Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   5 *     & Swedish University of Agricultural Sciences.
   6 *
   7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
   8 *     Agricultural Sciences.
   9 *
  10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  11 *
  12 * This work is based on the LPC-trie which is originally described in:
  13 *
  14 * An experimental study of compression methods for dynamic tries
  15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
  17 *
  18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  20 *
  21 * Code from fib_hash has been reused which includes the following header:
  22 *
  23 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  24 *		operating system.  INET is implemented using the  BSD Socket
  25 *		interface as the means of communication with the user level.
  26 *
  27 *		IPv4 FIB: lookup engine and maintenance routines.
  28 *
  29 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  30 *
  31 * Substantial contributions to this work comes from:
  32 *
  33 *		David S. Miller, <davem@davemloft.net>
  34 *		Stephen Hemminger <shemminger@osdl.org>
  35 *		Paul E. McKenney <paulmck@us.ibm.com>
  36 *		Patrick McHardy <kaber@trash.net>
  37 */
  38#include <linux/cache.h>
  39#include <linux/uaccess.h>
  40#include <linux/bitops.h>
  41#include <linux/types.h>
  42#include <linux/kernel.h>
  43#include <linux/mm.h>
  44#include <linux/string.h>
  45#include <linux/socket.h>
  46#include <linux/sockios.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/inet.h>
  50#include <linux/inetdevice.h>
  51#include <linux/netdevice.h>
  52#include <linux/if_arp.h>
  53#include <linux/proc_fs.h>
  54#include <linux/rcupdate.h>
  55#include <linux/rcupdate_wait.h>
  56#include <linux/skbuff.h>
  57#include <linux/netlink.h>
  58#include <linux/init.h>
  59#include <linux/list.h>
  60#include <linux/slab.h>
  61#include <linux/export.h>
  62#include <linux/vmalloc.h>
  63#include <linux/notifier.h>
  64#include <net/net_namespace.h>
  65#include <net/inet_dscp.h>
  66#include <net/ip.h>
  67#include <net/protocol.h>
  68#include <net/route.h>
  69#include <net/tcp.h>
  70#include <net/sock.h>
  71#include <net/ip_fib.h>
  72#include <net/fib_notifier.h>
  73#include <trace/events/fib.h>
  74#include "fib_lookup.h"
  75
  76static int call_fib_entry_notifier(struct notifier_block *nb,
  77				   enum fib_event_type event_type, u32 dst,
  78				   int dst_len, struct fib_alias *fa,
  79				   struct netlink_ext_ack *extack)
  80{
  81	struct fib_entry_notifier_info info = {
  82		.info.extack = extack,
  83		.dst = dst,
  84		.dst_len = dst_len,
  85		.fi = fa->fa_info,
  86		.dscp = fa->fa_dscp,
  87		.type = fa->fa_type,
  88		.tb_id = fa->tb_id,
  89	};
  90	return call_fib4_notifier(nb, event_type, &info.info);
  91}
  92
  93static int call_fib_entry_notifiers(struct net *net,
  94				    enum fib_event_type event_type, u32 dst,
  95				    int dst_len, struct fib_alias *fa,
  96				    struct netlink_ext_ack *extack)
  97{
  98	struct fib_entry_notifier_info info = {
  99		.info.extack = extack,
 100		.dst = dst,
 101		.dst_len = dst_len,
 102		.fi = fa->fa_info,
 103		.dscp = fa->fa_dscp,
 104		.type = fa->fa_type,
 105		.tb_id = fa->tb_id,
 106	};
 107	return call_fib4_notifiers(net, event_type, &info.info);
 108}
 109
 110#define MAX_STAT_DEPTH 32
 111
 112#define KEYLENGTH	(8*sizeof(t_key))
 113#define KEY_MAX		((t_key)~0)
 114
 115typedef unsigned int t_key;
 116
 117#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
 118#define IS_TNODE(n)	((n)->bits)
 119#define IS_LEAF(n)	(!(n)->bits)
 120
 121struct key_vector {
 122	t_key key;
 123	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 124	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 125	unsigned char slen;
 126	union {
 127		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 128		struct hlist_head leaf;
 129		/* This array is valid if (pos | bits) > 0 (TNODE) */
 130		DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode);
 131	};
 132};
 133
 134struct tnode {
 135	struct rcu_head rcu;
 136	t_key empty_children;		/* KEYLENGTH bits needed */
 137	t_key full_children;		/* KEYLENGTH bits needed */
 138	struct key_vector __rcu *parent;
 139	struct key_vector kv[1];
 140#define tn_bits kv[0].bits
 141};
 142
 143#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 144#define LEAF_SIZE	TNODE_SIZE(1)
 145
 146#ifdef CONFIG_IP_FIB_TRIE_STATS
 147struct trie_use_stats {
 148	unsigned int gets;
 149	unsigned int backtrack;
 150	unsigned int semantic_match_passed;
 151	unsigned int semantic_match_miss;
 152	unsigned int null_node_hit;
 153	unsigned int resize_node_skipped;
 154};
 155#endif
 156
 157struct trie_stat {
 158	unsigned int totdepth;
 159	unsigned int maxdepth;
 160	unsigned int tnodes;
 161	unsigned int leaves;
 162	unsigned int nullpointers;
 163	unsigned int prefixes;
 164	unsigned int nodesizes[MAX_STAT_DEPTH];
 165};
 166
 167struct trie {
 168	struct key_vector kv[1];
 169#ifdef CONFIG_IP_FIB_TRIE_STATS
 170	struct trie_use_stats __percpu *stats;
 171#endif
 172};
 173
 174static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 175static unsigned int tnode_free_size;
 176
 177/*
 178 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
 179 * especially useful before resizing the root node with PREEMPT_NONE configs;
 180 * the value was obtained experimentally, aiming to avoid visible slowdown.
 181 */
 182unsigned int sysctl_fib_sync_mem = 512 * 1024;
 183unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
 184unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
 185
 186static struct kmem_cache *fn_alias_kmem __ro_after_init;
 187static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 188
 189static inline struct tnode *tn_info(struct key_vector *kv)
 190{
 191	return container_of(kv, struct tnode, kv[0]);
 192}
 193
 194/* caller must hold RTNL */
 195#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 196#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 197
 198/* caller must hold RCU read lock or RTNL */
 199#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 200#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 201
 202/* wrapper for rcu_assign_pointer */
 203static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 204{
 205	if (n)
 206		rcu_assign_pointer(tn_info(n)->parent, tp);
 207}
 208
 209#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 210
 211/* This provides us with the number of children in this node, in the case of a
 212 * leaf this will return 0 meaning none of the children are accessible.
 213 */
 214static inline unsigned long child_length(const struct key_vector *tn)
 215{
 216	return (1ul << tn->bits) & ~(1ul);
 217}
 218
 219#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 220
 221static inline unsigned long get_index(t_key key, struct key_vector *kv)
 222{
 223	unsigned long index = key ^ kv->key;
 224
 225	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 226		return 0;
 227
 228	return index >> kv->pos;
 229}
 230
 231/* To understand this stuff, an understanding of keys and all their bits is
 232 * necessary. Every node in the trie has a key associated with it, but not
 233 * all of the bits in that key are significant.
 234 *
 235 * Consider a node 'n' and its parent 'tp'.
 236 *
 237 * If n is a leaf, every bit in its key is significant. Its presence is
 238 * necessitated by path compression, since during a tree traversal (when
 239 * searching for a leaf - unless we are doing an insertion) we will completely
 240 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 241 * a potentially successful search, that we have indeed been walking the
 242 * correct key path.
 243 *
 244 * Note that we can never "miss" the correct key in the tree if present by
 245 * following the wrong path. Path compression ensures that segments of the key
 246 * that are the same for all keys with a given prefix are skipped, but the
 247 * skipped part *is* identical for each node in the subtrie below the skipped
 248 * bit! trie_insert() in this implementation takes care of that.
 249 *
 250 * if n is an internal node - a 'tnode' here, the various parts of its key
 251 * have many different meanings.
 252 *
 253 * Example:
 254 * _________________________________________________________________
 255 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 256 * -----------------------------------------------------------------
 257 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 258 *
 259 * _________________________________________________________________
 260 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 261 * -----------------------------------------------------------------
 262 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 263 *
 264 * tp->pos = 22
 265 * tp->bits = 3
 266 * n->pos = 13
 267 * n->bits = 4
 268 *
 269 * First, let's just ignore the bits that come before the parent tp, that is
 270 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 271 * point we do not use them for anything.
 272 *
 273 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 274 * index into the parent's child array. That is, they will be used to find
 275 * 'n' among tp's children.
 276 *
 277 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 278 * for the node n.
 279 *
 280 * All the bits we have seen so far are significant to the node n. The rest
 281 * of the bits are really not needed or indeed known in n->key.
 282 *
 283 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 284 * n's child array, and will of course be different for each child.
 285 *
 286 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 287 * at this point.
 288 */
 289
 290static const int halve_threshold = 25;
 291static const int inflate_threshold = 50;
 292static const int halve_threshold_root = 15;
 293static const int inflate_threshold_root = 30;
 294
 
 
 
 
 
