Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Support for AES-NI and VAES instructions.  This file contains glue code.
   4 * The real AES implementations are in aesni-intel_asm.S and other .S files.
   5 *
   6 * Copyright (C) 2008, Intel Corp.
   7 *    Author: Huang Ying <ying.huang@intel.com>
   8 *
   9 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
  10 * interface for 64-bit kernels.
  11 *    Authors: Adrian Hoban <adrian.hoban@intel.com>
  12 *             Gabriele Paoloni <gabriele.paoloni@intel.com>
  13 *             Tadeusz Struk (tadeusz.struk@intel.com)
  14 *             Aidan O'Mahony (aidan.o.mahony@intel.com)
  15 *    Copyright (c) 2010, Intel Corporation.
  16 *
  17 * Copyright 2024 Google LLC
  18 */
  19
  20#include <linux/hardirq.h>
  21#include <linux/types.h>
  22#include <linux/module.h>
  23#include <linux/err.h>
  24#include <crypto/algapi.h>
  25#include <crypto/aes.h>
  26#include <crypto/ctr.h>
  27#include <crypto/b128ops.h>
  28#include <crypto/gcm.h>
  29#include <crypto/xts.h>
  30#include <asm/cpu_device_id.h>
  31#include <asm/simd.h>
  32#include <crypto/scatterwalk.h>
  33#include <crypto/internal/aead.h>
  34#include <crypto/internal/simd.h>
  35#include <crypto/internal/skcipher.h>
  36#include <linux/jump_label.h>
  37#include <linux/workqueue.h>
  38#include <linux/spinlock.h>
  39#include <linux/static_call.h>
  40
  41
  42#define AESNI_ALIGN	16
  43#define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
  44#define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE - 1))
 
  45#define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
  46#define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
  47#define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
  48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49struct aesni_xts_ctx {
  50	struct crypto_aes_ctx tweak_ctx AESNI_ALIGN_ATTR;
  51	struct crypto_aes_ctx crypt_ctx AESNI_ALIGN_ATTR;
  52};
  53
  54static inline void *aes_align_addr(void *addr)
  55{
  56	if (crypto_tfm_ctx_alignment() >= AESNI_ALIGN)
  57		return addr;
  58	return PTR_ALIGN(addr, AESNI_ALIGN);
  59}
  60
  61asmlinkage void aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
  62			      unsigned int key_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
  63asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
  64asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
  65asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
  66			      const u8 *in, unsigned int len);
  67asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
  68			      const u8 *in, unsigned int len);
  69asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
  70			      const u8 *in, unsigned int len, u8 *iv);
  71asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
  72			      const u8 *in, unsigned int len, u8 *iv);
  73asmlinkage void aesni_cts_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
  74				  const u8 *in, unsigned int len, u8 *iv);
  75asmlinkage void aesni_cts_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
  76				  const u8 *in, unsigned int len, u8 *iv);
  77
  78asmlinkage void aesni_xts_enc(const struct crypto_aes_ctx *ctx, u8 *out,
  79			      const u8 *in, unsigned int len, u8 *iv);
  80
  81asmlinkage void aesni_xts_dec(const struct crypto_aes_ctx *ctx, u8 *out,
  82			      const u8 *in, unsigned int len, u8 *iv);
 
 
 
  83
  84#ifdef CONFIG_X86_64
  85
  86asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
  87			      const u8 *in, unsigned int len, u8 *iv);
  88DEFINE_STATIC_CALL(aesni_ctr_enc_tfm, aesni_ctr_enc);
  89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
  91		void *keys, u8 *out, unsigned int num_bytes);
  92asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
  93		void *keys, u8 *out, unsigned int num_bytes);
  94asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
  95		void *keys, u8 *out, unsigned int num_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96
  97
  98asmlinkage void aes_xctr_enc_128_avx_by8(const u8 *in, const u8 *iv,
  99	const void *keys, u8 *out, unsigned int num_bytes,
 100	unsigned int byte_ctr);
 101
 102asmlinkage void aes_xctr_enc_192_avx_by8(const u8 *in, const u8 *iv,
 103	const void *keys, u8 *out, unsigned int num_bytes,
 104	unsigned int byte_ctr);
 105
 106asmlinkage void aes_xctr_enc_256_avx_by8(const u8 *in, const u8 *iv,
 107	const void *keys, u8 *out, unsigned int num_bytes,
 108	unsigned int byte_ctr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109#endif
 110
 111static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
 112{
 113	return aes_align_addr(raw_ctx);
 114}
 115
 116static inline struct aesni_xts_ctx *aes_xts_ctx(struct crypto_skcipher *tfm)
 117{
 118	return aes_align_addr(crypto_skcipher_ctx(tfm));
 119}
 120
 121static int aes_set_key_common(struct crypto_aes_ctx *ctx,
 122			      const u8 *in_key, unsigned int key_len)
 123{
 
 124	int err;
 125
 126	if (!crypto_simd_usable())
 127		return aes_expandkey(ctx, in_key, key_len);
 
 128
 129	err = aes_check_keylen(key_len);
 130	if (err)
 131		return err;
 
 
 
 
 132
 133	kernel_fpu_begin();
 134	aesni_set_key(ctx, in_key, key_len);
 135	kernel_fpu_end();
 136	return 0;
 137}
 138
 139static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
 140		       unsigned int key_len)
 141{
 142	return aes_set_key_common(aes_ctx(crypto_tfm_ctx(tfm)), in_key,
 143				  key_len);
 144}
 145
 146static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
 147{
 148	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
 149
 150	if (!crypto_simd_usable()) {
 151		aes_encrypt(ctx, dst, src);
 152	} else {
 153		kernel_fpu_begin();
 154		aesni_enc(ctx, dst, src);
 155		kernel_fpu_end();
 156	}
 157}
 158
 159static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
 160{
 161	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
 162
 163	if (!crypto_simd_usable()) {
 164		aes_decrypt(ctx, dst, src);
 165	} else {
 166		kernel_fpu_begin();
 167		aesni_dec(ctx, dst, src);
 168		kernel_fpu_end();
 169	}
 170}
 171
 172static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
 173			         unsigned int len)
 174{
 175	return aes_set_key_common(aes_ctx(crypto_skcipher_ctx(tfm)), key, len);
 
 176}
 177
 178static int ecb_encrypt(struct skcipher_request *req)
 179{
 180	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 181	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 182	struct skcipher_walk walk;
 183	unsigned int nbytes;
 184	int err;
 185
 186	err = skcipher_walk_virt(&walk, req, false);
 187
 188	while ((nbytes = walk.nbytes)) {
 189		kernel_fpu_begin();
 190		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 191			      nbytes & AES_BLOCK_MASK);
 192		kernel_fpu_end();
 193		nbytes &= AES_BLOCK_SIZE - 1;
 194		err = skcipher_walk_done(&walk, nbytes);
 195	}
 196
 197	return err;
 198}
 199
 200static int ecb_decrypt(struct skcipher_request *req)
 201{
 202	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 203	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 204	struct skcipher_walk walk;
 205	unsigned int nbytes;
 206	int err;
 207
 208	err = skcipher_walk_virt(&walk, req, false);
 209
 210	while ((nbytes = walk.nbytes)) {
 211		kernel_fpu_begin();
 212		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 213			      nbytes & AES_BLOCK_MASK);
 214		kernel_fpu_end();
 215		nbytes &= AES_BLOCK_SIZE - 1;
 216		err = skcipher_walk_done(&walk, nbytes);
 217	}
 218
 219	return err;
 220}
 221
 222static int cbc_encrypt(struct skcipher_request *req)
 223{
 224	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 225	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 226	struct skcipher_walk walk;
 227	unsigned int nbytes;
 228	int err;
 229
 230	err = skcipher_walk_virt(&walk, req, false);
 231
 232	while ((nbytes = walk.nbytes)) {
 233		kernel_fpu_begin();
 234		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 235			      nbytes & AES_BLOCK_MASK, walk.iv);
 236		kernel_fpu_end();
 237		nbytes &= AES_BLOCK_SIZE - 1;
 238		err = skcipher_walk_done(&walk, nbytes);
 239	}
 240
 241	return err;
 242}
 243
 244static int cbc_decrypt(struct skcipher_request *req)
 245{
 246	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 247	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 248	struct skcipher_walk walk;
 249	unsigned int nbytes;
 250	int err;
 251
 252	err = skcipher_walk_virt(&walk, req, false);
 253
 254	while ((nbytes = walk.nbytes)) {
 255		kernel_fpu_begin();
 256		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 257			      nbytes & AES_BLOCK_MASK, walk.iv);
 258		kernel_fpu_end();
 259		nbytes &= AES_BLOCK_SIZE - 1;
 260		err = skcipher_walk_done(&walk, nbytes);
 261	}
 262
 263	return err;
 264}
 265
 266static int cts_cbc_encrypt(struct skcipher_request *req)
 267{
 268	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 269	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 270	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
 271	struct scatterlist *src = req->src, *dst = req->dst;
 272	struct scatterlist sg_src[2], sg_dst[2];
 273	struct skcipher_request subreq;
 274	struct skcipher_walk walk;
 275	int err;
 276
 277	skcipher_request_set_tfm(&subreq, tfm);
 278	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
 279				      NULL, NULL);
 280
 281	if (req->cryptlen <= AES_BLOCK_SIZE) {
 282		if (req->cryptlen < AES_BLOCK_SIZE)
 283			return -EINVAL;
 284		cbc_blocks = 1;
 285	}
 286
 287	if (cbc_blocks > 0) {
 288		skcipher_request_set_crypt(&subreq, req->src, req->dst,
 289					   cbc_blocks * AES_BLOCK_SIZE,
 290					   req->iv);
 291
 292		err = cbc_encrypt(&subreq);
 293		if (err)
 294			return err;
 295
 296		if (req->cryptlen == AES_BLOCK_SIZE)
 297			return 0;
 298
 299		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
 300		if (req->dst != req->src)
 301			dst = scatterwalk_ffwd(sg_dst, req->dst,
 302					       subreq.cryptlen);
 303	}
 304
 305	/* handle ciphertext stealing */
 306	skcipher_request_set_crypt(&subreq, src, dst,
 307				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
 308				   req->iv);
 309
 310	err = skcipher_walk_virt(&walk, &subreq, false);
 311	if (err)
 312		return err;
 313
 314	kernel_fpu_begin();
 315	aesni_cts_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 316			  walk.nbytes, walk.iv);
 317	kernel_fpu_end();
 318
 319	return skcipher_walk_done(&walk, 0);
 320}
 321
 322static int cts_cbc_decrypt(struct skcipher_request *req)
 323{
 324	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 325	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 326	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
 327	struct scatterlist *src = req->src, *dst = req->dst;
 328	struct scatterlist sg_src[2], sg_dst[2];
 329	struct skcipher_request subreq;
 330	struct skcipher_walk walk;
 331	int err;
 332
 333	skcipher_request_set_tfm(&subreq, tfm);
 334	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
 335				      NULL, NULL);
 336
 337	if (req->cryptlen <= AES_BLOCK_SIZE) {
 338		if (req->cryptlen < AES_BLOCK_SIZE)
 339			return -EINVAL;
 340		cbc_blocks = 1;
 341	}
 342
 343	if (cbc_blocks > 0) {
 344		skcipher_request_set_crypt(&subreq, req->src, req->dst,
 345					   cbc_blocks * AES_BLOCK_SIZE,
 346					   req->iv);
 347
 348		err = cbc_decrypt(&subreq);
 349		if (err)
 350			return err;
 351
 352		if (req->cryptlen == AES_BLOCK_SIZE)
 353			return 0;
 354
 355		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
 356		if (req->dst != req->src)
 357			dst = scatterwalk_ffwd(sg_dst, req->dst,
 358					       subreq.cryptlen);
 359	}
 360
 361	/* handle ciphertext stealing */
 362	skcipher_request_set_crypt(&subreq, src, dst,
 363				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
 364				   req->iv);
 365
 366	err = skcipher_walk_virt(&walk, &subreq, false);
 367	if (err)
 368		return err;
 369
 370	kernel_fpu_begin();
 371	aesni_cts_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 372			  walk.nbytes, walk.iv);
 373	kernel_fpu_end();
 374
 375	return skcipher_walk_done(&walk, 0);
 376}
 377
 378#ifdef CONFIG_X86_64
 379static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
 380			      const u8 *in, unsigned int len, u8 *iv)
 381{
 382	/*
 383	 * based on key length, override with the by8 version
 384	 * of ctr mode encryption/decryption for improved performance
 385	 * aes_set_key_common() ensures that key length is one of
 386	 * {128,192,256}
 387	 */
 388	if (ctx->key_length == AES_KEYSIZE_128)
 389		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
 390	else if (ctx->key_length == AES_KEYSIZE_192)
 391		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
 392	else
 393		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
 394}
 395
 396static int ctr_crypt(struct skcipher_request *req)
 397{
 398	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 399	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 400	u8 keystream[AES_BLOCK_SIZE];
 401	struct skcipher_walk walk;
 402	unsigned int nbytes;
 403	int err;
 404
 405	err = skcipher_walk_virt(&walk, req, false);
 406
 407	while ((nbytes = walk.nbytes) > 0) {
 408		kernel_fpu_begin();
 409		if (nbytes & AES_BLOCK_MASK)
 410			static_call(aesni_ctr_enc_tfm)(ctx, walk.dst.virt.addr,
 411						       walk.src.virt.addr,
 412						       nbytes & AES_BLOCK_MASK,
 413						       walk.iv);
 414		nbytes &= ~AES_BLOCK_MASK;
 415
 416		if (walk.nbytes == walk.total && nbytes > 0) {
 417			aesni_enc(ctx, keystream, walk.iv);
 418			crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes - nbytes,
 419				       walk.src.virt.addr + walk.nbytes - nbytes,
 420				       keystream, nbytes);
 421			crypto_inc(walk.iv, AES_BLOCK_SIZE);
 422			nbytes = 0;
 423		}
 424		kernel_fpu_end();
 425		err = skcipher_walk_done(&walk, nbytes);
 426	}
 427	return err;
 428}
 429
 430static void aesni_xctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
 431				   const u8 *in, unsigned int len, u8 *iv,
 432				   unsigned int byte_ctr)
 433{
 434	if (ctx->key_length == AES_KEYSIZE_128)
 435		aes_xctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len,
 436					 byte_ctr);
 437	else if (ctx->key_length == AES_KEYSIZE_192)
 438		aes_xctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len,
 439					 byte_ctr);
 440	else
 441		aes_xctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len,
 442					 byte_ctr);
 
