1954		/* switch IP header pointer from outer to inner header */
1955		ip.hdr = skb_inner_network_header(skb);
1956
1957		/* compute tunnel header size */
1958		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1959			   ICE_TXD_CTX_QW0_NATLEN_S;
1960
1961		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1962		/* indicate if we need to offload outer UDP header */
1963		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1964		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1965			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1966
1967		/* record tunnel offload values */
1968		off->cd_tunnel_params |= tunnel;
1969
1970		/* set DTYP=1 to indicate that it's an Tx context descriptor
1971		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1972		 */
1973		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1974
1975		/* switch L4 header pointer from outer to inner */
1976		l4.hdr = skb_inner_transport_header(skb);
1977		l4_proto = 0;
1978
1979		/* reset type as we transition from outer to inner headers */
1980		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1981		if (ip.v4->version == 4)
1982			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1983		if (ip.v6->version == 6)
1984			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1985	}
1986
1987	/* Enable IP checksum offloads */
1988	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1989		l4_proto = ip.v4->protocol;
1990		/* the stack computes the IP header already, the only time we
1991		 * need the hardware to recompute it is in the case of TSO.
1992		 */
1993		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1994			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1995		else
1996			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1997
1998	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1999		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2000		exthdr = ip.hdr + sizeof(*ip.v6);
2001		l4_proto = ip.v6->nexthdr;
2002		if (l4.hdr != exthdr)
2003			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
2004					 &frag_off);
2005	} else {
2006		return -1;
2007	}
2008
2009	/* compute inner L3 header size */
2010	l3_len = l4.hdr - ip.hdr;
2011	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
2012
2013	/* Enable L4 checksum offloads */
2014	switch (l4_proto) {
2015	case IPPROTO_TCP:
2016		/* enable checksum offloads */
2017		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2018		l4_len = l4.tcp->doff;
2019		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2020		break;
2021	case IPPROTO_UDP:
2022		/* enable UDP checksum offload */
2023		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2024		l4_len = (sizeof(struct udphdr) >> 2);
2025		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2026		break;
2027	case IPPROTO_SCTP:
2028		/* enable SCTP checksum offload */
2029		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2030		l4_len = sizeof(struct sctphdr) >> 2;
2031		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2032		break;
2033
2034	default:
2035		if (first->tx_flags & ICE_TX_FLAGS_TSO)
2036			return -1;
2037		skb_checksum_help(skb);
2038		return 0;
2039	}
2040
2041	off->td_cmd |= cmd;
2042	off->td_offset |= offset;
2043	return 1;
2044}
2045
2046/**
2047 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
2048 * @tx_ring: ring to send buffer on
2049 * @first: pointer to struct ice_tx_buf
2050 *
2051 * Checks the skb and set up correspondingly several generic transmit flags
2052 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2053 */
2054static void
2055ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
2056{
2057	struct sk_buff *skb = first->skb;
2058
2059	/* nothing left to do, software offloaded VLAN */
2060	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
2061		return;
2062
2063	/* currently, we always assume 802.1Q for VLAN insertion as VLAN
2064	 * insertion for 802.1AD is not supported
 
2065	 */
2066	if (skb_vlan_tag_present(skb)) {
2067		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
2068		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
 
 
 
2069	}
2070
2071	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
2072}
2073
2074/**
2075 * ice_tso - computes mss and TSO length to prepare for TSO
2076 * @first: pointer to struct ice_tx_buf
2077 * @off: pointer to struct that holds offload parameters
2078 *
2079 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
2080 */
2081static
2082int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2083{
2084	struct sk_buff *skb = first->skb;
2085	union {
2086		struct iphdr *v4;
2087		struct ipv6hdr *v6;
2088		unsigned char *hdr;
2089	} ip;
2090	union {
2091		struct tcphdr *tcp;
2092		struct udphdr *udp;
2093		unsigned char *hdr;
2094	} l4;
2095	u64 cd_mss, cd_tso_len;
 
2096	u32 paylen;
2097	u8 l4_start;
2098	int err;
2099
2100	if (skb->ip_summed != CHECKSUM_PARTIAL)
2101		return 0;
2102
2103	if (!skb_is_gso(skb))
2104		return 0;
2105
2106	err = skb_cow_head(skb, 0);
2107	if (err < 0)
2108		return err;
2109
2110	/* cppcheck-suppress unreadVariable */
2111	ip.hdr = skb_network_header(skb);
2112	l4.hdr = skb_transport_header(skb);
 
 
 
