Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The Internet Protocol (IP) module.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Richard Underwood
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 *
18 * Fixes:
19 * Alan Cox : Commented a couple of minor bits of surplus code
20 * Alan Cox : Undefining IP_FORWARD doesn't include the code
21 * (just stops a compiler warning).
22 * Alan Cox : Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23 * are junked rather than corrupting things.
24 * Alan Cox : Frames to bad broadcast subnets are dumped
25 * We used to process them non broadcast and
26 * boy could that cause havoc.
27 * Alan Cox : ip_forward sets the free flag on the
28 * new frame it queues. Still crap because
29 * it copies the frame but at least it
30 * doesn't eat memory too.
31 * Alan Cox : Generic queue code and memory fixes.
32 * Fred Van Kempen : IP fragment support (borrowed from NET2E)
33 * Gerhard Koerting: Forward fragmented frames correctly.
34 * Gerhard Koerting: Fixes to my fix of the above 8-).
35 * Gerhard Koerting: IP interface addressing fix.
36 * Linus Torvalds : More robustness checks
37 * Alan Cox : Even more checks: Still not as robust as it ought to be
38 * Alan Cox : Save IP header pointer for later
39 * Alan Cox : ip option setting
40 * Alan Cox : Use ip_tos/ip_ttl settings
41 * Alan Cox : Fragmentation bogosity removed
42 * (Thanks to Mark.Bush@prg.ox.ac.uk)
43 * Dmitry Gorodchanin : Send of a raw packet crash fix.
44 * Alan Cox : Silly ip bug when an overlength
45 * fragment turns up. Now frees the
46 * queue.
47 * Linus Torvalds/ : Memory leakage on fragmentation
48 * Alan Cox : handling.
49 * Gerhard Koerting: Forwarding uses IP priority hints
50 * Teemu Rantanen : Fragment problems.
51 * Alan Cox : General cleanup, comments and reformat
52 * Alan Cox : SNMP statistics
53 * Alan Cox : BSD address rule semantics. Also see
54 * UDP as there is a nasty checksum issue
55 * if you do things the wrong way.
56 * Alan Cox : Always defrag, moved IP_FORWARD to the config.in file
57 * Alan Cox : IP options adjust sk->priority.
58 * Pedro Roque : Fix mtu/length error in ip_forward.
59 * Alan Cox : Avoid ip_chk_addr when possible.
60 * Richard Underwood : IP multicasting.
61 * Alan Cox : Cleaned up multicast handlers.
62 * Alan Cox : RAW sockets demultiplex in the BSD style.
63 * Gunther Mayer : Fix the SNMP reporting typo
64 * Alan Cox : Always in group 224.0.0.1
65 * Pauline Middelink : Fast ip_checksum update when forwarding
66 * Masquerading support.
67 * Alan Cox : Multicast loopback error for 224.0.0.1
68 * Alan Cox : IP_MULTICAST_LOOP option.
69 * Alan Cox : Use notifiers.
70 * Bjorn Ekwall : Removed ip_csum (from slhc.c too)
71 * Bjorn Ekwall : Moved ip_fast_csum to ip.h (inline!)
72 * Stefan Becker : Send out ICMP HOST REDIRECT
73 * Arnt Gulbrandsen : ip_build_xmit
74 * Alan Cox : Per socket routing cache
75 * Alan Cox : Fixed routing cache, added header cache.
76 * Alan Cox : Loopback didn't work right in original ip_build_xmit - fixed it.
77 * Alan Cox : Only send ICMP_REDIRECT if src/dest are the same net.
78 * Alan Cox : Incoming IP option handling.
79 * Alan Cox : Set saddr on raw output frames as per BSD.
80 * Alan Cox : Stopped broadcast source route explosions.
81 * Alan Cox : Can disable source routing
82 * Takeshi Sone : Masquerading didn't work.
83 * Dave Bonn,Alan Cox : Faster IP forwarding whenever possible.
84 * Alan Cox : Memory leaks, tramples, misc debugging.
85 * Alan Cox : Fixed multicast (by popular demand 8))
86 * Alan Cox : Fixed forwarding (by even more popular demand 8))
87 * Alan Cox : Fixed SNMP statistics [I think]
88 * Gerhard Koerting : IP fragmentation forwarding fix
89 * Alan Cox : Device lock against page fault.
90 * Alan Cox : IP_HDRINCL facility.
91 * Werner Almesberger : Zero fragment bug
92 * Alan Cox : RAW IP frame length bug
93 * Alan Cox : Outgoing firewall on build_xmit
94 * A.N.Kuznetsov : IP_OPTIONS support throughout the kernel
95 * Alan Cox : Multicast routing hooks
96 * Jos Vos : Do accounting *before* call_in_firewall
97 * Willy Konynenberg : Transparent proxying support
98 *
99 * To Fix:
100 * IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101 * and could be made very efficient with the addition of some virtual memory hacks to permit
102 * the allocation of a buffer that can then be 'grown' by twiddling page tables.
103 * Output fragmentation wants updating along with the buffer management to use a single
104 * interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105 * output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106 * fragmentation anyway.