 
 
 
 
 
 443}
 444
 445static int xctr_crypt(struct skcipher_request *req)
 
 446{
 447	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 448	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 449	u8 keystream[AES_BLOCK_SIZE];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450	struct skcipher_walk walk;
 451	unsigned int nbytes;
 452	unsigned int byte_ctr = 0;
 
 453	int err;
 454	__le32 block[AES_BLOCK_SIZE / sizeof(__le32)];
 455
 456	err = skcipher_walk_virt(&walk, req, false);
 
 457
 458	while ((nbytes = walk.nbytes) > 0) {
 459		kernel_fpu_begin();
 460		if (nbytes & AES_BLOCK_MASK)
 461			aesni_xctr_enc_avx_tfm(ctx, walk.dst.virt.addr,
 462				walk.src.virt.addr, nbytes & AES_BLOCK_MASK,
 463				walk.iv, byte_ctr);
 464		nbytes &= ~AES_BLOCK_MASK;
 465		byte_ctr += walk.nbytes - nbytes;
 466
 467		if (walk.nbytes == walk.total && nbytes > 0) {
 468			memcpy(block, walk.iv, AES_BLOCK_SIZE);
 469			block[0] ^= cpu_to_le32(1 + byte_ctr / AES_BLOCK_SIZE);
 470			aesni_enc(ctx, keystream, (u8 *)block);
 471			crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes -
 472				       nbytes, walk.src.virt.addr + walk.nbytes
 473				       - nbytes, keystream, nbytes);
 474			byte_ctr += nbytes;
 475			nbytes = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476		}
 477		kernel_fpu_end();
 478		err = skcipher_walk_done(&walk, nbytes);
 
 479	}
 480	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481}
 482#endif
 483
 484static int xts_setkey_aesni(struct crypto_skcipher *tfm, const u8 *key,
 485			    unsigned int keylen)
 486{
 487	struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
 488	int err;
 489
 490	err = xts_verify_key(tfm, key, keylen);
 491	if (err)
 492		return err;
 493
 494	keylen /= 2;
 495
 496	/* first half of xts-key is for crypt */
 497	err = aes_set_key_common(&ctx->crypt_ctx, key, keylen);
 
 498	if (err)
 499		return err;
 500
 501	/* second half of xts-key is for tweak */
 502	return aes_set_key_common(&ctx->tweak_ctx, key + keylen, keylen);
 
 503}
 504
 505typedef void (*xts_encrypt_iv_func)(const struct crypto_aes_ctx *tweak_key,
 506				    u8 iv[AES_BLOCK_SIZE]);
 507typedef void (*xts_crypt_func)(const struct crypto_aes_ctx *key,
 508			       const u8 *src, u8 *dst, unsigned int len,
 509			       u8 tweak[AES_BLOCK_SIZE]);
 510
 511/* This handles cases where the source and/or destination span pages. */
 512static noinline int
 513xts_crypt_slowpath(struct skcipher_request *req, xts_crypt_func crypt_func)
 514{
 515	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 516	const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
 517	int tail = req->cryptlen % AES_BLOCK_SIZE;
 518	struct scatterlist sg_src[2], sg_dst[2];
 519	struct skcipher_request subreq;
 520	struct skcipher_walk walk;
 521	struct scatterlist *src, *dst;
 522	int err;
 523
 524	/*
 525	 * If the message length isn't divisible by the AES block size, then
 526	 * separate off the last full block and the partial block.  This ensures
 527	 * that they are processed in the same call to the assembly function,
 528	 * which is required for ciphertext stealing.
 529	 */
 530	if (tail) {
 
 
 
 
 
 531		skcipher_request_set_tfm(&subreq, tfm);
 532		skcipher_request_set_callback(&subreq,
 533					      skcipher_request_flags(req),
 534					      NULL, NULL);
 535		skcipher_request_set_crypt(&subreq, req->src, req->dst,
 536					   req->cryptlen - tail - AES_BLOCK_SIZE,
 537					   req->iv);
 538		req = &subreq;
 539	}
 540
 541	err = skcipher_walk_virt(&walk, req, false);
 542
 543	while (walk.nbytes) {
 544		kernel_fpu_begin();
 545		(*crypt_func)(&ctx->crypt_ctx,
 546			      walk.src.virt.addr, walk.dst.virt.addr,
 547			      walk.nbytes & ~(AES_BLOCK_SIZE - 1), req->iv);
 548		kernel_fpu_end();
 549		err = skcipher_walk_done(&walk,
 550					 walk.nbytes & (AES_BLOCK_SIZE - 1));
 551	}
 552
 553	if (err || !tail)
 554		return err;
 555
 556	/* Do ciphertext stealing with the last full block and partial block. */
 
 557
 558	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
 559	if (req->dst != req->src)
 560		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
 561
 562	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
 563				   req->iv);
 564
 565	err = skcipher_walk_virt(&walk, req, false);
 566	if (err)
 567		return err;
 568
 569	kernel_fpu_begin();
 570	(*crypt_func)(&ctx->crypt_ctx, walk.src.virt.addr, walk.dst.virt.addr,
 571		      walk.nbytes, req->iv);
 572	kernel_fpu_end();
 
 
 
 
 
 573
 574	return skcipher_walk_done(&walk, 0);
 575}
 576
 577/* __always_inline to avoid indirect call in fastpath */
 578static __always_inline int
 579xts_crypt(struct skcipher_request *req, xts_encrypt_iv_func encrypt_iv,
 580	  xts_crypt_func crypt_func)
 581{
 582	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 583	const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
 584	const unsigned int cryptlen = req->cryptlen;
 585	struct scatterlist *src = req->src;
 586	struct scatterlist *dst = req->dst;
 587
 588	if (unlikely(cryptlen < AES_BLOCK_SIZE))
 589		return -EINVAL;
 
 590
 591	kernel_fpu_begin();
 592	(*encrypt_iv)(&ctx->tweak_ctx, req->iv);
 
 593
 594	/*
 595	 * In practice, virtually all XTS plaintexts and ciphertexts are either
 596	 * 512 or 4096 bytes, aligned such that they don't span page boundaries.
 597	 * To optimize the performance of these cases, and also any other case
 598	 * where no page boundary is spanned, the below fast-path handles
 599	 * single-page sources and destinations as efficiently as possible.
 600	 */
 601	if (likely(src->length >= cryptlen && dst->length >= cryptlen &&
 602		   src->offset + cryptlen <= PAGE_SIZE &&
 603		   dst->offset + cryptlen <= PAGE_SIZE)) {
 604		struct page *src_page = sg_page(src);
 605		struct page *dst_page = sg_page(dst);
 606		void *src_virt = kmap_local_page(src_page) + src->offset;
 607		void *dst_virt = kmap_local_page(dst_page) + dst->offset;
 608
 609		(*crypt_func)(&ctx->crypt_ctx, src_virt, dst_virt, cryptlen,
 610			      req->iv);
 611		kunmap_local(dst_virt);
 612		kunmap_local(src_virt);
 613		kernel_fpu_end();
 614		return 0;
 615	}
 616	kernel_fpu_end();
 617	return xts_crypt_slowpath(req, crypt_func);
 618}
 619
 620static void aesni_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
 621				 u8 iv[AES_BLOCK_SIZE])
 622{
 623	aesni_enc(tweak_key, iv, iv);
 624}
 625
 626static void aesni_xts_encrypt(const struct crypto_aes_ctx *key,
 627			      const u8 *src, u8 *dst, unsigned int len,
 628			      u8 tweak[AES_BLOCK_SIZE])
 629{
 630	aesni_xts_enc(key, dst, src, len, tweak);
 631}
 
 
 
