Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/bpf_trace.h>
   5#include <linux/net/intel/libie/rx.h>
   6#include <linux/prefetch.h>
   7#include <linux/sctp.h>
   8#include <net/mpls.h>
   9#include <net/xdp.h>
  10#include "i40e_txrx_common.h"
  11#include "i40e_trace.h"
 
 
  12#include "i40e_xsk.h"
  13
  14#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  15/**
  16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  17 * @tx_ring: Tx ring to send buffer on
  18 * @fdata: Flow director filter data
  19 * @add: Indicate if we are adding a rule or deleting one
  20 *
  21 **/
  22static void i40e_fdir(struct i40e_ring *tx_ring,
  23		      struct i40e_fdir_filter *fdata, bool add)
  24{
  25	struct i40e_filter_program_desc *fdir_desc;
  26	struct i40e_pf *pf = tx_ring->vsi->back;
  27	u32 flex_ptype, dtype_cmd, vsi_id;
  28	u16 i;
  29
  30	/* grab the next descriptor */
  31	i = tx_ring->next_to_use;
  32	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  33
  34	i++;
  35	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  36
  37	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
 
  38
  39	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
  40				 fdata->flex_off);
  41
  42	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
 
  43
  44	/* Use LAN VSI Id if not programmed by user */
  45	vsi_id = fdata->dest_vsi ? : i40e_pf_get_main_vsi(pf)->id;
  46	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, vsi_id);
 
  47
  48	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  49
  50	dtype_cmd |= add ?
  51		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  52		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  53		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  54		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  55
  56	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
 
  57
  58	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
  59				fdata->fd_status);
  60
  61	if (fdata->cnt_index) {
  62		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  63		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
  64					fdata->cnt_index);
 
  65	}
  66
  67	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  68	fdir_desc->rsvd = cpu_to_le32(0);
  69	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  70	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  71}
  72
  73#define I40E_FD_CLEAN_DELAY 10
  74/**
  75 * i40e_program_fdir_filter - Program a Flow Director filter
  76 * @fdir_data: Packet data that will be filter parameters
  77 * @raw_packet: the pre-allocated packet buffer for FDir
  78 * @pf: The PF pointer
  79 * @add: True for add/update, False for remove
  80 **/
  81static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  82				    u8 *raw_packet, struct i40e_pf *pf,
  83				    bool add)
  84{
  85	struct i40e_tx_buffer *tx_buf, *first;
  86	struct i40e_tx_desc *tx_desc;
  87	struct i40e_ring *tx_ring;
  88	struct i40e_vsi *vsi;
  89	struct device *dev;
  90	dma_addr_t dma;
  91	u32 td_cmd = 0;
  92	u16 i;
  93
  94	/* find existing FDIR VSI */
  95	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
  96	if (!vsi)
  97		return -ENOENT;
  98
  99	tx_ring = vsi->tx_rings[0];
 100	dev = tx_ring->dev;
 101
 102	/* we need two descriptors to add/del a filter and we can wait */
 103	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 104		if (!i)
 105			return -EAGAIN;
 106		msleep_interruptible(1);
 107	}
 108
 109	dma = dma_map_single(dev, raw_packet,
 110			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 111	if (dma_mapping_error(dev, dma))
 112		goto dma_fail;
 113
 114	/* grab the next descriptor */
 115	i = tx_ring->next_to_use;
 116	first = &tx_ring->tx_bi[i];
 117	i40e_fdir(tx_ring, fdir_data, add);
 118
 119	/* Now program a dummy descriptor */
 120	i = tx_ring->next_to_use;
 121	tx_desc = I40E_TX_DESC(tx_ring, i);
 122	tx_buf = &tx_ring->tx_bi[i];
 123
 124	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 125
 126	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 127
 128	/* record length, and DMA address */
 129	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 130	dma_unmap_addr_set(tx_buf, dma, dma);
 131
 132	tx_desc->buffer_addr = cpu_to_le64(dma);
 133	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 134
 135	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 136	tx_buf->raw_buf = (void *)raw_packet;
 137
 138	tx_desc->cmd_type_offset_bsz =
 139		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 140
 141	/* Force memory writes to complete before letting h/w
 142	 * know there are new descriptors to fetch.
 143	 */
 144	wmb();
 145
 146	/* Mark the data descriptor to be watched */
 147	first->next_to_watch = tx_desc;
 148
 149	writel(tx_ring->next_to_use, tx_ring->tail);
 150	return 0;
 151
 152dma_fail:
 153	return -1;
 154}
 155
 156/**
 157 * i40e_create_dummy_packet - Constructs dummy packet for HW
 158 * @dummy_packet: preallocated space for dummy packet
 159 * @ipv4: is layer 3 packet of version 4 or 6
 160 * @l4proto: next level protocol used in data portion of l3
 161 * @data: filter data
 162 *
 163 * Returns address of layer 4 protocol dummy packet.
 164 **/
 165static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
 166				      struct i40e_fdir_filter *data)
 167{
 168	bool is_vlan = !!data->vlan_tag;
 169	struct vlan_hdr vlan = {};
 170	struct ipv6hdr ipv6 = {};
 171	struct ethhdr eth = {};
 172	struct iphdr ip = {};
 173	u8 *tmp;
 174
 175	if (ipv4) {
 176		eth.h_proto = cpu_to_be16(ETH_P_IP);
 177		ip.protocol = l4proto;
 178		ip.version = 0x4;
 179		ip.ihl = 0x5;
 180
 181		ip.daddr = data->dst_ip;
 182		ip.saddr = data->src_ip;
 183	} else {
 184		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
 185		ipv6.nexthdr = l4proto;
 186		ipv6.version = 0x6;
 187
 188		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
 189		       sizeof(__be32) * 4);
 190		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
 191		       sizeof(__be32) * 4);
 192	}
 193
 194	if (is_vlan) {
 195		vlan.h_vlan_TCI = data->vlan_tag;
 196		vlan.h_vlan_encapsulated_proto = eth.h_proto;
 197		eth.h_proto = data->vlan_etype;
 198	}
 199
 200	tmp = dummy_packet;
 201	memcpy(tmp, &eth, sizeof(eth));
 202	tmp += sizeof(eth);
 203
 204	if (is_vlan) {
 205		memcpy(tmp, &vlan, sizeof(vlan));
 206		tmp += sizeof(vlan);
 207	}
 208
 209	if (ipv4) {
 210		memcpy(tmp, &ip, sizeof(ip));
 211		tmp += sizeof(ip);
 212	} else {
 213		memcpy(tmp, &ipv6, sizeof(ipv6));
 214		tmp += sizeof(ipv6);
 215	}
 216
 217	return tmp;
 218}
 219
 220/**
 221 * i40e_create_dummy_udp_packet - helper function to create UDP packet
 222 * @raw_packet: preallocated space for dummy packet
 223 * @ipv4: is layer 3 packet of version 4 or 6
 224 * @l4proto: next level protocol used in data portion of l3
 225 * @data: filter data
 226 *
 227 * Helper function to populate udp fields.
 228 **/
 229static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 230					 struct i40e_fdir_filter *data)
 231{
 232	struct udphdr *udp;
 233	u8 *tmp;
 234
 235	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
 236	udp = (struct udphdr *)(tmp);
 237	udp->dest = data->dst_port;
 238	udp->source = data->src_port;
 239}
 240
 241/**
 242 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
 243 * @raw_packet: preallocated space for dummy packet
 244 * @ipv4: is layer 3 packet of version 4 or 6
 245 * @l4proto: next level protocol used in data portion of l3
 246 * @data: filter data
 247 *
 248 * Helper function to populate tcp fields.
 249 **/
 250static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 251					 struct i40e_fdir_filter *data)
 252{
 253	struct tcphdr *tcp;
 254	u8 *tmp;
 255	/* Dummy tcp packet */
 256	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 257		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
 258
 259	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
 260
 261	tcp = (struct tcphdr *)tmp;
 262	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
 263	tcp->dest = data->dst_port;
 264	tcp->source = data->src_port;
 265}
 266
 267/**
 268 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
 269 * @raw_packet: preallocated space for dummy packet
 270 * @ipv4: is layer 3 packet of version 4 or 6
 271 * @l4proto: next level protocol used in data portion of l3
 272 * @data: filter data
 273 *
 274 * Helper function to populate sctp fields.
 275 **/
 276static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
 277					  u8 l4proto,
 278					  struct i40e_fdir_filter *data)
 279{
 280	struct sctphdr *sctp;
 281	u8 *tmp;
 282
 283	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
 284
 285	sctp = (struct sctphdr *)tmp;
 286	sctp->dest = data->dst_port;
 287	sctp->source = data->src_port;
 288}
 289
 290/**
 291 * i40e_prepare_fdir_filter - Prepare and program fdir filter
 292 * @pf: physical function to attach filter to
 293 * @fd_data: filter data
 294 * @add: add or delete filter
 295 * @packet_addr: address of dummy packet, used in filtering
 296 * @payload_offset: offset from dummy packet address to user defined data
 297 * @pctype: Packet type for which filter is used
 298 *
 299 * Helper function to offset data of dummy packet, program it and
 300 * handle errors.
 301 **/
 302static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
 303				    struct i40e_fdir_filter *fd_data,
 304				    bool add, char *packet_addr,
 305				    int payload_offset, u8 pctype)
 306{
 307	int ret;
 308
 309	if (fd_data->flex_filter) {
 310		u8 *payload;
 311		__be16 pattern = fd_data->flex_word;
 312		u16 off = fd_data->flex_offset;
 313
 314		payload = packet_addr + payload_offset;
 315
 316		/* If user provided vlan, offset payload by vlan header length */
 317		if (!!fd_data->vlan_tag)
 318			payload += VLAN_HLEN;
 319
 320		*((__force __be16 *)(payload + off)) = pattern;
 321	}
 322
 323	fd_data->pctype = pctype;
 324	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
 325	if (ret) {
 326		dev_info(&pf->pdev->dev,
 327			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 328			 fd_data->pctype, fd_data->fd_id, ret);
 329		/* Free the packet buffer since it wasn't added to the ring */
 330		return -EOPNOTSUPP;
 331	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 332		if (add)
 333			dev_info(&pf->pdev->dev,
 334				 "Filter OK for PCTYPE %d loc = %d\n",
 335				 fd_data->pctype, fd_data->fd_id);
 336		else
 337			dev_info(&pf->pdev->dev,
 338				 "Filter deleted for PCTYPE %d loc = %d\n",
 339				 fd_data->pctype, fd_data->fd_id);
 340	}
 341
 342	return ret;
 343}
 344
 345/**
 346 * i40e_change_filter_num - Prepare and program fdir filter
 347 * @ipv4: is layer 3 packet of version 4 or 6
 348 * @add: add or delete filter
 349 * @ipv4_filter_num: field to update
 350 * @ipv6_filter_num: field to update
 351 *
 352 * Update filter number field for pf.
 353 **/
 354static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
 355				   u16 *ipv6_filter_num)
 356{
 357	if (add) {
 358		if (ipv4)
 359			(*ipv4_filter_num)++;
 360		else
 361			(*ipv6_filter_num)++;
 362	} else {
 363		if (ipv4)
 364			(*ipv4_filter_num)--;
 365		else
 366			(*ipv6_filter_num)--;
 367	}
 368}
 369
 
 370#define I40E_UDPIP_DUMMY_PACKET_LEN	42
 371#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
 372/**
 373 * i40e_add_del_fdir_udp - Add/Remove UDP filters
 374 * @vsi: pointer to the targeted VSI
 375 * @fd_data: the flow director data required for the FDir descriptor
 376 * @add: true adds a filter, false removes it
 377 * @ipv4: true is v4, false is v6
 378 *
 379 * Returns 0 if the filters were successfully added or removed
 380 **/
 381static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
 382				 struct i40e_fdir_filter *fd_data,
 383				 bool add,
 384				 bool ipv4)
 385{
 386	struct i40e_pf *pf = vsi->back;
 387	u8 *raw_packet;
 388	int ret;
 389
 390	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 391	if (!raw_packet)
 392		return -ENOMEM;
 393
 394	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
 395
 396	if (ipv4)
 397		ret = i40e_prepare_fdir_filter
 398			(pf, fd_data, add, raw_packet,
 399			 I40E_UDPIP_DUMMY_PACKET_LEN,
 400			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
 401	else
 402		ret = i40e_prepare_fdir_filter
 403			(pf, fd_data, add, raw_packet,
 404			 I40E_UDPIP6_DUMMY_PACKET_LEN,
 405			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
 406
 407	if (ret) {
 408		kfree(raw_packet);
 409		return ret;
 410	}
 411
 412	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
 413			       &pf->fd_udp6_filter_cnt);
 414
 415	return 0;
 416}
 417
 418#define I40E_TCPIP_DUMMY_PACKET_LEN	54
 419#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
 420/**
 421 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
 422 * @vsi: pointer to the targeted VSI
 423 * @fd_data: the flow director data required for the FDir descriptor
 424 * @add: true adds a filter, false removes it
 425 * @ipv4: true is v4, false is v6
 426 *
 427 * Returns 0 if the filters were successfully added or removed
 428 **/
 429static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
 430				 struct i40e_fdir_filter *fd_data,
 431				 bool add,
 432				 bool ipv4)
 433{
 434	struct i40e_pf *pf = vsi->back;
 435	u8 *raw_packet;
 436	int ret;
 437
 438	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 439	if (!raw_packet)
 440		return -ENOMEM;
 441
 442	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
 443	if (ipv4)
 444		ret = i40e_prepare_fdir_filter
 445			(pf, fd_data, add, raw_packet,
 446			 I40E_TCPIP_DUMMY_PACKET_LEN,
 447			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
 448	else
 449		ret = i40e_prepare_fdir_filter
 450			(pf, fd_data, add, raw_packet,
 451			 I40E_TCPIP6_DUMMY_PACKET_LEN,
 452			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
 453
 454	if (ret) {
 455		kfree(raw_packet);
 456		return ret;
 457	}
 458
 459	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
 460			       &pf->fd_tcp6_filter_cnt);
 461
 462	if (add) {
 463		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
 464		    I40E_DEBUG_FD & pf->hw.debug_mask)
 465			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 466		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 467	}
 468	return 0;
 469}
 470
 471#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
 472#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
 473/**
 474 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
 475 * a specific flow spec
 476 * @vsi: pointer to the targeted VSI
 477 * @fd_data: the flow director data required for the FDir descriptor
 478 * @add: true adds a filter, false removes it
 479 * @ipv4: true is v4, false is v6
 480 *
 481 * Returns 0 if the filters were successfully added or removed
 482 **/
 483static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
 484				  struct i40e_fdir_filter *fd_data,
 485				  bool add,
 486				  bool ipv4)
 487{
 488	struct i40e_pf *pf = vsi->back;
 489	u8 *raw_packet;
 490	int ret;
 491
 492	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 493	if (!raw_packet)
 494		return -ENOMEM;
 495
 496	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
 497
 498	if (ipv4)
 499		ret = i40e_prepare_fdir_filter
 500			(pf, fd_data, add, raw_packet,
 501			 I40E_SCTPIP_DUMMY_PACKET_LEN,
 502			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
 503	else
 504		ret = i40e_prepare_fdir_filter
 505			(pf, fd_data, add, raw_packet,
 506			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
 507			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
 508
 509	if (ret) {
 510		kfree(raw_packet);
 511		return ret;
 512	}
 513
 514	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
 515			       &pf->fd_sctp6_filter_cnt);
 516
 517	return 0;
 518}
 519
 520#define I40E_IP_DUMMY_PACKET_LEN	34
 521#define I40E_IP6_DUMMY_PACKET_LEN	54
 522/**
 523 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
 524 * a specific flow spec
 525 * @vsi: pointer to the targeted VSI
 526 * @fd_data: the flow director data required for the FDir descriptor
 527 * @add: true adds a filter, false removes it
 528 * @ipv4: true is v4, false is v6
 529 *
 530 * Returns 0 if the filters were successfully added or removed
 531 **/
 532static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
 533				struct i40e_fdir_filter *fd_data,
 534				bool add,
 535				bool ipv4)
 536{
 537	struct i40e_pf *pf = vsi->back;
 538	int payload_offset;
 539	u8 *raw_packet;
 540	int iter_start;
 541	int iter_end;
 542	int ret;
 543	int i;
 544
 545	if (ipv4) {
 546		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 547		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
 548	} else {
 549		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
 550		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
 551	}
 552
 553	for (i = iter_start; i <= iter_end; i++) {
 554		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 555		if (!raw_packet)
 556			return -ENOMEM;
 557
 558		/* IPv6 no header option differs from IPv4 */
 559		(void)i40e_create_dummy_packet
 560			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
 561			 fd_data);
 562
 563		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
 564			I40E_IP6_DUMMY_PACKET_LEN;
 565		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
 566					       payload_offset, i);
 567		if (ret)
 568			goto err;
 569	}
 570
 571	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
 572			       &pf->fd_ip6_filter_cnt);
 573
 574	return 0;
 575err:
 576	kfree(raw_packet);
 577	return ret;
 578}
 579
 580/**
 581 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 582 * @vsi: pointer to the targeted VSI
 583 * @input: filter to add or delete
 584 * @add: true adds a filter, false removes it
 585 *
 586 **/
 587int i40e_add_del_fdir(struct i40e_vsi *vsi,
 588		      struct i40e_fdir_filter *input, bool add)
 589{
 590	enum ip_ver { ipv6 = 0, ipv4 = 1 };
 591	struct i40e_pf *pf = vsi->back;
 592	int ret;
 593
 594	switch (input->flow_type & ~FLOW_EXT) {
 595	case TCP_V4_FLOW:
 596		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 597		break;
 598	case UDP_V4_FLOW:
 599		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 600		break;
 601	case SCTP_V4_FLOW:
 602		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 603		break;
 604	case TCP_V6_FLOW:
 605		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 606		break;
 607	case UDP_V6_FLOW:
 608		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 609		break;
 610	case SCTP_V6_FLOW:
 611		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 612		break;
 613	case IP_USER_FLOW:
 614		switch (input->ipl4_proto) {
 615		case IPPROTO_TCP:
 616			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 617			break;
 618		case IPPROTO_UDP:
 619			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 620			break;
 621		case IPPROTO_SCTP:
 622			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 623			break;
 624		case IPPROTO_IP:
 625			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
 626			break;
 627		default:
 628			/* We cannot support masking based on protocol */
 629			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 630				 input->ipl4_proto);
 631			return -EINVAL;
 632		}
 633		break;
 634	case IPV6_USER_FLOW:
 635		switch (input->ipl4_proto) {
 636		case IPPROTO_TCP:
 637			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 638			break;
 639		case IPPROTO_UDP:
 640			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 641			break;
 642		case IPPROTO_SCTP:
 643			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 644			break;
 645		case IPPROTO_IP:
 646			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
 647			break;
 648		default:
 649			/* We cannot support masking based on protocol */
 650			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
 651				 input->ipl4_proto);
 652			return -EINVAL;
 653		}
 654		break;
 655	default:
 656		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 657			 input->flow_type);
 658		return -EINVAL;
 659	}
 660
 661	/* The buffer allocated here will be normally be freed by
 662	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 663	 * completion. In the event of an error adding the buffer to the FDIR
 664	 * ring, it will immediately be freed. It may also be freed by
 665	 * i40e_clean_tx_ring() when closing the VSI.
 666	 */
 667	return ret;
 668}
 669
 670/**
 671 * i40e_fd_handle_status - check the Programming Status for FD
 672 * @rx_ring: the Rx ring for this descriptor
 673 * @qword0_raw: qword0
 674 * @qword1: qword1 after le_to_cpu
 675 * @prog_id: the id originally used for programming
 676 *
 677 * This is used to verify if the FD programming or invalidation
 678 * requested by SW to the HW is successful or not and take actions accordingly.
 679 **/
 680static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
 681				  u64 qword1, u8 prog_id)
 682{
 683	struct i40e_pf *pf = rx_ring->vsi->back;
 684	struct pci_dev *pdev = pf->pdev;
 685	struct i40e_16b_rx_wb_qw0 *qw0;
 686	u32 fcnt_prog, fcnt_avail;
 687	u32 error;
 688
 689	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
 690	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
 
 691
 692	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 693		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
 694		if (qw0->hi_dword.fd_id != 0 ||
 695		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 696			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 697				 pf->fd_inv);
 698
 699		/* Check if the programming error is for ATR.
 700		 * If so, auto disable ATR and set a state for
 701		 * flush in progress. Next time we come here if flush is in
 702		 * progress do nothing, once flush is complete the state will
 703		 * be cleared.
 704		 */
 705		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 706			return;
 707
 708		pf->fd_add_err++;
 709		/* store the current atr filter count */
 710		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 711
 712		if (qw0->hi_dword.fd_id == 0 &&
 713		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 714			/* These set_bit() calls aren't atomic with the
 715			 * test_bit() here, but worse case we potentially
 716			 * disable ATR and queue a flush right after SB
 717			 * support is re-enabled. That shouldn't cause an
 718			 * issue in practice
 719			 */
 720			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 721			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 722		}
 723
 724		/* filter programming failed most likely due to table full */
 725		fcnt_prog = i40e_get_global_fd_count(pf);
 726		fcnt_avail = pf->fdir_pf_filter_count;
 727		/* If ATR is running fcnt_prog can quickly change,
 728		 * if we are very close to full, it makes sense to disable
 729		 * FD ATR/SB and then re-enable it when there is room.
 730		 */
 731		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 732			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
 733			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 734					      pf->state))
 735				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 736					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 737		}
 738	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 739		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 740			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 741				 qw0->hi_dword.fd_id);
 742	}
 743}
 744
 745/**
 746 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 747 * @ring:      the ring that owns the buffer
 748 * @tx_buffer: the buffer to free
 749 **/
 750static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 751					    struct i40e_tx_buffer *tx_buffer)
 752{
 753	if (tx_buffer->skb) {
 754		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 755			kfree(tx_buffer->raw_buf);
 756		else if (ring_is_xdp(ring))
 757			xdp_return_frame(tx_buffer->xdpf);
 758		else
 759			dev_kfree_skb_any(tx_buffer->skb);
 760		if (dma_unmap_len(tx_buffer, len))
 761			dma_unmap_single(ring->dev,
 762					 dma_unmap_addr(tx_buffer, dma),
 763					 dma_unmap_len(tx_buffer, len),
 764					 DMA_TO_DEVICE);
 765	} else if (dma_unmap_len(tx_buffer, len)) {
 766		dma_unmap_page(ring->dev,
 767			       dma_unmap_addr(tx_buffer, dma),
 768			       dma_unmap_len(tx_buffer, len),
 769			       DMA_TO_DEVICE);
 770	}
 771
 772	tx_buffer->next_to_watch = NULL;
 773	tx_buffer->skb = NULL;
 774	dma_unmap_len_set(tx_buffer, len, 0);
 775	/* tx_buffer must be completely set up in the transmit path */
 776}
 777
 778/**
 779 * i40e_clean_tx_ring - Free any empty Tx buffers
 780 * @tx_ring: ring to be cleaned
 781 **/
 782void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 783{
 784	unsigned long bi_size;
 785	u16 i;
 786
 787	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 788		i40e_xsk_clean_tx_ring(tx_ring);
 789	} else {
 790		/* ring already cleared, nothing to do */
 791		if (!tx_ring->tx_bi)
 792			return;
 793
 794		/* Free all the Tx ring sk_buffs */
 795		for (i = 0; i < tx_ring->count; i++)
 796			i40e_unmap_and_free_tx_resource(tx_ring,
 797							&tx_ring->tx_bi[i]);
 798	}
 799
 800	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 801	memset(tx_ring->tx_bi, 0, bi_size);
 802
 803	/* Zero out the descriptor ring */
 804	memset(tx_ring->desc, 0, tx_ring->size);
 805
 806	tx_ring->next_to_use = 0;
 807	tx_ring->next_to_clean = 0;
 808
 809	if (!tx_ring->netdev)
 810		return;
 811
 812	/* cleanup Tx queue statistics */
 813	netdev_tx_reset_queue(txring_txq(tx_ring));
 814}
 815
 816/**
 817 * i40e_free_tx_resources - Free Tx resources per queue
 818 * @tx_ring: Tx descriptor ring for a specific queue
 819 *
 820 * Free all transmit software resources
 821 **/
 822void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 823{
 824	i40e_clean_tx_ring(tx_ring);
 825	kfree(tx_ring->tx_bi);
 826	tx_ring->tx_bi = NULL;
 