 
 295static inline void alias_free_mem_rcu(struct fib_alias *fa)
 296{
 297	kfree_rcu(fa, rcu);
 298}
 299
 300#define TNODE_VMALLOC_MAX \
 301	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 302
 303static void __node_free_rcu(struct rcu_head *head)
 304{
 305	struct tnode *n = container_of(head, struct tnode, rcu);
 306
 307	if (!n->tn_bits)
 308		kmem_cache_free(trie_leaf_kmem, n);
 309	else
 310		kvfree(n);
 311}
 312
 313#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 314
 315static struct tnode *tnode_alloc(int bits)
 316{
 317	size_t size;
 318
 319	/* verify bits is within bounds */
 320	if (bits > TNODE_VMALLOC_MAX)
 321		return NULL;
 322
 323	/* determine size and verify it is non-zero and didn't overflow */
 324	size = TNODE_SIZE(1ul << bits);
 325
 326	if (size <= PAGE_SIZE)
 327		return kzalloc(size, GFP_KERNEL);
 328	else
 329		return vzalloc(size);
 330}
 331
 332static inline void empty_child_inc(struct key_vector *n)
 333{
 334	tn_info(n)->empty_children++;
 335
 336	if (!tn_info(n)->empty_children)
 337		tn_info(n)->full_children++;
 338}
 339
 340static inline void empty_child_dec(struct key_vector *n)
 341{
 342	if (!tn_info(n)->empty_children)
 343		tn_info(n)->full_children--;
 344
 345	tn_info(n)->empty_children--;
 346}
 347
 348static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 349{
 350	struct key_vector *l;
 351	struct tnode *kv;
 352
 353	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 354	if (!kv)
 355		return NULL;
 356
 357	/* initialize key vector */
 358	l = kv->kv;
 359	l->key = key;
 360	l->pos = 0;
 361	l->bits = 0;
 362	l->slen = fa->fa_slen;
 363
 364	/* link leaf to fib alias */
 365	INIT_HLIST_HEAD(&l->leaf);
 366	hlist_add_head(&fa->fa_list, &l->leaf);
 367
 368	return l;
 369}
 370
 371static struct key_vector *tnode_new(t_key key, int pos, int bits)
 372{
 373	unsigned int shift = pos + bits;
 374	struct key_vector *tn;
 375	struct tnode *tnode;
 376
 377	/* verify bits and pos their msb bits clear and values are valid */
 378	BUG_ON(!bits || (shift > KEYLENGTH));
 379
 380	tnode = tnode_alloc(bits);
 381	if (!tnode)
 382		return NULL;
 383
 384	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 385		 sizeof(struct key_vector *) << bits);
 386
 387	if (bits == KEYLENGTH)
 388		tnode->full_children = 1;
 389	else
 390		tnode->empty_children = 1ul << bits;
 391
 392	tn = tnode->kv;
 393	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 394	tn->pos = pos;
 395	tn->bits = bits;
 396	tn->slen = pos;
 397
 398	return tn;
 399}
 400
 401/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 402 * and no bits are skipped. See discussion in dyntree paper p. 6
 403 */
 404static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 405{
 406	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 407}
 408
 409/* Add a child at position i overwriting the old value.
 410 * Update the value of full_children and empty_children.
 411 */
 412static void put_child(struct key_vector *tn, unsigned long i,
 413		      struct key_vector *n)
 414{
 415	struct key_vector *chi = get_child(tn, i);
 416	int isfull, wasfull;
 417
 418	BUG_ON(i >= child_length(tn));
 419
 420	/* update emptyChildren, overflow into fullChildren */
 421	if (!n && chi)
 422		empty_child_inc(tn);
 423	if (n && !chi)
 424		empty_child_dec(tn);
 425
 426	/* update fullChildren */
 427	wasfull = tnode_full(tn, chi);
 428	isfull = tnode_full(tn, n);
 429
 430	if (wasfull && !isfull)
 431		tn_info(tn)->full_children--;
 432	else if (!wasfull && isfull)
 433		tn_info(tn)->full_children++;
 434
 435	if (n && (tn->slen < n->slen))
 436		tn->slen = n->slen;
 437
 438	rcu_assign_pointer(tn->tnode[i], n);
 439}
 440
 441static void update_children(struct key_vector *tn)
 442{
 443	unsigned long i;
 444
 445	/* update all of the child parent pointers */
 446	for (i = child_length(tn); i;) {
 447		struct key_vector *inode = get_child(tn, --i);
 448
 449		if (!inode)
 450			continue;
 451
 452		/* Either update the children of a tnode that
 453		 * already belongs to us or update the child
 454		 * to point to ourselves.
 455		 */
 456		if (node_parent(inode) == tn)
 457			update_children(inode);
 458		else
 459			node_set_parent(inode, tn);
 460	}
 461}
 462
 463static inline void put_child_root(struct key_vector *tp, t_key key,
 464				  struct key_vector *n)
 465{
 466	if (IS_TRIE(tp))
 467		rcu_assign_pointer(tp->tnode[0], n);
 468	else
 469		put_child(tp, get_index(key, tp), n);
 470}
 471
 472static inline void tnode_free_init(struct key_vector *tn)
 473{
 474	tn_info(tn)->rcu.next = NULL;
 475}
 476
 477static inline void tnode_free_append(struct key_vector *tn,
 478				     struct key_vector *n)
 479{
 480	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 481	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 482}
 483
 484static void tnode_free(struct key_vector *tn)
 485{
 486	struct callback_head *head = &tn_info(tn)->rcu;
 487
 488	while (head) {
 489		head = head->next;
 490		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 491		node_free(tn);
 492
 493		tn = container_of(head, struct tnode, rcu)->kv;
 494	}
 495
 496	if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
 497		tnode_free_size = 0;
 498		synchronize_net();
 499	}
 500}
 501
 502static struct key_vector *replace(struct trie *t,
 503				  struct key_vector *oldtnode,
 504				  struct key_vector *tn)
 505{
 506	struct key_vector *tp = node_parent(oldtnode);
 507	unsigned long i;
 508
 509	/* setup the parent pointer out of and back into this node */
 510	NODE_INIT_PARENT(tn, tp);
 511	put_child_root(tp, tn->key, tn);
 512
 513	/* update all of the child parent pointers */
 514	update_children(tn);
 515
 516	/* all pointers should be clean so we are done */
 517	tnode_free(oldtnode);
 518
 519	/* resize children now that oldtnode is freed */
 520	for (i = child_length(tn); i;) {
 521		struct key_vector *inode = get_child(tn, --i);
 522
 523		/* resize child node */
 524		if (tnode_full(tn, inode))
 525			tn = resize(t, inode);
 526	}
 527
 528	return tp;
 529}
 530
 531static struct key_vector *inflate(struct trie *t,
 532				  struct key_vector *oldtnode)
 533{
 534	struct key_vector *tn;
 535	unsigned long i;
 536	t_key m;
 537
 538	pr_debug("In inflate\n");
 539
 540	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 541	if (!tn)
 542		goto notnode;
 543
 544	/* prepare oldtnode to be freed */
 545	tnode_free_init(oldtnode);
 546
 547	/* Assemble all of the pointers in our cluster, in this case that
 548	 * represents all of the pointers out of our allocated nodes that
 549	 * point to existing tnodes and the links between our allocated
 550	 * nodes.
 551	 */
 552	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 553		struct key_vector *inode = get_child(oldtnode, --i);
 554		struct key_vector *node0, *node1;
 555		unsigned long j, k;
 556
 557		/* An empty child */
 558		if (!inode)
 559			continue;
 560
 561		/* A leaf or an internal node with skipped bits */
 562		if (!tnode_full(oldtnode, inode)) {
 563			put_child(tn, get_index(inode->key, tn), inode);
 564			continue;
 565		}
 566
 567		/* drop the node in the old tnode free list */
 568		tnode_free_append(oldtnode, inode);
 569
 570		/* An internal node with two children */
 571		if (inode->bits == 1) {
 572			put_child(tn, 2 * i + 1, get_child(inode, 1));
 573			put_child(tn, 2 * i, get_child(inode, 0));
 574			continue;
 575		}
 576
 577		/* We will replace this node 'inode' with two new
 578		 * ones, 'node0' and 'node1', each with half of the
 579		 * original children. The two new nodes will have
 580		 * a position one bit further down the key and this
 581		 * means that the "significant" part of their keys
 582		 * (see the discussion near the top of this file)
 583		 * will differ by one bit, which will be "0" in
 584		 * node0's key and "1" in node1's key. Since we are
 585		 * moving the key position by one step, the bit that
 586		 * we are moving away from - the bit at position
 587		 * (tn->pos) - is the one that will differ between
 588		 * node0 and node1. So... we synthesize that bit in the
 589		 * two new keys.
 590		 */
 591		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 592		if (!node1)
 593			goto nomem;
 594		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 595
 596		tnode_free_append(tn, node1);
 597		if (!node0)
 598			goto nomem;
 599		tnode_free_append(tn, node0);
 600
 601		/* populate child pointers in new nodes */
 602		for (k = child_length(inode), j = k / 2; j;) {
 603			put_child(node1, --j, get_child(inode, --k));
 604			put_child(node0, j, get_child(inode, j));
 605			put_child(node1, --j, get_child(inode, --k));
 606			put_child(node0, j, get_child(inode, j));
 607		}
 608
 609		/* link new nodes to parent */
 610		NODE_INIT_PARENT(node1, tn);
 611		NODE_INIT_PARENT(node0, tn);
 612
 613		/* link parent to nodes */
 614		put_child(tn, 2 * i + 1, node1);
 615		put_child(tn, 2 * i, node0);
 616	}
 617
 618	/* setup the parent pointers into and out of this node */
 619	return replace(t, oldtnode, tn);
 620nomem:
 621	/* all pointers should be clean so we are done */
 622	tnode_free(tn);
 623notnode:
 624	return NULL;
 625}
 626
 627static struct key_vector *halve(struct trie *t,
 628				struct key_vector *oldtnode)
 629{
 630	struct key_vector *tn;
 631	unsigned long i;
 632
 633	pr_debug("In halve\n");
 634
 635	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 636	if (!tn)
 637		goto notnode;
 638
 639	/* prepare oldtnode to be freed */
 640	tnode_free_init(oldtnode);
 641
 642	/* Assemble all of the pointers in our cluster, in this case that
 643	 * represents all of the pointers out of our allocated nodes that
 644	 * point to existing tnodes and the links between our allocated
 645	 * nodes.
 646	 */
 647	for (i = child_length(oldtnode); i;) {
 648		struct key_vector *node1 = get_child(oldtnode, --i);
 649		struct key_vector *node0 = get_child(oldtnode, --i);
 650		struct key_vector *inode;
 651
 652		/* At least one of the children is empty */
 653		if (!node1 || !node0) {
 654			put_child(tn, i / 2, node1 ? : node0);
 655			continue;
 656		}
 657
 658		/* Two nonempty children */
 659		inode = tnode_new(node0->key, oldtnode->pos, 1);
 660		if (!inode)
 661			goto nomem;
 662		tnode_free_append(tn, inode);
 663
 664		/* initialize pointers out of node */
 665		put_child(inode, 1, node1);
 666		put_child(inode, 0, node0);
 667		NODE_INIT_PARENT(inode, tn);
 668
 669		/* link parent to node */
 670		put_child(tn, i / 2, inode);
 671	}
 672
 673	/* setup the parent pointers into and out of this node */
 674	return replace(t, oldtnode, tn);
 675nomem:
 676	/* all pointers should be clean so we are done */
 677	tnode_free(tn);
 678notnode:
 679	return NULL;
 680}
 681
 682static struct key_vector *collapse(struct trie *t,
 683				   struct key_vector *oldtnode)
 684{
 685	struct key_vector *n, *tp;
 686	unsigned long i;
 687
 688	/* scan the tnode looking for that one child that might still exist */
 689	for (n = NULL, i = child_length(oldtnode); !n && i;)
 690		n = get_child(oldtnode, --i);
 691
 692	/* compress one level */
 693	tp = node_parent(oldtnode);
 694	put_child_root(tp, oldtnode->key, n);
 695	node_set_parent(n, tp);
 696
 697	/* drop dead node */
 698	node_free(oldtnode);
 699
 700	return tp;
 701}
 702
 703static unsigned char update_suffix(struct key_vector *tn)
 704{
 705	unsigned char slen = tn->pos;
 706	unsigned long stride, i;
 707	unsigned char slen_max;
 708
 709	/* only vector 0 can have a suffix length greater than or equal to
 710	 * tn->pos + tn->bits, the second highest node will have a suffix
 711	 * length at most of tn->pos + tn->bits - 1
 712	 */
 713	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 714
 715	/* search though the list of children looking for nodes that might
 716	 * have a suffix greater than the one we currently have.  This is
 717	 * why we start with a stride of 2 since a stride of 1 would
 718	 * represent the nodes with suffix length equal to tn->pos
 719	 */
 720	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 721		struct key_vector *n = get_child(tn, i);
 722
 723		if (!n || (n->slen <= slen))
 724			continue;
 725
 726		/* update stride and slen based on new value */
 727		stride <<= (n->slen - slen);
 728		slen = n->slen;
 729		i &= ~(stride - 1);
 730
 731		/* stop searching if we have hit the maximum possible value */
 732		if (slen >= slen_max)
 733			break;
 734	}
 735
 736	tn->slen = slen;
 737
 738	return slen;
 739}
 740
 741/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 742 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 743 * Telecommunications, page 6:
 744 * "A node is doubled if the ratio of non-empty children to all
 745 * children in the *doubled* node is at least 'high'."
 746 *
 747 * 'high' in this instance is the variable 'inflate_threshold'. It
 748 * is expressed as a percentage, so we multiply it with
 749 * child_length() and instead of multiplying by 2 (since the
 750 * child array will be doubled by inflate()) and multiplying
 751 * the left-hand side by 100 (to handle the percentage thing) we
 752 * multiply the left-hand side by 50.
 753 *
 754 * The left-hand side may look a bit weird: child_length(tn)
 755 * - tn->empty_children is of course the number of non-null children
 756 * in the current node. tn->full_children is the number of "full"
 757 * children, that is non-null tnodes with a skip value of 0.
 758 * All of those will be doubled in the resulting inflated tnode, so
 759 * we just count them one extra time here.
 760 *
 761 * A clearer way to write this would be:
 762 *
 763 * to_be_doubled = tn->full_children;
 764 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 765 *     tn->full_children;
 766 *
 767 * new_child_length = child_length(tn) * 2;
 768 *
 769 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 770 *      new_child_length;
 771 * if (new_fill_factor >= inflate_threshold)
 772 *
 773 * ...and so on, tho it would mess up the while () loop.
 774 *
 775 * anyway,
 776 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 777 *      inflate_threshold
 778 *
 779 * avoid a division:
 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 781 *      inflate_threshold * new_child_length
 782 *
 783 * expand not_to_be_doubled and to_be_doubled, and shorten:
 784 * 100 * (child_length(tn) - tn->empty_children +
 785 *    tn->full_children) >= inflate_threshold * new_child_length
 786 *
 787 * expand new_child_length:
 788 * 100 * (child_length(tn) - tn->empty_children +
 789 *    tn->full_children) >=
 790 *      inflate_threshold * child_length(tn) * 2
 791 *
 792 * shorten again:
 793 * 50 * (tn->full_children + child_length(tn) -
 794 *    tn->empty_children) >= inflate_threshold *
 795 *    child_length(tn)
 796 *
 797 */
 798static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 799{
 800	unsigned long used = child_length(tn);
 801	unsigned long threshold = used;
 802
 803	/* Keep root node larger */
 804	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 805	used -= tn_info(tn)->empty_children;
 806	used += tn_info(tn)->full_children;
 807
 808	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 809
 810	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 811}
 812
 813static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 814{
 815	unsigned long used = child_length(tn);
 816	unsigned long threshold = used;
 817
 818	/* Keep root node larger */
 819	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 820	used -= tn_info(tn)->empty_children;
 821
 822	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 823
 824	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 825}
 826
 827static inline bool should_collapse(struct key_vector *tn)
 828{
 829	unsigned long used = child_length(tn);
 830
 831	used -= tn_info(tn)->empty_children;
 832
 833	/* account for bits == KEYLENGTH case */
 834	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 835		used -= KEY_MAX;
 836
 837	/* One child or none, time to drop us from the trie */
 838	return used < 2;
 839}
 840
 841#define MAX_WORK 10
 842static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 843{
 844#ifdef CONFIG_IP_FIB_TRIE_STATS
 845	struct trie_use_stats __percpu *stats = t->stats;
 846#endif
 847	struct key_vector *tp = node_parent(tn);
 848	unsigned long cindex = get_index(tn->key, tp);
 849	int max_work = MAX_WORK;
 850
 851	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 852		 tn, inflate_threshold, halve_threshold);
 853
 854	/* track the tnode via the pointer from the parent instead of
 855	 * doing it ourselves.  This way we can let RCU fully do its
 856	 * thing without us interfering
 857	 */
 858	BUG_ON(tn != get_child(tp, cindex));
 859
 860	/* Double as long as the resulting node has a number of
 861	 * nonempty nodes that are above the threshold.
 862	 */
 863	while (should_inflate(tp, tn) && max_work) {
 864		tp = inflate(t, tn);
 865		if (!tp) {
 866#ifdef CONFIG_IP_FIB_TRIE_STATS
 867			this_cpu_inc(stats->resize_node_skipped);
 868#endif
 869			break;
 870		}
 871
 872		max_work--;
 873		tn = get_child(tp, cindex);
 874	}
 875
 876	/* update parent in case inflate failed */
 877	tp = node_parent(tn);
 878
 879	/* Return if at least one inflate is run */
 880	if (max_work != MAX_WORK)
 881		return tp;
 882
 883	/* Halve as long as the number of empty children in this
 884	 * node is above threshold.
 885	 */
 886	while (should_halve(tp, tn) && max_work) {
 887		tp = halve(t, tn);
 888		if (!tp) {
 889#ifdef CONFIG_IP_FIB_TRIE_STATS
 890			this_cpu_inc(stats->resize_node_skipped);
 891#endif
 892			break;
 893		}
 894
 895		max_work--;
 896		tn = get_child(tp, cindex);
 897	}
 898
 899	/* Only one child remains */
 900	if (should_collapse(tn))
 901		return collapse(t, tn);
 902
 903	/* update parent in case halve failed */
 904	return node_parent(tn);
 905}
 906
 907static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 908{
 909	unsigned char node_slen = tn->slen;
 910
 911	while ((node_slen > tn->pos) && (node_slen > slen)) {
 912		slen = update_suffix(tn);
 913		if (node_slen == slen)
 914			break;
 915
 916		tn = node_parent(tn);
 917		node_slen = tn->slen;
 918	}
 919}
 920
 921static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 922{
 923	while (tn->slen < slen) {
 924		tn->slen = slen;
 925		tn = node_parent(tn);
 926	}
 927}
 928
 929/* rcu_read_lock needs to be hold by caller from readside */
 930static struct key_vector *fib_find_node(struct trie *t,
 931					struct key_vector **tp, u32 key)
 932{
 933	struct key_vector *pn, *n = t->kv;
 934	unsigned long index = 0;
 935
 936	do {
 937		pn = n;
 938		n = get_child_rcu(n, index);
 939
 940		if (!n)
 941			break;
 942
 943		index = get_cindex(key, n);
 944
 945		/* This bit of code is a bit tricky but it combines multiple
 946		 * checks into a single check.  The prefix consists of the
 947		 * prefix plus zeros for the bits in the cindex. The index
 948		 * is the difference between the key and this value.  From
 949		 * this we can actually derive several pieces of data.
 950		 *   if (index >= (1ul << bits))
 951		 *     we have a mismatch in skip bits and failed
 952		 *   else
 953		 *     we know the value is cindex
 954		 *
 955		 * This check is safe even if bits == KEYLENGTH due to the
 956		 * fact that we can only allocate a node with 32 bits if a
 957		 * long is greater than 32 bits.
 958		 */
 959		if (index >= (1ul << n->bits)) {
 960			n = NULL;
 961			break;
 962		}
 963
 964		/* keep searching until we find a perfect match leaf or NULL */
 965	} while (IS_TNODE(n));
 966
 967	*tp = pn;
 968
 969	return n;
 970}
 971
 972/* Return the first fib alias matching DSCP with
 973 * priority less than or equal to PRIO.
 974 * If 'find_first' is set, return the first matching
 975 * fib alias, regardless of DSCP and priority.
 976 */
 977static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 978					dscp_t dscp, u32 prio, u32 tb_id,
 979					bool find_first)
 980{
 981	struct fib_alias *fa;
 982
 983	if (!fah)
 984		return NULL;
 985
 986	hlist_for_each_entry(fa, fah, fa_list) {
 987		/* Avoid Sparse warning when using dscp_t in inequalities */
 988		u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
 989		u8 __dscp = inet_dscp_to_dsfield(dscp);
 990
 991		if (fa->fa_slen < slen)
 992			continue;
 993		if (fa->fa_slen != slen)
 994			break;
 995		if (fa->tb_id > tb_id)
 996			continue;
 997		if (fa->tb_id != tb_id)
 998			break;
 999		if (find_first)
1000			return fa;
1001		if (__fa_dscp > __dscp)
1002			continue;
1003		if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1004			return fa;
1005	}
1006
1007	return NULL;
1008}
1009
1010static struct fib_alias *
1011fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012{
1013	u8 slen = KEYLENGTH - fri->dst_len;
1014	struct key_vector *l, *tp;
1015	struct fib_table *tb;
1016	struct fib_alias *fa;
1017	struct trie *t;
1018
1019	tb = fib_get_table(net, fri->tb_id);
1020	if (!tb)
1021		return NULL;
1022
1023	t = (struct trie *)tb->tb_data;
1024	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025	if (!l)
1026		return NULL;
1027
1028	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030		    fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1031		    fa->fa_type == fri->type)
1032			return fa;
1033	}
1034
1035	return NULL;
1036}
1037
1038void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039{
1040	u8 fib_notify_on_flag_change;
1041	struct fib_alias *fa_match;
1042	struct sk_buff *skb;
1043	int err;
1044
1045	rcu_read_lock();
1046
1047	fa_match = fib_find_matching_alias(net, fri);
1048	if (!fa_match)
1049		goto out;
1050
1051	/* These are paired with the WRITE_ONCE() happening in this function.
1052	 * The reason is that we are only protected by RCU at this point.
1053	 */
1054	if (READ_ONCE(fa_match->offload) == fri->offload &&
1055	    READ_ONCE(fa_match->trap) == fri->trap &&
1056	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1057		goto out;
1058
1059	WRITE_ONCE(fa_match->offload, fri->offload);
1060	WRITE_ONCE(fa_match->trap, fri->trap);
1061
1062	fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1063
1064	/* 2 means send notifications only if offload_failed was changed. */
1065	if (fib_notify_on_flag_change == 2 &&
1066	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1067		goto out;
1068
1069	WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1070
1071	if (!fib_notify_on_flag_change)
1072		goto out;
1073
1074	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1075	if (!skb) {
1076		err = -ENOBUFS;
1077		goto errout;
1078	}
1079
1080	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1081	if (err < 0) {
1082		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1083		WARN_ON(err == -EMSGSIZE);
1084		kfree_skb(skb);
1085		goto errout;
1086	}
1087
1088	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1089	goto out;
1090
1091errout:
1092	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1093out:
1094	rcu_read_unlock();
1095}
1096EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1097
1098static void trie_rebalance(struct trie *t, struct key_vector *tn)
1099{
1100	while (!IS_TRIE(tn))
1101		tn = resize(t, tn);
1102}
1103
1104static int fib_insert_node(struct trie *t, struct key_vector *tp,
1105			   struct fib_alias *new, t_key key)
1106{
1107	struct key_vector *n, *l;
1108
1109	l = leaf_new(key, new);
1110	if (!l)
1111		goto noleaf;
1112
1113	/* retrieve child from parent node */
1114	n = get_child(tp, get_index(key, tp));
1115
1116	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1117	 *
1118	 *  Add a new tnode here
1119	 *  first tnode need some special handling
1120	 *  leaves us in position for handling as case 3
1121	 */
1122	if (n) {
1123		struct key_vector *tn;
1124
1125		tn = tnode_new(key, __fls(key ^ n->key), 1);
1126		if (!tn)
1127			goto notnode;
1128
1129		/* initialize routes out of node */
1130		NODE_INIT_PARENT(tn, tp);
1131		put_child(tn, get_index(key, tn) ^ 1, n);
1132
1133		/* start adding routes into the node */
1134		put_child_root(tp, key, tn);
1135		node_set_parent(n, tn);
1136
1137		/* parent now has a NULL spot where the leaf can go */
1138		tp = tn;
1139	}
1140
1141	/* Case 3: n is NULL, and will just insert a new leaf */
1142	node_push_suffix(tp, new->fa_slen);
1143	NODE_INIT_PARENT(l, tp);
1144	put_child_root(tp, key, l);
1145	trie_rebalance(t, tp);
1146
1147	return 0;
1148notnode:
1149	node_free(l);
1150noleaf:
1151	return -ENOMEM;
1152}
1153
1154static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1155			    struct key_vector *l, struct fib_alias *new,
1156			    struct fib_alias *fa, t_key key)
1157{
1158	if (!l)
1159		return fib_insert_node(t, tp, new, key);
1160
1161	if (fa) {
1162		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1163	} else {
1164		struct fib_alias *last;
1165
1166		hlist_for_each_entry(last, &l->leaf, fa_list) {
1167			if (new->fa_slen < last->fa_slen)
1168				break;
1169			if ((new->fa_slen == last->fa_slen) &&
1170			    (new->tb_id > last->tb_id))
1171				break;
1172			fa = last;
1173		}
1174
1175		if (fa)
1176			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1177		else
1178			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1179	}
1180
1181	/* if we added to the tail node then we need to update slen */
1182	if (l->slen < new->fa_slen) {
1183		l->slen = new->fa_slen;
1184		node_push_suffix(tp, new->fa_slen);
1185	}
1186
1187	return 0;
1188}
1189
1190static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1191{
1192	if (plen > KEYLENGTH) {
1193		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1194		return false;
1195	}
1196
1197	if ((plen < KEYLENGTH) && (key << plen)) {
1198		NL_SET_ERR_MSG(extack,
1199			       "Invalid prefix for given prefix length");
1200		return false;
1201	}
1202
1203	return true;
1204}
1205
1206static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1207			     struct key_vector *l, struct fib_alias *old);
1208
1209/* Caller must hold RTNL. */
1210int fib_table_insert(struct net *net, struct fib_table *tb,
1211		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1212{
1213	struct trie *t = (struct trie *)tb->tb_data;
1214	struct fib_alias *fa, *new_fa;
1215	struct key_vector *l, *tp;
1216	u16 nlflags = NLM_F_EXCL;
1217	struct fib_info *fi;
1218	u8 plen = cfg->fc_dst_len;
1219	u8 slen = KEYLENGTH - plen;
1220	dscp_t dscp;
1221	u32 key;
1222	int err;
1223
1224	key = ntohl(cfg->fc_dst);
1225
1226	if (!fib_valid_key_len(key, plen, extack))
1227		return -EINVAL;
1228
1229	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1230
1231	fi = fib_create_info(cfg, extack);
1232	if (IS_ERR(fi)) {
1233		err = PTR_ERR(fi);
1234		goto err;
1235	}
1236
1237	dscp = cfg->fc_dscp;
1238	l = fib_find_node(t, &tp, key);
1239	fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
1240				tb->tb_id, false) : NULL;
1241
1242	/* Now fa, if non-NULL, points to the first fib alias
1243	 * with the same keys [prefix,dscp,priority], if such key already
1244	 * exists or to the node before which we will insert new one.
1245	 *
1246	 * If fa is NULL, we will need to allocate a new one and
1247	 * insert to the tail of the section matching the suffix length
1248	 * of the new alias.
1249	 */
1250
1251	if (fa && fa->fa_dscp == dscp &&
1252	    fa->fa_info->fib_priority == fi->fib_priority) {
1253		struct fib_alias *fa_first, *fa_match;
1254
1255		err = -EEXIST;
1256		if (cfg->fc_nlflags & NLM_F_EXCL)
1257			goto out;
1258
1259		nlflags &= ~NLM_F_EXCL;
1260
1261		/* We have 2 goals:
1262		 * 1. Find exact match for type, scope, fib_info to avoid
1263		 * duplicate routes
1264		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1265		 */
1266		fa_match = NULL;
1267		fa_first = fa;
1268		hlist_for_each_entry_from(fa, fa_list) {
1269			if ((fa->fa_slen != slen) ||
1270			    (fa->tb_id != tb->tb_id) ||
1271			    (fa->fa_dscp != dscp))
1272				break;
1273			if (fa->fa_info->fib_priority != fi->fib_priority)
1274				break;
1275			if (fa->fa_type == cfg->fc_type &&
1276			    fa->fa_info == fi) {
1277				fa_match = fa;
1278				break;
1279			}
1280		}
1281
1282		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1283			struct fib_info *fi_drop;
1284			u8 state;
1285
1286			nlflags |= NLM_F_REPLACE;
1287			fa = fa_first;
1288			if (fa_match) {
1289				if (fa == fa_match)
1290					err = 0;
1291				goto out;
1292			}
1293			err = -ENOBUFS;
1294			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1295			if (!new_fa)
1296				goto out;
1297
1298			fi_drop = fa->fa_info;
1299			new_fa->fa_dscp = fa->fa_dscp;
1300			new_fa->fa_info = fi;
1301			new_fa->fa_type = cfg->fc_type;
1302			state = fa->fa_state;
1303			new_fa->fa_state = state & ~FA_S_ACCESSED;
1304			new_fa->fa_slen = fa->fa_slen;
1305			new_fa->tb_id = tb->tb_id;
1306			new_fa->fa_default = -1;
1307			new_fa->offload = 0;
1308			new_fa->trap = 0;
1309			new_fa->offload_failed = 0;
1310
1311			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1312
1313			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1314					   tb->tb_id, true) == new_fa) {
1315				enum fib_event_type fib_event;
1316
1317				fib_event = FIB_EVENT_ENTRY_REPLACE;
1318				err = call_fib_entry_notifiers(net, fib_event,
1319							       key, plen,
1320							       new_fa, extack);
1321				if (err) {
1322					hlist_replace_rcu(&new_fa->fa_list,
1323							  &fa->fa_list);
1324					goto out_free_new_fa;
1325				}
1326			}
1327
1328			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1329				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1330
1331			alias_free_mem_rcu(fa);
1332
1333			fib_release_info(fi_drop);
1334			if (state & FA_S_ACCESSED)
1335				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1336
1337			goto succeeded;
1338		}
1339		/* Error if we find a perfect match which
1340		 * uses the same scope, type, and nexthop
1341		 * information.
1342		 */
1343		if (fa_match)
1344			goto out;
1345
1346		if (cfg->fc_nlflags & NLM_F_APPEND)
1347			nlflags |= NLM_F_APPEND;
1348		else
1349			fa = fa_first;
1350	}
1351	err = -ENOENT;
1352	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1353		goto out;
1354
1355	nlflags |= NLM_F_CREATE;
1356	err = -ENOBUFS;
1357	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1358	if (!new_fa)
1359		goto out;
1360
1361	new_fa->fa_info = fi;
1362	new_fa->fa_dscp = dscp;
1363	new_fa->fa_type = cfg->fc_type;
1364	new_fa->fa_state = 0;
1365	new_fa->fa_slen = slen;
1366	new_fa->tb_id = tb->tb_id;
1367	new_fa->fa_default = -1;
1368	new_fa->offload = 0;
1369	new_fa->trap = 0;
1370	new_fa->offload_failed = 0;
1371
1372	/* Insert new entry to the list. */
1373	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1374	if (err)
1375		goto out_free_new_fa;
1376
1377	/* The alias was already inserted, so the node must exist. */
1378	l = l ? l : fib_find_node(t, &tp, key);
1379	if (WARN_ON_ONCE(!l)) {
1380		err = -ENOENT;
1381		goto out_free_new_fa;
1382	}
1383
1384	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1385	    new_fa) {
1386		enum fib_event_type fib_event;
1387
1388		fib_event = FIB_EVENT_ENTRY_REPLACE;
1389		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1390					       new_fa, extack);
1391		if (err)
1392			goto out_remove_new_fa;
1393	}
1394
1395	if (!plen)
1396		tb->tb_num_default++;
1397
1398	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1399	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1400		  &cfg->fc_nlinfo, nlflags);
1401succeeded:
1402	return 0;
1403
1404out_remove_new_fa:
1405	fib_remove_alias(t, tp, l, new_fa);
1406out_free_new_fa:
1407	kmem_cache_free(fn_alias_kmem, new_fa);
1408out:
1409	fib_release_info(fi);
1410err:
1411	return err;
1412}
1413
1414static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1415{
1416	t_key prefix = n->key;
1417
1418	return (key ^ prefix) & (prefix | -prefix);
1419}
1420
1421bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1422			 const struct flowi4 *flp)
1423{
1424	if (nhc->nhc_flags & RTNH_F_DEAD)
1425		return false;
1426
1427	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1428	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1429	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1430		return false;
1431
1432	if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1433		return false;
 
 
 
