Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Support for AES-NI and VAES instructions. This file contains glue code.
4 * The real AES implementations are in aesni-intel_asm.S and other .S files.
5 *
6 * Copyright (C) 2008, Intel Corp.
7 * Author: Huang Ying <ying.huang@intel.com>
8 *
9 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
10 * interface for 64-bit kernels.
11 * Authors: Adrian Hoban <adrian.hoban@intel.com>
12 * Gabriele Paoloni <gabriele.paoloni@intel.com>
13 * Tadeusz Struk (tadeusz.struk@intel.com)
14 * Aidan O'Mahony (aidan.o.mahony@intel.com)
15 * Copyright (c) 2010, Intel Corporation.
16 *
17 * Copyright 2024 Google LLC
18 */
19
20#include <linux/hardirq.h>
21#include <linux/types.h>
22#include <linux/module.h>
23#include <linux/err.h>
24#include <crypto/algapi.h>
25#include <crypto/aes.h>
26#include <crypto/ctr.h>
27#include <crypto/b128ops.h>
28#include <crypto/gcm.h>
29#include <crypto/xts.h>
30#include <asm/cpu_device_id.h>
31#include <asm/simd.h>
32#include <crypto/scatterwalk.h>
33#include <crypto/internal/aead.h>
34#include <crypto/internal/simd.h>
35#include <crypto/internal/skcipher.h>
36#include <linux/jump_label.h>
37#include <linux/workqueue.h>
38#include <linux/spinlock.h>
39#include <linux/static_call.h>
40
41
42#define AESNI_ALIGN 16
43#define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
44#define AES_BLOCK_MASK (~(AES_BLOCK_SIZE - 1))
45#define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
46#define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
47#define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
48
49struct aesni_xts_ctx {
50 struct crypto_aes_ctx tweak_ctx AESNI_ALIGN_ATTR;
51 struct crypto_aes_ctx crypt_ctx AESNI_ALIGN_ATTR;
52};
53
54static inline void *aes_align_addr(void *addr)
55{
56 if (crypto_tfm_ctx_alignment() >= AESNI_ALIGN)
57 return addr;
58 return PTR_ALIGN(addr, AESNI_ALIGN);
59}
60
61asmlinkage void aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
62 unsigned int key_len);
63asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
64asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
65asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
66 const u8 *in, unsigned int len);
67asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
68 const u8 *in, unsigned int len);
69asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
70 const u8 *in, unsigned int len, u8 *iv);
71asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
72 const u8 *in, unsigned int len, u8 *iv);
73asmlinkage void aesni_cts_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
74 const u8 *in, unsigned int len, u8 *iv);
75asmlinkage void aesni_cts_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
76 const u8 *in, unsigned int len, u8 *iv);
77
78asmlinkage void aesni_xts_enc(const struct crypto_aes_ctx *ctx, u8 *out,
79 const u8 *in, unsigned int len, u8 *iv);
80
81asmlinkage void aesni_xts_dec(const struct crypto_aes_ctx *ctx, u8 *out,
82 const u8 *in, unsigned int len, u8 *iv);
83
84#ifdef CONFIG_X86_64
85
86asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
87 const u8 *in, unsigned int len, u8 *iv);
88DEFINE_STATIC_CALL(aesni_ctr_enc_tfm, aesni_ctr_enc);
89
90asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
91 void *keys, u8 *out, unsigned int num_bytes);
92asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
93 void *keys, u8 *out, unsigned int num_bytes);
94asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
95 void *keys, u8 *out, unsigned int num_bytes);
96
97
98asmlinkage void aes_xctr_enc_128_avx_by8(const u8 *in, const u8 *iv,
99 const void *keys, u8 *out, unsigned int num_bytes,
100 unsigned int byte_ctr);
101
102asmlinkage void aes_xctr_enc_192_avx_by8(const u8 *in, const u8 *iv,
103 const void *keys, u8 *out, unsigned int num_bytes,
104 unsigned int byte_ctr);
105
106asmlinkage void aes_xctr_enc_256_avx_by8(const u8 *in, const u8 *iv,
107 const void *keys, u8 *out, unsigned int num_bytes,
108 unsigned int byte_ctr);
109#endif
110
111static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
112{
113 return aes_align_addr(raw_ctx);
114}
115
116static inline struct aesni_xts_ctx *aes_xts_ctx(struct crypto_skcipher *tfm)
117{
118 return aes_align_addr(crypto_skcipher_ctx(tfm));
119}
120
121static int aes_set_key_common(struct crypto_aes_ctx *ctx,
122 const u8 *in_key, unsigned int key_len)
123{
124 int err;
125
126 if (!crypto_simd_usable())
127 return aes_expandkey(ctx, in_key, key_len);
128
129 err = aes_check_keylen(key_len);
130 if (err)
131 return err;
132
133 kernel_fpu_begin();
134 aesni_set_key(ctx, in_key, key_len);
135 kernel_fpu_end();
136 return 0;
137}
138
139static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
140 unsigned int key_len)
141{
142 return aes_set_key_common(aes_ctx(crypto_tfm_ctx(tfm)), in_key,
143 key_len);
144}
145
146static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
147{
148 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
149
150 if (!crypto_simd_usable()) {
151 aes_encrypt(ctx, dst, src);
152 } else {
153 kernel_fpu_begin();
154 aesni_enc(ctx, dst, src);
155 kernel_fpu_end();
156 }
157}
158
159static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
160{
161 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
162
163 if (!crypto_simd_usable()) {
164 aes_decrypt(ctx, dst, src);
165 } else {
166 kernel_fpu_begin();
167 aesni_dec(ctx, dst, src);
168 kernel_fpu_end();
169 }
170}
171
172static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
173 unsigned int len)
174{
175 return aes_set_key_common(aes_ctx(crypto_skcipher_ctx(tfm)), key, len);
176}
177
178static int ecb_encrypt(struct skcipher_request *req)
179{
180 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
181 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
182 struct skcipher_walk walk;
183 unsigned int nbytes;
184 int err;
185
186 err = skcipher_walk_virt(&walk, req, false);
187
188 while ((nbytes = walk.nbytes)) {
189 kernel_fpu_begin();
190 aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
191 nbytes & AES_BLOCK_MASK);
192 kernel_fpu_end();
193 nbytes &= AES_BLOCK_SIZE - 1;
194 err = skcipher_walk_done(&walk, nbytes);
195 }
196
197 return err;
198}
199
200static int ecb_decrypt(struct skcipher_request *req)
201{
202 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
203 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
204 struct skcipher_walk walk;
205 unsigned int nbytes;
206 int err;
207
208 err = skcipher_walk_virt(&walk, req, false);
209
210 while ((nbytes = walk.nbytes)) {
211 kernel_fpu_begin();
212 aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
213 nbytes & AES_BLOCK_MASK);
214 kernel_fpu_end();
215 nbytes &= AES_BLOCK_SIZE - 1;
216 err = skcipher_walk_done(&walk, nbytes);
217 }
218
219 return err;
220}
221
222static int cbc_encrypt(struct skcipher_request *req)
223{
224 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
225 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
226 struct skcipher_walk walk;
227 unsigned int nbytes;
228 int err;
229
230 err = skcipher_walk_virt(&walk, req, false);
231
232 while ((nbytes = walk.nbytes)) {
233 kernel_fpu_begin();
234 aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
235 nbytes & AES_BLOCK_MASK, walk.iv);
236 kernel_fpu_end();
237 nbytes &= AES_BLOCK_SIZE - 1;
238 err = skcipher_walk_done(&walk, nbytes);
239 }
240
241 return err;
242}
243
244static int cbc_decrypt(struct skcipher_request *req)
245{
246 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
247 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
248 struct skcipher_walk walk;
249 unsigned int nbytes;
250 int err;
251
252 err = skcipher_walk_virt(&walk, req, false);
253
254 while ((nbytes = walk.nbytes)) {
255 kernel_fpu_begin();
256 aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
257 nbytes & AES_BLOCK_MASK, walk.iv);
258 kernel_fpu_end();
259 nbytes &= AES_BLOCK_SIZE - 1;
260 err = skcipher_walk_done(&walk, nbytes);
261 }
262
263 return err;
264}
265
266static int cts_cbc_encrypt(struct skcipher_request *req)
267{
268 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
269 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
270 int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
271 struct scatterlist *src = req->src, *dst = req->dst;
272 struct scatterlist sg_src[2], sg_dst[2];
273 struct skcipher_request subreq;
274 struct skcipher_walk walk;
275 int err;
276
277 skcipher_request_set_tfm(&subreq, tfm);
278 skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
279 NULL, NULL);
280
281 if (req->cryptlen <= AES_BLOCK_SIZE) {
282 if (req->cryptlen < AES_BLOCK_SIZE)
283 return -EINVAL;
284 cbc_blocks = 1;
285 }
286
287 if (cbc_blocks > 0) {
288 skcipher_request_set_crypt(&subreq, req->src, req->dst,
289 cbc_blocks * AES_BLOCK_SIZE,
290 req->iv);
291
292 err = cbc_encrypt(&subreq);
293 if (err)
294 return err;
295
296 if (req->cryptlen == AES_BLOCK_SIZE)
297 return 0;
298
299 dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
300 if (req->dst != req->src)
301 dst = scatterwalk_ffwd(sg_dst, req->dst,
302 subreq.cryptlen);
303 }
304
305 /* handle ciphertext stealing */
306 skcipher_request_set_crypt(&subreq, src, dst,
307 req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
308 req->iv);
309
310 err = skcipher_walk_virt(&walk, &subreq, false);
311 if (err)
312 return err;
313
314 kernel_fpu_begin();
315 aesni_cts_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
316 walk.nbytes, walk.iv);
317 kernel_fpu_end();
318
319 return skcipher_walk_done(&walk, 0);
320}
321
322static int cts_cbc_decrypt(struct skcipher_request *req)
323{
324 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
325 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
326 int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
327 struct scatterlist *src = req->src, *dst = req->dst;
328 struct scatterlist sg_src[2], sg_dst[2];
329 struct skcipher_request subreq;
330 struct skcipher_walk walk;
331 int err;
332
333 skcipher_request_set_tfm(&subreq, tfm);
334 skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
335 NULL, NULL);
336
337 if (req->cryptlen <= AES_BLOCK_SIZE) {
338 if (req->cryptlen < AES_BLOCK_SIZE)
339 return -EINVAL;
340 cbc_blocks = 1;
341 }
342
343 if (cbc_blocks > 0) {
344 skcipher_request_set_crypt(&subreq, req->src, req->dst,
345 cbc_blocks * AES_BLOCK_SIZE,
346 req->iv);
347
348 err = cbc_decrypt(&subreq);
349 if (err)
350 return err;
351
352 if (req->cryptlen == AES_BLOCK_SIZE)
353 return 0;
354
355 dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
356 if (req->dst != req->src)
357 dst = scatterwalk_ffwd(sg_dst, req->dst,
358 subreq.cryptlen);
359 }
360
361 /* handle ciphertext stealing */
362 skcipher_request_set_crypt(&subreq, src, dst,
363 req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
364 req->iv);
365
366 err = skcipher_walk_virt(&walk, &subreq, false);
367 if (err)
368 return err;
369
370 kernel_fpu_begin();
371 aesni_cts_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
372 walk.nbytes, walk.iv);
373 kernel_fpu_end();
374
375 return skcipher_walk_done(&walk, 0);
376}
377
378#ifdef CONFIG_X86_64
379static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
380 const u8 *in, unsigned int len, u8 *iv)
381{
382 /*
383 * based on key length, override with the by8 version
384 * of ctr mode encryption/decryption for improved performance
385 * aes_set_key_common() ensures that key length is one of
386 * {128,192,256}
387 */
388 if (ctx->key_length == AES_KEYSIZE_128)
389 aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
390 else if (ctx->key_length == AES_KEYSIZE_192)
391 aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
392 else
393 aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
394}
395
396static int ctr_crypt(struct skcipher_request *req)
397{
398 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
399 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
400 u8 keystream[AES_BLOCK_SIZE];
401 struct skcipher_walk walk;
402 unsigned int nbytes;
403 int err;
404
405 err = skcipher_walk_virt(&walk, req, false);
406
407 while ((nbytes = walk.nbytes) > 0) {
408 kernel_fpu_begin();
409 if (nbytes & AES_BLOCK_MASK)
410 static_call(aesni_ctr_enc_tfm)(ctx, walk.dst.virt.addr,
411 walk.src.virt.addr,
412 nbytes & AES_BLOCK_MASK,
413 walk.iv);
414 nbytes &= ~AES_BLOCK_MASK;
415
416 if (walk.nbytes == walk.total && nbytes > 0) {
417 aesni_enc(ctx, keystream, walk.iv);
418 crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes - nbytes,
419 walk.src.virt.addr + walk.nbytes - nbytes,
420 keystream, nbytes);
421 crypto_inc(walk.iv, AES_BLOCK_SIZE);
422 nbytes = 0;
423 }
424 kernel_fpu_end();
425 err = skcipher_walk_done(&walk, nbytes);
426 }
427 return err;
428}
429
430static void aesni_xctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
431 const u8 *in, unsigned int len, u8 *iv,
432 unsigned int byte_ctr)
433{
434 if (ctx->key_length == AES_KEYSIZE_128)
435 aes_xctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len,
436 byte_ctr);
437 else if (ctx->key_length == AES_KEYSIZE_192)
438 aes_xctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len,
439 byte_ctr);
440 else
441 aes_xctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len,
442 byte_ctr);
443}
444
445static int xctr_crypt(struct skcipher_request *req)
446{
447 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
448 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
449 u8 keystream[AES_BLOCK_SIZE];
450 struct skcipher_walk walk;
451 unsigned int nbytes;
452 unsigned int byte_ctr = 0;
453 int err;
454 __le32 block[AES_BLOCK_SIZE / sizeof(__le32)];
455
456 err = skcipher_walk_virt(&walk, req, false);
457
458 while ((nbytes = walk.nbytes) > 0) {
459 kernel_fpu_begin();
460 if (nbytes & AES_BLOCK_MASK)
461 aesni_xctr_enc_avx_tfm(ctx, walk.dst.virt.addr,
462 walk.src.virt.addr, nbytes & AES_BLOCK_MASK,
463 walk.iv, byte_ctr);
464 nbytes &= ~AES_BLOCK_MASK;
465 byte_ctr += walk.nbytes - nbytes;
466
467 if (walk.nbytes == walk.total && nbytes > 0) {
468 memcpy(block, walk.iv, AES_BLOCK_SIZE);
469 block[0] ^= cpu_to_le32(1 + byte_ctr / AES_BLOCK_SIZE);
470 aesni_enc(ctx, keystream, (u8 *)block);
471 crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes -
472 nbytes, walk.src.virt.addr + walk.nbytes
473 - nbytes, keystream, nbytes);
474 byte_ctr += nbytes;
475 nbytes = 0;
476 }
477 kernel_fpu_end();
478 err = skcipher_walk_done(&walk, nbytes);
479 }
480 return err;
481}
482#endif
483
484static int xts_setkey_aesni(struct crypto_skcipher *tfm, const u8 *key,
485 unsigned int keylen)
486{
487 struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
488 int err;
489
490 err = xts_verify_key(tfm, key, keylen);
491 if (err)
492 return err;
493
494 keylen /= 2;
495
496 /* first half of xts-key is for crypt */
497 err = aes_set_key_common(&ctx->crypt_ctx, key, keylen);
498 if (err)
499 return err;
500
501 /* second half of xts-key is for tweak */
502 return aes_set_key_common(&ctx->tweak_ctx, key + keylen, keylen);
503}
504
505typedef void (*xts_encrypt_iv_func)(const struct crypto_aes_ctx *tweak_key,
506 u8 iv[AES_BLOCK_SIZE]);
507typedef void (*xts_crypt_func)(const struct crypto_aes_ctx *key,
508 const u8 *src, u8 *dst, unsigned int len,
509 u8 tweak[AES_BLOCK_SIZE]);
510
511/* This handles cases where the source and/or destination span pages. */
512static noinline int
513xts_crypt_slowpath(struct skcipher_request *req, xts_crypt_func crypt_func)
514{
515 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
516 const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
517 int tail = req->cryptlen % AES_BLOCK_SIZE;
518 struct scatterlist sg_src[2], sg_dst[2];
519 struct skcipher_request subreq;
520 struct skcipher_walk walk;
521 struct scatterlist *src, *dst;
522 int err;
523
524 /*
525 * If the message length isn't divisible by the AES block size, then
526 * separate off the last full block and the partial block. This ensures
527 * that they are processed in the same call to the assembly function,
528 * which is required for ciphertext stealing.