 
 827
 828	if (tx_ring->desc) {
 829		dma_free_coherent(tx_ring->dev, tx_ring->size,
 830				  tx_ring->desc, tx_ring->dma);
 831		tx_ring->desc = NULL;
 832	}
 833}
 834
 835/**
 836 * i40e_get_tx_pending - how many tx descriptors not processed
 837 * @ring: the ring of descriptors
 838 * @in_sw: use SW variables
 839 *
 840 * Since there is no access to the ring head register
 841 * in XL710, we need to use our local copies
 842 **/
 843u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 844{
 845	u32 head, tail;
 846
 847	if (!in_sw) {
 848		head = i40e_get_head(ring);
 849		tail = readl(ring->tail);
 850	} else {
 851		head = ring->next_to_clean;
 852		tail = ring->next_to_use;
 853	}
 854
 855	if (head != tail)
 856		return (head < tail) ?
 857			tail - head : (tail + ring->count - head);
 858
 859	return 0;
 860}
 861
 862/**
 863 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 864 * @pf: pointer to PF struct
 865 *
 866 * LAN VSI has netdev and netdev has TX queues. This function is to check
 867 * each of those TX queues if they are hung, trigger recovery by issuing
 868 * SW interrupt.
 869 **/
 870void i40e_detect_recover_hung(struct i40e_pf *pf)
 871{
 872	struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
 873	struct i40e_ring *tx_ring = NULL;
 874	struct net_device *netdev;
 875	unsigned int i;
 876	int packets;
 877
 878	if (!vsi)
 879		return;
 880
 881	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 882		return;
 883
 884	netdev = vsi->netdev;
 885	if (!netdev)
 886		return;
 887
 888	if (!netif_carrier_ok(netdev))
 889		return;
 890
 891	for (i = 0; i < vsi->num_queue_pairs; i++) {
 892		tx_ring = vsi->tx_rings[i];
 893		if (tx_ring && tx_ring->desc) {
 894			/* If packet counter has not changed the queue is
 895			 * likely stalled, so force an interrupt for this
 896			 * queue.
 897			 *
 898			 * prev_pkt_ctr would be negative if there was no
 899			 * pending work.
 900			 */
 901			packets = tx_ring->stats.packets & INT_MAX;
 902			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 903				i40e_force_wb(vsi, tx_ring->q_vector);
 904				continue;
 905			}
 906
 907			/* Memory barrier between read of packet count and call
 908			 * to i40e_get_tx_pending()
 909			 */
 910			smp_rmb();
 911			tx_ring->tx_stats.prev_pkt_ctr =
 912			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 913		}
 914	}
 915}
 916
 917/**
 918 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 919 * @vsi: the VSI we care about
 920 * @tx_ring: Tx ring to clean
 921 * @napi_budget: Used to determine if we are in netpoll
 922 * @tx_cleaned: Out parameter set to the number of TXes cleaned
 923 *
 924 * Returns true if there's any budget left (e.g. the clean is finished)
 925 **/
 926static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 927			      struct i40e_ring *tx_ring, int napi_budget,
 928			      unsigned int *tx_cleaned)
 929{
 930	int i = tx_ring->next_to_clean;
 931	struct i40e_tx_buffer *tx_buf;
 932	struct i40e_tx_desc *tx_head;
 933	struct i40e_tx_desc *tx_desc;
 934	unsigned int total_bytes = 0, total_packets = 0;
 935	unsigned int budget = vsi->work_limit;
 936
 937	tx_buf = &tx_ring->tx_bi[i];
 938	tx_desc = I40E_TX_DESC(tx_ring, i);
 939	i -= tx_ring->count;
 940
 941	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 942
 943	do {
 944		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 945
 946		/* if next_to_watch is not set then there is no work pending */
 947		if (!eop_desc)
 948			break;
 949
 950		/* prevent any other reads prior to eop_desc */
 951		smp_rmb();
 952
 953		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 954		/* we have caught up to head, no work left to do */
 955		if (tx_head == tx_desc)
 956			break;
 957
 958		/* clear next_to_watch to prevent false hangs */
 959		tx_buf->next_to_watch = NULL;
 960
 961		/* update the statistics for this packet */
 962		total_bytes += tx_buf->bytecount;
 963		total_packets += tx_buf->gso_segs;
 964
 965		/* free the skb/XDP data */
 966		if (ring_is_xdp(tx_ring))
 967			xdp_return_frame(tx_buf->xdpf);
 968		else
 969			napi_consume_skb(tx_buf->skb, napi_budget);
 970
 971		/* unmap skb header data */
 972		dma_unmap_single(tx_ring->dev,
 973				 dma_unmap_addr(tx_buf, dma),
 974				 dma_unmap_len(tx_buf, len),
 975				 DMA_TO_DEVICE);
 976
 977		/* clear tx_buffer data */
 978		tx_buf->skb = NULL;
 979		dma_unmap_len_set(tx_buf, len, 0);
 980
 981		/* unmap remaining buffers */
 982		while (tx_desc != eop_desc) {
 983			i40e_trace(clean_tx_irq_unmap,
 984				   tx_ring, tx_desc, tx_buf);
 985
 986			tx_buf++;
 987			tx_desc++;
 988			i++;
 989			if (unlikely(!i)) {
 990				i -= tx_ring->count;
 991				tx_buf = tx_ring->tx_bi;
 992				tx_desc = I40E_TX_DESC(tx_ring, 0);
 993			}
 994
 995			/* unmap any remaining paged data */
 996			if (dma_unmap_len(tx_buf, len)) {
 997				dma_unmap_page(tx_ring->dev,
 998					       dma_unmap_addr(tx_buf, dma),
 999					       dma_unmap_len(tx_buf, len),
1000					       DMA_TO_DEVICE);
1001				dma_unmap_len_set(tx_buf, len, 0);
1002			}
1003		}
1004
1005		/* move us one more past the eop_desc for start of next pkt */
1006		tx_buf++;
1007		tx_desc++;
1008		i++;
1009		if (unlikely(!i)) {
1010			i -= tx_ring->count;
1011			tx_buf = tx_ring->tx_bi;
1012			tx_desc = I40E_TX_DESC(tx_ring, 0);
1013		}
1014
1015		prefetch(tx_desc);
1016
1017		/* update budget accounting */
1018		budget--;
1019	} while (likely(budget));
1020
1021	i += tx_ring->count;
1022	tx_ring->next_to_clean = i;
1023	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1024	i40e_arm_wb(tx_ring, vsi, budget);
1025
1026	if (ring_is_xdp(tx_ring))
1027		return !!budget;
1028
1029	/* notify netdev of completed buffers */
1030	netdev_tx_completed_queue(txring_txq(tx_ring),
1031				  total_packets, total_bytes);
1032
1033#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1034	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1035		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1036		/* Make sure that anybody stopping the queue after this
1037		 * sees the new next_to_clean.
1038		 */
1039		smp_mb();
1040		if (__netif_subqueue_stopped(tx_ring->netdev,
1041					     tx_ring->queue_index) &&
1042		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1043			netif_wake_subqueue(tx_ring->netdev,
1044					    tx_ring->queue_index);
1045			++tx_ring->tx_stats.restart_queue;
1046		}
1047	}
1048
1049	*tx_cleaned = total_packets;
1050	return !!budget;
1051}
1052
1053/**
1054 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1055 * @vsi: the VSI we care about
1056 * @q_vector: the vector on which to enable writeback
1057 *
1058 **/
1059static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1060				  struct i40e_q_vector *q_vector)
1061{
1062	u16 flags = q_vector->tx.ring[0].flags;
1063	u32 val;
1064
1065	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1066		return;
1067
1068	if (q_vector->arm_wb_state)
1069		return;
1070
1071	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1072		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1073		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1074
1075		wr32(&vsi->back->hw,
1076		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1077		     val);
1078	} else {
1079		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1080		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1081
1082		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1083	}
1084	q_vector->arm_wb_state = true;
1085}
1086
1087/**
1088 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1089 * @vsi: the VSI we care about
1090 * @q_vector: the vector  on which to force writeback
1091 *
1092 **/
1093void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1094{
1095	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1096		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1097			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1098			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1099			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1100			  /* allow 00 to be written to the index */
1101
1102		wr32(&vsi->back->hw,
1103		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1104	} else {
1105		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1106			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1107			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1108			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1109			/* allow 00 to be written to the index */
1110
1111		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1112	}
1113}
1114
1115static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1116					struct i40e_ring_container *rc)
1117{
1118	return &q_vector->rx == rc;
1119}
1120
1121static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1122{
1123	unsigned int divisor;
1124
1125	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1126	case I40E_LINK_SPEED_40GB:
1127		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1128		break;
1129	case I40E_LINK_SPEED_25GB:
1130	case I40E_LINK_SPEED_20GB:
1131		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1132		break;
1133	default:
1134	case I40E_LINK_SPEED_10GB:
1135		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1136		break;
1137	case I40E_LINK_SPEED_1GB:
1138	case I40E_LINK_SPEED_100MB:
1139		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1140		break;
1141	}
1142
1143	return divisor;
1144}
1145
1146/**
1147 * i40e_update_itr - update the dynamic ITR value based on statistics
1148 * @q_vector: structure containing interrupt and ring information
1149 * @rc: structure containing ring performance data
1150 *
1151 * Stores a new ITR value based on packets and byte
1152 * counts during the last interrupt.  The advantage of per interrupt
1153 * computation is faster updates and more accurate ITR for the current
1154 * traffic pattern.  Constants in this function were computed
1155 * based on theoretical maximum wire speed and thresholds were set based
1156 * on testing data as well as attempting to minimize response time
1157 * while increasing bulk throughput.
1158 **/
1159static void i40e_update_itr(struct i40e_q_vector *q_vector,
1160			    struct i40e_ring_container *rc)
1161{
1162	unsigned int avg_wire_size, packets, bytes, itr;
1163	unsigned long next_update = jiffies;
1164
1165	/* If we don't have any rings just leave ourselves set for maximum
1166	 * possible latency so we take ourselves out of the equation.
1167	 */
1168	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1169		return;
1170
1171	/* For Rx we want to push the delay up and default to low latency.
1172	 * for Tx we want to pull the delay down and default to high latency.
1173	 */
1174	itr = i40e_container_is_rx(q_vector, rc) ?
1175	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1176	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1177
1178	/* If we didn't update within up to 1 - 2 jiffies we can assume
1179	 * that either packets are coming in so slow there hasn't been
1180	 * any work, or that there is so much work that NAPI is dealing
1181	 * with interrupt moderation and we don't need to do anything.
1182	 */
1183	if (time_after(next_update, rc->next_update))
1184		goto clear_counts;
1185
1186	/* If itr_countdown is set it means we programmed an ITR within
1187	 * the last 4 interrupt cycles. This has a side effect of us
1188	 * potentially firing an early interrupt. In order to work around
1189	 * this we need to throw out any data received for a few
1190	 * interrupts following the update.
1191	 */
1192	if (q_vector->itr_countdown) {
1193		itr = rc->target_itr;
1194		goto clear_counts;
1195	}
1196
1197	packets = rc->total_packets;
1198	bytes = rc->total_bytes;
1199
1200	if (i40e_container_is_rx(q_vector, rc)) {
1201		/* If Rx there are 1 to 4 packets and bytes are less than
1202		 * 9000 assume insufficient data to use bulk rate limiting
1203		 * approach unless Tx is already in bulk rate limiting. We
1204		 * are likely latency driven.
1205		 */
1206		if (packets && packets < 4 && bytes < 9000 &&
1207		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1208			itr = I40E_ITR_ADAPTIVE_LATENCY;
1209			goto adjust_by_size;
1210		}
1211	} else if (packets < 4) {
1212		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1213		 * bulk mode and we are receiving 4 or fewer packets just
1214		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1215		 * that the Rx can relax.
1216		 */
1217		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1218		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1219		     I40E_ITR_ADAPTIVE_MAX_USECS)
1220			goto clear_counts;
1221	} else if (packets > 32) {
1222		/* If we have processed over 32 packets in a single interrupt
1223		 * for Tx assume we need to switch over to "bulk" mode.
1224		 */
1225		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1226	}
1227
1228	/* We have no packets to actually measure against. This means
1229	 * either one of the other queues on this vector is active or
1230	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1231	 *
1232	 * Between 4 and 56 we can assume that our current interrupt delay
1233	 * is only slightly too low. As such we should increase it by a small
1234	 * fixed amount.
1235	 */
1236	if (packets < 56) {
1237		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1238		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1239			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1240			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1241		}
1242		goto clear_counts;
1243	}
1244
1245	if (packets <= 256) {
1246		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1247		itr &= I40E_ITR_MASK;
1248
1249		/* Between 56 and 112 is our "goldilocks" zone where we are
1250		 * working out "just right". Just report that our current
1251		 * ITR is good for us.
1252		 */
1253		if (packets <= 112)
1254			goto clear_counts;
1255
1256		/* If packet count is 128 or greater we are likely looking
1257		 * at a slight overrun of the delay we want. Try halving
1258		 * our delay to see if that will cut the number of packets
1259		 * in half per interrupt.
1260		 */
1261		itr /= 2;
1262		itr &= I40E_ITR_MASK;
1263		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1264			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1265
1266		goto clear_counts;
1267	}
1268
1269	/* The paths below assume we are dealing with a bulk ITR since
1270	 * number of packets is greater than 256. We are just going to have
1271	 * to compute a value and try to bring the count under control,
1272	 * though for smaller packet sizes there isn't much we can do as
1273	 * NAPI polling will likely be kicking in sooner rather than later.
1274	 */
1275	itr = I40E_ITR_ADAPTIVE_BULK;
1276
1277adjust_by_size:
1278	/* If packet counts are 256 or greater we can assume we have a gross
1279	 * overestimation of what the rate should be. Instead of trying to fine
1280	 * tune it just use the formula below to try and dial in an exact value
1281	 * give the current packet size of the frame.
1282	 */
1283	avg_wire_size = bytes / packets;
1284
1285	/* The following is a crude approximation of:
1286	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1287	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1288	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1289	 *
1290	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1291	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1292	 * formula down to
1293	 *
1294	 *  (170 * (size + 24)) / (size + 640) = ITR
1295	 *
1296	 * We first do some math on the packet size and then finally bitshift
1297	 * by 8 after rounding up. We also have to account for PCIe link speed
1298	 * difference as ITR scales based on this.
1299	 */
1300	if (avg_wire_size <= 60) {
1301		/* Start at 250k ints/sec */
1302		avg_wire_size = 4096;
1303	} else if (avg_wire_size <= 380) {
1304		/* 250K ints/sec to 60K ints/sec */
1305		avg_wire_size *= 40;
1306		avg_wire_size += 1696;
1307	} else if (avg_wire_size <= 1084) {
1308		/* 60K ints/sec to 36K ints/sec */
1309		avg_wire_size *= 15;
1310		avg_wire_size += 11452;
1311	} else if (avg_wire_size <= 1980) {
1312		/* 36K ints/sec to 30K ints/sec */
1313		avg_wire_size *= 5;
1314		avg_wire_size += 22420;
1315	} else {
1316		/* plateau at a limit of 30K ints/sec */
1317		avg_wire_size = 32256;
1318	}
1319
1320	/* If we are in low latency mode halve our delay which doubles the
1321	 * rate to somewhere between 100K to 16K ints/sec
1322	 */
1323	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1324		avg_wire_size /= 2;
1325
1326	/* Resultant value is 256 times larger than it needs to be. This
1327	 * gives us room to adjust the value as needed to either increase
1328	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1329	 *
1330	 * Use addition as we have already recorded the new latency flag
1331	 * for the ITR value.
1332	 */
1333	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1334	       I40E_ITR_ADAPTIVE_MIN_INC;
1335
1336	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1337		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1338		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1339	}
1340
1341clear_counts:
1342	/* write back value */
1343	rc->target_itr = itr;
1344
1345	/* next update should occur within next jiffy */
1346	rc->next_update = next_update + 1;
1347
1348	rc->total_bytes = 0;
1349	rc->total_packets = 0;
1350}
1351
1352static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1353{
1354	return &rx_ring->rx_bi[idx];
1355}
1356
1357/**
1358 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1359 * @rx_ring: rx descriptor ring to store buffers on
1360 * @old_buff: donor buffer to have page reused
1361 *
1362 * Synchronizes page for reuse by the adapter
1363 **/
1364static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1365			       struct i40e_rx_buffer *old_buff)
1366{
1367	struct i40e_rx_buffer *new_buff;
1368	u16 nta = rx_ring->next_to_alloc;
1369
1370	new_buff = i40e_rx_bi(rx_ring, nta);
1371
1372	/* update, and store next to alloc */
1373	nta++;
1374	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1375
1376	/* transfer page from old buffer to new buffer */
1377	new_buff->dma		= old_buff->dma;
1378	new_buff->page		= old_buff->page;
1379	new_buff->page_offset	= old_buff->page_offset;
1380	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1381
 
 
1382	/* clear contents of buffer_info */
1383	old_buff->page = NULL;
1384}
1385
1386/**
1387 * i40e_clean_programming_status - clean the programming status descriptor
1388 * @rx_ring: the rx ring that has this descriptor
1389 * @qword0_raw: qword0
1390 * @qword1: qword1 representing status_error_len in CPU ordering
1391 *
1392 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1393 * status being successful or not and take actions accordingly. FCoE should
1394 * handle its context/filter programming/invalidation status and take actions.
1395 *
1396 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1397 **/
1398void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1399				   u64 qword1)
1400{
1401	u8 id;
1402
1403	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
 
1404
1405	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1406		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1407}
1408
1409/**
1410 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1411 * @tx_ring: the tx ring to set up
1412 *
1413 * Return 0 on success, negative on error
1414 **/
1415int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1416{
1417	struct device *dev = tx_ring->dev;
1418	int bi_size;
1419
1420	if (!dev)
1421		return -ENOMEM;
1422
1423	/* warn if we are about to overwrite the pointer */
1424	WARN_ON(tx_ring->tx_bi);
1425	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1426	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1427	if (!tx_ring->tx_bi)
1428		goto err;
1429
 
 
 
 
 
 
 
1430	u64_stats_init(&tx_ring->syncp);
1431
1432	/* round up to nearest 4K */
1433	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1434	/* add u32 for head writeback, align after this takes care of
1435	 * guaranteeing this is at least one cache line in size
1436	 */
1437	tx_ring->size += sizeof(u32);
1438	tx_ring->size = ALIGN(tx_ring->size, 4096);
1439	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1440					   &tx_ring->dma, GFP_KERNEL);
1441	if (!tx_ring->desc) {
1442		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1443			 tx_ring->size);
1444		goto err;
1445	}
1446
1447	tx_ring->next_to_use = 0;
1448	tx_ring->next_to_clean = 0;
1449	tx_ring->tx_stats.prev_pkt_ctr = -1;
1450	return 0;
1451
1452err:
 
 
1453	kfree(tx_ring->tx_bi);
1454	tx_ring->tx_bi = NULL;
1455	return -ENOMEM;
1456}
1457
 
 
 
 
 
 
 
 
1458static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1459{
1460	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1461}
1462
1463/**
1464 * i40e_clean_rx_ring - Free Rx buffers
1465 * @rx_ring: ring to be cleaned
1466 **/
1467void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1468{
1469	u16 i;
1470
1471	/* ring already cleared, nothing to do */
1472	if (!rx_ring->rx_bi)
1473		return;
1474
 
 
 
 
 
1475	if (rx_ring->xsk_pool) {
1476		i40e_xsk_clean_rx_ring(rx_ring);
1477		goto skip_free;
1478	}
1479
1480	/* Free all the Rx ring sk_buffs */
1481	for (i = 0; i < rx_ring->count; i++) {
1482		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1483
1484		if (!rx_bi->page)
1485			continue;
1486
1487		/* Invalidate cache lines that may have been written to by
1488		 * device so that we avoid corrupting memory.
1489		 */
1490		dma_sync_single_range_for_cpu(rx_ring->dev,
1491					      rx_bi->dma,
1492					      rx_bi->page_offset,
1493					      rx_ring->rx_buf_len,
1494					      DMA_FROM_DEVICE);
1495
1496		/* free resources associated with mapping */
1497		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1498				     i40e_rx_pg_size(rx_ring),
1499				     DMA_FROM_DEVICE,
1500				     I40E_RX_DMA_ATTR);
1501
1502		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1503
1504		rx_bi->page = NULL;
1505		rx_bi->page_offset = 0;
1506	}
1507
1508skip_free:
1509	if (rx_ring->xsk_pool)
1510		i40e_clear_rx_bi_zc(rx_ring);
1511	else
1512		i40e_clear_rx_bi(rx_ring);
1513
1514	/* Zero out the descriptor ring */
1515	memset(rx_ring->desc, 0, rx_ring->size);
1516
1517	rx_ring->next_to_alloc = 0;
1518	rx_ring->next_to_clean = 0;
1519	rx_ring->next_to_process = 0;
1520	rx_ring->next_to_use = 0;
1521}
1522
1523/**
1524 * i40e_free_rx_resources - Free Rx resources
1525 * @rx_ring: ring to clean the resources from
1526 *
1527 * Free all receive software resources
1528 **/
1529void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1530{
1531	i40e_clean_rx_ring(rx_ring);
1532	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1533		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1534	rx_ring->xdp_prog = NULL;
1535	kfree(rx_ring->rx_bi);
1536	rx_ring->rx_bi = NULL;
1537
1538	if (rx_ring->desc) {
1539		dma_free_coherent(rx_ring->dev, rx_ring->size,
1540				  rx_ring->desc, rx_ring->dma);
1541		rx_ring->desc = NULL;
1542	}
1543}
1544
1545/**
1546 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1547 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1548 *
1549 * Returns 0 on success, negative on failure
1550 **/
1551int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1552{
1553	struct device *dev = rx_ring->dev;
 
1554
1555	u64_stats_init(&rx_ring->syncp);
1556
1557	/* Round up to nearest 4K */
1558	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1559	rx_ring->size = ALIGN(rx_ring->size, 4096);
1560	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1561					   &rx_ring->dma, GFP_KERNEL);
1562
1563	if (!rx_ring->desc) {
1564		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1565			 rx_ring->size);
1566		return -ENOMEM;
1567	}
1568
1569	rx_ring->next_to_alloc = 0;
1570	rx_ring->next_to_clean = 0;
1571	rx_ring->next_to_process = 0;
1572	rx_ring->next_to_use = 0;
1573
1574	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
 
 
 
 
 
 
1575
1576	rx_ring->rx_bi =
1577		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1578	if (!rx_ring->rx_bi)
1579		return -ENOMEM;
1580
1581	return 0;
1582}
1583
1584/**
1585 * i40e_release_rx_desc - Store the new tail and head values
1586 * @rx_ring: ring to bump
1587 * @val: new head index
1588 **/
1589void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1590{
1591	rx_ring->next_to_use = val;
1592
1593	/* update next to alloc since we have filled the ring */
1594	rx_ring->next_to_alloc = val;
1595
1596	/* Force memory writes to complete before letting h/w
1597	 * know there are new descriptors to fetch.  (Only
1598	 * applicable for weak-ordered memory model archs,
1599	 * such as IA-64).
1600	 */
1601	wmb();
1602	writel(val, rx_ring->tail);
1603}
1604
1605#if (PAGE_SIZE >= 8192)
1606static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1607					   unsigned int size)
1608{
1609	unsigned int truesize;
1610
 
 
 
1611	truesize = rx_ring->rx_offset ?
1612		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1613		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1614		SKB_DATA_ALIGN(size);
 
1615	return truesize;
1616}
1617#endif
1618
1619/**
1620 * i40e_alloc_mapped_page - recycle or make a new page
1621 * @rx_ring: ring to use
1622 * @bi: rx_buffer struct to modify
1623 *
1624 * Returns true if the page was successfully allocated or
1625 * reused.
1626 **/
1627static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1628				   struct i40e_rx_buffer *bi)
1629{
1630	struct page *page = bi->page;
1631	dma_addr_t dma;
1632
1633	/* since we are recycling buffers we should seldom need to alloc */
1634	if (likely(page)) {
1635		rx_ring->rx_stats.page_reuse_count++;
1636		return true;
1637	}
1638
1639	/* alloc new page for storage */
1640	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1641	if (unlikely(!page)) {
1642		rx_ring->rx_stats.alloc_page_failed++;
1643		return false;
1644	}
1645
1646	rx_ring->rx_stats.page_alloc_count++;
1647
1648	/* map page for use */
1649	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1650				 i40e_rx_pg_size(rx_ring),
1651				 DMA_FROM_DEVICE,
1652				 I40E_RX_DMA_ATTR);
1653
1654	/* if mapping failed free memory back to system since
1655	 * there isn't much point in holding memory we can't use
1656	 */
1657	if (dma_mapping_error(rx_ring->dev, dma)) {
1658		__free_pages(page, i40e_rx_pg_order(rx_ring));
1659		rx_ring->rx_stats.alloc_page_failed++;
1660		return false;
1661	}
1662
1663	bi->dma = dma;
1664	bi->page = page;
1665	bi->page_offset = rx_ring->rx_offset;
1666	page_ref_add(page, USHRT_MAX - 1);
1667	bi->pagecnt_bias = USHRT_MAX;
1668
1669	return true;
1670}
1671
1672/**
1673 * i40e_alloc_rx_buffers - Replace used receive buffers
1674 * @rx_ring: ring to place buffers on
1675 * @cleaned_count: number of buffers to replace
1676 *
1677 * Returns false if all allocations were successful, true if any fail
1678 **/
1679bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1680{
1681	u16 ntu = rx_ring->next_to_use;
1682	union i40e_rx_desc *rx_desc;
1683	struct i40e_rx_buffer *bi;
1684
1685	/* do nothing if no valid netdev defined */
1686	if (!rx_ring->netdev || !cleaned_count)
1687		return false;
1688
1689	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1690	bi = i40e_rx_bi(rx_ring, ntu);
1691
1692	do {
1693		if (!i40e_alloc_mapped_page(rx_ring, bi))
1694			goto no_buffers;
1695
1696		/* sync the buffer for use by the device */
1697		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1698						 bi->page_offset,
1699						 rx_ring->rx_buf_len,
1700						 DMA_FROM_DEVICE);
1701
1702		/* Refresh the desc even if buffer_addrs didn't change
1703		 * because each write-back erases this info.
1704		 */
1705		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1706
1707		rx_desc++;
1708		bi++;
1709		ntu++;
1710		if (unlikely(ntu == rx_ring->count)) {
1711			rx_desc = I40E_RX_DESC(rx_ring, 0);
1712			bi = i40e_rx_bi(rx_ring, 0);
1713			ntu = 0;
1714		}
1715
1716		/* clear the status bits for the next_to_use descriptor */
1717		rx_desc->wb.qword1.status_error_len = 0;
1718
1719		cleaned_count--;
1720	} while (cleaned_count);
1721
1722	if (rx_ring->next_to_use != ntu)
1723		i40e_release_rx_desc(rx_ring, ntu);
1724
1725	return false;
1726
1727no_buffers:
1728	if (rx_ring->next_to_use != ntu)
1729		i40e_release_rx_desc(rx_ring, ntu);
1730
1731	/* make sure to come back via polling to try again after
1732	 * allocation failure
1733	 */
1734	return true;
1735}
1736
1737/**
1738 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1739 * @vsi: the VSI we care about
1740 * @skb: skb currently being received and modified
1741 * @rx_desc: the receive descriptor
1742 **/
1743static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1744				    struct sk_buff *skb,
1745				    union i40e_rx_desc *rx_desc)
1746{
1747	struct libeth_rx_pt decoded;
1748	u32 rx_error, rx_status;
1749	bool ipv4, ipv6;
1750	u8 ptype;
1751	u64 qword;
1752
 
 
 
 
 
 
 
 
1753	skb->ip_summed = CHECKSUM_NONE;
1754
1755	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1756	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1757
1758	decoded = libie_rx_pt_parse(ptype);
1759	if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
1760		return;
1761
1762	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1763	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1764
1765	/* did the hardware decode the packet and checksum? */
1766	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1767		return;
1768
1769	ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
1770	ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
 
 
 
 
 
 
1771
1772	if (ipv4 &&
1773	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1774			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1775		goto checksum_fail;
1776
1777	/* likely incorrect csum if alternate IP extension headers found */
1778	if (ipv6 &&
1779	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1780		/* don't increment checksum err here, non-fatal err */
1781		return;
1782
1783	/* there was some L4 error, count error and punt packet to the stack */
1784	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1785		goto checksum_fail;
1786
1787	/* handle packets that were not able to be checksummed due
1788	 * to arrival speed, in this case the stack can compute
1789	 * the csum.
1790	 */
1791	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1792		return;
1793
1794	/* If there is an outer header present that might contain a checksum
1795	 * we need to bump the checksum level by 1 to reflect the fact that
1796	 * we are indicating we validated the inner checksum.
1797	 */
1798	if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
1799		skb->csum_level = 1;
1800
1801	skb->ip_summed = CHECKSUM_UNNECESSARY;
 
 
 
 
 
 
 
 
 
 
1802	return;
1803
1804checksum_fail:
1805	vsi->back->hw_csum_rx_error++;
1806}
1807
1808/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809 * i40e_rx_hash - set the hash value in the skb
1810 * @ring: descriptor ring
1811 * @rx_desc: specific descriptor
1812 * @skb: skb currently being received and modified
1813 * @rx_ptype: Rx packet type
1814 **/
1815static inline void i40e_rx_hash(struct i40e_ring *ring,
1816				union i40e_rx_desc *rx_desc,
1817				struct sk_buff *skb,
1818				u8 rx_ptype)
1819{
1820	struct libeth_rx_pt decoded;
1821	u32 hash;
1822	const __le64 rss_mask =
1823		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1824			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1825
1826	decoded = libie_rx_pt_parse(rx_ptype);
1827	if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
1828		return;
1829
1830	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1831		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1832		libeth_rx_pt_set_hash(skb, hash, decoded);
1833	}
1834}
1835
1836/**
1837 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1838 * @rx_ring: rx descriptor ring packet is being transacted on
1839 * @rx_desc: pointer to the EOP Rx descriptor
1840 * @skb: pointer to current skb being populated
1841 *
1842 * This function checks the ring, descriptor, and packet information in
1843 * order to populate the hash, checksum, VLAN, protocol, and
1844 * other fields within the skb.
1845 **/
1846void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1847			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1848{
1849	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1850	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
 
1851	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1852	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1853	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
 
 
1854
1855	if (unlikely(tsynvalid))
1856		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1857
1858	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1859
1860	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1861
1862	skb_record_rx_queue(skb, rx_ring->queue_index);
1863
1864	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1865		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1866
1867		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1868				       le16_to_cpu(vlan_tag));
1869	}
1870
1871	/* modifies the skb - consumes the enet header */
1872	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1873}
1874
1875/**
1876 * i40e_cleanup_headers - Correct empty headers
1877 * @rx_ring: rx descriptor ring packet is being transacted on
1878 * @skb: pointer to current skb being fixed
1879 * @rx_desc: pointer to the EOP Rx descriptor
1880 *
1881 * In addition if skb is not at least 60 bytes we need to pad it so that
1882 * it is large enough to qualify as a valid Ethernet frame.
1883 *
1884 * Returns true if an error was encountered and skb was freed.
1885 **/
1886static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1887				 union i40e_rx_desc *rx_desc)
1888
1889{
1890	/* ERR_MASK will only have valid bits if EOP set, and
1891	 * what we are doing here is actually checking
1892	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1893	 * the error field
1894	 */
1895	if (unlikely(i40e_test_staterr(rx_desc,
1896				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1897		dev_kfree_skb_any(skb);
1898		return true;
1899	}
1900
1901	/* if eth_skb_pad returns an error the skb was freed */
1902	if (eth_skb_pad(skb))
1903		return true;
1904
1905	return false;
1906}
1907
1908/**
1909 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1910 * @rx_buffer: buffer containing the page
1911 * @rx_stats: rx stats structure for the rx ring
1912 *
1913 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1914 * which will assign the current buffer to the buffer that next_to_alloc is
1915 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1916 * page freed.
1917 *
1918 * rx_stats will be updated to indicate whether the page was waived
1919 * or busy if it could not be reused.
1920 */
1921static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1922				   struct i40e_rx_queue_stats *rx_stats)
1923{
1924	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1925	struct page *page = rx_buffer->page;
1926
1927	/* Is any reuse possible? */
1928	if (!dev_page_is_reusable(page)) {
1929		rx_stats->page_waive_count++;
1930		return false;
1931	}
1932
1933#if (PAGE_SIZE < 8192)
1934	/* if we are only owner of page we can reuse it */
1935	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1936		rx_stats->page_busy_count++;
1937		return false;
1938	}
1939#else
1940#define I40E_LAST_OFFSET \
1941	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1942	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1943		rx_stats->page_busy_count++;
1944		return false;
1945	}
1946#endif
1947
1948	/* If we have drained the page fragment pool we need to update
1949	 * the pagecnt_bias and page count so that we fully restock the
1950	 * number of references the driver holds.
1951	 */
1952	if (unlikely(pagecnt_bias == 1)) {
1953		page_ref_add(page, USHRT_MAX - 1);
1954		rx_buffer->pagecnt_bias = USHRT_MAX;
1955	}
1956
1957	return true;
1958}
1959
1960/**
1961 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1962 * @rx_buffer: Rx buffer to adjust
1963 * @truesize: Size of adjustment
1964 **/
1965static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
1966				unsigned int truesize)
 
 
 
 
 
 
 
 
 
1967{
1968#if (PAGE_SIZE < 8192)
 
 
 
 
 
 
 
 
 
 
1969	rx_buffer->page_offset ^= truesize;
1970#else
1971	rx_buffer->page_offset += truesize;
1972#endif
1973}
1974
1975/**
1976 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1977 * @rx_ring: rx descriptor ring to transact packets on
1978 * @size: size of buffer to add to skb
 
1979 *
1980 * This function will pull an Rx buffer from the ring and synchronize it
1981 * for use by the CPU.
1982 */
1983static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1984						 const unsigned int size)
 