107 */
108
109#define pr_fmt(fmt) "IPv4: " fmt
110
111#include <linux/module.h>
112#include <linux/types.h>
113#include <linux/kernel.h>
114#include <linux/string.h>
115#include <linux/errno.h>
116#include <linux/slab.h>
117
118#include <linux/net.h>
119#include <linux/socket.h>
120#include <linux/sockios.h>
121#include <linux/in.h>
122#include <linux/inet.h>
123#include <linux/inetdevice.h>
124#include <linux/netdevice.h>
125#include <linux/etherdevice.h>
126#include <linux/indirect_call_wrapper.h>
127
128#include <net/snmp.h>
129#include <net/ip.h>
130#include <net/protocol.h>
131#include <net/route.h>
132#include <linux/skbuff.h>
133#include <net/sock.h>
134#include <net/arp.h>
135#include <net/icmp.h>
136#include <net/raw.h>
137#include <net/checksum.h>
138#include <net/inet_ecn.h>
139#include <linux/netfilter_ipv4.h>
140#include <net/xfrm.h>
141#include <linux/mroute.h>
142#include <linux/netlink.h>
143#include <net/dst_metadata.h>
144
145/*
146 * Process Router Attention IP option (RFC 2113)
147 */
148bool ip_call_ra_chain(struct sk_buff *skb)
149{
150 struct ip_ra_chain *ra;
151 u8 protocol = ip_hdr(skb)->protocol;
152 struct sock *last = NULL;
153 struct net_device *dev = skb->dev;
154 struct net *net = dev_net(dev);
155
156 for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
157 struct sock *sk = ra->sk;
158
159 /* If socket is bound to an interface, only report
160 * the packet if it came from that interface.
161 */
162 if (sk && inet_sk(sk)->inet_num == protocol &&
163 (!sk->sk_bound_dev_if ||
164 sk->sk_bound_dev_if == dev->ifindex)) {
165 if (ip_is_fragment(ip_hdr(skb))) {
166 if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
167 return true;
168 }
169 if (last) {
170 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
171 if (skb2)
172 raw_rcv(last, skb2);
173 }
174 last = sk;
175 }
176 }
177
178 if (last) {
179 raw_rcv(last, skb);
180 return true;
181 }
182 return false;
183}
184
185INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
186INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
187void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
188{
189 const struct net_protocol *ipprot;
190 int raw, ret;
191
192resubmit:
193 raw = raw_local_deliver(skb, protocol);
194
195 ipprot = rcu_dereference(inet_protos[protocol]);
196 if (ipprot) {
197 if (!ipprot->no_policy) {
198 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
199 kfree_skb_reason(skb,
200 SKB_DROP_REASON_XFRM_POLICY);
201 return;
202 }
203 nf_reset_ct(skb);
204 }
205 ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
206 skb);
207 if (ret < 0) {
208 protocol = -ret;
209 goto resubmit;
210 }
211 __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
212 } else {
213 if (!raw) {
214 if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
215 __IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
216 icmp_send(skb, ICMP_DEST_UNREACH,
217 ICMP_PROT_UNREACH, 0);
218 }
219 kfree_skb_reason(skb, SKB_DROP_REASON_IP_NOPROTO);
220 } else {
221 __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
222 consume_skb(skb);
223 }
224 }
225}
226
227static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
228{
229 skb_clear_delivery_time(skb);
230 __skb_pull(skb, skb_network_header_len(skb));
231
232 rcu_read_lock();
233 ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
234 rcu_read_unlock();
235
236 return 0;
237}
238
239/*
240 * Deliver IP Packets to the higher protocol layers.
241 */
242int ip_local_deliver(struct sk_buff *skb)
243{
244 /*
245 * Reassemble IP fragments.
246 */
247 struct net *net = dev_net(skb->dev);
248
249 if (ip_is_fragment(ip_hdr(skb))) {
250 if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
251 return 0;
252 }
253
254 return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
255 net, NULL, skb, skb->dev, NULL,
256 ip_local_deliver_finish);
257}
258EXPORT_SYMBOL(ip_local_deliver);
259
260static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
261{
262 struct ip_options *opt;
263 const struct iphdr *iph;
264
265 /* It looks as overkill, because not all
266 IP options require packet mangling.
267 But it is the easiest for now, especially taking
268 into account that combination of IP options
269 and running sniffer is extremely rare condition.