1434
1435	return true;
1436}
1437
1438/* should be called with rcu_read_lock */
1439int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1440		     struct fib_result *res, int fib_flags)
1441{
1442	struct trie *t = (struct trie *) tb->tb_data;
1443#ifdef CONFIG_IP_FIB_TRIE_STATS
1444	struct trie_use_stats __percpu *stats = t->stats;
1445#endif
1446	const t_key key = ntohl(flp->daddr);
1447	struct key_vector *n, *pn;
1448	struct fib_alias *fa;
1449	unsigned long index;
1450	t_key cindex;
1451
1452	pn = t->kv;
1453	cindex = 0;
1454
1455	n = get_child_rcu(pn, cindex);
1456	if (!n) {
1457		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1458		return -EAGAIN;
1459	}
1460
1461#ifdef CONFIG_IP_FIB_TRIE_STATS
1462	this_cpu_inc(stats->gets);
1463#endif
1464
1465	/* Step 1: Travel to the longest prefix match in the trie */
1466	for (;;) {
1467		index = get_cindex(key, n);
1468
1469		/* This bit of code is a bit tricky but it combines multiple
1470		 * checks into a single check.  The prefix consists of the
1471		 * prefix plus zeros for the "bits" in the prefix. The index
1472		 * is the difference between the key and this value.  From
1473		 * this we can actually derive several pieces of data.
1474		 *   if (index >= (1ul << bits))
1475		 *     we have a mismatch in skip bits and failed
1476		 *   else
1477		 *     we know the value is cindex
1478		 *
1479		 * This check is safe even if bits == KEYLENGTH due to the
1480		 * fact that we can only allocate a node with 32 bits if a
1481		 * long is greater than 32 bits.
1482		 */
1483		if (index >= (1ul << n->bits))
1484			break;
1485
1486		/* we have found a leaf. Prefixes have already been compared */
1487		if (IS_LEAF(n))
1488			goto found;
1489
1490		/* only record pn and cindex if we are going to be chopping
1491		 * bits later.  Otherwise we are just wasting cycles.
1492		 */
1493		if (n->slen > n->pos) {
1494			pn = n;
1495			cindex = index;
1496		}
1497
1498		n = get_child_rcu(n, index);
1499		if (unlikely(!n))
1500			goto backtrace;
1501	}
1502
1503	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1504	for (;;) {
1505		/* record the pointer where our next node pointer is stored */
1506		struct key_vector __rcu **cptr = n->tnode;
1507
1508		/* This test verifies that none of the bits that differ
1509		 * between the key and the prefix exist in the region of
1510		 * the lsb and higher in the prefix.
1511		 */
1512		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1513			goto backtrace;
1514
1515		/* exit out and process leaf */
1516		if (unlikely(IS_LEAF(n)))
1517			break;
1518
1519		/* Don't bother recording parent info.  Since we are in
1520		 * prefix match mode we will have to come back to wherever
1521		 * we started this traversal anyway
1522		 */
1523
1524		while ((n = rcu_dereference(*cptr)) == NULL) {
1525backtrace:
1526#ifdef CONFIG_IP_FIB_TRIE_STATS
1527			if (!n)
1528				this_cpu_inc(stats->null_node_hit);
1529#endif
1530			/* If we are at cindex 0 there are no more bits for
1531			 * us to strip at this level so we must ascend back
1532			 * up one level to see if there are any more bits to
1533			 * be stripped there.
1534			 */
1535			while (!cindex) {
1536				t_key pkey = pn->key;
1537
1538				/* If we don't have a parent then there is
1539				 * nothing for us to do as we do not have any
1540				 * further nodes to parse.
1541				 */
1542				if (IS_TRIE(pn)) {
1543					trace_fib_table_lookup(tb->tb_id, flp,
1544							       NULL, -EAGAIN);
1545					return -EAGAIN;
1546				}
1547#ifdef CONFIG_IP_FIB_TRIE_STATS
1548				this_cpu_inc(stats->backtrack);
1549#endif
1550				/* Get Child's index */
1551				pn = node_parent_rcu(pn);
1552				cindex = get_index(pkey, pn);
1553			}
1554
1555			/* strip the least significant bit from the cindex */
1556			cindex &= cindex - 1;
1557
1558			/* grab pointer for next child node */
1559			cptr = &pn->tnode[cindex];
1560		}
1561	}
1562
1563found:
1564	/* this line carries forward the xor from earlier in the function */
1565	index = key ^ n->key;
1566
1567	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1568	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1569		struct fib_info *fi = fa->fa_info;
1570		struct fib_nh_common *nhc;
1571		int nhsel, err;
1572
1573		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1574			if (index >= (1ul << fa->fa_slen))
1575				continue;
1576		}
1577		if (fa->fa_dscp && !fib_dscp_masked_match(fa->fa_dscp, flp))
1578			continue;
1579		/* Paired with WRITE_ONCE() in fib_release_info() */
1580		if (READ_ONCE(fi->fib_dead))
1581			continue;
1582		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1583			continue;
1584		fib_alias_accessed(fa);
1585		err = fib_props[fa->fa_type].error;
1586		if (unlikely(err < 0)) {
1587out_reject:
1588#ifdef CONFIG_IP_FIB_TRIE_STATS
1589			this_cpu_inc(stats->semantic_match_passed);
1590#endif
1591			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1592			return err;
1593		}
1594		if (fi->fib_flags & RTNH_F_DEAD)
1595			continue;
1596
1597		if (unlikely(fi->nh)) {
1598			if (nexthop_is_blackhole(fi->nh)) {
1599				err = fib_props[RTN_BLACKHOLE].error;
1600				goto out_reject;
1601			}
1602
1603			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1604						     &nhsel);
1605			if (nhc)
1606				goto set_result;
1607			goto miss;
1608		}
1609
1610		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1611			nhc = fib_info_nhc(fi, nhsel);
1612
1613			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1614				continue;
1615set_result:
1616			if (!(fib_flags & FIB_LOOKUP_NOREF))
1617				refcount_inc(&fi->fib_clntref);
1618
1619			res->prefix = htonl(n->key);
1620			res->prefixlen = KEYLENGTH - fa->fa_slen;
1621			res->nh_sel = nhsel;
1622			res->nhc = nhc;
1623			res->type = fa->fa_type;
1624			res->scope = fi->fib_scope;
1625			res->dscp = fa->fa_dscp;
1626			res->fi = fi;
1627			res->table = tb;
1628			res->fa_head = &n->leaf;
1629#ifdef CONFIG_IP_FIB_TRIE_STATS
1630			this_cpu_inc(stats->semantic_match_passed);
1631#endif
1632			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1633
1634			return err;
1635		}
1636	}
1637miss:
1638#ifdef CONFIG_IP_FIB_TRIE_STATS
1639	this_cpu_inc(stats->semantic_match_miss);
1640#endif
1641	goto backtrace;
1642}
1643EXPORT_SYMBOL_GPL(fib_table_lookup);
1644
1645static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1646			     struct key_vector *l, struct fib_alias *old)
1647{
1648	/* record the location of the previous list_info entry */
1649	struct hlist_node **pprev = old->fa_list.pprev;
1650	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1651
1652	/* remove the fib_alias from the list */
1653	hlist_del_rcu(&old->fa_list);
1654
1655	/* if we emptied the list this leaf will be freed and we can sort
1656	 * out parent suffix lengths as a part of trie_rebalance
1657	 */
1658	if (hlist_empty(&l->leaf)) {
1659		if (tp->slen == l->slen)
1660			node_pull_suffix(tp, tp->pos);
1661		put_child_root(tp, l->key, NULL);
1662		node_free(l);
1663		trie_rebalance(t, tp);
1664		return;
1665	}
1666
1667	/* only access fa if it is pointing at the last valid hlist_node */
1668	if (*pprev)
1669		return;
1670
1671	/* update the trie with the latest suffix length */
1672	l->slen = fa->fa_slen;
1673	node_pull_suffix(tp, fa->fa_slen);
1674}
1675
1676static void fib_notify_alias_delete(struct net *net, u32 key,
1677				    struct hlist_head *fah,
1678				    struct fib_alias *fa_to_delete,
1679				    struct netlink_ext_ack *extack)
1680{
1681	struct fib_alias *fa_next, *fa_to_notify;
1682	u32 tb_id = fa_to_delete->tb_id;
1683	u8 slen = fa_to_delete->fa_slen;
1684	enum fib_event_type fib_event;
1685
1686	/* Do not notify if we do not care about the route. */
1687	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1688		return;
1689
1690	/* Determine if the route should be replaced by the next route in the
1691	 * list.
1692	 */
1693	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1694				   struct fib_alias, fa_list);
1695	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1696		fib_event = FIB_EVENT_ENTRY_REPLACE;
1697		fa_to_notify = fa_next;
1698	} else {
1699		fib_event = FIB_EVENT_ENTRY_DEL;
1700		fa_to_notify = fa_to_delete;
1701	}
1702	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1703				 fa_to_notify, extack);
1704}
1705
1706/* Caller must hold RTNL. */
1707int fib_table_delete(struct net *net, struct fib_table *tb,
1708		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1709{
1710	struct trie *t = (struct trie *) tb->tb_data;
1711	struct fib_alias *fa, *fa_to_delete;
1712	struct key_vector *l, *tp;
1713	u8 plen = cfg->fc_dst_len;
1714	u8 slen = KEYLENGTH - plen;
1715	dscp_t dscp;
1716	u32 key;
1717
1718	key = ntohl(cfg->fc_dst);
1719
1720	if (!fib_valid_key_len(key, plen, extack))
1721		return -EINVAL;
1722
1723	l = fib_find_node(t, &tp, key);
1724	if (!l)
1725		return -ESRCH;
1726
1727	dscp = cfg->fc_dscp;
1728	fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
1729	if (!fa)
1730		return -ESRCH;
1731
1732	pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1733		 inet_dscp_to_dsfield(dscp), t);
1734
1735	fa_to_delete = NULL;
1736	hlist_for_each_entry_from(fa, fa_list) {
1737		struct fib_info *fi = fa->fa_info;
1738
1739		if ((fa->fa_slen != slen) ||
1740		    (fa->tb_id != tb->tb_id) ||
1741		    (fa->fa_dscp != dscp))
1742			break;
1743
1744		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1745		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1746		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1747		    (!cfg->fc_prefsrc ||
1748		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1749		    (!cfg->fc_protocol ||
1750		     fi->fib_protocol == cfg->fc_protocol) &&
1751		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1752		    fib_metrics_match(cfg, fi)) {
1753			fa_to_delete = fa;
1754			break;
1755		}
1756	}
1757
1758	if (!fa_to_delete)
1759		return -ESRCH;
1760
1761	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1762	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1763		  &cfg->fc_nlinfo, 0);
1764
1765	if (!plen)
1766		tb->tb_num_default--;
1767
1768	fib_remove_alias(t, tp, l, fa_to_delete);
1769
1770	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1771		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1772
1773	fib_release_info(fa_to_delete->fa_info);
1774	alias_free_mem_rcu(fa_to_delete);
1775	return 0;
1776}
1777
1778/* Scan for the next leaf starting at the provided key value */
1779static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1780{
1781	struct key_vector *pn, *n = *tn;
1782	unsigned long cindex;
1783
1784	/* this loop is meant to try and find the key in the trie */
1785	do {
1786		/* record parent and next child index */
1787		pn = n;
1788		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1789
1790		if (cindex >> pn->bits)
1791			break;
1792
1793		/* descend into the next child */
1794		n = get_child_rcu(pn, cindex++);
1795		if (!n)
1796			break;
1797
1798		/* guarantee forward progress on the keys */
1799		if (IS_LEAF(n) && (n->key >= key))
1800			goto found;
1801	} while (IS_TNODE(n));
1802
1803	/* this loop will search for the next leaf with a greater key */
1804	while (!IS_TRIE(pn)) {
1805		/* if we exhausted the parent node we will need to climb */
1806		if (cindex >= (1ul << pn->bits)) {
1807			t_key pkey = pn->key;
1808
1809			pn = node_parent_rcu(pn);
1810			cindex = get_index(pkey, pn) + 1;
1811			continue;
1812		}
1813
1814		/* grab the next available node */
1815		n = get_child_rcu(pn, cindex++);
1816		if (!n)
1817			continue;
1818
1819		/* no need to compare keys since we bumped the index */
1820		if (IS_LEAF(n))
1821			goto found;
1822
1823		/* Rescan start scanning in new node */
1824		pn = n;
1825		cindex = 0;
1826	}
1827
1828	*tn = pn;
1829	return NULL; /* Root of trie */
1830found:
1831	/* if we are at the limit for keys just return NULL for the tnode */
1832	*tn = pn;
1833	return n;
1834}
1835
1836static void fib_trie_free(struct fib_table *tb)
1837{
1838	struct trie *t = (struct trie *)tb->tb_data;
1839	struct key_vector *pn = t->kv;
1840	unsigned long cindex = 1;
1841	struct hlist_node *tmp;
1842	struct fib_alias *fa;
1843
1844	/* walk trie in reverse order and free everything */
1845	for (;;) {
1846		struct key_vector *n;
1847
1848		if (!(cindex--)) {
1849			t_key pkey = pn->key;
1850
1851			if (IS_TRIE(pn))
1852				break;
1853
1854			n = pn;
1855			pn = node_parent(pn);
1856
1857			/* drop emptied tnode */
1858			put_child_root(pn, n->key, NULL);
1859			node_free(n);
1860
1861			cindex = get_index(pkey, pn);
1862
1863			continue;
1864		}
1865
1866		/* grab the next available node */
1867		n = get_child(pn, cindex);
1868		if (!n)
1869			continue;
1870
1871		if (IS_TNODE(n)) {
1872			/* record pn and cindex for leaf walking */
1873			pn = n;
1874			cindex = 1ul << n->bits;
1875
1876			continue;
1877		}
1878
1879		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1880			hlist_del_rcu(&fa->fa_list);
1881			alias_free_mem_rcu(fa);
1882		}
1883
1884		put_child_root(pn, n->key, NULL);
1885		node_free(n);
1886	}
1887
1888#ifdef CONFIG_IP_FIB_TRIE_STATS
1889	free_percpu(t->stats);
1890#endif
1891	kfree(tb);
1892}
1893
1894struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1895{
1896	struct trie *ot = (struct trie *)oldtb->tb_data;
1897	struct key_vector *l, *tp = ot->kv;
1898	struct fib_table *local_tb;
1899	struct fib_alias *fa;
1900	struct trie *lt;
1901	t_key key = 0;
1902
1903	if (oldtb->tb_data == oldtb->__data)
1904		return oldtb;
1905
1906	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1907	if (!local_tb)
1908		return NULL;
1909
1910	lt = (struct trie *)local_tb->tb_data;
1911
1912	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1913		struct key_vector *local_l = NULL, *local_tp;
1914
1915		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1916			struct fib_alias *new_fa;
1917
1918			if (local_tb->tb_id != fa->tb_id)
1919				continue;
1920
1921			/* clone fa for new local table */
1922			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1923			if (!new_fa)
1924				goto out;
1925
1926			memcpy(new_fa, fa, sizeof(*fa));
1927
1928			/* insert clone into table */
1929			if (!local_l)
1930				local_l = fib_find_node(lt, &local_tp, l->key);
1931
1932			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1933					     NULL, l->key)) {
1934				kmem_cache_free(fn_alias_kmem, new_fa);
1935				goto out;
1936			}
1937		}
1938
1939		/* stop loop if key wrapped back to 0 */
1940		key = l->key + 1;
1941		if (key < l->key)
1942			break;
1943	}
1944
1945	return local_tb;
1946out:
1947	fib_trie_free(local_tb);
1948
1949	return NULL;
1950}
1951
1952/* Caller must hold RTNL */
1953void fib_table_flush_external(struct fib_table *tb)
1954{
1955	struct trie *t = (struct trie *)tb->tb_data;
1956	struct key_vector *pn = t->kv;
1957	unsigned long cindex = 1;
1958	struct hlist_node *tmp;
1959	struct fib_alias *fa;
1960
1961	/* walk trie in reverse order */
1962	for (;;) {
1963		unsigned char slen = 0;
1964		struct key_vector *n;
1965
1966		if (!(cindex--)) {
1967			t_key pkey = pn->key;
1968
1969			/* cannot resize the trie vector */
1970			if (IS_TRIE(pn))
1971				break;
1972
1973			/* update the suffix to address pulled leaves */
1974			if (pn->slen > pn->pos)
1975				update_suffix(pn);
1976
1977			/* resize completed node */
1978			pn = resize(t, pn);
1979			cindex = get_index(pkey, pn);
1980
1981			continue;
1982		}
1983
1984		/* grab the next available node */
1985		n = get_child(pn, cindex);
1986		if (!n)
1987			continue;
1988
1989		if (IS_TNODE(n)) {
1990			/* record pn and cindex for leaf walking */
1991			pn = n;
1992			cindex = 1ul << n->bits;
1993
1994			continue;
1995		}
1996
1997		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1998			/* if alias was cloned to local then we just
1999			 * need to remove the local copy from main
2000			 */
2001			if (tb->tb_id != fa->tb_id) {
2002				hlist_del_rcu(&fa->fa_list);
2003				alias_free_mem_rcu(fa);
2004				continue;
2005			}
2006
2007			/* record local slen */
2008			slen = fa->fa_slen;
2009		}
2010
2011		/* update leaf slen */
2012		n->slen = slen;
2013
2014		if (hlist_empty(&n->leaf)) {
2015			put_child_root(pn, n->key, NULL);
2016			node_free(n);
2017		}
2018	}
2019}
2020
2021/* Caller must hold RTNL. */
2022int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2023{
2024	struct trie *t = (struct trie *)tb->tb_data;
2025	struct nl_info info = { .nl_net = net };
2026	struct key_vector *pn = t->kv;
2027	unsigned long cindex = 1;
2028	struct hlist_node *tmp;
2029	struct fib_alias *fa;
2030	int found = 0;
2031
2032	/* walk trie in reverse order */
2033	for (;;) {
2034		unsigned char slen = 0;
2035		struct key_vector *n;
2036
2037		if (!(cindex--)) {
2038			t_key pkey = pn->key;
2039
2040			/* cannot resize the trie vector */
2041			if (IS_TRIE(pn))
2042				break;
2043
2044			/* update the suffix to address pulled leaves */
2045			if (pn->slen > pn->pos)
2046				update_suffix(pn);
2047
2048			/* resize completed node */
2049			pn = resize(t, pn);
2050			cindex = get_index(pkey, pn);
2051
2052			continue;
2053		}
2054
2055		/* grab the next available node */
2056		n = get_child(pn, cindex);
2057		if (!n)
2058			continue;
2059
2060		if (IS_TNODE(n)) {
2061			/* record pn and cindex for leaf walking */
2062			pn = n;
2063			cindex = 1ul << n->bits;
2064
2065			continue;
2066		}
2067
2068		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2069			struct fib_info *fi = fa->fa_info;
2070
2071			if (!fi || tb->tb_id != fa->tb_id ||
2072			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2073			     !fib_props[fa->fa_type].error)) {
2074				slen = fa->fa_slen;
2075				continue;
2076			}
2077
2078			/* Do not flush error routes if network namespace is
2079			 * not being dismantled
2080			 */
2081			if (!flush_all && fib_props[fa->fa_type].error) {
2082				slen = fa->fa_slen;
2083				continue;
2084			}
2085
2086			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2087						NULL);
2088			if (fi->pfsrc_removed)
2089				rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa,
2090					  KEYLENGTH - fa->fa_slen, tb->tb_id, &info, 0);
2091			hlist_del_rcu(&fa->fa_list);
2092			fib_release_info(fa->fa_info);
2093			alias_free_mem_rcu(fa);
2094			found++;
2095		}
2096
2097		/* update leaf slen */
2098		n->slen = slen;
2099
2100		if (hlist_empty(&n->leaf)) {
2101			put_child_root(pn, n->key, NULL);
2102			node_free(n);
2103		}
2104	}
2105
2106	pr_debug("trie_flush found=%d\n", found);
2107	return found;
2108}
2109
2110/* derived from fib_trie_free */
2111static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2112				     struct nl_info *info)
2113{
2114	struct trie *t = (struct trie *)tb->tb_data;
2115	struct key_vector *pn = t->kv;
2116	unsigned long cindex = 1;
2117	struct fib_alias *fa;
2118
2119	for (;;) {
2120		struct key_vector *n;
2121
2122		if (!(cindex--)) {
2123			t_key pkey = pn->key;
2124
2125			if (IS_TRIE(pn))
2126				break;
2127
2128			pn = node_parent(pn);
2129			cindex = get_index(pkey, pn);
2130			continue;
2131		}
2132
2133		/* grab the next available node */
2134		n = get_child(pn, cindex);
2135		if (!n)
2136			continue;
2137
2138		if (IS_TNODE(n)) {
2139			/* record pn and cindex for leaf walking */
2140			pn = n;
2141			cindex = 1ul << n->bits;
2142
2143			continue;
2144		}
2145
2146		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2147			struct fib_info *fi = fa->fa_info;
2148
2149			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2150				continue;
2151
2152			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2153				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2154				  info, NLM_F_REPLACE);
2155		}
2156	}
2157}
2158
2159void fib_info_notify_update(struct net *net, struct nl_info *info)
2160{
2161	unsigned int h;
2162
2163	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2164		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2165		struct fib_table *tb;
2166
2167		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2168					 lockdep_rtnl_is_held())
2169			__fib_info_notify_update(net, tb, info);
2170	}
2171}
2172
2173static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2174			   struct notifier_block *nb,
2175			   struct netlink_ext_ack *extack)
2176{
2177	struct fib_alias *fa;
2178	int last_slen = -1;
2179	int err;
2180
2181	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2182		struct fib_info *fi = fa->fa_info;
2183
2184		if (!fi)
2185			continue;
2186
2187		/* local and main table can share the same trie,
2188		 * so don't notify twice for the same entry.
2189		 */
2190		if (tb->tb_id != fa->tb_id)
2191			continue;
2192
2193		if (fa->fa_slen == last_slen)
2194			continue;
2195
2196		last_slen = fa->fa_slen;
2197		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2198					      l->key, KEYLENGTH - fa->fa_slen,
2199					      fa, extack);
2200		if (err)
2201			return err;
2202	}
2203	return 0;
2204}
2205
2206static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2207			    struct netlink_ext_ack *extack)
2208{
2209	struct trie *t = (struct trie *)tb->tb_data;
2210	struct key_vector *l, *tp = t->kv;
2211	t_key key = 0;
2212	int err;
2213
2214	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2215		err = fib_leaf_notify(l, tb, nb, extack);
2216		if (err)
2217			return err;
2218
2219		key = l->key + 1;
2220		/* stop in case of wrap around */
2221		if (key < l->key)
2222			break;
2223	}
2224	return 0;
2225}
2226
2227int fib_notify(struct net *net, struct notifier_block *nb,
2228	       struct netlink_ext_ack *extack)
2229{
2230	unsigned int h;
2231	int err;
2232
2233	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2234		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2235		struct fib_table *tb;
2236
2237		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2238			err = fib_table_notify(tb, nb, extack);
2239			if (err)
2240				return err;
2241		}
2242	}
2243	return 0;
2244}
2245
2246static void __trie_free_rcu(struct rcu_head *head)
2247{
2248	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2249#ifdef CONFIG_IP_FIB_TRIE_STATS
2250	struct trie *t = (struct trie *)tb->tb_data;
2251
2252	if (tb->tb_data == tb->__data)
2253		free_percpu(t->stats);
2254#endif /* CONFIG_IP_FIB_TRIE_STATS */
2255	kfree(tb);
2256}
2257
2258void fib_free_table(struct fib_table *tb)
2259{
2260	call_rcu(&tb->rcu, __trie_free_rcu);
2261}
2262
2263static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2264			     struct sk_buff *skb, struct netlink_callback *cb,