1985{
1986	struct i40e_rx_buffer *rx_buffer;
1987
1988	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
1989	rx_buffer->page_count =
1990#if (PAGE_SIZE < 8192)
1991		page_count(rx_buffer->page);
1992#else
1993		0;
1994#endif
1995	prefetch_page_address(rx_buffer->page);
1996
1997	/* we are reusing so sync this buffer for CPU use */
1998	dma_sync_single_range_for_cpu(rx_ring->dev,
1999				      rx_buffer->dma,
2000				      rx_buffer->page_offset,
2001				      size,
2002				      DMA_FROM_DEVICE);
2003
2004	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2005	rx_buffer->pagecnt_bias--;
2006
2007	return rx_buffer;
2008}
2009
2010/**
2011 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2012 * @rx_ring: rx descriptor ring to transact packets on
2013 * @rx_buffer: rx buffer to pull data from
2014 *
2015 * This function will clean up the contents of the rx_buffer.  It will
2016 * either recycle the buffer or unmap it and free the associated resources.
2017 */
2018static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2019			       struct i40e_rx_buffer *rx_buffer)
2020{
2021	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2022		/* hand second half of page back to the ring */
2023		i40e_reuse_rx_page(rx_ring, rx_buffer);
2024	} else {
2025		/* we are not reusing the buffer so unmap it */
2026		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2027				     i40e_rx_pg_size(rx_ring),
2028				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2029		__page_frag_cache_drain(rx_buffer->page,
2030					rx_buffer->pagecnt_bias);
2031		/* clear contents of buffer_info */
2032		rx_buffer->page = NULL;
2033	}
2034}
2035
2036/**
2037 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2038 * @rx_ring: Rx descriptor ring to transact packets on
2039 * @xdp_res: Result of the XDP program
2040 * @xdp: xdp_buff pointing to the data
2041 **/
2042static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2043				  struct xdp_buff *xdp)
2044{
2045	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2046	u32 next = rx_ring->next_to_clean, i = 0;
2047	struct i40e_rx_buffer *rx_buffer;
2048
2049	xdp->flags = 0;
2050
2051	while (1) {
2052		rx_buffer = i40e_rx_bi(rx_ring, next);
2053		if (++next == rx_ring->count)
2054			next = 0;
2055
2056		if (!rx_buffer->page)
2057			continue;
2058
2059		if (xdp_res != I40E_XDP_CONSUMED)
2060			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2061		else if (i++ <= nr_frags)
2062			rx_buffer->pagecnt_bias++;
2063
2064		/* EOP buffer will be put in i40e_clean_rx_irq() */
2065		if (next == rx_ring->next_to_process)
2066			return;
2067
2068		i40e_put_rx_buffer(rx_ring, rx_buffer);
2069	}
2070}
2071
2072/**
2073 * i40e_construct_skb - Allocate skb and populate it
2074 * @rx_ring: rx descriptor ring to transact packets on
 
2075 * @xdp: xdp_buff pointing to the data
2076 *
2077 * This function allocates an skb.  It then populates it with the page
2078 * data from the current receive descriptor, taking care to set up the
2079 * skb correctly.
2080 */
2081static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
 
2082					  struct xdp_buff *xdp)
2083{
2084	unsigned int size = xdp->data_end - xdp->data;
2085	struct i40e_rx_buffer *rx_buffer;
2086	struct skb_shared_info *sinfo;
 
 
 
2087	unsigned int headlen;
2088	struct sk_buff *skb;
2089	u32 nr_frags = 0;
2090
2091	/* prefetch first cache line of first page */
2092	net_prefetch(xdp->data);
2093
2094	/* Note, we get here by enabling legacy-rx via:
2095	 *
2096	 *    ethtool --set-priv-flags <dev> legacy-rx on
2097	 *
2098	 * In this mode, we currently get 0 extra XDP headroom as
2099	 * opposed to having legacy-rx off, where we process XDP
2100	 * packets going to stack via i40e_build_skb(). The latter
2101	 * provides us currently with 192 bytes of headroom.
2102	 *
2103	 * For i40e_construct_skb() mode it means that the
2104	 * xdp->data_meta will always point to xdp->data, since
2105	 * the helper cannot expand the head. Should this ever
2106	 * change in future for legacy-rx mode on, then lets also
2107	 * add xdp->data_meta handling here.
2108	 */
2109
2110	/* allocate a skb to store the frags */
2111	skb = napi_alloc_skb(&rx_ring->q_vector->napi, I40E_RX_HDR_SIZE);
 
 
2112	if (unlikely(!skb))
2113		return NULL;
2114
2115	/* Determine available headroom for copy */
2116	headlen = size;
2117	if (headlen > I40E_RX_HDR_SIZE)
2118		headlen = eth_get_headlen(skb->dev, xdp->data,
2119					  I40E_RX_HDR_SIZE);
2120
2121	/* align pull length to size of long to optimize memcpy performance */
2122	memcpy(__skb_put(skb, headlen), xdp->data,
2123	       ALIGN(headlen, sizeof(long)));
2124
2125	if (unlikely(xdp_buff_has_frags(xdp))) {
2126		sinfo = xdp_get_shared_info_from_buff(xdp);
2127		nr_frags = sinfo->nr_frags;
2128	}
2129	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2130	/* update all of the pointers */
2131	size -= headlen;
2132	if (size) {
2133		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2134			dev_kfree_skb(skb);
2135			return NULL;
2136		}
2137		skb_add_rx_frag(skb, 0, rx_buffer->page,
2138				rx_buffer->page_offset + headlen,
2139				size, xdp->frame_sz);
 
2140		/* buffer is used by skb, update page_offset */
2141		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
 
 
 
 
2142	} else {
2143		/* buffer is unused, reset bias back to rx_buffer */
2144		rx_buffer->pagecnt_bias++;
2145	}
2146
2147	if (unlikely(xdp_buff_has_frags(xdp))) {
2148		struct skb_shared_info *skinfo = skb_shinfo(skb);
2149
2150		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2151		       sizeof(skb_frag_t) * nr_frags);
2152
2153		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2154					   sinfo->xdp_frags_size,
2155					   nr_frags * xdp->frame_sz,
2156					   xdp_buff_is_frag_pfmemalloc(xdp));
2157
2158		/* First buffer has already been processed, so bump ntc */
2159		if (++rx_ring->next_to_clean == rx_ring->count)
2160			rx_ring->next_to_clean = 0;
2161
2162		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2163	}
2164
2165	return skb;
2166}
2167
2168/**
2169 * i40e_build_skb - Build skb around an existing buffer
2170 * @rx_ring: Rx descriptor ring to transact packets on
 
2171 * @xdp: xdp_buff pointing to the data
2172 *
2173 * This function builds an skb around an existing Rx buffer, taking care
2174 * to set up the skb correctly and avoid any memcpy overhead.
2175 */
2176static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
 
2177				      struct xdp_buff *xdp)
2178{
2179	unsigned int metasize = xdp->data - xdp->data_meta;
2180	struct skb_shared_info *sinfo;
 
 
 
 
 
 
2181	struct sk_buff *skb;
2182	u32 nr_frags;
2183
2184	/* Prefetch first cache line of first page. If xdp->data_meta
2185	 * is unused, this points exactly as xdp->data, otherwise we
2186	 * likely have a consumer accessing first few bytes of meta
2187	 * data, and then actual data.
2188	 */
2189	net_prefetch(xdp->data_meta);
2190
2191	if (unlikely(xdp_buff_has_frags(xdp))) {
2192		sinfo = xdp_get_shared_info_from_buff(xdp);
2193		nr_frags = sinfo->nr_frags;
2194	}
2195
2196	/* build an skb around the page buffer */
2197	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2198	if (unlikely(!skb))
2199		return NULL;
2200
2201	/* update pointers within the skb to store the data */
2202	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2203	__skb_put(skb, xdp->data_end - xdp->data);
2204	if (metasize)
2205		skb_metadata_set(skb, metasize);
2206
2207	if (unlikely(xdp_buff_has_frags(xdp))) {
2208		xdp_update_skb_shared_info(skb, nr_frags,
2209					   sinfo->xdp_frags_size,
2210					   nr_frags * xdp->frame_sz,
2211					   xdp_buff_is_frag_pfmemalloc(xdp));
 
2212
2213		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2214	} else {
2215		struct i40e_rx_buffer *rx_buffer;
2216
2217		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2218		/* buffer is used by skb, update page_offset */
2219		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2220	}
2221
2222	return skb;
2223}
2224
2225/**
2226 * i40e_is_non_eop - process handling of non-EOP buffers
2227 * @rx_ring: Rx ring being processed
2228 * @rx_desc: Rx descriptor for current buffer
2229 *
2230 * If the buffer is an EOP buffer, this function exits returning false,
2231 * otherwise return true indicating that this is in fact a non-EOP buffer.
2232 */
2233bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2234		     union i40e_rx_desc *rx_desc)
2235{
2236	/* if we are the last buffer then there is nothing else to do */
2237#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2238	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2239		return false;
2240
2241	rx_ring->rx_stats.non_eop_descs++;
2242
2243	return true;
2244}
2245
2246static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2247			      struct i40e_ring *xdp_ring);
2248
2249int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2250{
2251	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2252
2253	if (unlikely(!xdpf))
2254		return I40E_XDP_CONSUMED;
2255
2256	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2257}
2258
2259/**
2260 * i40e_run_xdp - run an XDP program
2261 * @rx_ring: Rx ring being processed
2262 * @xdp: XDP buffer containing the frame
2263 * @xdp_prog: XDP program to run
2264 **/
2265static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2266{
2267	int err, result = I40E_XDP_PASS;
2268	struct i40e_ring *xdp_ring;
 
2269	u32 act;
2270
 
 
2271	if (!xdp_prog)
2272		goto xdp_out;
2273
2274	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2275
2276	act = bpf_prog_run_xdp(xdp_prog, xdp);
2277	switch (act) {
2278	case XDP_PASS:
2279		break;
2280	case XDP_TX:
2281		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2282		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2283		if (result == I40E_XDP_CONSUMED)
2284			goto out_failure;
2285		break;
2286	case XDP_REDIRECT:
2287		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2288		if (err)
2289			goto out_failure;
2290		result = I40E_XDP_REDIR;
2291		break;
2292	default:
2293		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2294		fallthrough;
2295	case XDP_ABORTED:
2296out_failure:
2297		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2298		fallthrough; /* handle aborts by dropping packet */
2299	case XDP_DROP:
2300		result = I40E_XDP_CONSUMED;
2301		break;
2302	}
2303xdp_out:
2304	return result;
2305}
2306
2307/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2308 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2309 * @xdp_ring: XDP Tx ring
2310 *
2311 * This function updates the XDP Tx ring tail register.
2312 **/
2313void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2314{
2315	/* Force memory writes to complete before letting h/w
2316	 * know there are new descriptors to fetch.
2317	 */
2318	wmb();
2319	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2320}
2321
2322/**
2323 * i40e_update_rx_stats - Update Rx ring statistics
2324 * @rx_ring: rx descriptor ring
2325 * @total_rx_bytes: number of bytes received
2326 * @total_rx_packets: number of packets received
2327 *
2328 * This function updates the Rx ring statistics.
2329 **/
2330void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2331			  unsigned int total_rx_bytes,
2332			  unsigned int total_rx_packets)
2333{
2334	u64_stats_update_begin(&rx_ring->syncp);
2335	rx_ring->stats.packets += total_rx_packets;
2336	rx_ring->stats.bytes += total_rx_bytes;
2337	u64_stats_update_end(&rx_ring->syncp);
2338	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2339	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2340}
2341
2342/**
2343 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2344 * @rx_ring: Rx ring
2345 * @xdp_res: Result of the receive batch
2346 *
2347 * This function bumps XDP Tx tail and/or flush redirect map, and
2348 * should be called when a batch of packets has been processed in the
2349 * napi loop.
2350 **/
2351void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2352{
2353	if (xdp_res & I40E_XDP_REDIR)
2354		xdp_do_flush();
2355
2356	if (xdp_res & I40E_XDP_TX) {
2357		struct i40e_ring *xdp_ring =
2358			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2359
2360		i40e_xdp_ring_update_tail(xdp_ring);
2361	}
2362}
2363
2364/**
2365 * i40e_inc_ntp: Advance the next_to_process index
2366 * @rx_ring: Rx ring
2367 **/
2368static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2369{
2370	u32 ntp = rx_ring->next_to_process + 1;
2371
2372	ntp = (ntp < rx_ring->count) ? ntp : 0;
2373	rx_ring->next_to_process = ntp;
2374	prefetch(I40E_RX_DESC(rx_ring, ntp));
2375}
2376
2377/**
2378 * i40e_add_xdp_frag: Add a frag to xdp_buff
2379 * @xdp: xdp_buff pointing to the data
2380 * @nr_frags: return number of buffers for the packet
2381 * @rx_buffer: rx_buffer holding data of the current frag
2382 * @size: size of data of current frag
2383 */
2384static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2385			     struct i40e_rx_buffer *rx_buffer, u32 size)
2386{
2387	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2388
2389	if (!xdp_buff_has_frags(xdp)) {
2390		sinfo->nr_frags = 0;
2391		sinfo->xdp_frags_size = 0;
2392		xdp_buff_set_frags_flag(xdp);
2393	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2394		/* Overflowing packet: All frags need to be dropped */
2395		return -ENOMEM;
2396	}
2397
2398	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2399				   rx_buffer->page_offset, size);
2400
2401	sinfo->xdp_frags_size += size;
2402
2403	if (page_is_pfmemalloc(rx_buffer->page))
2404		xdp_buff_set_frag_pfmemalloc(xdp);
2405	*nr_frags = sinfo->nr_frags;
2406
2407	return 0;
2408}
2409
2410/**
2411 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2412 * @rx_ring: rx descriptor ring to transact packets on
2413 * @xdp: xdp_buff pointing to the data
2414 * @rx_buffer: rx_buffer of eop desc
2415 */
2416static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2417				  struct xdp_buff *xdp,
2418				  struct i40e_rx_buffer *rx_buffer)
2419{
2420	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2421	i40e_put_rx_buffer(rx_ring, rx_buffer);
2422	rx_ring->next_to_clean = rx_ring->next_to_process;
2423	xdp->data = NULL;
2424}
2425
2426/**
2427 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2428 * @rx_ring: rx descriptor ring to transact packets on
2429 * @budget: Total limit on number of packets to process
2430 * @rx_cleaned: Out parameter of the number of packets processed
2431 *
2432 * This function provides a "bounce buffer" approach to Rx interrupt
2433 * processing.  The advantage to this is that on systems that have
2434 * expensive overhead for IOMMU access this provides a means of avoiding
2435 * it by maintaining the mapping of the page to the system.
2436 *
2437 * Returns amount of work completed
2438 **/
2439static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2440			     unsigned int *rx_cleaned)
2441{
2442	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2443	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2444	u16 clean_threshold = rx_ring->count / 2;
2445	unsigned int offset = rx_ring->rx_offset;
2446	struct xdp_buff *xdp = &rx_ring->xdp;
2447	unsigned int xdp_xmit = 0;
2448	struct bpf_prog *xdp_prog;
2449	bool failure = false;
 
2450	int xdp_res = 0;
2451
2452	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
 
 
 
2453
2454	while (likely(total_rx_packets < (unsigned int)budget)) {
2455		u16 ntp = rx_ring->next_to_process;
2456		struct i40e_rx_buffer *rx_buffer;
2457		union i40e_rx_desc *rx_desc;
2458		struct sk_buff *skb;
2459		unsigned int size;
2460		u32 nfrags = 0;
2461		bool neop;
2462		u64 qword;
2463
2464		/* return some buffers to hardware, one at a time is too slow */
2465		if (cleaned_count >= clean_threshold) {
2466			failure = failure ||
2467				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2468			cleaned_count = 0;
2469		}
2470
2471		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2472
2473		/* status_error_len will always be zero for unused descriptors
2474		 * because it's cleared in cleanup, and overlaps with hdr_addr
2475		 * which is always zero because packet split isn't used, if the
2476		 * hardware wrote DD then the length will be non-zero
2477		 */
2478		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2479
2480		/* This memory barrier is needed to keep us from reading
2481		 * any other fields out of the rx_desc until we have
2482		 * verified the descriptor has been written back.
2483		 */
2484		dma_rmb();
2485
2486		if (i40e_rx_is_programming_status(qword)) {
2487			i40e_clean_programming_status(rx_ring,
2488						      rx_desc->raw.qword[0],
2489						      qword);
2490			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2491			i40e_inc_ntp(rx_ring);
2492			i40e_reuse_rx_page(rx_ring, rx_buffer);
2493			/* Update ntc and bump cleaned count if not in the
2494			 * middle of mb packet.
2495			 */
2496			if (rx_ring->next_to_clean == ntp) {
2497				rx_ring->next_to_clean =
2498					rx_ring->next_to_process;
2499				cleaned_count++;
2500			}
2501			continue;
2502		}
2503
2504		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
 
2505		if (!size)
2506			break;
2507
2508		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2509		/* retrieve a buffer from the ring */
2510		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2511
2512		neop = i40e_is_non_eop(rx_ring, rx_desc);
2513		i40e_inc_ntp(rx_ring);
2514
2515		if (!xdp->data) {
2516			unsigned char *hard_start;
2517
2518			hard_start = page_address(rx_buffer->page) +
2519				     rx_buffer->page_offset - offset;
2520			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2521#if (PAGE_SIZE > 4096)
2522			/* At larger PAGE_SIZE, frame_sz depend on len size */
2523			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2524#endif
2525		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2526			   !neop) {
2527			/* Overflowing packet: Drop all frags on EOP */
2528			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2529			break;
2530		}
2531
2532		if (neop)
2533			continue;
2534
2535		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2536
2537		if (xdp_res) {
2538			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2539
2540			if (unlikely(xdp_buff_has_frags(xdp))) {
2541				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2542				size = xdp_get_buff_len(xdp);
2543			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2544				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2545			} else {
2546				rx_buffer->pagecnt_bias++;
2547			}
2548			total_rx_bytes += size;
 
 
 
 
 
2549		} else {
2550			if (ring_uses_build_skb(rx_ring))
2551				skb = i40e_build_skb(rx_ring, xdp);
2552			else
2553				skb = i40e_construct_skb(rx_ring, xdp);
2554
2555			/* drop if we failed to retrieve a buffer */
2556			if (!skb) {
2557				rx_ring->rx_stats.alloc_buff_failed++;
2558				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2559				break;
2560			}
2561
2562			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2563				goto process_next;
 
 
 
 
2564
2565			/* probably a little skewed due to removing CRC */
2566			total_rx_bytes += skb->len;
2567
2568			/* populate checksum, VLAN, and protocol */
2569			i40e_process_skb_fields(rx_ring, rx_desc, skb);
 
2570
2571			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2572			napi_gro_receive(&rx_ring->q_vector->napi, skb);
 
2573		}
2574
 
 
 
 
 
 
 
 
 
 
2575		/* update budget accounting */
2576		total_rx_packets++;
2577process_next:
2578		cleaned_count += nfrags + 1;
2579		i40e_put_rx_buffer(rx_ring, rx_buffer);
2580		rx_ring->next_to_clean = rx_ring->next_to_process;
2581
2582		xdp->data = NULL;
2583	}
2584
2585	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
 
2586
2587	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2588
2589	*rx_cleaned = total_rx_packets;
2590
2591	/* guarantee a trip back through this routine if there was a failure */
2592	return failure ? budget : (int)total_rx_packets;
2593}
2594
2595/**
2596 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2597 * @itr_idx: interrupt throttling index
2598 * @interval: interrupt throttling interval value in usecs
2599 * @force_swint: force software interrupt
2600 *
2601 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2602 * is used to update interrupt throttling interval for specified ITR index
2603 * and optionally enforces a software interrupt. If the @itr_idx is equal
2604 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2605 * parameter is taken into account. If the interval change and enforced
2606 * software interrupt are not requested then the built value just enables
2607 * appropriate vector interrupt.
2608 **/
2609static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2610			     bool force_swint)
2611{
2612	u32 val;
2613
2614	/* We don't bother with setting the CLEARPBA bit as the data sheet
2615	 * points out doing so is "meaningless since it was already
2616	 * auto-cleared". The auto-clearing happens when the interrupt is
2617	 * asserted.
2618	 *
2619	 * Hardware errata 28 for also indicates that writing to a
2620	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2621	 * an event in the PBA anyway so we need to rely on the automask
2622	 * to hold pending events for us until the interrupt is re-enabled
2623	 *
2624	 * We have to shift the given value as it is reported in microseconds
2625	 * and the register value is recorded in 2 microsecond units.
 
 
2626	 */
2627	interval >>= 1;
2628
2629	/* 1. Enable vector interrupt
2630	 * 2. Update the interval for the specified ITR index
2631	 *    (I40E_ITR_NONE in the register is used to indicate that
2632	 *     no interval update is requested)
2633	 */
2634	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2635	      FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2636	      FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2637
2638	/* 3. Enforce software interrupt trigger if requested
2639	 *    (These software interrupts rate is limited by ITR2 that is
2640	 *     set to 20K interrupts per second)
2641	 */
2642	if (force_swint)
2643		val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2644		       I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2645		       FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2646				  I40E_SW_ITR);
2647
2648	return val;
2649}
2650
 
 
 
2651/* The act of updating the ITR will cause it to immediately trigger. In order
2652 * to prevent this from throwing off adaptive update statistics we defer the
2653 * update so that it can only happen so often. So after either Tx or Rx are
2654 * updated we make the adaptive scheme wait until either the ITR completely
2655 * expires via the next_update expiration or we have been through at least
2656 * 3 interrupts.
2657 */
2658#define ITR_COUNTDOWN_START 3
2659
2660/**
2661 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2662 * @vsi: the VSI we care about
2663 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2664 *
2665 **/
2666static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2667					  struct i40e_q_vector *q_vector)
2668{
2669	enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2670	struct i40e_hw *hw = &vsi->back->hw;
2671	u16 interval = 0;
2672	u32 itr_val;
2673
2674	/* If we don't have MSIX, then we only need to re-enable icr0 */
2675	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2676		i40e_irq_dynamic_enable_icr0(vsi->back);
2677		return;
2678	}
2679
2680	/* These will do nothing if dynamic updates are not enabled */
2681	i40e_update_itr(q_vector, &q_vector->tx);
2682	i40e_update_itr(q_vector, &q_vector->rx);
2683
2684	/* This block of logic allows us to get away with only updating
2685	 * one ITR value with each interrupt. The idea is to perform a
2686	 * pseudo-lazy update with the following criteria.
2687	 *
2688	 * 1. Rx is given higher priority than Tx if both are in same state
2689	 * 2. If we must reduce an ITR that is given highest priority.
2690	 * 3. We then give priority to increasing ITR based on amount.
2691	 */
2692	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2693		/* Rx ITR needs to be reduced, this is highest priority */
2694		itr_idx = I40E_RX_ITR;
2695		interval = q_vector->rx.target_itr;
2696		q_vector->rx.current_itr = q_vector->rx.target_itr;
2697		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2698	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2699		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2700		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2701		/* Tx ITR needs to be reduced, this is second priority
2702		 * Tx ITR needs to be increased more than Rx, fourth priority
2703		 */
2704		itr_idx = I40E_TX_ITR;
2705		interval = q_vector->tx.target_itr;
2706		q_vector->tx.current_itr = q_vector->tx.target_itr;
2707		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2708	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2709		/* Rx ITR needs to be increased, third priority */
2710		itr_idx = I40E_RX_ITR;
2711		interval = q_vector->rx.target_itr;
2712		q_vector->rx.current_itr = q_vector->rx.target_itr;
2713		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2714	} else {
2715		/* No ITR update, lowest priority */
 
2716		if (q_vector->itr_countdown)
2717			q_vector->itr_countdown--;
2718	}
2719
2720	/* Do not update interrupt control register if VSI is down */
2721	if (test_bit(__I40E_VSI_DOWN, vsi->state))
2722		return;
2723
2724	/* Update ITR interval if necessary and enforce software interrupt
2725	 * if we are exiting busy poll.
2726	 */
2727	if (q_vector->in_busy_poll) {
2728		itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2729		q_vector->in_busy_poll = false;
2730	} else {
2731		itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2732	}
2733	wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2734}
2735
2736/**
2737 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738 * @napi: napi struct with our devices info in it
2739 * @budget: amount of work driver is allowed to do this pass, in packets
2740 *
2741 * This function will clean all queues associated with a q_vector.
2742 *
2743 * Returns the amount of work done
2744 **/
2745int i40e_napi_poll(struct napi_struct *napi, int budget)
2746{
2747	struct i40e_q_vector *q_vector =
2748			       container_of(napi, struct i40e_q_vector, napi);
2749	struct i40e_vsi *vsi = q_vector->vsi;
2750	struct i40e_ring *ring;
2751	bool tx_clean_complete = true;
2752	bool rx_clean_complete = true;
2753	unsigned int tx_cleaned = 0;
2754	unsigned int rx_cleaned = 0;
2755	bool clean_complete = true;
2756	bool arm_wb = false;
2757	int budget_per_ring;
2758	int work_done = 0;
2759
2760	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761		napi_complete(napi);
2762		return 0;
2763	}
2764
2765	/* Since the actual Tx work is minimal, we can give the Tx a larger
2766	 * budget and be more aggressive about cleaning up the Tx descriptors.
2767	 */
2768	i40e_for_each_ring(ring, q_vector->tx) {
2769		bool wd = ring->xsk_pool ?
2770			  i40e_clean_xdp_tx_irq(vsi, ring) :
2771			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772
2773		if (!wd) {
2774			clean_complete = tx_clean_complete = false;
2775			continue;
2776		}
2777		arm_wb |= ring->arm_wb;
2778		ring->arm_wb = false;
2779	}
2780
2781	/* Handle case where we are called by netpoll with a budget of 0 */
2782	if (budget <= 0)
2783		goto tx_only;
2784
2785	/* normally we have 1 Rx ring per q_vector */
2786	if (unlikely(q_vector->num_ringpairs > 1))
2787		/* We attempt to distribute budget to each Rx queue fairly, but
2788		 * don't allow the budget to go below 1 because that would exit
2789		 * polling early.
2790		 */
2791		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792	else
2793		/* Max of 1 Rx ring in this q_vector so give it the budget */
2794		budget_per_ring = budget;
2795
2796	i40e_for_each_ring(ring, q_vector->rx) {
2797		int cleaned = ring->xsk_pool ?
2798			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2800
2801		work_done += cleaned;
2802		/* if we clean as many as budgeted, we must not be done */
2803		if (cleaned >= budget_per_ring)
2804			clean_complete = rx_clean_complete = false;
2805	}
2806
2807	if (!i40e_enabled_xdp_vsi(vsi))
2808		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2810
2811	/* If work not completed, return budget and polling will return */
2812	if (!clean_complete) {
2813		int cpu_id = smp_processor_id();
2814
2815		/* It is possible that the interrupt affinity has changed but,
2816		 * if the cpu is pegged at 100%, polling will never exit while
2817		 * traffic continues and the interrupt will be stuck on this
2818		 * cpu.  We check to make sure affinity is correct before we
2819		 * continue to poll, otherwise we must stop polling so the
2820		 * interrupt can move to the correct cpu.
2821		 */
2822		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823			/* Tell napi that we are done polling */
2824			napi_complete_done(napi, work_done);
2825
2826			/* Force an interrupt */
2827			i40e_force_wb(vsi, q_vector);
2828
2829			/* Return budget-1 so that polling stops */
2830			return budget - 1;
2831		}
2832tx_only:
2833		if (arm_wb) {
2834			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835			i40e_enable_wb_on_itr(vsi, q_vector);
2836		}
2837		return budget;
2838	}
2839
2840	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841		q_vector->arm_wb_state = false;
2842
2843	/* Exit the polling mode, but don't re-enable interrupts if stack might
2844	 * poll us due to busy-polling
2845	 */
2846	if (likely(napi_complete_done(napi, work_done)))
2847		i40e_update_enable_itr(vsi, q_vector);
2848	else
2849		q_vector->in_busy_poll = true;
2850
2851	return min(work_done, budget - 1);
2852}
2853
2854/**
2855 * i40e_atr - Add a Flow Director ATR filter
2856 * @tx_ring:  ring to add programming descriptor to
2857 * @skb:      send buffer
2858 * @tx_flags: send tx flags
2859 **/
2860static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2861		     u32 tx_flags)
2862{
2863	struct i40e_filter_program_desc *fdir_desc;
2864	struct i40e_pf *pf = tx_ring->vsi->back;
2865	union {
2866		unsigned char *network;
2867		struct iphdr *ipv4;
2868		struct ipv6hdr *ipv6;
2869	} hdr;
2870	struct tcphdr *th;
2871	unsigned int hlen;
2872	u32 flex_ptype, dtype_cmd;
2873	int l4_proto;
2874	u16 i;
2875
2876	/* make sure ATR is enabled */
2877	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2878		return;
2879
2880	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2881		return;
2882
2883	/* if sampling is disabled do nothing */
2884	if (!tx_ring->atr_sample_rate)
2885		return;
2886
2887	/* Currently only IPv4/IPv6 with TCP is supported */
2888	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2889		return;
2890
2891	/* snag network header to get L4 type and address */
2892	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2893		      skb_inner_network_header(skb) : skb_network_header(skb);
2894
2895	/* Note: tx_flags gets modified to reflect inner protocols in
2896	 * tx_enable_csum function if encap is enabled.
2897	 */
2898	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2899		/* access ihl as u8 to avoid unaligned access on ia64 */
2900		hlen = (hdr.network[0] & 0x0F) << 2;
2901		l4_proto = hdr.ipv4->protocol;
2902	} else {
2903		/* find the start of the innermost ipv6 header */
2904		unsigned int inner_hlen = hdr.network - skb->data;
2905		unsigned int h_offset = inner_hlen;
2906
2907		/* this function updates h_offset to the end of the header */
2908		l4_proto =
2909		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2910		/* hlen will contain our best estimate of the tcp header */
2911		hlen = h_offset - inner_hlen;
2912	}
2913
2914	if (l4_proto != IPPROTO_TCP)
2915		return;
2916
2917	th = (struct tcphdr *)(hdr.network + hlen);
2918
2919	/* Due to lack of space, no more new filters can be programmed */
2920	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2921		return;
2922	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2923		/* HW ATR eviction will take care of removing filters on FIN
2924		 * and RST packets.
2925		 */
2926		if (th->fin || th->rst)
2927			return;
2928	}
2929
2930	tx_ring->atr_count++;
2931
2932	/* sample on all syn/fin/rst packets or once every atr sample rate */
2933	if (!th->fin &&
2934	    !th->syn &&
2935	    !th->rst &&
2936	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2937		return;
2938
2939	tx_ring->atr_count = 0;
2940
2941	/* grab the next descriptor */
2942	i = tx_ring->next_to_use;
2943	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2944
2945	i++;
2946	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2947
2948	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2949				tx_ring->queue_index);
2950	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2951		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2952		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2953		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2954		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2955
2956	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2957
2958	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2959
2960	dtype_cmd |= (th->fin || th->rst) ?
2961		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2962		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2963		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2964		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2965
2966	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2967		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2968
2969	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2970		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2971
2972	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2973	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2974		dtype_cmd |=
2975			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2976				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
 
