Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		The Internet Protocol (IP) module.
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Donald Becker, <becker@super.org>
 12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
 13 *		Richard Underwood
 14 *		Stefan Becker, <stefanb@yello.ping.de>
 15 *		Jorge Cwik, <jorge@laser.satlink.net>
 16 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 17 *
 
 18 * Fixes:
 19 *		Alan Cox	:	Commented a couple of minor bits of surplus code
 20 *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
 21 *					(just stops a compiler warning).
 22 *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
 23 *					are junked rather than corrupting things.
 24 *		Alan Cox	:	Frames to bad broadcast subnets are dumped
 25 *					We used to process them non broadcast and
 26 *					boy could that cause havoc.
 27 *		Alan Cox	:	ip_forward sets the free flag on the
 28 *					new frame it queues. Still crap because
 29 *					it copies the frame but at least it
 30 *					doesn't eat memory too.
 31 *		Alan Cox	:	Generic queue code and memory fixes.
 32 *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
 33 *		Gerhard Koerting:	Forward fragmented frames correctly.
 34 *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
 35 *		Gerhard Koerting:	IP interface addressing fix.
 36 *		Linus Torvalds	:	More robustness checks
 37 *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
 38 *		Alan Cox	:	Save IP header pointer for later
 39 *		Alan Cox	:	ip option setting
 40 *		Alan Cox	:	Use ip_tos/ip_ttl settings
 41 *		Alan Cox	:	Fragmentation bogosity removed
 42 *					(Thanks to Mark.Bush@prg.ox.ac.uk)
 43 *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
 44 *		Alan Cox	:	Silly ip bug when an overlength
 45 *					fragment turns up. Now frees the
 46 *					queue.
 47 *		Linus Torvalds/ :	Memory leakage on fragmentation
 48 *		Alan Cox	:	handling.
 49 *		Gerhard Koerting:	Forwarding uses IP priority hints
 50 *		Teemu Rantanen	:	Fragment problems.
 51 *		Alan Cox	:	General cleanup, comments and reformat
 52 *		Alan Cox	:	SNMP statistics
 53 *		Alan Cox	:	BSD address rule semantics. Also see
 54 *					UDP as there is a nasty checksum issue
 55 *					if you do things the wrong way.
 56 *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
 57 *		Alan Cox	: 	IP options adjust sk->priority.
 58 *		Pedro Roque	:	Fix mtu/length error in ip_forward.
 59 *		Alan Cox	:	Avoid ip_chk_addr when possible.
 60 *	Richard Underwood	:	IP multicasting.
 61 *		Alan Cox	:	Cleaned up multicast handlers.
 62 *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
 63 *		Gunther Mayer	:	Fix the SNMP reporting typo
 64 *		Alan Cox	:	Always in group 224.0.0.1
 65 *	Pauline Middelink	:	Fast ip_checksum update when forwarding
 66 *					Masquerading support.
 67 *		Alan Cox	:	Multicast loopback error for 224.0.0.1
 68 *		Alan Cox	:	IP_MULTICAST_LOOP option.
 69 *		Alan Cox	:	Use notifiers.
 70 *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
 71 *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
 72 *		Stefan Becker   :       Send out ICMP HOST REDIRECT
 73 *	Arnt Gulbrandsen	:	ip_build_xmit
 74 *		Alan Cox	:	Per socket routing cache
 75 *		Alan Cox	:	Fixed routing cache, added header cache.
 76 *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
 77 *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
 78 *		Alan Cox	:	Incoming IP option handling.
 79 *		Alan Cox	:	Set saddr on raw output frames as per BSD.
 80 *		Alan Cox	:	Stopped broadcast source route explosions.
 81 *		Alan Cox	:	Can disable source routing
 82 *		Takeshi Sone    :	Masquerading didn't work.
 83 *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
 84 *		Alan Cox	:	Memory leaks, tramples, misc debugging.
 85 *		Alan Cox	:	Fixed multicast (by popular demand 8))
 86 *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
 87 *		Alan Cox	:	Fixed SNMP statistics [I think]
 88 *	Gerhard Koerting	:	IP fragmentation forwarding fix
 89 *		Alan Cox	:	Device lock against page fault.
 90 *		Alan Cox	:	IP_HDRINCL facility.
 91 *	Werner Almesberger	:	Zero fragment bug
 92 *		Alan Cox	:	RAW IP frame length bug
 93 *		Alan Cox	:	Outgoing firewall on build_xmit
 94 *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
 95 *		Alan Cox	:	Multicast routing hooks
 96 *		Jos Vos		:	Do accounting *before* call_in_firewall
 97 *	Willy Konynenberg	:	Transparent proxying support
 98 *
 
 
 99 * To Fix:
100 *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101 *		and could be made very efficient with the addition of some virtual memory hacks to permit
102 *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
103 *		Output fragmentation wants updating along with the buffer management to use a single
104 *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105 *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106 *		fragmentation anyway.
 