529 */
530 if (tail) {
531 skcipher_request_set_tfm(&subreq, tfm);
532 skcipher_request_set_callback(&subreq,
533 skcipher_request_flags(req),
534 NULL, NULL);
535 skcipher_request_set_crypt(&subreq, req->src, req->dst,
536 req->cryptlen - tail - AES_BLOCK_SIZE,
537 req->iv);
538 req = &subreq;
539 }
540
541 err = skcipher_walk_virt(&walk, req, false);
542
543 while (walk.nbytes) {
544 kernel_fpu_begin();
545 (*crypt_func)(&ctx->crypt_ctx,
546 walk.src.virt.addr, walk.dst.virt.addr,
547 walk.nbytes & ~(AES_BLOCK_SIZE - 1), req->iv);
548 kernel_fpu_end();
549 err = skcipher_walk_done(&walk,
550 walk.nbytes & (AES_BLOCK_SIZE - 1));
551 }
552
553 if (err || !tail)
554 return err;
555
556 /* Do ciphertext stealing with the last full block and partial block. */
557
558 dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
559 if (req->dst != req->src)
560 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
561
562 skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
563 req->iv);
564
565 err = skcipher_walk_virt(&walk, req, false);
566 if (err)
567 return err;
568
569 kernel_fpu_begin();
570 (*crypt_func)(&ctx->crypt_ctx, walk.src.virt.addr, walk.dst.virt.addr,
571 walk.nbytes, req->iv);
572 kernel_fpu_end();
573
574 return skcipher_walk_done(&walk, 0);
575}
576
577/* __always_inline to avoid indirect call in fastpath */
578static __always_inline int
579xts_crypt(struct skcipher_request *req, xts_encrypt_iv_func encrypt_iv,
580 xts_crypt_func crypt_func)
581{
582 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
583 const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
584 const unsigned int cryptlen = req->cryptlen;
585 struct scatterlist *src = req->src;
586 struct scatterlist *dst = req->dst;
587
588 if (unlikely(cryptlen < AES_BLOCK_SIZE))
589 return -EINVAL;
590
591 kernel_fpu_begin();
592 (*encrypt_iv)(&ctx->tweak_ctx, req->iv);
593
594 /*
595 * In practice, virtually all XTS plaintexts and ciphertexts are either
596 * 512 or 4096 bytes, aligned such that they don't span page boundaries.
597 * To optimize the performance of these cases, and also any other case
598 * where no page boundary is spanned, the below fast-path handles
599 * single-page sources and destinations as efficiently as possible.
600 */
601 if (likely(src->length >= cryptlen && dst->length >= cryptlen &&
602 src->offset + cryptlen <= PAGE_SIZE &&
603 dst->offset + cryptlen <= PAGE_SIZE)) {
604 struct page *src_page = sg_page(src);
605 struct page *dst_page = sg_page(dst);
606 void *src_virt = kmap_local_page(src_page) + src->offset;
607 void *dst_virt = kmap_local_page(dst_page) + dst->offset;
608
609 (*crypt_func)(&ctx->crypt_ctx, src_virt, dst_virt, cryptlen,
610 req->iv);
611 kunmap_local(dst_virt);
612 kunmap_local(src_virt);
613 kernel_fpu_end();
614 return 0;
615 }
616 kernel_fpu_end();
617 return xts_crypt_slowpath(req, crypt_func);
618}
619
620static void aesni_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
621 u8 iv[AES_BLOCK_SIZE])
622{
623 aesni_enc(tweak_key, iv, iv);
624}
625
626static void aesni_xts_encrypt(const struct crypto_aes_ctx *key,
627 const u8 *src, u8 *dst, unsigned int len,
628 u8 tweak[AES_BLOCK_SIZE])
629{
630 aesni_xts_enc(key, dst, src, len, tweak);
631}
632
633static void aesni_xts_decrypt(const struct crypto_aes_ctx *key,
634 const u8 *src, u8 *dst, unsigned int len,
635 u8 tweak[AES_BLOCK_SIZE])
636{
637 aesni_xts_dec(key, dst, src, len, tweak);
638}
639
640static int xts_encrypt_aesni(struct skcipher_request *req)
641{
642 return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_encrypt);
643}
644
645static int xts_decrypt_aesni(struct skcipher_request *req)
646{
647 return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_decrypt);
648}
649
650static struct crypto_alg aesni_cipher_alg = {
651 .cra_name = "aes",
652 .cra_driver_name = "aes-aesni",
653 .cra_priority = 300,
654 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
655 .cra_blocksize = AES_BLOCK_SIZE,
656 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
657 .cra_module = THIS_MODULE,
658 .cra_u = {
659 .cipher = {
660 .cia_min_keysize = AES_MIN_KEY_SIZE,
661 .cia_max_keysize = AES_MAX_KEY_SIZE,
662 .cia_setkey = aes_set_key,
663 .cia_encrypt = aesni_encrypt,
664 .cia_decrypt = aesni_decrypt
665 }
666 }
667};
668
669static struct skcipher_alg aesni_skciphers[] = {
670 {
671 .base = {
672 .cra_name = "__ecb(aes)",
673 .cra_driver_name = "__ecb-aes-aesni",
674 .cra_priority = 400,
675 .cra_flags = CRYPTO_ALG_INTERNAL,
676 .cra_blocksize = AES_BLOCK_SIZE,
677 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
678 .cra_module = THIS_MODULE,
679 },
680 .min_keysize = AES_MIN_KEY_SIZE,
681 .max_keysize = AES_MAX_KEY_SIZE,
682 .setkey = aesni_skcipher_setkey,
683 .encrypt = ecb_encrypt,
684 .decrypt = ecb_decrypt,
685 }, {
686 .base = {
687 .cra_name = "__cbc(aes)",
688 .cra_driver_name = "__cbc-aes-aesni",
689 .cra_priority = 400,
690 .cra_flags = CRYPTO_ALG_INTERNAL,
691 .cra_blocksize = AES_BLOCK_SIZE,
692 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
693 .cra_module = THIS_MODULE,
694 },
695 .min_keysize = AES_MIN_KEY_SIZE,
696 .max_keysize = AES_MAX_KEY_SIZE,
697 .ivsize = AES_BLOCK_SIZE,
698 .setkey = aesni_skcipher_setkey,
699 .encrypt = cbc_encrypt,
700 .decrypt = cbc_decrypt,
701 }, {
702 .base = {
703 .cra_name = "__cts(cbc(aes))",
704 .cra_driver_name = "__cts-cbc-aes-aesni",
705 .cra_priority = 400,
706 .cra_flags = CRYPTO_ALG_INTERNAL,
707 .cra_blocksize = AES_BLOCK_SIZE,
708 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
709 .cra_module = THIS_MODULE,
710 },
711 .min_keysize = AES_MIN_KEY_SIZE,
712 .max_keysize = AES_MAX_KEY_SIZE,
713 .ivsize = AES_BLOCK_SIZE,
714 .walksize = 2 * AES_BLOCK_SIZE,
715 .setkey = aesni_skcipher_setkey,
716 .encrypt = cts_cbc_encrypt,
717 .decrypt = cts_cbc_decrypt,
718#ifdef CONFIG_X86_64
719 }, {
720 .base = {
721 .cra_name = "__ctr(aes)",
722 .cra_driver_name = "__ctr-aes-aesni",
723 .cra_priority = 400,
724 .cra_flags = CRYPTO_ALG_INTERNAL,
725 .cra_blocksize = 1,
726 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
727 .cra_module = THIS_MODULE,
728 },
729 .min_keysize = AES_MIN_KEY_SIZE,
730 .max_keysize = AES_MAX_KEY_SIZE,
731 .ivsize = AES_BLOCK_SIZE,
732 .chunksize = AES_BLOCK_SIZE,
733 .setkey = aesni_skcipher_setkey,
734 .encrypt = ctr_crypt,
735 .decrypt = ctr_crypt,
736#endif
737 }, {
738 .base = {
739 .cra_name = "__xts(aes)",
740 .cra_driver_name = "__xts-aes-aesni",
741 .cra_priority = 401,
742 .cra_flags = CRYPTO_ALG_INTERNAL,
743 .cra_blocksize = AES_BLOCK_SIZE,
744 .cra_ctxsize = XTS_AES_CTX_SIZE,
745 .cra_module = THIS_MODULE,
746 },
747 .min_keysize = 2 * AES_MIN_KEY_SIZE,
748 .max_keysize = 2 * AES_MAX_KEY_SIZE,
749 .ivsize = AES_BLOCK_SIZE,
750 .walksize = 2 * AES_BLOCK_SIZE,
751 .setkey = xts_setkey_aesni,
752 .encrypt = xts_encrypt_aesni,
753 .decrypt = xts_decrypt_aesni,
754 }
755};
756
757static
758struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
759
760#ifdef CONFIG_X86_64
761/*
762 * XCTR does not have a non-AVX implementation, so it must be enabled
763 * conditionally.