2977	else
2978		dtype_cmd |=
2979			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2980				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
 
2981
2982	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2983		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2984
2985	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2986	fdir_desc->rsvd = cpu_to_le32(0);
2987	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2988	fdir_desc->fd_id = cpu_to_le32(0);
2989}
2990
2991/**
2992 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2993 * @skb:     send buffer
2994 * @tx_ring: ring to send buffer on
2995 * @flags:   the tx flags to be set
2996 *
2997 * Checks the skb and set up correspondingly several generic transmit flags
2998 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2999 *
3000 * Returns error code indicate the frame should be dropped upon error and the
3001 * otherwise  returns 0 to indicate the flags has been set properly.
3002 **/
3003static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3004					     struct i40e_ring *tx_ring,
3005					     u32 *flags)
3006{
3007	__be16 protocol = skb->protocol;
3008	u32  tx_flags = 0;
3009
3010	if (protocol == htons(ETH_P_8021Q) &&
3011	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3012		/* When HW VLAN acceleration is turned off by the user the
3013		 * stack sets the protocol to 8021q so that the driver
3014		 * can take any steps required to support the SW only
3015		 * VLAN handling.  In our case the driver doesn't need
3016		 * to take any further steps so just set the protocol
3017		 * to the encapsulated ethertype.
3018		 */
3019		skb->protocol = vlan_get_protocol(skb);
3020		goto out;
3021	}
3022
3023	/* if we have a HW VLAN tag being added, default to the HW one */
3024	if (skb_vlan_tag_present(skb)) {
3025		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3026		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3027	/* else if it is a SW VLAN, check the next protocol and store the tag */
3028	} else if (protocol == htons(ETH_P_8021Q)) {
3029		struct vlan_hdr *vhdr, _vhdr;
3030
3031		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3032		if (!vhdr)
3033			return -EINVAL;
3034
3035		protocol = vhdr->h_vlan_encapsulated_proto;
3036		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3037		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3038	}
3039
3040	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3041		goto out;
3042
3043	/* Insert 802.1p priority into VLAN header */
3044	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3045	    (skb->priority != TC_PRIO_CONTROL)) {
3046		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3047		tx_flags |= (skb->priority & 0x7) <<
3048				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3049		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3050			struct vlan_ethhdr *vhdr;
3051			int rc;
3052
3053			rc = skb_cow_head(skb, 0);
3054			if (rc < 0)
3055				return rc;
3056			vhdr = skb_vlan_eth_hdr(skb);
3057			vhdr->h_vlan_TCI = htons(tx_flags >>
3058						 I40E_TX_FLAGS_VLAN_SHIFT);
3059		} else {
3060			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3061		}
3062	}
3063
3064out:
3065	*flags = tx_flags;
3066	return 0;
3067}
3068
3069/**
3070 * i40e_tso - set up the tso context descriptor
3071 * @first:    pointer to first Tx buffer for xmit
3072 * @hdr_len:  ptr to the size of the packet header
3073 * @cd_type_cmd_tso_mss: Quad Word 1
3074 *
3075 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3076 **/
3077static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3078		    u64 *cd_type_cmd_tso_mss)
3079{
3080	struct sk_buff *skb = first->skb;
3081	u64 cd_cmd, cd_tso_len, cd_mss;
3082	__be16 protocol;
3083	union {
3084		struct iphdr *v4;
3085		struct ipv6hdr *v6;
3086		unsigned char *hdr;
3087	} ip;
3088	union {
3089		struct tcphdr *tcp;
3090		struct udphdr *udp;
3091		unsigned char *hdr;
3092	} l4;
3093	u32 paylen, l4_offset;
3094	u16 gso_size;
3095	int err;
3096
3097	if (skb->ip_summed != CHECKSUM_PARTIAL)
3098		return 0;
3099
3100	if (!skb_is_gso(skb))
3101		return 0;
3102
3103	err = skb_cow_head(skb, 0);
3104	if (err < 0)
3105		return err;
3106
3107	protocol = vlan_get_protocol(skb);
3108
3109	if (eth_p_mpls(protocol))
3110		ip.hdr = skb_inner_network_header(skb);
3111	else
3112		ip.hdr = skb_network_header(skb);
3113	l4.hdr = skb_checksum_start(skb);
3114
3115	/* initialize outer IP header fields */
3116	if (ip.v4->version == 4) {
3117		ip.v4->tot_len = 0;
3118		ip.v4->check = 0;
3119
3120		first->tx_flags |= I40E_TX_FLAGS_TSO;
3121	} else {
3122		ip.v6->payload_len = 0;
3123		first->tx_flags |= I40E_TX_FLAGS_TSO;
3124	}
3125
3126	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3127					 SKB_GSO_GRE_CSUM |
3128					 SKB_GSO_IPXIP4 |
3129					 SKB_GSO_IPXIP6 |
3130					 SKB_GSO_UDP_TUNNEL |
3131					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3132		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3133		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3134			l4.udp->len = 0;
3135
3136			/* determine offset of outer transport header */
3137			l4_offset = l4.hdr - skb->data;
3138
3139			/* remove payload length from outer checksum */
3140			paylen = skb->len - l4_offset;
3141			csum_replace_by_diff(&l4.udp->check,
3142					     (__force __wsum)htonl(paylen));
3143		}
3144
3145		/* reset pointers to inner headers */
3146		ip.hdr = skb_inner_network_header(skb);
3147		l4.hdr = skb_inner_transport_header(skb);
3148
3149		/* initialize inner IP header fields */
3150		if (ip.v4->version == 4) {
3151			ip.v4->tot_len = 0;
3152			ip.v4->check = 0;
3153		} else {
3154			ip.v6->payload_len = 0;
3155		}
3156	}
3157
3158	/* determine offset of inner transport header */
3159	l4_offset = l4.hdr - skb->data;
3160
3161	/* remove payload length from inner checksum */
3162	paylen = skb->len - l4_offset;
3163
3164	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3165		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3166		/* compute length of segmentation header */
3167		*hdr_len = sizeof(*l4.udp) + l4_offset;
3168	} else {
3169		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3170		/* compute length of segmentation header */
3171		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3172	}
3173
3174	/* pull values out of skb_shinfo */
3175	gso_size = skb_shinfo(skb)->gso_size;
 
3176
3177	/* update GSO size and bytecount with header size */
3178	first->gso_segs = skb_shinfo(skb)->gso_segs;
3179	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3180
3181	/* find the field values */
3182	cd_cmd = I40E_TX_CTX_DESC_TSO;
3183	cd_tso_len = skb->len - *hdr_len;
3184	cd_mss = gso_size;
3185	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3186				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3187				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3188	return 1;
3189}
3190
3191/**
3192 * i40e_tsyn - set up the tsyn context descriptor
3193 * @tx_ring:  ptr to the ring to send
3194 * @skb:      ptr to the skb we're sending
3195 * @tx_flags: the collected send information
3196 * @cd_type_cmd_tso_mss: Quad Word 1
3197 *
3198 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3199 **/
3200static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3201		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3202{
3203	struct i40e_pf *pf;
3204
3205	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3206		return 0;
3207
3208	/* Tx timestamps cannot be sampled when doing TSO */
3209	if (tx_flags & I40E_TX_FLAGS_TSO)
3210		return 0;
3211
3212	/* only timestamp the outbound packet if the user has requested it and
3213	 * we are not already transmitting a packet to be timestamped
3214	 */
3215	pf = i40e_netdev_to_pf(tx_ring->netdev);
3216	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3217		return 0;
3218
3219	if (pf->ptp_tx &&
3220	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3221		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3222		pf->ptp_tx_start = jiffies;
3223		pf->ptp_tx_skb = skb_get(skb);
3224	} else {
3225		pf->tx_hwtstamp_skipped++;
3226		return 0;
3227	}
3228
3229	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3230				I40E_TXD_CTX_QW1_CMD_SHIFT;
3231
3232	return 1;
3233}
3234
3235/**
3236 * i40e_tx_enable_csum - Enable Tx checksum offloads
3237 * @skb: send buffer
3238 * @tx_flags: pointer to Tx flags currently set
3239 * @td_cmd: Tx descriptor command bits to set
3240 * @td_offset: Tx descriptor header offsets to set
3241 * @tx_ring: Tx descriptor ring
3242 * @cd_tunneling: ptr to context desc bits
3243 **/
3244static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3245			       u32 *td_cmd, u32 *td_offset,
3246			       struct i40e_ring *tx_ring,
3247			       u32 *cd_tunneling)
3248{
3249	union {
3250		struct iphdr *v4;
3251		struct ipv6hdr *v6;
3252		unsigned char *hdr;
3253	} ip;
3254	union {
3255		struct tcphdr *tcp;
3256		struct udphdr *udp;
3257		unsigned char *hdr;
3258	} l4;
3259	unsigned char *exthdr;
3260	u32 offset, cmd = 0;
3261	__be16 frag_off;
3262	__be16 protocol;
3263	u8 l4_proto = 0;
3264
3265	if (skb->ip_summed != CHECKSUM_PARTIAL)
3266		return 0;
3267
3268	protocol = vlan_get_protocol(skb);
3269
3270	if (eth_p_mpls(protocol)) {
3271		ip.hdr = skb_inner_network_header(skb);
3272		l4.hdr = skb_checksum_start(skb);
3273	} else {
3274		ip.hdr = skb_network_header(skb);
3275		l4.hdr = skb_transport_header(skb);
3276	}
3277
3278	/* set the tx_flags to indicate the IP protocol type. this is
3279	 * required so that checksum header computation below is accurate.
3280	 */
3281	if (ip.v4->version == 4)
3282		*tx_flags |= I40E_TX_FLAGS_IPV4;
3283	else
3284		*tx_flags |= I40E_TX_FLAGS_IPV6;
3285
3286	/* compute outer L2 header size */
3287	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3288
3289	if (skb->encapsulation) {
3290		u32 tunnel = 0;
3291		/* define outer network header type */
3292		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3293			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3294				  I40E_TX_CTX_EXT_IP_IPV4 :
3295				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3296
3297			l4_proto = ip.v4->protocol;
3298		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3299			int ret;
3300
3301			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3302
3303			exthdr = ip.hdr + sizeof(*ip.v6);
3304			l4_proto = ip.v6->nexthdr;
3305			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3306					       &l4_proto, &frag_off);
3307			if (ret < 0)
3308				return -1;
3309		}
3310
3311		/* define outer transport */
3312		switch (l4_proto) {
3313		case IPPROTO_UDP:
3314			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3315			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3316			break;
3317		case IPPROTO_GRE:
3318			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3319			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3320			break;
3321		case IPPROTO_IPIP:
3322		case IPPROTO_IPV6:
3323			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3324			l4.hdr = skb_inner_network_header(skb);
3325			break;
3326		default:
3327			if (*tx_flags & I40E_TX_FLAGS_TSO)
3328				return -1;
3329
3330			skb_checksum_help(skb);
3331			return 0;
3332		}
3333
3334		/* compute outer L3 header size */
3335		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3336			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3337
3338		/* switch IP header pointer from outer to inner header */
3339		ip.hdr = skb_inner_network_header(skb);
3340
3341		/* compute tunnel header size */
3342		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3343			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3344
3345		/* indicate if we need to offload outer UDP header */
3346		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3347		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3348		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3349			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3350
3351		/* record tunnel offload values */
3352		*cd_tunneling |= tunnel;
3353
3354		/* switch L4 header pointer from outer to inner */
3355		l4.hdr = skb_inner_transport_header(skb);
3356		l4_proto = 0;
3357
3358		/* reset type as we transition from outer to inner headers */
3359		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3360		if (ip.v4->version == 4)
3361			*tx_flags |= I40E_TX_FLAGS_IPV4;
3362		if (ip.v6->version == 6)
3363			*tx_flags |= I40E_TX_FLAGS_IPV6;
3364	}
3365
3366	/* Enable IP checksum offloads */
3367	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3368		l4_proto = ip.v4->protocol;
3369		/* the stack computes the IP header already, the only time we
3370		 * need the hardware to recompute it is in the case of TSO.
3371		 */
3372		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3373		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3374		       I40E_TX_DESC_CMD_IIPT_IPV4;
3375	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3376		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3377
3378		exthdr = ip.hdr + sizeof(*ip.v6);
3379		l4_proto = ip.v6->nexthdr;
3380		if (l4.hdr != exthdr)
3381			ipv6_skip_exthdr(skb, exthdr - skb->data,
3382					 &l4_proto, &frag_off);
3383	}
3384
3385	/* compute inner L3 header size */
3386	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3387
3388	/* Enable L4 checksum offloads */
3389	switch (l4_proto) {
3390	case IPPROTO_TCP:
3391		/* enable checksum offloads */
3392		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3393		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3394		break;
3395	case IPPROTO_SCTP:
3396		/* enable SCTP checksum offload */
3397		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3398		offset |= (sizeof(struct sctphdr) >> 2) <<
3399			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3400		break;
3401	case IPPROTO_UDP:
3402		/* enable UDP checksum offload */
3403		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3404		offset |= (sizeof(struct udphdr) >> 2) <<
3405			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3406		break;
3407	default:
3408		if (*tx_flags & I40E_TX_FLAGS_TSO)
3409			return -1;
3410		skb_checksum_help(skb);
3411		return 0;
3412	}
3413
3414	*td_cmd |= cmd;
3415	*td_offset |= offset;
3416
3417	return 1;
3418}
3419
3420/**
3421 * i40e_create_tx_ctx - Build the Tx context descriptor
3422 * @tx_ring:  ring to create the descriptor on
3423 * @cd_type_cmd_tso_mss: Quad Word 1
3424 * @cd_tunneling: Quad Word 0 - bits 0-31
3425 * @cd_l2tag2: Quad Word 0 - bits 32-63
3426 **/
3427static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3428			       const u64 cd_type_cmd_tso_mss,
3429			       const u32 cd_tunneling, const u32 cd_l2tag2)
3430{
3431	struct i40e_tx_context_desc *context_desc;
3432	int i = tx_ring->next_to_use;
3433
3434	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3435	    !cd_tunneling && !cd_l2tag2)
3436		return;
3437
3438	/* grab the next descriptor */
3439	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3440
3441	i++;
3442	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3443
3444	/* cpu_to_le32 and assign to struct fields */
3445	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3446	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3447	context_desc->rsvd = cpu_to_le16(0);
3448	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3449}
3450
3451/**
3452 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3453 * @tx_ring: the ring to be checked
3454 * @size:    the size buffer we want to assure is available
3455 *
3456 * Returns -EBUSY if a stop is needed, else 0
3457 **/
3458int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3459{
3460	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3461	/* Memory barrier before checking head and tail */
3462	smp_mb();
3463
3464	++tx_ring->tx_stats.tx_stopped;
3465
3466	/* Check again in a case another CPU has just made room available. */
3467	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3468		return -EBUSY;
3469
3470	/* A reprieve! - use start_queue because it doesn't call schedule */
3471	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3472	++tx_ring->tx_stats.restart_queue;
3473	return 0;
3474}
3475
3476/**
3477 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3478 * @skb:      send buffer
3479 *
3480 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3481 * and so we need to figure out the cases where we need to linearize the skb.
3482 *
3483 * For TSO we need to count the TSO header and segment payload separately.
3484 * As such we need to check cases where we have 7 fragments or more as we
3485 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3486 * the segment payload in the first descriptor, and another 7 for the
3487 * fragments.
3488 **/
3489bool __i40e_chk_linearize(struct sk_buff *skb)
3490{
3491	const skb_frag_t *frag, *stale;
3492	int nr_frags, sum;
3493
3494	/* no need to check if number of frags is less than 7 */
3495	nr_frags = skb_shinfo(skb)->nr_frags;
3496	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3497		return false;
3498
3499	/* We need to walk through the list and validate that each group
3500	 * of 6 fragments totals at least gso_size.
3501	 */
3502	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3503	frag = &skb_shinfo(skb)->frags[0];
3504
3505	/* Initialize size to the negative value of gso_size minus 1.  We
3506	 * use this as the worst case scenerio in which the frag ahead
3507	 * of us only provides one byte which is why we are limited to 6
3508	 * descriptors for a single transmit as the header and previous
3509	 * fragment are already consuming 2 descriptors.
3510	 */
3511	sum = 1 - skb_shinfo(skb)->gso_size;
3512
3513	/* Add size of frags 0 through 4 to create our initial sum */
3514	sum += skb_frag_size(frag++);
3515	sum += skb_frag_size(frag++);
3516	sum += skb_frag_size(frag++);
3517	sum += skb_frag_size(frag++);
3518	sum += skb_frag_size(frag++);
3519
3520	/* Walk through fragments adding latest fragment, testing it, and
3521	 * then removing stale fragments from the sum.
3522	 */
3523	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3524		int stale_size = skb_frag_size(stale);
3525
3526		sum += skb_frag_size(frag++);
3527
3528		/* The stale fragment may present us with a smaller
3529		 * descriptor than the actual fragment size. To account
3530		 * for that we need to remove all the data on the front and
3531		 * figure out what the remainder would be in the last
3532		 * descriptor associated with the fragment.
3533		 */
3534		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3535			int align_pad = -(skb_frag_off(stale)) &
3536					(I40E_MAX_READ_REQ_SIZE - 1);
3537
3538			sum -= align_pad;
3539			stale_size -= align_pad;
3540
3541			do {
3542				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3543				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3544			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3545		}
3546
3547		/* if sum is negative we failed to make sufficient progress */
3548		if (sum < 0)
3549			return true;
3550
3551		if (!nr_frags--)
3552			break;
3553
3554		sum -= stale_size;
3555	}
3556
3557	return false;
3558}
3559
3560/**
3561 * i40e_tx_map - Build the Tx descriptor
3562 * @tx_ring:  ring to send buffer on
3563 * @skb:      send buffer
3564 * @first:    first buffer info buffer to use
3565 * @tx_flags: collected send information
3566 * @hdr_len:  size of the packet header
3567 * @td_cmd:   the command field in the descriptor
3568 * @td_offset: offset for checksum or crc
3569 *
3570 * Returns 0 on success, -1 on failure to DMA
3571 **/
3572static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3573			      struct i40e_tx_buffer *first, u32 tx_flags,
3574			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3575{
3576	unsigned int data_len = skb->data_len;
3577	unsigned int size = skb_headlen(skb);
3578	skb_frag_t *frag;
3579	struct i40e_tx_buffer *tx_bi;
3580	struct i40e_tx_desc *tx_desc;
3581	u16 i = tx_ring->next_to_use;
3582	u32 td_tag = 0;
3583	dma_addr_t dma;
3584	u16 desc_count = 1;
3585
3586	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3587		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3588		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
 
3589	}
3590
3591	first->tx_flags = tx_flags;
3592
3593	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3594
3595	tx_desc = I40E_TX_DESC(tx_ring, i);
3596	tx_bi = first;
3597
3598	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3599		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3600
3601		if (dma_mapping_error(tx_ring->dev, dma))
3602			goto dma_error;
3603
3604		/* record length, and DMA address */
3605		dma_unmap_len_set(tx_bi, len, size);
3606		dma_unmap_addr_set(tx_bi, dma, dma);
3607
3608		/* align size to end of page */
3609		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3610		tx_desc->buffer_addr = cpu_to_le64(dma);
3611
3612		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3613			tx_desc->cmd_type_offset_bsz =
3614				build_ctob(td_cmd, td_offset,
3615					   max_data, td_tag);
3616
3617			tx_desc++;
3618			i++;
3619			desc_count++;
3620
3621			if (i == tx_ring->count) {
3622				tx_desc = I40E_TX_DESC(tx_ring, 0);
3623				i = 0;
3624			}
3625
3626			dma += max_data;
3627			size -= max_data;
3628
3629			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3630			tx_desc->buffer_addr = cpu_to_le64(dma);
3631		}
3632
3633		if (likely(!data_len))
3634			break;
3635
3636		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3637							  size, td_tag);
3638
3639		tx_desc++;
3640		i++;
3641		desc_count++;
3642
3643		if (i == tx_ring->count) {
3644			tx_desc = I40E_TX_DESC(tx_ring, 0);
3645			i = 0;
3646		}
3647
3648		size = skb_frag_size(frag);
3649		data_len -= size;
3650
3651		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3652				       DMA_TO_DEVICE);
3653
3654		tx_bi = &tx_ring->tx_bi[i];
3655	}
3656
3657	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3658
3659	i++;
3660	if (i == tx_ring->count)
3661		i = 0;
3662
3663	tx_ring->next_to_use = i;
3664
3665	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3666
3667	/* write last descriptor with EOP bit */
3668	td_cmd |= I40E_TX_DESC_CMD_EOP;
3669
3670	/* We OR these values together to check both against 4 (WB_STRIDE)
3671	 * below. This is safe since we don't re-use desc_count afterwards.
3672	 */
3673	desc_count |= ++tx_ring->packet_stride;
3674
3675	if (desc_count >= WB_STRIDE) {
3676		/* write last descriptor with RS bit set */
3677		td_cmd |= I40E_TX_DESC_CMD_RS;
3678		tx_ring->packet_stride = 0;
3679	}
3680
3681	tx_desc->cmd_type_offset_bsz =
3682			build_ctob(td_cmd, td_offset, size, td_tag);
3683
3684	skb_tx_timestamp(skb);
3685
3686	/* Force memory writes to complete before letting h/w know there
3687	 * are new descriptors to fetch.
3688	 *
3689	 * We also use this memory barrier to make certain all of the
3690	 * status bits have been updated before next_to_watch is written.
3691	 */
3692	wmb();
3693
3694	/* set next_to_watch value indicating a packet is present */
3695	first->next_to_watch = tx_desc;
3696
3697	/* notify HW of packet */
3698	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3699		writel(i, tx_ring->tail);
3700	}
3701
3702	return 0;
3703
3704dma_error:
3705	dev_info(tx_ring->dev, "TX DMA map failed\n");
3706
3707	/* clear dma mappings for failed tx_bi map */
3708	for (;;) {
3709		tx_bi = &tx_ring->tx_bi[i];
3710		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3711		if (tx_bi == first)
3712			break;
3713		if (i == 0)
3714			i = tx_ring->count;
3715		i--;
3716	}
3717
3718	tx_ring->next_to_use = i;
3719
3720	return -1;
3721}
3722
3723static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3724				  const struct sk_buff *skb,
3725				  u16 num_tx_queues)
3726{
3727	u32 jhash_initval_salt = 0xd631614b;
3728	u32 hash;
3729
3730	if (skb->sk && skb->sk->sk_hash)
3731		hash = skb->sk->sk_hash;
3732	else
3733		hash = (__force u16)skb->protocol ^ skb->hash;
3734
3735	hash = jhash_1word(hash, jhash_initval_salt);
3736
3737	return (u16)(((u64)hash * num_tx_queues) >> 32);
3738}
3739
3740u16 i40e_lan_select_queue(struct net_device *netdev,
3741			  struct sk_buff *skb,
3742			  struct net_device __always_unused *sb_dev)
3743{
3744	struct i40e_netdev_priv *np = netdev_priv(netdev);
3745	struct i40e_vsi *vsi = np->vsi;
3746	struct i40e_hw *hw;
3747	u16 qoffset;
3748	u16 qcount;
3749	u8 tclass;
3750	u16 hash;
3751	u8 prio;
3752
3753	/* is DCB enabled at all? */
3754	if (vsi->tc_config.numtc == 1 ||
3755	    i40e_is_tc_mqprio_enabled(vsi->back))
3756		return netdev_pick_tx(netdev, skb, sb_dev);
3757
3758	prio = skb->priority;
3759	hw = &vsi->back->hw;
3760	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3761	/* sanity check */
3762	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3763		tclass = 0;
3764
3765	/* select a queue assigned for the given TC */
3766	qcount = vsi->tc_config.tc_info[tclass].qcount;
3767	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3768
3769	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3770	return qoffset + hash;
3771}
3772
3773/**
3774 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3775 * @xdpf: data to transmit
3776 * @xdp_ring: XDP Tx ring
3777 **/
3778static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3779			      struct i40e_ring *xdp_ring)
3780{
3781	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3782	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3783	u16 i = 0, index = xdp_ring->next_to_use;
3784	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3785	struct i40e_tx_buffer *tx_bi = tx_head;
3786	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3787	void *data = xdpf->data;
3788	u32 size = xdpf->len;
 
3789
3790	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3791		xdp_ring->tx_stats.tx_busy++;
3792		return I40E_XDP_CONSUMED;
3793	}
 
 
 
3794
3795	tx_head->bytecount = xdp_get_frame_len(xdpf);
3796	tx_head->gso_segs = 1;
3797	tx_head->xdpf = xdpf;
3798
3799	for (;;) {
3800		dma_addr_t dma;
3801
3802		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3803		if (dma_mapping_error(xdp_ring->dev, dma))
3804			goto unmap;
3805
3806		/* record length, and DMA address */
3807		dma_unmap_len_set(tx_bi, len, size);
3808		dma_unmap_addr_set(tx_bi, dma, dma);
3809
3810		tx_desc->buffer_addr = cpu_to_le64(dma);
3811		tx_desc->cmd_type_offset_bsz =
3812			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3813
3814		if (++index == xdp_ring->count)
3815			index = 0;
3816
3817		if (i == nr_frags)
3818			break;
3819
3820		tx_bi = &xdp_ring->tx_bi[index];
3821		tx_desc = I40E_TX_DESC(xdp_ring, index);
3822
3823		data = skb_frag_address(&sinfo->frags[i]);
3824		size = skb_frag_size(&sinfo->frags[i]);
3825		i++;
3826	}
3827
3828	tx_desc->cmd_type_offset_bsz |=
3829		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
 
 
 
3830
3831	/* Make certain all of the status bits have been updated
3832	 * before next_to_watch is written.
3833	 */
3834	smp_wmb();
3835
3836	xdp_ring->xdp_tx_active++;
 
 
 
3837
3838	tx_head->next_to_watch = tx_desc;
3839	xdp_ring->next_to_use = index;
3840
3841	return I40E_XDP_TX;
3842
3843unmap:
3844	for (;;) {
3845		tx_bi = &xdp_ring->tx_bi[index];
3846		if (dma_unmap_len(tx_bi, len))
3847			dma_unmap_page(xdp_ring->dev,
3848				       dma_unmap_addr(tx_bi, dma),
3849				       dma_unmap_len(tx_bi, len),
3850				       DMA_TO_DEVICE);
3851		dma_unmap_len_set(tx_bi, len, 0);
3852		if (tx_bi == tx_head)
3853			break;
3854
3855		if (!index)
3856			index += xdp_ring->count;
3857		index--;
3858	}
3859
3860	return I40E_XDP_CONSUMED;
3861}
3862
3863/**
3864 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3865 * @skb:     send buffer
3866 * @tx_ring: ring to send buffer on
3867 *
3868 * Returns NETDEV_TX_OK if sent, else an error code
3869 **/
3870static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3871					struct i40e_ring *tx_ring)
3872{
3873	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3874	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3875	struct i40e_tx_buffer *first;
3876	u32 td_offset = 0;
3877	u32 tx_flags = 0;
 
3878	u32 td_cmd = 0;
3879	u8 hdr_len = 0;
3880	int tso, count;
3881	int tsyn;
3882
3883	/* prefetch the data, we'll need it later */
3884	prefetch(skb->data);
3885
3886	i40e_trace(xmit_frame_ring, skb, tx_ring);
3887
3888	count = i40e_xmit_descriptor_count(skb);
3889	if (i40e_chk_linearize(skb, count)) {
3890		if (__skb_linearize(skb)) {
3891			dev_kfree_skb_any(skb);
3892			return NETDEV_TX_OK;
3893		}
3894		count = i40e_txd_use_count(skb->len);
3895		tx_ring->tx_stats.tx_linearize++;
3896	}
3897
3898	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3899	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3900	 *       + 4 desc gap to avoid the cache line where head is,
3901	 *       + 1 desc for context descriptor,
3902	 * otherwise try next time
3903	 */
3904	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3905		tx_ring->tx_stats.tx_busy++;
3906		return NETDEV_TX_BUSY;
3907	}
3908
3909	/* record the location of the first descriptor for this packet */
3910	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3911	first->skb = skb;
3912	first->bytecount = skb->len;
3913	first->gso_segs = 1;
3914
3915	/* prepare the xmit flags */
3916	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3917		goto out_drop;
 
 
 
 
 
 
 
 
 