 
 
 
 
107 */
108
109#define pr_fmt(fmt) "IPv4: " fmt
110
111#include <linux/module.h>
112#include <linux/types.h>
113#include <linux/kernel.h>
114#include <linux/string.h>
115#include <linux/errno.h>
116#include <linux/slab.h>
117
118#include <linux/net.h>
119#include <linux/socket.h>
120#include <linux/sockios.h>
121#include <linux/in.h>
122#include <linux/inet.h>
123#include <linux/inetdevice.h>
124#include <linux/netdevice.h>
125#include <linux/etherdevice.h>
126#include <linux/indirect_call_wrapper.h>
127
128#include <net/snmp.h>
129#include <net/ip.h>
130#include <net/protocol.h>
131#include <net/route.h>
132#include <linux/skbuff.h>
133#include <net/sock.h>
134#include <net/arp.h>
135#include <net/icmp.h>
136#include <net/raw.h>
137#include <net/checksum.h>
138#include <net/inet_ecn.h>
139#include <linux/netfilter_ipv4.h>
140#include <net/xfrm.h>
141#include <linux/mroute.h>
142#include <linux/netlink.h>
143#include <net/dst_metadata.h>
144
145/*
146 *	Process Router Attention IP option (RFC 2113)
147 */
148bool ip_call_ra_chain(struct sk_buff *skb)
149{
150	struct ip_ra_chain *ra;
151	u8 protocol = ip_hdr(skb)->protocol;
152	struct sock *last = NULL;
153	struct net_device *dev = skb->dev;
154	struct net *net = dev_net(dev);
155
156	for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
157		struct sock *sk = ra->sk;
158
159		/* If socket is bound to an interface, only report
160		 * the packet if it came  from that interface.
161		 */
162		if (sk && inet_sk(sk)->inet_num == protocol &&
163		    (!sk->sk_bound_dev_if ||
164		     sk->sk_bound_dev_if == dev->ifindex)) {
 
165			if (ip_is_fragment(ip_hdr(skb))) {
166				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
167					return true;
168			}
169			if (last) {
170				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
171				if (skb2)
172					raw_rcv(last, skb2);
173			}
174			last = sk;
175		}
176	}
177
178	if (last) {
179		raw_rcv(last, skb);
180		return true;
181	}
182	return false;
183}
184
185INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
186INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
187void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
188{
189	const struct net_protocol *ipprot;
190	int raw, ret;
191
192resubmit:
193	raw = raw_local_deliver(skb, protocol);
194
195	ipprot = rcu_dereference(inet_protos[protocol]);
196	if (ipprot) {
197		if (!ipprot->no_policy) {
198			if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
199				kfree_skb_reason(skb,
200						 SKB_DROP_REASON_XFRM_POLICY);
201				return;
 
 
 
 
 
 
 
 
 
 
 
 
202			}
203			nf_reset_ct(skb);
204		}
205		ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
206				      skb);
207		if (ret < 0) {
208			protocol = -ret;
209			goto resubmit;
210		}
211		__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
212	} else {
213		if (!raw) {
214			if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
215				__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
216				icmp_send(skb, ICMP_DEST_UNREACH,
217					  ICMP_PROT_UNREACH, 0);
218			}
219			kfree_skb_reason(skb, SKB_DROP_REASON_IP_NOPROTO);
220		} else {
221			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
222			consume_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
223		}
224	}
225}
226
227static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
228{
229	skb_clear_delivery_time(skb);
230	__skb_pull(skb, skb_network_header_len(skb));
231
232	rcu_read_lock();
233	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
234	rcu_read_unlock();
235
236	return 0;
237}
238
239/*
240 * 	Deliver IP Packets to the higher protocol layers.
241 */
242int ip_local_deliver(struct sk_buff *skb)
243{
244	/*
245	 *	Reassemble IP fragments.
246	 */
247	struct net *net = dev_net(skb->dev);
248
249	if (ip_is_fragment(ip_hdr(skb))) {
250		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
251			return 0;
252	}
253
254	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
255		       net, NULL, skb, skb->dev, NULL,
256		       ip_local_deliver_finish);
257}
258EXPORT_SYMBOL(ip_local_deliver);
259
260static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
261{
262	struct ip_options *opt;
263	const struct iphdr *iph;
 