 
 632
 633static void aesni_xts_decrypt(const struct crypto_aes_ctx *key,
 634			      const u8 *src, u8 *dst, unsigned int len,
 635			      u8 tweak[AES_BLOCK_SIZE])
 636{
 637	aesni_xts_dec(key, dst, src, len, tweak);
 638}
 639
 640static int xts_encrypt_aesni(struct skcipher_request *req)
 641{
 642	return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_encrypt);
 643}
 644
 645static int xts_decrypt_aesni(struct skcipher_request *req)
 646{
 647	return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_decrypt);
 648}
 649
 650static struct crypto_alg aesni_cipher_alg = {
 651	.cra_name		= "aes",
 652	.cra_driver_name	= "aes-aesni",
 653	.cra_priority		= 300,
 654	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
 655	.cra_blocksize		= AES_BLOCK_SIZE,
 656	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
 657	.cra_module		= THIS_MODULE,
 658	.cra_u	= {
 659		.cipher	= {
 660			.cia_min_keysize	= AES_MIN_KEY_SIZE,
 661			.cia_max_keysize	= AES_MAX_KEY_SIZE,
 662			.cia_setkey		= aes_set_key,
 663			.cia_encrypt		= aesni_encrypt,
 664			.cia_decrypt		= aesni_decrypt
 665		}
 666	}
 667};
 668
 669static struct skcipher_alg aesni_skciphers[] = {
 670	{
 671		.base = {
 672			.cra_name		= "__ecb(aes)",
 673			.cra_driver_name	= "__ecb-aes-aesni",
 674			.cra_priority		= 400,
 675			.cra_flags		= CRYPTO_ALG_INTERNAL,
 676			.cra_blocksize		= AES_BLOCK_SIZE,
 677			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
 678			.cra_module		= THIS_MODULE,
 679		},
 680		.min_keysize	= AES_MIN_KEY_SIZE,
 681		.max_keysize	= AES_MAX_KEY_SIZE,
 682		.setkey		= aesni_skcipher_setkey,
 683		.encrypt	= ecb_encrypt,
 684		.decrypt	= ecb_decrypt,
 685	}, {
 686		.base = {
 687			.cra_name		= "__cbc(aes)",
 688			.cra_driver_name	= "__cbc-aes-aesni",
 689			.cra_priority		= 400,
 690			.cra_flags		= CRYPTO_ALG_INTERNAL,
 691			.cra_blocksize		= AES_BLOCK_SIZE,
 692			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
 693			.cra_module		= THIS_MODULE,
 694		},
 695		.min_keysize	= AES_MIN_KEY_SIZE,
 696		.max_keysize	= AES_MAX_KEY_SIZE,
 697		.ivsize		= AES_BLOCK_SIZE,
 698		.setkey		= aesni_skcipher_setkey,
 699		.encrypt	= cbc_encrypt,
 700		.decrypt	= cbc_decrypt,
 701	}, {
 702		.base = {
 703			.cra_name		= "__cts(cbc(aes))",
 704			.cra_driver_name	= "__cts-cbc-aes-aesni",
 705			.cra_priority		= 400,
 706			.cra_flags		= CRYPTO_ALG_INTERNAL,
 707			.cra_blocksize		= AES_BLOCK_SIZE,
 708			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
 709			.cra_module		= THIS_MODULE,
 710		},
 711		.min_keysize	= AES_MIN_KEY_SIZE,
 712		.max_keysize	= AES_MAX_KEY_SIZE,
 713		.ivsize		= AES_BLOCK_SIZE,
 714		.walksize	= 2 * AES_BLOCK_SIZE,
 715		.setkey		= aesni_skcipher_setkey,
 716		.encrypt	= cts_cbc_encrypt,
 717		.decrypt	= cts_cbc_decrypt,
 718#ifdef CONFIG_X86_64
 719	}, {
 720		.base = {
 721			.cra_name		= "__ctr(aes)",
 722			.cra_driver_name	= "__ctr-aes-aesni",
 723			.cra_priority		= 400,
 724			.cra_flags		= CRYPTO_ALG_INTERNAL,
 725			.cra_blocksize		= 1,
 726			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
 727			.cra_module		= THIS_MODULE,
 728		},
 729		.min_keysize	= AES_MIN_KEY_SIZE,
 730		.max_keysize	= AES_MAX_KEY_SIZE,
 731		.ivsize		= AES_BLOCK_SIZE,
 732		.chunksize	= AES_BLOCK_SIZE,
 733		.setkey		= aesni_skcipher_setkey,
 734		.encrypt	= ctr_crypt,
 735		.decrypt	= ctr_crypt,
 736#endif
 737	}, {
 738		.base = {
 739			.cra_name		= "__xts(aes)",
 740			.cra_driver_name	= "__xts-aes-aesni",
 741			.cra_priority		= 401,
 742			.cra_flags		= CRYPTO_ALG_INTERNAL,
 743			.cra_blocksize		= AES_BLOCK_SIZE,
 744			.cra_ctxsize		= XTS_AES_CTX_SIZE,
 745			.cra_module		= THIS_MODULE,
 746		},
 747		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
 748		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
 749		.ivsize		= AES_BLOCK_SIZE,
 750		.walksize	= 2 * AES_BLOCK_SIZE,
 751		.setkey		= xts_setkey_aesni,
 752		.encrypt	= xts_encrypt_aesni,
 753		.decrypt	= xts_decrypt_aesni,
 754	}
 755};
 756
 757static
 758struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
 759
 760#ifdef CONFIG_X86_64
 761/*
 762 * XCTR does not have a non-AVX implementation, so it must be enabled
 763 * conditionally.
 764 */
 765static struct skcipher_alg aesni_xctr = {
 766	.base = {
 767		.cra_name		= "__xctr(aes)",
 768		.cra_driver_name	= "__xctr-aes-aesni",
 769		.cra_priority		= 400,
 770		.cra_flags		= CRYPTO_ALG_INTERNAL,
 771		.cra_blocksize		= 1,
 772		.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
 773		.cra_module		= THIS_MODULE,
 774	},
 775	.min_keysize	= AES_MIN_KEY_SIZE,
 776	.max_keysize	= AES_MAX_KEY_SIZE,
 777	.ivsize		= AES_BLOCK_SIZE,
 778	.chunksize	= AES_BLOCK_SIZE,
 779	.setkey		= aesni_skcipher_setkey,
 780	.encrypt	= xctr_crypt,
 781	.decrypt	= xctr_crypt,
 782};
 783
 784static struct simd_skcipher_alg *aesni_simd_xctr;
 785
 786asmlinkage void aes_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
 787				   u8 iv[AES_BLOCK_SIZE]);
 788
 789#define DEFINE_XTS_ALG(suffix, driver_name, priority)			       \
 790									       \
 791asmlinkage void								       \
 792aes_xts_encrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src,      \
 793			 u8 *dst, unsigned int len, u8 tweak[AES_BLOCK_SIZE]); \
 794asmlinkage void								       \
 795aes_xts_decrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src,      \
 796			 u8 *dst, unsigned int len, u8 tweak[AES_BLOCK_SIZE]); \
 797									       \
 798static int xts_encrypt_##suffix(struct skcipher_request *req)		       \
 799{									       \
 800	return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_encrypt_##suffix);   \
 801}									       \
 802									       \
 803static int xts_decrypt_##suffix(struct skcipher_request *req)		       \
 804{									       \
 805	return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_decrypt_##suffix);   \
 806}									       \
 807									       \
 808static struct skcipher_alg aes_xts_alg_##suffix = {			       \
 809	.base = {							       \
 810		.cra_name		= "__xts(aes)",			       \
 811		.cra_driver_name	= "__" driver_name,		       \
 812		.cra_priority		= priority,			       \
 813		.cra_flags		= CRYPTO_ALG_INTERNAL,		       \
 814		.cra_blocksize		= AES_BLOCK_SIZE,		       \
 815		.cra_ctxsize		= XTS_AES_CTX_SIZE,		       \
 816		.cra_module		= THIS_MODULE,			       \
 817	},								       \
 818	.min_keysize	= 2 * AES_MIN_KEY_SIZE,				       \
 819	.max_keysize	= 2 * AES_MAX_KEY_SIZE,				       \
 820	.ivsize		= AES_BLOCK_SIZE,				       \
 821	.walksize	= 2 * AES_BLOCK_SIZE,				       \
 822	.setkey		= xts_setkey_aesni,				       \
 823	.encrypt	= xts_encrypt_##suffix,				       \
 824	.decrypt	= xts_decrypt_##suffix,				       \
 825};									       \
 826									       \
 827static struct simd_skcipher_alg *aes_xts_simdalg_##suffix
 828
 829DEFINE_XTS_ALG(aesni_avx, "xts-aes-aesni-avx", 500);
 830#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
 831DEFINE_XTS_ALG(vaes_avx2, "xts-aes-vaes-avx2", 600);
 832DEFINE_XTS_ALG(vaes_avx10_256, "xts-aes-vaes-avx10_256", 700);
 833DEFINE_XTS_ALG(vaes_avx10_512, "xts-aes-vaes-avx10_512", 800);
 834#endif
 835
 836/* The common part of the x86_64 AES-GCM key struct */
 837struct aes_gcm_key {
 838	/* Expanded AES key and the AES key length in bytes */
 839	struct crypto_aes_ctx aes_key;
 840
 841	/* RFC4106 nonce (used only by the rfc4106 algorithms) */
 842	u32 rfc4106_nonce;
 843};
 844
 845/* Key struct used by the AES-NI implementations of AES-GCM */
 846struct aes_gcm_key_aesni {
 847	/*
 848	 * Common part of the key.  The assembly code requires 16-byte alignment
 849	 * for the round keys; we get this by them being located at the start of
 850	 * the struct and the whole struct being 16-byte aligned.
 851	 */
 852	struct aes_gcm_key base;
 853
 854	/*
 855	 * Powers of the hash key H^8 through H^1.  These are 128-bit values.
 856	 * They all have an extra factor of x^-1 and are byte-reversed.  16-byte
 857	 * alignment is required by the assembly code.
 858	 */
 859	u64 h_powers[8][2] __aligned(16);
 860
 861	/*
 862	 * h_powers_xored[i] contains the two 64-bit halves of h_powers[i] XOR'd
 863	 * together.  It's used for Karatsuba multiplication.  16-byte alignment
 864	 * is required by the assembly code.
 865	 */
 866	u64 h_powers_xored[8] __aligned(16);
 867
 868	/*
 869	 * H^1 times x^64 (and also the usual extra factor of x^-1).  16-byte
 870	 * alignment is required by the assembly code.
 871	 */
 872	u64 h_times_x64[2] __aligned(16);
 873};
 874#define AES_GCM_KEY_AESNI(key)	\
 875	container_of((key), struct aes_gcm_key_aesni, base)
 876#define AES_GCM_KEY_AESNI_SIZE	\
 877	(sizeof(struct aes_gcm_key_aesni) + (15 & ~(CRYPTO_MINALIGN - 1)))
 878
 879/* Key struct used by the VAES + AVX10 implementations of AES-GCM */
 880struct aes_gcm_key_avx10 {
 881	/*
 882	 * Common part of the key.  The assembly code prefers 16-byte alignment
 883	 * for the round keys; we get this by them being located at the start of
 884	 * the struct and the whole struct being 64-byte aligned.
 885	 */
 886	struct aes_gcm_key base;
 887
 888	/*
 889	 * Powers of the hash key H^16 through H^1.  These are 128-bit values.
 890	 * They all have an extra factor of x^-1 and are byte-reversed.  This
 891	 * array is aligned to a 64-byte boundary to make it naturally aligned
 892	 * for 512-bit loads, which can improve performance.  (The assembly code
 893	 * doesn't *need* the alignment; this is just an optimization.)
 894	 */
 895	u64 h_powers[16][2] __aligned(64);
 896
 897	/* Three padding blocks required by the assembly code */
 898	u64 padding[3][2];
 899};
 900#define AES_GCM_KEY_AVX10(key)	\
 901	container_of((key), struct aes_gcm_key_avx10, base)
 902#define AES_GCM_KEY_AVX10_SIZE	\
 903	(sizeof(struct aes_gcm_key_avx10) + (63 & ~(CRYPTO_MINALIGN - 1)))
 904
 905/*
 906 * These flags are passed to the AES-GCM helper functions to specify the
 907 * specific version of AES-GCM (RFC4106 or not), whether it's encryption or
 908 * decryption, and which assembly functions should be called.  Assembly
 909 * functions are selected using flags instead of function pointers to avoid
 910 * indirect calls (which are very expensive on x86) regardless of inlining.
 911 */
 912#define FLAG_RFC4106	BIT(0)
 913#define FLAG_ENC	BIT(1)
 914#define FLAG_AVX	BIT(2)
 915#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
 916#  define FLAG_AVX10_256	BIT(3)
 917#  define FLAG_AVX10_512	BIT(4)
 918#else
 919   /*
 920    * This should cause all calls to the AVX10 assembly functions to be
 921    * optimized out, avoiding the need to ifdef each call individually.
 922    */
 923#  define FLAG_AVX10_256	0
 924#  define FLAG_AVX10_512	0
 925#endif
 926
 927static inline struct aes_gcm_key *
 928aes_gcm_key_get(struct crypto_aead *tfm, int flags)
 929{
 930	if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
 931		return PTR_ALIGN(crypto_aead_ctx(tfm), 64);
 932	else
 933		return PTR_ALIGN(crypto_aead_ctx(tfm), 16);
 934}
 935
 936asmlinkage void
 937aes_gcm_precompute_aesni(struct aes_gcm_key_aesni *key);
 938asmlinkage void
 939aes_gcm_precompute_aesni_avx(struct aes_gcm_key_aesni *key);
 940asmlinkage void
 941aes_gcm_precompute_vaes_avx10_256(struct aes_gcm_key_avx10 *key);
 942asmlinkage void
 943aes_gcm_precompute_vaes_avx10_512(struct aes_gcm_key_avx10 *key);
 944
 945static void aes_gcm_precompute(struct aes_gcm_key *key, int flags)
 946{
 947	/*
 948	 * To make things a bit easier on the assembly side, the AVX10
 949	 * implementations use the same key format.  Therefore, a single
 950	 * function using 256-bit vectors would suffice here.  However, it's
 951	 * straightforward to provide a 512-bit one because of how the assembly
 952	 * code is structured, and it works nicely because the total size of the
 953	 * key powers is a multiple of 512 bits.  So we take advantage of that.
 954	 *
 955	 * A similar situation applies to the AES-NI implementations.
 956	 */
 957	if (flags & FLAG_AVX10_512)
 958		aes_gcm_precompute_vaes_avx10_512(AES_GCM_KEY_AVX10(key));
 959	else if (flags & FLAG_AVX10_256)
 960		aes_gcm_precompute_vaes_avx10_256(AES_GCM_KEY_AVX10(key));
 961	else if (flags & FLAG_AVX)
 962		aes_gcm_precompute_aesni_avx(AES_GCM_KEY_AESNI(key));
 963	else
 964		aes_gcm_precompute_aesni(AES_GCM_KEY_AESNI(key));
 965}
 966
 967asmlinkage void
 968aes_gcm_aad_update_aesni(const struct aes_gcm_key_aesni *key,
 969			 u8 ghash_acc[16], const u8 *aad, int aadlen);
 970asmlinkage void
 971aes_gcm_aad_update_aesni_avx(const struct aes_gcm_key_aesni *key,
 972			     u8 ghash_acc[16], const u8 *aad, int aadlen);
 973asmlinkage void
 974aes_gcm_aad_update_vaes_avx10(const struct aes_gcm_key_avx10 *key,
 975			      u8 ghash_acc[16], const u8 *aad, int aadlen);
 976
 977static void aes_gcm_aad_update(const struct aes_gcm_key *key, u8 ghash_acc[16],
 978			       const u8 *aad, int aadlen, int flags)
 979{
 980	if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
 981		aes_gcm_aad_update_vaes_avx10(AES_GCM_KEY_AVX10(key), ghash_acc,
 982					      aad, aadlen);