3918
3919	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3920
3921	if (tso < 0)
3922		goto out_drop;
3923	else if (tso)
3924		tx_flags |= I40E_TX_FLAGS_TSO;
3925
3926	/* Always offload the checksum, since it's in the data descriptor */
3927	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3928				  tx_ring, &cd_tunneling);
3929	if (tso < 0)
3930		goto out_drop;
3931
3932	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3933
3934	if (tsyn)
3935		tx_flags |= I40E_TX_FLAGS_TSYN;
3936
3937	/* always enable CRC insertion offload */
3938	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3939
3940	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3941			   cd_tunneling, cd_l2tag2);
3942
3943	/* Add Flow Director ATR if it's enabled.
3944	 *
3945	 * NOTE: this must always be directly before the data descriptor.
3946	 */
3947	i40e_atr(tx_ring, skb, tx_flags);
3948
3949	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3950			td_cmd, td_offset))
3951		goto cleanup_tx_tstamp;
3952
3953	return NETDEV_TX_OK;
3954
3955out_drop:
3956	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3957	dev_kfree_skb_any(first->skb);
3958	first->skb = NULL;
3959cleanup_tx_tstamp:
3960	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3961		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3962
3963		dev_kfree_skb_any(pf->ptp_tx_skb);
3964		pf->ptp_tx_skb = NULL;
3965		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3966	}
3967
3968	return NETDEV_TX_OK;
3969}
3970
3971/**
3972 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3973 * @skb:    send buffer
3974 * @netdev: network interface device structure
3975 *
3976 * Returns NETDEV_TX_OK if sent, else an error code
3977 **/
3978netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3979{
3980	struct i40e_netdev_priv *np = netdev_priv(netdev);
3981	struct i40e_vsi *vsi = np->vsi;
3982	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3983
3984	/* hardware can't handle really short frames, hardware padding works
3985	 * beyond this point
3986	 */
3987	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3988		return NETDEV_TX_OK;
3989
3990	return i40e_xmit_frame_ring(skb, tx_ring);
3991}
3992
3993/**
3994 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3995 * @dev: netdev
3996 * @n: number of frames
3997 * @frames: array of XDP buffer pointers
3998 * @flags: XDP extra info
3999 *
4000 * Returns number of frames successfully sent. Failed frames
4001 * will be free'ed by XDP core.
4002 *
4003 * For error cases, a negative errno code is returned and no-frames
4004 * are transmitted (caller must handle freeing frames).
4005 **/
4006int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4007		  u32 flags)
4008{
4009	struct i40e_netdev_priv *np = netdev_priv(dev);
4010	unsigned int queue_index = smp_processor_id();
4011	struct i40e_vsi *vsi = np->vsi;
4012	struct i40e_pf *pf = vsi->back;
4013	struct i40e_ring *xdp_ring;
4014	int nxmit = 0;
4015	int i;
4016
4017	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4018		return -ENETDOWN;
4019
4020	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4021	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4022		return -ENXIO;
4023
4024	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4025		return -EINVAL;
4026
4027	xdp_ring = vsi->xdp_rings[queue_index];
4028
4029	for (i = 0; i < n; i++) {
4030		struct xdp_frame *xdpf = frames[i];
4031		int err;
4032
4033		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4034		if (err != I40E_XDP_TX)
4035			break;
4036		nxmit++;
4037	}
4038
4039	if (unlikely(flags & XDP_XMIT_FLUSH))
4040		i40e_xdp_ring_update_tail(xdp_ring);
4041
4042	return nxmit;
4043}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
 
 
   4#include <linux/prefetch.h>
   5#include <linux/bpf_trace.h>
 
   6#include <net/xdp.h>
   7#include "i40e.h"
   8#include "i40e_trace.h"
   9#include "i40e_prototype.h"
  10#include "i40e_txrx_common.h"
  11#include "i40e_xsk.h"
  12
  13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  14/**
  15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  16 * @tx_ring: Tx ring to send buffer on
  17 * @fdata: Flow director filter data
  18 * @add: Indicate if we are adding a rule or deleting one
  19 *
  20 **/
  21static void i40e_fdir(struct i40e_ring *tx_ring,
  22		      struct i40e_fdir_filter *fdata, bool add)
  23{
  24	struct i40e_filter_program_desc *fdir_desc;
  25	struct i40e_pf *pf = tx_ring->vsi->back;
  26	u32 flex_ptype, dtype_cmd;
  27	u16 i;
  28
  29	/* grab the next descriptor */
  30	i = tx_ring->next_to_use;
  31	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  32
  33	i++;
  34	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  35
  36	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  37		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  38
  39	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  40		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  41
  42	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  43		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  44
  45	/* Use LAN VSI Id if not programmed by user */
  46	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  47		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  48		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  49
  50	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  51
  52	dtype_cmd |= add ?
  53		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  54		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  55		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  56		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  57
  58	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  59		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  60
  61	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  62		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  63
  64	if (fdata->cnt_index) {
  65		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  66		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
  67			     ((u32)fdata->cnt_index <<
  68			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
  69	}
  70
  71	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  72	fdir_desc->rsvd = cpu_to_le32(0);
  73	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  74	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  75}
  76
  77#define I40E_FD_CLEAN_DELAY 10
  78/**
  79 * i40e_program_fdir_filter - Program a Flow Director filter
  80 * @fdir_data: Packet data that will be filter parameters
  81 * @raw_packet: the pre-allocated packet buffer for FDir
  82 * @pf: The PF pointer
  83 * @add: True for add/update, False for remove
  84 **/
  85static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  86				    u8 *raw_packet, struct i40e_pf *pf,
  87				    bool add)
  88{
  89	struct i40e_tx_buffer *tx_buf, *first;
  90	struct i40e_tx_desc *tx_desc;
  91	struct i40e_ring *tx_ring;
  92	struct i40e_vsi *vsi;
  93	struct device *dev;
  94	dma_addr_t dma;
  95	u32 td_cmd = 0;
  96	u16 i;
  97
  98	/* find existing FDIR VSI */
  99	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 100	if (!vsi)
 101		return -ENOENT;
 102
 103	tx_ring = vsi->tx_rings[0];
 104	dev = tx_ring->dev;
 105
 106	/* we need two descriptors to add/del a filter and we can wait */
 107	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 108		if (!i)
 109			return -EAGAIN;
 110		msleep_interruptible(1);
 111	}
 112
 113	dma = dma_map_single(dev, raw_packet,
 114			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 115	if (dma_mapping_error(dev, dma))
 116		goto dma_fail;
 117
 118	/* grab the next descriptor */
 119	i = tx_ring->next_to_use;
 120	first = &tx_ring->tx_bi[i];
 121	i40e_fdir(tx_ring, fdir_data, add);
 122
 123	/* Now program a dummy descriptor */
 124	i = tx_ring->next_to_use;
 125	tx_desc = I40E_TX_DESC(tx_ring, i);
 126	tx_buf = &tx_ring->tx_bi[i];
 127
 128	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 129
 130	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 131
 132	/* record length, and DMA address */
 133	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 134	dma_unmap_addr_set(tx_buf, dma, dma);
 135
 136	tx_desc->buffer_addr = cpu_to_le64(dma);
 137	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 138
 139	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 140	tx_buf->raw_buf = (void *)raw_packet;
 141
 142	tx_desc->cmd_type_offset_bsz =
 143		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 144
 145	/* Force memory writes to complete before letting h/w
 146	 * know there are new descriptors to fetch.
 147	 */
 148	wmb();
 149
 150	/* Mark the data descriptor to be watched */
 151	first->next_to_watch = tx_desc;
 152
 153	writel(tx_ring->next_to_use, tx_ring->tail);
 154	return 0;
 155
 156dma_fail:
 157	return -1;
 158}
 159
 160/**
 161 * i40e_create_dummy_packet - Constructs dummy packet for HW
 162 * @dummy_packet: preallocated space for dummy packet
 163 * @ipv4: is layer 3 packet of version 4 or 6
 164 * @l4proto: next level protocol used in data portion of l3
 165 * @data: filter data
 166 *
 167 * Returns address of layer 4 protocol dummy packet.
 168 **/
 169static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
 170				      struct i40e_fdir_filter *data)
 171{
 172	bool is_vlan = !!data->vlan_tag;
 173	struct vlan_hdr vlan;
 174	struct ipv6hdr ipv6;
 175	struct ethhdr eth;
 176	struct iphdr ip;
 177	u8 *tmp;
 178
 179	if (ipv4) {
 180		eth.h_proto = cpu_to_be16(ETH_P_IP);
 181		ip.protocol = l4proto;
 182		ip.version = 0x4;
 183		ip.ihl = 0x5;
 184
 185		ip.daddr = data->dst_ip;
 186		ip.saddr = data->src_ip;
 187	} else {
 188		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
 189		ipv6.nexthdr = l4proto;
 190		ipv6.version = 0x6;
 191
 192		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
 193		       sizeof(__be32) * 4);
 194		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
 195		       sizeof(__be32) * 4);
 196	}
 197
 198	if (is_vlan) {
 199		vlan.h_vlan_TCI = data->vlan_tag;
 200		vlan.h_vlan_encapsulated_proto = eth.h_proto;
 201		eth.h_proto = data->vlan_etype;
 202	}
 203
 204	tmp = dummy_packet;
 205	memcpy(tmp, &eth, sizeof(eth));
 206	tmp += sizeof(eth);
 207
 208	if (is_vlan) {
 209		memcpy(tmp, &vlan, sizeof(vlan));
 210		tmp += sizeof(vlan);
 211	}
 212
 213	if (ipv4) {
 214		memcpy(tmp, &ip, sizeof(ip));
 215		tmp += sizeof(ip);
 216	} else {
 217		memcpy(tmp, &ipv6, sizeof(ipv6));
 218		tmp += sizeof(ipv6);
 219	}
 220
 221	return tmp;
 222}
 223
 224/**
 225 * i40e_create_dummy_udp_packet - helper function to create UDP packet
 226 * @raw_packet: preallocated space for dummy packet
 227 * @ipv4: is layer 3 packet of version 4 or 6
 228 * @l4proto: next level protocol used in data portion of l3
 229 * @data: filter data
 230 *
 231 * Helper function to populate udp fields.
 232 **/
 233static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 234					 struct i40e_fdir_filter *data)
 235{
 236	struct udphdr *udp;
 237	u8 *tmp;
 238
 239	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
 240	udp = (struct udphdr *)(tmp);
 241	udp->dest = data->dst_port;
 242	udp->source = data->src_port;
 243}
 244
 245/**
 246 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
 247 * @raw_packet: preallocated space for dummy packet
 248 * @ipv4: is layer 3 packet of version 4 or 6
 249 * @l4proto: next level protocol used in data portion of l3
 250 * @data: filter data
 251 *
 252 * Helper function to populate tcp fields.
 253 **/
 254static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 255					 struct i40e_fdir_filter *data)
 256{
 257	struct tcphdr *tcp;
 258	u8 *tmp;
 259	/* Dummy tcp packet */
 260	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 261		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
 262
 263	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
 264
 265	tcp = (struct tcphdr *)tmp;
 266	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
 267	tcp->dest = data->dst_port;
 268	tcp->source = data->src_port;
 269}
 270
 271/**
 272 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
 273 * @raw_packet: preallocated space for dummy packet
 274 * @ipv4: is layer 3 packet of version 4 or 6
 275 * @l4proto: next level protocol used in data portion of l3
 276 * @data: filter data
 277 *
 278 * Helper function to populate sctp fields.
 279 **/
 280static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
 281					  u8 l4proto,
 282					  struct i40e_fdir_filter *data)
 283{
 284	struct sctphdr *sctp;
 285	u8 *tmp;
 286
 287	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
 288
 289	sctp = (struct sctphdr *)tmp;
 290	sctp->dest = data->dst_port;
 291	sctp->source = data->src_port;
 292}
 293
 294/**
 295 * i40e_prepare_fdir_filter - Prepare and program fdir filter
 296 * @pf: physical function to attach filter to
 297 * @fd_data: filter data
 298 * @add: add or delete filter
 299 * @packet_addr: address of dummy packet, used in filtering
 300 * @payload_offset: offset from dummy packet address to user defined data
 301 * @pctype: Packet type for which filter is used
 302 *
 303 * Helper function to offset data of dummy packet, program it and
 304 * handle errors.
 305 **/
 306static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
 307				    struct i40e_fdir_filter *fd_data,
 308				    bool add, char *packet_addr,
 309				    int payload_offset, u8 pctype)
 310{
 311	int ret;
 312
 313	if (fd_data->flex_filter) {
 314		u8 *payload;
 315		__be16 pattern = fd_data->flex_word;
 316		u16 off = fd_data->flex_offset;
 317
 318		payload = packet_addr + payload_offset;
 319
 320		/* If user provided vlan, offset payload by vlan header length */
 321		if (!!fd_data->vlan_tag)
 322			payload += VLAN_HLEN;
 323
 324		*((__force __be16 *)(payload + off)) = pattern;
 325	}
 326
 327	fd_data->pctype = pctype;
 328	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
 329	if (ret) {
 330		dev_info(&pf->pdev->dev,
 331			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 332			 fd_data->pctype, fd_data->fd_id, ret);
 333		/* Free the packet buffer since it wasn't added to the ring */
 334		return -EOPNOTSUPP;
 335	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 336		if (add)
 337			dev_info(&pf->pdev->dev,
 338				 "Filter OK for PCTYPE %d loc = %d\n",
 339				 fd_data->pctype, fd_data->fd_id);
 340		else
 341			dev_info(&pf->pdev->dev,
 342				 "Filter deleted for PCTYPE %d loc = %d\n",
 343				 fd_data->pctype, fd_data->fd_id);
 344	}
 345
 346	return ret;
 347}
 348
 349/**
 350 * i40e_change_filter_num - Prepare and program fdir filter
 351 * @ipv4: is layer 3 packet of version 4 or 6
 352 * @add: add or delete filter
 353 * @ipv4_filter_num: field to update
 354 * @ipv6_filter_num: field to update
 355 *
 356 * Update filter number field for pf.
 357 **/
 358static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
 359				   u16 *ipv6_filter_num)
 360{
 361	if (add) {
 362		if (ipv4)
 363			(*ipv4_filter_num)++;
 364		else
 365			(*ipv6_filter_num)++;
 366	} else {
 367		if (ipv4)
 368			(*ipv4_filter_num)--;
 369		else
 370			(*ipv6_filter_num)--;
 371	}
 372}
 373
 374#define IP_HEADER_OFFSET		14
 375#define I40E_UDPIP_DUMMY_PACKET_LEN	42
 376#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
 377/**
 378 * i40e_add_del_fdir_udp - Add/Remove UDP filters
 379 * @vsi: pointer to the targeted VSI
 380 * @fd_data: the flow director data required for the FDir descriptor
 381 * @add: true adds a filter, false removes it
 382 * @ipv4: true is v4, false is v6
 383 *
 384 * Returns 0 if the filters were successfully added or removed
 385 **/
 386static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
 387				 struct i40e_fdir_filter *fd_data,
 388				 bool add,
 389				 bool ipv4)
 390{
 391	struct i40e_pf *pf = vsi->back;
 392	u8 *raw_packet;
 393	int ret;
 394
 395	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 396	if (!raw_packet)
 397		return -ENOMEM;
 398
 399	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
 400
 401	if (ipv4)
 402		ret = i40e_prepare_fdir_filter
 403			(pf, fd_data, add, raw_packet,
 404			 I40E_UDPIP_DUMMY_PACKET_LEN,
 405			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
 406	else
 407		ret = i40e_prepare_fdir_filter
 408			(pf, fd_data, add, raw_packet,
 409			 I40E_UDPIP6_DUMMY_PACKET_LEN,
 410			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
 411
 412	if (ret) {
 413		kfree(raw_packet);
 414		return ret;
 415	}
 416
 417	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
 418			       &pf->fd_udp6_filter_cnt);
 419
 420	return 0;
 421}
 422
 423#define I40E_TCPIP_DUMMY_PACKET_LEN	54
 424#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
 425/**
 426 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
 427 * @vsi: pointer to the targeted VSI
 428 * @fd_data: the flow director data required for the FDir descriptor
 429 * @add: true adds a filter, false removes it
 430 * @ipv4: true is v4, false is v6
 431 *
 432 * Returns 0 if the filters were successfully added or removed
 433 **/
 434static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
 435				 struct i40e_fdir_filter *fd_data,
 436				 bool add,
 437				 bool ipv4)
 438{
 439	struct i40e_pf *pf = vsi->back;
 440	u8 *raw_packet;
 441	int ret;
 442
 443	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 444	if (!raw_packet)
 445		return -ENOMEM;
 446
 447	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
 448	if (ipv4)
 449		ret = i40e_prepare_fdir_filter
 450			(pf, fd_data, add, raw_packet,
 451			 I40E_TCPIP_DUMMY_PACKET_LEN,
 452			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
 453	else
 454		ret = i40e_prepare_fdir_filter
 455			(pf, fd_data, add, raw_packet,
 456			 I40E_TCPIP6_DUMMY_PACKET_LEN,
 457			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
 458
 459	if (ret) {
 460		kfree(raw_packet);
 461		return ret;
 462	}
 463
 464	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
 465			       &pf->fd_tcp6_filter_cnt);
 466
 467	if (add) {
 468		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 469		    I40E_DEBUG_FD & pf->hw.debug_mask)
 470			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 471		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 472	}
 473	return 0;
 474}
 475
 476#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
 477#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
 478/**
 479 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
 480 * a specific flow spec
 481 * @vsi: pointer to the targeted VSI
 482 * @fd_data: the flow director data required for the FDir descriptor
 483 * @add: true adds a filter, false removes it
 484 * @ipv4: true is v4, false is v6
 485 *
 486 * Returns 0 if the filters were successfully added or removed
 487 **/
 488static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
 489				  struct i40e_fdir_filter *fd_data,
 490				  bool add,
 491				  bool ipv4)
 492{
 493	struct i40e_pf *pf = vsi->back;
 494	u8 *raw_packet;
 495	int ret;
 496
 497	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 498	if (!raw_packet)
 499		return -ENOMEM;
 500
 501	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
 502
 503	if (ipv4)
 504		ret = i40e_prepare_fdir_filter
 505			(pf, fd_data, add, raw_packet,
 506			 I40E_SCTPIP_DUMMY_PACKET_LEN,
 507			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
 508	else
 509		ret = i40e_prepare_fdir_filter
 510			(pf, fd_data, add, raw_packet,
 511			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
 512			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
 513
 514	if (ret) {
 515		kfree(raw_packet);
 516		return ret;
 517	}
 518
 519	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
 520			       &pf->fd_sctp6_filter_cnt);
 521
 522	return 0;
 523}
 524
 525#define I40E_IP_DUMMY_PACKET_LEN	34
 526#define I40E_IP6_DUMMY_PACKET_LEN	54
 527/**
 528 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
 529 * a specific flow spec
 530 * @vsi: pointer to the targeted VSI
 531 * @fd_data: the flow director data required for the FDir descriptor
 532 * @add: true adds a filter, false removes it
 533 * @ipv4: true is v4, false is v6
 534 *
 535 * Returns 0 if the filters were successfully added or removed
 536 **/
 537static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
 538				struct i40e_fdir_filter *fd_data,
 539				bool add,
 540				bool ipv4)
 541{
 542	struct i40e_pf *pf = vsi->back;
 543	int payload_offset;
 544	u8 *raw_packet;
 545	int iter_start;
 546	int iter_end;
 547	int ret;
 548	int i;
 549
 550	if (ipv4) {
 551		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 552		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
 553	} else {
 554		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
 555		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
 556	}
 557
 558	for (i = iter_start; i <= iter_end; i++) {
 559		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 560		if (!raw_packet)
 561			return -ENOMEM;
 562
 563		/* IPv6 no header option differs from IPv4 */
 564		(void)i40e_create_dummy_packet
 565			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
 566			 fd_data);
 567
 568		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
 569			I40E_IP6_DUMMY_PACKET_LEN;
 570		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
 571					       payload_offset, i);
 572		if (ret)
 573			goto err;
 574	}
 575
 576	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
 577			       &pf->fd_ip6_filter_cnt);
 578
 579	return 0;
 580err:
 581	kfree(raw_packet);
 582	return ret;
 583}
 584
 585/**
 586 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 587 * @vsi: pointer to the targeted VSI
 588 * @input: filter to add or delete
 589 * @add: true adds a filter, false removes it
 590 *
 591 **/
 592int i40e_add_del_fdir(struct i40e_vsi *vsi,
 593		      struct i40e_fdir_filter *input, bool add)
 594{
 595	enum ip_ver { ipv6 = 0, ipv4 = 1 };
 596	struct i40e_pf *pf = vsi->back;
 597	int ret;
 598
 599	switch (input->flow_type & ~FLOW_EXT) {
 600	case TCP_V4_FLOW:
 601		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 602		break;
 603	case UDP_V4_FLOW:
 604		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 605		break;
 606	case SCTP_V4_FLOW:
 607		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 608		break;
 609	case TCP_V6_FLOW:
 610		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 611		break;
 612	case UDP_V6_FLOW:
 613		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 614		break;
 615	case SCTP_V6_FLOW:
 616		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 617		break;
 618	case IP_USER_FLOW:
 619		switch (input->ipl4_proto) {
 620		case IPPROTO_TCP:
 621			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 622			break;
 623		case IPPROTO_UDP:
 624			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 625			break;
 626		case IPPROTO_SCTP:
 627			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 628			break;
 629		case IPPROTO_IP:
 630			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
 631			break;
 632		default:
 633			/* We cannot support masking based on protocol */
 634			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 635				 input->ipl4_proto);
 636			return -EINVAL;
 637		}
 638		break;
 639	case IPV6_USER_FLOW:
 640		switch (input->ipl4_proto) {
 641		case IPPROTO_TCP:
 642			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 643			break;
 644		case IPPROTO_UDP:
 645			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 646			break;
 647		case IPPROTO_SCTP:
 648			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 649			break;
 650		case IPPROTO_IP:
 651			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
 652			break;
 653		default:
 654			/* We cannot support masking based on protocol */
 655			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
 656				 input->ipl4_proto);
 657			return -EINVAL;
 658		}
 659		break;
 660	default:
 661		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 662			 input->flow_type);
 663		return -EINVAL;
 664	}
 665
 666	/* The buffer allocated here will be normally be freed by
 667	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 668	 * completion. In the event of an error adding the buffer to the FDIR
 669	 * ring, it will immediately be freed. It may also be freed by
 670	 * i40e_clean_tx_ring() when closing the VSI.
 671	 */
 672	return ret;
 673}
 674
 675/**
 676 * i40e_fd_handle_status - check the Programming Status for FD
 677 * @rx_ring: the Rx ring for this descriptor
 678 * @qword0_raw: qword0
 679 * @qword1: qword1 after le_to_cpu
 680 * @prog_id: the id originally used for programming
 681 *
 682 * This is used to verify if the FD programming or invalidation
 683 * requested by SW to the HW is successful or not and take actions accordingly.
 684 **/
 685static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
 686				  u64 qword1, u8 prog_id)
 687{
 688	struct i40e_pf *pf = rx_ring->vsi->back;
 689	struct pci_dev *pdev = pf->pdev;
 690	struct i40e_16b_rx_wb_qw0 *qw0;
 691	u32 fcnt_prog, fcnt_avail;
 692	u32 error;
 693
 694	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
 695	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 696		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 697
 698	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 699		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
 700		if (qw0->hi_dword.fd_id != 0 ||
 701		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 702			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 703				 pf->fd_inv);
 704
 705		/* Check if the programming error is for ATR.
 706		 * If so, auto disable ATR and set a state for
 707		 * flush in progress. Next time we come here if flush is in
 708		 * progress do nothing, once flush is complete the state will
 709		 * be cleared.
 710		 */
 711		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 712			return;
 713
 714		pf->fd_add_err++;
 715		/* store the current atr filter count */
 716		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 717
 718		if (qw0->hi_dword.fd_id == 0 &&
 719		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 720			/* These set_bit() calls aren't atomic with the
 721			 * test_bit() here, but worse case we potentially
 722			 * disable ATR and queue a flush right after SB
 723			 * support is re-enabled. That shouldn't cause an
 724			 * issue in practice
 725			 */
 726			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 727			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 728		}
 729
 730		/* filter programming failed most likely due to table full */
 731		fcnt_prog = i40e_get_global_fd_count(pf);
 732		fcnt_avail = pf->fdir_pf_filter_count;
 733		/* If ATR is running fcnt_prog can quickly change,
 734		 * if we are very close to full, it makes sense to disable
 735		 * FD ATR/SB and then re-enable it when there is room.
 736		 */
 737		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 738			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 739			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 740					      pf->state))
 741				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 742					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 743		}
 744	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 745		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 746			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 747				 qw0->hi_dword.fd_id);
 748	}
 749}
 750
 751/**
 752 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 753 * @ring:      the ring that owns the buffer
 754 * @tx_buffer: the buffer to free
 755 **/
 756static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 757					    struct i40e_tx_buffer *tx_buffer)
 758{
 759	if (tx_buffer->skb) {
 760		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 761			kfree(tx_buffer->raw_buf);
 762		else if (ring_is_xdp(ring))
 763			xdp_return_frame(tx_buffer->xdpf);
 764		else
 765			dev_kfree_skb_any(tx_buffer->skb);
 766		if (dma_unmap_len(tx_buffer, len))
 767			dma_unmap_single(ring->dev,
 768					 dma_unmap_addr(tx_buffer, dma),
 769					 dma_unmap_len(tx_buffer, len),
 770					 DMA_TO_DEVICE);
 771	} else if (dma_unmap_len(tx_buffer, len)) {
 772		dma_unmap_page(ring->dev,
 773			       dma_unmap_addr(tx_buffer, dma),
 774			       dma_unmap_len(tx_buffer, len),
 775			       DMA_TO_DEVICE);
 776	}
 777
 778	tx_buffer->next_to_watch = NULL;
 779	tx_buffer->skb = NULL;
 780	dma_unmap_len_set(tx_buffer, len, 0);
 781	/* tx_buffer must be completely set up in the transmit path */
 782}
 783
 784/**
 785 * i40e_clean_tx_ring - Free any empty Tx buffers
 786 * @tx_ring: ring to be cleaned
 787 **/
 788void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 789{
 790	unsigned long bi_size;
 791	u16 i;
 792
 793	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 794		i40e_xsk_clean_tx_ring(tx_ring);
 795	} else {
 796		/* ring already cleared, nothing to do */
 797		if (!tx_ring->tx_bi)
 798			return;
 799
 800		/* Free all the Tx ring sk_buffs */
 801		for (i = 0; i < tx_ring->count; i++)
 802			i40e_unmap_and_free_tx_resource(tx_ring,
 803							&tx_ring->tx_bi[i]);
 804	}
 805
 806	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 807	memset(tx_ring->tx_bi, 0, bi_size);
 808
 809	/* Zero out the descriptor ring */
 810	memset(tx_ring->desc, 0, tx_ring->size);
 811
 812	tx_ring->next_to_use = 0;
 813	tx_ring->next_to_clean = 0;
 814
 815	if (!tx_ring->netdev)
 816		return;
 817
 818	/* cleanup Tx queue statistics */
 819	netdev_tx_reset_queue(txring_txq(tx_ring));
 820}
 821
 822/**
 823 * i40e_free_tx_resources - Free Tx resources per queue
 824 * @tx_ring: Tx descriptor ring for a specific queue
 825 *
 826 * Free all transmit software resources
 827 **/
 828void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 829{
 830	i40e_clean_tx_ring(tx_ring);
 831	kfree(tx_ring->tx_bi);
 832	tx_ring->tx_bi = NULL;
 833	kfree(tx_ring->xsk_descs);
 834	tx_ring->xsk_descs = NULL;
 835
 836	if (tx_ring->desc) {
 837		dma_free_coherent(tx_ring->dev, tx_ring->size,
 838				  tx_ring->desc, tx_ring->dma);
 839		tx_ring->desc = NULL;
 840	}
 841}
 842
 843/**
 844 * i40e_get_tx_pending - how many tx descriptors not processed
 845 * @ring: the ring of descriptors
 846 * @in_sw: use SW variables
 847 *
 848 * Since there is no access to the ring head register
 849 * in XL710, we need to use our local copies
 850 **/
 851u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 852{
 853	u32 head, tail;
 854
 855	if (!in_sw) {
 856		head = i40e_get_head(ring);
 857		tail = readl(ring->tail);
 858	} else {
 859		head = ring->next_to_clean;
 860		tail = ring->next_to_use;
 861	}
 862
 863	if (head != tail)
 864		return (head < tail) ?
 865			tail - head : (tail + ring->count - head);
 866
 867	return 0;
 868}
 869
 870/**
 871 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 872 * @vsi:  pointer to vsi struct with tx queues
 873 *
 874 * VSI has netdev and netdev has TX queues. This function is to check each of
 875 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 
 876 **/
 877void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 878{
 
 879	struct i40e_ring *tx_ring = NULL;
 880	struct net_device *netdev;
 881	unsigned int i;
 882	int packets;
 883
 884	if (!vsi)
 885		return;
 886
 887	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 888		return;
 889
 890	netdev = vsi->netdev;
 891	if (!netdev)
 892		return;
 893
 894	if (!netif_carrier_ok(netdev))
 895		return;
 896
 897	for (i = 0; i < vsi->num_queue_pairs; i++) {
 898		tx_ring = vsi->tx_rings[i];
 899		if (tx_ring && tx_ring->desc) {
 900			/* If packet counter has not changed the queue is
 901			 * likely stalled, so force an interrupt for this
 902			 * queue.
 903			 *
 904			 * prev_pkt_ctr would be negative if there was no
 905			 * pending work.
 906			 */
 907			packets = tx_ring->stats.packets & INT_MAX;
 908			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 909				i40e_force_wb(vsi, tx_ring->q_vector);
 910				continue;
 911			}
 912
 913			/* Memory barrier between read of packet count and call
 914			 * to i40e_get_tx_pending()
 915			 */
 916			smp_rmb();
 917			tx_ring->tx_stats.prev_pkt_ctr =
 918			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 919		}
 920	}
 921}
 922
 923/**
 924 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 925 * @vsi: the VSI we care about
 926 * @tx_ring: Tx ring to clean
 927 * @napi_budget: Used to determine if we are in netpoll
 
 928 *
 929 * Returns true if there's any budget left (e.g. the clean is finished)
 930 **/
 931static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 932			      struct i40e_ring *tx_ring, int napi_budget)
 