2265			     struct fib_dump_filter *filter)
2266{
2267	unsigned int flags = NLM_F_MULTI;
2268	__be32 xkey = htonl(l->key);
2269	int i, s_i, i_fa, s_fa, err;
2270	struct fib_alias *fa;
2271
2272	if (filter->filter_set ||
2273	    !filter->dump_exceptions || !filter->dump_routes)
2274		flags |= NLM_F_DUMP_FILTERED;
2275
2276	s_i = cb->args[4];
2277	s_fa = cb->args[5];
2278	i = 0;
2279
2280	/* rcu_read_lock is hold by caller */
2281	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2282		struct fib_info *fi = fa->fa_info;
2283
2284		if (i < s_i)
2285			goto next;
2286
2287		i_fa = 0;
2288
2289		if (tb->tb_id != fa->tb_id)
2290			goto next;
2291
2292		if (filter->filter_set) {
2293			if (filter->rt_type && fa->fa_type != filter->rt_type)
2294				goto next;
2295
2296			if ((filter->protocol &&
2297			     fi->fib_protocol != filter->protocol))
2298				goto next;
2299
2300			if (filter->dev &&
2301			    !fib_info_nh_uses_dev(fi, filter->dev))
2302				goto next;
2303		}
2304
2305		if (filter->dump_routes) {
2306			if (!s_fa) {
2307				struct fib_rt_info fri;
2308
2309				fri.fi = fi;
2310				fri.tb_id = tb->tb_id;
2311				fri.dst = xkey;
2312				fri.dst_len = KEYLENGTH - fa->fa_slen;
2313				fri.dscp = fa->fa_dscp;
2314				fri.type = fa->fa_type;
2315				fri.offload = READ_ONCE(fa->offload);
2316				fri.trap = READ_ONCE(fa->trap);
2317				fri.offload_failed = READ_ONCE(fa->offload_failed);
2318				err = fib_dump_info(skb,
2319						    NETLINK_CB(cb->skb).portid,
2320						    cb->nlh->nlmsg_seq,
2321						    RTM_NEWROUTE, &fri, flags);
2322				if (err < 0)
2323					goto stop;
2324			}
2325
2326			i_fa++;
2327		}
2328
2329		if (filter->dump_exceptions) {
2330			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2331						 &i_fa, s_fa, flags);
2332			if (err < 0)
2333				goto stop;
2334		}
2335
2336next:
2337		i++;
2338	}
2339
2340	cb->args[4] = i;
2341	return skb->len;
2342
2343stop:
2344	cb->args[4] = i;
2345	cb->args[5] = i_fa;
2346	return err;
2347}
2348
2349/* rcu_read_lock needs to be hold by caller from readside */
2350int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2351		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2352{
2353	struct trie *t = (struct trie *)tb->tb_data;
2354	struct key_vector *l, *tp = t->kv;
2355	/* Dump starting at last key.
2356	 * Note: 0.0.0.0/0 (ie default) is first key.
2357	 */
2358	int count = cb->args[2];
2359	t_key key = cb->args[3];
2360
2361	/* First time here, count and key are both always 0. Count > 0
2362	 * and key == 0 means the dump has wrapped around and we are done.
2363	 */
2364	if (count && !key)
2365		return 0;
2366
2367	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2368		int err;
2369
2370		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2371		if (err < 0) {
2372			cb->args[3] = key;
2373			cb->args[2] = count;
2374			return err;
2375		}
2376
2377		++count;
2378		key = l->key + 1;
2379
2380		memset(&cb->args[4], 0,
2381		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2382
2383		/* stop loop if key wrapped back to 0 */
2384		if (key < l->key)
2385			break;
2386	}
2387
2388	cb->args[3] = key;
2389	cb->args[2] = count;
2390
2391	return 0;
2392}
2393
2394void __init fib_trie_init(void)
2395{
2396	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2397					  sizeof(struct fib_alias),
2398					  0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2399
2400	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2401					   LEAF_SIZE,
2402					   0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2403}
2404
2405struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2406{
2407	struct fib_table *tb;
2408	struct trie *t;
2409	size_t sz = sizeof(*tb);
2410
2411	if (!alias)
2412		sz += sizeof(struct trie);
2413
2414	tb = kzalloc(sz, GFP_KERNEL);
2415	if (!tb)
2416		return NULL;
2417
2418	tb->tb_id = id;
2419	tb->tb_num_default = 0;
2420	tb->tb_data = (alias ? alias->__data : tb->__data);
2421
2422	if (alias)
2423		return tb;
2424
2425	t = (struct trie *) tb->tb_data;
2426	t->kv[0].pos = KEYLENGTH;
2427	t->kv[0].slen = KEYLENGTH;
2428#ifdef CONFIG_IP_FIB_TRIE_STATS
2429	t->stats = alloc_percpu(struct trie_use_stats);
2430	if (!t->stats) {
2431		kfree(tb);
2432		tb = NULL;
2433	}
2434#endif
2435
2436	return tb;
2437}
2438
2439#ifdef CONFIG_PROC_FS
2440/* Depth first Trie walk iterator */
2441struct fib_trie_iter {
2442	struct seq_net_private p;
2443	struct fib_table *tb;
2444	struct key_vector *tnode;
2445	unsigned int index;
2446	unsigned int depth;
2447};
2448
2449static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2450{
2451	unsigned long cindex = iter->index;
2452	struct key_vector *pn = iter->tnode;
2453	t_key pkey;
2454
2455	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2456		 iter->tnode, iter->index, iter->depth);
2457
2458	while (!IS_TRIE(pn)) {
2459		while (cindex < child_length(pn)) {
2460			struct key_vector *n = get_child_rcu(pn, cindex++);
2461
2462			if (!n)
2463				continue;
2464
2465			if (IS_LEAF(n)) {
2466				iter->tnode = pn;
2467				iter->index = cindex;
2468			} else {
2469				/* push down one level */
2470				iter->tnode = n;
2471				iter->index = 0;
2472				++iter->depth;
2473			}
2474
2475			return n;
2476		}
2477
2478		/* Current node exhausted, pop back up */
2479		pkey = pn->key;
2480		pn = node_parent_rcu(pn);
2481		cindex = get_index(pkey, pn) + 1;
2482		--iter->depth;
2483	}
2484
2485	/* record root node so further searches know we are done */
2486	iter->tnode = pn;
2487	iter->index = 0;
2488
2489	return NULL;
2490}
2491
2492static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2493					     struct trie *t)
2494{
2495	struct key_vector *n, *pn;
2496
2497	if (!t)
2498		return NULL;
2499
2500	pn = t->kv;
2501	n = rcu_dereference(pn->tnode[0]);
2502	if (!n)
2503		return NULL;
2504
2505	if (IS_TNODE(n)) {
2506		iter->tnode = n;
2507		iter->index = 0;
2508		iter->depth = 1;
2509	} else {
2510		iter->tnode = pn;
2511		iter->index = 0;
2512		iter->depth = 0;
2513	}
2514
2515	return n;
2516}
2517
2518static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2519{
2520	struct key_vector *n;
2521	struct fib_trie_iter iter;
2522
2523	memset(s, 0, sizeof(*s));
2524
2525	rcu_read_lock();
2526	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2527		if (IS_LEAF(n)) {
2528			struct fib_alias *fa;
2529
2530			s->leaves++;
2531			s->totdepth += iter.depth;
2532			if (iter.depth > s->maxdepth)
2533				s->maxdepth = iter.depth;
2534
2535			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2536				++s->prefixes;
2537		} else {
2538			s->tnodes++;
2539			if (n->bits < MAX_STAT_DEPTH)
2540				s->nodesizes[n->bits]++;
2541			s->nullpointers += tn_info(n)->empty_children;
2542		}
2543	}
2544	rcu_read_unlock();
2545}
2546
2547/*
2548 *	This outputs /proc/net/fib_triestats
2549 */
2550static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2551{
2552	unsigned int i, max, pointers, bytes, avdepth;
2553
2554	if (stat->leaves)
2555		avdepth = stat->totdepth*100 / stat->leaves;
2556	else
2557		avdepth = 0;
2558
2559	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2560		   avdepth / 100, avdepth % 100);
2561	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2562
2563	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2564	bytes = LEAF_SIZE * stat->leaves;
2565
2566	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2567	bytes += sizeof(struct fib_alias) * stat->prefixes;
2568
2569	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2570	bytes += TNODE_SIZE(0) * stat->tnodes;
2571
2572	max = MAX_STAT_DEPTH;
2573	while (max > 0 && stat->nodesizes[max-1] == 0)
2574		max--;
2575
2576	pointers = 0;
2577	for (i = 1; i < max; i++)
2578		if (stat->nodesizes[i] != 0) {
2579			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2580			pointers += (1<<i) * stat->nodesizes[i];
2581		}
2582	seq_putc(seq, '\n');
2583	seq_printf(seq, "\tPointers: %u\n", pointers);
2584
2585	bytes += sizeof(struct key_vector *) * pointers;
2586	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2587	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2588}
2589
2590#ifdef CONFIG_IP_FIB_TRIE_STATS
2591static void trie_show_usage(struct seq_file *seq,
2592			    const struct trie_use_stats __percpu *stats)
2593{
2594	struct trie_use_stats s = { 0 };
2595	int cpu;
2596
2597	/* loop through all of the CPUs and gather up the stats */
2598	for_each_possible_cpu(cpu) {
2599		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2600
2601		s.gets += pcpu->gets;
2602		s.backtrack += pcpu->backtrack;
2603		s.semantic_match_passed += pcpu->semantic_match_passed;
2604		s.semantic_match_miss += pcpu->semantic_match_miss;
2605		s.null_node_hit += pcpu->null_node_hit;
2606		s.resize_node_skipped += pcpu->resize_node_skipped;
2607	}
2608
2609	seq_printf(seq, "\nCounters:\n---------\n");
2610	seq_printf(seq, "gets = %u\n", s.gets);
2611	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2612	seq_printf(seq, "semantic match passed = %u\n",
2613		   s.semantic_match_passed);
2614	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2615	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2616	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2617}
2618#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2619
2620static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2621{
2622	if (tb->tb_id == RT_TABLE_LOCAL)
2623		seq_puts(seq, "Local:\n");
2624	else if (tb->tb_id == RT_TABLE_MAIN)
2625		seq_puts(seq, "Main:\n");
2626	else
2627		seq_printf(seq, "Id %d:\n", tb->tb_id);
2628}
2629
2630
2631static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2632{
2633	struct net *net = seq->private;
2634	unsigned int h;
2635
2636	seq_printf(seq,
2637		   "Basic info: size of leaf:"
2638		   " %zd bytes, size of tnode: %zd bytes.\n",
2639		   LEAF_SIZE, TNODE_SIZE(0));
2640
2641	rcu_read_lock();
2642	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2643		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2644		struct fib_table *tb;
2645
2646		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2647			struct trie *t = (struct trie *) tb->tb_data;
2648			struct trie_stat stat;
2649
2650			if (!t)
2651				continue;
2652
2653			fib_table_print(seq, tb);
2654
2655			trie_collect_stats(t, &stat);
2656			trie_show_stats(seq, &stat);
2657#ifdef CONFIG_IP_FIB_TRIE_STATS
2658			trie_show_usage(seq, t->stats);
2659#endif
2660		}
2661		cond_resched_rcu();
2662	}
2663	rcu_read_unlock();
2664
2665	return 0;
2666}
2667
2668static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2669{
2670	struct fib_trie_iter *iter = seq->private;
2671	struct net *net = seq_file_net(seq);
2672	loff_t idx = 0;
2673	unsigned int h;
2674
2675	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2676		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2677		struct fib_table *tb;
2678
2679		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2680			struct key_vector *n;
2681
2682			for (n = fib_trie_get_first(iter,
2683						    (struct trie *) tb->tb_data);
2684			     n; n = fib_trie_get_next(iter))
2685				if (pos == idx++) {
2686					iter->tb = tb;
2687					return n;
2688				}
2689		}
2690	}
2691
2692	return NULL;
2693}
2694
2695static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2696	__acquires(RCU)
2697{
2698	rcu_read_lock();
2699	return fib_trie_get_idx(seq, *pos);
2700}
2701
2702static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2703{
2704	struct fib_trie_iter *iter = seq->private;
2705	struct net *net = seq_file_net(seq);
2706	struct fib_table *tb = iter->tb;
2707	struct hlist_node *tb_node;
2708	unsigned int h;
2709	struct key_vector *n;
2710
2711	++*pos;
2712	/* next node in same table */
2713	n = fib_trie_get_next(iter);
2714	if (n)
2715		return n;
2716
2717	/* walk rest of this hash chain */
2718	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2719	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2720		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2721		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2722		if (n)
2723			goto found;
2724	}
2725
2726	/* new hash chain */
2727	while (++h < FIB_TABLE_HASHSZ) {
2728		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2729		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2730			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2731			if (n)
2732				goto found;
2733		}
2734	}
2735	return NULL;
2736
2737found:
2738	iter->tb = tb;
2739	return n;
2740}
2741
2742static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2743	__releases(RCU)
2744{
2745	rcu_read_unlock();
2746}
2747
2748static void seq_indent(struct seq_file *seq, int n)
2749{
2750	while (n-- > 0)
2751		seq_puts(seq, "   ");
2752}
2753
2754static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2755{
2756	switch (s) {
2757	case RT_SCOPE_UNIVERSE: return "universe";
2758	case RT_SCOPE_SITE:	return "site";
2759	case RT_SCOPE_LINK:	return "link";
2760	case RT_SCOPE_HOST:	return "host";
2761	case RT_SCOPE_NOWHERE:	return "nowhere";
2762	default:
2763		snprintf(buf, len, "scope=%d", s);
2764		return buf;
2765	}
2766}
2767
2768static const char *const rtn_type_names[__RTN_MAX] = {
2769	[RTN_UNSPEC] = "UNSPEC",
2770	[RTN_UNICAST] = "UNICAST",
2771	[RTN_LOCAL] = "LOCAL",
2772	[RTN_BROADCAST] = "BROADCAST",
2773	[RTN_ANYCAST] = "ANYCAST",
2774	[RTN_MULTICAST] = "MULTICAST",
2775	[RTN_BLACKHOLE] = "BLACKHOLE",
2776	[RTN_UNREACHABLE] = "UNREACHABLE",
2777	[RTN_PROHIBIT] = "PROHIBIT",
2778	[RTN_THROW] = "THROW",
2779	[RTN_NAT] = "NAT",
2780	[RTN_XRESOLVE] = "XRESOLVE",
2781};
2782
2783static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2784{
2785	if (t < __RTN_MAX && rtn_type_names[t])
2786		return rtn_type_names[t];
2787	snprintf(buf, len, "type %u", t);
2788	return buf;
2789}
2790
2791/* Pretty print the trie */
2792static int fib_trie_seq_show(struct seq_file *seq, void *v)
2793{
2794	const struct fib_trie_iter *iter = seq->private;
2795	struct key_vector *n = v;
2796
2797	if (IS_TRIE(node_parent_rcu(n)))
2798		fib_table_print(seq, iter->tb);
2799
2800	if (IS_TNODE(n)) {
2801		__be32 prf = htonl(n->key);
2802
2803		seq_indent(seq, iter->depth-1);
2804		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2805			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2806			   tn_info(n)->full_children,
2807			   tn_info(n)->empty_children);
2808	} else {
2809		__be32 val = htonl(n->key);
2810		struct fib_alias *fa;
2811
2812		seq_indent(seq, iter->depth);
2813		seq_printf(seq, "  |-- %pI4\n", &val);
2814
2815		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2816			char buf1[32], buf2[32];
2817
2818			seq_indent(seq, iter->depth + 1);
2819			seq_printf(seq, "  /%zu %s %s",
2820				   KEYLENGTH - fa->fa_slen,
2821				   rtn_scope(buf1, sizeof(buf1),
2822					     fa->fa_info->fib_scope),
2823				   rtn_type(buf2, sizeof(buf2),
2824					    fa->fa_type));
2825			if (fa->fa_dscp)
2826				seq_printf(seq, " tos=%d",
2827					   inet_dscp_to_dsfield(fa->fa_dscp));
2828			seq_putc(seq, '\n');
2829		}
2830	}
2831
2832	return 0;
2833}
2834
2835static const struct seq_operations fib_trie_seq_ops = {
2836	.start  = fib_trie_seq_start,
2837	.next   = fib_trie_seq_next,
2838	.stop   = fib_trie_seq_stop,
2839	.show   = fib_trie_seq_show,
2840};
2841
2842struct fib_route_iter {
2843	struct seq_net_private p;
2844	struct fib_table *main_tb;
2845	struct key_vector *tnode;
2846	loff_t	pos;
2847	t_key	key;
2848};
2849
2850static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2851					    loff_t pos)
2852{
2853	struct key_vector *l, **tp = &iter->tnode;
2854	t_key key;
2855
2856	/* use cached location of previously found key */
2857	if (iter->pos > 0 && pos >= iter->pos) {
2858		key = iter->key;
2859	} else {
2860		iter->pos = 1;
2861		key = 0;
2862	}
2863
2864	pos -= iter->pos;
2865
2866	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2867		key = l->key + 1;
2868		iter->pos++;
2869		l = NULL;
2870
2871		/* handle unlikely case of a key wrap */
2872		if (!key)
2873			break;
2874	}
2875
2876	if (l)
2877		iter->key = l->key;	/* remember it */
2878	else
2879		iter->pos = 0;		/* forget it */
2880
2881	return l;
2882}
2883
2884static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2885	__acquires(RCU)
2886{
2887	struct fib_route_iter *iter = seq->private;
2888	struct fib_table *tb;
2889	struct trie *t;
2890
2891	rcu_read_lock();
2892
2893	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2894	if (!tb)
2895		return NULL;
2896
2897	iter->main_tb = tb;
2898	t = (struct trie *)tb->tb_data;
2899	iter->tnode = t->kv;
2900
2901	if (*pos != 0)
2902		return fib_route_get_idx(iter, *pos);
2903
2904	iter->pos = 0;
2905	iter->key = KEY_MAX;
2906
2907	return SEQ_START_TOKEN;
2908}
2909
2910static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2911{
2912	struct fib_route_iter *iter = seq->private;
2913	struct key_vector *l = NULL;
2914	t_key key = iter->key + 1;
2915
2916	++*pos;
2917
2918	/* only allow key of 0 for start of sequence */
2919	if ((v == SEQ_START_TOKEN) || key)
2920		l = leaf_walk_rcu(&iter->tnode, key);
2921
2922	if (l) {
2923		iter->key = l->key;
2924		iter->pos++;
2925	} else {
2926		iter->pos = 0;
2927	}
2928
2929	return l;
2930}
2931
2932static void fib_route_seq_stop(struct seq_file *seq, void *v)
2933	__releases(RCU)
2934{
2935	rcu_read_unlock();
2936}
2937
2938static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2939{
2940	unsigned int flags = 0;
2941
2942	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2943		flags = RTF_REJECT;
2944	if (fi) {
2945		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2946
2947		if (nhc->nhc_gw.ipv4)
2948			flags |= RTF_GATEWAY;
2949	}
2950	if (mask == htonl(0xFFFFFFFF))
2951		flags |= RTF_HOST;
2952	flags |= RTF_UP;
2953	return flags;
2954}
2955
2956/*
2957 *	This outputs /proc/net/route.
2958 *	The format of the file is not supposed to be changed
2959 *	and needs to be same as fib_hash output to avoid breaking
2960 *	legacy utilities
2961 */
2962static int fib_route_seq_show(struct seq_file *seq, void *v)
2963{
2964	struct fib_route_iter *iter = seq->private;
2965	struct fib_table *tb = iter->main_tb;
2966	struct fib_alias *fa;
2967	struct key_vector *l = v;
2968	__be32 prefix;
2969
2970	if (v == SEQ_START_TOKEN) {
2971		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2972			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2973			   "\tWindow\tIRTT");
2974		return 0;
2975	}
2976
2977	prefix = htonl(l->key);
2978
2979	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2980		struct fib_info *fi = fa->fa_info;
2981		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2982		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2983
2984		if ((fa->fa_type == RTN_BROADCAST) ||
2985		    (fa->fa_type == RTN_MULTICAST))
2986			continue;
2987
2988		if (fa->tb_id != tb->tb_id)
2989			continue;
2990
2991		seq_setwidth(seq, 127);
2992
2993		if (fi) {
2994			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2995			__be32 gw = 0;
2996
2997			if (nhc->nhc_gw_family == AF_INET)
2998				gw = nhc->nhc_gw.ipv4;
2999
3000			seq_printf(seq,
3001				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
3002				   "%d\t%08X\t%d\t%u\t%u",
3003				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
3004				   prefix, gw, flags, 0, 0,
3005				   fi->fib_priority,
3006				   mask,
3007				   (fi->fib_advmss ?
3008				    fi->fib_advmss + 40 : 0),
3009				   fi->fib_window,
3010				   fi->fib_rtt >> 3);
3011		} else {
3012			seq_printf(seq,
3013				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
3014				   "%d\t%08X\t%d\t%u\t%u",
3015				   prefix, 0, flags, 0, 0, 0,
3016				   mask, 0, 0, 0);
3017		}
3018		seq_pad(seq, '\n');
3019	}
3020
3021	return 0;
3022}
3023
3024static const struct seq_operations fib_route_seq_ops = {
3025	.start  = fib_route_seq_start,
3026	.next   = fib_route_seq_next,
3027	.stop   = fib_route_seq_stop,
3028	.show   = fib_route_seq_show,
3029};
3030
3031int __net_init fib_proc_init(struct net *net)
3032{
3033	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3034			sizeof(struct fib_trie_iter)))
3035		goto out1;
3036
3037	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3038			fib_triestat_seq_show, NULL))
3039		goto out2;
3040
3041	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3042			sizeof(struct fib_route_iter)))
3043		goto out3;
3044
3045	return 0;
3046
3047out3:
3048	remove_proc_entry("fib_triestat", net->proc_net);
3049out2:
3050	remove_proc_entry("fib_trie", net->proc_net);
3051out1:
3052	return -ENOMEM;
3053}
3054
3055void __net_exit fib_proc_exit(struct net *net)
3056{
3057	remove_proc_entry("fib_trie", net->proc_net);
3058	remove_proc_entry("fib_triestat", net->proc_net);
3059	remove_proc_entry("route", net->proc_net);
3060}
3061
3062#endif /* CONFIG_PROC_FS */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   5 *     & Swedish University of Agricultural Sciences.
   6 *
   7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
   8 *     Agricultural Sciences.
   9 *
  10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  11 *
  12 * This work is based on the LPC-trie which is originally described in:
  13 *
  14 * An experimental study of compression methods for dynamic tries
  15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
  17 *
  18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  20 *
  21 * Code from fib_hash has been reused which includes the following header:
  22 *
  23 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  24 *		operating system.  INET is implemented using the  BSD Socket
  25 *		interface as the means of communication with the user level.
  26 *
  27 *		IPv4 FIB: lookup engine and maintenance routines.
  28 *
  29 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  30 *
  31 * Substantial contributions to this work comes from:
  32 *
  33 *		David S. Miller, <davem@davemloft.net>
  34 *		Stephen Hemminger <shemminger@osdl.org>
  35 *		Paul E. McKenney <paulmck@us.ibm.com>
  36 *		Patrick McHardy <kaber@trash.net>
  37 */
  38#include <linux/cache.h>
  39#include <linux/uaccess.h>
  40#include <linux/bitops.h>
  41#include <linux/types.h>
  42#include <linux/kernel.h>
  43#include <linux/mm.h>
  44#include <linux/string.h>
  45#include <linux/socket.h>
  46#include <linux/sockios.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/inet.h>
  50#include <linux/inetdevice.h>
  51#include <linux/netdevice.h>
  52#include <linux/if_arp.h>
  53#include <linux/proc_fs.h>
  54#include <linux/rcupdate.h>
 