264
265	/* It looks as overkill, because not all
266	   IP options require packet mangling.
267	   But it is the easiest for now, especially taking
268	   into account that combination of IP options
269	   and running sniffer is extremely rare condition.
270					      --ANK (980813)
271	*/
272	if (skb_cow(skb, skb_headroom(skb))) {
273		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
274		goto drop;
275	}
276
277	iph = ip_hdr(skb);
278	opt = &(IPCB(skb)->opt);
279	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
280
281	if (ip_options_compile(dev_net(dev), opt, skb)) {
282		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
283		goto drop;
284	}
285
286	if (unlikely(opt->srr)) {
287		struct in_device *in_dev = __in_dev_get_rcu(dev);
288
289		if (in_dev) {
290			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
291				if (IN_DEV_LOG_MARTIANS(in_dev))
292					net_info_ratelimited("source route option %pI4 -> %pI4\n",
293							     &iph->saddr,
294							     &iph->daddr);
295				goto drop;
296			}
297		}
298
299		if (ip_options_rcv_srr(skb, dev))
300			goto drop;
301	}
302
303	return false;
304drop:
305	return true;
306}
307
308static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
309			    const struct sk_buff *hint)
310{
311	return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
312	       ip_hdr(hint)->tos == iph->tos;
313}
314
315int tcp_v4_early_demux(struct sk_buff *skb);
316int udp_v4_early_demux(struct sk_buff *skb);
317static int ip_rcv_finish_core(struct net *net, struct sock *sk,
318			      struct sk_buff *skb, struct net_device *dev,
319			      const struct sk_buff *hint)
320{
321	const struct iphdr *iph = ip_hdr(skb);
322	int err, drop_reason;
323	struct rtable *rt;
 
324
325	if (ip_can_use_hint(skb, iph, hint)) {
326		drop_reason = ip_route_use_hint(skb, iph->daddr, iph->saddr,
327						ip4h_dscp(iph), dev, hint);
328		if (unlikely(drop_reason))
329			goto drop_error;
330	}
331
332	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
333	if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) &&
334	    !skb_dst(skb) &&
335	    !skb->sk &&
336	    !ip_is_fragment(iph)) {
337		switch (iph->protocol) {
338		case IPPROTO_TCP:
339			if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) {
340				tcp_v4_early_demux(skb);
341
342				/* must reload iph, skb->head might have changed */
343				iph = ip_hdr(skb);
344			}
345			break;
346		case IPPROTO_UDP:
347			if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) {
348				err = udp_v4_early_demux(skb);
349				if (unlikely(err))
350					goto drop_error;
351
352				/* must reload iph, skb->head might have changed */
353				iph = ip_hdr(skb);
354			}
355			break;
356		}
357	}
358
359	/*
360	 *	Initialise the virtual path cache for the packet. It describes
361	 *	how the packet travels inside Linux networking.
362	 */
363	if (!skb_valid_dst(skb)) {
364		drop_reason = ip_route_input_noref(skb, iph->daddr, iph->saddr,
365						   ip4h_dscp(iph), dev);
366		if (unlikely(drop_reason))
367			goto drop_error;
368		drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
369	} else {
370		struct in_device *in_dev = __in_dev_get_rcu(dev);
371
372		if (in_dev && IN_DEV_ORCONF(in_dev, NOPOLICY))
373			IPCB(skb)->flags |= IPSKB_NOPOLICY;
374	}
375
376#ifdef CONFIG_IP_ROUTE_CLASSID
377	if (unlikely(skb_dst(skb)->tclassid)) {
378		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
379		u32 idx = skb_dst(skb)->tclassid;
380		st[idx&0xFF].o_packets++;
381		st[idx&0xFF].o_bytes += skb->len;
382		st[(idx>>16)&0xFF].i_packets++;
383		st[(idx>>16)&0xFF].i_bytes += skb->len;
384	}
385#endif
386
387	if (iph->ihl > 5 && ip_rcv_options(skb, dev))
388		goto drop;
389
390	rt = skb_rtable(skb);
391	if (rt->rt_type == RTN_MULTICAST) {
392		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
393	} else if (rt->rt_type == RTN_BROADCAST) {
394		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
395	} else if (skb->pkt_type == PACKET_BROADCAST ||
396		   skb->pkt_type == PACKET_MULTICAST) {
397		struct in_device *in_dev = __in_dev_get_rcu(dev);
398
399		/* RFC 1122 3.3.6:
400		 *
401		 *   When a host sends a datagram to a link-layer broadcast
402		 *   address, the IP destination address MUST be a legal IP
403		 *   broadcast or IP multicast address.
404		 *
405		 *   A host SHOULD silently discard a datagram that is received
406		 *   via a link-layer broadcast (see Section 2.4) but does not
407		 *   specify an IP multicast or broadcast destination address.
408		 *
409		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
410		 * in a way a form of multicast and the most common use case for
411		 * this is 802.11 protecting against cross-station spoofing (the
412		 * so-called "hole-196" attack) so do it for both.
413		 */
414		if (in_dev &&
415		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST)) {
416			drop_reason = SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST;
417			goto drop;
418		}
419	}
420
421	return NET_RX_SUCCESS;
422
423drop:
424	kfree_skb_reason(skb, drop_reason);
425	return NET_RX_DROP;
426
427drop_error:
428	if (drop_reason == SKB_DROP_REASON_IP_RPFILTER)
429		__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
430	goto drop;
431}
432
433static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
434{
435	struct net_device *dev = skb->dev;
436	int ret;
437
438	/* if ingress device is enslaved to an L3 master device pass the
439	 * skb to its handler for processing
440	 */
441	skb = l3mdev_ip_rcv(skb);
442	if (!skb)
443		return NET_RX_SUCCESS;
444
445	ret = ip_rcv_finish_core(net, sk, skb, dev, NULL);
446	if (ret != NET_RX_DROP)
447		ret = dst_input(skb);
448	return ret;
449}
450
451/*
452 * 	Main IP Receive routine.
453 */
454static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
455{
456	const struct iphdr *iph;
457	int drop_reason;
458	u32 len;
459
460	/* When the interface is in promisc. mode, drop all the crap
461	 * that it receives, do not try to analyse it.
462	 */
463	if (skb->pkt_type == PACKET_OTHERHOST) {
464		dev_core_stats_rx_otherhost_dropped_inc(skb->dev);
465		drop_reason = SKB_DROP_REASON_OTHERHOST;
466		goto drop;
467	}
468
 