270 --ANK (980813)
271 */
272 if (skb_cow(skb, skb_headroom(skb))) {
273 __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
274 goto drop;
275 }
276
277 iph = ip_hdr(skb);
278 opt = &(IPCB(skb)->opt);
279 opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
280
281 if (ip_options_compile(dev_net(dev), opt, skb)) {
282 __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
283 goto drop;
284 }
285
286 if (unlikely(opt->srr)) {
287 struct in_device *in_dev = __in_dev_get_rcu(dev);
288
289 if (in_dev) {
290 if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
291 if (IN_DEV_LOG_MARTIANS(in_dev))
292 net_info_ratelimited("source route option %pI4 -> %pI4\n",
293 &iph->saddr,
294 &iph->daddr);
295 goto drop;
296 }
297 }
298
299 if (ip_options_rcv_srr(skb, dev))
300 goto drop;
301 }
302
303 return false;
304drop:
305 return true;
306}
307
308static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
309 const struct sk_buff *hint)
310{
311 return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
312 ip_hdr(hint)->tos == iph->tos;
313}
314
315int tcp_v4_early_demux(struct sk_buff *skb);
316int udp_v4_early_demux(struct sk_buff *skb);
317static int ip_rcv_finish_core(struct net *net, struct sock *sk,
318 struct sk_buff *skb, struct net_device *dev,
319 const struct sk_buff *hint)
320{
321 const struct iphdr *iph = ip_hdr(skb);
322 int err, drop_reason;
323 struct rtable *rt;
324
325 if (ip_can_use_hint(skb, iph, hint)) {
326 drop_reason = ip_route_use_hint(skb, iph->daddr, iph->saddr,
327 ip4h_dscp(iph), dev, hint);
328 if (unlikely(drop_reason))
329 goto drop_error;
330 }
331
332 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
333 if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) &&
334 !skb_dst(skb) &&
335 !skb->sk &&
336 !ip_is_fragment(iph)) {
337 switch (iph->protocol) {
338 case IPPROTO_TCP:
339 if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) {
340 tcp_v4_early_demux(skb);
341
342 /* must reload iph, skb->head might have changed */
343 iph = ip_hdr(skb);
344 }
345 break;
346 case IPPROTO_UDP:
347 if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) {
348 err = udp_v4_early_demux(skb);
349 if (unlikely(err))
350 goto drop_error;
351
352 /* must reload iph, skb->head might have changed */
353 iph = ip_hdr(skb);
354 }
355 break;
356 }
357 }
358
359 /*
360 * Initialise the virtual path cache for the packet. It describes
361 * how the packet travels inside Linux networking.
362 */
363 if (!skb_valid_dst(skb)) {
364 drop_reason = ip_route_input_noref(skb, iph->daddr, iph->saddr,
365 ip4h_dscp(iph), dev);
366 if (unlikely(drop_reason))
367 goto drop_error;
368 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
369 } else {
370 struct in_device *in_dev = __in_dev_get_rcu(dev);
371
372 if (in_dev && IN_DEV_ORCONF(in_dev, NOPOLICY))
373 IPCB(skb)->flags |= IPSKB_NOPOLICY;
374 }
375
376#ifdef CONFIG_IP_ROUTE_CLASSID
377 if (unlikely(skb_dst(skb)->tclassid)) {
378 struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
379 u32 idx = skb_dst(skb)->tclassid;
380 st[idx&0xFF].o_packets++;
381 st[idx&0xFF].o_bytes += skb->len;
382 st[(idx>>16)&0xFF].i_packets++;
383 st[(idx>>16)&0xFF].i_bytes += skb->len;
384 }
385#endif
386
387 if (iph->ihl > 5 && ip_rcv_options(skb, dev))
388 goto drop;
389
390 rt = skb_rtable(skb);
391 if (rt->rt_type == RTN_MULTICAST) {
392 __IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
393 } else if (rt->rt_type == RTN_BROADCAST) {
394 __IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
395 } else if (skb->pkt_type == PACKET_BROADCAST ||
396 skb->pkt_type == PACKET_MULTICAST) {
397 struct in_device *in_dev = __in_dev_get_rcu(dev);
398
399 /* RFC 1122 3.3.6:
400 *
401 * When a host sends a datagram to a link-layer broadcast
402 * address, the IP destination address MUST be a legal IP
403 * broadcast or IP multicast address.
404 *
405 * A host SHOULD silently discard a datagram that is received
406 * via a link-layer broadcast (see Section 2.4) but does not
407 * specify an IP multicast or broadcast destination address.
408 *
409 * This doesn't explicitly say L2 *broadcast*, but broadcast is
410 * in a way a form of multicast and the most common use case for
411 * this is 802.11 protecting against cross-station spoofing (the
412 * so-called "hole-196" attack) so do it for both.
413 */
414 if (in_dev &&
415 IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST)) {
416 drop_reason = SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST;
417 goto drop;
418 }
419 }
420
421 return NET_RX_SUCCESS;
422
423drop:
424 kfree_skb_reason(skb, drop_reason);
425 return NET_RX_DROP;
426
427drop_error:
428 if (drop_reason == SKB_DROP_REASON_IP_RPFILTER)
429 __NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
430 goto drop;
431}
432
433static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
434{
435 struct net_device *dev = skb->dev;
436 int ret;
437
438 /* if ingress device is enslaved to an L3 master device pass the
439 * skb to its handler for processing
440 */
441 skb = l3mdev_ip_rcv(skb);
442 if (!skb)
443 return NET_RX_SUCCESS;
444
445 ret = ip_rcv_finish_core(net, sk, skb, dev, NULL);
446 if (ret != NET_RX_DROP)
447 ret = dst_input(skb);
448 return ret;
449}
450
451/*
452 * Main IP Receive routine.
453 */
454static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
455{
456 const struct iphdr *iph;
457 int drop_reason;
458 u32 len;
459
460 /* When the interface is in promisc. mode, drop all the crap
461 * that it receives, do not try to analyse it.
462 */
463 if (skb->pkt_type == PACKET_OTHERHOST) {
464 dev_core_stats_rx_otherhost_dropped_inc(skb->dev);
465 drop_reason = SKB_DROP_REASON_OTHERHOST;
466 goto drop;
467 }
468
469 __IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
470
471 skb = skb_share_check(skb, GFP_ATOMIC);
472 if (!skb) {
473 __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
474 goto out;
475 }
476
477 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
478 if (!pskb_may_pull(skb, sizeof(struct iphdr)))
479 goto inhdr_error;
480
481 iph = ip_hdr(skb);
482
483 /*
484 * RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
485 *
486 * Is the datagram acceptable?