 
2113
2114	/* initialize outer IP header fields */
2115	if (ip.v4->version == 4) {
2116		ip.v4->tot_len = 0;
2117		ip.v4->check = 0;
2118	} else {
2119		ip.v6->payload_len = 0;
2120	}
2121
2122	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2123					 SKB_GSO_GRE_CSUM |
2124					 SKB_GSO_IPXIP4 |
2125					 SKB_GSO_IPXIP6 |
2126					 SKB_GSO_UDP_TUNNEL |
2127					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2128		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2129		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2130			l4.udp->len = 0;
2131
2132			/* determine offset of outer transport header */
2133			l4_start = (u8)(l4.hdr - skb->data);
2134
2135			/* remove payload length from outer checksum */
2136			paylen = skb->len - l4_start;
2137			csum_replace_by_diff(&l4.udp->check,
2138					     (__force __wsum)htonl(paylen));
2139		}
2140
2141		/* reset pointers to inner headers */
2142
2143		/* cppcheck-suppress unreadVariable */
2144		ip.hdr = skb_inner_network_header(skb);
2145		l4.hdr = skb_inner_transport_header(skb);
2146
2147		/* initialize inner IP header fields */
2148		if (ip.v4->version == 4) {
2149			ip.v4->tot_len = 0;
2150			ip.v4->check = 0;
2151		} else {
2152			ip.v6->payload_len = 0;
2153		}
2154	}
2155
2156	/* determine offset of transport header */
2157	l4_start = (u8)(l4.hdr - skb->data);
2158
2159	/* remove payload length from checksum */
2160	paylen = skb->len - l4_start;
2161
2162	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2163		csum_replace_by_diff(&l4.udp->check,
2164				     (__force __wsum)htonl(paylen));
2165		/* compute length of UDP segmentation header */
2166		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2167	} else {
2168		csum_replace_by_diff(&l4.tcp->check,
2169				     (__force __wsum)htonl(paylen));
2170		/* compute length of TCP segmentation header */
2171		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2172	}
2173
2174	/* update gso_segs and bytecount */
2175	first->gso_segs = skb_shinfo(skb)->gso_segs;
2176	first->bytecount += (first->gso_segs - 1) * off->header_len;
2177
2178	cd_tso_len = skb->len - off->header_len;
2179	cd_mss = skb_shinfo(skb)->gso_size;
2180
2181	/* record cdesc_qw1 with TSO parameters */
2182	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2183			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2184			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2185			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2186	first->tx_flags |= ICE_TX_FLAGS_TSO;
2187	return 1;
2188}
2189
2190/**
2191 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2192 * @size: transmit request size in bytes
2193 *
2194 * Due to hardware alignment restrictions (4K alignment), we need to
2195 * assume that we can have no more than 12K of data per descriptor, even
2196 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2197 * Thus, we need to divide by 12K. But division is slow! Instead,
2198 * we decompose the operation into shifts and one relatively cheap
2199 * multiply operation.
2200 *
2201 * To divide by 12K, we first divide by 4K, then divide by 3:
2202 *     To divide by 4K, shift right by 12 bits
2203 *     To divide by 3, multiply by 85, then divide by 256
2204 *     (Divide by 256 is done by shifting right by 8 bits)
2205 * Finally, we add one to round up. Because 256 isn't an exact multiple of
2206 * 3, we'll underestimate near each multiple of 12K. This is actually more
2207 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2208 * segment. For our purposes this is accurate out to 1M which is orders of
2209 * magnitude greater than our largest possible GSO size.
2210 *
2211 * This would then be implemented as:
2212 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2213 *
2214 * Since multiplication and division are commutative, we can reorder
2215 * operations into:
2216 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2217 */
2218static unsigned int ice_txd_use_count(unsigned int size)
2219{
2220	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2221}
2222
2223/**
2224 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2225 * @skb: send buffer
2226 *
2227 * Returns number of data descriptors needed for this skb.
2228 */
2229static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2230{
2231	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2232	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2233	unsigned int count = 0, size = skb_headlen(skb);