 983	else if (flags & FLAG_AVX)
 984		aes_gcm_aad_update_aesni_avx(AES_GCM_KEY_AESNI(key), ghash_acc,
 985					     aad, aadlen);
 986	else
 987		aes_gcm_aad_update_aesni(AES_GCM_KEY_AESNI(key), ghash_acc,
 988					 aad, aadlen);
 989}
 990
 991asmlinkage void
 992aes_gcm_enc_update_aesni(const struct aes_gcm_key_aesni *key,
 993			 const u32 le_ctr[4], u8 ghash_acc[16],
 994			 const u8 *src, u8 *dst, int datalen);
 995asmlinkage void
 996aes_gcm_enc_update_aesni_avx(const struct aes_gcm_key_aesni *key,
 997			     const u32 le_ctr[4], u8 ghash_acc[16],
 998			     const u8 *src, u8 *dst, int datalen);
 999asmlinkage void
1000aes_gcm_enc_update_vaes_avx10_256(const struct aes_gcm_key_avx10 *key,
1001				  const u32 le_ctr[4], u8 ghash_acc[16],
1002				  const u8 *src, u8 *dst, int datalen);
1003asmlinkage void
1004aes_gcm_enc_update_vaes_avx10_512(const struct aes_gcm_key_avx10 *key,
1005				  const u32 le_ctr[4], u8 ghash_acc[16],
1006				  const u8 *src, u8 *dst, int datalen);
1007
1008asmlinkage void
1009aes_gcm_dec_update_aesni(const struct aes_gcm_key_aesni *key,
1010			 const u32 le_ctr[4], u8 ghash_acc[16],
1011			 const u8 *src, u8 *dst, int datalen);
1012asmlinkage void
1013aes_gcm_dec_update_aesni_avx(const struct aes_gcm_key_aesni *key,
1014			     const u32 le_ctr[4], u8 ghash_acc[16],
1015			     const u8 *src, u8 *dst, int datalen);
1016asmlinkage void
1017aes_gcm_dec_update_vaes_avx10_256(const struct aes_gcm_key_avx10 *key,
1018				  const u32 le_ctr[4], u8 ghash_acc[16],
1019				  const u8 *src, u8 *dst, int datalen);
1020asmlinkage void
1021aes_gcm_dec_update_vaes_avx10_512(const struct aes_gcm_key_avx10 *key,
1022				  const u32 le_ctr[4], u8 ghash_acc[16],
1023				  const u8 *src, u8 *dst, int datalen);
1024
1025/* __always_inline to optimize out the branches based on @flags */
1026static __always_inline void
1027aes_gcm_update(const struct aes_gcm_key *key,
1028	       const u32 le_ctr[4], u8 ghash_acc[16],
1029	       const u8 *src, u8 *dst, int datalen, int flags)
1030{
1031	if (flags & FLAG_ENC) {
1032		if (flags & FLAG_AVX10_512)
1033			aes_gcm_enc_update_vaes_avx10_512(AES_GCM_KEY_AVX10(key),
1034							  le_ctr, ghash_acc,
1035							  src, dst, datalen);
1036		else if (flags & FLAG_AVX10_256)
1037			aes_gcm_enc_update_vaes_avx10_256(AES_GCM_KEY_AVX10(key),
1038							  le_ctr, ghash_acc,
1039							  src, dst, datalen);
1040		else if (flags & FLAG_AVX)
1041			aes_gcm_enc_update_aesni_avx(AES_GCM_KEY_AESNI(key),
1042						     le_ctr, ghash_acc,
1043						     src, dst, datalen);
1044		else
1045			aes_gcm_enc_update_aesni(AES_GCM_KEY_AESNI(key), le_ctr,
1046						 ghash_acc, src, dst, datalen);
1047	} else {
1048		if (flags & FLAG_AVX10_512)
1049			aes_gcm_dec_update_vaes_avx10_512(AES_GCM_KEY_AVX10(key),
1050							  le_ctr, ghash_acc,
1051							  src, dst, datalen);
1052		else if (flags & FLAG_AVX10_256)
1053			aes_gcm_dec_update_vaes_avx10_256(AES_GCM_KEY_AVX10(key),
1054							  le_ctr, ghash_acc,
1055							  src, dst, datalen);
1056		else if (flags & FLAG_AVX)
1057			aes_gcm_dec_update_aesni_avx(AES_GCM_KEY_AESNI(key),
1058						     le_ctr, ghash_acc,
1059						     src, dst, datalen);
1060		else
1061			aes_gcm_dec_update_aesni(AES_GCM_KEY_AESNI(key),
1062						 le_ctr, ghash_acc,
1063						 src, dst, datalen);
1064	}
1065}
1066
1067asmlinkage void
1068aes_gcm_enc_final_aesni(const struct aes_gcm_key_aesni *key,
1069			const u32 le_ctr[4], u8 ghash_acc[16],
1070			u64 total_aadlen, u64 total_datalen);
1071asmlinkage void
1072aes_gcm_enc_final_aesni_avx(const struct aes_gcm_key_aesni *key,
1073			    const u32 le_ctr[4], u8 ghash_acc[16],
1074			    u64 total_aadlen, u64 total_datalen);
1075asmlinkage void
1076aes_gcm_enc_final_vaes_avx10(const struct aes_gcm_key_avx10 *key,
1077			     const u32 le_ctr[4], u8 ghash_acc[16],
1078			     u64 total_aadlen, u64 total_datalen);
1079
1080/* __always_inline to optimize out the branches based on @flags */
1081static __always_inline void
1082aes_gcm_enc_final(const struct aes_gcm_key *key,
1083		  const u32 le_ctr[4], u8 ghash_acc[16],
1084		  u64 total_aadlen, u64 total_datalen, int flags)
1085{
1086	if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
1087		aes_gcm_enc_final_vaes_avx10(AES_GCM_KEY_AVX10(key),
1088					     le_ctr, ghash_acc,
1089					     total_aadlen, total_datalen);
1090	else if (flags & FLAG_AVX)
1091		aes_gcm_enc_final_aesni_avx(AES_GCM_KEY_AESNI(key),
1092					    le_ctr, ghash_acc,
1093					    total_aadlen, total_datalen);
1094	else
1095		aes_gcm_enc_final_aesni(AES_GCM_KEY_AESNI(key),
1096					le_ctr, ghash_acc,
1097					total_aadlen, total_datalen);
1098}
1099
1100asmlinkage bool __must_check
1101aes_gcm_dec_final_aesni(const struct aes_gcm_key_aesni *key,
1102			const u32 le_ctr[4], const u8 ghash_acc[16],
1103			u64 total_aadlen, u64 total_datalen,
1104			const u8 tag[16], int taglen);
1105asmlinkage bool __must_check
1106aes_gcm_dec_final_aesni_avx(const struct aes_gcm_key_aesni *key,
1107			    const u32 le_ctr[4], const u8 ghash_acc[16],
1108			    u64 total_aadlen, u64 total_datalen,
1109			    const u8 tag[16], int taglen);
1110asmlinkage bool __must_check
1111aes_gcm_dec_final_vaes_avx10(const struct aes_gcm_key_avx10 *key,
1112			     const u32 le_ctr[4], const u8 ghash_acc[16],
1113			     u64 total_aadlen, u64 total_datalen,
1114			     const u8 tag[16], int taglen);
1115
1116/* __always_inline to optimize out the branches based on @flags */
1117static __always_inline bool __must_check
1118aes_gcm_dec_final(const struct aes_gcm_key *key, const u32 le_ctr[4],
1119		  u8 ghash_acc[16], u64 total_aadlen, u64 total_datalen,
1120		  u8 tag[16], int taglen, int flags)
1121{
1122	if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
1123		return aes_gcm_dec_final_vaes_avx10(AES_GCM_KEY_AVX10(key),
1124						    le_ctr, ghash_acc,
1125						    total_aadlen, total_datalen,
1126						    tag, taglen);
1127	else if (flags & FLAG_AVX)
1128		return aes_gcm_dec_final_aesni_avx(AES_GCM_KEY_AESNI(key),
1129						   le_ctr, ghash_acc,
1130						   total_aadlen, total_datalen,
1131						   tag, taglen);
1132	else
1133		return aes_gcm_dec_final_aesni(AES_GCM_KEY_AESNI(key),
1134					       le_ctr, ghash_acc,
1135					       total_aadlen, total_datalen,
1136					       tag, taglen);
1137}
1138
1139/*
1140 * This is the Integrity Check Value (aka the authentication tag) length and can
1141 * be 8, 12 or 16 bytes long.
1142 */
1143static int common_rfc4106_set_authsize(struct crypto_aead *aead,
1144				       unsigned int authsize)
1145{
1146	switch (authsize) {
1147	case 8:
1148	case 12:
1149	case 16:
1150		break;
1151	default:
1152		return -EINVAL;
1153	}
1154
1155	return 0;
1156}
1157
1158static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
1159				       unsigned int authsize)
1160{
1161	switch (authsize) {
1162	case 4:
1163	case 8:
1164	case 12:
1165	case 13:
1166	case 14:
1167	case 15:
1168	case 16:
1169		break;
1170	default:
1171		return -EINVAL;
1172	}
1173
1174	return 0;
1175}
1176
1177/*
1178 * This is the setkey function for the x86_64 implementations of AES-GCM.  It
1179 * saves the RFC4106 nonce if applicable, expands the AES key, and precomputes
1180 * powers of the hash key.
1181 *
1182 * To comply with the crypto_aead API, this has to be usable in no-SIMD context.
1183 * For that reason, this function includes a portable C implementation of the
1184 * needed logic.  However, the portable C implementation is very slow, taking
1185 * about the same time as encrypting 37 KB of data.  To be ready for users that
1186 * may set a key even somewhat frequently, we therefore also include a SIMD
1187 * assembly implementation, expanding the AES key using AES-NI and precomputing
1188 * the hash key powers using PCLMULQDQ or VPCLMULQDQ.
1189 */
1190static int gcm_setkey(struct crypto_aead *tfm, const u8 *raw_key,
1191		      unsigned int keylen, int flags)
1192{
1193	struct aes_gcm_key *key = aes_gcm_key_get(tfm, flags);
1194	int err;
1195
1196	if (flags & FLAG_RFC4106) {
1197		if (keylen < 4)
1198			return -EINVAL;
1199		keylen -= 4;
1200		key->rfc4106_nonce = get_unaligned_be32(raw_key + keylen);
1201	}
1202
1203	/* The assembly code assumes the following offsets. */
1204	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, base.aes_key.key_enc) != 0);
1205	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, base.aes_key.key_length) != 480);
1206	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_powers) != 496);
1207	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_powers_xored) != 624);
1208	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_times_x64) != 688);
1209	BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, base.aes_key.key_enc) != 0);
1210	BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, base.aes_key.key_length) != 480);
1211	BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, h_powers) != 512);
1212	BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, padding) != 768);
1213
1214	if (likely(crypto_simd_usable())) {
1215		err = aes_check_keylen(keylen);
1216		if (err)
1217			return err;
1218		kernel_fpu_begin();
1219		aesni_set_key(&key->aes_key, raw_key, keylen);
1220		aes_gcm_precompute(key, flags);
1221		kernel_fpu_end();
1222	} else {
1223		static const u8 x_to_the_minus1[16] __aligned(__alignof__(be128)) = {
1224			[0] = 0xc2, [15] = 1
1225		};
1226		static const u8 x_to_the_63[16] __aligned(__alignof__(be128)) = {
1227			[7] = 1,
1228		};
1229		be128 h1 = {};
1230		be128 h;
1231		int i;
1232
1233		err = aes_expandkey(&key->aes_key, raw_key, keylen);
1234		if (err)
1235			return err;
1236
1237		/* Encrypt the all-zeroes block to get the hash key H^1 */
1238		aes_encrypt(&key->aes_key, (u8 *)&h1, (u8 *)&h1);
1239
1240		/* Compute H^1 * x^-1 */
1241		h = h1;
1242		gf128mul_lle(&h, (const be128 *)x_to_the_minus1);
1243
1244		/* Compute the needed key powers */
1245		if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512)) {
1246			struct aes_gcm_key_avx10 *k = AES_GCM_KEY_AVX10(key);
1247
1248			for (i = ARRAY_SIZE(k->h_powers) - 1; i >= 0; i--) {
1249				k->h_powers[i][0] = be64_to_cpu(h.b);
1250				k->h_powers[i][1] = be64_to_cpu(h.a);
1251				gf128mul_lle(&h, &h1);
1252			}
1253			memset(k->padding, 0, sizeof(k->padding));
1254		} else {
1255			struct aes_gcm_key_aesni *k = AES_GCM_KEY_AESNI(key);
1256
1257			for (i = ARRAY_SIZE(k->h_powers) - 1; i >= 0; i--) {
1258				k->h_powers[i][0] = be64_to_cpu(h.b);
1259				k->h_powers[i][1] = be64_to_cpu(h.a);
1260				k->h_powers_xored[i] = k->h_powers[i][0] ^
1261						       k->h_powers[i][1];
1262				gf128mul_lle(&h, &h1);
1263			}
1264			gf128mul_lle(&h1, (const be128 *)x_to_the_63);
1265			k->h_times_x64[0] = be64_to_cpu(h1.b);
1266			k->h_times_x64[1] = be64_to_cpu(h1.a);
1267		}
1268	}
1269	return 0;
1270}
1271
1272/*
1273 * Initialize @ghash_acc, then pass all @assoclen bytes of associated data
1274 * (a.k.a. additional authenticated data) from @sg_src through the GHASH update
1275 * assembly function.  kernel_fpu_begin() must have already been called.
1276 */
1277static void gcm_process_assoc(const struct aes_gcm_key *key, u8 ghash_acc[16],
1278			      struct scatterlist *sg_src, unsigned int assoclen,
1279			      int flags)
1280{
1281	struct scatter_walk walk;
1282	/*
1283	 * The assembly function requires that the length of any non-last
1284	 * segment of associated data be a multiple of 16 bytes, so this
1285	 * function does the buffering needed to achieve that.
1286	 */
1287	unsigned int pos = 0;
1288	u8 buf[16];
1289
1290	memset(ghash_acc, 0, 16);
1291	scatterwalk_start(&walk, sg_src);
1292
1293	while (assoclen) {
1294		unsigned int len_this_page = scatterwalk_clamp(&walk, assoclen);
1295		void *mapped = scatterwalk_map(&walk);
1296		const void *src = mapped;
1297		unsigned int len;
1298
1299		assoclen -= len_this_page;
1300		scatterwalk_advance(&walk, len_this_page);
1301		if (unlikely(pos)) {
1302			len = min(len_this_page, 16 - pos);
1303			memcpy(&buf[pos], src, len);
1304			pos += len;
1305			src += len;
1306			len_this_page -= len;
1307			if (pos < 16)
1308				goto next;
1309			aes_gcm_aad_update(key, ghash_acc, buf, 16, flags);
1310			pos = 0;
1311		}
1312		len = len_this_page;
1313		if (unlikely(assoclen)) /* Not the last segment yet? */
1314			len = round_down(len, 16);
1315		aes_gcm_aad_update(key, ghash_acc, src, len, flags);
1316		src += len;
1317		len_this_page -= len;
1318		if (unlikely(len_this_page)) {
1319			memcpy(buf, src, len_this_page);
1320			pos = len_this_page;
1321		}
1322next:
1323		scatterwalk_unmap(mapped);
1324		scatterwalk_pagedone(&walk, 0, assoclen);
1325		if (need_resched()) {
1326			kernel_fpu_end();
1327			kernel_fpu_begin();
1328		}
1329	}
1330	if (unlikely(pos))
1331		aes_gcm_aad_update(key, ghash_acc, buf, pos, flags);
1332}
1333
1334
1335/* __always_inline to optimize out the branches based on @flags */
1336static __always_inline int
1337gcm_crypt(struct aead_request *req, int flags)
1338{
1339	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1340	const struct aes_gcm_key *key = aes_gcm_key_get(tfm, flags);