487 *
488 * 1. Length at least the size of an ip header
489 * 2. Version of 4
490 * 3. Checksums correctly. [Speed optimisation for later, skip loopback checksums]
491 * 4. Doesn't have a bogus length
492 */
493
494 if (iph->ihl < 5 || iph->version != 4)
495 goto inhdr_error;
496
497 BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
498 BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
499 BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
500 __IP_ADD_STATS(net,
501 IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
502 max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
503
504 if (!pskb_may_pull(skb, iph->ihl*4))
505 goto inhdr_error;
506
507 iph = ip_hdr(skb);
508
509 if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
510 goto csum_error;
511
512 len = iph_totlen(skb, iph);
513 if (skb->len < len) {
514 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
515 __IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
516 goto drop;
517 } else if (len < (iph->ihl*4))
518 goto inhdr_error;
519
520 /* Our transport medium may have padded the buffer out. Now we know it
521 * is IP we can trim to the true length of the frame.
522 * Note this now means skb->len holds ntohs(iph->tot_len).
523 */
524 if (pskb_trim_rcsum(skb, len)) {
525 __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
526 goto drop;
527 }
528
529 iph = ip_hdr(skb);
530 skb->transport_header = skb->network_header + iph->ihl*4;
531
532 /* Remove any debris in the socket control block */
533 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
534 IPCB(skb)->iif = skb->skb_iif;
535
536 /* Must drop socket now because of tproxy. */
537 if (!skb_sk_is_prefetched(skb))
538 skb_orphan(skb);
539
540 return skb;
541
542csum_error:
543 drop_reason = SKB_DROP_REASON_IP_CSUM;
544 __IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
545inhdr_error:
546 if (drop_reason == SKB_DROP_REASON_NOT_SPECIFIED)
547 drop_reason = SKB_DROP_REASON_IP_INHDR;
548 __IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
549drop:
550 kfree_skb_reason(skb, drop_reason);
551out:
552 return NULL;
553}
554
555/*
556 * IP receive entry point
557 */
558int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
559 struct net_device *orig_dev)
560{
561 struct net *net = dev_net(dev);
562
563 skb = ip_rcv_core(skb, net);
564 if (skb == NULL)
565 return NET_RX_DROP;
566
567 return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
568 net, NULL, skb, dev, NULL,
569 ip_rcv_finish);
570}
571
572static void ip_sublist_rcv_finish(struct list_head *head)
573{
574 struct sk_buff *skb, *next;
575
576 list_for_each_entry_safe(skb, next, head, list) {
577 skb_list_del_init(skb);
578 dst_input(skb);
579 }
580}
581
582static struct sk_buff *ip_extract_route_hint(const struct net *net,
583 struct sk_buff *skb, int rt_type)
584{
585 if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST ||
586 IPCB(skb)->flags & IPSKB_MULTIPATH)
587 return NULL;
588
589 return skb;
590}
591
592static void ip_list_rcv_finish(struct net *net, struct sock *sk,
593 struct list_head *head)
594{
595 struct sk_buff *skb, *next, *hint = NULL;
596 struct dst_entry *curr_dst = NULL;
597 LIST_HEAD(sublist);
598
599 list_for_each_entry_safe(skb, next, head, list) {
600 struct net_device *dev = skb->dev;
601 struct dst_entry *dst;
602
603 skb_list_del_init(skb);
604 /* if ingress device is enslaved to an L3 master device pass the
605 * skb to its handler for processing
606 */
607 skb = l3mdev_ip_rcv(skb);
608 if (!skb)
609 continue;
610 if (ip_rcv_finish_core(net, sk, skb, dev, hint) == NET_RX_DROP)
611 continue;
612
613 dst = skb_dst(skb);
614 if (curr_dst != dst) {
615 hint = ip_extract_route_hint(net, skb,
616 dst_rtable(dst)->rt_type);
617
618 /* dispatch old sublist */
619 if (!list_empty(&sublist))
620 ip_sublist_rcv_finish(&sublist);
621 /* start new sublist */
622 INIT_LIST_HEAD(&sublist);
623 curr_dst = dst;
624 }
625 list_add_tail(&skb->list, &sublist);
626 }
627 /* dispatch final sublist */
628 ip_sublist_rcv_finish(&sublist);
629}
630
631static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
632 struct net *net)
633{
634 NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
635 head, dev, NULL, ip_rcv_finish);
636 ip_list_rcv_finish(net, NULL, head);
637}
638
639/* Receive a list of IP packets */
640void ip_list_rcv(struct list_head *head, struct packet_type *pt,
641 struct net_device *orig_dev)
642{
643 struct net_device *curr_dev = NULL;
644 struct net *curr_net = NULL;
645 struct sk_buff *skb, *next;
646 LIST_HEAD(sublist);
647
648 list_for_each_entry_safe(skb, next, head, list) {
649 struct net_device *dev = skb->dev;
650 struct net *net = dev_net(dev);
651
652 skb_list_del_init(skb);
653 skb = ip_rcv_core(skb, net);
654 if (skb == NULL)
655 continue;
656
657 if (curr_dev != dev || curr_net != net) {
658 /* dispatch old sublist */
659 if (!list_empty(&sublist))
660 ip_sublist_rcv(&sublist, curr_dev, curr_net);
661 /* start new sublist */
662 INIT_LIST_HEAD(&sublist);
663 curr_dev = dev;
664 curr_net = net;
665 }
666 list_add_tail(&skb->list, &sublist);
667 }
668 /* dispatch final sublist */
669 if (!list_empty(&sublist))
670 ip_sublist_rcv(&sublist, curr_dev, curr_net);
671}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The Internet Protocol (IP) module.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Richard Underwood
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 *
18 * Fixes:
19 * Alan Cox : Commented a couple of minor bits of surplus code
20 * Alan Cox : Undefining IP_FORWARD doesn't include the code
21 * (just stops a compiler warning).