2234
2235	for (;;) {
2236		count += ice_txd_use_count(size);
2237
2238		if (!nr_frags--)
2239			break;
2240
2241		size = skb_frag_size(frag++);
2242	}
2243
2244	return count;
2245}
2246
2247/**
2248 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2249 * @skb: send buffer
2250 *
2251 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2252 * and so we need to figure out the cases where we need to linearize the skb.
2253 *
2254 * For TSO we need to count the TSO header and segment payload separately.
2255 * As such we need to check cases where we have 7 fragments or more as we
2256 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2257 * the segment payload in the first descriptor, and another 7 for the
2258 * fragments.
2259 */
2260static bool __ice_chk_linearize(struct sk_buff *skb)
2261{
2262	const skb_frag_t *frag, *stale;
2263	int nr_frags, sum;
2264
2265	/* no need to check if number of frags is less than 7 */
2266	nr_frags = skb_shinfo(skb)->nr_frags;
2267	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2268		return false;
2269
2270	/* We need to walk through the list and validate that each group
2271	 * of 6 fragments totals at least gso_size.
2272	 */
2273	nr_frags -= ICE_MAX_BUF_TXD - 2;
2274	frag = &skb_shinfo(skb)->frags[0];
2275
2276	/* Initialize size to the negative value of gso_size minus 1. We
2277	 * use this as the worst case scenario in which the frag ahead
2278	 * of us only provides one byte which is why we are limited to 6
2279	 * descriptors for a single transmit as the header and previous
2280	 * fragment are already consuming 2 descriptors.
2281	 */
2282	sum = 1 - skb_shinfo(skb)->gso_size;
2283
2284	/* Add size of frags 0 through 4 to create our initial sum */
2285	sum += skb_frag_size(frag++);
2286	sum += skb_frag_size(frag++);
2287	sum += skb_frag_size(frag++);
2288	sum += skb_frag_size(frag++);
2289	sum += skb_frag_size(frag++);
2290
2291	/* Walk through fragments adding latest fragment, testing it, and
2292	 * then removing stale fragments from the sum.
2293	 */
2294	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2295		int stale_size = skb_frag_size(stale);
2296
2297		sum += skb_frag_size(frag++);
2298
2299		/* The stale fragment may present us with a smaller
2300		 * descriptor than the actual fragment size. To account
2301		 * for that we need to remove all the data on the front and
2302		 * figure out what the remainder would be in the last
2303		 * descriptor associated with the fragment.
2304		 */
2305		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2306			int align_pad = -(skb_frag_off(stale)) &
2307					(ICE_MAX_READ_REQ_SIZE - 1);
2308
2309			sum -= align_pad;
2310			stale_size -= align_pad;
2311
2312			do {
2313				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2314				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2315			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2316		}
2317
2318		/* if sum is negative we failed to make sufficient progress */
2319		if (sum < 0)
2320			return true;
2321
2322		if (!nr_frags--)
2323			break;
2324
2325		sum -= stale_size;
2326	}
2327
2328	return false;
2329}
2330
2331/**
2332 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2333 * @skb:      send buffer
2334 * @count:    number of buffers used
2335 *
2336 * Note: Our HW can't scatter-gather more than 8 fragments to build
2337 * a packet on the wire and so we need to figure out the cases where we
2338 * need to linearize the skb.
2339 */
2340static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2341{
2342	/* Both TSO and single send will work if count is less than 8 */
2343	if (likely(count < ICE_MAX_BUF_TXD))
2344		return false;
2345
2346	if (skb_is_gso(skb))
2347		return __ice_chk_linearize(skb);
2348
2349	/* we can support up to 8 data buffers for a single send */
2350	return count != ICE_MAX_BUF_TXD;
2351}
2352
2353/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2354 * ice_xmit_frame_ring - Sends buffer on Tx ring
2355 * @skb: send buffer
2356 * @tx_ring: ring to send buffer on
2357 *
2358 * Returns NETDEV_TX_OK if sent, else an error code
2359 */
2360static netdev_tx_t
2361ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2362{
2363	struct ice_tx_offload_params offload = { 0 };
2364	struct ice_vsi *vsi = tx_ring->vsi;
2365	struct ice_tx_buf *first;
 