  55#include <linux/skbuff.h>
  56#include <linux/netlink.h>
  57#include <linux/init.h>
  58#include <linux/list.h>
  59#include <linux/slab.h>
  60#include <linux/export.h>
  61#include <linux/vmalloc.h>
  62#include <linux/notifier.h>
  63#include <net/net_namespace.h>
 
  64#include <net/ip.h>
  65#include <net/protocol.h>
  66#include <net/route.h>
  67#include <net/tcp.h>
  68#include <net/sock.h>
  69#include <net/ip_fib.h>
  70#include <net/fib_notifier.h>
  71#include <trace/events/fib.h>
  72#include "fib_lookup.h"
  73
  74static int call_fib_entry_notifier(struct notifier_block *nb,
  75				   enum fib_event_type event_type, u32 dst,
  76				   int dst_len, struct fib_alias *fa,
  77				   struct netlink_ext_ack *extack)
  78{
  79	struct fib_entry_notifier_info info = {
  80		.info.extack = extack,
  81		.dst = dst,
  82		.dst_len = dst_len,
  83		.fi = fa->fa_info,
  84		.tos = fa->fa_tos,
  85		.type = fa->fa_type,
  86		.tb_id = fa->tb_id,
  87	};
  88	return call_fib4_notifier(nb, event_type, &info.info);
  89}
  90
  91static int call_fib_entry_notifiers(struct net *net,
  92				    enum fib_event_type event_type, u32 dst,
  93				    int dst_len, struct fib_alias *fa,
  94				    struct netlink_ext_ack *extack)
  95{
  96	struct fib_entry_notifier_info info = {
  97		.info.extack = extack,
  98		.dst = dst,
  99		.dst_len = dst_len,
 100		.fi = fa->fa_info,
 101		.tos = fa->fa_tos,
 102		.type = fa->fa_type,
 103		.tb_id = fa->tb_id,
 104	};
 105	return call_fib4_notifiers(net, event_type, &info.info);
 106}
 107
 108#define MAX_STAT_DEPTH 32
 109
 110#define KEYLENGTH	(8*sizeof(t_key))
 111#define KEY_MAX		((t_key)~0)
 112
 113typedef unsigned int t_key;
 114
 115#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
 116#define IS_TNODE(n)	((n)->bits)
 117#define IS_LEAF(n)	(!(n)->bits)
 118
 119struct key_vector {
 120	t_key key;
 121	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 122	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 123	unsigned char slen;
 124	union {
 125		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 126		struct hlist_head leaf;
 127		/* This array is valid if (pos | bits) > 0 (TNODE) */
 128		struct key_vector __rcu *tnode[0];
 129	};
 130};
 131
 132struct tnode {
 133	struct rcu_head rcu;
 134	t_key empty_children;		/* KEYLENGTH bits needed */
 135	t_key full_children;		/* KEYLENGTH bits needed */
 136	struct key_vector __rcu *parent;
 137	struct key_vector kv[1];
 138#define tn_bits kv[0].bits
 139};
 140
 141#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 142#define LEAF_SIZE	TNODE_SIZE(1)
 143
 144#ifdef CONFIG_IP_FIB_TRIE_STATS
 145struct trie_use_stats {
 146	unsigned int gets;
 147	unsigned int backtrack;
 148	unsigned int semantic_match_passed;
 149	unsigned int semantic_match_miss;
 150	unsigned int null_node_hit;
 151	unsigned int resize_node_skipped;
 152};
 153#endif
 154
 155struct trie_stat {
 156	unsigned int totdepth;
 157	unsigned int maxdepth;
 158	unsigned int tnodes;
 159	unsigned int leaves;
 160	unsigned int nullpointers;
 161	unsigned int prefixes;
 162	unsigned int nodesizes[MAX_STAT_DEPTH];
 163};
 164
 165struct trie {
 166	struct key_vector kv[1];
 167#ifdef CONFIG_IP_FIB_TRIE_STATS
 168	struct trie_use_stats __percpu *stats;
 169#endif
 170};
 171
 172static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 173static unsigned int tnode_free_size;
 174
 175/*
 176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
 177 * especially useful before resizing the root node with PREEMPT_NONE configs;
 178 * the value was obtained experimentally, aiming to avoid visible slowdown.
 179 */
 180unsigned int sysctl_fib_sync_mem = 512 * 1024;
 181unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
 182unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
 183
 184static struct kmem_cache *fn_alias_kmem __ro_after_init;
 185static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 186
 187static inline struct tnode *tn_info(struct key_vector *kv)
 188{
 189	return container_of(kv, struct tnode, kv[0]);
 190}
 191
 192/* caller must hold RTNL */
 193#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 194#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 195
 196/* caller must hold RCU read lock or RTNL */
 197#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 198#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 199
 200/* wrapper for rcu_assign_pointer */
 201static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 202{
 203	if (n)
 204		rcu_assign_pointer(tn_info(n)->parent, tp);
 205}
 206
 207#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 208
 209/* This provides us with the number of children in this node, in the case of a
 210 * leaf this will return 0 meaning none of the children are accessible.
 211 */
 212static inline unsigned long child_length(const struct key_vector *tn)
 213{
 214	return (1ul << tn->bits) & ~(1ul);
 215}
 216
 217#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 218
 219static inline unsigned long get_index(t_key key, struct key_vector *kv)
 220{
 221	unsigned long index = key ^ kv->key;
 222
 223	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 224		return 0;
 225
 226	return index >> kv->pos;
 227}
 228
 229/* To understand this stuff, an understanding of keys and all their bits is
 230 * necessary. Every node in the trie has a key associated with it, but not
 231 * all of the bits in that key are significant.
 232 *
 233 * Consider a node 'n' and its parent 'tp'.
 234 *
 235 * If n is a leaf, every bit in its key is significant. Its presence is
 236 * necessitated by path compression, since during a tree traversal (when
 237 * searching for a leaf - unless we are doing an insertion) we will completely
 238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 239 * a potentially successful search, that we have indeed been walking the
 240 * correct key path.
 241 *
 242 * Note that we can never "miss" the correct key in the tree if present by
 243 * following the wrong path. Path compression ensures that segments of the key
 244 * that are the same for all keys with a given prefix are skipped, but the
 245 * skipped part *is* identical for each node in the subtrie below the skipped
 246 * bit! trie_insert() in this implementation takes care of that.
 247 *
 248 * if n is an internal node - a 'tnode' here, the various parts of its key
 249 * have many different meanings.
 250 *
 251 * Example:
 252 * _________________________________________________________________
 253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 254 * -----------------------------------------------------------------
 255 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 256 *
 257 * _________________________________________________________________
 258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 259 * -----------------------------------------------------------------
 260 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 261 *
 262 * tp->pos = 22
 263 * tp->bits = 3
 264 * n->pos = 13
 265 * n->bits = 4
 266 *
 267 * First, let's just ignore the bits that come before the parent tp, that is
 268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 269 * point we do not use them for anything.
 270 *
 271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 272 * index into the parent's child array. That is, they will be used to find
 273 * 'n' among tp's children.
 274 *
 275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 276 * for the node n.
 277 *
 278 * All the bits we have seen so far are significant to the node n. The rest
 279 * of the bits are really not needed or indeed known in n->key.
 280 *
 281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 282 * n's child array, and will of course be different for each child.
 283 *
 284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 285 * at this point.
 286 */
 287
 288static const int halve_threshold = 25;
 289static const int inflate_threshold = 50;
 290static const int halve_threshold_root = 15;
 291static const int inflate_threshold_root = 30;
 292
 293static void __alias_free_mem(struct rcu_head *head)
 294{
 295	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 296	kmem_cache_free(fn_alias_kmem, fa);
 297}
 298
 299static inline void alias_free_mem_rcu(struct fib_alias *fa)
 300{
 301	call_rcu(&fa->rcu, __alias_free_mem);
 302}
 303
 304#define TNODE_VMALLOC_MAX \
 305	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 306
 307static void __node_free_rcu(struct rcu_head *head)
 308{
 309	struct tnode *n = container_of(head, struct tnode, rcu);
 310
 311	if (!n->tn_bits)
 312		kmem_cache_free(trie_leaf_kmem, n);
 313	else
 314		kvfree(n);
 315}
 316
 317#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 318
 319static struct tnode *tnode_alloc(int bits)
 320{
 321	size_t size;
 322
 323	/* verify bits is within bounds */
 324	if (bits > TNODE_VMALLOC_MAX)
 325		return NULL;
 326
 327	/* determine size and verify it is non-zero and didn't overflow */
 328	size = TNODE_SIZE(1ul << bits);
 329
 330	if (size <= PAGE_SIZE)
 331		return kzalloc(size, GFP_KERNEL);
 332	else
 333		return vzalloc(size);
 334}
 335
 336static inline void empty_child_inc(struct key_vector *n)
 337{
 338	tn_info(n)->empty_children++;
 339
 340	if (!tn_info(n)->empty_children)
 341		tn_info(n)->full_children++;
 342}
 343
 344static inline void empty_child_dec(struct key_vector *n)
 345{
 346	if (!tn_info(n)->empty_children)
 347		tn_info(n)->full_children--;
 348
 349	tn_info(n)->empty_children--;
 350}
 351
 352static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 353{
 354	struct key_vector *l;
 355	struct tnode *kv;
 356
 357	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 358	if (!kv)
 359		return NULL;
 360
 361	/* initialize key vector */
 362	l = kv->kv;
 363	l->key = key;
 364	l->pos = 0;
 365	l->bits = 0;
 366	l->slen = fa->fa_slen;
 367
 368	/* link leaf to fib alias */
 369	INIT_HLIST_HEAD(&l->leaf);
 370	hlist_add_head(&fa->fa_list, &l->leaf);
 371
 372	return l;
 373}
 374
 375static struct key_vector *tnode_new(t_key key, int pos, int bits)
 376{
 377	unsigned int shift = pos + bits;
 378	struct key_vector *tn;
 379	struct tnode *tnode;
 380
 381	/* verify bits and pos their msb bits clear and values are valid */
 382	BUG_ON(!bits || (shift > KEYLENGTH));
 383
 384	tnode = tnode_alloc(bits);
 385	if (!tnode)
 386		return NULL;
 387
 388	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 389		 sizeof(struct key_vector *) << bits);
 390
 391	if (bits == KEYLENGTH)
 392		tnode->full_children = 1;
 393	else
 394		tnode->empty_children = 1ul << bits;
 395
 396	tn = tnode->kv;
 397	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 398	tn->pos = pos;
 399	tn->bits = bits;
 400	tn->slen = pos;
 401
 402	return tn;
 403}
 404
 405/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 406 * and no bits are skipped. See discussion in dyntree paper p. 6
 407 */
 408static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 409{
 410	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 411}
 412
 413/* Add a child at position i overwriting the old value.
 414 * Update the value of full_children and empty_children.
 415 */
 416static void put_child(struct key_vector *tn, unsigned long i,
 417		      struct key_vector *n)
 418{
 419	struct key_vector *chi = get_child(tn, i);
 420	int isfull, wasfull;
 421
 422	BUG_ON(i >= child_length(tn));
 423
 424	/* update emptyChildren, overflow into fullChildren */
 425	if (!n && chi)
 426		empty_child_inc(tn);
 427	if (n && !chi)
 428		empty_child_dec(tn);
 429
 430	/* update fullChildren */
 431	wasfull = tnode_full(tn, chi);
 432	isfull = tnode_full(tn, n);
 433
 434	if (wasfull && !isfull)
 435		tn_info(tn)->full_children--;
 436	else if (!wasfull && isfull)
 437		tn_info(tn)->full_children++;
 438
 439	if (n && (tn->slen < n->slen))
 440		tn->slen = n->slen;
 441
 442	rcu_assign_pointer(tn->tnode[i], n);
 443}
 444
 445static void update_children(struct key_vector *tn)
 446{
 447	unsigned long i;
 448
 449	/* update all of the child parent pointers */
 450	for (i = child_length(tn); i;) {
 451		struct key_vector *inode = get_child(tn, --i);
 452
 453		if (!inode)
 454			continue;
 455
 456		/* Either update the children of a tnode that
 457		 * already belongs to us or update the child
 458		 * to point to ourselves.
 459		 */
 460		if (node_parent(inode) == tn)
 461			update_children(inode);
 462		else
 463			node_set_parent(inode, tn);
 464	}
 465}
 466
 467static inline void put_child_root(struct key_vector *tp, t_key key,
 468				  struct key_vector *n)
 469{
 470	if (IS_TRIE(tp))
 471		rcu_assign_pointer(tp->tnode[0], n);
 472	else
 473		put_child(tp, get_index(key, tp), n);
 474}
 475
 476static inline void tnode_free_init(struct key_vector *tn)
 477{
 478	tn_info(tn)->rcu.next = NULL;
 479}
 480
 481static inline void tnode_free_append(struct key_vector *tn,
 482				     struct key_vector *n)
 483{
 484	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 485	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 486}
 487
 488static void tnode_free(struct key_vector *tn)
 489{
 490	struct callback_head *head = &tn_info(tn)->rcu;
 491
 492	while (head) {
 493		head = head->next;
 494		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 495		node_free(tn);
 496
 497		tn = container_of(head, struct tnode, rcu)->kv;
 498	}
 499
 500	if (tnode_free_size >= sysctl_fib_sync_mem) {
 501		tnode_free_size = 0;
 502		synchronize_rcu();
 503	}
 504}
 505
 506static struct key_vector *replace(struct trie *t,
 507				  struct key_vector *oldtnode,
 508				  struct key_vector *tn)
 509{
 510	struct key_vector *tp = node_parent(oldtnode);
 511	unsigned long i;
 512
 513	/* setup the parent pointer out of and back into this node */
 514	NODE_INIT_PARENT(tn, tp);
 515	put_child_root(tp, tn->key, tn);
 516
 517	/* update all of the child parent pointers */
 518	update_children(tn);
 519
 520	/* all pointers should be clean so we are done */
 521	tnode_free(oldtnode);
 522
 523	/* resize children now that oldtnode is freed */
 524	for (i = child_length(tn); i;) {
 525		struct key_vector *inode = get_child(tn, --i);
 526
 527		/* resize child node */
 528		if (tnode_full(tn, inode))
 529			tn = resize(t, inode);
 530	}
 531
 532	return tp;
 533}
 534
 535static struct key_vector *inflate(struct trie *t,
 536				  struct key_vector *oldtnode)
 537{
 538	struct key_vector *tn;
 539	unsigned long i;
 540	t_key m;
 541
 542	pr_debug("In inflate\n");
 543
 544	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 545	if (!tn)
 546		goto notnode;
 547
 548	/* prepare oldtnode to be freed */
 549	tnode_free_init(oldtnode);
 550
 551	/* Assemble all of the pointers in our cluster, in this case that
 552	 * represents all of the pointers out of our allocated nodes that
 553	 * point to existing tnodes and the links between our allocated
 554	 * nodes.
 555	 */
 556	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 557		struct key_vector *inode = get_child(oldtnode, --i);
 558		struct key_vector *node0, *node1;
 559		unsigned long j, k;
 560
 561		/* An empty child */
 562		if (!inode)
 563			continue;
 564
 565		/* A leaf or an internal node with skipped bits */
 566		if (!tnode_full(oldtnode, inode)) {
 567			put_child(tn, get_index(inode->key, tn), inode);
 568			continue;
 569		}
 570
 571		/* drop the node in the old tnode free list */
 572		tnode_free_append(oldtnode, inode);
 573
 574		/* An internal node with two children */
 575		if (inode->bits == 1) {
 576			put_child(tn, 2 * i + 1, get_child(inode, 1));
 577			put_child(tn, 2 * i, get_child(inode, 0));
 578			continue;
 579		}
 580
 581		/* We will replace this node 'inode' with two new
 582		 * ones, 'node0' and 'node1', each with half of the
 583		 * original children. The two new nodes will have
 584		 * a position one bit further down the key and this
 585		 * means that the "significant" part of their keys
 586		 * (see the discussion near the top of this file)
 587		 * will differ by one bit, which will be "0" in
 588		 * node0's key and "1" in node1's key. Since we are
 589		 * moving the key position by one step, the bit that
 590		 * we are moving away from - the bit at position
 591		 * (tn->pos) - is the one that will differ between
 592		 * node0 and node1. So... we synthesize that bit in the
 593		 * two new keys.
 594		 */
 595		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 596		if (!node1)
 597			goto nomem;
 598		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 599
 600		tnode_free_append(tn, node1);
 601		if (!node0)
 602			goto nomem;
 603		tnode_free_append(tn, node0);
 604
 605		/* populate child pointers in new nodes */
 606		for (k = child_length(inode), j = k / 2; j;) {
 607			put_child(node1, --j, get_child(inode, --k));
 608			put_child(node0, j, get_child(inode, j));
 609			put_child(node1, --j, get_child(inode, --k));
 610			put_child(node0, j, get_child(inode, j));
 611		}
 612
 613		/* link new nodes to parent */
 614		NODE_INIT_PARENT(node1, tn);
 615		NODE_INIT_PARENT(node0, tn);
 616
 617		/* link parent to nodes */
 618		put_child(tn, 2 * i + 1, node1);
 619		put_child(tn, 2 * i, node0);
 620	}
 621
 622	/* setup the parent pointers into and out of this node */
 623	return replace(t, oldtnode, tn);
 624nomem:
 625	/* all pointers should be clean so we are done */
 626	tnode_free(tn);
 627notnode:
 628	return NULL;
 629}
 630
 631static struct key_vector *halve(struct trie *t,
 632				struct key_vector *oldtnode)
 633{
 634	struct key_vector *tn;
 635	unsigned long i;
 636
 637	pr_debug("In halve\n");
 638
 639	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 640	if (!tn)
 641		goto notnode;
 642
 643	/* prepare oldtnode to be freed */
 644	tnode_free_init(oldtnode);
 645
 646	/* Assemble all of the pointers in our cluster, in this case that
 647	 * represents all of the pointers out of our allocated nodes that
 648	 * point to existing tnodes and the links between our allocated
 649	 * nodes.
 650	 */
 651	for (i = child_length(oldtnode); i;) {
 652		struct key_vector *node1 = get_child(oldtnode, --i);
 653		struct key_vector *node0 = get_child(oldtnode, --i);
 654		struct key_vector *inode;
 655
 656		/* At least one of the children is empty */
 657		if (!node1 || !node0) {
 658			put_child(tn, i / 2, node1 ? : node0);
 659			continue;
 660		}
 661
 662		/* Two nonempty children */
 663		inode = tnode_new(node0->key, oldtnode->pos, 1);
 664		if (!inode)
 665			goto nomem;
 666		tnode_free_append(tn, inode);
 667
 668		/* initialize pointers out of node */
 669		put_child(inode, 1, node1);
 670		put_child(inode, 0, node0);
 671		NODE_INIT_PARENT(inode, tn);
 672
 673		/* link parent to node */
 674		put_child(tn, i / 2, inode);
 675	}
 676
 677	/* setup the parent pointers into and out of this node */
 678	return replace(t, oldtnode, tn);
 679nomem:
 680	/* all pointers should be clean so we are done */
 681	tnode_free(tn);
 682notnode:
 683	return NULL;
 684}
 685
 686static struct key_vector *collapse(struct trie *t,
 687				   struct key_vector *oldtnode)
 688{
 689	struct key_vector *n, *tp;
 690	unsigned long i;
 691
 692	/* scan the tnode looking for that one child that might still exist */
 693	for (n = NULL, i = child_length(oldtnode); !n && i;)
 694		n = get_child(oldtnode, --i);
 695
 696	/* compress one level */
 697	tp = node_parent(oldtnode);
 698	put_child_root(tp, oldtnode->key, n);
 699	node_set_parent(n, tp);
 700
 701	/* drop dead node */
 702	node_free(oldtnode);
 703
 704	return tp;
 705}
 706
 707static unsigned char update_suffix(struct key_vector *tn)
 708{
 709	unsigned char slen = tn->pos;
 710	unsigned long stride, i;
 711	unsigned char slen_max;
 712
 713	/* only vector 0 can have a suffix length greater than or equal to
 714	 * tn->pos + tn->bits, the second highest node will have a suffix
 715	 * length at most of tn->pos + tn->bits - 1
 716	 */
 717	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 718
 719	/* search though the list of children looking for nodes that might
 720	 * have a suffix greater than the one we currently have.  This is
 721	 * why we start with a stride of 2 since a stride of 1 would
 722	 * represent the nodes with suffix length equal to tn->pos
 723	 */
 724	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 725		struct key_vector *n = get_child(tn, i);
 726
 727		if (!n || (n->slen <= slen))
 728			continue;
 729
 730		/* update stride and slen based on new value */
 731		stride <<= (n->slen - slen);
 732		slen = n->slen;
 733		i &= ~(stride - 1);
 734
 735		/* stop searching if we have hit the maximum possible value */
 736		if (slen >= slen_max)
 737			break;
 738	}
 739
 740	tn->slen = slen;
 741
 742	return slen;
 743}
 744
 745/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 746 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 747 * Telecommunications, page 6:
 748 * "A node is doubled if the ratio of non-empty children to all
 749 * children in the *doubled* node is at least 'high'."
 750 *
 751 * 'high' in this instance is the variable 'inflate_threshold'. It
 752 * is expressed as a percentage, so we multiply it with
 753 * child_length() and instead of multiplying by 2 (since the
 754 * child array will be doubled by inflate()) and multiplying
 755 * the left-hand side by 100 (to handle the percentage thing) we
 756 * multiply the left-hand side by 50.
 757 *
 758 * The left-hand side may look a bit weird: child_length(tn)
 759 * - tn->empty_children is of course the number of non-null children
 760 * in the current node. tn->full_children is the number of "full"
 761 * children, that is non-null tnodes with a skip value of 0.
 762 * All of those will be doubled in the resulting inflated tnode, so
 763 * we just count them one extra time here.
 764 *
 765 * A clearer way to write this would be:
 766 *
 767 * to_be_doubled = tn->full_children;
 768 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 769 *     tn->full_children;
 770 *
 771 * new_child_length = child_length(tn) * 2;
 772 *
 773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 774 *      new_child_length;
 775 * if (new_fill_factor >= inflate_threshold)
 776 *
 777 * ...and so on, tho it would mess up the while () loop.
 778 *
 779 * anyway,
 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 781 *      inflate_threshold
 782 *
 783 * avoid a division:
 784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 785 *      inflate_threshold * new_child_length
 786 *
 787 * expand not_to_be_doubled and to_be_doubled, and shorten:
 788 * 100 * (child_length(tn) - tn->empty_children +
 789 *    tn->full_children) >= inflate_threshold * new_child_length
 790 *
 791 * expand new_child_length:
 792 * 100 * (child_length(tn) - tn->empty_children +
 793 *    tn->full_children) >=
 794 *      inflate_threshold * child_length(tn) * 2
 795 *
 796 * shorten again:
 797 * 50 * (tn->full_children + child_length(tn) -
 798 *    tn->empty_children) >= inflate_threshold *
 799 *    child_length(tn)
 800 *
 801 */
 802static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 803{
 804	unsigned long used = child_length(tn);
 805	unsigned long threshold = used;
 806
 807	/* Keep root node larger */
 808	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 809	used -= tn_info(tn)->empty_children;
 810	used += tn_info(tn)->full_children;
 811
 812	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 813
 814	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 815}
 816
 817static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 818{
 819	unsigned long used = child_length(tn);
 820	unsigned long threshold = used;
 821
 822	/* Keep root node larger */
 823	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 824	used -= tn_info(tn)->empty_children;
 825
 826	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 827
 828	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 829}
 830
 831static inline bool should_collapse(struct key_vector *tn)
 832{
 833	unsigned long used = child_length(tn);
 834
 835	used -= tn_info(tn)->empty_children;
 836
 837	/* account for bits == KEYLENGTH case */
 838	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 839		used -= KEY_MAX;
 840
 841	/* One child or none, time to drop us from the trie */
 842	return used < 2;
 843}
 844
 845#define MAX_WORK 10
 846static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 847{
 848#ifdef CONFIG_IP_FIB_TRIE_STATS
 849	struct trie_use_stats __percpu *stats = t->stats;
 850#endif
 851	struct key_vector *tp = node_parent(tn);
 852	unsigned long cindex = get_index(tn->key, tp);
 853	int max_work = MAX_WORK;
 854
 855	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 856		 tn, inflate_threshold, halve_threshold);
 857
 858	/* track the tnode via the pointer from the parent instead of
 859	 * doing it ourselves.  This way we can let RCU fully do its
 860	 * thing without us interfering
 861	 */
 862	BUG_ON(tn != get_child(tp, cindex));
 863
 864	/* Double as long as the resulting node has a number of
 865	 * nonempty nodes that are above the threshold.
 866	 */
 867	while (should_inflate(tp, tn) && max_work) {
 868		tp = inflate(t, tn);
 869		if (!tp) {
 870#ifdef CONFIG_IP_FIB_TRIE_STATS
 871			this_cpu_inc(stats->resize_node_skipped);
 872#endif
 873			break;
 874		}
 875
 876		max_work--;
 877		tn = get_child(tp, cindex);
 878	}
 879
 880	/* update parent in case inflate failed */
 881	tp = node_parent(tn);
 882
 883	/* Return if at least one inflate is run */
 884	if (max_work != MAX_WORK)
 885		return tp;
 886
 887	/* Halve as long as the number of empty children in this
 888	 * node is above threshold.
 889	 */
 890	while (should_halve(tp, tn) && max_work) {
 891		tp = halve(t, tn);
 892		if (!tp) {
 893#ifdef CONFIG_IP_FIB_TRIE_STATS
 894			this_cpu_inc(stats->resize_node_skipped);
 895#endif
 896			break;
 897		}
 898
 899		max_work--;
 900		tn = get_child(tp, cindex);
 901	}
 902
 903	/* Only one child remains */
 904	if (should_collapse(tn))
 905		return collapse(t, tn);
 906
 907	/* update parent in case halve failed */
 908	return node_parent(tn);
 909}
 910
 911static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 912{
 913	unsigned char node_slen = tn->slen;
 914
 915	while ((node_slen > tn->pos) && (node_slen > slen)) {
 916		slen = update_suffix(tn);
 917		if (node_slen == slen)
 918			break;
 919
 920		tn = node_parent(tn);
 921		node_slen = tn->slen;
 922	}
 923}
 924
 925static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 926{
 927	while (tn->slen < slen) {
 928		tn->slen = slen;
 929		tn = node_parent(tn);
 930	}
 931}
 932
 933/* rcu_read_lock needs to be hold by caller from readside */
 934static struct key_vector *fib_find_node(struct trie *t,
 935					struct key_vector **tp, u32 key)
 936{
 937	struct key_vector *pn, *n = t->kv;
 938	unsigned long index = 0;
 939
 940	do {
 941		pn = n;
 942		n = get_child_rcu(n, index);
 943
 944		if (!n)
 945			break;
 946
 947		index = get_cindex(key, n);
 948
 949		/* This bit of code is a bit tricky but it combines multiple
 950		 * checks into a single check.  The prefix consists of the
 951		 * prefix plus zeros for the bits in the cindex. The index
 952		 * is the difference between the key and this value.  From
 953		 * this we can actually derive several pieces of data.
 954		 *   if (index >= (1ul << bits))
 955		 *     we have a mismatch in skip bits and failed
 956		 *   else
 957		 *     we know the value is cindex
 958		 *
 959		 * This check is safe even if bits == KEYLENGTH due to the
 960		 * fact that we can only allocate a node with 32 bits if a
 961		 * long is greater than 32 bits.
 962		 */
 963		if (index >= (1ul << n->bits)) {
 964			n = NULL;
 965			break;
 966		}
 967
 968		/* keep searching until we find a perfect match leaf or NULL */
 969	} while (IS_TNODE(n));
 970
 971	*tp = pn;
 972
 973	return n;
 974}
 975
 976/* Return the first fib alias matching TOS with
 977 * priority less than or equal to PRIO.
 978 * If 'find_first' is set, return the first matching
 979 * fib alias, regardless of TOS and priority.
 980 */
 981static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 982					u8 tos, u32 prio, u32 tb_id,
 983					bool find_first)
 984{
 985	struct fib_alias *fa;
 986
 987	if (!fah)
 988		return NULL;
 989
 990	hlist_for_each_entry(fa, fah, fa_list) {
 