22 * Alan Cox : Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23 * are junked rather than corrupting things.
24 * Alan Cox : Frames to bad broadcast subnets are dumped
25 * We used to process them non broadcast and
26 * boy could that cause havoc.
27 * Alan Cox : ip_forward sets the free flag on the
28 * new frame it queues. Still crap because
29 * it copies the frame but at least it
30 * doesn't eat memory too.
31 * Alan Cox : Generic queue code and memory fixes.
32 * Fred Van Kempen : IP fragment support (borrowed from NET2E)
33 * Gerhard Koerting: Forward fragmented frames correctly.
34 * Gerhard Koerting: Fixes to my fix of the above 8-).
35 * Gerhard Koerting: IP interface addressing fix.
36 * Linus Torvalds : More robustness checks
37 * Alan Cox : Even more checks: Still not as robust as it ought to be
38 * Alan Cox : Save IP header pointer for later
39 * Alan Cox : ip option setting
40 * Alan Cox : Use ip_tos/ip_ttl settings
41 * Alan Cox : Fragmentation bogosity removed
42 * (Thanks to Mark.Bush@prg.ox.ac.uk)
43 * Dmitry Gorodchanin : Send of a raw packet crash fix.
44 * Alan Cox : Silly ip bug when an overlength
45 * fragment turns up. Now frees the
46 * queue.
47 * Linus Torvalds/ : Memory leakage on fragmentation
48 * Alan Cox : handling.
49 * Gerhard Koerting: Forwarding uses IP priority hints
50 * Teemu Rantanen : Fragment problems.
51 * Alan Cox : General cleanup, comments and reformat
52 * Alan Cox : SNMP statistics
53 * Alan Cox : BSD address rule semantics. Also see
54 * UDP as there is a nasty checksum issue
55 * if you do things the wrong way.
56 * Alan Cox : Always defrag, moved IP_FORWARD to the config.in file
57 * Alan Cox : IP options adjust sk->priority.
58 * Pedro Roque : Fix mtu/length error in ip_forward.
59 * Alan Cox : Avoid ip_chk_addr when possible.
60 * Richard Underwood : IP multicasting.
61 * Alan Cox : Cleaned up multicast handlers.
62 * Alan Cox : RAW sockets demultiplex in the BSD style.
63 * Gunther Mayer : Fix the SNMP reporting typo
64 * Alan Cox : Always in group 224.0.0.1
65 * Pauline Middelink : Fast ip_checksum update when forwarding
66 * Masquerading support.
67 * Alan Cox : Multicast loopback error for 224.0.0.1
68 * Alan Cox : IP_MULTICAST_LOOP option.
69 * Alan Cox : Use notifiers.
70 * Bjorn Ekwall : Removed ip_csum (from slhc.c too)
71 * Bjorn Ekwall : Moved ip_fast_csum to ip.h (inline!)
72 * Stefan Becker : Send out ICMP HOST REDIRECT
73 * Arnt Gulbrandsen : ip_build_xmit
74 * Alan Cox : Per socket routing cache
75 * Alan Cox : Fixed routing cache, added header cache.
76 * Alan Cox : Loopback didn't work right in original ip_build_xmit - fixed it.
77 * Alan Cox : Only send ICMP_REDIRECT if src/dest are the same net.
78 * Alan Cox : Incoming IP option handling.
79 * Alan Cox : Set saddr on raw output frames as per BSD.
80 * Alan Cox : Stopped broadcast source route explosions.
81 * Alan Cox : Can disable source routing
82 * Takeshi Sone : Masquerading didn't work.
83 * Dave Bonn,Alan Cox : Faster IP forwarding whenever possible.
84 * Alan Cox : Memory leaks, tramples, misc debugging.
85 * Alan Cox : Fixed multicast (by popular demand 8))
86 * Alan Cox : Fixed forwarding (by even more popular demand 8))
87 * Alan Cox : Fixed SNMP statistics [I think]
88 * Gerhard Koerting : IP fragmentation forwarding fix
89 * Alan Cox : Device lock against page fault.
90 * Alan Cox : IP_HDRINCL facility.
91 * Werner Almesberger : Zero fragment bug
92 * Alan Cox : RAW IP frame length bug
93 * Alan Cox : Outgoing firewall on build_xmit
94 * A.N.Kuznetsov : IP_OPTIONS support throughout the kernel
95 * Alan Cox : Multicast routing hooks
96 * Jos Vos : Do accounting *before* call_in_firewall
97 * Willy Konynenberg : Transparent proxying support
98 *
99 * To Fix:
100 * IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101 * and could be made very efficient with the addition of some virtual memory hacks to permit
102 * the allocation of a buffer that can then be 'grown' by twiddling page tables.