764 */
765static struct skcipher_alg aesni_xctr = {
766 .base = {
767 .cra_name = "__xctr(aes)",
768 .cra_driver_name = "__xctr-aes-aesni",
769 .cra_priority = 400,
770 .cra_flags = CRYPTO_ALG_INTERNAL,
771 .cra_blocksize = 1,
772 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
773 .cra_module = THIS_MODULE,
774 },
775 .min_keysize = AES_MIN_KEY_SIZE,
776 .max_keysize = AES_MAX_KEY_SIZE,
777 .ivsize = AES_BLOCK_SIZE,
778 .chunksize = AES_BLOCK_SIZE,
779 .setkey = aesni_skcipher_setkey,
780 .encrypt = xctr_crypt,
781 .decrypt = xctr_crypt,
782};
783
784static struct simd_skcipher_alg *aesni_simd_xctr;
785
786asmlinkage void aes_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
787 u8 iv[AES_BLOCK_SIZE]);
788
789#define DEFINE_XTS_ALG(suffix, driver_name, priority) \
790 \
791asmlinkage void \
792aes_xts_encrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src, \
793 u8 *dst, unsigned int len, u8 tweak[AES_BLOCK_SIZE]); \
794asmlinkage void \
795aes_xts_decrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src, \
796 u8 *dst, unsigned int len, u8 tweak[AES_BLOCK_SIZE]); \
797 \
798static int xts_encrypt_##suffix(struct skcipher_request *req) \
799{ \
800 return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_encrypt_##suffix); \
801} \
802 \
803static int xts_decrypt_##suffix(struct skcipher_request *req) \
804{ \
805 return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_decrypt_##suffix); \
806} \
807 \
808static struct skcipher_alg aes_xts_alg_##suffix = { \
809 .base = { \
810 .cra_name = "__xts(aes)", \
811 .cra_driver_name = "__" driver_name, \
812 .cra_priority = priority, \
813 .cra_flags = CRYPTO_ALG_INTERNAL, \
814 .cra_blocksize = AES_BLOCK_SIZE, \
815 .cra_ctxsize = XTS_AES_CTX_SIZE, \
816 .cra_module = THIS_MODULE, \
817 }, \
818 .min_keysize = 2 * AES_MIN_KEY_SIZE, \
819 .max_keysize = 2 * AES_MAX_KEY_SIZE, \
820 .ivsize = AES_BLOCK_SIZE, \
821 .walksize = 2 * AES_BLOCK_SIZE, \
822 .setkey = xts_setkey_aesni, \
823 .encrypt = xts_encrypt_##suffix, \
824 .decrypt = xts_decrypt_##suffix, \
825}; \
826 \
827static struct simd_skcipher_alg *aes_xts_simdalg_##suffix
828
829DEFINE_XTS_ALG(aesni_avx, "xts-aes-aesni-avx", 500);
830#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
831DEFINE_XTS_ALG(vaes_avx2, "xts-aes-vaes-avx2", 600);
832DEFINE_XTS_ALG(vaes_avx10_256, "xts-aes-vaes-avx10_256", 700);
833DEFINE_XTS_ALG(vaes_avx10_512, "xts-aes-vaes-avx10_512", 800);
834#endif
835
836/* The common part of the x86_64 AES-GCM key struct */
837struct aes_gcm_key {
838 /* Expanded AES key and the AES key length in bytes */
839 struct crypto_aes_ctx aes_key;
840
841 /* RFC4106 nonce (used only by the rfc4106 algorithms) */
842 u32 rfc4106_nonce;
843};
844
845/* Key struct used by the AES-NI implementations of AES-GCM */
846struct aes_gcm_key_aesni {
847 /*
848 * Common part of the key. The assembly code requires 16-byte alignment
849 * for the round keys; we get this by them being located at the start of
850 * the struct and the whole struct being 16-byte aligned.
851 */
852 struct aes_gcm_key base;
853
854 /*
855 * Powers of the hash key H^8 through H^1. These are 128-bit values.
856 * They all have an extra factor of x^-1 and are byte-reversed. 16-byte
857 * alignment is required by the assembly code.
858 */
859 u64 h_powers[8][2] __aligned(16);
860
861 /*
862 * h_powers_xored[i] contains the two 64-bit halves of h_powers[i] XOR'd
863 * together. It's used for Karatsuba multiplication. 16-byte alignment
864 * is required by the assembly code.
865 */
866 u64 h_powers_xored[8] __aligned(16);
867
868 /*
869 * H^1 times x^64 (and also the usual extra factor of x^-1). 16-byte
870 * alignment is required by the assembly code.
871 */
872 u64 h_times_x64[2] __aligned(16);
873};
874#define AES_GCM_KEY_AESNI(key) \
875 container_of((key), struct aes_gcm_key_aesni, base)
876#define AES_GCM_KEY_AESNI_SIZE \
877 (sizeof(struct aes_gcm_key_aesni) + (15 & ~(CRYPTO_MINALIGN - 1)))
878
879/* Key struct used by the VAES + AVX10 implementations of AES-GCM */
880struct aes_gcm_key_avx10 {
881 /*
882 * Common part of the key. The assembly code prefers 16-byte alignment
883 * for the round keys; we get this by them being located at the start of
884 * the struct and the whole struct being 64-byte aligned.
885 */
886 struct aes_gcm_key base;
887
888 /*
889 * Powers of the hash key H^16 through H^1. These are 128-bit values.
890 * They all have an extra factor of x^-1 and are byte-reversed. This
891 * array is aligned to a 64-byte boundary to make it naturally aligned
892 * for 512-bit loads, which can improve performance. (The assembly code
893 * doesn't *need* the alignment; this is just an optimization.)
894 */
895 u64 h_powers[16][2] __aligned(64);
896
897 /* Three padding blocks required by the assembly code */
898 u64 padding[3][2];
899};
900#define AES_GCM_KEY_AVX10(key) \
901 container_of((key), struct aes_gcm_key_avx10, base)
902#define AES_GCM_KEY_AVX10_SIZE \
903 (sizeof(struct aes_gcm_key_avx10) + (63 & ~(CRYPTO_MINALIGN - 1)))
904
905/*
906 * These flags are passed to the AES-GCM helper functions to specify the
907 * specific version of AES-GCM (RFC4106 or not), whether it's encryption or
908 * decryption, and which assembly functions should be called. Assembly
909 * functions are selected using flags instead of function pointers to avoid
910 * indirect calls (which are very expensive on x86) regardless of inlining.
911 */
912#define FLAG_RFC4106 BIT(0)
913#define FLAG_ENC BIT(1)
914#define FLAG_AVX BIT(2)
915#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
916# define FLAG_AVX10_256 BIT(3)
917# define FLAG_AVX10_512 BIT(4)
918#else
919 /*
920 * This should cause all calls to the AVX10 assembly functions to be
921 * optimized out, avoiding the need to ifdef each call individually.
922 */
923# define FLAG_AVX10_256 0
924# define FLAG_AVX10_512 0
925#endif
926
927static inline struct aes_gcm_key *
928aes_gcm_key_get(struct crypto_aead *tfm, int flags)
929{
930 if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
931 return PTR_ALIGN(crypto_aead_ctx(tfm), 64);
932 else
933 return PTR_ALIGN(crypto_aead_ctx(tfm), 16);
934}
935
936asmlinkage void
937aes_gcm_precompute_aesni(struct aes_gcm_key_aesni *key);
938asmlinkage void
939aes_gcm_precompute_aesni_avx(struct aes_gcm_key_aesni *key);
940asmlinkage void
941aes_gcm_precompute_vaes_avx10_256(struct aes_gcm_key_avx10 *key);
942asmlinkage void
943aes_gcm_precompute_vaes_avx10_512(struct aes_gcm_key_avx10 *key);
944
945static void aes_gcm_precompute(struct aes_gcm_key *key, int flags)
946{
947 /*
948 * To make things a bit easier on the assembly side, the AVX10
949 * implementations use the same key format. Therefore, a single
950 * function using 256-bit vectors would suffice here. However, it's
951 * straightforward to provide a 512-bit one because of how the assembly
952 * code is structured, and it works nicely because the total size of the
953 * key powers is a multiple of 512 bits. So we take advantage of that.
954 *
955 * A similar situation applies to the AES-NI implementations.
956 */
957 if (flags & FLAG_AVX10_512)
958 aes_gcm_precompute_vaes_avx10_512(AES_GCM_KEY_AVX10(key));
959 else if (flags & FLAG_AVX10_256)
960 aes_gcm_precompute_vaes_avx10_256(AES_GCM_KEY_AVX10(key));
961 else if (flags & FLAG_AVX)
962 aes_gcm_precompute_aesni_avx(AES_GCM_KEY_AESNI(key));
963 else
964 aes_gcm_precompute_aesni(AES_GCM_KEY_AESNI(key));
965}
966
967asmlinkage void
968aes_gcm_aad_update_aesni(const struct aes_gcm_key_aesni *key,
969 u8 ghash_acc[16], const u8 *aad, int aadlen);
970asmlinkage void
971aes_gcm_aad_update_aesni_avx(const struct aes_gcm_key_aesni *key,
972 u8 ghash_acc[16], const u8 *aad, int aadlen);
973asmlinkage void
974aes_gcm_aad_update_vaes_avx10(const struct aes_gcm_key_avx10 *key,
975 u8 ghash_acc[16], const u8 *aad, int aadlen);
976
977static void aes_gcm_aad_update(const struct aes_gcm_key *key, u8 ghash_acc[16],
978 const u8 *aad, int aadlen, int flags)
979{
980 if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
981 aes_gcm_aad_update_vaes_avx10(AES_GCM_KEY_AVX10(key), ghash_acc,
982 aad, aadlen);
983 else if (flags & FLAG_AVX)
984 aes_gcm_aad_update_aesni_avx(AES_GCM_KEY_AESNI(key), ghash_acc,
985 aad, aadlen);
986 else
987 aes_gcm_aad_update_aesni(AES_GCM_KEY_AESNI(key), ghash_acc,
988 aad, aadlen);
989}
990
991asmlinkage void
992aes_gcm_enc_update_aesni(const struct aes_gcm_key_aesni *key,
993 const u32 le_ctr[4], u8 ghash_acc[16],
994 const u8 *src, u8 *dst, int datalen);
995asmlinkage void
996aes_gcm_enc_update_aesni_avx(const struct aes_gcm_key_aesni *key,
997 const u32 le_ctr[4], u8 ghash_acc[16],
998 const u8 *src, u8 *dst, int datalen);
999asmlinkage void
1000aes_gcm_enc_update_vaes_avx10_256(const struct aes_gcm_key_avx10 *key,
1001 const u32 le_ctr[4], u8 ghash_acc[16],
1002 const u8 *src, u8 *dst, int datalen);
1003asmlinkage void
1004aes_gcm_enc_update_vaes_avx10_512(const struct aes_gcm_key_avx10 *key,
1005 const u32 le_ctr[4], u8 ghash_acc[16],
1006 const u8 *src, u8 *dst, int datalen);
1007
1008asmlinkage void
1009aes_gcm_dec_update_aesni(const struct aes_gcm_key_aesni *key,
1010 const u32 le_ctr[4], u8 ghash_acc[16],
1011 const u8 *src, u8 *dst, int datalen);
1012asmlinkage void
1013aes_gcm_dec_update_aesni_avx(const struct aes_gcm_key_aesni *key,
1014 const u32 le_ctr[4], u8 ghash_acc[16],
1015 const u8 *src, u8 *dst, int datalen);
1016asmlinkage void
1017aes_gcm_dec_update_vaes_avx10_256(const struct aes_gcm_key_avx10 *key,
1018 const u32 le_ctr[4], u8 ghash_acc[16],
1019 const u8 *src, u8 *dst, int datalen);
1020asmlinkage void
1021aes_gcm_dec_update_vaes_avx10_512(const struct aes_gcm_key_avx10 *key,
1022 const u32 le_ctr[4], u8 ghash_acc[16],
1023 const u8 *src, u8 *dst, int datalen);
1024
1025/* __always_inline to optimize out the branches based on @flags */
1026static __always_inline void
1027aes_gcm_update(const struct aes_gcm_key *key,
1028 const u32 le_ctr[4], u8 ghash_acc[16],
1029 const u8 *src, u8 *dst, int datalen, int flags)
1030{
1031 if (flags & FLAG_ENC) {
1032 if (flags & FLAG_AVX10_512)
1033 aes_gcm_enc_update_vaes_avx10_512(AES_GCM_KEY_AVX10(key),
1034 le_ctr, ghash_acc,
1035 src, dst, datalen);
1036 else if (flags & FLAG_AVX10_256)
1037 aes_gcm_enc_update_vaes_avx10_256(AES_GCM_KEY_AVX10(key),
1038 le_ctr, ghash_acc,
1039 src, dst, datalen);
1040 else if (flags & FLAG_AVX)
1041 aes_gcm_enc_update_aesni_avx(AES_GCM_KEY_AESNI(key),
1042 le_ctr, ghash_acc,
1043 src, dst, datalen);
1044 else
1045 aes_gcm_enc_update_aesni(AES_GCM_KEY_AESNI(key), le_ctr,
1046 ghash_acc, src, dst, datalen);
1047 } else {
1048 if (flags & FLAG_AVX10_512)
1049 aes_gcm_dec_update_vaes_avx10_512(AES_GCM_KEY_AVX10(key),
1050 le_ctr, ghash_acc,
1051 src, dst, datalen);
1052 else if (flags & FLAG_AVX10_256)
1053 aes_gcm_dec_update_vaes_avx10_256(AES_GCM_KEY_AVX10(key),
1054 le_ctr, ghash_acc,
1055 src, dst, datalen);
1056 else if (flags & FLAG_AVX)
1057 aes_gcm_dec_update_aesni_avx(AES_GCM_KEY_AESNI(key),
1058 le_ctr, ghash_acc,
1059 src, dst, datalen);
1060 else
1061 aes_gcm_dec_update_aesni(AES_GCM_KEY_AESNI(key),
1062 le_ctr, ghash_acc,
1063 src, dst, datalen);
1064 }
1065}
1066
1067asmlinkage void
1068aes_gcm_enc_final_aesni(const struct aes_gcm_key_aesni *key,
1069 const u32 le_ctr[4], u8 ghash_acc[16],
1070 u64 total_aadlen, u64 total_datalen);
1071asmlinkage void
1072aes_gcm_enc_final_aesni_avx(const struct aes_gcm_key_aesni *key,
1073 const u32 le_ctr[4], u8 ghash_acc[16],
1074 u64 total_aadlen, u64 total_datalen);
1075asmlinkage void
1076aes_gcm_enc_final_vaes_avx10(const struct aes_gcm_key_avx10 *key,
1077 const u32 le_ctr[4], u8 ghash_acc[16],
1078 u64 total_aadlen, u64 total_datalen);
1079
1080/* __always_inline to optimize out the branches based on @flags */
1081static __always_inline void
1082aes_gcm_enc_final(const struct aes_gcm_key *key,
1083 const u32 le_ctr[4], u8 ghash_acc[16],
1084 u64 total_aadlen, u64 total_datalen, int flags)
1085{
1086 if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
1087 aes_gcm_enc_final_vaes_avx10(AES_GCM_KEY_AVX10(key),
1088 le_ctr, ghash_acc,
1089 total_aadlen, total_datalen);
1090 else if (flags & FLAG_AVX)
1091 aes_gcm_enc_final_aesni_avx(AES_GCM_KEY_AESNI(key),
1092 le_ctr, ghash_acc,
1093 total_aadlen, total_datalen);
1094 else
1095 aes_gcm_enc_final_aesni(AES_GCM_KEY_AESNI(key),
1096 le_ctr, ghash_acc,
1097 total_aadlen, total_datalen);
1098}
1099
1100asmlinkage bool __must_check
1101aes_gcm_dec_final_aesni(const struct aes_gcm_key_aesni *key,
1102 const u32 le_ctr[4], const u8 ghash_acc[16],
1103 u64 total_aadlen, u64 total_datalen,
1104 const u8 tag[16], int taglen);
1105asmlinkage bool __must_check
1106aes_gcm_dec_final_aesni_avx(const struct aes_gcm_key_aesni *key,
1107 const u32 le_ctr[4], const u8 ghash_acc[16],
1108 u64 total_aadlen, u64 total_datalen,
1109 const u8 tag[16], int taglen);
1110asmlinkage bool __must_check
1111aes_gcm_dec_final_vaes_avx10(const struct aes_gcm_key_avx10 *key,
1112 const u32 le_ctr[4], const u8 ghash_acc[16],
1113 u64 total_aadlen, u64 total_datalen,
1114 const u8 tag[16], int taglen);
1115
1116/* __always_inline to optimize out the branches based on @flags */
1117static __always_inline bool __must_check
1118aes_gcm_dec_final(const struct aes_gcm_key *key, const u32 le_ctr[4],
1119 u8 ghash_acc[16], u64 total_aadlen, u64 total_datalen,
1120 u8 tag[16], int taglen, int flags)
1121{
1122 if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
1123 return aes_gcm_dec_final_vaes_avx10(AES_GCM_KEY_AVX10(key),
1124 le_ctr, ghash_acc,
1125 total_aadlen, total_datalen,
1126 tag, taglen);
1127 else if (flags & FLAG_AVX)
1128 return aes_gcm_dec_final_aesni_avx(AES_GCM_KEY_AESNI(key),
1129 le_ctr, ghash_acc,
1130 total_aadlen, total_datalen,
1131 tag, taglen);
1132 else
1133 return aes_gcm_dec_final_aesni(AES_GCM_KEY_AESNI(key),
1134 le_ctr, ghash_acc,
1135 total_aadlen, total_datalen,
1136 tag, taglen);
1137}
1138
1139/*
1140 * This is the Integrity Check Value (aka the authentication tag) length and can
1141 * be 8, 12 or 16 bytes long.