 
469	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
470
471	skb = skb_share_check(skb, GFP_ATOMIC);
472	if (!skb) {
473		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
474		goto out;
475	}
476
477	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
478	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
479		goto inhdr_error;
480
481	iph = ip_hdr(skb);
482
483	/*
484	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
485	 *
486	 *	Is the datagram acceptable?
487	 *
488	 *	1.	Length at least the size of an ip header
489	 *	2.	Version of 4
490	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
491	 *	4.	Doesn't have a bogus length
492	 */
493
494	if (iph->ihl < 5 || iph->version != 4)
495		goto inhdr_error;
496
497	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
498	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
499	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
500	__IP_ADD_STATS(net,
501		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
502		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
503
504	if (!pskb_may_pull(skb, iph->ihl*4))
505		goto inhdr_error;
506
507	iph = ip_hdr(skb);
508
509	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
510		goto csum_error;
511
512	len = iph_totlen(skb, iph);
513	if (skb->len < len) {
514		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
515		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
516		goto drop;
517	} else if (len < (iph->ihl*4))
518		goto inhdr_error;
519
520	/* Our transport medium may have padded the buffer out. Now we know it
521	 * is IP we can trim to the true length of the frame.
522	 * Note this now means skb->len holds ntohs(iph->tot_len).
523	 */
524	if (pskb_trim_rcsum(skb, len)) {
525		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
526		goto drop;
527	}
528
529	iph = ip_hdr(skb);
530	skb->transport_header = skb->network_header + iph->ihl*4;
531
532	/* Remove any debris in the socket control block */
533	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
534	IPCB(skb)->iif = skb->skb_iif;
535
536	/* Must drop socket now because of tproxy. */
537	if (!skb_sk_is_prefetched(skb))
538		skb_orphan(skb);
539
540	return skb;
 