1341	unsigned int assoclen = req->assoclen;
1342	struct skcipher_walk walk;
1343	unsigned int nbytes;
1344	u8 ghash_acc[16]; /* GHASH accumulator */
1345	u32 le_ctr[4]; /* Counter in little-endian format */
1346	int taglen;
1347	int err;
1348
1349	/* Initialize the counter and determine the associated data length. */
1350	le_ctr[0] = 2;
1351	if (flags & FLAG_RFC4106) {
1352		if (unlikely(assoclen != 16 && assoclen != 20))
1353			return -EINVAL;
1354		assoclen -= 8;
1355		le_ctr[1] = get_unaligned_be32(req->iv + 4);
1356		le_ctr[2] = get_unaligned_be32(req->iv + 0);
1357		le_ctr[3] = key->rfc4106_nonce; /* already byte-swapped */
1358	} else {
1359		le_ctr[1] = get_unaligned_be32(req->iv + 8);
1360		le_ctr[2] = get_unaligned_be32(req->iv + 4);
1361		le_ctr[3] = get_unaligned_be32(req->iv + 0);
1362	}
1363
1364	/* Begin walking through the plaintext or ciphertext. */
1365	if (flags & FLAG_ENC)
1366		err = skcipher_walk_aead_encrypt(&walk, req, false);
1367	else
1368		err = skcipher_walk_aead_decrypt(&walk, req, false);
1369	if (err)
1370		return err;
1371
1372	/*
1373	 * Since the AES-GCM assembly code requires that at least three assembly
1374	 * functions be called to process any message (this is needed to support
1375	 * incremental updates cleanly), to reduce overhead we try to do all
1376	 * three calls in the same kernel FPU section if possible.  We close the
1377	 * section and start a new one if there are multiple data segments or if
1378	 * rescheduling is needed while processing the associated data.
1379	 */
1380	kernel_fpu_begin();
1381
1382	/* Pass the associated data through GHASH. */
1383	gcm_process_assoc(key, ghash_acc, req->src, assoclen, flags);
1384
1385	/* En/decrypt the data and pass the ciphertext through GHASH. */
1386	while (unlikely((nbytes = walk.nbytes) < walk.total)) {
1387		/*
1388		 * Non-last segment.  In this case, the assembly function
1389		 * requires that the length be a multiple of 16 (AES_BLOCK_SIZE)
1390		 * bytes.  The needed buffering of up to 16 bytes is handled by
1391		 * the skcipher_walk.  Here we just need to round down to a
1392		 * multiple of 16.
1393		 */
1394		nbytes = round_down(nbytes, AES_BLOCK_SIZE);
1395		aes_gcm_update(key, le_ctr, ghash_acc, walk.src.virt.addr,
1396			       walk.dst.virt.addr, nbytes, flags);
1397		le_ctr[0] += nbytes / AES_BLOCK_SIZE;
1398		kernel_fpu_end();
1399		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
1400		if (err)
1401			return err;
1402		kernel_fpu_begin();
1403	}
1404	/* Last segment: process all remaining data. */
1405	aes_gcm_update(key, le_ctr, ghash_acc, walk.src.virt.addr,
1406		       walk.dst.virt.addr, nbytes, flags);
1407	/*
1408	 * The low word of the counter isn't used by the finalize, so there's no
1409	 * need to increment it here.
1410	 */
1411
1412	/* Finalize */
1413	taglen = crypto_aead_authsize(tfm);
1414	if (flags & FLAG_ENC) {
1415		/* Finish computing the auth tag. */
1416		aes_gcm_enc_final(key, le_ctr, ghash_acc, assoclen,
1417				  req->cryptlen, flags);
1418
1419		/* Store the computed auth tag in the dst scatterlist. */
1420		scatterwalk_map_and_copy(ghash_acc, req->dst, req->assoclen +
1421					 req->cryptlen, taglen, 1);
1422	} else {
1423		unsigned int datalen = req->cryptlen - taglen;
1424		u8 tag[16];
1425
1426		/* Get the transmitted auth tag from the src scatterlist. */
1427		scatterwalk_map_and_copy(tag, req->src, req->assoclen + datalen,
1428					 taglen, 0);
1429		/*
1430		 * Finish computing the auth tag and compare it to the
1431		 * transmitted one.  The assembly function does the actual tag
1432		 * comparison.  Here, just check the boolean result.
1433		 */
1434		if (!aes_gcm_dec_final(key, le_ctr, ghash_acc, assoclen,
1435				       datalen, tag, taglen, flags))
1436			err = -EBADMSG;
1437	}
1438	kernel_fpu_end();
1439	if (nbytes)
1440		skcipher_walk_done(&walk, 0);
1441	return err;
1442}
1443
1444#define DEFINE_GCM_ALGS(suffix, flags, generic_driver_name, rfc_driver_name,   \
1445			ctxsize, priority)				       \
1446									       \
1447static int gcm_setkey_##suffix(struct crypto_aead *tfm, const u8 *raw_key,     \
1448			       unsigned int keylen)			       \
1449{									       \
1450	return gcm_setkey(tfm, raw_key, keylen, (flags));		       \
1451}									       \
1452									       \
1453static int gcm_encrypt_##suffix(struct aead_request *req)		       \
1454{									       \
1455	return gcm_crypt(req, (flags) | FLAG_ENC);			       \
1456}									       \
1457									       \
1458static int gcm_decrypt_##suffix(struct aead_request *req)		       \
1459{									       \
1460	return gcm_crypt(req, (flags));					       \
1461}									       \
1462									       \
1463static int rfc4106_setkey_##suffix(struct crypto_aead *tfm, const u8 *raw_key, \
1464				   unsigned int keylen)			       \
1465{									       \
1466	return gcm_setkey(tfm, raw_key, keylen, (flags) | FLAG_RFC4106);       \
1467}									       \
1468									       \
1469static int rfc4106_encrypt_##suffix(struct aead_request *req)		       \
1470{									       \
1471	return gcm_crypt(req, (flags) | FLAG_RFC4106 | FLAG_ENC);	       \
1472}									       \
1473									       \
1474static int rfc4106_decrypt_##suffix(struct aead_request *req)		       \
1475{									       \
1476	return gcm_crypt(req, (flags) | FLAG_RFC4106);			       \
1477}									       \
1478									       \
1479static struct aead_alg aes_gcm_algs_##suffix[] = { {			       \
1480	.setkey			= gcm_setkey_##suffix,			       \
1481	.setauthsize		= generic_gcmaes_set_authsize,		       \
1482	.encrypt		= gcm_encrypt_##suffix,			       \
1483	.decrypt		= gcm_decrypt_##suffix,			       \
1484	.ivsize			= GCM_AES_IV_SIZE,			       \
1485	.chunksize		= AES_BLOCK_SIZE,			       \
1486	.maxauthsize		= 16,					       \
1487	.base = {							       \
1488		.cra_name		= "__gcm(aes)",			       \
1489		.cra_driver_name	= "__" generic_driver_name,	       \
1490		.cra_priority		= (priority),			       \
1491		.cra_flags		= CRYPTO_ALG_INTERNAL,		       \
1492		.cra_blocksize		= 1,				       \
1493		.cra_ctxsize		= (ctxsize),			       \
1494		.cra_module		= THIS_MODULE,			       \
1495	},								       \
1496}, {									       \
1497	.setkey			= rfc4106_setkey_##suffix,		       \
1498	.setauthsize		= common_rfc4106_set_authsize,		       \
1499	.encrypt		= rfc4106_encrypt_##suffix,		       \
1500	.decrypt		= rfc4106_decrypt_##suffix,		       \
1501	.ivsize			= GCM_RFC4106_IV_SIZE,			       \
1502	.chunksize		= AES_BLOCK_SIZE,			       \
1503	.maxauthsize		= 16,					       \
1504	.base = {							       \
1505		.cra_name		= "__rfc4106(gcm(aes))",	       \
1506		.cra_driver_name	= "__" rfc_driver_name,		       \
1507		.cra_priority		= (priority),			       \
1508		.cra_flags		= CRYPTO_ALG_INTERNAL,		       \
1509		.cra_blocksize		= 1,				       \
1510		.cra_ctxsize		= (ctxsize),			       \
1511		.cra_module		= THIS_MODULE,			       \
1512	},								       \
1513} };									       \
1514									       \
1515static struct simd_aead_alg *aes_gcm_simdalgs_##suffix[2]		       \
1516
1517/* aes_gcm_algs_aesni */
1518DEFINE_GCM_ALGS(aesni, /* no flags */ 0,
1519		"generic-gcm-aesni", "rfc4106-gcm-aesni",
1520		AES_GCM_KEY_AESNI_SIZE, 400);
1521
1522/* aes_gcm_algs_aesni_avx */
1523DEFINE_GCM_ALGS(aesni_avx, FLAG_AVX,
1524		"generic-gcm-aesni-avx", "rfc4106-gcm-aesni-avx",
1525		AES_GCM_KEY_AESNI_SIZE, 500);
1526
1527#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
1528/* aes_gcm_algs_vaes_avx10_256 */
1529DEFINE_GCM_ALGS(vaes_avx10_256, FLAG_AVX10_256,
1530		"generic-gcm-vaes-avx10_256", "rfc4106-gcm-vaes-avx10_256",
1531		AES_GCM_KEY_AVX10_SIZE, 700);
1532
1533/* aes_gcm_algs_vaes_avx10_512 */
1534DEFINE_GCM_ALGS(vaes_avx10_512, FLAG_AVX10_512,
1535		"generic-gcm-vaes-avx10_512", "rfc4106-gcm-vaes-avx10_512",
1536		AES_GCM_KEY_AVX10_SIZE, 800);
1537#endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */
1538
1539/*
1540 * This is a list of CPU models that are known to suffer from downclocking when
1541 * zmm registers (512-bit vectors) are used.  On these CPUs, the AES mode
1542 * implementations with zmm registers won't be used by default.  Implementations
1543 * with ymm registers (256-bit vectors) will be used by default instead.
1544 */
1545static const struct x86_cpu_id zmm_exclusion_list[] = {
1546	X86_MATCH_VFM(INTEL_SKYLAKE_X,		0),
1547	X86_MATCH_VFM(INTEL_ICELAKE_X,		0),
1548	X86_MATCH_VFM(INTEL_ICELAKE_D,		0),
1549	X86_MATCH_VFM(INTEL_ICELAKE,		0),
1550	X86_MATCH_VFM(INTEL_ICELAKE_L,		0),
1551	X86_MATCH_VFM(INTEL_ICELAKE_NNPI,	0),
1552	X86_MATCH_VFM(INTEL_TIGERLAKE_L,	0),
1553	X86_MATCH_VFM(INTEL_TIGERLAKE,		0),
1554	/* Allow Rocket Lake and later, and Sapphire Rapids and later. */
1555	/* Also allow AMD CPUs (starting with Zen 4, the first with AVX-512). */
1556	{},
1557};
1558
1559static int __init register_avx_algs(void)
1560{
1561	int err;
1562
1563	if (!boot_cpu_has(X86_FEATURE_AVX))
1564		return 0;
1565	err = simd_register_skciphers_compat(&aes_xts_alg_aesni_avx, 1,
1566					     &aes_xts_simdalg_aesni_avx);
1567	if (err)
1568		return err;
1569	err = simd_register_aeads_compat(aes_gcm_algs_aesni_avx,
1570					 ARRAY_SIZE(aes_gcm_algs_aesni_avx),
1571					 aes_gcm_simdalgs_aesni_avx);
1572	if (err)
1573		return err;
1574#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
1575	if (!boot_cpu_has(X86_FEATURE_AVX2) ||
1576	    !boot_cpu_has(X86_FEATURE_VAES) ||
1577	    !boot_cpu_has(X86_FEATURE_VPCLMULQDQ) ||
1578	    !boot_cpu_has(X86_FEATURE_PCLMULQDQ) ||
1579	    !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL))
1580		return 0;
1581	err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx2, 1,
1582					     &aes_xts_simdalg_vaes_avx2);
1583	if (err)
1584		return err;
1585
1586	if (!boot_cpu_has(X86_FEATURE_AVX512BW) ||
1587	    !boot_cpu_has(X86_FEATURE_AVX512VL) ||
1588	    !boot_cpu_has(X86_FEATURE_BMI2) ||
1589	    !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM |
1590			       XFEATURE_MASK_AVX512, NULL))
1591		return 0;
1592
1593	err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_256, 1,
1594					     &aes_xts_simdalg_vaes_avx10_256);
1595	if (err)
1596		return err;
1597	err = simd_register_aeads_compat(aes_gcm_algs_vaes_avx10_256,
1598					 ARRAY_SIZE(aes_gcm_algs_vaes_avx10_256),
1599					 aes_gcm_simdalgs_vaes_avx10_256);
1600	if (err)
1601		return err;
1602
1603	if (x86_match_cpu(zmm_exclusion_list)) {
1604		int i;
1605
1606		aes_xts_alg_vaes_avx10_512.base.cra_priority = 1;
1607		for (i = 0; i < ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512); i++)
1608			aes_gcm_algs_vaes_avx10_512[i].base.cra_priority = 1;
1609	}
1610
1611	err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_512, 1,
1612					     &aes_xts_simdalg_vaes_avx10_512);
1613	if (err)
1614		return err;
1615	err = simd_register_aeads_compat(aes_gcm_algs_vaes_avx10_512,
1616					 ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512),
1617					 aes_gcm_simdalgs_vaes_avx10_512);
1618	if (err)
1619		return err;
1620#endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */
1621	return 0;
1622}
1623
1624static void unregister_avx_algs(void)
1625{
1626	if (aes_xts_simdalg_aesni_avx)
1627		simd_unregister_skciphers(&aes_xts_alg_aesni_avx, 1,
1628					  &aes_xts_simdalg_aesni_avx);
1629	if (aes_gcm_simdalgs_aesni_avx[0])
1630		simd_unregister_aeads(aes_gcm_algs_aesni_avx,
1631				      ARRAY_SIZE(aes_gcm_algs_aesni_avx),
1632				      aes_gcm_simdalgs_aesni_avx);
1633#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
1634	if (aes_xts_simdalg_vaes_avx2)
1635		simd_unregister_skciphers(&aes_xts_alg_vaes_avx2, 1,
1636					  &aes_xts_simdalg_vaes_avx2);
1637	if (aes_xts_simdalg_vaes_avx10_256)
1638		simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_256, 1,
1639					  &aes_xts_simdalg_vaes_avx10_256);
1640	if (aes_gcm_simdalgs_vaes_avx10_256[0])
1641		simd_unregister_aeads(aes_gcm_algs_vaes_avx10_256,
1642				      ARRAY_SIZE(aes_gcm_algs_vaes_avx10_256),
1643				      aes_gcm_simdalgs_vaes_avx10_256);
1644	if (aes_xts_simdalg_vaes_avx10_512)
1645		simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_512, 1,
1646					  &aes_xts_simdalg_vaes_avx10_512);
1647	if (aes_gcm_simdalgs_vaes_avx10_512[0])
1648		simd_unregister_aeads(aes_gcm_algs_vaes_avx10_512,
1649				      ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512),
1650				      aes_gcm_simdalgs_vaes_avx10_512);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1651#endif
1652}
1653#else /* CONFIG_X86_64 */
1654static struct aead_alg aes_gcm_algs_aesni[0];
1655static struct simd_aead_alg *aes_gcm_simdalgs_aesni[0];
1656
1657static int __init register_avx_algs(void)
1658{
1659	return 0;
1660}
1661
1662static void unregister_avx_algs(void)
1663{
1664}
1665#endif /* !CONFIG_X86_64 */
1666
1667static const struct x86_cpu_id aesni_cpu_id[] = {
1668	X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
1669	{}
1670};
1671MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1672
1673static int __init aesni_init(void)
1674{
1675	int err;
1676
1677	if (!x86_match_cpu(aesni_cpu_id))
1678		return -ENODEV;
1679#ifdef CONFIG_X86_64
 