1142 */
1143static int common_rfc4106_set_authsize(struct crypto_aead *aead,
1144 unsigned int authsize)
1145{
1146 switch (authsize) {
1147 case 8:
1148 case 12:
1149 case 16:
1150 break;
1151 default:
1152 return -EINVAL;
1153 }
1154
1155 return 0;
1156}
1157
1158static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
1159 unsigned int authsize)
1160{
1161 switch (authsize) {
1162 case 4:
1163 case 8:
1164 case 12:
1165 case 13:
1166 case 14:
1167 case 15:
1168 case 16:
1169 break;
1170 default:
1171 return -EINVAL;
1172 }
1173
1174 return 0;
1175}
1176
1177/*
1178 * This is the setkey function for the x86_64 implementations of AES-GCM. It
1179 * saves the RFC4106 nonce if applicable, expands the AES key, and precomputes
1180 * powers of the hash key.
1181 *
1182 * To comply with the crypto_aead API, this has to be usable in no-SIMD context.
1183 * For that reason, this function includes a portable C implementation of the
1184 * needed logic. However, the portable C implementation is very slow, taking
1185 * about the same time as encrypting 37 KB of data. To be ready for users that
1186 * may set a key even somewhat frequently, we therefore also include a SIMD
1187 * assembly implementation, expanding the AES key using AES-NI and precomputing
1188 * the hash key powers using PCLMULQDQ or VPCLMULQDQ.
1189 */
1190static int gcm_setkey(struct crypto_aead *tfm, const u8 *raw_key,
1191 unsigned int keylen, int flags)
1192{
1193 struct aes_gcm_key *key = aes_gcm_key_get(tfm, flags);
1194 int err;
1195
1196 if (flags & FLAG_RFC4106) {
1197 if (keylen < 4)
1198 return -EINVAL;
1199 keylen -= 4;
1200 key->rfc4106_nonce = get_unaligned_be32(raw_key + keylen);
1201 }
1202
1203 /* The assembly code assumes the following offsets. */
1204 BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, base.aes_key.key_enc) != 0);
1205 BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, base.aes_key.key_length) != 480);
1206 BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_powers) != 496);
1207 BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_powers_xored) != 624);
1208 BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_times_x64) != 688);
1209 BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, base.aes_key.key_enc) != 0);
1210 BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, base.aes_key.key_length) != 480);
1211 BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, h_powers) != 512);
1212 BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, padding) != 768);
1213
1214 if (likely(crypto_simd_usable())) {
1215 err = aes_check_keylen(keylen);
1216 if (err)
1217 return err;
1218 kernel_fpu_begin();
1219 aesni_set_key(&key->aes_key, raw_key, keylen);
1220 aes_gcm_precompute(key, flags);
1221 kernel_fpu_end();
1222 } else {
1223 static const u8 x_to_the_minus1[16] __aligned(__alignof__(be128)) = {
1224 [0] = 0xc2, [15] = 1
1225 };
1226 static const u8 x_to_the_63[16] __aligned(__alignof__(be128)) = {
1227 [7] = 1,
1228 };
1229 be128 h1 = {};
1230 be128 h;
1231 int i;
1232
1233 err = aes_expandkey(&key->aes_key, raw_key, keylen);
1234 if (err)
1235 return err;
1236
1237 /* Encrypt the all-zeroes block to get the hash key H^1 */
1238 aes_encrypt(&key->aes_key, (u8 *)&h1, (u8 *)&h1);
1239
1240 /* Compute H^1 * x^-1 */
1241 h = h1;
1242 gf128mul_lle(&h, (const be128 *)x_to_the_minus1);
1243
1244 /* Compute the needed key powers */
1245 if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512)) {
1246 struct aes_gcm_key_avx10 *k = AES_GCM_KEY_AVX10(key);
1247
1248 for (i = ARRAY_SIZE(k->h_powers) - 1; i >= 0; i--) {
1249 k->h_powers[i][0] = be64_to_cpu(h.b);
1250 k->h_powers[i][1] = be64_to_cpu(h.a);
1251 gf128mul_lle(&h, &h1);
1252 }
1253 memset(k->padding, 0, sizeof(k->padding));
1254 } else {
1255 struct aes_gcm_key_aesni *k = AES_GCM_KEY_AESNI(key);
1256
1257 for (i = ARRAY_SIZE(k->h_powers) - 1; i >= 0; i--) {
1258 k->h_powers[i][0] = be64_to_cpu(h.b);
1259 k->h_powers[i][1] = be64_to_cpu(h.a);
1260 k->h_powers_xored[i] = k->h_powers[i][0] ^
1261 k->h_powers[i][1];
1262 gf128mul_lle(&h, &h1);
1263 }
1264 gf128mul_lle(&h1, (const be128 *)x_to_the_63);
1265 k->h_times_x64[0] = be64_to_cpu(h1.b);
1266 k->h_times_x64[1] = be64_to_cpu(h1.a);
1267 }
1268 }
1269 return 0;
1270}
1271
1272/*
1273 * Initialize @ghash_acc, then pass all @assoclen bytes of associated data
1274 * (a.k.a. additional authenticated data) from @sg_src through the GHASH update
1275 * assembly function. kernel_fpu_begin() must have already been called.
1276 */
1277static void gcm_process_assoc(const struct aes_gcm_key *key, u8 ghash_acc[16],
1278 struct scatterlist *sg_src, unsigned int assoclen,
1279 int flags)
1280{
1281 struct scatter_walk walk;
1282 /*
1283 * The assembly function requires that the length of any non-last
1284 * segment of associated data be a multiple of 16 bytes, so this
1285 * function does the buffering needed to achieve that.
1286 */
1287 unsigned int pos = 0;
1288 u8 buf[16];
1289
1290 memset(ghash_acc, 0, 16);
1291 scatterwalk_start(&walk, sg_src);
1292
1293 while (assoclen) {
1294 unsigned int len_this_page = scatterwalk_clamp(&walk, assoclen);
1295 void *mapped = scatterwalk_map(&walk);
1296 const void *src = mapped;
1297 unsigned int len;
1298
1299 assoclen -= len_this_page;
1300 scatterwalk_advance(&walk, len_this_page);
1301 if (unlikely(pos)) {
1302 len = min(len_this_page, 16 - pos);
1303 memcpy(&buf[pos], src, len);
1304 pos += len;
1305 src += len;
1306 len_this_page -= len;
1307 if (pos < 16)
1308 goto next;
1309 aes_gcm_aad_update(key, ghash_acc, buf, 16, flags);
1310 pos = 0;
1311 }
1312 len = len_this_page;
1313 if (unlikely(assoclen)) /* Not the last segment yet? */
1314 len = round_down(len, 16);
1315 aes_gcm_aad_update(key, ghash_acc, src, len, flags);
1316 src += len;
1317 len_this_page -= len;
1318 if (unlikely(len_this_page)) {
1319 memcpy(buf, src, len_this_page);
1320 pos = len_this_page;
1321 }
1322next:
1323 scatterwalk_unmap(mapped);
1324 scatterwalk_pagedone(&walk, 0, assoclen);
1325 if (need_resched()) {
1326 kernel_fpu_end();
1327 kernel_fpu_begin();
1328 }
1329 }
1330 if (unlikely(pos))
1331 aes_gcm_aad_update(key, ghash_acc, buf, pos, flags);
1332}
1333
1334
1335/* __always_inline to optimize out the branches based on @flags */
1336static __always_inline int
1337gcm_crypt(struct aead_request *req, int flags)
1338{
1339 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1340 const struct aes_gcm_key *key = aes_gcm_key_get(tfm, flags);
1341 unsigned int assoclen = req->assoclen;
1342 struct skcipher_walk walk;
1343 unsigned int nbytes;
1344 u8 ghash_acc[16]; /* GHASH accumulator */
1345 u32 le_ctr[4]; /* Counter in little-endian format */
1346 int taglen;
1347 int err;
1348
1349 /* Initialize the counter and determine the associated data length. */
1350 le_ctr[0] = 2;
1351 if (flags & FLAG_RFC4106) {
1352 if (unlikely(assoclen != 16 && assoclen != 20))
1353 return -EINVAL;
1354 assoclen -= 8;
1355 le_ctr[1] = get_unaligned_be32(req->iv + 4);
1356 le_ctr[2] = get_unaligned_be32(req->iv + 0);
1357 le_ctr[3] = key->rfc4106_nonce; /* already byte-swapped */
1358 } else {
1359 le_ctr[1] = get_unaligned_be32(req->iv + 8);
1360 le_ctr[2] = get_unaligned_be32(req->iv + 4);
1361 le_ctr[3] = get_unaligned_be32(req->iv + 0);
1362 }
1363
1364 /* Begin walking through the plaintext or ciphertext. */
1365 if (flags & FLAG_ENC)
1366 err = skcipher_walk_aead_encrypt(&walk, req, false);
1367 else
1368 err = skcipher_walk_aead_decrypt(&walk, req, false);
1369 if (err)
1370 return err;
1371
1372 /*
1373 * Since the AES-GCM assembly code requires that at least three assembly
1374 * functions be called to process any message (this is needed to support
1375 * incremental updates cleanly), to reduce overhead we try to do all
1376 * three calls in the same kernel FPU section if possible. We close the
1377 * section and start a new one if there are multiple data segments or if
1378 * rescheduling is needed while processing the associated data.
1379 */
1380 kernel_fpu_begin();
1381
1382 /* Pass the associated data through GHASH. */
1383 gcm_process_assoc(key, ghash_acc, req->src, assoclen, flags);
1384
1385 /* En/decrypt the data and pass the ciphertext through GHASH. */
1386 while (unlikely((nbytes = walk.nbytes) < walk.total)) {
1387 /*
1388 * Non-last segment. In this case, the assembly function
1389 * requires that the length be a multiple of 16 (AES_BLOCK_SIZE)
1390 * bytes. The needed buffering of up to 16 bytes is handled by
1391 * the skcipher_walk. Here we just need to round down to a
1392 * multiple of 16.