 933{
 934	int i = tx_ring->next_to_clean;
 935	struct i40e_tx_buffer *tx_buf;
 936	struct i40e_tx_desc *tx_head;
 937	struct i40e_tx_desc *tx_desc;
 938	unsigned int total_bytes = 0, total_packets = 0;
 939	unsigned int budget = vsi->work_limit;
 940
 941	tx_buf = &tx_ring->tx_bi[i];
 942	tx_desc = I40E_TX_DESC(tx_ring, i);
 943	i -= tx_ring->count;
 944
 945	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 946
 947	do {
 948		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 949
 950		/* if next_to_watch is not set then there is no work pending */
 951		if (!eop_desc)
 952			break;
 953
 954		/* prevent any other reads prior to eop_desc */
 955		smp_rmb();
 956
 957		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 958		/* we have caught up to head, no work left to do */
 959		if (tx_head == tx_desc)
 960			break;
 961
 962		/* clear next_to_watch to prevent false hangs */
 963		tx_buf->next_to_watch = NULL;
 964
 965		/* update the statistics for this packet */
 966		total_bytes += tx_buf->bytecount;
 967		total_packets += tx_buf->gso_segs;
 968
 969		/* free the skb/XDP data */
 970		if (ring_is_xdp(tx_ring))
 971			xdp_return_frame(tx_buf->xdpf);
 972		else
 973			napi_consume_skb(tx_buf->skb, napi_budget);
 974
 975		/* unmap skb header data */
 976		dma_unmap_single(tx_ring->dev,
 977				 dma_unmap_addr(tx_buf, dma),
 978				 dma_unmap_len(tx_buf, len),
 979				 DMA_TO_DEVICE);
 980
 981		/* clear tx_buffer data */
 982		tx_buf->skb = NULL;
 983		dma_unmap_len_set(tx_buf, len, 0);
 984
 985		/* unmap remaining buffers */
 986		while (tx_desc != eop_desc) {
 987			i40e_trace(clean_tx_irq_unmap,
 988				   tx_ring, tx_desc, tx_buf);
 989
 990			tx_buf++;
 991			tx_desc++;
 992			i++;
 993			if (unlikely(!i)) {
 994				i -= tx_ring->count;
 995				tx_buf = tx_ring->tx_bi;
 996				tx_desc = I40E_TX_DESC(tx_ring, 0);
 997			}
 998
 999			/* unmap any remaining paged data */
1000			if (dma_unmap_len(tx_buf, len)) {
1001				dma_unmap_page(tx_ring->dev,
1002					       dma_unmap_addr(tx_buf, dma),
1003					       dma_unmap_len(tx_buf, len),
1004					       DMA_TO_DEVICE);
1005				dma_unmap_len_set(tx_buf, len, 0);
1006			}
1007		}
1008
1009		/* move us one more past the eop_desc for start of next pkt */
1010		tx_buf++;
1011		tx_desc++;
1012		i++;
1013		if (unlikely(!i)) {
1014			i -= tx_ring->count;
1015			tx_buf = tx_ring->tx_bi;
1016			tx_desc = I40E_TX_DESC(tx_ring, 0);
1017		}
1018
1019		prefetch(tx_desc);
1020
1021		/* update budget accounting */
1022		budget--;
1023	} while (likely(budget));
1024
1025	i += tx_ring->count;
1026	tx_ring->next_to_clean = i;
1027	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1028	i40e_arm_wb(tx_ring, vsi, budget);
1029
1030	if (ring_is_xdp(tx_ring))
1031		return !!budget;
1032
1033	/* notify netdev of completed buffers */
1034	netdev_tx_completed_queue(txring_txq(tx_ring),
1035				  total_packets, total_bytes);
1036
1037#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1038	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1039		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1040		/* Make sure that anybody stopping the queue after this
1041		 * sees the new next_to_clean.
1042		 */
1043		smp_mb();
1044		if (__netif_subqueue_stopped(tx_ring->netdev,
1045					     tx_ring->queue_index) &&
1046		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1047			netif_wake_subqueue(tx_ring->netdev,
1048					    tx_ring->queue_index);
1049			++tx_ring->tx_stats.restart_queue;
1050		}
1051	}
1052
 
1053	return !!budget;
1054}
1055
1056/**
1057 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1058 * @vsi: the VSI we care about
1059 * @q_vector: the vector on which to enable writeback
1060 *
1061 **/
1062static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1063				  struct i40e_q_vector *q_vector)
1064{
1065	u16 flags = q_vector->tx.ring[0].flags;
1066	u32 val;
1067
1068	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1069		return;
1070
1071	if (q_vector->arm_wb_state)
1072		return;
1073
1074	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1075		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1076		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1077
1078		wr32(&vsi->back->hw,
1079		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1080		     val);
1081	} else {
1082		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1083		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1084
1085		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1086	}
1087	q_vector->arm_wb_state = true;
1088}
1089
1090/**
1091 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1092 * @vsi: the VSI we care about
1093 * @q_vector: the vector  on which to force writeback
1094 *
1095 **/
1096void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1097{
1098	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1099		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1100			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1101			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1102			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1103			  /* allow 00 to be written to the index */
1104
1105		wr32(&vsi->back->hw,
1106		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1107	} else {
1108		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1109			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1110			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1111			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1112			/* allow 00 to be written to the index */
1113
1114		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1115	}
1116}
1117
1118static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1119					struct i40e_ring_container *rc)
1120{
1121	return &q_vector->rx == rc;
1122}
1123
1124static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1125{
1126	unsigned int divisor;
1127
1128	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1129	case I40E_LINK_SPEED_40GB:
1130		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1131		break;
1132	case I40E_LINK_SPEED_25GB:
1133	case I40E_LINK_SPEED_20GB:
1134		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1135		break;
1136	default:
1137	case I40E_LINK_SPEED_10GB:
1138		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1139		break;
1140	case I40E_LINK_SPEED_1GB:
1141	case I40E_LINK_SPEED_100MB:
1142		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1143		break;
1144	}
1145
1146	return divisor;
1147}
1148
1149/**
1150 * i40e_update_itr - update the dynamic ITR value based on statistics
1151 * @q_vector: structure containing interrupt and ring information
1152 * @rc: structure containing ring performance data
1153 *
1154 * Stores a new ITR value based on packets and byte
1155 * counts during the last interrupt.  The advantage of per interrupt
1156 * computation is faster updates and more accurate ITR for the current
1157 * traffic pattern.  Constants in this function were computed
1158 * based on theoretical maximum wire speed and thresholds were set based
1159 * on testing data as well as attempting to minimize response time
1160 * while increasing bulk throughput.
1161 **/
1162static void i40e_update_itr(struct i40e_q_vector *q_vector,
1163			    struct i40e_ring_container *rc)
1164{
1165	unsigned int avg_wire_size, packets, bytes, itr;
1166	unsigned long next_update = jiffies;
1167
1168	/* If we don't have any rings just leave ourselves set for maximum
1169	 * possible latency so we take ourselves out of the equation.
1170	 */
1171	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1172		return;
1173
1174	/* For Rx we want to push the delay up and default to low latency.
1175	 * for Tx we want to pull the delay down and default to high latency.
1176	 */
1177	itr = i40e_container_is_rx(q_vector, rc) ?
1178	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1179	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1180
1181	/* If we didn't update within up to 1 - 2 jiffies we can assume
1182	 * that either packets are coming in so slow there hasn't been
1183	 * any work, or that there is so much work that NAPI is dealing
1184	 * with interrupt moderation and we don't need to do anything.
1185	 */
1186	if (time_after(next_update, rc->next_update))
1187		goto clear_counts;
1188
1189	/* If itr_countdown is set it means we programmed an ITR within
1190	 * the last 4 interrupt cycles. This has a side effect of us
1191	 * potentially firing an early interrupt. In order to work around
1192	 * this we need to throw out any data received for a few
1193	 * interrupts following the update.
1194	 */
1195	if (q_vector->itr_countdown) {
1196		itr = rc->target_itr;
1197		goto clear_counts;
1198	}
1199
1200	packets = rc->total_packets;
1201	bytes = rc->total_bytes;
1202
1203	if (i40e_container_is_rx(q_vector, rc)) {
1204		/* If Rx there are 1 to 4 packets and bytes are less than
1205		 * 9000 assume insufficient data to use bulk rate limiting
1206		 * approach unless Tx is already in bulk rate limiting. We
1207		 * are likely latency driven.
1208		 */
1209		if (packets && packets < 4 && bytes < 9000 &&
1210		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1211			itr = I40E_ITR_ADAPTIVE_LATENCY;
1212			goto adjust_by_size;
1213		}
1214	} else if (packets < 4) {
1215		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1216		 * bulk mode and we are receiving 4 or fewer packets just
1217		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1218		 * that the Rx can relax.
1219		 */
1220		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1221		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1222		     I40E_ITR_ADAPTIVE_MAX_USECS)
1223			goto clear_counts;
1224	} else if (packets > 32) {
1225		/* If we have processed over 32 packets in a single interrupt
1226		 * for Tx assume we need to switch over to "bulk" mode.
1227		 */
1228		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1229	}
1230
1231	/* We have no packets to actually measure against. This means
1232	 * either one of the other queues on this vector is active or
1233	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1234	 *
1235	 * Between 4 and 56 we can assume that our current interrupt delay
1236	 * is only slightly too low. As such we should increase it by a small
1237	 * fixed amount.
1238	 */
1239	if (packets < 56) {
1240		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1241		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1242			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1243			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1244		}
1245		goto clear_counts;
1246	}
1247
1248	if (packets <= 256) {
1249		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1250		itr &= I40E_ITR_MASK;
1251
1252		/* Between 56 and 112 is our "goldilocks" zone where we are
1253		 * working out "just right". Just report that our current
1254		 * ITR is good for us.
1255		 */
1256		if (packets <= 112)
1257			goto clear_counts;
1258
1259		/* If packet count is 128 or greater we are likely looking
1260		 * at a slight overrun of the delay we want. Try halving
1261		 * our delay to see if that will cut the number of packets
1262		 * in half per interrupt.
1263		 */
1264		itr /= 2;
1265		itr &= I40E_ITR_MASK;
1266		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1267			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1268
1269		goto clear_counts;
1270	}
1271
1272	/* The paths below assume we are dealing with a bulk ITR since
1273	 * number of packets is greater than 256. We are just going to have
1274	 * to compute a value and try to bring the count under control,
1275	 * though for smaller packet sizes there isn't much we can do as
1276	 * NAPI polling will likely be kicking in sooner rather than later.
1277	 */
1278	itr = I40E_ITR_ADAPTIVE_BULK;
1279
1280adjust_by_size:
1281	/* If packet counts are 256 or greater we can assume we have a gross
1282	 * overestimation of what the rate should be. Instead of trying to fine
1283	 * tune it just use the formula below to try and dial in an exact value
1284	 * give the current packet size of the frame.
1285	 */
1286	avg_wire_size = bytes / packets;
1287
1288	/* The following is a crude approximation of:
1289	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1290	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1291	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1292	 *
1293	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1294	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1295	 * formula down to
1296	 *
1297	 *  (170 * (size + 24)) / (size + 640) = ITR
1298	 *
1299	 * We first do some math on the packet size and then finally bitshift
1300	 * by 8 after rounding up. We also have to account for PCIe link speed
1301	 * difference as ITR scales based on this.
1302	 */
1303	if (avg_wire_size <= 60) {
1304		/* Start at 250k ints/sec */
1305		avg_wire_size = 4096;
1306	} else if (avg_wire_size <= 380) {
1307		/* 250K ints/sec to 60K ints/sec */
1308		avg_wire_size *= 40;
1309		avg_wire_size += 1696;
1310	} else if (avg_wire_size <= 1084) {
1311		/* 60K ints/sec to 36K ints/sec */
1312		avg_wire_size *= 15;
1313		avg_wire_size += 11452;
1314	} else if (avg_wire_size <= 1980) {
1315		/* 36K ints/sec to 30K ints/sec */
1316		avg_wire_size *= 5;
1317		avg_wire_size += 22420;
1318	} else {
1319		/* plateau at a limit of 30K ints/sec */
1320		avg_wire_size = 32256;
1321	}
1322
1323	/* If we are in low latency mode halve our delay which doubles the
1324	 * rate to somewhere between 100K to 16K ints/sec
1325	 */
1326	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1327		avg_wire_size /= 2;
1328
1329	/* Resultant value is 256 times larger than it needs to be. This
1330	 * gives us room to adjust the value as needed to either increase
1331	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1332	 *
1333	 * Use addition as we have already recorded the new latency flag
1334	 * for the ITR value.
1335	 */
1336	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1337	       I40E_ITR_ADAPTIVE_MIN_INC;
1338
1339	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1340		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1341		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1342	}
1343
1344clear_counts:
1345	/* write back value */
1346	rc->target_itr = itr;
1347
1348	/* next update should occur within next jiffy */
1349	rc->next_update = next_update + 1;
1350
1351	rc->total_bytes = 0;
1352	rc->total_packets = 0;
1353}
1354
1355static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1356{
1357	return &rx_ring->rx_bi[idx];
1358}
1359
1360/**
1361 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1362 * @rx_ring: rx descriptor ring to store buffers on
1363 * @old_buff: donor buffer to have page reused
1364 *
1365 * Synchronizes page for reuse by the adapter
1366 **/
1367static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1368			       struct i40e_rx_buffer *old_buff)
1369{
1370	struct i40e_rx_buffer *new_buff;
1371	u16 nta = rx_ring->next_to_alloc;
1372
1373	new_buff = i40e_rx_bi(rx_ring, nta);
1374
1375	/* update, and store next to alloc */
1376	nta++;
1377	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1378
1379	/* transfer page from old buffer to new buffer */
1380	new_buff->dma		= old_buff->dma;
1381	new_buff->page		= old_buff->page;
1382	new_buff->page_offset	= old_buff->page_offset;
1383	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1384
1385	rx_ring->rx_stats.page_reuse_count++;
1386
1387	/* clear contents of buffer_info */
1388	old_buff->page = NULL;
1389}
1390
1391/**
1392 * i40e_clean_programming_status - clean the programming status descriptor
1393 * @rx_ring: the rx ring that has this descriptor
1394 * @qword0_raw: qword0
1395 * @qword1: qword1 representing status_error_len in CPU ordering
1396 *
1397 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1398 * status being successful or not and take actions accordingly. FCoE should
1399 * handle its context/filter programming/invalidation status and take actions.
1400 *
1401 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1402 **/
1403void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1404				   u64 qword1)
1405{
1406	u8 id;
1407
1408	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1409		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1410
1411	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1412		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1413}
1414
1415/**
1416 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1417 * @tx_ring: the tx ring to set up
1418 *
1419 * Return 0 on success, negative on error
1420 **/
1421int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1422{
1423	struct device *dev = tx_ring->dev;
1424	int bi_size;
1425
1426	if (!dev)
1427		return -ENOMEM;
1428
1429	/* warn if we are about to overwrite the pointer */
1430	WARN_ON(tx_ring->tx_bi);
1431	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1432	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1433	if (!tx_ring->tx_bi)
1434		goto err;
1435
1436	if (ring_is_xdp(tx_ring)) {
1437		tx_ring->xsk_descs = kcalloc(I40E_MAX_NUM_DESCRIPTORS, sizeof(*tx_ring->xsk_descs),
1438					     GFP_KERNEL);
1439		if (!tx_ring->xsk_descs)
1440			goto err;
1441	}
1442
1443	u64_stats_init(&tx_ring->syncp);
1444
1445	/* round up to nearest 4K */
1446	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1447	/* add u32 for head writeback, align after this takes care of
1448	 * guaranteeing this is at least one cache line in size
1449	 */
1450	tx_ring->size += sizeof(u32);
1451	tx_ring->size = ALIGN(tx_ring->size, 4096);
1452	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1453					   &tx_ring->dma, GFP_KERNEL);
1454	if (!tx_ring->desc) {
1455		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1456			 tx_ring->size);
1457		goto err;
1458	}
1459
1460	tx_ring->next_to_use = 0;
1461	tx_ring->next_to_clean = 0;
1462	tx_ring->tx_stats.prev_pkt_ctr = -1;
1463	return 0;
1464
1465err:
1466	kfree(tx_ring->xsk_descs);
1467	tx_ring->xsk_descs = NULL;
1468	kfree(tx_ring->tx_bi);
1469	tx_ring->tx_bi = NULL;
1470	return -ENOMEM;
1471}
1472
1473int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1474{
1475	unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1476
1477	rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1478	return rx_ring->rx_bi ? 0 : -ENOMEM;
1479}
1480
1481static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1482{
1483	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1484}
1485
1486/**
1487 * i40e_clean_rx_ring - Free Rx buffers
1488 * @rx_ring: ring to be cleaned
1489 **/
1490void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1491{
1492	u16 i;
1493
1494	/* ring already cleared, nothing to do */
1495	if (!rx_ring->rx_bi)
1496		return;
1497
1498	if (rx_ring->skb) {
1499		dev_kfree_skb(rx_ring->skb);
1500		rx_ring->skb = NULL;
1501	}
1502
1503	if (rx_ring->xsk_pool) {
1504		i40e_xsk_clean_rx_ring(rx_ring);
1505		goto skip_free;
1506	}
1507
1508	/* Free all the Rx ring sk_buffs */
1509	for (i = 0; i < rx_ring->count; i++) {
1510		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1511
1512		if (!rx_bi->page)
1513			continue;
1514
1515		/* Invalidate cache lines that may have been written to by
1516		 * device so that we avoid corrupting memory.
1517		 */
1518		dma_sync_single_range_for_cpu(rx_ring->dev,
1519					      rx_bi->dma,
1520					      rx_bi->page_offset,
1521					      rx_ring->rx_buf_len,
1522					      DMA_FROM_DEVICE);
1523
1524		/* free resources associated with mapping */
1525		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1526				     i40e_rx_pg_size(rx_ring),
1527				     DMA_FROM_DEVICE,
1528				     I40E_RX_DMA_ATTR);
1529
1530		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1531
1532		rx_bi->page = NULL;
1533		rx_bi->page_offset = 0;
1534	}
1535
1536skip_free:
1537	if (rx_ring->xsk_pool)
1538		i40e_clear_rx_bi_zc(rx_ring);
1539	else
1540		i40e_clear_rx_bi(rx_ring);
1541
1542	/* Zero out the descriptor ring */
1543	memset(rx_ring->desc, 0, rx_ring->size);
1544
1545	rx_ring->next_to_alloc = 0;
1546	rx_ring->next_to_clean = 0;
 
1547	rx_ring->next_to_use = 0;
1548}
1549
1550/**
1551 * i40e_free_rx_resources - Free Rx resources
1552 * @rx_ring: ring to clean the resources from
1553 *
1554 * Free all receive software resources
1555 **/
1556void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1557{
1558	i40e_clean_rx_ring(rx_ring);
1559	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1560		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1561	rx_ring->xdp_prog = NULL;
1562	kfree(rx_ring->rx_bi);
1563	rx_ring->rx_bi = NULL;
1564
1565	if (rx_ring->desc) {
1566		dma_free_coherent(rx_ring->dev, rx_ring->size,
1567				  rx_ring->desc, rx_ring->dma);
1568		rx_ring->desc = NULL;
1569	}
1570}
1571
1572/**
1573 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1574 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1575 *
1576 * Returns 0 on success, negative on failure
1577 **/
1578int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1579{
1580	struct device *dev = rx_ring->dev;
1581	int err;
1582
1583	u64_stats_init(&rx_ring->syncp);
1584
1585	/* Round up to nearest 4K */
1586	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1587	rx_ring->size = ALIGN(rx_ring->size, 4096);
1588	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1589					   &rx_ring->dma, GFP_KERNEL);
1590
1591	if (!rx_ring->desc) {
1592		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1593			 rx_ring->size);
1594		return -ENOMEM;
1595	}
1596
1597	rx_ring->next_to_alloc = 0;
1598	rx_ring->next_to_clean = 0;
 
1599	rx_ring->next_to_use = 0;
1600
1601	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1602	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1603		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1604				       rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1605		if (err < 0)
1606			return err;
1607	}
1608
1609	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
 
 
 
1610
1611	return 0;
1612}
1613
1614/**
1615 * i40e_release_rx_desc - Store the new tail and head values
1616 * @rx_ring: ring to bump
1617 * @val: new head index
1618 **/
1619void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1620{
1621	rx_ring->next_to_use = val;
1622
1623	/* update next to alloc since we have filled the ring */
1624	rx_ring->next_to_alloc = val;
1625
1626	/* Force memory writes to complete before letting h/w
1627	 * know there are new descriptors to fetch.  (Only
1628	 * applicable for weak-ordered memory model archs,
1629	 * such as IA-64).
1630	 */
1631	wmb();
1632	writel(val, rx_ring->tail);
1633}
1634
 
1635static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1636					   unsigned int size)
1637{
1638	unsigned int truesize;
1639
1640#if (PAGE_SIZE < 8192)
1641	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1642#else
1643	truesize = rx_ring->rx_offset ?
1644		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1645		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1646		SKB_DATA_ALIGN(size);
1647#endif
1648	return truesize;
1649}
 
1650
1651/**
1652 * i40e_alloc_mapped_page - recycle or make a new page
1653 * @rx_ring: ring to use
1654 * @bi: rx_buffer struct to modify
1655 *
1656 * Returns true if the page was successfully allocated or
1657 * reused.
1658 **/
1659static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1660				   struct i40e_rx_buffer *bi)
1661{
1662	struct page *page = bi->page;
1663	dma_addr_t dma;
1664
1665	/* since we are recycling buffers we should seldom need to alloc */
1666	if (likely(page)) {
1667		rx_ring->rx_stats.page_reuse_count++;
1668		return true;
1669	}
1670
1671	/* alloc new page for storage */
1672	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1673	if (unlikely(!page)) {
1674		rx_ring->rx_stats.alloc_page_failed++;
1675		return false;
1676	}
1677
 
 
1678	/* map page for use */
1679	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1680				 i40e_rx_pg_size(rx_ring),
1681				 DMA_FROM_DEVICE,
1682				 I40E_RX_DMA_ATTR);
1683
1684	/* if mapping failed free memory back to system since
1685	 * there isn't much point in holding memory we can't use
1686	 */
1687	if (dma_mapping_error(rx_ring->dev, dma)) {
1688		__free_pages(page, i40e_rx_pg_order(rx_ring));
1689		rx_ring->rx_stats.alloc_page_failed++;
1690		return false;
1691	}
1692
1693	bi->dma = dma;
1694	bi->page = page;
1695	bi->page_offset = rx_ring->rx_offset;
1696	page_ref_add(page, USHRT_MAX - 1);
1697	bi->pagecnt_bias = USHRT_MAX;
1698
1699	return true;
1700}
1701
1702/**
1703 * i40e_alloc_rx_buffers - Replace used receive buffers
1704 * @rx_ring: ring to place buffers on
1705 * @cleaned_count: number of buffers to replace
1706 *
1707 * Returns false if all allocations were successful, true if any fail
1708 **/
1709bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1710{
1711	u16 ntu = rx_ring->next_to_use;
1712	union i40e_rx_desc *rx_desc;
1713	struct i40e_rx_buffer *bi;
1714
1715	/* do nothing if no valid netdev defined */
1716	if (!rx_ring->netdev || !cleaned_count)
1717		return false;
1718
1719	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1720	bi = i40e_rx_bi(rx_ring, ntu);
1721
1722	do {
1723		if (!i40e_alloc_mapped_page(rx_ring, bi))
1724			goto no_buffers;
1725
1726		/* sync the buffer for use by the device */
1727		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1728						 bi->page_offset,
1729						 rx_ring->rx_buf_len,
1730						 DMA_FROM_DEVICE);
1731
1732		/* Refresh the desc even if buffer_addrs didn't change
1733		 * because each write-back erases this info.
1734		 */
1735		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1736
1737		rx_desc++;
1738		bi++;
1739		ntu++;
1740		if (unlikely(ntu == rx_ring->count)) {
1741			rx_desc = I40E_RX_DESC(rx_ring, 0);
1742			bi = i40e_rx_bi(rx_ring, 0);
1743			ntu = 0;
1744		}
1745
1746		/* clear the status bits for the next_to_use descriptor */
1747		rx_desc->wb.qword1.status_error_len = 0;
1748
1749		cleaned_count--;
1750	} while (cleaned_count);
1751
1752	if (rx_ring->next_to_use != ntu)
1753		i40e_release_rx_desc(rx_ring, ntu);
1754
1755	return false;
1756
1757no_buffers:
1758	if (rx_ring->next_to_use != ntu)
1759		i40e_release_rx_desc(rx_ring, ntu);
1760
1761	/* make sure to come back via polling to try again after
1762	 * allocation failure
1763	 */
1764	return true;
1765}
1766
1767/**
1768 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1769 * @vsi: the VSI we care about
1770 * @skb: skb currently being received and modified
1771 * @rx_desc: the receive descriptor
1772 **/
1773static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1774				    struct sk_buff *skb,
1775				    union i40e_rx_desc *rx_desc)
1776{
1777	struct i40e_rx_ptype_decoded decoded;
1778	u32 rx_error, rx_status;
1779	bool ipv4, ipv6;
1780	u8 ptype;
1781	u64 qword;
1782
1783	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1784	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1785	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1786		   I40E_RXD_QW1_ERROR_SHIFT;
1787	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1788		    I40E_RXD_QW1_STATUS_SHIFT;
1789	decoded = decode_rx_desc_ptype(ptype);
1790
1791	skb->ip_summed = CHECKSUM_NONE;
1792
1793	skb_checksum_none_assert(skb);
 
1794
1795	/* Rx csum enabled and ip headers found? */
1796	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1797		return;
1798
 
 
 
1799	/* did the hardware decode the packet and checksum? */
1800	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1801		return;
1802
1803	/* both known and outer_ip must be set for the below code to work */
1804	if (!(decoded.known && decoded.outer_ip))
1805		return;
1806
1807	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1808	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1809	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1810	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1811
1812	if (ipv4 &&
1813	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1814			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1815		goto checksum_fail;
1816
1817	/* likely incorrect csum if alternate IP extension headers found */
1818	if (ipv6 &&
1819	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1820		/* don't increment checksum err here, non-fatal err */
1821		return;
1822
1823	/* there was some L4 error, count error and punt packet to the stack */
1824	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1825		goto checksum_fail;
1826
1827	/* handle packets that were not able to be checksummed due
1828	 * to arrival speed, in this case the stack can compute
1829	 * the csum.
1830	 */
1831	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1832		return;
1833
1834	/* If there is an outer header present that might contain a checksum
1835	 * we need to bump the checksum level by 1 to reflect the fact that
1836	 * we are indicating we validated the inner checksum.
1837	 */
1838	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1839		skb->csum_level = 1;
1840
1841	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1842	switch (decoded.inner_prot) {
1843	case I40E_RX_PTYPE_INNER_PROT_TCP:
1844	case I40E_RX_PTYPE_INNER_PROT_UDP:
1845	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1846		skb->ip_summed = CHECKSUM_UNNECESSARY;
1847		fallthrough;
1848	default:
1849		break;
1850	}
1851
1852	return;
1853
1854checksum_fail:
1855	vsi->back->hw_csum_rx_error++;
1856}
1857
1858/**
1859 * i40e_ptype_to_htype - get a hash type
1860 * @ptype: the ptype value from the descriptor
1861 *
1862 * Returns a hash type to be used by skb_set_hash
1863 **/
1864static inline int i40e_ptype_to_htype(u8 ptype)
1865{
1866	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1867
1868	if (!decoded.known)
1869		return PKT_HASH_TYPE_NONE;
1870
1871	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1872	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1873		return PKT_HASH_TYPE_L4;
1874	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1875		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1876		return PKT_HASH_TYPE_L3;
1877	else
1878		return PKT_HASH_TYPE_L2;
1879}
1880
1881/**
1882 * i40e_rx_hash - set the hash value in the skb
1883 * @ring: descriptor ring
1884 * @rx_desc: specific descriptor
1885 * @skb: skb currently being received and modified
1886 * @rx_ptype: Rx packet type
1887 **/
1888static inline void i40e_rx_hash(struct i40e_ring *ring,
1889				union i40e_rx_desc *rx_desc,
1890				struct sk_buff *skb,
1891				u8 rx_ptype)
1892{
 
1893	u32 hash;
1894	const __le64 rss_mask =
1895		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1896			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1897
1898	if (!(ring->netdev->features & NETIF_F_RXHASH))
 
1899		return;
1900
1901	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1902		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1903		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1904	}
1905}
1906
1907/**
1908 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1909 * @rx_ring: rx descriptor ring packet is being transacted on
1910 * @rx_desc: pointer to the EOP Rx descriptor
1911 * @skb: pointer to current skb being populated
1912 *
1913 * This function checks the ring, descriptor, and packet information in
1914 * order to populate the hash, checksum, VLAN, protocol, and
1915 * other fields within the skb.
1916 **/
1917void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1918			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1919{
1920	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1921	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1922			I40E_RXD_QW1_STATUS_SHIFT;
1923	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1924	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1925		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1926	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1927		      I40E_RXD_QW1_PTYPE_SHIFT;
1928
1929	if (unlikely(tsynvalid))
1930		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1931
1932	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1933
1934	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1935
1936	skb_record_rx_queue(skb, rx_ring->queue_index);
1937
1938	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1939		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1940
1941		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1942				       le16_to_cpu(vlan_tag));
1943	}
1944
1945	/* modifies the skb - consumes the enet header */
1946	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1947}
1948
1949/**
1950 * i40e_cleanup_headers - Correct empty headers
1951 * @rx_ring: rx descriptor ring packet is being transacted on
1952 * @skb: pointer to current skb being fixed
1953 * @rx_desc: pointer to the EOP Rx descriptor
1954 *
1955 * In addition if skb is not at least 60 bytes we need to pad it so that
1956 * it is large enough to qualify as a valid Ethernet frame.
1957 *
1958 * Returns true if an error was encountered and skb was freed.
1959 **/
1960static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1961				 union i40e_rx_desc *rx_desc)
1962
1963{
1964	/* ERR_MASK will only have valid bits if EOP set, and
1965	 * what we are doing here is actually checking
1966	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1967	 * the error field
1968	 */
1969	if (unlikely(i40e_test_staterr(rx_desc,
1970				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1971		dev_kfree_skb_any(skb);
1972		return true;
1973	}
1974
1975	/* if eth_skb_pad returns an error the skb was freed */
1976	if (eth_skb_pad(skb))
1977		return true;
1978
1979	return false;
1980}
1981
1982/**
1983 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1984 * @rx_buffer: buffer containing the page
1985 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1986 *
1987 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1988 * which will assign the current buffer to the buffer that next_to_alloc is
1989 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1990 * page freed
 