 
 
 
 
 
 
 
 
 
 
1680	if (boot_cpu_has(X86_FEATURE_AVX)) {
1681		/* optimize performance of ctr mode encryption transform */
1682		static_call_update(aesni_ctr_enc_tfm, aesni_ctr_enc_avx_tfm);
1683		pr_info("AES CTR mode by8 optimization enabled\n");
1684	}
1685#endif /* CONFIG_X86_64 */
1686
1687	err = crypto_register_alg(&aesni_cipher_alg);
1688	if (err)
1689		return err;
1690
1691	err = simd_register_skciphers_compat(aesni_skciphers,
1692					     ARRAY_SIZE(aesni_skciphers),
1693					     aesni_simd_skciphers);
1694	if (err)
1695		goto unregister_cipher;
1696
1697	err = simd_register_aeads_compat(aes_gcm_algs_aesni,
1698					 ARRAY_SIZE(aes_gcm_algs_aesni),
1699					 aes_gcm_simdalgs_aesni);
1700	if (err)
1701		goto unregister_skciphers;
1702
1703#ifdef CONFIG_X86_64
1704	if (boot_cpu_has(X86_FEATURE_AVX))
1705		err = simd_register_skciphers_compat(&aesni_xctr, 1,
1706						     &aesni_simd_xctr);
1707	if (err)
1708		goto unregister_aeads;
1709#endif /* CONFIG_X86_64 */
1710
1711	err = register_avx_algs();
1712	if (err)
1713		goto unregister_avx;
1714
1715	return 0;
1716
1717unregister_avx:
1718	unregister_avx_algs();
1719#ifdef CONFIG_X86_64
1720	if (aesni_simd_xctr)
1721		simd_unregister_skciphers(&aesni_xctr, 1, &aesni_simd_xctr);
1722unregister_aeads:
1723#endif /* CONFIG_X86_64 */
1724	simd_unregister_aeads(aes_gcm_algs_aesni,
1725			      ARRAY_SIZE(aes_gcm_algs_aesni),
1726			      aes_gcm_simdalgs_aesni);
1727unregister_skciphers:
1728	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1729				  aesni_simd_skciphers);
1730unregister_cipher:
1731	crypto_unregister_alg(&aesni_cipher_alg);
1732	return err;
1733}
1734
1735static void __exit aesni_exit(void)
1736{
1737	simd_unregister_aeads(aes_gcm_algs_aesni,
1738			      ARRAY_SIZE(aes_gcm_algs_aesni),
1739			      aes_gcm_simdalgs_aesni);
1740	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1741				  aesni_simd_skciphers);
1742	crypto_unregister_alg(&aesni_cipher_alg);
1743#ifdef CONFIG_X86_64
1744	if (boot_cpu_has(X86_FEATURE_AVX))
1745		simd_unregister_skciphers(&aesni_xctr, 1, &aesni_simd_xctr);
1746#endif /* CONFIG_X86_64 */
1747	unregister_avx_algs();
1748}
1749
1750module_init(aesni_init);
1751module_exit(aesni_exit);
1752
1753MODULE_DESCRIPTION("AES cipher and modes, optimized with AES-NI or VAES instructions");
1754MODULE_LICENSE("GPL");
1755MODULE_ALIAS_CRYPTO("aes");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Support for Intel AES-NI instructions. This file contains glue
   4 * code, the real AES implementation is in intel-aes_asm.S.
   5 *
   6 * Copyright (C) 2008, Intel Corp.
   7 *    Author: Huang Ying <ying.huang@intel.com>
   8 *
   9 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
  10 * interface for 64-bit kernels.
  11 *    Authors: Adrian Hoban <adrian.hoban@intel.com>
  12 *             Gabriele Paoloni <gabriele.paoloni@intel.com>
  13 *             Tadeusz Struk (tadeusz.struk@intel.com)
  14 *             Aidan O'Mahony (aidan.o.mahony@intel.com)
  15 *    Copyright (c) 2010, Intel Corporation.
 
 
  16 */
  17
  18#include <linux/hardirq.h>
  19#include <linux/types.h>
  20#include <linux/module.h>
  21#include <linux/err.h>
  22#include <crypto/algapi.h>
  23#include <crypto/aes.h>
  24#include <crypto/ctr.h>
  25#include <crypto/b128ops.h>
  26#include <crypto/gcm.h>
  27#include <crypto/xts.h>
  28#include <asm/cpu_device_id.h>
  29#include <asm/simd.h>
  30#include <crypto/scatterwalk.h>
  31#include <crypto/internal/aead.h>
  32#include <crypto/internal/simd.h>
  33#include <crypto/internal/skcipher.h>
  34#include <linux/jump_label.h>
  35#include <linux/workqueue.h>
  36#include <linux/spinlock.h>
  37#include <linux/static_call.h>
  38
  39
  40#define AESNI_ALIGN	16
  41#define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
  42#define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE - 1))
  43#define RFC4106_HASH_SUBKEY_SIZE 16
  44#define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
  45#define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
  46#define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
  47
  48/* This data is stored at the end of the crypto_tfm struct.
  49 * It's a type of per "session" data storage location.
  50 * This needs to be 16 byte aligned.
  51 */
  52struct aesni_rfc4106_gcm_ctx {
  53	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
  54	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
  55	u8 nonce[4];
  56};
  57
  58struct generic_gcmaes_ctx {
  59	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
  60	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
  61};
  62
  63struct aesni_xts_ctx {
  64	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
  65	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
  66};
  67
  68#define GCM_BLOCK_LEN 16
 
 
 
 
 
  69
  70struct gcm_context_data {
  71	/* init, update and finalize context data */
  72	u8 aad_hash[GCM_BLOCK_LEN];
  73	u64 aad_length;
  74	u64 in_length;
  75	u8 partial_block_enc_key[GCM_BLOCK_LEN];
  76	u8 orig_IV[GCM_BLOCK_LEN];
  77	u8 current_counter[GCM_BLOCK_LEN];
  78	u64 partial_block_len;
  79	u64 unused;
  80	u8 hash_keys[GCM_BLOCK_LEN * 16];
  81};
  82
  83asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
  84			     unsigned int key_len);
  85asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
  86asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
  87asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
  88			      const u8 *in, unsigned int len);
  89asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
  90			      const u8 *in, unsigned int len);
  91asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
  92			      const u8 *in, unsigned int len, u8 *iv);
  93asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
  94			      const u8 *in, unsigned int len, u8 *iv);
  95asmlinkage void aesni_cts_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
  96				  const u8 *in, unsigned int len, u8 *iv);
  97asmlinkage void aesni_cts_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
  98				  const u8 *in, unsigned int len, u8 *iv);
  99
 100#define AVX_GEN2_OPTSIZE 640
 101#define AVX_GEN4_OPTSIZE 4096
 102
 103asmlinkage void aesni_xts_encrypt(const struct crypto_aes_ctx *ctx, u8 *out,
 104				  const u8 *in, unsigned int len, u8 *iv);
 105
 106asmlinkage void aesni_xts_decrypt(const struct crypto_aes_ctx *ctx, u8 *out,
 107				  const u8 *in, unsigned int len, u8 *iv);
 108
 109#ifdef CONFIG_X86_64
 110
 111asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
 112			      const u8 *in, unsigned int len, u8 *iv);
 113DEFINE_STATIC_CALL(aesni_ctr_enc_tfm, aesni_ctr_enc);
 114
 115/* Scatter / Gather routines, with args similar to above */
 116asmlinkage void aesni_gcm_init(void *ctx,
 117			       struct gcm_context_data *gdata,
 118			       u8 *iv,
 119			       u8 *hash_subkey, const u8 *aad,
 120			       unsigned long aad_len);
 121asmlinkage void aesni_gcm_enc_update(void *ctx,
 122				     struct gcm_context_data *gdata, u8 *out,
 123				     const u8 *in, unsigned long plaintext_len);
 124asmlinkage void aesni_gcm_dec_update(void *ctx,
 125				     struct gcm_context_data *gdata, u8 *out,
 126				     const u8 *in,
 127				     unsigned long ciphertext_len);
 128asmlinkage void aesni_gcm_finalize(void *ctx,
 129				   struct gcm_context_data *gdata,
 130				   u8 *auth_tag, unsigned long auth_tag_len);
 131
 132asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
 133		void *keys, u8 *out, unsigned int num_bytes);
 134asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
 135		void *keys, u8 *out, unsigned int num_bytes);
 136asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
 137		void *keys, u8 *out, unsigned int num_bytes);
 138/*
 139 * asmlinkage void aesni_gcm_init_avx_gen2()
 140 * gcm_data *my_ctx_data, context data
 141 * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
 142 */
 143asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data,
 144					struct gcm_context_data *gdata,
 145					u8 *iv,
 146					u8 *hash_subkey,
 147					const u8 *aad,
 148					unsigned long aad_len);
 149
 150asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx,
 151				     struct gcm_context_data *gdata, u8 *out,
 152				     const u8 *in, unsigned long plaintext_len);
 153asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx,
 154				     struct gcm_context_data *gdata, u8 *out,
 155				     const u8 *in,
 156				     unsigned long ciphertext_len);
 157asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx,
 158				   struct gcm_context_data *gdata,
 159				   u8 *auth_tag, unsigned long auth_tag_len);
 160
 161/*
 162 * asmlinkage void aesni_gcm_init_avx_gen4()
 163 * gcm_data *my_ctx_data, context data
 164 * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
 165 */
 166asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data,
 167					struct gcm_context_data *gdata,
 168					u8 *iv,
 169					u8 *hash_subkey,
 170					const u8 *aad,
 171					unsigned long aad_len);
 172
 173asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx,
 174				     struct gcm_context_data *gdata, u8 *out,
 175				     const u8 *in, unsigned long plaintext_len);
 176asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx,
 177				     struct gcm_context_data *gdata, u8 *out,
 178				     const u8 *in,
 179				     unsigned long ciphertext_len);
 180asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx,
 181				   struct gcm_context_data *gdata,
 182				   u8 *auth_tag, unsigned long auth_tag_len);
 183
 184static __ro_after_init DEFINE_STATIC_KEY_FALSE(gcm_use_avx);
 185static __ro_after_init DEFINE_STATIC_KEY_FALSE(gcm_use_avx2);
 186
 187static inline struct
 188aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
 189{
 190	unsigned long align = AESNI_ALIGN;
 191
 192	if (align <= crypto_tfm_ctx_alignment())
 193		align = 1;
 194	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
 195}
 196
 197static inline struct
 198generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm)
 199{
 200	unsigned long align = AESNI_ALIGN;
 201
 202	if (align <= crypto_tfm_ctx_alignment())
 203		align = 1;
 204	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
 205}
 206#endif
 207
 208static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
 209{
 210	unsigned long addr = (unsigned long)raw_ctx;
 211	unsigned long align = AESNI_ALIGN;
 212
 213	if (align <= crypto_tfm_ctx_alignment())
 214		align = 1;
 215	return (struct crypto_aes_ctx *)ALIGN(addr, align);
 216}
 217
 218static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
 219			      const u8 *in_key, unsigned int key_len)
 220{
 221	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
 222	int err;
 223
 224	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
 225	    key_len != AES_KEYSIZE_256)
 226		return -EINVAL;
 227
 228	if (!crypto_simd_usable())
 229		err = aes_expandkey(ctx, in_key, key_len);
 230	else {
 231		kernel_fpu_begin();
 232		err = aesni_set_key(ctx, in_key, key_len);
 233		kernel_fpu_end();
 234	}
 235
 236	return err;
 
 
 
 237}
 238
 239static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
 240		       unsigned int key_len)
 241{
 242	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
 