1393 */
1394 nbytes = round_down(nbytes, AES_BLOCK_SIZE);
1395 aes_gcm_update(key, le_ctr, ghash_acc, walk.src.virt.addr,
1396 walk.dst.virt.addr, nbytes, flags);
1397 le_ctr[0] += nbytes / AES_BLOCK_SIZE;
1398 kernel_fpu_end();
1399 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
1400 if (err)
1401 return err;
1402 kernel_fpu_begin();
1403 }
1404 /* Last segment: process all remaining data. */
1405 aes_gcm_update(key, le_ctr, ghash_acc, walk.src.virt.addr,
1406 walk.dst.virt.addr, nbytes, flags);
1407 /*
1408 * The low word of the counter isn't used by the finalize, so there's no
1409 * need to increment it here.
1410 */
1411
1412 /* Finalize */
1413 taglen = crypto_aead_authsize(tfm);
1414 if (flags & FLAG_ENC) {
1415 /* Finish computing the auth tag. */
1416 aes_gcm_enc_final(key, le_ctr, ghash_acc, assoclen,
1417 req->cryptlen, flags);
1418
1419 /* Store the computed auth tag in the dst scatterlist. */
1420 scatterwalk_map_and_copy(ghash_acc, req->dst, req->assoclen +
1421 req->cryptlen, taglen, 1);
1422 } else {
1423 unsigned int datalen = req->cryptlen - taglen;
1424 u8 tag[16];
1425
1426 /* Get the transmitted auth tag from the src scatterlist. */
1427 scatterwalk_map_and_copy(tag, req->src, req->assoclen + datalen,
1428 taglen, 0);
1429 /*
1430 * Finish computing the auth tag and compare it to the
1431 * transmitted one. The assembly function does the actual tag
1432 * comparison. Here, just check the boolean result.
1433 */
1434 if (!aes_gcm_dec_final(key, le_ctr, ghash_acc, assoclen,
1435 datalen, tag, taglen, flags))
1436 err = -EBADMSG;
1437 }
1438 kernel_fpu_end();
1439 if (nbytes)
1440 skcipher_walk_done(&walk, 0);
1441 return err;
1442}
1443
1444#define DEFINE_GCM_ALGS(suffix, flags, generic_driver_name, rfc_driver_name, \
1445 ctxsize, priority) \
1446 \
1447static int gcm_setkey_##suffix(struct crypto_aead *tfm, const u8 *raw_key, \
1448 unsigned int keylen) \
1449{ \
1450 return gcm_setkey(tfm, raw_key, keylen, (flags)); \
1451} \
1452 \
1453static int gcm_encrypt_##suffix(struct aead_request *req) \
1454{ \
1455 return gcm_crypt(req, (flags) | FLAG_ENC); \
1456} \
1457 \
1458static int gcm_decrypt_##suffix(struct aead_request *req) \
1459{ \
1460 return gcm_crypt(req, (flags)); \
1461} \
1462 \
1463static int rfc4106_setkey_##suffix(struct crypto_aead *tfm, const u8 *raw_key, \
1464 unsigned int keylen) \
1465{ \
1466 return gcm_setkey(tfm, raw_key, keylen, (flags) | FLAG_RFC4106); \
1467} \
1468 \
1469static int rfc4106_encrypt_##suffix(struct aead_request *req) \
1470{ \
1471 return gcm_crypt(req, (flags) | FLAG_RFC4106 | FLAG_ENC); \
1472} \
1473 \
1474static int rfc4106_decrypt_##suffix(struct aead_request *req) \
1475{ \
1476 return gcm_crypt(req, (flags) | FLAG_RFC4106); \
1477} \
1478 \
1479static struct aead_alg aes_gcm_algs_##suffix[] = { { \
1480 .setkey = gcm_setkey_##suffix, \
1481 .setauthsize = generic_gcmaes_set_authsize, \
1482 .encrypt = gcm_encrypt_##suffix, \
1483 .decrypt = gcm_decrypt_##suffix, \
1484 .ivsize = GCM_AES_IV_SIZE, \
1485 .chunksize = AES_BLOCK_SIZE, \
1486 .maxauthsize = 16, \
1487 .base = { \
1488 .cra_name = "__gcm(aes)", \
1489 .cra_driver_name = "__" generic_driver_name, \
1490 .cra_priority = (priority), \
1491 .cra_flags = CRYPTO_ALG_INTERNAL, \
1492 .cra_blocksize = 1, \
1493 .cra_ctxsize = (ctxsize), \
1494 .cra_module = THIS_MODULE, \
1495 }, \
1496}, { \
1497 .setkey = rfc4106_setkey_##suffix, \
1498 .setauthsize = common_rfc4106_set_authsize, \
1499 .encrypt = rfc4106_encrypt_##suffix, \
1500 .decrypt = rfc4106_decrypt_##suffix, \
1501 .ivsize = GCM_RFC4106_IV_SIZE, \
1502 .chunksize = AES_BLOCK_SIZE, \
1503 .maxauthsize = 16, \
1504 .base = { \
1505 .cra_name = "__rfc4106(gcm(aes))", \
1506 .cra_driver_name = "__" rfc_driver_name, \
1507 .cra_priority = (priority), \
1508 .cra_flags = CRYPTO_ALG_INTERNAL, \
1509 .cra_blocksize = 1, \
1510 .cra_ctxsize = (ctxsize), \
1511 .cra_module = THIS_MODULE, \
1512 }, \
1513} }; \
1514 \
1515static struct simd_aead_alg *aes_gcm_simdalgs_##suffix[2] \
1516
1517/* aes_gcm_algs_aesni */
1518DEFINE_GCM_ALGS(aesni, /* no flags */ 0,
1519 "generic-gcm-aesni", "rfc4106-gcm-aesni",
1520 AES_GCM_KEY_AESNI_SIZE, 400);
1521
1522/* aes_gcm_algs_aesni_avx */
1523DEFINE_GCM_ALGS(aesni_avx, FLAG_AVX,
1524 "generic-gcm-aesni-avx", "rfc4106-gcm-aesni-avx",
1525 AES_GCM_KEY_AESNI_SIZE, 500);
1526
1527#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
1528/* aes_gcm_algs_vaes_avx10_256 */
1529DEFINE_GCM_ALGS(vaes_avx10_256, FLAG_AVX10_256,
1530 "generic-gcm-vaes-avx10_256", "rfc4106-gcm-vaes-avx10_256",
1531 AES_GCM_KEY_AVX10_SIZE, 700);
1532
1533/* aes_gcm_algs_vaes_avx10_512 */
1534DEFINE_GCM_ALGS(vaes_avx10_512, FLAG_AVX10_512,
1535 "generic-gcm-vaes-avx10_512", "rfc4106-gcm-vaes-avx10_512",
1536 AES_GCM_KEY_AVX10_SIZE, 800);
1537#endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */
1538
1539/*
1540 * This is a list of CPU models that are known to suffer from downclocking when
1541 * zmm registers (512-bit vectors) are used. On these CPUs, the AES mode
1542 * implementations with zmm registers won't be used by default. Implementations
1543 * with ymm registers (256-bit vectors) will be used by default instead.
1544 */
1545static const struct x86_cpu_id zmm_exclusion_list[] = {
1546 X86_MATCH_VFM(INTEL_SKYLAKE_X, 0),
1547 X86_MATCH_VFM(INTEL_ICELAKE_X, 0),
1548 X86_MATCH_VFM(INTEL_ICELAKE_D, 0),
1549 X86_MATCH_VFM(INTEL_ICELAKE, 0),
1550 X86_MATCH_VFM(INTEL_ICELAKE_L, 0),
1551 X86_MATCH_VFM(INTEL_ICELAKE_NNPI, 0),
1552 X86_MATCH_VFM(INTEL_TIGERLAKE_L, 0),
1553 X86_MATCH_VFM(INTEL_TIGERLAKE, 0),
1554 /* Allow Rocket Lake and later, and Sapphire Rapids and later. */
1555 /* Also allow AMD CPUs (starting with Zen 4, the first with AVX-512). */
1556 {},
1557};
1558
1559static int __init register_avx_algs(void)
1560{
1561 int err;
1562
1563 if (!boot_cpu_has(X86_FEATURE_AVX))
1564 return 0;
1565 err = simd_register_skciphers_compat(&aes_xts_alg_aesni_avx, 1,
1566 &aes_xts_simdalg_aesni_avx);
1567 if (err)
1568 return err;
1569 err = simd_register_aeads_compat(aes_gcm_algs_aesni_avx,
1570 ARRAY_SIZE(aes_gcm_algs_aesni_avx),
1571 aes_gcm_simdalgs_aesni_avx);
1572 if (err)
1573 return err;
1574#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
1575 if (!boot_cpu_has(X86_FEATURE_AVX2) ||
1576 !boot_cpu_has(X86_FEATURE_VAES) ||
1577 !boot_cpu_has(X86_FEATURE_VPCLMULQDQ) ||
1578 !boot_cpu_has(X86_FEATURE_PCLMULQDQ) ||
1579 !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL))
1580 return 0;
1581 err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx2, 1,
1582 &aes_xts_simdalg_vaes_avx2);
1583 if (err)
1584 return err;
1585
1586 if (!boot_cpu_has(X86_FEATURE_AVX512BW) ||
1587 !boot_cpu_has(X86_FEATURE_AVX512VL) ||
1588 !boot_cpu_has(X86_FEATURE_BMI2) ||
1589 !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM |
1590 XFEATURE_MASK_AVX512, NULL))
1591 return 0;
1592
1593 err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_256, 1,
1594 &aes_xts_simdalg_vaes_avx10_256);
1595 if (err)
1596 return err;
1597 err = simd_register_aeads_compat(aes_gcm_algs_vaes_avx10_256,
1598 ARRAY_SIZE(aes_gcm_algs_vaes_avx10_256),
1599 aes_gcm_simdalgs_vaes_avx10_256);
1600 if (err)
1601 return err;
1602
1603 if (x86_match_cpu(zmm_exclusion_list)) {
1604 int i;
1605
1606 aes_xts_alg_vaes_avx10_512.base.cra_priority = 1;
1607 for (i = 0; i < ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512); i++)
1608 aes_gcm_algs_vaes_avx10_512[i].base.cra_priority = 1;
1609 }
1610
1611 err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_512, 1,
1612 &aes_xts_simdalg_vaes_avx10_512);
1613 if (err)
1614 return err;
1615 err = simd_register_aeads_compat(aes_gcm_algs_vaes_avx10_512,
1616 ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512),
1617 aes_gcm_simdalgs_vaes_avx10_512);
1618 if (err)
1619 return err;
1620#endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */
1621 return 0;
1622}
1623
1624static void unregister_avx_algs(void)
1625{
1626 if (aes_xts_simdalg_aesni_avx)
1627 simd_unregister_skciphers(&aes_xts_alg_aesni_avx, 1,
1628 &aes_xts_simdalg_aesni_avx);
1629 if (aes_gcm_simdalgs_aesni_avx[0])
1630 simd_unregister_aeads(aes_gcm_algs_aesni_avx,
1631 ARRAY_SIZE(aes_gcm_algs_aesni_avx),
1632 aes_gcm_simdalgs_aesni_avx);
1633#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
1634 if (aes_xts_simdalg_vaes_avx2)
1635 simd_unregister_skciphers(&aes_xts_alg_vaes_avx2, 1,
1636 &aes_xts_simdalg_vaes_avx2);
1637 if (aes_xts_simdalg_vaes_avx10_256)
1638 simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_256, 1,
1639 &aes_xts_simdalg_vaes_avx10_256);
1640 if (aes_gcm_simdalgs_vaes_avx10_256[0])
1641 simd_unregister_aeads(aes_gcm_algs_vaes_avx10_256,
1642 ARRAY_SIZE(aes_gcm_algs_vaes_avx10_256),
1643 aes_gcm_simdalgs_vaes_avx10_256);
1644 if (aes_xts_simdalg_vaes_avx10_512)
1645 simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_512, 1,
1646 &aes_xts_simdalg_vaes_avx10_512);
1647 if (aes_gcm_simdalgs_vaes_avx10_512[0])
1648 simd_unregister_aeads(aes_gcm_algs_vaes_avx10_512,
1649 ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512),
1650 aes_gcm_simdalgs_vaes_avx10_512);
1651#endif
1652}
1653#else /* CONFIG_X86_64 */
1654static struct aead_alg aes_gcm_algs_aesni[0];
1655static struct simd_aead_alg *aes_gcm_simdalgs_aesni[0];
1656
1657static int __init register_avx_algs(void)
1658{
1659 return 0;
1660}
1661
1662static void unregister_avx_algs(void)
1663{
1664}
1665#endif /* !CONFIG_X86_64 */
1666
1667static const struct x86_cpu_id aesni_cpu_id[] = {
1668 X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
1669 {}
1670};
1671MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1672
1673static int __init aesni_init(void)
1674{
1675 int err;
1676
1677 if (!x86_match_cpu(aesni_cpu_id))
1678 return -ENODEV;
1679#ifdef CONFIG_X86_64
1680 if (boot_cpu_has(X86_FEATURE_AVX)) {
1681 /* optimize performance of ctr mode encryption transform */
1682 static_call_update(aesni_ctr_enc_tfm, aesni_ctr_enc_avx_tfm);
1683 pr_info("AES CTR mode by8 optimization enabled\n");
1684 }
1685#endif /* CONFIG_X86_64 */
1686
1687 err = crypto_register_alg(&aesni_cipher_alg);
1688 if (err)
1689 return err;
1690
1691 err = simd_register_skciphers_compat(aesni_skciphers,
1692 ARRAY_SIZE(aesni_skciphers),
1693 aesni_simd_skciphers);
1694 if (err)
1695 goto unregister_cipher;
1696
1697 err = simd_register_aeads_compat(aes_gcm_algs_aesni,
1698 ARRAY_SIZE(aes_gcm_algs_aesni),
1699 aes_gcm_simdalgs_aesni);
1700 if (err)
1701 goto unregister_skciphers;
1702
1703#ifdef CONFIG_X86_64
1704 if (boot_cpu_has(X86_FEATURE_AVX))
1705 err = simd_register_skciphers_compat(&aesni_xctr, 1,
1706 &aesni_simd_xctr);
1707 if (err)
1708 goto unregister_aeads;
1709#endif /* CONFIG_X86_64 */
1710
1711 err = register_avx_algs();
1712 if (err)
1713 goto unregister_avx;
1714
1715 return 0;
1716
1717unregister_avx:
1718 unregister_avx_algs();
1719#ifdef CONFIG_X86_64
1720 if (aesni_simd_xctr)
1721 simd_unregister_skciphers(&aesni_xctr, 1, &aesni_simd_xctr);
1722unregister_aeads:
1723#endif /* CONFIG_X86_64 */
1724 simd_unregister_aeads(aes_gcm_algs_aesni,
1725 ARRAY_SIZE(aes_gcm_algs_aesni),
1726 aes_gcm_simdalgs_aesni);
1727unregister_skciphers:
1728 simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1729 aesni_simd_skciphers);
1730unregister_cipher:
1731 crypto_unregister_alg(&aesni_cipher_alg);
1732 return err;
1733}
1734
1735static void __exit aesni_exit(void)
1736{
1737 simd_unregister_aeads(aes_gcm_algs_aesni,
1738 ARRAY_SIZE(aes_gcm_algs_aesni),
1739 aes_gcm_simdalgs_aesni);
1740 simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1741 aesni_simd_skciphers);
1742 crypto_unregister_alg(&aesni_cipher_alg);
1743#ifdef CONFIG_X86_64
1744 if (boot_cpu_has(X86_FEATURE_AVX))
1745 simd_unregister_skciphers(&aesni_xctr, 1, &aesni_simd_xctr);
1746#endif /* CONFIG_X86_64 */
1747 unregister_avx_algs();
1748}
1749
1750module_init(aesni_init);
1751module_exit(aesni_exit);
1752
1753MODULE_DESCRIPTION("AES cipher and modes, optimized with AES-NI or VAES instructions");
1754MODULE_LICENSE("GPL");
1755MODULE_ALIAS_CRYPTO("aes");
1/*
2 * Support for Intel AES-NI instructions. This file contains glue
3 * code, the real AES implementation is in intel-aes_asm.S.