 
 
1991 */
1992static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1993				   int rx_buffer_pgcnt)
1994{
1995	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1996	struct page *page = rx_buffer->page;
1997
1998	/* Is any reuse possible? */
1999	if (!dev_page_is_reusable(page))
 
2000		return false;
 
2001
2002#if (PAGE_SIZE < 8192)
2003	/* if we are only owner of page we can reuse it */
2004	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
 
2005		return false;
 
2006#else
2007#define I40E_LAST_OFFSET \
2008	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
2009	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
 
2010		return false;
 
2011#endif
2012
2013	/* If we have drained the page fragment pool we need to update
2014	 * the pagecnt_bias and page count so that we fully restock the
2015	 * number of references the driver holds.
2016	 */
2017	if (unlikely(pagecnt_bias == 1)) {
2018		page_ref_add(page, USHRT_MAX - 1);
2019		rx_buffer->pagecnt_bias = USHRT_MAX;
2020	}
2021
2022	return true;
2023}
2024
2025/**
2026 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
2027 * @rx_ring: rx descriptor ring to transact packets on
2028 * @rx_buffer: buffer containing page to add
2029 * @skb: sk_buff to place the data into
2030 * @size: packet length from rx_desc
2031 *
2032 * This function will add the data contained in rx_buffer->page to the skb.
2033 * It will just attach the page as a frag to the skb.
2034 *
2035 * The function will then update the page offset.
2036 **/
2037static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
2038			     struct i40e_rx_buffer *rx_buffer,
2039			     struct sk_buff *skb,
2040			     unsigned int size)
2041{
2042#if (PAGE_SIZE < 8192)
2043	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2044#else
2045	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
2046#endif
2047
2048	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
2049			rx_buffer->page_offset, size, truesize);
2050
2051	/* page is being used so we must update the page offset */
2052#if (PAGE_SIZE < 8192)
2053	rx_buffer->page_offset ^= truesize;
2054#else
2055	rx_buffer->page_offset += truesize;
2056#endif
2057}
2058
2059/**
2060 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2061 * @rx_ring: rx descriptor ring to transact packets on
2062 * @size: size of buffer to add to skb
2063 * @rx_buffer_pgcnt: buffer page refcount
2064 *
2065 * This function will pull an Rx buffer from the ring and synchronize it
2066 * for use by the CPU.
2067 */
2068static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2069						 const unsigned int size,
2070						 int *rx_buffer_pgcnt)
2071{
2072	struct i40e_rx_buffer *rx_buffer;
2073
2074	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2075	*rx_buffer_pgcnt =
2076#if (PAGE_SIZE < 8192)
2077		page_count(rx_buffer->page);
2078#else
2079		0;
2080#endif
2081	prefetch_page_address(rx_buffer->page);
2082
2083	/* we are reusing so sync this buffer for CPU use */
2084	dma_sync_single_range_for_cpu(rx_ring->dev,
2085				      rx_buffer->dma,
2086				      rx_buffer->page_offset,
2087				      size,
2088				      DMA_FROM_DEVICE);
2089
2090	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2091	rx_buffer->pagecnt_bias--;
2092
2093	return rx_buffer;
2094}
2095
2096/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097 * i40e_construct_skb - Allocate skb and populate it
2098 * @rx_ring: rx descriptor ring to transact packets on
2099 * @rx_buffer: rx buffer to pull data from
2100 * @xdp: xdp_buff pointing to the data
2101 *
2102 * This function allocates an skb.  It then populates it with the page
2103 * data from the current receive descriptor, taking care to set up the
2104 * skb correctly.
2105 */
2106static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2107					  struct i40e_rx_buffer *rx_buffer,
2108					  struct xdp_buff *xdp)
2109{
2110	unsigned int size = xdp->data_end - xdp->data;
2111#if (PAGE_SIZE < 8192)
2112	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2113#else
2114	unsigned int truesize = SKB_DATA_ALIGN(size);
2115#endif
2116	unsigned int headlen;
2117	struct sk_buff *skb;
 
2118
2119	/* prefetch first cache line of first page */
2120	net_prefetch(xdp->data);
2121
2122	/* Note, we get here by enabling legacy-rx via:
2123	 *
2124	 *    ethtool --set-priv-flags <dev> legacy-rx on
2125	 *
2126	 * In this mode, we currently get 0 extra XDP headroom as
2127	 * opposed to having legacy-rx off, where we process XDP
2128	 * packets going to stack via i40e_build_skb(). The latter
2129	 * provides us currently with 192 bytes of headroom.
2130	 *
2131	 * For i40e_construct_skb() mode it means that the
2132	 * xdp->data_meta will always point to xdp->data, since
2133	 * the helper cannot expand the head. Should this ever
2134	 * change in future for legacy-rx mode on, then lets also
2135	 * add xdp->data_meta handling here.
2136	 */
2137
2138	/* allocate a skb to store the frags */
2139	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2140			       I40E_RX_HDR_SIZE,
2141			       GFP_ATOMIC | __GFP_NOWARN);
2142	if (unlikely(!skb))
2143		return NULL;
2144
2145	/* Determine available headroom for copy */
2146	headlen = size;
2147	if (headlen > I40E_RX_HDR_SIZE)
2148		headlen = eth_get_headlen(skb->dev, xdp->data,
2149					  I40E_RX_HDR_SIZE);
2150
2151	/* align pull length to size of long to optimize memcpy performance */
2152	memcpy(__skb_put(skb, headlen), xdp->data,
2153	       ALIGN(headlen, sizeof(long)));
2154
 
 
 
 
 
2155	/* update all of the pointers */
2156	size -= headlen;
2157	if (size) {
 
 
 
 
2158		skb_add_rx_frag(skb, 0, rx_buffer->page,
2159				rx_buffer->page_offset + headlen,
2160				size, truesize);
2161
2162		/* buffer is used by skb, update page_offset */
2163#if (PAGE_SIZE < 8192)
2164		rx_buffer->page_offset ^= truesize;
2165#else
2166		rx_buffer->page_offset += truesize;
2167#endif
2168	} else {
2169		/* buffer is unused, reset bias back to rx_buffer */
2170		rx_buffer->pagecnt_bias++;
2171	}
2172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2173	return skb;
2174}
2175
2176/**
2177 * i40e_build_skb - Build skb around an existing buffer
2178 * @rx_ring: Rx descriptor ring to transact packets on
2179 * @rx_buffer: Rx buffer to pull data from
2180 * @xdp: xdp_buff pointing to the data
2181 *
2182 * This function builds an skb around an existing Rx buffer, taking care
2183 * to set up the skb correctly and avoid any memcpy overhead.
2184 */
2185static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2186				      struct i40e_rx_buffer *rx_buffer,
2187				      struct xdp_buff *xdp)
2188{
2189	unsigned int metasize = xdp->data - xdp->data_meta;
2190#if (PAGE_SIZE < 8192)
2191	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2192#else
2193	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2194				SKB_DATA_ALIGN(xdp->data_end -
2195					       xdp->data_hard_start);
2196#endif
2197	struct sk_buff *skb;
 
2198
2199	/* Prefetch first cache line of first page. If xdp->data_meta
2200	 * is unused, this points exactly as xdp->data, otherwise we
2201	 * likely have a consumer accessing first few bytes of meta
2202	 * data, and then actual data.
2203	 */
2204	net_prefetch(xdp->data_meta);
2205
 
 
 
 
 
2206	/* build an skb around the page buffer */
2207	skb = build_skb(xdp->data_hard_start, truesize);
2208	if (unlikely(!skb))
2209		return NULL;
2210
2211	/* update pointers within the skb to store the data */
2212	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2213	__skb_put(skb, xdp->data_end - xdp->data);
2214	if (metasize)
2215		skb_metadata_set(skb, metasize);
2216
2217	/* buffer is used by skb, update page_offset */
2218#if (PAGE_SIZE < 8192)
2219	rx_buffer->page_offset ^= truesize;
2220#else
2221	rx_buffer->page_offset += truesize;
2222#endif
2223
2224	return skb;
2225}
 
2226
2227/**
2228 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2229 * @rx_ring: rx descriptor ring to transact packets on
2230 * @rx_buffer: rx buffer to pull data from
2231 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2232 *
2233 * This function will clean up the contents of the rx_buffer.  It will
2234 * either recycle the buffer or unmap it and free the associated resources.
2235 */
2236static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2237			       struct i40e_rx_buffer *rx_buffer,
2238			       int rx_buffer_pgcnt)
2239{
2240	if (i40e_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2241		/* hand second half of page back to the ring */
2242		i40e_reuse_rx_page(rx_ring, rx_buffer);
2243	} else {
2244		/* we are not reusing the buffer so unmap it */
2245		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2246				     i40e_rx_pg_size(rx_ring),
2247				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2248		__page_frag_cache_drain(rx_buffer->page,
2249					rx_buffer->pagecnt_bias);
2250		/* clear contents of buffer_info */
2251		rx_buffer->page = NULL;
2252	}
 
 
2253}
2254
2255/**
2256 * i40e_is_non_eop - process handling of non-EOP buffers
2257 * @rx_ring: Rx ring being processed
2258 * @rx_desc: Rx descriptor for current buffer
2259 *
2260 * If the buffer is an EOP buffer, this function exits returning false,
2261 * otherwise return true indicating that this is in fact a non-EOP buffer.
2262 */
2263static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2264			    union i40e_rx_desc *rx_desc)
2265{
2266	/* if we are the last buffer then there is nothing else to do */
2267#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2268	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2269		return false;
2270
2271	rx_ring->rx_stats.non_eop_descs++;
2272
2273	return true;
2274}
2275
2276static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2277			      struct i40e_ring *xdp_ring);
2278
2279int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2280{
2281	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2282
2283	if (unlikely(!xdpf))
2284		return I40E_XDP_CONSUMED;
2285
2286	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2287}
2288
2289/**
2290 * i40e_run_xdp - run an XDP program
2291 * @rx_ring: Rx ring being processed
2292 * @xdp: XDP buffer containing the frame
 
2293 **/
2294static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
2295{
2296	int err, result = I40E_XDP_PASS;
2297	struct i40e_ring *xdp_ring;
2298	struct bpf_prog *xdp_prog;
2299	u32 act;
2300
2301	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2302
2303	if (!xdp_prog)
2304		goto xdp_out;
2305
2306	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2307
2308	act = bpf_prog_run_xdp(xdp_prog, xdp);
2309	switch (act) {
2310	case XDP_PASS:
2311		break;
2312	case XDP_TX:
2313		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2314		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2315		if (result == I40E_XDP_CONSUMED)
2316			goto out_failure;
2317		break;
2318	case XDP_REDIRECT:
2319		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2320		if (err)
2321			goto out_failure;
2322		result = I40E_XDP_REDIR;
2323		break;
2324	default:
2325		bpf_warn_invalid_xdp_action(act);
2326		fallthrough;
2327	case XDP_ABORTED:
2328out_failure:
2329		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2330		fallthrough; /* handle aborts by dropping packet */
2331	case XDP_DROP:
2332		result = I40E_XDP_CONSUMED;
2333		break;
2334	}
2335xdp_out:
2336	return result;
2337}
2338
2339/**
2340 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2341 * @rx_ring: Rx ring
2342 * @rx_buffer: Rx buffer to adjust
2343 * @size: Size of adjustment
2344 **/
2345static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2346				struct i40e_rx_buffer *rx_buffer,
2347				unsigned int size)
2348{
2349	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2350
2351#if (PAGE_SIZE < 8192)
2352	rx_buffer->page_offset ^= truesize;
2353#else
2354	rx_buffer->page_offset += truesize;
2355#endif
2356}
2357
2358/**
2359 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2360 * @xdp_ring: XDP Tx ring
2361 *
2362 * This function updates the XDP Tx ring tail register.
2363 **/
2364void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2365{
2366	/* Force memory writes to complete before letting h/w
2367	 * know there are new descriptors to fetch.
2368	 */
2369	wmb();
2370	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2371}
2372
2373/**
2374 * i40e_update_rx_stats - Update Rx ring statistics
2375 * @rx_ring: rx descriptor ring
2376 * @total_rx_bytes: number of bytes received
2377 * @total_rx_packets: number of packets received
2378 *
2379 * This function updates the Rx ring statistics.
2380 **/
2381void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2382			  unsigned int total_rx_bytes,
2383			  unsigned int total_rx_packets)
2384{
2385	u64_stats_update_begin(&rx_ring->syncp);
2386	rx_ring->stats.packets += total_rx_packets;
2387	rx_ring->stats.bytes += total_rx_bytes;
2388	u64_stats_update_end(&rx_ring->syncp);
2389	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2390	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2391}
2392
2393/**
2394 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2395 * @rx_ring: Rx ring
2396 * @xdp_res: Result of the receive batch
2397 *
2398 * This function bumps XDP Tx tail and/or flush redirect map, and
2399 * should be called when a batch of packets has been processed in the
2400 * napi loop.
2401 **/
2402void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2403{
2404	if (xdp_res & I40E_XDP_REDIR)
2405		xdp_do_flush_map();
2406
2407	if (xdp_res & I40E_XDP_TX) {
2408		struct i40e_ring *xdp_ring =
2409			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2410
2411		i40e_xdp_ring_update_tail(xdp_ring);
2412	}
2413}
2414
2415/**
2416 * i40e_inc_ntc: Advance the next_to_clean index
2417 * @rx_ring: Rx ring
2418 **/
2419static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2420{
2421	u32 ntc = rx_ring->next_to_clean + 1;
2422
2423	ntc = (ntc < rx_ring->count) ? ntc : 0;
2424	rx_ring->next_to_clean = ntc;
2425	prefetch(I40E_RX_DESC(rx_ring, ntc));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2426}
2427
2428/**
2429 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2430 * @rx_ring: rx descriptor ring to transact packets on
2431 * @budget: Total limit on number of packets to process
 
2432 *
2433 * This function provides a "bounce buffer" approach to Rx interrupt
2434 * processing.  The advantage to this is that on systems that have
2435 * expensive overhead for IOMMU access this provides a means of avoiding
2436 * it by maintaining the mapping of the page to the system.
2437 *
2438 * Returns amount of work completed
2439 **/
2440static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
 
2441{
2442	unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
2443	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
 
2444	unsigned int offset = rx_ring->rx_offset;
2445	struct sk_buff *skb = rx_ring->skb;
2446	unsigned int xdp_xmit = 0;
 
2447	bool failure = false;
2448	struct xdp_buff xdp;
2449	int xdp_res = 0;
2450
2451#if (PAGE_SIZE < 8192)
2452	frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2453#endif
2454	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
2455
2456	while (likely(total_rx_packets < (unsigned int)budget)) {
 
2457		struct i40e_rx_buffer *rx_buffer;
2458		union i40e_rx_desc *rx_desc;
2459		int rx_buffer_pgcnt;
2460		unsigned int size;
 
 
2461		u64 qword;
2462
2463		/* return some buffers to hardware, one at a time is too slow */
2464		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2465			failure = failure ||
2466				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2467			cleaned_count = 0;
2468		}
2469
2470		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2471
2472		/* status_error_len will always be zero for unused descriptors
2473		 * because it's cleared in cleanup, and overlaps with hdr_addr
2474		 * which is always zero because packet split isn't used, if the
2475		 * hardware wrote DD then the length will be non-zero
2476		 */
2477		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2478
2479		/* This memory barrier is needed to keep us from reading
2480		 * any other fields out of the rx_desc until we have
2481		 * verified the descriptor has been written back.
2482		 */
2483		dma_rmb();
2484
2485		if (i40e_rx_is_programming_status(qword)) {
2486			i40e_clean_programming_status(rx_ring,
2487						      rx_desc->raw.qword[0],
2488						      qword);
2489			rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2490			i40e_inc_ntc(rx_ring);
2491			i40e_reuse_rx_page(rx_ring, rx_buffer);
2492			cleaned_count++;
 
 
 
 
 
 
 
2493			continue;
2494		}
2495
2496		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2497		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2498		if (!size)
2499			break;
2500
2501		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2502		rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
 
2503
2504		/* retrieve a buffer from the ring */
2505		if (!skb) {
 
 
2506			unsigned char *hard_start;
2507
2508			hard_start = page_address(rx_buffer->page) +
2509				     rx_buffer->page_offset - offset;
2510			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
2511#if (PAGE_SIZE > 4096)
2512			/* At larger PAGE_SIZE, frame_sz depend on len size */
2513			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2514#endif
2515			xdp_res = i40e_run_xdp(rx_ring, &xdp);
 
 
 
 
2516		}
2517
 
 
 
 
 
2518		if (xdp_res) {
2519			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2520				xdp_xmit |= xdp_res;
2521				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
 
 
 
 
2522			} else {
2523				rx_buffer->pagecnt_bias++;
2524			}
2525			total_rx_bytes += size;
2526			total_rx_packets++;
2527		} else if (skb) {
2528			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2529		} else if (ring_uses_build_skb(rx_ring)) {
2530			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2531		} else {
2532			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2533		}
 
 
 
 
 
 
 
 
 
2534
2535		/* exit if we failed to retrieve a buffer */
2536		if (!xdp_res && !skb) {
2537			rx_ring->rx_stats.alloc_buff_failed++;
2538			rx_buffer->pagecnt_bias++;
2539			break;
2540		}
2541
2542		i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2543		cleaned_count++;
2544
2545		i40e_inc_ntc(rx_ring);
2546		if (i40e_is_non_eop(rx_ring, rx_desc))
2547			continue;
2548
2549		if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2550			skb = NULL;
2551			continue;
2552		}
2553
2554		/* probably a little skewed due to removing CRC */
2555		total_rx_bytes += skb->len;
2556
2557		/* populate checksum, VLAN, and protocol */
2558		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2559
2560		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2561		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2562		skb = NULL;
2563
2564		/* update budget accounting */
2565		total_rx_packets++;
 
 
 
 
 
 
2566	}
2567
2568	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2569	rx_ring->skb = skb;
2570
2571	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2572
 
 
2573	/* guarantee a trip back through this routine if there was a failure */
2574	return failure ? budget : (int)total_rx_packets;
2575}
2576
2577static inline u32 i40e_buildreg_itr(const int type, u16 itr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2578{
2579	u32 val;
2580
2581	/* We don't bother with setting the CLEARPBA bit as the data sheet
2582	 * points out doing so is "meaningless since it was already
2583	 * auto-cleared". The auto-clearing happens when the interrupt is
2584	 * asserted.
2585	 *
2586	 * Hardware errata 28 for also indicates that writing to a
2587	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2588	 * an event in the PBA anyway so we need to rely on the automask
2589	 * to hold pending events for us until the interrupt is re-enabled
2590	 *
2591	 * The itr value is reported in microseconds, and the register
2592	 * value is recorded in 2 microsecond units. For this reason we
2593	 * only need to shift by the interval shift - 1 instead of the
2594	 * full value.
2595	 */
2596	itr &= I40E_ITR_MASK;
2597
 
 
 
 
 
2598	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2599	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2600	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
 
 
 
 
 
 
 
 
 
 
2601
2602	return val;
2603}
2604
2605/* a small macro to shorten up some long lines */
2606#define INTREG I40E_PFINT_DYN_CTLN
2607
2608/* The act of updating the ITR will cause it to immediately trigger. In order
2609 * to prevent this from throwing off adaptive update statistics we defer the
2610 * update so that it can only happen so often. So after either Tx or Rx are
2611 * updated we make the adaptive scheme wait until either the ITR completely
2612 * expires via the next_update expiration or we have been through at least
2613 * 3 interrupts.
2614 */
2615#define ITR_COUNTDOWN_START 3
2616
2617/**
2618 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2619 * @vsi: the VSI we care about
2620 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2621 *
2622 **/
2623static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2624					  struct i40e_q_vector *q_vector)
2625{
 
2626	struct i40e_hw *hw = &vsi->back->hw;
2627	u32 intval;
 
2628
2629	/* If we don't have MSIX, then we only need to re-enable icr0 */
2630	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2631		i40e_irq_dynamic_enable_icr0(vsi->back);
2632		return;
2633	}
2634
2635	/* These will do nothing if dynamic updates are not enabled */
2636	i40e_update_itr(q_vector, &q_vector->tx);
2637	i40e_update_itr(q_vector, &q_vector->rx);
2638
2639	/* This block of logic allows us to get away with only updating
2640	 * one ITR value with each interrupt. The idea is to perform a
2641	 * pseudo-lazy update with the following criteria.
2642	 *
2643	 * 1. Rx is given higher priority than Tx if both are in same state
2644	 * 2. If we must reduce an ITR that is given highest priority.
2645	 * 3. We then give priority to increasing ITR based on amount.
2646	 */
2647	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2648		/* Rx ITR needs to be reduced, this is highest priority */
2649		intval = i40e_buildreg_itr(I40E_RX_ITR,
2650					   q_vector->rx.target_itr);
2651		q_vector->rx.current_itr = q_vector->rx.target_itr;
2652		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2653	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2654		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2655		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2656		/* Tx ITR needs to be reduced, this is second priority
2657		 * Tx ITR needs to be increased more than Rx, fourth priority
2658		 */
2659		intval = i40e_buildreg_itr(I40E_TX_ITR,
2660					   q_vector->tx.target_itr);
2661		q_vector->tx.current_itr = q_vector->tx.target_itr;
2662		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2663	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2664		/* Rx ITR needs to be increased, third priority */
2665		intval = i40e_buildreg_itr(I40E_RX_ITR,
2666					   q_vector->rx.target_itr);
2667		q_vector->rx.current_itr = q_vector->rx.target_itr;
2668		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2669	} else {
2670		/* No ITR update, lowest priority */
2671		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2672		if (q_vector->itr_countdown)
2673			q_vector->itr_countdown--;
2674	}
2675
2676	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2677		wr32(hw, INTREG(q_vector->reg_idx), intval);
 
 
 
 
 
 
 
 
 
 
 
 
2678}
2679
2680/**
2681 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2682 * @napi: napi struct with our devices info in it
2683 * @budget: amount of work driver is allowed to do this pass, in packets
2684 *
2685 * This function will clean all queues associated with a q_vector.
2686 *
2687 * Returns the amount of work done
2688 **/
2689int i40e_napi_poll(struct napi_struct *napi, int budget)
2690{
2691	struct i40e_q_vector *q_vector =
2692			       container_of(napi, struct i40e_q_vector, napi);
2693	struct i40e_vsi *vsi = q_vector->vsi;
2694	struct i40e_ring *ring;
 
 
 
 
2695	bool clean_complete = true;
2696	bool arm_wb = false;
2697	int budget_per_ring;
2698	int work_done = 0;
2699
2700	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2701		napi_complete(napi);
2702		return 0;
2703	}
2704
2705	/* Since the actual Tx work is minimal, we can give the Tx a larger
2706	 * budget and be more aggressive about cleaning up the Tx descriptors.
2707	 */
2708	i40e_for_each_ring(ring, q_vector->tx) {
2709		bool wd = ring->xsk_pool ?
2710			  i40e_clean_xdp_tx_irq(vsi, ring) :
2711			  i40e_clean_tx_irq(vsi, ring, budget);
2712
2713		if (!wd) {
2714			clean_complete = false;
2715			continue;
2716		}
2717		arm_wb |= ring->arm_wb;
2718		ring->arm_wb = false;
2719	}
2720
2721	/* Handle case where we are called by netpoll with a budget of 0 */
2722	if (budget <= 0)
2723		goto tx_only;
2724
2725	/* normally we have 1 Rx ring per q_vector */
2726	if (unlikely(q_vector->num_ringpairs > 1))
2727		/* We attempt to distribute budget to each Rx queue fairly, but
2728		 * don't allow the budget to go below 1 because that would exit
2729		 * polling early.
2730		 */
2731		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2732	else
2733		/* Max of 1 Rx ring in this q_vector so give it the budget */
2734		budget_per_ring = budget;
2735
2736	i40e_for_each_ring(ring, q_vector->rx) {
2737		int cleaned = ring->xsk_pool ?
2738			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2739			      i40e_clean_rx_irq(ring, budget_per_ring);
2740
2741		work_done += cleaned;
2742		/* if we clean as many as budgeted, we must not be done */
2743		if (cleaned >= budget_per_ring)
2744			clean_complete = false;
2745	}
2746
 
 
 
 
2747	/* If work not completed, return budget and polling will return */
2748	if (!clean_complete) {
2749		int cpu_id = smp_processor_id();
2750
2751		/* It is possible that the interrupt affinity has changed but,
2752		 * if the cpu is pegged at 100%, polling will never exit while
2753		 * traffic continues and the interrupt will be stuck on this
2754		 * cpu.  We check to make sure affinity is correct before we
2755		 * continue to poll, otherwise we must stop polling so the
2756		 * interrupt can move to the correct cpu.
2757		 */
2758		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2759			/* Tell napi that we are done polling */
2760			napi_complete_done(napi, work_done);
2761
2762			/* Force an interrupt */
2763			i40e_force_wb(vsi, q_vector);
2764
2765			/* Return budget-1 so that polling stops */
2766			return budget - 1;
2767		}
2768tx_only:
2769		if (arm_wb) {
2770			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2771			i40e_enable_wb_on_itr(vsi, q_vector);
2772		}
2773		return budget;
2774	}
2775
2776	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2777		q_vector->arm_wb_state = false;
2778
2779	/* Exit the polling mode, but don't re-enable interrupts if stack might
2780	 * poll us due to busy-polling
2781	 */
2782	if (likely(napi_complete_done(napi, work_done)))
2783		i40e_update_enable_itr(vsi, q_vector);
 
 
2784
2785	return min(work_done, budget - 1);
2786}
2787
2788/**
2789 * i40e_atr - Add a Flow Director ATR filter
2790 * @tx_ring:  ring to add programming descriptor to
2791 * @skb:      send buffer
2792 * @tx_flags: send tx flags
2793 **/
2794static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2795		     u32 tx_flags)
2796{
2797	struct i40e_filter_program_desc *fdir_desc;
2798	struct i40e_pf *pf = tx_ring->vsi->back;
2799	union {
2800		unsigned char *network;
2801		struct iphdr *ipv4;
2802		struct ipv6hdr *ipv6;
2803	} hdr;
2804	struct tcphdr *th;
2805	unsigned int hlen;
2806	u32 flex_ptype, dtype_cmd;
2807	int l4_proto;
2808	u16 i;
2809
2810	/* make sure ATR is enabled */
2811	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2812		return;
2813
2814	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2815		return;
2816
2817	/* if sampling is disabled do nothing */
2818	if (!tx_ring->atr_sample_rate)
2819		return;
2820
2821	/* Currently only IPv4/IPv6 with TCP is supported */
2822	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2823		return;
2824
2825	/* snag network header to get L4 type and address */
2826	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2827		      skb_inner_network_header(skb) : skb_network_header(skb);
2828
2829	/* Note: tx_flags gets modified to reflect inner protocols in
2830	 * tx_enable_csum function if encap is enabled.
2831	 */
2832	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2833		/* access ihl as u8 to avoid unaligned access on ia64 */
2834		hlen = (hdr.network[0] & 0x0F) << 2;
2835		l4_proto = hdr.ipv4->protocol;
2836	} else {
2837		/* find the start of the innermost ipv6 header */
2838		unsigned int inner_hlen = hdr.network - skb->data;
2839		unsigned int h_offset = inner_hlen;
2840
2841		/* this function updates h_offset to the end of the header */
2842		l4_proto =
2843		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2844		/* hlen will contain our best estimate of the tcp header */
2845		hlen = h_offset - inner_hlen;
2846	}
2847
2848	if (l4_proto != IPPROTO_TCP)
2849		return;
2850
2851	th = (struct tcphdr *)(hdr.network + hlen);
2852
2853	/* Due to lack of space, no more new filters can be programmed */
2854	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2855		return;
2856	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2857		/* HW ATR eviction will take care of removing filters on FIN
2858		 * and RST packets.
2859		 */
2860		if (th->fin || th->rst)
2861			return;
2862	}
2863
2864	tx_ring->atr_count++;
2865
2866	/* sample on all syn/fin/rst packets or once every atr sample rate */
2867	if (!th->fin &&
2868	    !th->syn &&
2869	    !th->rst &&
2870	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2871		return;
2872
2873	tx_ring->atr_count = 0;
2874
2875	/* grab the next descriptor */
2876	i = tx_ring->next_to_use;
2877	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2878
2879	i++;
2880	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2881
2882	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2883		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2884	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2885		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2886		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2887		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2888		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2889
2890	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2891
2892	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2893
2894	dtype_cmd |= (th->fin || th->rst) ?
2895		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2896		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2897		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2898		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2899
2900	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2901		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2902
2903	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2904		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2905
2906	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2907	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2908		dtype_cmd |=
2909			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2910			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2911			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2912	else
2913		dtype_cmd |=
2914			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2915			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2916			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2917
2918	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2919		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2920
2921	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2922	fdir_desc->rsvd = cpu_to_le32(0);
2923	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2924	fdir_desc->fd_id = cpu_to_le32(0);
2925}
2926
2927/**
2928 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2929 * @skb:     send buffer
2930 * @tx_ring: ring to send buffer on
2931 * @flags:   the tx flags to be set
2932 *
2933 * Checks the skb and set up correspondingly several generic transmit flags
2934 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2935 *
2936 * Returns error code indicate the frame should be dropped upon error and the
2937 * otherwise  returns 0 to indicate the flags has been set properly.
2938 **/
2939static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2940					     struct i40e_ring *tx_ring,
2941					     u32 *flags)
2942{
2943	__be16 protocol = skb->protocol;
2944	u32  tx_flags = 0;
2945
2946	if (protocol == htons(ETH_P_8021Q) &&
2947	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2948		/* When HW VLAN acceleration is turned off by the user the
2949		 * stack sets the protocol to 8021q so that the driver
2950		 * can take any steps required to support the SW only
2951		 * VLAN handling.  In our case the driver doesn't need
2952		 * to take any further steps so just set the protocol
2953		 * to the encapsulated ethertype.
2954		 */
2955		skb->protocol = vlan_get_protocol(skb);
2956		goto out;
2957	}
2958
2959	/* if we have a HW VLAN tag being added, default to the HW one */
2960	if (skb_vlan_tag_present(skb)) {
2961		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2962		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2963	/* else if it is a SW VLAN, check the next protocol and store the tag */
2964	} else if (protocol == htons(ETH_P_8021Q)) {
2965		struct vlan_hdr *vhdr, _vhdr;
2966
2967		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2968		if (!vhdr)
2969			return -EINVAL;
2970
2971		protocol = vhdr->h_vlan_encapsulated_proto;
2972		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2973		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2974	}
2975
2976	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2977		goto out;
2978
2979	/* Insert 802.1p priority into VLAN header */
2980	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2981	    (skb->priority != TC_PRIO_CONTROL)) {
2982		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2983		tx_flags |= (skb->priority & 0x7) <<
2984				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2985		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2986			struct vlan_ethhdr *vhdr;
2987			int rc;
2988
2989			rc = skb_cow_head(skb, 0);
2990			if (rc < 0)
2991				return rc;
2992			vhdr = (struct vlan_ethhdr *)skb->data;
2993			vhdr->h_vlan_TCI = htons(tx_flags >>
2994						 I40E_TX_FLAGS_VLAN_SHIFT);
2995		} else {
2996			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2997		}
2998	}
2999
3000out:
3001	*flags = tx_flags;
3002	return 0;
3003}
3004
3005/**
3006 * i40e_tso - set up the tso context descriptor
3007 * @first:    pointer to first Tx buffer for xmit
3008 * @hdr_len:  ptr to the size of the packet header
3009 * @cd_type_cmd_tso_mss: Quad Word 1
3010 *
3011 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3012 **/
3013static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3014		    u64 *cd_type_cmd_tso_mss)
3015{
3016	struct sk_buff *skb = first->skb;
3017	u64 cd_cmd, cd_tso_len, cd_mss;
 