 
541
542csum_error:
543	drop_reason = SKB_DROP_REASON_IP_CSUM;
544	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
545inhdr_error:
546	if (drop_reason == SKB_DROP_REASON_NOT_SPECIFIED)
547		drop_reason = SKB_DROP_REASON_IP_INHDR;
548	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
549drop:
550	kfree_skb_reason(skb, drop_reason);
551out:
552	return NULL;
553}
554
555/*
556 * IP receive entry point
557 */
558int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
559	   struct net_device *orig_dev)
560{
561	struct net *net = dev_net(dev);
562
563	skb = ip_rcv_core(skb, net);
564	if (skb == NULL)
565		return NET_RX_DROP;
566
567	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
568		       net, NULL, skb, dev, NULL,
569		       ip_rcv_finish);
570}
571
572static void ip_sublist_rcv_finish(struct list_head *head)
573{
574	struct sk_buff *skb, *next;
575
576	list_for_each_entry_safe(skb, next, head, list) {
577		skb_list_del_init(skb);
578		dst_input(skb);
579	}
580}
581
582static struct sk_buff *ip_extract_route_hint(const struct net *net,
583					     struct sk_buff *skb, int rt_type)
584{
585	if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST ||
586	    IPCB(skb)->flags & IPSKB_MULTIPATH)
587		return NULL;
588
589	return skb;
590}
591
592static void ip_list_rcv_finish(struct net *net, struct sock *sk,
593			       struct list_head *head)
594{
595	struct sk_buff *skb, *next, *hint = NULL;
596	struct dst_entry *curr_dst = NULL;
597	LIST_HEAD(sublist);
598
599	list_for_each_entry_safe(skb, next, head, list) {
600		struct net_device *dev = skb->dev;
601		struct dst_entry *dst;
602
603		skb_list_del_init(skb);
604		/* if ingress device is enslaved to an L3 master device pass the
605		 * skb to its handler for processing
606		 */
607		skb = l3mdev_ip_rcv(skb);
608		if (!skb)
609			continue;
610		if (ip_rcv_finish_core(net, sk, skb, dev, hint) == NET_RX_DROP)
611			continue;
612
613		dst = skb_dst(skb);
614		if (curr_dst != dst) {
615			hint = ip_extract_route_hint(net, skb,
616						     dst_rtable(dst)->rt_type);
617
618			/* dispatch old sublist */
619			if (!list_empty(&sublist))
620				ip_sublist_rcv_finish(&sublist);
621			/* start new sublist */
622			INIT_LIST_HEAD(&sublist);
623			curr_dst = dst;
624		}
625		list_add_tail(&skb->list, &sublist);
626	}
627	/* dispatch final sublist */
628	ip_sublist_rcv_finish(&sublist);
629}
630
631static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
632			   struct net *net)
633{
634	NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
635		     head, dev, NULL, ip_rcv_finish);
636	ip_list_rcv_finish(net, NULL, head);
637}
638
639/* Receive a list of IP packets */
640void ip_list_rcv(struct list_head *head, struct packet_type *pt,
641		 struct net_device *orig_dev)
642{
643	struct net_device *curr_dev = NULL;
644	struct net *curr_net = NULL;
645	struct sk_buff *skb, *next;
646	LIST_HEAD(sublist);
647
648	list_for_each_entry_safe(skb, next, head, list) {
649		struct net_device *dev = skb->dev;
650		struct net *net = dev_net(dev);
651
652		skb_list_del_init(skb);
653		skb = ip_rcv_core(skb, net);
654		if (skb == NULL)
655			continue;
656
657		if (curr_dev != dev || curr_net != net) {
658			/* dispatch old sublist */
659			if (!list_empty(&sublist))
660				ip_sublist_rcv(&sublist, curr_dev, curr_net);
661			/* start new sublist */
662			INIT_LIST_HEAD(&sublist);
663			curr_dev = dev;
664			curr_net = net;
665		}
666		list_add_tail(&skb->list, &sublist);
667	}
668	/* dispatch final sublist */
669	if (!list_empty(&sublist))
670		ip_sublist_rcv(&sublist, curr_dev, curr_net);
671}
v4.10.11
 