 243}
 244
 245static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
 246{
 247	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
 248
 249	if (!crypto_simd_usable()) {
 250		aes_encrypt(ctx, dst, src);
 251	} else {
 252		kernel_fpu_begin();
 253		aesni_enc(ctx, dst, src);
 254		kernel_fpu_end();
 255	}
 256}
 257
 258static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
 259{
 260	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
 261
 262	if (!crypto_simd_usable()) {
 263		aes_decrypt(ctx, dst, src);
 264	} else {
 265		kernel_fpu_begin();
 266		aesni_dec(ctx, dst, src);
 267		kernel_fpu_end();
 268	}
 269}
 270
 271static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
 272			         unsigned int len)
 273{
 274	return aes_set_key_common(crypto_skcipher_tfm(tfm),
 275				  crypto_skcipher_ctx(tfm), key, len);
 276}
 277
 278static int ecb_encrypt(struct skcipher_request *req)
 279{
 280	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 281	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 282	struct skcipher_walk walk;
 283	unsigned int nbytes;
 284	int err;
 285
 286	err = skcipher_walk_virt(&walk, req, false);
 287
 288	while ((nbytes = walk.nbytes)) {
 289		kernel_fpu_begin();
 290		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 291			      nbytes & AES_BLOCK_MASK);
 292		kernel_fpu_end();
 293		nbytes &= AES_BLOCK_SIZE - 1;
 294		err = skcipher_walk_done(&walk, nbytes);
 295	}
 296
 297	return err;
 298}
 299
 300static int ecb_decrypt(struct skcipher_request *req)
 301{
 302	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 303	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 304	struct skcipher_walk walk;
 305	unsigned int nbytes;
 306	int err;
 307
 308	err = skcipher_walk_virt(&walk, req, false);
 309
 310	while ((nbytes = walk.nbytes)) {
 311		kernel_fpu_begin();
 312		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 313			      nbytes & AES_BLOCK_MASK);
 314		kernel_fpu_end();
 315		nbytes &= AES_BLOCK_SIZE - 1;
 316		err = skcipher_walk_done(&walk, nbytes);
 317	}
 318
 319	return err;
 320}
 321
 322static int cbc_encrypt(struct skcipher_request *req)
 323{
 324	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 325	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 326	struct skcipher_walk walk;
 327	unsigned int nbytes;
 328	int err;
 329
 330	err = skcipher_walk_virt(&walk, req, false);
 331
 332	while ((nbytes = walk.nbytes)) {
 333		kernel_fpu_begin();
 334		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 335			      nbytes & AES_BLOCK_MASK, walk.iv);
 336		kernel_fpu_end();
 337		nbytes &= AES_BLOCK_SIZE - 1;
 338		err = skcipher_walk_done(&walk, nbytes);
 339	}
 340
 341	return err;
 342}
 343
 344static int cbc_decrypt(struct skcipher_request *req)
 345{
 346	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 347	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 348	struct skcipher_walk walk;
 349	unsigned int nbytes;
 350	int err;
 351
 352	err = skcipher_walk_virt(&walk, req, false);
 353
 354	while ((nbytes = walk.nbytes)) {
 355		kernel_fpu_begin();
 356		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 357			      nbytes & AES_BLOCK_MASK, walk.iv);
 358		kernel_fpu_end();
 359		nbytes &= AES_BLOCK_SIZE - 1;
 360		err = skcipher_walk_done(&walk, nbytes);
 361	}
 362
 363	return err;
 364}
 365
 366static int cts_cbc_encrypt(struct skcipher_request *req)
 367{
 368	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 369	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 370	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
 371	struct scatterlist *src = req->src, *dst = req->dst;
 372	struct scatterlist sg_src[2], sg_dst[2];
 373	struct skcipher_request subreq;
 374	struct skcipher_walk walk;
 375	int err;
 376
 377	skcipher_request_set_tfm(&subreq, tfm);
 378	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
 379				      NULL, NULL);
 380
 381	if (req->cryptlen <= AES_BLOCK_SIZE) {
 382		if (req->cryptlen < AES_BLOCK_SIZE)
 383			return -EINVAL;
 384		cbc_blocks = 1;
 385	}
 386
 387	if (cbc_blocks > 0) {
 388		skcipher_request_set_crypt(&subreq, req->src, req->dst,
 389					   cbc_blocks * AES_BLOCK_SIZE,
 390					   req->iv);
 391
 392		err = cbc_encrypt(&subreq);
 393		if (err)
 394			return err;
 395
 396		if (req->cryptlen == AES_BLOCK_SIZE)
 397			return 0;
 398
 399		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
 400		if (req->dst != req->src)
 401			dst = scatterwalk_ffwd(sg_dst, req->dst,
 402					       subreq.cryptlen);
 403	}
 404
 405	/* handle ciphertext stealing */
 406	skcipher_request_set_crypt(&subreq, src, dst,
 407				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
 408				   req->iv);
 409
 410	err = skcipher_walk_virt(&walk, &subreq, false);
 411	if (err)
 412		return err;
 413
 414	kernel_fpu_begin();
 415	aesni_cts_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 416			  walk.nbytes, walk.iv);
 417	kernel_fpu_end();
 418
 419	return skcipher_walk_done(&walk, 0);
 420}
 421
 422static int cts_cbc_decrypt(struct skcipher_request *req)
 423{
 424	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 425	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 426	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
 427	struct scatterlist *src = req->src, *dst = req->dst;
 428	struct scatterlist sg_src[2], sg_dst[2];
 429	struct skcipher_request subreq;
 430	struct skcipher_walk walk;
 431	int err;
 432
 433	skcipher_request_set_tfm(&subreq, tfm);
 434	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
 435				      NULL, NULL);
 436
 437	if (req->cryptlen <= AES_BLOCK_SIZE) {
 438		if (req->cryptlen < AES_BLOCK_SIZE)
 439			return -EINVAL;
 440		cbc_blocks = 1;
 441	}
 442
 443	if (cbc_blocks > 0) {
 444		skcipher_request_set_crypt(&subreq, req->src, req->dst,
 445					   cbc_blocks * AES_BLOCK_SIZE,
 446					   req->iv);
 447
 448		err = cbc_decrypt(&subreq);
 449		if (err)
 450			return err;
 451
 452		if (req->cryptlen == AES_BLOCK_SIZE)
 453			return 0;
 454
 455		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
 456		if (req->dst != req->src)
 457			dst = scatterwalk_ffwd(sg_dst, req->dst,
 458					       subreq.cryptlen);
 459	}
 460
 461	/* handle ciphertext stealing */
 462	skcipher_request_set_crypt(&subreq, src, dst,
 463				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
 464				   req->iv);
 465
 466	err = skcipher_walk_virt(&walk, &subreq, false);
 467	if (err)
 468		return err;
 469
 470	kernel_fpu_begin();
 471	aesni_cts_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
 472			  walk.nbytes, walk.iv);
 473	kernel_fpu_end();
 474
 475	return skcipher_walk_done(&walk, 0);
 476}
 477
 478#ifdef CONFIG_X86_64
 479static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
 480			      const u8 *in, unsigned int len, u8 *iv)
 481{
 482	/*
 483	 * based on key length, override with the by8 version
 484	 * of ctr mode encryption/decryption for improved performance
 485	 * aes_set_key_common() ensures that key length is one of
 486	 * {128,192,256}
 487	 */
 488	if (ctx->key_length == AES_KEYSIZE_128)
 489		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
 490	else if (ctx->key_length == AES_KEYSIZE_192)
 491		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
 492	else
 493		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
 494}
 495
 496static int ctr_crypt(struct skcipher_request *req)
 497{
 498	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 499	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
 500	u8 keystream[AES_BLOCK_SIZE];
 501	struct skcipher_walk walk;
 502	unsigned int nbytes;
 503	int err;
 504
 505	err = skcipher_walk_virt(&walk, req, false);
 506
 507	while ((nbytes = walk.nbytes) > 0) {
 508		kernel_fpu_begin();
 509		if (nbytes & AES_BLOCK_MASK)
 510			static_call(aesni_ctr_enc_tfm)(ctx, walk.dst.virt.addr,
 511						       walk.src.virt.addr,
 512						       nbytes & AES_BLOCK_MASK,
 513						       walk.iv);
 514		nbytes &= ~AES_BLOCK_MASK;
 515
 516		if (walk.nbytes == walk.total && nbytes > 0) {
 517			aesni_enc(ctx, keystream, walk.iv);
 518			crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes - nbytes,
 519				       walk.src.virt.addr + walk.nbytes - nbytes,
 520				       keystream, nbytes);
 521			crypto_inc(walk.iv, AES_BLOCK_SIZE);
 522			nbytes = 0;
 523		}
 524		kernel_fpu_end();
 525		err = skcipher_walk_done(&walk, nbytes);
 526	}
 527	return err;
 528}
 529
 530static int
 531rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
 
 532{
 533	struct crypto_aes_ctx ctx;
 534	int ret;
 535
 536	ret = aes_expandkey(&ctx, key, key_len);
 537	if (ret)
 538		return ret;
 539
 540	/* Clear the data in the hash sub key container to zero.*/
 541	/* We want to cipher all zeros to create the hash sub key. */
 542	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
 543
 544	aes_encrypt(&ctx, hash_subkey, hash_subkey);
 545
 546	memzero_explicit(&ctx, sizeof(ctx));
 547	return 0;
 548}
 549
 550static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
 551				  unsigned int key_len)
 552{
 553	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
 554
 555	if (key_len < 4)
 556		return -EINVAL;
 557
 558	/*Account for 4 byte nonce at the end.*/
 559	key_len -= 4;
 560
 561	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
 562
 563	return aes_set_key_common(crypto_aead_tfm(aead),
 564				  &ctx->aes_key_expanded, key, key_len) ?:
 565	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
 566}
 567
 568/* This is the Integrity Check Value (aka the authentication tag) length and can
 569 * be 8, 12 or 16 bytes long. */
 570static int common_rfc4106_set_authsize(struct crypto_aead *aead,
 571				       unsigned int authsize)
 572{
 573	switch (authsize) {
 574	case 8:
 575	case 12:
 576	case 16:
 577		break;
 578	default:
 579		return -EINVAL;
 580	}
 581
 582	return 0;
 583}
 584
 585static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
 586				       unsigned int authsize)
 587{
 588	switch (authsize) {
 589	case 4:
 590	case 8:
 591	case 12:
 592	case 13:
 593	case 14:
 594	case 15:
 595	case 16:
 596		break;
 597	default:
 598		return -EINVAL;
 599	}
 600
 601	return 0;
 602}
 603
 604static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
 605			      unsigned int assoclen, u8 *hash_subkey,
 606			      u8 *iv, void *aes_ctx, u8 *auth_tag,
 607			      unsigned long auth_tag_len)
 608{
 609	u8 databuf[sizeof(struct gcm_context_data) + (AESNI_ALIGN - 8)] __aligned(8);
 610	struct gcm_context_data *data = PTR_ALIGN((void *)databuf, AESNI_ALIGN);
 611	unsigned long left = req->cryptlen;
 612	struct scatter_walk assoc_sg_walk;
 613	struct skcipher_walk walk;
 614	bool do_avx, do_avx2;
 615	u8 *assocmem = NULL;
 616	u8 *assoc;
 617	int err;
 
 618
 619	if (!enc)
 620		left -= auth_tag_len;
 621
 622	do_avx = (left >= AVX_GEN2_OPTSIZE);
 623	do_avx2 = (left >= AVX_GEN4_OPTSIZE);
 
 
 
 
 
 
 624
 625	/* Linearize assoc, if not already linear */
 626	if (req->src->length >= assoclen && req->src->length) {
 627		scatterwalk_start(&assoc_sg_walk, req->src);
 628		assoc = scatterwalk_map(&assoc_sg_walk);
 629	} else {
 630		gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
 631			      GFP_KERNEL : GFP_ATOMIC;
 632
 633		/* assoc can be any length, so must be on heap */
 634		assocmem = kmalloc(assoclen, flags);
 635		if (unlikely(!assocmem))
 636			return -ENOMEM;
 637		assoc = assocmem;
 638
 639		scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0);
 640	}
 641
 642	kernel_fpu_begin();
 643	if (static_branch_likely(&gcm_use_avx2) && do_avx2)
 644		aesni_gcm_init_avx_gen4(aes_ctx, data, iv, hash_subkey, assoc,
 645					assoclen);
 646	else if (static_branch_likely(&gcm_use_avx) && do_avx)
 647		aesni_gcm_init_avx_gen2(aes_ctx, data, iv, hash_subkey, assoc,
 648					assoclen);
 649	else
 650		aesni_gcm_init(aes_ctx, data, iv, hash_subkey, assoc, assoclen);
 651	kernel_fpu_end();
 652
 653	if (!assocmem)
 654		scatterwalk_unmap(assoc);
 655	else
 656		kfree(assocmem);
 657
 658	err = enc ? skcipher_walk_aead_encrypt(&walk, req, false)
 659		  : skcipher_walk_aead_decrypt(&walk, req, false);
 660
 661	while (walk.nbytes > 0) {
 662		kernel_fpu_begin();
 663		if (static_branch_likely(&gcm_use_avx2) && do_avx2) {
 664			if (enc)
 665				aesni_gcm_enc_update_avx_gen4(aes_ctx, data,
 666							      walk.dst.virt.addr,
 667							      walk.src.virt.addr,
 668							      walk.nbytes);
 669			else
 670				aesni_gcm_dec_update_avx_gen4(aes_ctx, data,
 671							      walk.dst.virt.addr,
 672							      walk.src.virt.addr,
 673							      walk.nbytes);
 674		} else if (static_branch_likely(&gcm_use_avx) && do_avx) {
 675			if (enc)
 676				aesni_gcm_enc_update_avx_gen2(aes_ctx, data,
 677							      walk.dst.virt.addr,
 678							      walk.src.virt.addr,
 679							      walk.nbytes);
 680			else
 681				aesni_gcm_dec_update_avx_gen2(aes_ctx, data,
 682							      walk.dst.virt.addr,
 683							      walk.src.virt.addr,
 684							      walk.nbytes);
 685		} else if (enc) {
 686			aesni_gcm_enc_update(aes_ctx, data, walk.dst.virt.addr,
 687					     walk.src.virt.addr, walk.nbytes);
 688		} else {
 689			aesni_gcm_dec_update(aes_ctx, data, walk.dst.virt.addr,
 690					     walk.src.virt.addr, walk.nbytes);
 691		}
 692		kernel_fpu_end();
 693
 694		err = skcipher_walk_done(&walk, 0);
 695	}
 696
 697	if (err)
 698		return err;
 699
 700	kernel_fpu_begin();
 701	if (static_branch_likely(&gcm_use_avx2) && do_avx2)
 702		aesni_gcm_finalize_avx_gen4(aes_ctx, data, auth_tag,
 703					    auth_tag_len);
 704	else if (static_branch_likely(&gcm_use_avx) && do_avx)
 705		aesni_gcm_finalize_avx_gen2(aes_ctx, data, auth_tag,
 706					    auth_tag_len);
 707	else
 708		aesni_gcm_finalize(aes_ctx, data, auth_tag, auth_tag_len);
 709	kernel_fpu_end();
 710
 711	return 0;
 712}
 713
 714static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
 715			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
 716{
 717	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
 718	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
 719	u8 auth_tag[16];
 720	int err;
 721
 722	err = gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv, aes_ctx,
 723				 auth_tag, auth_tag_len);
 724	if (err)
 725		return err;
 726
 727	scatterwalk_map_and_copy(auth_tag, req->dst,
 728				 req->assoclen + req->cryptlen,
 729				 auth_tag_len, 1);
 730	return 0;
 731}
 732
 733static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
 734			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
 735{
 736	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
 737	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
 738	u8 auth_tag_msg[16];
 739	u8 auth_tag[16];
 740	int err;
 741
 742	err = gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv, aes_ctx,
 743				 auth_tag, auth_tag_len);
 744	if (err)
 745		return err;
 746
 747	/* Copy out original auth_tag */
 748	scatterwalk_map_and_copy(auth_tag_msg, req->src,
 749				 req->assoclen + req->cryptlen - auth_tag_len,
 750				 auth_tag_len, 0);
 751
 752	/* Compare generated tag with passed in tag. */
 753	if (crypto_memneq(auth_tag_msg, auth_tag, auth_tag_len)) {
 754		memzero_explicit(auth_tag, sizeof(auth_tag));
 755		return -EBADMSG;
 756	}
 757	return 0;
 758}
 759
 760static int helper_rfc4106_encrypt(struct aead_request *req)
 761{
 762	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
 763	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
 764	void *aes_ctx = &(ctx->aes_key_expanded);
 765	u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
 766	u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
 767	unsigned int i;
 768	__be32 counter = cpu_to_be32(1);
 769
 770	/* Assuming we are supporting rfc4106 64-bit extended */
 771	/* sequence numbers We need to have the AAD length equal */
 772	/* to 16 or 20 bytes */
 773	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
 774		return -EINVAL;
 775
 776	/* IV below built */
 777	for (i = 0; i < 4; i++)
 778		*(iv+i) = ctx->nonce[i];
 779	for (i = 0; i < 8; i++)
 780		*(iv+4+i) = req->iv[i];
 781	*((__be32 *)(iv+12)) = counter;
 782
 783	return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
 784			      aes_ctx);
 785}
 786
 787static int helper_rfc4106_decrypt(struct aead_request *req)
 788{
 789	__be32 counter = cpu_to_be32(1);
 790	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
 791	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
 792	void *aes_ctx = &(ctx->aes_key_expanded);
 793	u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
 794	u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
 795	unsigned int i;
 796
 797	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
 798		return -EINVAL;
 799
 800	/* Assuming we are supporting rfc4106 64-bit extended */
 801	/* sequence numbers We need to have the AAD length */
 802	/* equal to 16 or 20 bytes */
 803
 804	/* IV below built */
 805	for (i = 0; i < 4; i++)
 806		*(iv+i) = ctx->nonce[i];
 807	for (i = 0; i < 8; i++)
 808		*(iv+4+i) = req->iv[i];
 809	*((__be32 *)(iv+12)) = counter;
 810
 811	return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
 812			      aes_ctx);
 813}
 814#endif
 815
 816static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
 817			    unsigned int keylen)
 818{
 819	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
 820	int err;
 821
 822	err = xts_verify_key(tfm, key, keylen);
 823	if (err)
 824		return err;
 825
 826	keylen /= 2;
 827
 828	/* first half of xts-key is for crypt */
 829	err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
 830				 key, keylen);
 831	if (err)
 832		return err;
 833
 834	/* second half of xts-key is for tweak */
 835	return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
 836				  key + keylen, keylen);
 837}
 838
 839static int xts_crypt(struct skcipher_request *req, bool encrypt)
 