4 *
5 * Copyright (C) 2008, Intel Corp.
6 * Author: Huang Ying <ying.huang@intel.com>
7 *
8 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
9 * interface for 64-bit kernels.
10 * Authors: Adrian Hoban <adrian.hoban@intel.com>
11 * Gabriele Paoloni <gabriele.paoloni@intel.com>
12 * Tadeusz Struk (tadeusz.struk@intel.com)
13 * Aidan O'Mahony (aidan.o.mahony@intel.com)
14 * Copyright (c) 2010, Intel Corporation.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 */
21
22#include <linux/hardirq.h>
23#include <linux/types.h>
24#include <linux/module.h>
25#include <linux/err.h>
26#include <crypto/algapi.h>
27#include <crypto/aes.h>
28#include <crypto/cryptd.h>
29#include <crypto/ctr.h>
30#include <crypto/b128ops.h>
31#include <crypto/xts.h>
32#include <asm/cpu_device_id.h>
33#include <asm/fpu/api.h>
34#include <asm/crypto/aes.h>
35#include <crypto/scatterwalk.h>
36#include <crypto/internal/aead.h>
37#include <crypto/internal/simd.h>
38#include <crypto/internal/skcipher.h>
39#include <linux/workqueue.h>
40#include <linux/spinlock.h>
41#ifdef CONFIG_X86_64
42#include <asm/crypto/glue_helper.h>
43#endif
44
45
46#define AESNI_ALIGN 16
47#define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
48#define AES_BLOCK_MASK (~(AES_BLOCK_SIZE - 1))
49#define RFC4106_HASH_SUBKEY_SIZE 16
50#define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
51#define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
52#define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
53
54/* This data is stored at the end of the crypto_tfm struct.
55 * It's a type of per "session" data storage location.
56 * This needs to be 16 byte aligned.
57 */
58struct aesni_rfc4106_gcm_ctx {
59 u8 hash_subkey[16] AESNI_ALIGN_ATTR;
60 struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
61 u8 nonce[4];
62};
63
64struct aesni_xts_ctx {
65 u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
66 u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
67};
68
69asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
70 unsigned int key_len);
71asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
72 const u8 *in);
73asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
74 const u8 *in);
75asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
76 const u8 *in, unsigned int len);
77asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
78 const u8 *in, unsigned int len);
79asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
80 const u8 *in, unsigned int len, u8 *iv);
81asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
82 const u8 *in, unsigned int len, u8 *iv);
83
84int crypto_fpu_init(void);
85void crypto_fpu_exit(void);
86
87#define AVX_GEN2_OPTSIZE 640
88#define AVX_GEN4_OPTSIZE 4096
89
90#ifdef CONFIG_X86_64
91
92static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
93 const u8 *in, unsigned int len, u8 *iv);
94asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
95 const u8 *in, unsigned int len, u8 *iv);
96
97asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
98 const u8 *in, bool enc, u8 *iv);
99
100/* asmlinkage void aesni_gcm_enc()
101 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
102 * u8 *out, Ciphertext output. Encrypt in-place is allowed.
103 * const u8 *in, Plaintext input
104 * unsigned long plaintext_len, Length of data in bytes for encryption.
105 * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
106 * concatenated with 8 byte Initialisation Vector (from IPSec ESP
107 * Payload) concatenated with 0x00000001. 16-byte aligned pointer.
108 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
109 * const u8 *aad, Additional Authentication Data (AAD)
110 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
111 * is going to be 8 or 12 bytes
112 * u8 *auth_tag, Authenticated Tag output.
113 * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
114 * Valid values are 16 (most likely), 12 or 8.
115 */
116asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
117 const u8 *in, unsigned long plaintext_len, u8 *iv,
118 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
119 u8 *auth_tag, unsigned long auth_tag_len);
120
121/* asmlinkage void aesni_gcm_dec()
122 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
123 * u8 *out, Plaintext output. Decrypt in-place is allowed.
124 * const u8 *in, Ciphertext input
125 * unsigned long ciphertext_len, Length of data in bytes for decryption.
126 * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
127 * concatenated with 8 byte Initialisation Vector (from IPSec ESP
128 * Payload) concatenated with 0x00000001. 16-byte aligned pointer.
129 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
130 * const u8 *aad, Additional Authentication Data (AAD)
131 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
132 * to be 8 or 12 bytes
133 * u8 *auth_tag, Authenticated Tag output.
134 * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
135 * Valid values are 16 (most likely), 12 or 8.
136 */
137asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
138 const u8 *in, unsigned long ciphertext_len, u8 *iv,
139 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
140 u8 *auth_tag, unsigned long auth_tag_len);
141
142
143#ifdef CONFIG_AS_AVX
144asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
145 void *keys, u8 *out, unsigned int num_bytes);
146asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
147 void *keys, u8 *out, unsigned int num_bytes);
148asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
149 void *keys, u8 *out, unsigned int num_bytes);
150/*
151 * asmlinkage void aesni_gcm_precomp_avx_gen2()
152 * gcm_data *my_ctx_data, context data
153 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
154 */
155asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
156
157asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
158 const u8 *in, unsigned long plaintext_len, u8 *iv,
159 const u8 *aad, unsigned long aad_len,
160 u8 *auth_tag, unsigned long auth_tag_len);
161
162asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
163 const u8 *in, unsigned long ciphertext_len, u8 *iv,
164 const u8 *aad, unsigned long aad_len,
165 u8 *auth_tag, unsigned long auth_tag_len);
166
167static void aesni_gcm_enc_avx(void *ctx, u8 *out,
168 const u8 *in, unsigned long plaintext_len, u8 *iv,
169 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
170 u8 *auth_tag, unsigned long auth_tag_len)
171{
172 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
173 if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){
174 aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
175 aad_len, auth_tag, auth_tag_len);
176 } else {
177 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
178 aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
179 aad_len, auth_tag, auth_tag_len);
180 }
181}
182
183static void aesni_gcm_dec_avx(void *ctx, u8 *out,
184 const u8 *in, unsigned long ciphertext_len, u8 *iv,
185 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
186 u8 *auth_tag, unsigned long auth_tag_len)
187{
188 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
189 if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
190 aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad,
191 aad_len, auth_tag, auth_tag_len);
192 } else {
193 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
194 aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
195 aad_len, auth_tag, auth_tag_len);
196 }
197}
198#endif
199
200#ifdef CONFIG_AS_AVX2
201/*
202 * asmlinkage void aesni_gcm_precomp_avx_gen4()
203 * gcm_data *my_ctx_data, context data
204 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
205 */
206asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
207
208asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
209 const u8 *in, unsigned long plaintext_len, u8 *iv,
210 const u8 *aad, unsigned long aad_len,
211 u8 *auth_tag, unsigned long auth_tag_len);
212
213asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
214 const u8 *in, unsigned long ciphertext_len, u8 *iv,
215 const u8 *aad, unsigned long aad_len,
216 u8 *auth_tag, unsigned long auth_tag_len);
217
218static void aesni_gcm_enc_avx2(void *ctx, u8 *out,
219 const u8 *in, unsigned long plaintext_len, u8 *iv,
220 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
221 u8 *auth_tag, unsigned long auth_tag_len)
222{
223 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
224 if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
225 aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
226 aad_len, auth_tag, auth_tag_len);
227 } else if (plaintext_len < AVX_GEN4_OPTSIZE) {
228 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
229 aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
230 aad_len, auth_tag, auth_tag_len);
231 } else {
232 aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
233 aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
234 aad_len, auth_tag, auth_tag_len);
235 }
236}
237
238static void aesni_gcm_dec_avx2(void *ctx, u8 *out,
239 const u8 *in, unsigned long ciphertext_len, u8 *iv,
240 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
241 u8 *auth_tag, unsigned long auth_tag_len)
242{
243 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
244 if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
245 aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey,
246 aad, aad_len, auth_tag, auth_tag_len);
247 } else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
248 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
249 aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
250 aad_len, auth_tag, auth_tag_len);
251 } else {
252 aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
253 aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
254 aad_len, auth_tag, auth_tag_len);
255 }
256}
257#endif
258
259static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out,
260 const u8 *in, unsigned long plaintext_len, u8 *iv,
261 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
262 u8 *auth_tag, unsigned long auth_tag_len);
263
264static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out,
265 const u8 *in, unsigned long ciphertext_len, u8 *iv,
266 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
267 u8 *auth_tag, unsigned long auth_tag_len);
268
269static inline struct
270aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
271{
272 unsigned long align = AESNI_ALIGN;
273
274 if (align <= crypto_tfm_ctx_alignment())
275 align = 1;
276 return PTR_ALIGN(crypto_aead_ctx(tfm), align);
277}
278#endif
279
280static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
281{
282 unsigned long addr = (unsigned long)raw_ctx;
283 unsigned long align = AESNI_ALIGN;
284
285 if (align <= crypto_tfm_ctx_alignment())
286 align = 1;
287 return (struct crypto_aes_ctx *)ALIGN(addr, align);
288}
289
290static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
291 const u8 *in_key, unsigned int key_len)
292{
293 struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
294 u32 *flags = &tfm->crt_flags;
295 int err;
296
297 if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
298 key_len != AES_KEYSIZE_256) {
299 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
300 return -EINVAL;
301 }
302
303 if (!irq_fpu_usable())
304 err = crypto_aes_expand_key(ctx, in_key, key_len);
305 else {
306 kernel_fpu_begin();
307 err = aesni_set_key(ctx, in_key, key_len);
308 kernel_fpu_end();
309 }
310
311 return err;
312}
313
314static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
315 unsigned int key_len)
316{
317 return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
318}
319
320static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
321{
322 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
323
324 if (!irq_fpu_usable())
325 crypto_aes_encrypt_x86(ctx, dst, src);
326 else {
327 kernel_fpu_begin();
328 aesni_enc(ctx, dst, src);
329 kernel_fpu_end();
330 }
331}
332
333static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
334{
335 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
336
337 if (!irq_fpu_usable())
338 crypto_aes_decrypt_x86(ctx, dst, src);
339 else {
340 kernel_fpu_begin();
341 aesni_dec(ctx, dst, src);
342 kernel_fpu_end();
343 }
344}
345
346static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
347{
348 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
349
350 aesni_enc(ctx, dst, src);
351}
352
353static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
354{