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		The Internet Protocol (IP) module.
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Donald Becker, <becker@super.org>
 11 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
 12 *		Richard Underwood
 13 *		Stefan Becker, <stefanb@yello.ping.de>
 14 *		Jorge Cwik, <jorge@laser.satlink.net>
 15 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 16 *
 17 *
 18 * Fixes:
 19 *		Alan Cox	:	Commented a couple of minor bits of surplus code
 20 *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
 21 *					(just stops a compiler warning).
 22 *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
 23 *					are junked rather than corrupting things.
 24 *		Alan Cox	:	Frames to bad broadcast subnets are dumped
 25 *					We used to process them non broadcast and
 26 *					boy could that cause havoc.
 27 *		Alan Cox	:	ip_forward sets the free flag on the
 28 *					new frame it queues. Still crap because
 29 *					it copies the frame but at least it
 30 *					doesn't eat memory too.
 31 *		Alan Cox	:	Generic queue code and memory fixes.
 32 *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
 33 *		Gerhard Koerting:	Forward fragmented frames correctly.
 34 *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
 35 *		Gerhard Koerting:	IP interface addressing fix.
 36 *		Linus Torvalds	:	More robustness checks
 37 *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
 38 *		Alan Cox	:	Save IP header pointer for later
 39 *		Alan Cox	:	ip option setting
 40 *		Alan Cox	:	Use ip_tos/ip_ttl settings
 41 *		Alan Cox	:	Fragmentation bogosity removed
 42 *					(Thanks to Mark.Bush@prg.ox.ac.uk)
 43 *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
 44 *		Alan Cox	:	Silly ip bug when an overlength
 45 *					fragment turns up. Now frees the
 46 *					queue.
 47 *		Linus Torvalds/ :	Memory leakage on fragmentation
 48 *		Alan Cox	:	handling.
 49 *		Gerhard Koerting:	Forwarding uses IP priority hints
 50 *		Teemu Rantanen	:	Fragment problems.
 51 *		Alan Cox	:	General cleanup, comments and reformat
 52 *		Alan Cox	:	SNMP statistics
 53 *		Alan Cox	:	BSD address rule semantics. Also see
 54 *					UDP as there is a nasty checksum issue
 55 *					if you do things the wrong way.
 56 *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
 57 *		Alan Cox	: 	IP options adjust sk->priority.
 58 *		Pedro Roque	:	Fix mtu/length error in ip_forward.
 59 *		Alan Cox	:	Avoid ip_chk_addr when possible.
 60 *	Richard Underwood	:	IP multicasting.
 61 *		Alan Cox	:	Cleaned up multicast handlers.
 62 *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
 63 *		Gunther Mayer	:	Fix the SNMP reporting typo
 64 *		Alan Cox	:	Always in group 224.0.0.1
 65 *	Pauline Middelink	:	Fast ip_checksum update when forwarding
 66 *					Masquerading support.
 67 *		Alan Cox	:	Multicast loopback error for 224.0.0.1
 68 *		Alan Cox	:	IP_MULTICAST_LOOP option.
 69 *		Alan Cox	:	Use notifiers.
 70 *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
 71 *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
 72 *		Stefan Becker   :       Send out ICMP HOST REDIRECT
 73 *	Arnt Gulbrandsen	:	ip_build_xmit
 74 *		Alan Cox	:	Per socket routing cache
 75 *		Alan Cox	:	Fixed routing cache, added header cache.
 76 *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
 77 *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
 78 *		Alan Cox	:	Incoming IP option handling.
 79 *		Alan Cox	:	Set saddr on raw output frames as per BSD.
 80 *		Alan Cox	:	Stopped broadcast source route explosions.
 81 *		Alan Cox	:	Can disable source routing
 82 *		Takeshi Sone    :	Masquerading didn't work.
 83 *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
 84 *		Alan Cox	:	Memory leaks, tramples, misc debugging.
 85 *		Alan Cox	:	Fixed multicast (by popular demand 8))
 86 *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
 87 *		Alan Cox	:	Fixed SNMP statistics [I think]
 88 *	Gerhard Koerting	:	IP fragmentation forwarding fix
 89 *		Alan Cox	:	Device lock against page fault.
 90 *		Alan Cox	:	IP_HDRINCL facility.
 91 *	Werner Almesberger	:	Zero fragment bug
 92 *		Alan Cox	:	RAW IP frame length bug
 93 *		Alan Cox	:	Outgoing firewall on build_xmit
 94 *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
 95 *		Alan Cox	:	Multicast routing hooks
 96 *		Jos Vos		:	Do accounting *before* call_in_firewall
 97 *	Willy Konynenberg	:	Transparent proxying support
 98 *
 99 *
100 *
101 * To Fix:
102 *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
103 *		and could be made very efficient with the addition of some virtual memory hacks to permit
104 *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
105 *		Output fragmentation wants updating along with the buffer management to use a single
106 *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
107 *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
108 *		fragmentation anyway.
109 *
110 *		This program is free software; you can redistribute it and/or
111 *		modify it under the terms of the GNU General Public License
112 *		as published by the Free Software Foundation; either version
113 *		2 of the License, or (at your option) any later version.
114 */
115
116#define pr_fmt(fmt) "IPv4: " fmt
117
118#include <linux/module.h>
119#include <linux/types.h>
120#include <linux/kernel.h>
121#include <linux/string.h>
122#include <linux/errno.h>
123#include <linux/slab.h>
124
125#include <linux/net.h>
126#include <linux/socket.h>
127#include <linux/sockios.h>
128#include <linux/in.h>
129#include <linux/inet.h>
130#include <linux/inetdevice.h>
131#include <linux/netdevice.h>
132#include <linux/etherdevice.h>
 
133
134#include <net/snmp.h>
135#include <net/ip.h>
136#include <net/protocol.h>
137#include <net/route.h>
138#include <linux/skbuff.h>
139#include <net/sock.h>
140#include <net/arp.h>
141#include <net/icmp.h>
142#include <net/raw.h>
143#include <net/checksum.h>
144#include <net/inet_ecn.h>
145#include <linux/netfilter_ipv4.h>
146#include <net/xfrm.h>
147#include <linux/mroute.h>
148#include <linux/netlink.h>
149#include <net/dst_metadata.h>
150
151/*
152 *	Process Router Attention IP option (RFC 2113)
153 */
154bool ip_call_ra_chain(struct sk_buff *skb)
155{
156	struct ip_ra_chain *ra;
157	u8 protocol = ip_hdr(skb)->protocol;
158	struct sock *last = NULL;
159	struct net_device *dev = skb->dev;
160	struct net *net = dev_net(dev);
161
162	for (ra = rcu_dereference(ip_ra_chain); ra; ra = rcu_dereference(ra->next)) {
163		struct sock *sk = ra->sk;
164
165		/* If socket is bound to an interface, only report
166		 * the packet if it came  from that interface.
167		 */
168		if (sk && inet_sk(sk)->inet_num == protocol &&
169		    (!sk->sk_bound_dev_if ||
170		     sk->sk_bound_dev_if == dev->ifindex) &&
171		    net_eq(sock_net(sk), net)) {
172			if (ip_is_fragment(ip_hdr(skb))) {
173				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
174					return true;
175			}
176			if (last) {
177				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
178				if (skb2)
179					raw_rcv(last, skb2);
180			}
181			last = sk;
182		}
183	}
184
185	if (last) {
186		raw_rcv(last, skb);
187		return true;
188	}
189	return false;
190}
191
192static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 
 