103 * Output fragmentation wants updating along with the buffer management to use a single
104 * interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105 * output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106 * fragmentation anyway.
107 */
108
109#define pr_fmt(fmt) "IPv4: " fmt
110
111#include <linux/module.h>
112#include <linux/types.h>
113#include <linux/kernel.h>
114#include <linux/string.h>
115#include <linux/errno.h>
116#include <linux/slab.h>
117
118#include <linux/net.h>
119#include <linux/socket.h>
120#include <linux/sockios.h>
121#include <linux/in.h>
122#include <linux/inet.h>
123#include <linux/inetdevice.h>
124#include <linux/netdevice.h>
125#include <linux/etherdevice.h>
126#include <linux/indirect_call_wrapper.h>
127
128#include <net/snmp.h>
129#include <net/ip.h>
130#include <net/protocol.h>
131#include <net/route.h>
132#include <linux/skbuff.h>
133#include <net/sock.h>
134#include <net/arp.h>
135#include <net/icmp.h>
136#include <net/raw.h>
137#include <net/checksum.h>
138#include <net/inet_ecn.h>
139#include <linux/netfilter_ipv4.h>
140#include <net/xfrm.h>
141#include <linux/mroute.h>
142#include <linux/netlink.h>
143#include <net/dst_metadata.h>
144
145/*
146 * Process Router Attention IP option (RFC 2113)
147 */
148bool ip_call_ra_chain(struct sk_buff *skb)
149{
150 struct ip_ra_chain *ra;
151 u8 protocol = ip_hdr(skb)->protocol;
152 struct sock *last = NULL;
153 struct net_device *dev = skb->dev;
154 struct net *net = dev_net(dev);
155
156 for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
157 struct sock *sk = ra->sk;
158
159 /* If socket is bound to an interface, only report
160 * the packet if it came from that interface.
161 */
162 if (sk && inet_sk(sk)->inet_num == protocol &&
163 (!sk->sk_bound_dev_if ||
164 sk->sk_bound_dev_if == dev->ifindex)) {
165 if (ip_is_fragment(ip_hdr(skb))) {
166 if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
167 return true;
168 }
169 if (last) {
170 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
171 if (skb2)
172 raw_rcv(last, skb2);
173 }
174 last = sk;
175 }
176 }
177
178 if (last) {
179 raw_rcv(last, skb);
180 return true;
181 }
182 return false;
183}
184
185INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
186INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
187void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
188{
189 const struct net_protocol *ipprot;
190 int raw, ret;
191
192resubmit:
193 raw = raw_local_deliver(skb, protocol);
194
195 ipprot = rcu_dereference(inet_protos[protocol]);
196 if (ipprot) {
197 if (!ipprot->no_policy) {
198 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
199 kfree_skb(skb);
200 return;
201 }
202 nf_reset_ct(skb);
203 }
204 ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
205 skb);
206 if (ret < 0) {
207 protocol = -ret;
208 goto resubmit;
209 }
210 __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
211 } else {
212 if (!raw) {
213 if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
214 __IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
215 icmp_send(skb, ICMP_DEST_UNREACH,
216 ICMP_PROT_UNREACH, 0);
217 }
218 kfree_skb(skb);
219 } else {
220 __IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
221 consume_skb(skb);
222 }
223 }
224}
225
226static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
227{
228 __skb_pull(skb, skb_network_header_len(skb));
229
230 rcu_read_lock();
231 ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
232 rcu_read_unlock();
233
234 return 0;
235}
236
237/*
238 * Deliver IP Packets to the higher protocol layers.
239 */
240int ip_local_deliver(struct sk_buff *skb)
241{
242 /*
243 * Reassemble IP fragments.
244 */
245 struct net *net = dev_net(skb->dev);
246
247 if (ip_is_fragment(ip_hdr(skb))) {
248 if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
249 return 0;
250 }
251
252 return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
253 net, NULL, skb, skb->dev, NULL,
254 ip_local_deliver_finish);
255}
256EXPORT_SYMBOL(ip_local_deliver);
257
258static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
259{
260 struct ip_options *opt;
261 const struct iphdr *iph;
262
263 /* It looks as overkill, because not all
264 IP options require packet mangling.
265 But it is the easiest for now, especially taking
266 into account that combination of IP options
267 and running sniffer is extremely rare condition.