2366	unsigned int count;
2367	int tso, csum;
2368
 
 
 
 
 
2369	count = ice_xmit_desc_count(skb);
2370	if (ice_chk_linearize(skb, count)) {
2371		if (__skb_linearize(skb))
2372			goto out_drop;
2373		count = ice_txd_use_count(skb->len);
2374		tx_ring->tx_stats.tx_linearize++;
2375	}
2376
2377	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2378	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2379	 *       + 4 desc gap to avoid the cache line where head is,
2380	 *       + 1 desc for context descriptor,
2381	 * otherwise try next time
2382	 */
2383	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2384			      ICE_DESCS_FOR_CTX_DESC)) {
2385		tx_ring->tx_stats.tx_busy++;
2386		return NETDEV_TX_BUSY;
2387	}
2388
 
 
 
2389	offload.tx_ring = tx_ring;
2390
2391	/* record the location of the first descriptor for this packet */
2392	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2393	first->skb = skb;
 
2394	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2395	first->gso_segs = 1;
2396	first->tx_flags = 0;
2397
2398	/* prepare the VLAN tagging flags for Tx */
2399	ice_tx_prepare_vlan_flags(tx_ring, first);
 
 
 
 
 
 
2400
2401	/* set up TSO offload */
2402	tso = ice_tso(first, &offload);
2403	if (tso < 0)
2404		goto out_drop;
2405
2406	/* always set up Tx checksum offload */
2407	csum = ice_tx_csum(first, &offload);
2408	if (csum < 0)
2409		goto out_drop;
2410
2411	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2412	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
 
 
2413		     vsi->type == ICE_VSI_PF &&
2414		     vsi->port_info->is_sw_lldp))
2415		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2416					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2417					ICE_TXD_CTX_QW1_CMD_S);
2418
 
 
 
 
2419	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2420		struct ice_tx_ctx_desc *cdesc;
2421		u16 i = tx_ring->next_to_use;
2422
2423		/* grab the next descriptor */
2424		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2425		i++;
2426		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2427
2428		/* setup context descriptor */
2429		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2430		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2431		cdesc->rsvd = cpu_to_le16(0);
2432		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2433	}
2434
2435	ice_tx_map(tx_ring, first, &offload);
2436	return NETDEV_TX_OK;
2437
2438out_drop:
 
2439	dev_kfree_skb_any(skb);
2440	return NETDEV_TX_OK;
2441}
2442
2443/**
2444 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2445 * @skb: send buffer
2446 * @netdev: network interface device structure
2447 *
2448 * Returns NETDEV_TX_OK if sent, else an error code
2449 */
2450netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2451{
2452	struct ice_netdev_priv *np = netdev_priv(netdev);
2453	struct ice_vsi *vsi = np->vsi;
2454	struct ice_ring *tx_ring;
2455
2456	tx_ring = vsi->tx_rings[skb->queue_mapping];
2457
2458	/* hardware can't handle really short frames, hardware padding works
2459	 * beyond this point
2460	 */
2461	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2462		return NETDEV_TX_OK;
2463
2464	return ice_xmit_frame_ring(skb, tx_ring);
2465}
2466
2467/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2468 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2469 * @tx_ring: tx_ring to clean
2470 */
2471void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
2472{
2473	struct ice_vsi *vsi = tx_ring->vsi;
2474	s16 i = tx_ring->next_to_clean;
2475	int budget = ICE_DFLT_IRQ_WORK;
2476	struct ice_tx_desc *tx_desc;
2477	struct ice_tx_buf *tx_buf;
2478
2479	tx_buf = &tx_ring->tx_buf[i];
2480	tx_desc = ICE_TX_DESC(tx_ring, i);
2481	i -= tx_ring->count;
2482
2483	do {
2484		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2485
2486		/* if next_to_watch is not set then there is no pending work */
2487		if (!eop_desc)
2488			break;
2489
2490		/* prevent any other reads prior to eop_desc */
2491		smp_rmb();
2492
2493		/* if the descriptor isn't done, no work to do */
2494		if (!(eop_desc->cmd_type_offset_bsz &
2495		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2496			break;
2497
2498		/* clear next_to_watch to prevent false hangs */
2499		tx_buf->next_to_watch = NULL;
2500		tx_desc->buf_addr = 0;
2501		tx_desc->cmd_type_offset_bsz = 0;
2502
2503		/* move past filter desc */
2504		tx_buf++;
2505		tx_desc++;
2506		i++;
2507		if (unlikely(!i)) {
2508			i -= tx_ring->count;
2509			tx_buf = tx_ring->tx_buf;
2510			tx_desc = ICE_TX_DESC(tx_ring, 0);
2511		}
2512
2513		/* unmap the data header */
2514		if (dma_unmap_len(tx_buf, len))
2515			dma_unmap_single(tx_ring->dev,
2516					 dma_unmap_addr(tx_buf, dma),
2517					 dma_unmap_len(tx_buf, len),
2518					 DMA_TO_DEVICE);
2519		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2520			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2521
2522		/* clear next_to_watch to prevent false hangs */
2523		tx_buf->raw_buf = NULL;
2524		tx_buf->tx_flags = 0;
2525		tx_buf->next_to_watch = NULL;
2526		dma_unmap_len_set(tx_buf, len, 0);
2527		tx_desc->buf_addr = 0;
2528		tx_desc->cmd_type_offset_bsz = 0;
2529
2530		/* move past eop_desc for start of next FD desc */
2531		tx_buf++;
2532		tx_desc++;
2533		i++;
2534		if (unlikely(!i)) {
2535			i -= tx_ring->count;
2536			tx_buf = tx_ring->tx_buf;
2537			tx_desc = ICE_TX_DESC(tx_ring, 0);
2538		}
2539
2540		budget--;
2541	} while (likely(budget));
2542
2543	i += tx_ring->count;
2544	tx_ring->next_to_clean = i;
2545
2546	/* re-enable interrupt if needed */
2547	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2548}