193{
194	__skb_pull(skb, skb_network_header_len(skb));
 
 
 
 
195
196	rcu_read_lock();
197	{
198		int protocol = ip_hdr(skb)->protocol;
199		const struct net_protocol *ipprot;
200		int raw;
201
202	resubmit:
203		raw = raw_local_deliver(skb, protocol);
204
205		ipprot = rcu_dereference(inet_protos[protocol]);
206		if (ipprot) {
207			int ret;
208
209			if (!ipprot->no_policy) {
210				if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
211					kfree_skb(skb);
212					goto out;
213				}
214				nf_reset(skb);
215			}
216			ret = ipprot->handler(skb);
217			if (ret < 0) {
218				protocol = -ret;
219				goto resubmit;
 
 
 
 
 
 
 
 
 
 
 
220			}
 
 
221			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
222		} else {
223			if (!raw) {
224				if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
225					__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
226					icmp_send(skb, ICMP_DEST_UNREACH,
227						  ICMP_PROT_UNREACH, 0);
228				}
229				kfree_skb(skb);
230			} else {
231				__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
232				consume_skb(skb);
233			}
234		}
235	}
236 out:
 
 
 
 
 
 
 
 
237	rcu_read_unlock();
238
239	return 0;
240}
241
242/*
243 * 	Deliver IP Packets to the higher protocol layers.
244 */
245int ip_local_deliver(struct sk_buff *skb)
246{
247	/*
248	 *	Reassemble IP fragments.
249	 */
250	struct net *net = dev_net(skb->dev);
251
252	if (ip_is_fragment(ip_hdr(skb))) {
253		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
254			return 0;
255	}
256
257	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
258		       net, NULL, skb, skb->dev, NULL,
259		       ip_local_deliver_finish);
260}
 
261
262static inline bool ip_rcv_options(struct sk_buff *skb)
263{
264	struct ip_options *opt;
265	const struct iphdr *iph;
266	struct net_device *dev = skb->dev;
267
268	/* It looks as overkill, because not all
269	   IP options require packet mangling.
270	   But it is the easiest for now, especially taking
271	   into account that combination of IP options
272	   and running sniffer is extremely rare condition.
273					      --ANK (980813)
274	*/
275	if (skb_cow(skb, skb_headroom(skb))) {
276		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
277		goto drop;
278	}
279
280	iph = ip_hdr(skb);
281	opt = &(IPCB(skb)->opt);
282	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
283
284	if (ip_options_compile(dev_net(dev), opt, skb)) {
285		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
286		goto drop;
287	}
288
289	if (unlikely(opt->srr)) {
290		struct in_device *in_dev = __in_dev_get_rcu(dev);
291
292		if (in_dev) {
293			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
294				if (IN_DEV_LOG_MARTIANS(in_dev))
295					net_info_ratelimited("source route option %pI4 -> %pI4\n",
296							     &iph->saddr,
297							     &iph->daddr);
298				goto drop;
299			}
300		}
301
302		if (ip_options_rcv_srr(skb))
303			goto drop;
304	}
305
306	return false;
307drop:
308	return true;
309}
310
311static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
312{
313	const struct iphdr *iph = ip_hdr(skb);
 
314	struct rtable *rt;
315	struct net_device *dev = skb->dev;
316
317	/* if ingress device is enslaved to an L3 master device pass the
318	 * skb to its handler for processing
319	 */
320	skb = l3mdev_ip_rcv(skb);
321	if (!skb)
322		return NET_RX_SUCCESS;
323
324	if (net->ipv4.sysctl_ip_early_demux &&
 
325	    !skb_dst(skb) &&
326	    !skb->sk &&
327	    !ip_is_fragment(iph)) {
328		const struct net_protocol *ipprot;
329		int protocol = iph->protocol;
 
 
330
331		ipprot = rcu_dereference(inet_protos[protocol]);
332		if (ipprot && ipprot->early_demux) {
333			ipprot->early_demux(skb);
334			/* must reload iph, skb->head might have changed */
335			iph = ip_hdr(skb);
 