355 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
356
357 aesni_dec(ctx, dst, src);
358}
359
360static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
361 unsigned int len)
362{
363 return aes_set_key_common(crypto_skcipher_tfm(tfm),
364 crypto_skcipher_ctx(tfm), key, len);
365}
366
367static int ecb_encrypt(struct skcipher_request *req)
368{
369 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
370 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
371 struct skcipher_walk walk;
372 unsigned int nbytes;
373 int err;
374
375 err = skcipher_walk_virt(&walk, req, true);
376
377 kernel_fpu_begin();
378 while ((nbytes = walk.nbytes)) {
379 aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
380 nbytes & AES_BLOCK_MASK);
381 nbytes &= AES_BLOCK_SIZE - 1;
382 err = skcipher_walk_done(&walk, nbytes);
383 }
384 kernel_fpu_end();
385
386 return err;
387}
388
389static int ecb_decrypt(struct skcipher_request *req)
390{
391 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
392 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
393 struct skcipher_walk walk;
394 unsigned int nbytes;
395 int err;
396
397 err = skcipher_walk_virt(&walk, req, true);
398
399 kernel_fpu_begin();
400 while ((nbytes = walk.nbytes)) {
401 aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
402 nbytes & AES_BLOCK_MASK);
403 nbytes &= AES_BLOCK_SIZE - 1;
404 err = skcipher_walk_done(&walk, nbytes);
405 }
406 kernel_fpu_end();
407
408 return err;
409}
410
411static int cbc_encrypt(struct skcipher_request *req)
412{
413 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
414 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
415 struct skcipher_walk walk;
416 unsigned int nbytes;
417 int err;
418
419 err = skcipher_walk_virt(&walk, req, true);
420
421 kernel_fpu_begin();
422 while ((nbytes = walk.nbytes)) {
423 aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
424 nbytes & AES_BLOCK_MASK, walk.iv);
425 nbytes &= AES_BLOCK_SIZE - 1;
426 err = skcipher_walk_done(&walk, nbytes);
427 }
428 kernel_fpu_end();
429
430 return err;
431}
432
433static int cbc_decrypt(struct skcipher_request *req)
434{
435 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
436 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
437 struct skcipher_walk walk;
438 unsigned int nbytes;
439 int err;
440
441 err = skcipher_walk_virt(&walk, req, true);
442
443 kernel_fpu_begin();
444 while ((nbytes = walk.nbytes)) {
445 aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
446 nbytes & AES_BLOCK_MASK, walk.iv);
447 nbytes &= AES_BLOCK_SIZE - 1;
448 err = skcipher_walk_done(&walk, nbytes);
449 }
450 kernel_fpu_end();
451
452 return err;
453}
454
455#ifdef CONFIG_X86_64
456static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
457 struct skcipher_walk *walk)
458{
459 u8 *ctrblk = walk->iv;
460 u8 keystream[AES_BLOCK_SIZE];
461 u8 *src = walk->src.virt.addr;
462 u8 *dst = walk->dst.virt.addr;
463 unsigned int nbytes = walk->nbytes;
464
465 aesni_enc(ctx, keystream, ctrblk);
466 crypto_xor(keystream, src, nbytes);
467 memcpy(dst, keystream, nbytes);
468 crypto_inc(ctrblk, AES_BLOCK_SIZE);
469}
470
471#ifdef CONFIG_AS_AVX
472static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
473 const u8 *in, unsigned int len, u8 *iv)
474{
475 /*
476 * based on key length, override with the by8 version
477 * of ctr mode encryption/decryption for improved performance
478 * aes_set_key_common() ensures that key length is one of
479 * {128,192,256}
480 */
481 if (ctx->key_length == AES_KEYSIZE_128)
482 aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
483 else if (ctx->key_length == AES_KEYSIZE_192)
484 aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
485 else
486 aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
487}
488#endif
489
490static int ctr_crypt(struct skcipher_request *req)
491{
492 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
493 struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
494 struct skcipher_walk walk;
495 unsigned int nbytes;
496 int err;
497
498 err = skcipher_walk_virt(&walk, req, true);
499
500 kernel_fpu_begin();
501 while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
502 aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
503 nbytes & AES_BLOCK_MASK, walk.iv);
504 nbytes &= AES_BLOCK_SIZE - 1;
505 err = skcipher_walk_done(&walk, nbytes);
506 }
507 if (walk.nbytes) {
508 ctr_crypt_final(ctx, &walk);
509 err = skcipher_walk_done(&walk, 0);
510 }
511 kernel_fpu_end();
512
513 return err;
514}
515
516static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
517 unsigned int keylen)
518{
519 struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
520 int err;
521
522 err = xts_verify_key(tfm, key, keylen);
523 if (err)
524 return err;
525
526 keylen /= 2;
527
528 /* first half of xts-key is for crypt */
529 err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
530 key, keylen);
531 if (err)
532 return err;
533
534 /* second half of xts-key is for tweak */
535 return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
536 key + keylen, keylen);
537}
538
539
540static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
541{
542 aesni_enc(ctx, out, in);
543}
544
545static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
546{
547 glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
548}
549
550static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
551{
552 glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
553}
554
555static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
556{
557 aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
558}
559
560static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
561{
562 aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
563}
564
565static const struct common_glue_ctx aesni_enc_xts = {
566 .num_funcs = 2,
567 .fpu_blocks_limit = 1,
568
569 .funcs = { {
570 .num_blocks = 8,
571 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
572 }, {
573 .num_blocks = 1,
574 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
575 } }
576};
577
578static const struct common_glue_ctx aesni_dec_xts = {
579 .num_funcs = 2,
580 .fpu_blocks_limit = 1,
581
582 .funcs = { {
583 .num_blocks = 8,
584 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
585 }, {
586 .num_blocks = 1,
587 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
588 } }
589};
590
591static int xts_encrypt(struct skcipher_request *req)
592{
593 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
594 struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
595
596 return glue_xts_req_128bit(&aesni_enc_xts, req,
597 XTS_TWEAK_CAST(aesni_xts_tweak),
598 aes_ctx(ctx->raw_tweak_ctx),
599 aes_ctx(ctx->raw_crypt_ctx));
600}
601
602static int xts_decrypt(struct skcipher_request *req)
603{
604 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
605 struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
606
607 return glue_xts_req_128bit(&aesni_dec_xts, req,
608 XTS_TWEAK_CAST(aesni_xts_tweak),
609 aes_ctx(ctx->raw_tweak_ctx),
610 aes_ctx(ctx->raw_crypt_ctx));
611}
612
613static int rfc4106_init(struct crypto_aead *aead)
614{
615 struct cryptd_aead *cryptd_tfm;
616 struct cryptd_aead **ctx = crypto_aead_ctx(aead);
617
618 cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni",
619 CRYPTO_ALG_INTERNAL,
620 CRYPTO_ALG_INTERNAL);
621 if (IS_ERR(cryptd_tfm))
622 return PTR_ERR(cryptd_tfm);
623
624 *ctx = cryptd_tfm;
625 crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
626 return 0;
627}
628
629static void rfc4106_exit(struct crypto_aead *aead)
630{
631 struct cryptd_aead **ctx = crypto_aead_ctx(aead);
632
633 cryptd_free_aead(*ctx);
634}
635
636static int
637rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
638{
639 struct crypto_cipher *tfm;
640 int ret;
641
642 tfm = crypto_alloc_cipher("aes", 0, 0);
643 if (IS_ERR(tfm))
644 return PTR_ERR(tfm);
645
646 ret = crypto_cipher_setkey(tfm, key, key_len);
647 if (ret)
648 goto out_free_cipher;
649
650 /* Clear the data in the hash sub key container to zero.*/
651 /* We want to cipher all zeros to create the hash sub key. */
652 memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
653
654 crypto_cipher_encrypt_one(tfm, hash_subkey, hash_subkey);
655
656out_free_cipher:
657 crypto_free_cipher(tfm);
658 return ret;
659}
660
661static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
662 unsigned int key_len)
663{
664 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
665
666 if (key_len < 4) {
667 crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
668 return -EINVAL;
669 }
670 /*Account for 4 byte nonce at the end.*/
671 key_len -= 4;
672
673 memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
674
675 return aes_set_key_common(crypto_aead_tfm(aead),
676 &ctx->aes_key_expanded, key, key_len) ?:
677 rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
678}
679
680static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
681 unsigned int key_len)
682{
683 struct cryptd_aead **ctx = crypto_aead_ctx(parent);
684 struct cryptd_aead *cryptd_tfm = *ctx;
685
686 return crypto_aead_setkey(&cryptd_tfm->base, key, key_len);
687}
688
689static int common_rfc4106_set_authsize(struct crypto_aead *aead,
690 unsigned int authsize)
691{
692 switch (authsize) {
693 case 8:
694 case 12:
695 case 16:
696 break;
697 default:
698 return -EINVAL;
699 }
700
701 return 0;
702}
703
704/* This is the Integrity Check Value (aka the authentication tag length and can
705 * be 8, 12 or 16 bytes long. */
706static int rfc4106_set_authsize(struct crypto_aead *parent,
707 unsigned int authsize)
708{
709 struct cryptd_aead **ctx = crypto_aead_ctx(parent);
710 struct cryptd_aead *cryptd_tfm = *ctx;
711
712 return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
713}
714
715static int helper_rfc4106_encrypt(struct aead_request *req)
716{
717 u8 one_entry_in_sg = 0;
718 u8 *src, *dst, *assoc;
719 __be32 counter = cpu_to_be32(1);
720 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
721 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
722 void *aes_ctx = &(ctx->aes_key_expanded);
723 unsigned long auth_tag_len = crypto_aead_authsize(tfm);
724 u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
725 struct scatter_walk src_sg_walk;
726 struct scatter_walk dst_sg_walk = {};
727 unsigned int i;
728
729 /* Assuming we are supporting rfc4106 64-bit extended */
730 /* sequence numbers We need to have the AAD length equal */
731 /* to 16 or 20 bytes */
732 if (unlikely(req->assoclen != 16 && req->assoclen != 20))
733 return -EINVAL;
734
735 /* IV below built */
736 for (i = 0; i < 4; i++)
737 *(iv+i) = ctx->nonce[i];
738 for (i = 0; i < 8; i++)
739 *(iv+4+i) = req->iv[i];
740 *((__be32 *)(iv+12)) = counter;
741
742 if (sg_is_last(req->src) &&
743 req->src->offset + req->src->length <= PAGE_SIZE &&
744 sg_is_last(req->dst) &&
745 req->dst->offset + req->dst->length <= PAGE_SIZE) {
746 one_entry_in_sg = 1;
747 scatterwalk_start(&src_sg_walk, req->src);
748 assoc = scatterwalk_map(&src_sg_walk);
749 src = assoc + req->assoclen;
750 dst = src;
751 if (unlikely(req->src != req->dst)) {
752 scatterwalk_start(&dst_sg_walk, req->dst);
753 dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
754 }
755 } else {
756 /* Allocate memory for src, dst, assoc */
757 assoc = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
758 GFP_ATOMIC);
759 if (unlikely(!assoc))
760 return -ENOMEM;
761 scatterwalk_map_and_copy(assoc, req->src, 0,
762 req->assoclen + req->cryptlen, 0);
763 src = assoc + req->assoclen;
764 dst = src;
765 }
766
767 kernel_fpu_begin();
768 aesni_gcm_enc_tfm(aes_ctx, dst, src, req->cryptlen, iv,
769 ctx->hash_subkey, assoc, req->assoclen - 8,
770 dst + req->cryptlen, auth_tag_len);
771 kernel_fpu_end();
772
773 /* The authTag (aka the Integrity Check Value) needs to be written
774 * back to the packet. */
775 if (one_entry_in_sg) {
776 if (unlikely(req->src != req->dst)) {
777 scatterwalk_unmap(dst - req->assoclen);
778 scatterwalk_advance(&dst_sg_walk, req->dst->length);
779 scatterwalk_done(&dst_sg_walk, 1, 0);
780 }
781 scatterwalk_unmap(assoc);
782 scatterwalk_advance(&src_sg_walk, req->src->length);
783 scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
784 } else {
785 scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
786 req->cryptlen + auth_tag_len, 1);
787 kfree(assoc);
788 }
789 return 0;
790}
791
792static int helper_rfc4106_decrypt(struct aead_request *req)
793{