 
 
 
 991		if (fa->fa_slen < slen)
 992			continue;
 993		if (fa->fa_slen != slen)
 994			break;
 995		if (fa->tb_id > tb_id)
 996			continue;
 997		if (fa->tb_id != tb_id)
 998			break;
 999		if (find_first)
1000			return fa;
1001		if (fa->fa_tos > tos)
1002			continue;
1003		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004			return fa;
1005	}
1006
1007	return NULL;
1008}
1009
1010static struct fib_alias *
1011fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012{
1013	u8 slen = KEYLENGTH - fri->dst_len;
1014	struct key_vector *l, *tp;
1015	struct fib_table *tb;
1016	struct fib_alias *fa;
1017	struct trie *t;
1018
1019	tb = fib_get_table(net, fri->tb_id);
1020	if (!tb)
1021		return NULL;
1022
1023	t = (struct trie *)tb->tb_data;
1024	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025	if (!l)
1026		return NULL;
1027
1028	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030		    fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1031		    fa->fa_type == fri->type)
1032			return fa;
1033	}
1034
1035	return NULL;
1036}
1037
1038void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039{
 
1040	struct fib_alias *fa_match;
1041	struct sk_buff *skb;
1042	int err;
1043
1044	rcu_read_lock();
1045
1046	fa_match = fib_find_matching_alias(net, fri);
1047	if (!fa_match)
1048		goto out;
1049
1050	if (fa_match->offload == fri->offload && fa_match->trap == fri->trap &&
1051	    fa_match->offload_failed == fri->offload_failed)
 
 
 
 
1052		goto out;
1053
1054	fa_match->offload = fri->offload;
1055	fa_match->trap = fri->trap;
 
 
1056
1057	/* 2 means send notifications only if offload_failed was changed. */
1058	if (net->ipv4.sysctl_fib_notify_on_flag_change == 2 &&
1059	    fa_match->offload_failed == fri->offload_failed)
1060		goto out;
1061
1062	fa_match->offload_failed = fri->offload_failed;
1063
1064	if (!net->ipv4.sysctl_fib_notify_on_flag_change)
1065		goto out;
1066
1067	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1068	if (!skb) {
1069		err = -ENOBUFS;
1070		goto errout;
1071	}
1072
1073	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1074	if (err < 0) {
1075		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1076		WARN_ON(err == -EMSGSIZE);
1077		kfree_skb(skb);
1078		goto errout;
1079	}
1080
1081	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1082	goto out;
1083
1084errout:
1085	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1086out:
1087	rcu_read_unlock();
1088}
1089EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1090
1091static void trie_rebalance(struct trie *t, struct key_vector *tn)
1092{
1093	while (!IS_TRIE(tn))
1094		tn = resize(t, tn);
1095}
1096
1097static int fib_insert_node(struct trie *t, struct key_vector *tp,
1098			   struct fib_alias *new, t_key key)
1099{
1100	struct key_vector *n, *l;
1101
1102	l = leaf_new(key, new);
1103	if (!l)
1104		goto noleaf;
1105
1106	/* retrieve child from parent node */
1107	n = get_child(tp, get_index(key, tp));
1108
1109	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1110	 *
1111	 *  Add a new tnode here
1112	 *  first tnode need some special handling
1113	 *  leaves us in position for handling as case 3
1114	 */
1115	if (n) {
1116		struct key_vector *tn;
1117
1118		tn = tnode_new(key, __fls(key ^ n->key), 1);
1119		if (!tn)
1120			goto notnode;
1121
1122		/* initialize routes out of node */
1123		NODE_INIT_PARENT(tn, tp);
1124		put_child(tn, get_index(key, tn) ^ 1, n);
1125
1126		/* start adding routes into the node */
1127		put_child_root(tp, key, tn);
1128		node_set_parent(n, tn);
1129
1130		/* parent now has a NULL spot where the leaf can go */
1131		tp = tn;
1132	}
1133
1134	/* Case 3: n is NULL, and will just insert a new leaf */
1135	node_push_suffix(tp, new->fa_slen);
1136	NODE_INIT_PARENT(l, tp);
1137	put_child_root(tp, key, l);
1138	trie_rebalance(t, tp);
1139
1140	return 0;
1141notnode:
1142	node_free(l);
1143noleaf:
1144	return -ENOMEM;
1145}
1146
1147static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1148			    struct key_vector *l, struct fib_alias *new,
1149			    struct fib_alias *fa, t_key key)
1150{
1151	if (!l)
1152		return fib_insert_node(t, tp, new, key);
1153
1154	if (fa) {
1155		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1156	} else {
1157		struct fib_alias *last;
1158
1159		hlist_for_each_entry(last, &l->leaf, fa_list) {
1160			if (new->fa_slen < last->fa_slen)
1161				break;
1162			if ((new->fa_slen == last->fa_slen) &&
1163			    (new->tb_id > last->tb_id))
1164				break;
1165			fa = last;
1166		}
1167
1168		if (fa)
1169			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1170		else
1171			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1172	}
1173
1174	/* if we added to the tail node then we need to update slen */
1175	if (l->slen < new->fa_slen) {
1176		l->slen = new->fa_slen;
1177		node_push_suffix(tp, new->fa_slen);
1178	}
1179
1180	return 0;
1181}
1182
1183static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1184{
1185	if (plen > KEYLENGTH) {
1186		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1187		return false;
1188	}
1189
1190	if ((plen < KEYLENGTH) && (key << plen)) {
1191		NL_SET_ERR_MSG(extack,
1192			       "Invalid prefix for given prefix length");
1193		return false;
1194	}
1195
1196	return true;
1197}
1198
1199static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1200			     struct key_vector *l, struct fib_alias *old);
1201
1202/* Caller must hold RTNL. */
1203int fib_table_insert(struct net *net, struct fib_table *tb,
1204		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1205{
1206	struct trie *t = (struct trie *)tb->tb_data;
1207	struct fib_alias *fa, *new_fa;
1208	struct key_vector *l, *tp;
1209	u16 nlflags = NLM_F_EXCL;
1210	struct fib_info *fi;
1211	u8 plen = cfg->fc_dst_len;
1212	u8 slen = KEYLENGTH - plen;
1213	u8 tos = cfg->fc_tos;
1214	u32 key;
1215	int err;
1216
1217	key = ntohl(cfg->fc_dst);
1218
1219	if (!fib_valid_key_len(key, plen, extack))
1220		return -EINVAL;
1221
1222	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1223
1224	fi = fib_create_info(cfg, extack);
1225	if (IS_ERR(fi)) {
1226		err = PTR_ERR(fi);
1227		goto err;
1228	}
1229
 
1230	l = fib_find_node(t, &tp, key);
1231	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1232				tb->tb_id, false) : NULL;
1233
1234	/* Now fa, if non-NULL, points to the first fib alias
1235	 * with the same keys [prefix,tos,priority], if such key already
1236	 * exists or to the node before which we will insert new one.
1237	 *
1238	 * If fa is NULL, we will need to allocate a new one and
1239	 * insert to the tail of the section matching the suffix length
1240	 * of the new alias.
1241	 */
1242
1243	if (fa && fa->fa_tos == tos &&
1244	    fa->fa_info->fib_priority == fi->fib_priority) {
1245		struct fib_alias *fa_first, *fa_match;
1246
1247		err = -EEXIST;
1248		if (cfg->fc_nlflags & NLM_F_EXCL)
1249			goto out;
1250
1251		nlflags &= ~NLM_F_EXCL;
1252
1253		/* We have 2 goals:
1254		 * 1. Find exact match for type, scope, fib_info to avoid
1255		 * duplicate routes
1256		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1257		 */
1258		fa_match = NULL;
1259		fa_first = fa;
1260		hlist_for_each_entry_from(fa, fa_list) {
1261			if ((fa->fa_slen != slen) ||
1262			    (fa->tb_id != tb->tb_id) ||
1263			    (fa->fa_tos != tos))
1264				break;
1265			if (fa->fa_info->fib_priority != fi->fib_priority)
1266				break;
1267			if (fa->fa_type == cfg->fc_type &&
1268			    fa->fa_info == fi) {
1269				fa_match = fa;
1270				break;
1271			}
1272		}
1273
1274		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1275			struct fib_info *fi_drop;
1276			u8 state;
1277
1278			nlflags |= NLM_F_REPLACE;
1279			fa = fa_first;
1280			if (fa_match) {
1281				if (fa == fa_match)
1282					err = 0;
1283				goto out;
1284			}
1285			err = -ENOBUFS;
1286			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1287			if (!new_fa)
1288				goto out;
1289
1290			fi_drop = fa->fa_info;
1291			new_fa->fa_tos = fa->fa_tos;
1292			new_fa->fa_info = fi;
1293			new_fa->fa_type = cfg->fc_type;
1294			state = fa->fa_state;
1295			new_fa->fa_state = state & ~FA_S_ACCESSED;
1296			new_fa->fa_slen = fa->fa_slen;
1297			new_fa->tb_id = tb->tb_id;
1298			new_fa->fa_default = -1;
1299			new_fa->offload = 0;
1300			new_fa->trap = 0;
1301			new_fa->offload_failed = 0;
1302
1303			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1304
1305			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1306					   tb->tb_id, true) == new_fa) {
1307				enum fib_event_type fib_event;
1308
1309				fib_event = FIB_EVENT_ENTRY_REPLACE;
1310				err = call_fib_entry_notifiers(net, fib_event,
1311							       key, plen,
1312							       new_fa, extack);
1313				if (err) {
1314					hlist_replace_rcu(&new_fa->fa_list,
1315							  &fa->fa_list);
1316					goto out_free_new_fa;
1317				}
1318			}
1319
1320			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1321				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1322
1323			alias_free_mem_rcu(fa);
1324
1325			fib_release_info(fi_drop);
1326			if (state & FA_S_ACCESSED)
1327				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1328
1329			goto succeeded;
1330		}
1331		/* Error if we find a perfect match which
1332		 * uses the same scope, type, and nexthop
1333		 * information.
1334		 */
1335		if (fa_match)
1336			goto out;
1337
1338		if (cfg->fc_nlflags & NLM_F_APPEND)
1339			nlflags |= NLM_F_APPEND;
1340		else
1341			fa = fa_first;
1342	}
1343	err = -ENOENT;
1344	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1345		goto out;
1346
1347	nlflags |= NLM_F_CREATE;
1348	err = -ENOBUFS;
1349	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1350	if (!new_fa)
1351		goto out;
1352
1353	new_fa->fa_info = fi;
1354	new_fa->fa_tos = tos;
1355	new_fa->fa_type = cfg->fc_type;
1356	new_fa->fa_state = 0;
1357	new_fa->fa_slen = slen;
1358	new_fa->tb_id = tb->tb_id;
1359	new_fa->fa_default = -1;
1360	new_fa->offload = 0;
1361	new_fa->trap = 0;
1362	new_fa->offload_failed = 0;
1363
1364	/* Insert new entry to the list. */
1365	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1366	if (err)
1367		goto out_free_new_fa;
1368
1369	/* The alias was already inserted, so the node must exist. */
1370	l = l ? l : fib_find_node(t, &tp, key);
1371	if (WARN_ON_ONCE(!l))
 