 
 
 
 
 
 
 
 840{
 841	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 842	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
 843	int tail = req->cryptlen % AES_BLOCK_SIZE;
 
 844	struct skcipher_request subreq;
 845	struct skcipher_walk walk;
 
 846	int err;
 847
 848	if (req->cryptlen < AES_BLOCK_SIZE)
 849		return -EINVAL;
 850
 851	err = skcipher_walk_virt(&walk, req, false);
 852	if (!walk.nbytes)
 853		return err;
 854
 855	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
 856		int blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
 857
 858		skcipher_walk_abort(&walk);
 859
 860		skcipher_request_set_tfm(&subreq, tfm);
 861		skcipher_request_set_callback(&subreq,
 862					      skcipher_request_flags(req),
 863					      NULL, NULL);
 864		skcipher_request_set_crypt(&subreq, req->src, req->dst,
 865					   blocks * AES_BLOCK_SIZE, req->iv);
 
 866		req = &subreq;
 
 
 
 867
 868		err = skcipher_walk_virt(&walk, req, false);
 869		if (err)
 870			return err;
 871	} else {
 872		tail = 0;
 
 
 
 873	}
 874
 875	kernel_fpu_begin();
 
 876
 877	/* calculate first value of T */
 878	aesni_enc(aes_ctx(ctx->raw_tweak_ctx), walk.iv, walk.iv);
 879
 880	while (walk.nbytes > 0) {
 881		int nbytes = walk.nbytes;
 
 882
 883		if (nbytes < walk.total)
 884			nbytes &= ~(AES_BLOCK_SIZE - 1);
 
 
 
 
 885
 886		if (encrypt)
 887			aesni_xts_encrypt(aes_ctx(ctx->raw_crypt_ctx),
 888					  walk.dst.virt.addr, walk.src.virt.addr,
 889					  nbytes, walk.iv);
 890		else
 891			aesni_xts_decrypt(aes_ctx(ctx->raw_crypt_ctx),
 892					  walk.dst.virt.addr, walk.src.virt.addr,
 893					  nbytes, walk.iv);
 894		kernel_fpu_end();
 895
 896		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
 
 897
 898		if (walk.nbytes > 0)
 899			kernel_fpu_begin();
 900	}
 
 
 
 
 
 
 
 901
 902	if (unlikely(tail > 0 && !err)) {
 903		struct scatterlist sg_src[2], sg_dst[2];
 904		struct scatterlist *src, *dst;
 905
 906		dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
 907		if (req->dst != req->src)
 908			dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
 909
 910		skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
 911					   req->iv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912
 913		err = skcipher_walk_virt(&walk, &subreq, false);
 914		if (err)
 915			return err;
 
 
 916
 917		kernel_fpu_begin();
 918		if (encrypt)
 919			aesni_xts_encrypt(aes_ctx(ctx->raw_crypt_ctx),
 920					  walk.dst.virt.addr, walk.src.virt.addr,
 921					  walk.nbytes, walk.iv);
 922		else
 923			aesni_xts_decrypt(aes_ctx(ctx->raw_crypt_ctx),
 924					  walk.dst.virt.addr, walk.src.virt.addr,
 925					  walk.nbytes, walk.iv);
 926		kernel_fpu_end();
 927
 928		err = skcipher_walk_done(&walk, 0);
 929	}
 930	return err;
 
 
 931}
 932
 933static int xts_encrypt(struct skcipher_request *req)
 934{
 935	return xts_crypt(req, true);
 936}
 937
 938static int xts_decrypt(struct skcipher_request *req)
 939{
 940	return xts_crypt(req, false);
 941}
 942
 943static struct crypto_alg aesni_cipher_alg = {
 944	.cra_name		= "aes",
 945	.cra_driver_name	= "aes-aesni",
 946	.cra_priority		= 300,
 947	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
 948	.cra_blocksize		= AES_BLOCK_SIZE,
 949	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
 950	.cra_module		= THIS_MODULE,
 951	.cra_u	= {
 952		.cipher	= {
 953			.cia_min_keysize	= AES_MIN_KEY_SIZE,
 954			.cia_max_keysize	= AES_MAX_KEY_SIZE,
 955			.cia_setkey		= aes_set_key,
 956			.cia_encrypt		= aesni_encrypt,
 957			.cia_decrypt		= aesni_decrypt
 958		}
 959	}
 960};
 961
 962static struct skcipher_alg aesni_skciphers[] = {
 963	{
 964		.base = {
 965			.cra_name		= "__ecb(aes)",
 966			.cra_driver_name	= "__ecb-aes-aesni",
 967			.cra_priority		= 400,
 968			.cra_flags		= CRYPTO_ALG_INTERNAL,
 969			.cra_blocksize		= AES_BLOCK_SIZE,
 970			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
 971			.cra_module		= THIS_MODULE,
 972		},
 973		.min_keysize	= AES_MIN_KEY_SIZE,
 974		.max_keysize	= AES_MAX_KEY_SIZE,
 975		.setkey		= aesni_skcipher_setkey,
 976		.encrypt	= ecb_encrypt,
 977		.decrypt	= ecb_decrypt,
 978	}, {
 979		.base = {
 980			.cra_name		= "__cbc(aes)",
 981			.cra_driver_name	= "__cbc-aes-aesni",
 982			.cra_priority		= 400,
 983			.cra_flags		= CRYPTO_ALG_INTERNAL,
 984			.cra_blocksize		= AES_BLOCK_SIZE,
 985			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
 986			.cra_module		= THIS_MODULE,
 987		},
 988		.min_keysize	= AES_MIN_KEY_SIZE,
 989		.max_keysize	= AES_MAX_KEY_SIZE,
 990		.ivsize		= AES_BLOCK_SIZE,
 991		.setkey		= aesni_skcipher_setkey,
 992		.encrypt	= cbc_encrypt,
 993		.decrypt	= cbc_decrypt,
 994	}, {
 995		.base = {
 996			.cra_name		= "__cts(cbc(aes))",
 997			.cra_driver_name	= "__cts-cbc-aes-aesni",
 998			.cra_priority		= 400,
 999			.cra_flags		= CRYPTO_ALG_INTERNAL,
1000			.cra_blocksize		= AES_BLOCK_SIZE,
1001			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1002			.cra_module		= THIS_MODULE,
1003		},
1004		.min_keysize	= AES_MIN_KEY_SIZE,
1005		.max_keysize	= AES_MAX_KEY_SIZE,
1006		.ivsize		= AES_BLOCK_SIZE,
1007		.walksize	= 2 * AES_BLOCK_SIZE,
1008		.setkey		= aesni_skcipher_setkey,
1009		.encrypt	= cts_cbc_encrypt,
1010		.decrypt	= cts_cbc_decrypt,
1011#ifdef CONFIG_X86_64
1012	}, {
1013		.base = {
1014			.cra_name		= "__ctr(aes)",
1015			.cra_driver_name	= "__ctr-aes-aesni",
1016			.cra_priority		= 400,
1017			.cra_flags		= CRYPTO_ALG_INTERNAL,
1018			.cra_blocksize		= 1,
1019			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1020			.cra_module		= THIS_MODULE,
1021		},
1022		.min_keysize	= AES_MIN_KEY_SIZE,
1023		.max_keysize	= AES_MAX_KEY_SIZE,
1024		.ivsize		= AES_BLOCK_SIZE,
1025		.chunksize	= AES_BLOCK_SIZE,
1026		.setkey		= aesni_skcipher_setkey,
1027		.encrypt	= ctr_crypt,
1028		.decrypt	= ctr_crypt,
1029#endif
1030	}, {
1031		.base = {
1032			.cra_name		= "__xts(aes)",
1033			.cra_driver_name	= "__xts-aes-aesni",
1034			.cra_priority		= 401,
1035			.cra_flags		= CRYPTO_ALG_INTERNAL,
1036			.cra_blocksize		= AES_BLOCK_SIZE,
1037			.cra_ctxsize		= XTS_AES_CTX_SIZE,
1038			.cra_module		= THIS_MODULE,
1039		},
1040		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1041		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1042		.ivsize		= AES_BLOCK_SIZE,
1043		.walksize	= 2 * AES_BLOCK_SIZE,
1044		.setkey		= xts_aesni_setkey,
1045		.encrypt	= xts_encrypt,
1046		.decrypt	= xts_decrypt,
1047	}
1048};
1049
1050static
1051struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
1052
1053#ifdef CONFIG_X86_64
1054static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
1055				  unsigned int key_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056{
1057	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1058
1059	return aes_set_key_common(crypto_aead_tfm(aead),
1060				  &ctx->aes_key_expanded, key, key_len) ?:
1061	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062}
1063
1064static int generic_gcmaes_encrypt(struct aead_request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1065{
1066	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1067	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1068	void *aes_ctx = &(ctx->aes_key_expanded);
1069	u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
1070	u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
1071	__be32 counter = cpu_to_be32(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072
1073	memcpy(iv, req->iv, 12);
1074	*((__be32 *)(iv+12)) = counter;
1075
1076	return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv,
1077			      aes_ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078}
1079
1080static int generic_gcmaes_decrypt(struct aead_request *req)
1081{
1082	__be32 counter = cpu_to_be32(1);
1083	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1084	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1085	void *aes_ctx = &(ctx->aes_key_expanded);
1086	u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
1087	u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
1088
1089	memcpy(iv, req->iv, 12);
1090	*((__be32 *)(iv+12)) = counter;
1091
1092	return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv,
1093			      aes_ctx);
1094}
1095
1096static struct aead_alg aesni_aeads[] = { {
1097	.setkey			= common_rfc4106_set_key,
1098	.setauthsize		= common_rfc4106_set_authsize,
1099	.encrypt		= helper_rfc4106_encrypt,
1100	.decrypt		= helper_rfc4106_decrypt,
1101	.ivsize			= GCM_RFC4106_IV_SIZE,
1102	.maxauthsize		= 16,
1103	.base = {
1104		.cra_name		= "__rfc4106(gcm(aes))",
1105		.cra_driver_name	= "__rfc4106-gcm-aesni",
1106		.cra_priority		= 400,
1107		.cra_flags		= CRYPTO_ALG_INTERNAL,
1108		.cra_blocksize		= 1,
1109		.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx),
1110		.cra_alignmask		= AESNI_ALIGN - 1,
1111		.cra_module		= THIS_MODULE,
1112	},
1113}, {
1114	.setkey			= generic_gcmaes_set_key,
1115	.setauthsize		= generic_gcmaes_set_authsize,
1116	.encrypt		= generic_gcmaes_encrypt,
1117	.decrypt		= generic_gcmaes_decrypt,
1118	.ivsize			= GCM_AES_IV_SIZE,
1119	.maxauthsize		= 16,
1120	.base = {
1121		.cra_name		= "__gcm(aes)",
1122		.cra_driver_name	= "__generic-gcm-aesni",
1123		.cra_priority		= 400,
1124		.cra_flags		= CRYPTO_ALG_INTERNAL,
1125		.cra_blocksize		= 1,
1126		.cra_ctxsize		= sizeof(struct generic_gcmaes_ctx),
1127		.cra_alignmask		= AESNI_ALIGN - 1,
1128		.cra_module		= THIS_MODULE,
1129	},
1130} };
1131#else
1132static struct aead_alg aesni_aeads[0];
1133#endif
 
 
 
 
 
 
 
 
 
1134
1135static struct simd_aead_alg *aesni_simd_aeads[ARRAY_SIZE(aesni_aeads)];
 
 
 
1136
1137static const struct x86_cpu_id aesni_cpu_id[] = {
1138	X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
1139	{}
1140};
1141MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1142
1143static int __init aesni_init(void)
1144{
1145	int err;
1146
1147	if (!x86_match_cpu(aesni_cpu_id))
1148		return -ENODEV;
1149#ifdef CONFIG_X86_64
1150	if (boot_cpu_has(X86_FEATURE_AVX2)) {
1151		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1152		static_branch_enable(&gcm_use_avx);
1153		static_branch_enable(&gcm_use_avx2);
1154	} else
1155	if (boot_cpu_has(X86_FEATURE_AVX)) {
1156		pr_info("AVX version of gcm_enc/dec engaged.\n");
1157		static_branch_enable(&gcm_use_avx);
1158	} else {
1159		pr_info("SSE version of gcm_enc/dec engaged.\n");
1160	}
1161	if (boot_cpu_has(X86_FEATURE_AVX)) {
1162		/* optimize performance of ctr mode encryption transform */
1163		static_call_update(aesni_ctr_enc_tfm, aesni_ctr_enc_avx_tfm);
1164		pr_info("AES CTR mode by8 optimization enabled\n");
1165	}
1166#endif
1167
1168	err = crypto_register_alg(&aesni_cipher_alg);
1169	if (err)
1170		return err;
1171
1172	err = simd_register_skciphers_compat(aesni_skciphers,
1173					     ARRAY_SIZE(aesni_skciphers),
1174					     aesni_simd_skciphers);
1175	if (err)
1176		goto unregister_cipher;
1177
1178	err = simd_register_aeads_compat(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1179					 aesni_simd_aeads);
 
1180	if (err)
1181		goto unregister_skciphers;
1182
 
 
 
 
 
 
 
 
 
 
 
 
1183	return 0;
1184
 
 
 
 
 
 
 
 
 
 
1185unregister_skciphers:
1186	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1187				  aesni_simd_skciphers);
1188unregister_cipher:
1189	crypto_unregister_alg(&aesni_cipher_alg);
1190	return err;
1191}
1192
1193static void __exit aesni_exit(void)
1194{
1195	simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1196			      aesni_simd_aeads);
 
1197	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1198				  aesni_simd_skciphers);
1199	crypto_unregister_alg(&aesni_cipher_alg);
 
 
 
 
 
1200}
1201
1202late_initcall(aesni_init);
1203module_exit(aesni_exit);
1204
1205MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1206MODULE_LICENSE("GPL");
1207MODULE_ALIAS_CRYPTO("aes");