794 u8 one_entry_in_sg = 0;
795 u8 *src, *dst, *assoc;
796 unsigned long tempCipherLen = 0;
797 __be32 counter = cpu_to_be32(1);
798 int retval = 0;
799 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
800 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
801 void *aes_ctx = &(ctx->aes_key_expanded);
802 unsigned long auth_tag_len = crypto_aead_authsize(tfm);
803 u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
804 u8 authTag[16];
805 struct scatter_walk src_sg_walk;
806 struct scatter_walk dst_sg_walk = {};
807 unsigned int i;
808
809 if (unlikely(req->assoclen != 16 && req->assoclen != 20))
810 return -EINVAL;
811
812 /* Assuming we are supporting rfc4106 64-bit extended */
813 /* sequence numbers We need to have the AAD length */
814 /* equal to 16 or 20 bytes */
815
816 tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
817 /* IV below built */
818 for (i = 0; i < 4; i++)
819 *(iv+i) = ctx->nonce[i];
820 for (i = 0; i < 8; i++)
821 *(iv+4+i) = req->iv[i];
822 *((__be32 *)(iv+12)) = counter;
823
824 if (sg_is_last(req->src) &&
825 req->src->offset + req->src->length <= PAGE_SIZE &&
826 sg_is_last(req->dst) &&
827 req->dst->offset + req->dst->length <= PAGE_SIZE) {
828 one_entry_in_sg = 1;
829 scatterwalk_start(&src_sg_walk, req->src);
830 assoc = scatterwalk_map(&src_sg_walk);
831 src = assoc + req->assoclen;
832 dst = src;
833 if (unlikely(req->src != req->dst)) {
834 scatterwalk_start(&dst_sg_walk, req->dst);
835 dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
836 }
837
838 } else {
839 /* Allocate memory for src, dst, assoc */
840 assoc = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
841 if (!assoc)
842 return -ENOMEM;
843 scatterwalk_map_and_copy(assoc, req->src, 0,
844 req->assoclen + req->cryptlen, 0);
845 src = assoc + req->assoclen;
846 dst = src;
847 }
848
849 kernel_fpu_begin();
850 aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
851 ctx->hash_subkey, assoc, req->assoclen - 8,
852 authTag, auth_tag_len);
853 kernel_fpu_end();
854
855 /* Compare generated tag with passed in tag. */
856 retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
857 -EBADMSG : 0;
858
859 if (one_entry_in_sg) {
860 if (unlikely(req->src != req->dst)) {
861 scatterwalk_unmap(dst - req->assoclen);
862 scatterwalk_advance(&dst_sg_walk, req->dst->length);
863 scatterwalk_done(&dst_sg_walk, 1, 0);
864 }
865 scatterwalk_unmap(assoc);
866 scatterwalk_advance(&src_sg_walk, req->src->length);
867 scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
868 } else {
869 scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
870 tempCipherLen, 1);
871 kfree(assoc);
872 }
873 return retval;
874}
875
876static int rfc4106_encrypt(struct aead_request *req)
877{
878 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
879 struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
880 struct cryptd_aead *cryptd_tfm = *ctx;
881
882 tfm = &cryptd_tfm->base;
883 if (irq_fpu_usable() && (!in_atomic() ||
884 !cryptd_aead_queued(cryptd_tfm)))
885 tfm = cryptd_aead_child(cryptd_tfm);
886
887 aead_request_set_tfm(req, tfm);
888
889 return crypto_aead_encrypt(req);
890}
891
892static int rfc4106_decrypt(struct aead_request *req)
893{
894 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
895 struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
896 struct cryptd_aead *cryptd_tfm = *ctx;
897
898 tfm = &cryptd_tfm->base;
899 if (irq_fpu_usable() && (!in_atomic() ||
900 !cryptd_aead_queued(cryptd_tfm)))
901 tfm = cryptd_aead_child(cryptd_tfm);
902
903 aead_request_set_tfm(req, tfm);
904
905 return crypto_aead_decrypt(req);
906}
907#endif
908
909static struct crypto_alg aesni_algs[] = { {
910 .cra_name = "aes",
911 .cra_driver_name = "aes-aesni",
912 .cra_priority = 300,
913 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
914 .cra_blocksize = AES_BLOCK_SIZE,
915 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
916 .cra_module = THIS_MODULE,
917 .cra_u = {
918 .cipher = {
919 .cia_min_keysize = AES_MIN_KEY_SIZE,
920 .cia_max_keysize = AES_MAX_KEY_SIZE,
921 .cia_setkey = aes_set_key,
922 .cia_encrypt = aes_encrypt,
923 .cia_decrypt = aes_decrypt
924 }
925 }
926}, {
927 .cra_name = "__aes",
928 .cra_driver_name = "__aes-aesni",
929 .cra_priority = 300,
930 .cra_flags = CRYPTO_ALG_TYPE_CIPHER | CRYPTO_ALG_INTERNAL,
931 .cra_blocksize = AES_BLOCK_SIZE,
932 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
933 .cra_module = THIS_MODULE,
934 .cra_u = {
935 .cipher = {
936 .cia_min_keysize = AES_MIN_KEY_SIZE,
937 .cia_max_keysize = AES_MAX_KEY_SIZE,
938 .cia_setkey = aes_set_key,
939 .cia_encrypt = __aes_encrypt,
940 .cia_decrypt = __aes_decrypt
941 }
942 }
943} };
944
945static struct skcipher_alg aesni_skciphers[] = {
946 {
947 .base = {
948 .cra_name = "__ecb(aes)",
949 .cra_driver_name = "__ecb-aes-aesni",
950 .cra_priority = 400,
951 .cra_flags = CRYPTO_ALG_INTERNAL,
952 .cra_blocksize = AES_BLOCK_SIZE,
953 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
954 .cra_module = THIS_MODULE,
955 },
956 .min_keysize = AES_MIN_KEY_SIZE,
957 .max_keysize = AES_MAX_KEY_SIZE,
958 .setkey = aesni_skcipher_setkey,
959 .encrypt = ecb_encrypt,
960 .decrypt = ecb_decrypt,
961 }, {
962 .base = {
963 .cra_name = "__cbc(aes)",
964 .cra_driver_name = "__cbc-aes-aesni",
965 .cra_priority = 400,
966 .cra_flags = CRYPTO_ALG_INTERNAL,
967 .cra_blocksize = AES_BLOCK_SIZE,
968 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
969 .cra_module = THIS_MODULE,
970 },
971 .min_keysize = AES_MIN_KEY_SIZE,
972 .max_keysize = AES_MAX_KEY_SIZE,
973 .ivsize = AES_BLOCK_SIZE,
974 .setkey = aesni_skcipher_setkey,
975 .encrypt = cbc_encrypt,
976 .decrypt = cbc_decrypt,
977#ifdef CONFIG_X86_64
978 }, {
979 .base = {
980 .cra_name = "__ctr(aes)",
981 .cra_driver_name = "__ctr-aes-aesni",
982 .cra_priority = 400,
983 .cra_flags = CRYPTO_ALG_INTERNAL,
984 .cra_blocksize = 1,
985 .cra_ctxsize = CRYPTO_AES_CTX_SIZE,
986 .cra_module = THIS_MODULE,
987 },
988 .min_keysize = AES_MIN_KEY_SIZE,
989 .max_keysize = AES_MAX_KEY_SIZE,
990 .ivsize = AES_BLOCK_SIZE,
991 .chunksize = AES_BLOCK_SIZE,
992 .setkey = aesni_skcipher_setkey,
993 .encrypt = ctr_crypt,
994 .decrypt = ctr_crypt,
995 }, {
996 .base = {
997 .cra_name = "__xts(aes)",
998 .cra_driver_name = "__xts-aes-aesni",
999 .cra_priority = 401,
1000 .cra_flags = CRYPTO_ALG_INTERNAL,
1001 .cra_blocksize = AES_BLOCK_SIZE,
1002 .cra_ctxsize = XTS_AES_CTX_SIZE,
1003 .cra_module = THIS_MODULE,
1004 },
1005 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1006 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1007 .ivsize = AES_BLOCK_SIZE,
1008 .setkey = xts_aesni_setkey,
1009 .encrypt = xts_encrypt,
1010 .decrypt = xts_decrypt,
1011#endif
1012 }
1013};
1014
1015struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
1016
1017struct {
1018 const char *algname;
1019 const char *drvname;
1020 const char *basename;
1021 struct simd_skcipher_alg *simd;
1022} aesni_simd_skciphers2[] = {
1023#if (defined(MODULE) && IS_ENABLED(CONFIG_CRYPTO_PCBC)) || \
1024 IS_BUILTIN(CONFIG_CRYPTO_PCBC)
1025 {
1026 .algname = "pcbc(aes)",
1027 .drvname = "pcbc-aes-aesni",
1028 .basename = "fpu(pcbc(__aes-aesni))",
1029 },
1030#endif
1031};
1032
1033#ifdef CONFIG_X86_64
1034static struct aead_alg aesni_aead_algs[] = { {
1035 .setkey = common_rfc4106_set_key,
1036 .setauthsize = common_rfc4106_set_authsize,
1037 .encrypt = helper_rfc4106_encrypt,
1038 .decrypt = helper_rfc4106_decrypt,
1039 .ivsize = 8,
1040 .maxauthsize = 16,
1041 .base = {
1042 .cra_name = "__gcm-aes-aesni",
1043 .cra_driver_name = "__driver-gcm-aes-aesni",
1044 .cra_flags = CRYPTO_ALG_INTERNAL,
1045 .cra_blocksize = 1,
1046 .cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx),
1047 .cra_alignmask = AESNI_ALIGN - 1,
1048 .cra_module = THIS_MODULE,
1049 },
1050}, {
1051 .init = rfc4106_init,
1052 .exit = rfc4106_exit,
1053 .setkey = rfc4106_set_key,
1054 .setauthsize = rfc4106_set_authsize,
1055 .encrypt = rfc4106_encrypt,
1056 .decrypt = rfc4106_decrypt,
1057 .ivsize = 8,
1058 .maxauthsize = 16,
1059 .base = {
1060 .cra_name = "rfc4106(gcm(aes))",
1061 .cra_driver_name = "rfc4106-gcm-aesni",
1062 .cra_priority = 400,
1063 .cra_flags = CRYPTO_ALG_ASYNC,
1064 .cra_blocksize = 1,
1065 .cra_ctxsize = sizeof(struct cryptd_aead *),
1066 .cra_module = THIS_MODULE,
1067 },
1068} };
1069#else
1070static struct aead_alg aesni_aead_algs[0];
1071#endif
1072
1073
1074static const struct x86_cpu_id aesni_cpu_id[] = {
1075 X86_FEATURE_MATCH(X86_FEATURE_AES),
1076 {}
1077};
1078MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1079
1080static void aesni_free_simds(void)
1081{
1082 int i;
1083
1084 for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers) &&
1085 aesni_simd_skciphers[i]; i++)
1086 simd_skcipher_free(aesni_simd_skciphers[i]);
1087
1088 for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers2); i++)
1089 if (aesni_simd_skciphers2[i].simd)
1090 simd_skcipher_free(aesni_simd_skciphers2[i].simd);
1091}
1092
1093static int __init aesni_init(void)
1094{
1095 struct simd_skcipher_alg *simd;
1096 const char *basename;
1097 const char *algname;
1098 const char *drvname;
1099 int err;
1100 int i;
1101
1102 if (!x86_match_cpu(aesni_cpu_id))
1103 return -ENODEV;
1104#ifdef CONFIG_X86_64
1105#ifdef CONFIG_AS_AVX2
1106 if (boot_cpu_has(X86_FEATURE_AVX2)) {
1107 pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1108 aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
1109 aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
1110 } else
1111#endif
1112#ifdef CONFIG_AS_AVX
1113 if (boot_cpu_has(X86_FEATURE_AVX)) {
1114 pr_info("AVX version of gcm_enc/dec engaged.\n");
1115 aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
1116 aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
1117 } else
1118#endif
1119 {
1120 pr_info("SSE version of gcm_enc/dec engaged.\n");
1121 aesni_gcm_enc_tfm = aesni_gcm_enc;
1122 aesni_gcm_dec_tfm = aesni_gcm_dec;
1123 }
1124 aesni_ctr_enc_tfm = aesni_ctr_enc;
1125#ifdef CONFIG_AS_AVX
1126 if (boot_cpu_has(X86_FEATURE_AVX)) {
1127 /* optimize performance of ctr mode encryption transform */
1128 aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1129 pr_info("AES CTR mode by8 optimization enabled\n");
1130 }
1131#endif
1132#endif
1133
1134 err = crypto_fpu_init();
1135 if (err)
1136 return err;
1137
1138 err = crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1139 if (err)
1140 goto fpu_exit;
1141
1142 err = crypto_register_skciphers(aesni_skciphers,
1143 ARRAY_SIZE(aesni_skciphers));
1144 if (err)
1145 goto unregister_algs;
1146
1147 err = crypto_register_aeads(aesni_aead_algs,
1148 ARRAY_SIZE(aesni_aead_algs));
1149 if (err)
1150 goto unregister_skciphers;
1151
1152 for (i = 0; i < ARRAY_SIZE(aesni_skciphers); i++) {
1153 algname = aesni_skciphers[i].base.cra_name + 2;
1154 drvname = aesni_skciphers[i].base.cra_driver_name + 2;
1155 basename = aesni_skciphers[i].base.cra_driver_name;
1156 simd = simd_skcipher_create_compat(algname, drvname, basename);
1157 err = PTR_ERR(simd);
1158 if (IS_ERR(simd))
1159 goto unregister_simds;
1160
1161 aesni_simd_skciphers[i] = simd;
1162 }
1163
1164 for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers2); i++) {
1165 algname = aesni_simd_skciphers2[i].algname;
1166 drvname = aesni_simd_skciphers2[i].drvname;
1167 basename = aesni_simd_skciphers2[i].basename;
1168 simd = simd_skcipher_create_compat(algname, drvname, basename);
1169 err = PTR_ERR(simd);
1170 if (IS_ERR(simd))
1171 continue;
1172
1173 aesni_simd_skciphers2[i].simd = simd;
1174 }
1175
1176 return 0;
1177
1178unregister_simds:
1179 aesni_free_simds();
1180 crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs));
1181unregister_skciphers:
1182 crypto_unregister_skciphers(aesni_skciphers,
1183 ARRAY_SIZE(aesni_skciphers));
1184unregister_algs:
1185 crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1186fpu_exit:
1187 crypto_fpu_exit();
1188 return err;
1189}
1190
1191static void __exit aesni_exit(void)
1192{
1193 aesni_free_simds();
1194 crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs));
1195 crypto_unregister_skciphers(aesni_skciphers,
1196 ARRAY_SIZE(aesni_skciphers));
1197 crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1198
1199 crypto_fpu_exit();
1200}
1201
1202late_initcall(aesni_init);
1203module_exit(aesni_exit);
1204
1205MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1206MODULE_LICENSE("GPL");
1207MODULE_ALIAS_CRYPTO("aes");