1372		goto out_free_new_fa;
 
1373
1374	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1375	    new_fa) {
1376		enum fib_event_type fib_event;
1377
1378		fib_event = FIB_EVENT_ENTRY_REPLACE;
1379		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1380					       new_fa, extack);
1381		if (err)
1382			goto out_remove_new_fa;
1383	}
1384
1385	if (!plen)
1386		tb->tb_num_default++;
1387
1388	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1389	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1390		  &cfg->fc_nlinfo, nlflags);
1391succeeded:
1392	return 0;
1393
1394out_remove_new_fa:
1395	fib_remove_alias(t, tp, l, new_fa);
1396out_free_new_fa:
1397	kmem_cache_free(fn_alias_kmem, new_fa);
1398out:
1399	fib_release_info(fi);
1400err:
1401	return err;
1402}
1403
1404static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1405{
1406	t_key prefix = n->key;
1407
1408	return (key ^ prefix) & (prefix | -prefix);
1409}
1410
1411bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1412			 const struct flowi4 *flp)
1413{
1414	if (nhc->nhc_flags & RTNH_F_DEAD)
1415		return false;
1416
1417	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1418	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1419	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1420		return false;
1421
1422	if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1423		if (flp->flowi4_oif &&
1424		    flp->flowi4_oif != nhc->nhc_oif)
1425			return false;
1426	}
1427
1428	return true;
1429}
1430
1431/* should be called with rcu_read_lock */
1432int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1433		     struct fib_result *res, int fib_flags)
1434{
1435	struct trie *t = (struct trie *) tb->tb_data;
1436#ifdef CONFIG_IP_FIB_TRIE_STATS
1437	struct trie_use_stats __percpu *stats = t->stats;
1438#endif
1439	const t_key key = ntohl(flp->daddr);
1440	struct key_vector *n, *pn;
1441	struct fib_alias *fa;
1442	unsigned long index;
1443	t_key cindex;
1444
1445	pn = t->kv;
1446	cindex = 0;
1447
1448	n = get_child_rcu(pn, cindex);
1449	if (!n) {
1450		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1451		return -EAGAIN;
1452	}
1453
1454#ifdef CONFIG_IP_FIB_TRIE_STATS
1455	this_cpu_inc(stats->gets);
1456#endif
1457
1458	/* Step 1: Travel to the longest prefix match in the trie */
1459	for (;;) {
1460		index = get_cindex(key, n);
1461
1462		/* This bit of code is a bit tricky but it combines multiple
1463		 * checks into a single check.  The prefix consists of the
1464		 * prefix plus zeros for the "bits" in the prefix. The index
1465		 * is the difference between the key and this value.  From
1466		 * this we can actually derive several pieces of data.
1467		 *   if (index >= (1ul << bits))
1468		 *     we have a mismatch in skip bits and failed
1469		 *   else
1470		 *     we know the value is cindex
1471		 *
1472		 * This check is safe even if bits == KEYLENGTH due to the
1473		 * fact that we can only allocate a node with 32 bits if a
1474		 * long is greater than 32 bits.
1475		 */
1476		if (index >= (1ul << n->bits))
1477			break;
1478
1479		/* we have found a leaf. Prefixes have already been compared */
1480		if (IS_LEAF(n))
1481			goto found;
1482
1483		/* only record pn and cindex if we are going to be chopping
1484		 * bits later.  Otherwise we are just wasting cycles.
1485		 */
1486		if (n->slen > n->pos) {
1487			pn = n;
1488			cindex = index;
1489		}
1490
1491		n = get_child_rcu(n, index);
1492		if (unlikely(!n))
1493			goto backtrace;
1494	}
1495
1496	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1497	for (;;) {
1498		/* record the pointer where our next node pointer is stored */
1499		struct key_vector __rcu **cptr = n->tnode;
1500
1501		/* This test verifies that none of the bits that differ
1502		 * between the key and the prefix exist in the region of
1503		 * the lsb and higher in the prefix.
1504		 */
1505		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1506			goto backtrace;
1507
1508		/* exit out and process leaf */
1509		if (unlikely(IS_LEAF(n)))
1510			break;
1511
1512		/* Don't bother recording parent info.  Since we are in
1513		 * prefix match mode we will have to come back to wherever
1514		 * we started this traversal anyway
1515		 */
1516
1517		while ((n = rcu_dereference(*cptr)) == NULL) {
1518backtrace:
1519#ifdef CONFIG_IP_FIB_TRIE_STATS
1520			if (!n)
1521				this_cpu_inc(stats->null_node_hit);
1522#endif
1523			/* If we are at cindex 0 there are no more bits for
1524			 * us to strip at this level so we must ascend back
1525			 * up one level to see if there are any more bits to
1526			 * be stripped there.
1527			 */
1528			while (!cindex) {
1529				t_key pkey = pn->key;
1530
1531				/* If we don't have a parent then there is
1532				 * nothing for us to do as we do not have any
1533				 * further nodes to parse.
1534				 */
1535				if (IS_TRIE(pn)) {
1536					trace_fib_table_lookup(tb->tb_id, flp,
1537							       NULL, -EAGAIN);
1538					return -EAGAIN;
1539				}
1540#ifdef CONFIG_IP_FIB_TRIE_STATS
1541				this_cpu_inc(stats->backtrack);
1542#endif
1543				/* Get Child's index */
1544				pn = node_parent_rcu(pn);
1545				cindex = get_index(pkey, pn);
1546			}
1547
1548			/* strip the least significant bit from the cindex */
1549			cindex &= cindex - 1;
1550
1551			/* grab pointer for next child node */
1552			cptr = &pn->tnode[cindex];
1553		}
1554	}
1555
1556found:
1557	/* this line carries forward the xor from earlier in the function */
1558	index = key ^ n->key;
1559
1560	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1561	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1562		struct fib_info *fi = fa->fa_info;
1563		struct fib_nh_common *nhc;
1564		int nhsel, err;
1565
1566		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1567			if (index >= (1ul << fa->fa_slen))
1568				continue;
1569		}
1570		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1571			continue;
1572		if (fi->fib_dead)
 
1573			continue;
1574		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1575			continue;
1576		fib_alias_accessed(fa);
1577		err = fib_props[fa->fa_type].error;
1578		if (unlikely(err < 0)) {
1579out_reject:
1580#ifdef CONFIG_IP_FIB_TRIE_STATS
1581			this_cpu_inc(stats->semantic_match_passed);
1582#endif
1583			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1584			return err;
1585		}
1586		if (fi->fib_flags & RTNH_F_DEAD)
1587			continue;
1588
1589		if (unlikely(fi->nh)) {
1590			if (nexthop_is_blackhole(fi->nh)) {
1591				err = fib_props[RTN_BLACKHOLE].error;
1592				goto out_reject;
1593			}
1594
1595			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1596						     &nhsel);
1597			if (nhc)
1598				goto set_result;
1599			goto miss;
1600		}
1601
1602		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1603			nhc = fib_info_nhc(fi, nhsel);
1604
1605			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1606				continue;
1607set_result:
1608			if (!(fib_flags & FIB_LOOKUP_NOREF))
1609				refcount_inc(&fi->fib_clntref);
1610
1611			res->prefix = htonl(n->key);
1612			res->prefixlen = KEYLENGTH - fa->fa_slen;
1613			res->nh_sel = nhsel;
1614			res->nhc = nhc;
1615			res->type = fa->fa_type;
1616			res->scope = fi->fib_scope;
 
1617			res->fi = fi;
1618			res->table = tb;
1619			res->fa_head = &n->leaf;
1620#ifdef CONFIG_IP_FIB_TRIE_STATS
1621			this_cpu_inc(stats->semantic_match_passed);
1622#endif
1623			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1624
1625			return err;
1626		}
1627	}
1628miss:
1629#ifdef CONFIG_IP_FIB_TRIE_STATS
1630	this_cpu_inc(stats->semantic_match_miss);
1631#endif
1632	goto backtrace;
1633}
1634EXPORT_SYMBOL_GPL(fib_table_lookup);
1635
1636static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1637			     struct key_vector *l, struct fib_alias *old)
1638{
1639	/* record the location of the previous list_info entry */
1640	struct hlist_node **pprev = old->fa_list.pprev;
1641	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1642
1643	/* remove the fib_alias from the list */
1644	hlist_del_rcu(&old->fa_list);
1645
1646	/* if we emptied the list this leaf will be freed and we can sort
1647	 * out parent suffix lengths as a part of trie_rebalance
1648	 */
1649	if (hlist_empty(&l->leaf)) {
1650		if (tp->slen == l->slen)
1651			node_pull_suffix(tp, tp->pos);
1652		put_child_root(tp, l->key, NULL);
1653		node_free(l);
1654		trie_rebalance(t, tp);
1655		return;
1656	}
1657
1658	/* only access fa if it is pointing at the last valid hlist_node */
1659	if (*pprev)
1660		return;
1661
1662	/* update the trie with the latest suffix length */
1663	l->slen = fa->fa_slen;
1664	node_pull_suffix(tp, fa->fa_slen);
1665}
1666
1667static void fib_notify_alias_delete(struct net *net, u32 key,
1668				    struct hlist_head *fah,
1669				    struct fib_alias *fa_to_delete,
1670				    struct netlink_ext_ack *extack)
1671{
1672	struct fib_alias *fa_next, *fa_to_notify;
1673	u32 tb_id = fa_to_delete->tb_id;
1674	u8 slen = fa_to_delete->fa_slen;
1675	enum fib_event_type fib_event;
1676
1677	/* Do not notify if we do not care about the route. */
1678	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1679		return;
1680
1681	/* Determine if the route should be replaced by the next route in the
1682	 * list.
1683	 */
1684	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1685				   struct fib_alias, fa_list);
1686	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1687		fib_event = FIB_EVENT_ENTRY_REPLACE;
1688		fa_to_notify = fa_next;
1689	} else {
1690		fib_event = FIB_EVENT_ENTRY_DEL;
1691		fa_to_notify = fa_to_delete;
1692	}
1693	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1694				 fa_to_notify, extack);
1695}
1696
1697/* Caller must hold RTNL. */
1698int fib_table_delete(struct net *net, struct fib_table *tb,
1699		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1700{
1701	struct trie *t = (struct trie *) tb->tb_data;
1702	struct fib_alias *fa, *fa_to_delete;
1703	struct key_vector *l, *tp;
1704	u8 plen = cfg->fc_dst_len;
1705	u8 slen = KEYLENGTH - plen;
1706	u8 tos = cfg->fc_tos;
1707	u32 key;
1708
1709	key = ntohl(cfg->fc_dst);
1710
1711	if (!fib_valid_key_len(key, plen, extack))
1712		return -EINVAL;
1713
1714	l = fib_find_node(t, &tp, key);
1715	if (!l)
1716		return -ESRCH;
1717
1718	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
 
1719	if (!fa)
1720		return -ESRCH;
1721
1722	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
 
1723
1724	fa_to_delete = NULL;
1725	hlist_for_each_entry_from(fa, fa_list) {
1726		struct fib_info *fi = fa->fa_info;
1727
1728		if ((fa->fa_slen != slen) ||
1729		    (fa->tb_id != tb->tb_id) ||
1730		    (fa->fa_tos != tos))
1731			break;
1732
1733		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1734		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1735		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1736		    (!cfg->fc_prefsrc ||
1737		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1738		    (!cfg->fc_protocol ||
1739		     fi->fib_protocol == cfg->fc_protocol) &&
1740		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1741		    fib_metrics_match(cfg, fi)) {
1742			fa_to_delete = fa;
1743			break;
1744		}
1745	}
1746
1747	if (!fa_to_delete)
1748		return -ESRCH;
1749
1750	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1751	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1752		  &cfg->fc_nlinfo, 0);
1753
1754	if (!plen)
1755		tb->tb_num_default--;
1756
1757	fib_remove_alias(t, tp, l, fa_to_delete);
1758
1759	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1760		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1761
1762	fib_release_info(fa_to_delete->fa_info);
1763	alias_free_mem_rcu(fa_to_delete);
1764	return 0;
1765}
1766
1767/* Scan for the next leaf starting at the provided key value */
1768static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1769{
1770	struct key_vector *pn, *n = *tn;
1771	unsigned long cindex;
1772
1773	/* this loop is meant to try and find the key in the trie */
1774	do {
1775		/* record parent and next child index */
1776		pn = n;
1777		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1778
1779		if (cindex >> pn->bits)
1780			break;
1781
1782		/* descend into the next child */
1783		n = get_child_rcu(pn, cindex++);
1784		if (!n)
1785			break;
1786
1787		/* guarantee forward progress on the keys */
1788		if (IS_LEAF(n) && (n->key >= key))
1789			goto found;
1790	} while (IS_TNODE(n));
1791
1792	/* this loop will search for the next leaf with a greater key */
1793	while (!IS_TRIE(pn)) {
1794		/* if we exhausted the parent node we will need to climb */
1795		if (cindex >= (1ul << pn->bits)) {
1796			t_key pkey = pn->key;
1797
1798			pn = node_parent_rcu(pn);
1799			cindex = get_index(pkey, pn) + 1;
1800			continue;
1801		}
1802
1803		/* grab the next available node */
1804		n = get_child_rcu(pn, cindex++);
1805		if (!n)
1806			continue;
1807
1808		/* no need to compare keys since we bumped the index */
1809		if (IS_LEAF(n))
1810			goto found;
1811
1812		/* Rescan start scanning in new node */
1813		pn = n;
1814		cindex = 0;
1815	}
1816
1817	*tn = pn;
1818	return NULL; /* Root of trie */
1819found:
1820	/* if we are at the limit for keys just return NULL for the tnode */
1821	*tn = pn;
1822	return n;
1823}
1824
1825static void fib_trie_free(struct fib_table *tb)
1826{
1827	struct trie *t = (struct trie *)tb->tb_data;
1828	struct key_vector *pn = t->kv;
1829	unsigned long cindex = 1;
1830	struct hlist_node *tmp;
1831	struct fib_alias *fa;
1832
1833	/* walk trie in reverse order and free everything */
1834	for (;;) {
1835		struct key_vector *n;
1836
1837		if (!(cindex--)) {
1838			t_key pkey = pn->key;
1839
1840			if (IS_TRIE(pn))
1841				break;
1842
1843			n = pn;
1844			pn = node_parent(pn);
1845
1846			/* drop emptied tnode */
1847			put_child_root(pn, n->key, NULL);
1848			node_free(n);
1849
1850			cindex = get_index(pkey, pn);
1851
1852			continue;
1853		}
1854
1855		/* grab the next available node */
1856		n = get_child(pn, cindex);
1857		if (!n)
1858			continue;
1859
1860		if (IS_TNODE(n)) {
1861			/* record pn and cindex for leaf walking */
1862			pn = n;
1863			cindex = 1ul << n->bits;
1864
1865			continue;
1866		}
1867
1868		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1869			hlist_del_rcu(&fa->fa_list);
1870			alias_free_mem_rcu(fa);
1871		}
1872
1873		put_child_root(pn, n->key, NULL);
1874		node_free(n);
1875	}
1876
1877#ifdef CONFIG_IP_FIB_TRIE_STATS
1878	free_percpu(t->stats);
1879#endif
1880	kfree(tb);
1881}
1882
1883struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1884{
1885	struct trie *ot = (struct trie *)oldtb->tb_data;
1886	struct key_vector *l, *tp = ot->kv;
1887	struct fib_table *local_tb;
1888	struct fib_alias *fa;
1889	struct trie *lt;
1890	t_key key = 0;
1891
1892	if (oldtb->tb_data == oldtb->__data)
1893		return oldtb;
1894
1895	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1896	if (!local_tb)
1897		return NULL;
1898
1899	lt = (struct trie *)local_tb->tb_data;
1900
1901	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1902		struct key_vector *local_l = NULL, *local_tp;
1903
1904		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1905			struct fib_alias *new_fa;
1906
1907			if (local_tb->tb_id != fa->tb_id)
1908				continue;
1909
1910			/* clone fa for new local table */
1911			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1912			if (!new_fa)
1913				goto out;
1914
1915			memcpy(new_fa, fa, sizeof(*fa));
1916
1917			/* insert clone into table */
1918			if (!local_l)
1919				local_l = fib_find_node(lt, &local_tp, l->key);
1920
1921			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1922					     NULL, l->key)) {
1923				kmem_cache_free(fn_alias_kmem, new_fa);
1924				goto out;
1925			}
1926		}
1927
1928		/* stop loop if key wrapped back to 0 */
1929		key = l->key + 1;
1930		if (key < l->key)
1931			break;
1932	}
1933
1934	return local_tb;
1935out:
1936	fib_trie_free(local_tb);
1937
1938	return NULL;
1939}
1940
1941/* Caller must hold RTNL */
1942void fib_table_flush_external(struct fib_table *tb)
1943{
1944	struct trie *t = (struct trie *)tb->tb_data;
1945	struct key_vector *pn = t->kv;
1946	unsigned long cindex = 1;
1947	struct hlist_node *tmp;
1948	struct fib_alias *fa;
1949
1950	/* walk trie in reverse order */
1951	for (;;) {
1952		unsigned char slen = 0;
1953		struct key_vector *n;
1954
1955		if (!(cindex--)) {
1956			t_key pkey = pn->key;
1957
1958			/* cannot resize the trie vector */
1959			if (IS_TRIE(pn))
1960				break;
1961
1962			/* update the suffix to address pulled leaves */
1963			if (pn->slen > pn->pos)
1964				update_suffix(pn);
1965
1966			/* resize completed node */
1967			pn = resize(t, pn);
1968			cindex = get_index(pkey, pn);
1969
1970			continue;
1971		}
1972
1973		/* grab the next available node */
1974		n = get_child(pn, cindex);
1975		if (!n)
1976			continue;
1977
1978		if (IS_TNODE(n)) {
1979			/* record pn and cindex for leaf walking */
1980			pn = n;
1981			cindex = 1ul << n->bits;
1982
1983			continue;
1984		}
1985
1986		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1987			/* if alias was cloned to local then we just
1988			 * need to remove the local copy from main
1989			 */
1990			if (tb->tb_id != fa->tb_id) {
1991				hlist_del_rcu(&fa->fa_list);
1992				alias_free_mem_rcu(fa);
1993				continue;
1994			}
1995
1996			/* record local slen */
1997			slen = fa->fa_slen;
1998		}
1999
2000		/* update leaf slen */
2001		n->slen = slen;
2002
2003		if (hlist_empty(&n->leaf)) {
2004			put_child_root(pn, n->key, NULL);
2005			node_free(n);
2006		}
2007	}
2008}
2009
2010/* Caller must hold RTNL. */
2011int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2012{
2013	struct trie *t = (struct trie *)tb->tb_data;
 