268 --ANK (980813)
269 */
270 if (skb_cow(skb, skb_headroom(skb))) {
271 __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
272 goto drop;
273 }
274
275 iph = ip_hdr(skb);
276 opt = &(IPCB(skb)->opt);
277 opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
278
279 if (ip_options_compile(dev_net(dev), opt, skb)) {
280 __IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
281 goto drop;
282 }
283
284 if (unlikely(opt->srr)) {
285 struct in_device *in_dev = __in_dev_get_rcu(dev);
286
287 if (in_dev) {
288 if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
289 if (IN_DEV_LOG_MARTIANS(in_dev))
290 net_info_ratelimited("source route option %pI4 -> %pI4\n",
291 &iph->saddr,
292 &iph->daddr);
293 goto drop;
294 }
295 }
296
297 if (ip_options_rcv_srr(skb, dev))
298 goto drop;
299 }
300
301 return false;
302drop:
303 return true;
304}
305
306static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
307 const struct sk_buff *hint)
308{
309 return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
310 ip_hdr(hint)->tos == iph->tos;
311}
312
313INDIRECT_CALLABLE_DECLARE(int udp_v4_early_demux(struct sk_buff *));
314INDIRECT_CALLABLE_DECLARE(int tcp_v4_early_demux(struct sk_buff *));
315static int ip_rcv_finish_core(struct net *net, struct sock *sk,
316 struct sk_buff *skb, struct net_device *dev,
317 const struct sk_buff *hint)
318{
319 const struct iphdr *iph = ip_hdr(skb);
320 int (*edemux)(struct sk_buff *skb);
321 struct rtable *rt;
322 int err;
323
324 if (ip_can_use_hint(skb, iph, hint)) {
325 err = ip_route_use_hint(skb, iph->daddr, iph->saddr, iph->tos,
326 dev, hint);
327 if (unlikely(err))
328 goto drop_error;
329 }
330
331 if (net->ipv4.sysctl_ip_early_demux &&
332 !skb_dst(skb) &&
333 !skb->sk &&
334 !ip_is_fragment(iph)) {
335 const struct net_protocol *ipprot;
336 int protocol = iph->protocol;
337
338 ipprot = rcu_dereference(inet_protos[protocol]);
339 if (ipprot && (edemux = READ_ONCE(ipprot->early_demux))) {
340 err = INDIRECT_CALL_2(edemux, tcp_v4_early_demux,
341 udp_v4_early_demux, skb);
342 if (unlikely(err))
343 goto drop_error;
344 /* must reload iph, skb->head might have changed */
345 iph = ip_hdr(skb);
346 }
347 }
348
349 /*
350 * Initialise the virtual path cache for the packet. It describes
351 * how the packet travels inside Linux networking.
352 */
353 if (!skb_valid_dst(skb)) {
354 err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
355 iph->tos, dev);
356 if (unlikely(err))
357 goto drop_error;
358 }
359
360#ifdef CONFIG_IP_ROUTE_CLASSID
361 if (unlikely(skb_dst(skb)->tclassid)) {
362 struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
363 u32 idx = skb_dst(skb)->tclassid;
364 st[idx&0xFF].o_packets++;
365 st[idx&0xFF].o_bytes += skb->len;
366 st[(idx>>16)&0xFF].i_packets++;
367 st[(idx>>16)&0xFF].i_bytes += skb->len;
368 }
369#endif
370
371 if (iph->ihl > 5 && ip_rcv_options(skb, dev))
372 goto drop;
373
374 rt = skb_rtable(skb);
375 if (rt->rt_type == RTN_MULTICAST) {
376 __IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
377 } else if (rt->rt_type == RTN_BROADCAST) {
378 __IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
379 } else if (skb->pkt_type == PACKET_BROADCAST ||
380 skb->pkt_type == PACKET_MULTICAST) {
381 struct in_device *in_dev = __in_dev_get_rcu(dev);
382
383 /* RFC 1122 3.3.6:
384 *
385 * When a host sends a datagram to a link-layer broadcast
386 * address, the IP destination address MUST be a legal IP
387 * broadcast or IP multicast address.
388 *
389 * A host SHOULD silently discard a datagram that is received
390 * via a link-layer broadcast (see Section 2.4) but does not
391 * specify an IP multicast or broadcast destination address.
392 *
393 * This doesn't explicitly say L2 *broadcast*, but broadcast is
394 * in a way a form of multicast and the most common use case for
395 * this is 802.11 protecting against cross-station spoofing (the
396 * so-called "hole-196" attack) so do it for both.
397 */
398 if (in_dev &&
399 IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST))
400 goto drop;
401 }
402
403 return NET_RX_SUCCESS;
404
405drop:
406 kfree_skb(skb);
407 return NET_RX_DROP;
408
409drop_error:
410 if (err == -EXDEV)
411 __NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
412 goto drop;
413}
414
415static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
416{
417 struct net_device *dev = skb->dev;
418 int ret;
419
420 /* if ingress device is enslaved to an L3 master device pass the
421 * skb to its handler for processing
422 */
423 skb = l3mdev_ip_rcv(skb);
424 if (!skb)
425 return NET_RX_SUCCESS;
426
427 ret = ip_rcv_finish_core(net, sk, skb, dev, NULL);
428 if (ret != NET_RX_DROP)
429 ret = dst_input(skb);
430 return ret;
431}
432
433/*
434 * Main IP Receive routine.
435 */
436static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
437{
438 const struct iphdr *iph;
439 u32 len;
440
441 /* When the interface is in promisc. mode, drop all the crap
442 * that it receives, do not try to analyse it.
443 */
444 if (skb->pkt_type == PACKET_OTHERHOST)
445 goto drop;
446
447 __IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
448
449 skb = skb_share_check(skb, GFP_ATOMIC);
450 if (!skb) {
451 __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
452 goto out;
453 }
454
455 if (!pskb_may_pull(skb, sizeof(struct iphdr)))
456 goto inhdr_error;
457
458 iph = ip_hdr(skb);
459
460 /*
461 * RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
462 *
463 * Is the datagram acceptable?