 
 
 
 
 
 
 
 
336		}
337	}
338
339	/*
340	 *	Initialise the virtual path cache for the packet. It describes
341	 *	how the packet travels inside Linux networking.
342	 */
343	if (!skb_valid_dst(skb)) {
344		int err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
345					       iph->tos, dev);
346		if (unlikely(err)) {
347			if (err == -EXDEV)
348				__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
349			goto drop;
350		}
 
 
 
351	}
352
353#ifdef CONFIG_IP_ROUTE_CLASSID
354	if (unlikely(skb_dst(skb)->tclassid)) {
355		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
356		u32 idx = skb_dst(skb)->tclassid;
357		st[idx&0xFF].o_packets++;
358		st[idx&0xFF].o_bytes += skb->len;
359		st[(idx>>16)&0xFF].i_packets++;
360		st[(idx>>16)&0xFF].i_bytes += skb->len;
361	}
362#endif
363
364	if (iph->ihl > 5 && ip_rcv_options(skb))
365		goto drop;
366
367	rt = skb_rtable(skb);
368	if (rt->rt_type == RTN_MULTICAST) {
369		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
370	} else if (rt->rt_type == RTN_BROADCAST) {
371		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
372	} else if (skb->pkt_type == PACKET_BROADCAST ||
373		   skb->pkt_type == PACKET_MULTICAST) {
374		struct in_device *in_dev = __in_dev_get_rcu(dev);
375
376		/* RFC 1122 3.3.6:
377		 *
378		 *   When a host sends a datagram to a link-layer broadcast
379		 *   address, the IP destination address MUST be a legal IP
380		 *   broadcast or IP multicast address.
381		 *
382		 *   A host SHOULD silently discard a datagram that is received
383		 *   via a link-layer broadcast (see Section 2.4) but does not
384		 *   specify an IP multicast or broadcast destination address.
385		 *
386		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
387		 * in a way a form of multicast and the most common use case for
388		 * this is 802.11 protecting against cross-station spoofing (the
389		 * so-called "hole-196" attack) so do it for both.
390		 */
391		if (in_dev &&
392		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST))
 
393			goto drop;
 
394	}
395
396	return dst_input(skb);
397
398drop:
399	kfree_skb(skb);
400	return NET_RX_DROP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401}
402
403/*
404 * 	Main IP Receive routine.
405 */
406int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
407{
408	const struct iphdr *iph;
409	struct net *net;
410	u32 len;
411
412	/* When the interface is in promisc. mode, drop all the crap
413	 * that it receives, do not try to analyse it.
414	 */
415	if (skb->pkt_type == PACKET_OTHERHOST)
 
 
416		goto drop;
 
417
418
419	net = dev_net(dev);
420	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
421
422	skb = skb_share_check(skb, GFP_ATOMIC);
423	if (!skb) {
424		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
425		goto out;
426	}
427
 
428	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
429		goto inhdr_error;
430
431	iph = ip_hdr(skb);
432
433	/*
434	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
435	 *
436	 *	Is the datagram acceptable?
437	 *
438	 *	1.	Length at least the size of an ip header
439	 *	2.	Version of 4
440	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
441	 *	4.	Doesn't have a bogus length
442	 */
443
444	if (iph->ihl < 5 || iph->version != 4)
445		goto inhdr_error;
446
447	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
448	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
449	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
450	__IP_ADD_STATS(net,
451		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
452		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
453
454	if (!pskb_may_pull(skb, iph->ihl*4))
455		goto inhdr_error;
456
457	iph = ip_hdr(skb);
458
459	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
460		goto csum_error;
461
462	len = ntohs(iph->tot_len);
463	if (skb->len < len) {
 
464		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
465		goto drop;
466	} else if (len < (iph->ihl*4))
467		goto inhdr_error;
468
469	/* Our transport medium may have padded the buffer out. Now we know it
470	 * is IP we can trim to the true length of the frame.
471	 * Note this now means skb->len holds ntohs(iph->tot_len).
472	 */
473	if (pskb_trim_rcsum(skb, len)) {
474		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
475		goto drop;
476	}
477
 
478	skb->transport_header = skb->network_header + iph->ihl*4;
479
480	/* Remove any debris in the socket control block */
481	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
482	IPCB(skb)->iif = skb->skb_iif;
483
484	/* Must drop socket now because of tproxy. */
485	skb_orphan(skb);
 
486
487	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
488		       net, NULL, skb, dev, NULL,
489		       ip_rcv_finish);
490
491csum_error:
 
492	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
493inhdr_error:
 
 
494	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
495drop:
496	kfree_skb(skb);
497out:
498	return NET_RX_DROP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499}