3018	union {
3019		struct iphdr *v4;
3020		struct ipv6hdr *v6;
3021		unsigned char *hdr;
3022	} ip;
3023	union {
3024		struct tcphdr *tcp;
3025		struct udphdr *udp;
3026		unsigned char *hdr;
3027	} l4;
3028	u32 paylen, l4_offset;
3029	u16 gso_segs, gso_size;
3030	int err;
3031
3032	if (skb->ip_summed != CHECKSUM_PARTIAL)
3033		return 0;
3034
3035	if (!skb_is_gso(skb))
3036		return 0;
3037
3038	err = skb_cow_head(skb, 0);
3039	if (err < 0)
3040		return err;
3041
3042	ip.hdr = skb_network_header(skb);
3043	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
3044
3045	/* initialize outer IP header fields */
3046	if (ip.v4->version == 4) {
3047		ip.v4->tot_len = 0;
3048		ip.v4->check = 0;
 
 
3049	} else {
3050		ip.v6->payload_len = 0;
 
3051	}
3052
3053	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3054					 SKB_GSO_GRE_CSUM |
3055					 SKB_GSO_IPXIP4 |
3056					 SKB_GSO_IPXIP6 |
3057					 SKB_GSO_UDP_TUNNEL |
3058					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3059		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3060		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3061			l4.udp->len = 0;
3062
3063			/* determine offset of outer transport header */
3064			l4_offset = l4.hdr - skb->data;
3065
3066			/* remove payload length from outer checksum */
3067			paylen = skb->len - l4_offset;
3068			csum_replace_by_diff(&l4.udp->check,
3069					     (__force __wsum)htonl(paylen));
3070		}
3071
3072		/* reset pointers to inner headers */
3073		ip.hdr = skb_inner_network_header(skb);
3074		l4.hdr = skb_inner_transport_header(skb);
3075
3076		/* initialize inner IP header fields */
3077		if (ip.v4->version == 4) {
3078			ip.v4->tot_len = 0;
3079			ip.v4->check = 0;
3080		} else {
3081			ip.v6->payload_len = 0;
3082		}
3083	}
3084
3085	/* determine offset of inner transport header */
3086	l4_offset = l4.hdr - skb->data;
3087
3088	/* remove payload length from inner checksum */
3089	paylen = skb->len - l4_offset;
3090
3091	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3092		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3093		/* compute length of segmentation header */
3094		*hdr_len = sizeof(*l4.udp) + l4_offset;
3095	} else {
3096		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3097		/* compute length of segmentation header */
3098		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3099	}
3100
3101	/* pull values out of skb_shinfo */
3102	gso_size = skb_shinfo(skb)->gso_size;
3103	gso_segs = skb_shinfo(skb)->gso_segs;
3104
3105	/* update GSO size and bytecount with header size */
3106	first->gso_segs = gso_segs;
3107	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3108
3109	/* find the field values */
3110	cd_cmd = I40E_TX_CTX_DESC_TSO;
3111	cd_tso_len = skb->len - *hdr_len;
3112	cd_mss = gso_size;
3113	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3114				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3115				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3116	return 1;
3117}
3118
3119/**
3120 * i40e_tsyn - set up the tsyn context descriptor
3121 * @tx_ring:  ptr to the ring to send
3122 * @skb:      ptr to the skb we're sending
3123 * @tx_flags: the collected send information
3124 * @cd_type_cmd_tso_mss: Quad Word 1
3125 *
3126 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3127 **/
3128static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3129		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3130{
3131	struct i40e_pf *pf;
3132
3133	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3134		return 0;
3135
3136	/* Tx timestamps cannot be sampled when doing TSO */
3137	if (tx_flags & I40E_TX_FLAGS_TSO)
3138		return 0;
3139
3140	/* only timestamp the outbound packet if the user has requested it and
3141	 * we are not already transmitting a packet to be timestamped
3142	 */
3143	pf = i40e_netdev_to_pf(tx_ring->netdev);
3144	if (!(pf->flags & I40E_FLAG_PTP))
3145		return 0;
3146
3147	if (pf->ptp_tx &&
3148	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3149		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3150		pf->ptp_tx_start = jiffies;
3151		pf->ptp_tx_skb = skb_get(skb);
3152	} else {
3153		pf->tx_hwtstamp_skipped++;
3154		return 0;
3155	}
3156
3157	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3158				I40E_TXD_CTX_QW1_CMD_SHIFT;
3159
3160	return 1;
3161}
3162
3163/**
3164 * i40e_tx_enable_csum - Enable Tx checksum offloads
3165 * @skb: send buffer
3166 * @tx_flags: pointer to Tx flags currently set
3167 * @td_cmd: Tx descriptor command bits to set
3168 * @td_offset: Tx descriptor header offsets to set
3169 * @tx_ring: Tx descriptor ring
3170 * @cd_tunneling: ptr to context desc bits
3171 **/
3172static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3173			       u32 *td_cmd, u32 *td_offset,
3174			       struct i40e_ring *tx_ring,
3175			       u32 *cd_tunneling)
3176{
3177	union {
3178		struct iphdr *v4;
3179		struct ipv6hdr *v6;
3180		unsigned char *hdr;
3181	} ip;
3182	union {
3183		struct tcphdr *tcp;
3184		struct udphdr *udp;
3185		unsigned char *hdr;
3186	} l4;
3187	unsigned char *exthdr;
3188	u32 offset, cmd = 0;
3189	__be16 frag_off;
 
3190	u8 l4_proto = 0;
3191
3192	if (skb->ip_summed != CHECKSUM_PARTIAL)
3193		return 0;
3194
3195	ip.hdr = skb_network_header(skb);
3196	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3197
3198	/* compute outer L2 header size */
3199	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3200
3201	if (skb->encapsulation) {
3202		u32 tunnel = 0;
3203		/* define outer network header type */
3204		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3205			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3206				  I40E_TX_CTX_EXT_IP_IPV4 :
3207				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3208
3209			l4_proto = ip.v4->protocol;
3210		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3211			int ret;
3212
3213			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3214
3215			exthdr = ip.hdr + sizeof(*ip.v6);
3216			l4_proto = ip.v6->nexthdr;
3217			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3218					       &l4_proto, &frag_off);
3219			if (ret < 0)
3220				return -1;
3221		}
3222
3223		/* define outer transport */
3224		switch (l4_proto) {
3225		case IPPROTO_UDP:
3226			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3227			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3228			break;
3229		case IPPROTO_GRE:
3230			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3231			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3232			break;
3233		case IPPROTO_IPIP:
3234		case IPPROTO_IPV6:
3235			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3236			l4.hdr = skb_inner_network_header(skb);
3237			break;
3238		default:
3239			if (*tx_flags & I40E_TX_FLAGS_TSO)
3240				return -1;
3241
3242			skb_checksum_help(skb);
3243			return 0;
3244		}
3245
3246		/* compute outer L3 header size */
3247		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3248			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3249
3250		/* switch IP header pointer from outer to inner header */
3251		ip.hdr = skb_inner_network_header(skb);
3252
3253		/* compute tunnel header size */
3254		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3255			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3256
3257		/* indicate if we need to offload outer UDP header */
3258		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3259		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3260		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3261			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3262
3263		/* record tunnel offload values */
3264		*cd_tunneling |= tunnel;
3265
3266		/* switch L4 header pointer from outer to inner */
3267		l4.hdr = skb_inner_transport_header(skb);
3268		l4_proto = 0;
3269
3270		/* reset type as we transition from outer to inner headers */
3271		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3272		if (ip.v4->version == 4)
3273			*tx_flags |= I40E_TX_FLAGS_IPV4;
3274		if (ip.v6->version == 6)
3275			*tx_flags |= I40E_TX_FLAGS_IPV6;
3276	}
3277
3278	/* Enable IP checksum offloads */
3279	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3280		l4_proto = ip.v4->protocol;
3281		/* the stack computes the IP header already, the only time we
3282		 * need the hardware to recompute it is in the case of TSO.
3283		 */
3284		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3285		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3286		       I40E_TX_DESC_CMD_IIPT_IPV4;
3287	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3288		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3289
3290		exthdr = ip.hdr + sizeof(*ip.v6);
3291		l4_proto = ip.v6->nexthdr;
3292		if (l4.hdr != exthdr)
3293			ipv6_skip_exthdr(skb, exthdr - skb->data,
3294					 &l4_proto, &frag_off);
3295	}
3296
3297	/* compute inner L3 header size */
3298	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3299
3300	/* Enable L4 checksum offloads */
3301	switch (l4_proto) {
3302	case IPPROTO_TCP:
3303		/* enable checksum offloads */
3304		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3305		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3306		break;
3307	case IPPROTO_SCTP:
3308		/* enable SCTP checksum offload */
3309		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3310		offset |= (sizeof(struct sctphdr) >> 2) <<
3311			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3312		break;
3313	case IPPROTO_UDP:
3314		/* enable UDP checksum offload */
3315		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3316		offset |= (sizeof(struct udphdr) >> 2) <<
3317			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3318		break;
3319	default:
3320		if (*tx_flags & I40E_TX_FLAGS_TSO)
3321			return -1;
3322		skb_checksum_help(skb);
3323		return 0;
3324	}
3325
3326	*td_cmd |= cmd;
3327	*td_offset |= offset;
3328
3329	return 1;
3330}
3331
3332/**
3333 * i40e_create_tx_ctx - Build the Tx context descriptor
3334 * @tx_ring:  ring to create the descriptor on
3335 * @cd_type_cmd_tso_mss: Quad Word 1
3336 * @cd_tunneling: Quad Word 0 - bits 0-31
3337 * @cd_l2tag2: Quad Word 0 - bits 32-63
3338 **/
3339static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3340			       const u64 cd_type_cmd_tso_mss,
3341			       const u32 cd_tunneling, const u32 cd_l2tag2)
3342{
3343	struct i40e_tx_context_desc *context_desc;
3344	int i = tx_ring->next_to_use;
3345
3346	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3347	    !cd_tunneling && !cd_l2tag2)
3348		return;
3349
3350	/* grab the next descriptor */
3351	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3352
3353	i++;
3354	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3355
3356	/* cpu_to_le32 and assign to struct fields */
3357	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3358	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3359	context_desc->rsvd = cpu_to_le16(0);
3360	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3361}
3362
3363/**
3364 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3365 * @tx_ring: the ring to be checked
3366 * @size:    the size buffer we want to assure is available
3367 *
3368 * Returns -EBUSY if a stop is needed, else 0
3369 **/
3370int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3371{
3372	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3373	/* Memory barrier before checking head and tail */
3374	smp_mb();
3375
 
 
3376	/* Check again in a case another CPU has just made room available. */
3377	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3378		return -EBUSY;
3379
3380	/* A reprieve! - use start_queue because it doesn't call schedule */
3381	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3382	++tx_ring->tx_stats.restart_queue;
3383	return 0;
3384}
3385
3386/**
3387 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3388 * @skb:      send buffer
3389 *
3390 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3391 * and so we need to figure out the cases where we need to linearize the skb.
3392 *
3393 * For TSO we need to count the TSO header and segment payload separately.
3394 * As such we need to check cases where we have 7 fragments or more as we
3395 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3396 * the segment payload in the first descriptor, and another 7 for the
3397 * fragments.
3398 **/
3399bool __i40e_chk_linearize(struct sk_buff *skb)
3400{
3401	const skb_frag_t *frag, *stale;
3402	int nr_frags, sum;
3403
3404	/* no need to check if number of frags is less than 7 */
3405	nr_frags = skb_shinfo(skb)->nr_frags;
3406	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3407		return false;
3408
3409	/* We need to walk through the list and validate that each group
3410	 * of 6 fragments totals at least gso_size.
3411	 */
3412	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3413	frag = &skb_shinfo(skb)->frags[0];
3414
3415	/* Initialize size to the negative value of gso_size minus 1.  We
3416	 * use this as the worst case scenerio in which the frag ahead
3417	 * of us only provides one byte which is why we are limited to 6
3418	 * descriptors for a single transmit as the header and previous
3419	 * fragment are already consuming 2 descriptors.
3420	 */
3421	sum = 1 - skb_shinfo(skb)->gso_size;
3422
3423	/* Add size of frags 0 through 4 to create our initial sum */
3424	sum += skb_frag_size(frag++);
3425	sum += skb_frag_size(frag++);
3426	sum += skb_frag_size(frag++);
3427	sum += skb_frag_size(frag++);
3428	sum += skb_frag_size(frag++);
3429
3430	/* Walk through fragments adding latest fragment, testing it, and
3431	 * then removing stale fragments from the sum.
3432	 */
3433	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3434		int stale_size = skb_frag_size(stale);
3435
3436		sum += skb_frag_size(frag++);
3437
3438		/* The stale fragment may present us with a smaller
3439		 * descriptor than the actual fragment size. To account
3440		 * for that we need to remove all the data on the front and
3441		 * figure out what the remainder would be in the last
3442		 * descriptor associated with the fragment.
3443		 */
3444		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3445			int align_pad = -(skb_frag_off(stale)) &
3446					(I40E_MAX_READ_REQ_SIZE - 1);
3447
3448			sum -= align_pad;
3449			stale_size -= align_pad;
3450
3451			do {
3452				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3453				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3454			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3455		}
3456
3457		/* if sum is negative we failed to make sufficient progress */
3458		if (sum < 0)
3459			return true;
3460
3461		if (!nr_frags--)
3462			break;
3463
3464		sum -= stale_size;
3465	}
3466
3467	return false;
3468}
3469
3470/**
3471 * i40e_tx_map - Build the Tx descriptor
3472 * @tx_ring:  ring to send buffer on
3473 * @skb:      send buffer
3474 * @first:    first buffer info buffer to use
3475 * @tx_flags: collected send information
3476 * @hdr_len:  size of the packet header
3477 * @td_cmd:   the command field in the descriptor
3478 * @td_offset: offset for checksum or crc
3479 *
3480 * Returns 0 on success, -1 on failure to DMA
3481 **/
3482static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3483			      struct i40e_tx_buffer *first, u32 tx_flags,
3484			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3485{
3486	unsigned int data_len = skb->data_len;
3487	unsigned int size = skb_headlen(skb);
3488	skb_frag_t *frag;
3489	struct i40e_tx_buffer *tx_bi;
3490	struct i40e_tx_desc *tx_desc;
3491	u16 i = tx_ring->next_to_use;
3492	u32 td_tag = 0;
3493	dma_addr_t dma;
3494	u16 desc_count = 1;
3495
3496	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3497		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3498		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3499			 I40E_TX_FLAGS_VLAN_SHIFT;
3500	}
3501
3502	first->tx_flags = tx_flags;
3503
3504	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3505
3506	tx_desc = I40E_TX_DESC(tx_ring, i);
3507	tx_bi = first;
3508
3509	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3510		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3511
3512		if (dma_mapping_error(tx_ring->dev, dma))
3513			goto dma_error;
3514
3515		/* record length, and DMA address */
3516		dma_unmap_len_set(tx_bi, len, size);
3517		dma_unmap_addr_set(tx_bi, dma, dma);
3518
3519		/* align size to end of page */
3520		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3521		tx_desc->buffer_addr = cpu_to_le64(dma);
3522
3523		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3524			tx_desc->cmd_type_offset_bsz =
3525				build_ctob(td_cmd, td_offset,
3526					   max_data, td_tag);
3527
3528			tx_desc++;
3529			i++;
3530			desc_count++;
3531
3532			if (i == tx_ring->count) {
3533				tx_desc = I40E_TX_DESC(tx_ring, 0);
3534				i = 0;
3535			}
3536
3537			dma += max_data;
3538			size -= max_data;
3539
3540			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3541			tx_desc->buffer_addr = cpu_to_le64(dma);
3542		}
3543
3544		if (likely(!data_len))
3545			break;
3546
3547		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3548							  size, td_tag);
3549
3550		tx_desc++;
3551		i++;
3552		desc_count++;
3553
3554		if (i == tx_ring->count) {
3555			tx_desc = I40E_TX_DESC(tx_ring, 0);
3556			i = 0;
3557		}
3558
3559		size = skb_frag_size(frag);
3560		data_len -= size;
3561
3562		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3563				       DMA_TO_DEVICE);
3564
3565		tx_bi = &tx_ring->tx_bi[i];
3566	}
3567
3568	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3569
3570	i++;
3571	if (i == tx_ring->count)
3572		i = 0;
3573
3574	tx_ring->next_to_use = i;
3575
3576	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3577
3578	/* write last descriptor with EOP bit */
3579	td_cmd |= I40E_TX_DESC_CMD_EOP;
3580
3581	/* We OR these values together to check both against 4 (WB_STRIDE)
3582	 * below. This is safe since we don't re-use desc_count afterwards.
3583	 */
3584	desc_count |= ++tx_ring->packet_stride;
3585
3586	if (desc_count >= WB_STRIDE) {
3587		/* write last descriptor with RS bit set */
3588		td_cmd |= I40E_TX_DESC_CMD_RS;
3589		tx_ring->packet_stride = 0;
3590	}
3591
3592	tx_desc->cmd_type_offset_bsz =
3593			build_ctob(td_cmd, td_offset, size, td_tag);
3594
3595	skb_tx_timestamp(skb);
3596
3597	/* Force memory writes to complete before letting h/w know there
3598	 * are new descriptors to fetch.
3599	 *
3600	 * We also use this memory barrier to make certain all of the
3601	 * status bits have been updated before next_to_watch is written.
3602	 */
3603	wmb();
3604
3605	/* set next_to_watch value indicating a packet is present */
3606	first->next_to_watch = tx_desc;
3607
3608	/* notify HW of packet */
3609	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3610		writel(i, tx_ring->tail);
3611	}
3612
3613	return 0;
3614
3615dma_error:
3616	dev_info(tx_ring->dev, "TX DMA map failed\n");
3617
3618	/* clear dma mappings for failed tx_bi map */
3619	for (;;) {
3620		tx_bi = &tx_ring->tx_bi[i];
3621		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3622		if (tx_bi == first)
3623			break;
3624		if (i == 0)
3625			i = tx_ring->count;
3626		i--;
3627	}
3628
3629	tx_ring->next_to_use = i;
3630
3631	return -1;
3632}
3633
3634static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3635				  const struct sk_buff *skb,
3636				  u16 num_tx_queues)
3637{
3638	u32 jhash_initval_salt = 0xd631614b;
3639	u32 hash;
3640
3641	if (skb->sk && skb->sk->sk_hash)
3642		hash = skb->sk->sk_hash;
3643	else
3644		hash = (__force u16)skb->protocol ^ skb->hash;
3645
3646	hash = jhash_1word(hash, jhash_initval_salt);
3647
3648	return (u16)(((u64)hash * num_tx_queues) >> 32);
3649}
3650
3651u16 i40e_lan_select_queue(struct net_device *netdev,
3652			  struct sk_buff *skb,
3653			  struct net_device __always_unused *sb_dev)
3654{
3655	struct i40e_netdev_priv *np = netdev_priv(netdev);
3656	struct i40e_vsi *vsi = np->vsi;
3657	struct i40e_hw *hw;
3658	u16 qoffset;
3659	u16 qcount;
3660	u8 tclass;
3661	u16 hash;
3662	u8 prio;
3663
3664	/* is DCB enabled at all? */
3665	if (vsi->tc_config.numtc == 1)
 
3666		return netdev_pick_tx(netdev, skb, sb_dev);
3667
3668	prio = skb->priority;
3669	hw = &vsi->back->hw;
3670	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3671	/* sanity check */
3672	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3673		tclass = 0;
3674
3675	/* select a queue assigned for the given TC */
3676	qcount = vsi->tc_config.tc_info[tclass].qcount;
3677	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3678
3679	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3680	return qoffset + hash;
3681}
3682
3683/**
3684 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3685 * @xdpf: data to transmit
3686 * @xdp_ring: XDP Tx ring
3687 **/
3688static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3689			      struct i40e_ring *xdp_ring)
3690{
3691	u16 i = xdp_ring->next_to_use;
3692	struct i40e_tx_buffer *tx_bi;
3693	struct i40e_tx_desc *tx_desc;
 
 
 
3694	void *data = xdpf->data;
3695	u32 size = xdpf->len;
3696	dma_addr_t dma;
3697
3698	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3699		xdp_ring->tx_stats.tx_busy++;
3700		return I40E_XDP_CONSUMED;
3701	}
3702	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3703	if (dma_mapping_error(xdp_ring->dev, dma))
3704		return I40E_XDP_CONSUMED;
3705
3706	tx_bi = &xdp_ring->tx_bi[i];
3707	tx_bi->bytecount = size;
3708	tx_bi->gso_segs = 1;
3709	tx_bi->xdpf = xdpf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3710
3711	/* record length, and DMA address */
3712	dma_unmap_len_set(tx_bi, len, size);
3713	dma_unmap_addr_set(tx_bi, dma, dma);
 
3714
3715	tx_desc = I40E_TX_DESC(xdp_ring, i);
3716	tx_desc->buffer_addr = cpu_to_le64(dma);
3717	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3718						  | I40E_TXD_CMD,
3719						  0, size, 0);
3720
3721	/* Make certain all of the status bits have been updated
3722	 * before next_to_watch is written.
3723	 */
3724	smp_wmb();
3725
3726	xdp_ring->xdp_tx_active++;
3727	i++;
3728	if (i == xdp_ring->count)
3729		i = 0;
3730
3731	tx_bi->next_to_watch = tx_desc;
3732	xdp_ring->next_to_use = i;
3733
3734	return I40E_XDP_TX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3735}
3736
3737/**
3738 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3739 * @skb:     send buffer
3740 * @tx_ring: ring to send buffer on
3741 *
3742 * Returns NETDEV_TX_OK if sent, else an error code
3743 **/
3744static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3745					struct i40e_ring *tx_ring)
3746{
3747	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3748	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3749	struct i40e_tx_buffer *first;
3750	u32 td_offset = 0;
3751	u32 tx_flags = 0;
3752	__be16 protocol;
3753	u32 td_cmd = 0;
3754	u8 hdr_len = 0;
3755	int tso, count;
3756	int tsyn;
3757
3758	/* prefetch the data, we'll need it later */
3759	prefetch(skb->data);
3760
3761	i40e_trace(xmit_frame_ring, skb, tx_ring);
3762
3763	count = i40e_xmit_descriptor_count(skb);
3764	if (i40e_chk_linearize(skb, count)) {
3765		if (__skb_linearize(skb)) {
3766			dev_kfree_skb_any(skb);
3767			return NETDEV_TX_OK;
3768		}
3769		count = i40e_txd_use_count(skb->len);
3770		tx_ring->tx_stats.tx_linearize++;
3771	}
3772
3773	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3774	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3775	 *       + 4 desc gap to avoid the cache line where head is,
3776	 *       + 1 desc for context descriptor,
3777	 * otherwise try next time
3778	 */
3779	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3780		tx_ring->tx_stats.tx_busy++;
3781		return NETDEV_TX_BUSY;
3782	}
3783
3784	/* record the location of the first descriptor for this packet */
3785	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3786	first->skb = skb;
3787	first->bytecount = skb->len;
3788	first->gso_segs = 1;
3789
3790	/* prepare the xmit flags */
3791	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3792		goto out_drop;
3793
3794	/* obtain protocol of skb */
3795	protocol = vlan_get_protocol(skb);
3796
3797	/* setup IPv4/IPv6 offloads */
3798	if (protocol == htons(ETH_P_IP))
3799		tx_flags |= I40E_TX_FLAGS_IPV4;
3800	else if (protocol == htons(ETH_P_IPV6))
3801		tx_flags |= I40E_TX_FLAGS_IPV6;
3802
3803	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3804
3805	if (tso < 0)
3806		goto out_drop;
3807	else if (tso)
3808		tx_flags |= I40E_TX_FLAGS_TSO;
3809
3810	/* Always offload the checksum, since it's in the data descriptor */
3811	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3812				  tx_ring, &cd_tunneling);
3813	if (tso < 0)
3814		goto out_drop;
3815
3816	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3817
3818	if (tsyn)
3819		tx_flags |= I40E_TX_FLAGS_TSYN;
3820
3821	/* always enable CRC insertion offload */
3822	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3823
3824	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3825			   cd_tunneling, cd_l2tag2);
3826
3827	/* Add Flow Director ATR if it's enabled.
3828	 *
3829	 * NOTE: this must always be directly before the data descriptor.
3830	 */
3831	i40e_atr(tx_ring, skb, tx_flags);
3832
3833	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3834			td_cmd, td_offset))
3835		goto cleanup_tx_tstamp;
3836
3837	return NETDEV_TX_OK;
3838
3839out_drop:
3840	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3841	dev_kfree_skb_any(first->skb);
3842	first->skb = NULL;
3843cleanup_tx_tstamp:
3844	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3845		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3846
3847		dev_kfree_skb_any(pf->ptp_tx_skb);
3848		pf->ptp_tx_skb = NULL;
3849		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3850	}
3851
3852	return NETDEV_TX_OK;
3853}
3854
3855/**
3856 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3857 * @skb:    send buffer
3858 * @netdev: network interface device structure
3859 *
3860 * Returns NETDEV_TX_OK if sent, else an error code
3861 **/
3862netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3863{
3864	struct i40e_netdev_priv *np = netdev_priv(netdev);
3865	struct i40e_vsi *vsi = np->vsi;
3866	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3867
3868	/* hardware can't handle really short frames, hardware padding works
3869	 * beyond this point
3870	 */
3871	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3872		return NETDEV_TX_OK;
3873
3874	return i40e_xmit_frame_ring(skb, tx_ring);
3875}
3876
3877/**
3878 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3879 * @dev: netdev
3880 * @n: number of frames
3881 * @frames: array of XDP buffer pointers
3882 * @flags: XDP extra info
3883 *
3884 * Returns number of frames successfully sent. Failed frames
3885 * will be free'ed by XDP core.
3886 *
3887 * For error cases, a negative errno code is returned and no-frames
3888 * are transmitted (caller must handle freeing frames).
3889 **/
3890int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3891		  u32 flags)
3892{
3893	struct i40e_netdev_priv *np = netdev_priv(dev);
3894	unsigned int queue_index = smp_processor_id();
3895	struct i40e_vsi *vsi = np->vsi;
3896	struct i40e_pf *pf = vsi->back;
3897	struct i40e_ring *xdp_ring;
3898	int nxmit = 0;
3899	int i;
3900
3901	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3902		return -ENETDOWN;
3903
3904	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3905	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3906		return -ENXIO;
3907
3908	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3909		return -EINVAL;
3910
3911	xdp_ring = vsi->xdp_rings[queue_index];
3912
3913	for (i = 0; i < n; i++) {
3914		struct xdp_frame *xdpf = frames[i];
3915		int err;
3916
3917		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3918		if (err != I40E_XDP_TX)
3919			break;
3920		nxmit++;
3921	}
3922
3923	if (unlikely(flags & XDP_XMIT_FLUSH))
3924		i40e_xdp_ring_update_tail(xdp_ring);
3925
3926	return nxmit;
3927}