464 *
465 * 1. Length at least the size of an ip header
466 * 2. Version of 4
467 * 3. Checksums correctly. [Speed optimisation for later, skip loopback checksums]
468 * 4. Doesn't have a bogus length
469 */
470
471 if (iph->ihl < 5 || iph->version != 4)
472 goto inhdr_error;
473
474 BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
475 BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
476 BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
477 __IP_ADD_STATS(net,
478 IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
479 max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
480
481 if (!pskb_may_pull(skb, iph->ihl*4))
482 goto inhdr_error;
483
484 iph = ip_hdr(skb);
485
486 if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
487 goto csum_error;
488
489 len = ntohs(iph->tot_len);
490 if (skb->len < len) {
491 __IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
492 goto drop;
493 } else if (len < (iph->ihl*4))
494 goto inhdr_error;
495
496 /* Our transport medium may have padded the buffer out. Now we know it
497 * is IP we can trim to the true length of the frame.
498 * Note this now means skb->len holds ntohs(iph->tot_len).
499 */
500 if (pskb_trim_rcsum(skb, len)) {
501 __IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
502 goto drop;
503 }
504
505 iph = ip_hdr(skb);
506 skb->transport_header = skb->network_header + iph->ihl*4;
507
508 /* Remove any debris in the socket control block */
509 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
510 IPCB(skb)->iif = skb->skb_iif;
511
512 /* Must drop socket now because of tproxy. */
513 if (!skb_sk_is_prefetched(skb))
514 skb_orphan(skb);
515
516 return skb;
517
518csum_error:
519 __IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
520inhdr_error:
521 __IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
522drop:
523 kfree_skb(skb);
524out:
525 return NULL;
526}
527
528/*
529 * IP receive entry point
530 */
531int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
532 struct net_device *orig_dev)
533{
534 struct net *net = dev_net(dev);
535
536 skb = ip_rcv_core(skb, net);
537 if (skb == NULL)
538 return NET_RX_DROP;
539
540 return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
541 net, NULL, skb, dev, NULL,
542 ip_rcv_finish);
543}
544
545static void ip_sublist_rcv_finish(struct list_head *head)
546{
547 struct sk_buff *skb, *next;
548
549 list_for_each_entry_safe(skb, next, head, list) {
550 skb_list_del_init(skb);
551 dst_input(skb);
552 }
553}
554
555static struct sk_buff *ip_extract_route_hint(const struct net *net,
556 struct sk_buff *skb, int rt_type)
557{
558 if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST)
559 return NULL;
560
561 return skb;
562}
563
564static void ip_list_rcv_finish(struct net *net, struct sock *sk,
565 struct list_head *head)
566{
567 struct sk_buff *skb, *next, *hint = NULL;
568 struct dst_entry *curr_dst = NULL;
569 struct list_head sublist;
570
571 INIT_LIST_HEAD(&sublist);
572 list_for_each_entry_safe(skb, next, head, list) {
573 struct net_device *dev = skb->dev;
574 struct dst_entry *dst;
575
576 skb_list_del_init(skb);
577 /* if ingress device is enslaved to an L3 master device pass the
578 * skb to its handler for processing
579 */
580 skb = l3mdev_ip_rcv(skb);
581 if (!skb)
582 continue;
583 if (ip_rcv_finish_core(net, sk, skb, dev, hint) == NET_RX_DROP)
584 continue;
585
586 dst = skb_dst(skb);
587 if (curr_dst != dst) {
588 hint = ip_extract_route_hint(net, skb,
589 ((struct rtable *)dst)->rt_type);
590
591 /* dispatch old sublist */
592 if (!list_empty(&sublist))
593 ip_sublist_rcv_finish(&sublist);
594 /* start new sublist */
595 INIT_LIST_HEAD(&sublist);
596 curr_dst = dst;
597 }
598 list_add_tail(&skb->list, &sublist);
599 }
600 /* dispatch final sublist */
601 ip_sublist_rcv_finish(&sublist);
602}
603
604static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
605 struct net *net)
606{
607 NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
608 head, dev, NULL, ip_rcv_finish);
609 ip_list_rcv_finish(net, NULL, head);
610}
611
612/* Receive a list of IP packets */
613void ip_list_rcv(struct list_head *head, struct packet_type *pt,
614 struct net_device *orig_dev)
615{
616 struct net_device *curr_dev = NULL;
617 struct net *curr_net = NULL;
618 struct sk_buff *skb, *next;
619 struct list_head sublist;
620
621 INIT_LIST_HEAD(&sublist);
622 list_for_each_entry_safe(skb, next, head, list) {
623 struct net_device *dev = skb->dev;
624 struct net *net = dev_net(dev);
625
626 skb_list_del_init(skb);
627 skb = ip_rcv_core(skb, net);
628 if (skb == NULL)
629 continue;
630
631 if (curr_dev != dev || curr_net != net) {
632 /* dispatch old sublist */
633 if (!list_empty(&sublist))
634 ip_sublist_rcv(&sublist, curr_dev, curr_net);
635 /* start new sublist */
636 INIT_LIST_HEAD(&sublist);
637 curr_dev = dev;
638 curr_net = net;
639 }
640 list_add_tail(&skb->list, &sublist);
641 }
642 /* dispatch final sublist */
643 if (!list_empty(&sublist))
644 ip_sublist_rcv(&sublist, curr_dev, curr_net);
645}