2014	struct key_vector *pn = t->kv;
2015	unsigned long cindex = 1;
2016	struct hlist_node *tmp;
2017	struct fib_alias *fa;
2018	int found = 0;
2019
2020	/* walk trie in reverse order */
2021	for (;;) {
2022		unsigned char slen = 0;
2023		struct key_vector *n;
2024
2025		if (!(cindex--)) {
2026			t_key pkey = pn->key;
2027
2028			/* cannot resize the trie vector */
2029			if (IS_TRIE(pn))
2030				break;
2031
2032			/* update the suffix to address pulled leaves */
2033			if (pn->slen > pn->pos)
2034				update_suffix(pn);
2035
2036			/* resize completed node */
2037			pn = resize(t, pn);
2038			cindex = get_index(pkey, pn);
2039
2040			continue;
2041		}
2042
2043		/* grab the next available node */
2044		n = get_child(pn, cindex);
2045		if (!n)
2046			continue;
2047
2048		if (IS_TNODE(n)) {
2049			/* record pn and cindex for leaf walking */
2050			pn = n;
2051			cindex = 1ul << n->bits;
2052
2053			continue;
2054		}
2055
2056		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2057			struct fib_info *fi = fa->fa_info;
2058
2059			if (!fi || tb->tb_id != fa->tb_id ||
2060			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2061			     !fib_props[fa->fa_type].error)) {
2062				slen = fa->fa_slen;
2063				continue;
2064			}
2065
2066			/* Do not flush error routes if network namespace is
2067			 * not being dismantled
2068			 */
2069			if (!flush_all && fib_props[fa->fa_type].error) {
2070				slen = fa->fa_slen;
2071				continue;
2072			}
2073
2074			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2075						NULL);
 
 
 
2076			hlist_del_rcu(&fa->fa_list);
2077			fib_release_info(fa->fa_info);
2078			alias_free_mem_rcu(fa);
2079			found++;
2080		}
2081
2082		/* update leaf slen */
2083		n->slen = slen;
2084
2085		if (hlist_empty(&n->leaf)) {
2086			put_child_root(pn, n->key, NULL);
2087			node_free(n);
2088		}
2089	}
2090
2091	pr_debug("trie_flush found=%d\n", found);
2092	return found;
2093}
2094
2095/* derived from fib_trie_free */
2096static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2097				     struct nl_info *info)
2098{
2099	struct trie *t = (struct trie *)tb->tb_data;
2100	struct key_vector *pn = t->kv;
2101	unsigned long cindex = 1;
2102	struct fib_alias *fa;
2103
2104	for (;;) {
2105		struct key_vector *n;
2106
2107		if (!(cindex--)) {
2108			t_key pkey = pn->key;
2109
2110			if (IS_TRIE(pn))
2111				break;
2112
2113			pn = node_parent(pn);
2114			cindex = get_index(pkey, pn);
2115			continue;
2116		}
2117
2118		/* grab the next available node */
2119		n = get_child(pn, cindex);
2120		if (!n)
2121			continue;
2122
2123		if (IS_TNODE(n)) {
2124			/* record pn and cindex for leaf walking */
2125			pn = n;
2126			cindex = 1ul << n->bits;
2127
2128			continue;
2129		}
2130
2131		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2132			struct fib_info *fi = fa->fa_info;
2133
2134			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2135				continue;
2136
2137			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2138				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2139				  info, NLM_F_REPLACE);
2140		}
2141	}
2142}
2143
2144void fib_info_notify_update(struct net *net, struct nl_info *info)
2145{
2146	unsigned int h;
2147
2148	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2149		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2150		struct fib_table *tb;
2151
2152		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2153					 lockdep_rtnl_is_held())
2154			__fib_info_notify_update(net, tb, info);
2155	}
2156}
2157
2158static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2159			   struct notifier_block *nb,
2160			   struct netlink_ext_ack *extack)
2161{
2162	struct fib_alias *fa;
2163	int last_slen = -1;
2164	int err;
2165
2166	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2167		struct fib_info *fi = fa->fa_info;
2168
2169		if (!fi)
2170			continue;
2171
2172		/* local and main table can share the same trie,
2173		 * so don't notify twice for the same entry.
2174		 */
2175		if (tb->tb_id != fa->tb_id)
2176			continue;
2177
2178		if (fa->fa_slen == last_slen)
2179			continue;
2180
2181		last_slen = fa->fa_slen;
2182		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2183					      l->key, KEYLENGTH - fa->fa_slen,
2184					      fa, extack);
2185		if (err)
2186			return err;
2187	}
2188	return 0;
2189}
2190
2191static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2192			    struct netlink_ext_ack *extack)
2193{
2194	struct trie *t = (struct trie *)tb->tb_data;
2195	struct key_vector *l, *tp = t->kv;
2196	t_key key = 0;
2197	int err;
2198
2199	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2200		err = fib_leaf_notify(l, tb, nb, extack);
2201		if (err)
2202			return err;
2203
2204		key = l->key + 1;
2205		/* stop in case of wrap around */
2206		if (key < l->key)
2207			break;
2208	}
2209	return 0;
2210}
2211
2212int fib_notify(struct net *net, struct notifier_block *nb,
2213	       struct netlink_ext_ack *extack)
2214{
2215	unsigned int h;
2216	int err;
2217
2218	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2219		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2220		struct fib_table *tb;
2221
2222		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2223			err = fib_table_notify(tb, nb, extack);
2224			if (err)
2225				return err;
2226		}
2227	}
2228	return 0;
2229}
2230
2231static void __trie_free_rcu(struct rcu_head *head)
2232{
2233	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2234#ifdef CONFIG_IP_FIB_TRIE_STATS
2235	struct trie *t = (struct trie *)tb->tb_data;
2236
2237	if (tb->tb_data == tb->__data)
2238		free_percpu(t->stats);
2239#endif /* CONFIG_IP_FIB_TRIE_STATS */
2240	kfree(tb);
2241}
2242
2243void fib_free_table(struct fib_table *tb)
2244{
2245	call_rcu(&tb->rcu, __trie_free_rcu);
2246}
2247
2248static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2249			     struct sk_buff *skb, struct netlink_callback *cb,
2250			     struct fib_dump_filter *filter)
2251{
2252	unsigned int flags = NLM_F_MULTI;
2253	__be32 xkey = htonl(l->key);
2254	int i, s_i, i_fa, s_fa, err;
2255	struct fib_alias *fa;
2256
2257	if (filter->filter_set ||
2258	    !filter->dump_exceptions || !filter->dump_routes)
2259		flags |= NLM_F_DUMP_FILTERED;
2260
2261	s_i = cb->args[4];
2262	s_fa = cb->args[5];
2263	i = 0;
2264
2265	/* rcu_read_lock is hold by caller */
2266	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2267		struct fib_info *fi = fa->fa_info;
2268
2269		if (i < s_i)
2270			goto next;
2271
2272		i_fa = 0;
2273
2274		if (tb->tb_id != fa->tb_id)
2275			goto next;
2276
2277		if (filter->filter_set) {
2278			if (filter->rt_type && fa->fa_type != filter->rt_type)
2279				goto next;
2280
2281			if ((filter->protocol &&
2282			     fi->fib_protocol != filter->protocol))
2283				goto next;
2284
2285			if (filter->dev &&
2286			    !fib_info_nh_uses_dev(fi, filter->dev))
2287				goto next;
2288		}
2289
2290		if (filter->dump_routes) {
2291			if (!s_fa) {
2292				struct fib_rt_info fri;
2293
2294				fri.fi = fi;
2295				fri.tb_id = tb->tb_id;
2296				fri.dst = xkey;
2297				fri.dst_len = KEYLENGTH - fa->fa_slen;
2298				fri.tos = fa->fa_tos;
2299				fri.type = fa->fa_type;
2300				fri.offload = fa->offload;
2301				fri.trap = fa->trap;
2302				fri.offload_failed = fa->offload_failed;
2303				err = fib_dump_info(skb,
2304						    NETLINK_CB(cb->skb).portid,
2305						    cb->nlh->nlmsg_seq,
2306						    RTM_NEWROUTE, &fri, flags);
2307				if (err < 0)
2308					goto stop;
2309			}
2310
2311			i_fa++;
2312		}
2313
2314		if (filter->dump_exceptions) {
2315			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2316						 &i_fa, s_fa, flags);
2317			if (err < 0)
2318				goto stop;
2319		}
2320
2321next:
2322		i++;
2323	}
2324
2325	cb->args[4] = i;
2326	return skb->len;
2327
2328stop:
2329	cb->args[4] = i;
2330	cb->args[5] = i_fa;
2331	return err;
2332}
2333
2334/* rcu_read_lock needs to be hold by caller from readside */
2335int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2336		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2337{
2338	struct trie *t = (struct trie *)tb->tb_data;
2339	struct key_vector *l, *tp = t->kv;
2340	/* Dump starting at last key.
2341	 * Note: 0.0.0.0/0 (ie default) is first key.
2342	 */
2343	int count = cb->args[2];
2344	t_key key = cb->args[3];
2345
2346	/* First time here, count and key are both always 0. Count > 0
2347	 * and key == 0 means the dump has wrapped around and we are done.
2348	 */
2349	if (count && !key)
2350		return skb->len;
2351
2352	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2353		int err;
2354
2355		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2356		if (err < 0) {
2357			cb->args[3] = key;
2358			cb->args[2] = count;
2359			return err;
2360		}
2361
2362		++count;
2363		key = l->key + 1;
2364
2365		memset(&cb->args[4], 0,
2366		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2367
2368		/* stop loop if key wrapped back to 0 */
2369		if (key < l->key)
2370			break;
2371	}
2372
2373	cb->args[3] = key;
2374	cb->args[2] = count;
2375
2376	return skb->len;
2377}
2378
2379void __init fib_trie_init(void)
2380{
2381	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2382					  sizeof(struct fib_alias),
2383					  0, SLAB_PANIC, NULL);
2384
2385	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2386					   LEAF_SIZE,
2387					   0, SLAB_PANIC, NULL);
2388}
2389
2390struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2391{
2392	struct fib_table *tb;
2393	struct trie *t;
2394	size_t sz = sizeof(*tb);
2395
2396	if (!alias)
2397		sz += sizeof(struct trie);
2398
2399	tb = kzalloc(sz, GFP_KERNEL);
2400	if (!tb)
2401		return NULL;
2402
2403	tb->tb_id = id;
2404	tb->tb_num_default = 0;
2405	tb->tb_data = (alias ? alias->__data : tb->__data);
2406
2407	if (alias)
2408		return tb;
2409
2410	t = (struct trie *) tb->tb_data;
2411	t->kv[0].pos = KEYLENGTH;
2412	t->kv[0].slen = KEYLENGTH;
2413#ifdef CONFIG_IP_FIB_TRIE_STATS
2414	t->stats = alloc_percpu(struct trie_use_stats);
2415	if (!t->stats) {
2416		kfree(tb);
2417		tb = NULL;
2418	}
2419#endif
2420
2421	return tb;
2422}
2423
2424#ifdef CONFIG_PROC_FS
2425/* Depth first Trie walk iterator */
2426struct fib_trie_iter {
2427	struct seq_net_private p;
2428	struct fib_table *tb;
2429	struct key_vector *tnode;
2430	unsigned int index;
2431	unsigned int depth;
2432};
2433
2434static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2435{
2436	unsigned long cindex = iter->index;
2437	struct key_vector *pn = iter->tnode;
2438	t_key pkey;
2439
2440	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2441		 iter->tnode, iter->index, iter->depth);
2442
2443	while (!IS_TRIE(pn)) {
2444		while (cindex < child_length(pn)) {
2445			struct key_vector *n = get_child_rcu(pn, cindex++);
2446
2447			if (!n)
2448				continue;
2449
2450			if (IS_LEAF(n)) {
2451				iter->tnode = pn;
2452				iter->index = cindex;
2453			} else {
2454				/* push down one level */
2455				iter->tnode = n;
2456				iter->index = 0;
2457				++iter->depth;
2458			}
2459
2460			return n;
2461		}
2462
2463		/* Current node exhausted, pop back up */
2464		pkey = pn->key;
2465		pn = node_parent_rcu(pn);
2466		cindex = get_index(pkey, pn) + 1;
2467		--iter->depth;
2468	}
2469
2470	/* record root node so further searches know we are done */
2471	iter->tnode = pn;
2472	iter->index = 0;
2473
2474	return NULL;
2475}
2476
2477static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2478					     struct trie *t)
2479{
2480	struct key_vector *n, *pn;
2481
2482	if (!t)
2483		return NULL;
2484
2485	pn = t->kv;
2486	n = rcu_dereference(pn->tnode[0]);
2487	if (!n)
2488		return NULL;
2489
2490	if (IS_TNODE(n)) {
2491		iter->tnode = n;
2492		iter->index = 0;
2493		iter->depth = 1;
2494	} else {
2495		iter->tnode = pn;
2496		iter->index = 0;
2497		iter->depth = 0;
2498	}
2499
2500	return n;
2501}
2502
2503static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2504{
2505	struct key_vector *n;
2506	struct fib_trie_iter iter;
2507
2508	memset(s, 0, sizeof(*s));
2509
2510	rcu_read_lock();
2511	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2512		if (IS_LEAF(n)) {
2513			struct fib_alias *fa;
2514
2515			s->leaves++;
2516			s->totdepth += iter.depth;
2517			if (iter.depth > s->maxdepth)
2518				s->maxdepth = iter.depth;
2519
2520			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2521				++s->prefixes;
2522		} else {
2523			s->tnodes++;
2524			if (n->bits < MAX_STAT_DEPTH)
2525				s->nodesizes[n->bits]++;
2526			s->nullpointers += tn_info(n)->empty_children;
2527		}
2528	}
2529	rcu_read_unlock();
2530}
2531
2532/*
2533 *	This outputs /proc/net/fib_triestats
2534 */
2535static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2536{
2537	unsigned int i, max, pointers, bytes, avdepth;
2538
2539	if (stat->leaves)
2540		avdepth = stat->totdepth*100 / stat->leaves;
2541	else
2542		avdepth = 0;
2543
2544	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2545		   avdepth / 100, avdepth % 100);
2546	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2547
2548	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2549	bytes = LEAF_SIZE * stat->leaves;
2550
2551	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2552	bytes += sizeof(struct fib_alias) * stat->prefixes;
2553
2554	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2555	bytes += TNODE_SIZE(0) * stat->tnodes;
2556
2557	max = MAX_STAT_DEPTH;
2558	while (max > 0 && stat->nodesizes[max-1] == 0)
2559		max--;
2560
2561	pointers = 0;
2562	for (i = 1; i < max; i++)
2563		if (stat->nodesizes[i] != 0) {
2564			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2565			pointers += (1<<i) * stat->nodesizes[i];
2566		}
2567	seq_putc(seq, '\n');
2568	seq_printf(seq, "\tPointers: %u\n", pointers);
2569
2570	bytes += sizeof(struct key_vector *) * pointers;
2571	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2572	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2573}
2574
2575#ifdef CONFIG_IP_FIB_TRIE_STATS
2576static void trie_show_usage(struct seq_file *seq,
2577			    const struct trie_use_stats __percpu *stats)
2578{
2579	struct trie_use_stats s = { 0 };
2580	int cpu;
2581
2582	/* loop through all of the CPUs and gather up the stats */
2583	for_each_possible_cpu(cpu) {
2584		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2585
2586		s.gets += pcpu->gets;
2587		s.backtrack += pcpu->backtrack;
2588		s.semantic_match_passed += pcpu->semantic_match_passed;
2589		s.semantic_match_miss += pcpu->semantic_match_miss;
2590		s.null_node_hit += pcpu->null_node_hit;
2591		s.resize_node_skipped += pcpu->resize_node_skipped;
2592	}
2593
2594	seq_printf(seq, "\nCounters:\n---------\n");
2595	seq_printf(seq, "gets = %u\n", s.gets);
2596	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2597	seq_printf(seq, "semantic match passed = %u\n",
2598		   s.semantic_match_passed);
2599	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2600	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2601	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2602}
2603#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2604
2605static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2606{
2607	if (tb->tb_id == RT_TABLE_LOCAL)
2608		seq_puts(seq, "Local:\n");
2609	else if (tb->tb_id == RT_TABLE_MAIN)
2610		seq_puts(seq, "Main:\n");
2611	else
2612		seq_printf(seq, "Id %d:\n", tb->tb_id);
2613}
2614
2615
2616static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2617{
2618	struct net *net = (struct net *)seq->private;
2619	unsigned int h;
2620
2621	seq_printf(seq,
2622		   "Basic info: size of leaf:"
2623		   " %zd bytes, size of tnode: %zd bytes.\n",
2624		   LEAF_SIZE, TNODE_SIZE(0));
2625
2626	rcu_read_lock();
2627	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2628		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2629		struct fib_table *tb;
2630
2631		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2632			struct trie *t = (struct trie *) tb->tb_data;
2633			struct trie_stat stat;
2634
2635			if (!t)
2636				continue;
2637
2638			fib_table_print(seq, tb);
2639
2640			trie_collect_stats(t, &stat);
2641			trie_show_stats(seq, &stat);
2642#ifdef CONFIG_IP_FIB_TRIE_STATS
2643			trie_show_usage(seq, t->stats);
2644#endif
2645		}
2646		cond_resched_rcu();
2647	}
2648	rcu_read_unlock();
2649
2650	return 0;
2651}
2652
2653static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2654{
2655	struct fib_trie_iter *iter = seq->private;
2656	struct net *net = seq_file_net(seq);
2657	loff_t idx = 0;
2658	unsigned int h;
2659
2660	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2661		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2662		struct fib_table *tb;
2663
2664		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2665			struct key_vector *n;
2666
2667			for (n = fib_trie_get_first(iter,
2668						    (struct trie *) tb->tb_data);
2669			     n; n = fib_trie_get_next(iter))
2670				if (pos == idx++) {
2671					iter->tb = tb;
2672					return n;
2673				}
2674		}
2675	}
2676
2677	return NULL;
2678}
2679
2680static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2681	__acquires(RCU)
2682{
2683	rcu_read_lock();
2684	return fib_trie_get_idx(seq, *pos);
2685}
2686
2687static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2688{
2689	struct fib_trie_iter *iter = seq->private;
2690	struct net *net = seq_file_net(seq);
2691	struct fib_table *tb = iter->tb;
2692	struct hlist_node *tb_node;
2693	unsigned int h;
2694	struct key_vector *n;
2695
2696	++*pos;
2697	/* next node in same table */
2698	n = fib_trie_get_next(iter);
2699	if (n)
2700		return n;
2701
2702	/* walk rest of this hash chain */
2703	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2704	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2705		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2706		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2707		if (n)
2708			goto found;
2709	}
2710
2711	/* new hash chain */
2712	while (++h < FIB_TABLE_HASHSZ) {
2713		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2714		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2715			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2716			if (n)
2717				goto found;
2718		}
2719	}
2720	return NULL;
2721
2722found:
2723	iter->tb = tb;
2724	return n;
2725}
2726
2727static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2728	__releases(RCU)
2729{
2730	rcu_read_unlock();
2731}
2732
2733static void seq_indent(struct seq_file *seq, int n)
2734{
2735	while (n-- > 0)
2736		seq_puts(seq, "   ");
2737}
2738
2739static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2740{
2741	switch (s) {
2742	case RT_SCOPE_UNIVERSE: return "universe";
2743	case RT_SCOPE_SITE:	return "site";
2744	case RT_SCOPE_LINK:	return "link";
2745	case RT_SCOPE_HOST:	return "host";
2746	case RT_SCOPE_NOWHERE:	return "nowhere";
2747	default:
2748		snprintf(buf, len, "scope=%d", s);
2749		return buf;
2750	}
2751}
2752
2753static const char *const rtn_type_names[__RTN_MAX] = {
2754	[RTN_UNSPEC] = "UNSPEC",
2755	[RTN_UNICAST] = "UNICAST",
2756	[RTN_LOCAL] = "LOCAL",
2757	[RTN_BROADCAST] = "BROADCAST",
2758	[RTN_ANYCAST] = "ANYCAST",
2759	[RTN_MULTICAST] = "MULTICAST",
2760	[RTN_BLACKHOLE] = "BLACKHOLE",
2761	[RTN_UNREACHABLE] = "UNREACHABLE",
2762	[RTN_PROHIBIT] = "PROHIBIT",
2763	[RTN_THROW] = "THROW",
2764	[RTN_NAT] = "NAT",
2765	[RTN_XRESOLVE] = "XRESOLVE",
2766};
2767
2768static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2769{
2770	if (t < __RTN_MAX && rtn_type_names[t])
2771		return rtn_type_names[t];
2772	snprintf(buf, len, "type %u", t);
2773	return buf;
2774}
2775
2776/* Pretty print the trie */
2777static int fib_trie_seq_show(struct seq_file *seq, void *v)
2778{
2779	const struct fib_trie_iter *iter = seq->private;
2780	struct key_vector *n = v;
2781
2782	if (IS_TRIE(node_parent_rcu(n)))
2783		fib_table_print(seq, iter->tb);
2784
2785	if (IS_TNODE(n)) {
2786		__be32 prf = htonl(n->key);
2787
2788		seq_indent(seq, iter->depth-1);
2789		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2790			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2791			   tn_info(n)->full_children,
2792			   tn_info(n)->empty_children);
2793	} else {
2794		__be32 val = htonl(n->key);
2795		struct fib_alias *fa;
2796
2797		seq_indent(seq, iter->depth);
2798		seq_printf(seq, "  |-- %pI4\n", &val);
2799
2800		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2801			char buf1[32], buf2[32];
2802
2803			seq_indent(seq, iter->depth + 1);
2804			seq_printf(seq, "  /%zu %s %s",
2805				   KEYLENGTH - fa->fa_slen,
2806				   rtn_scope(buf1, sizeof(buf1),
2807					     fa->fa_info->fib_scope),
2808				   rtn_type(buf2, sizeof(buf2),
2809					    fa->fa_type));
2810			if (fa->fa_tos)
2811				seq_printf(seq, " tos=%d", fa->fa_tos);
 
2812			seq_putc(seq, '\n');
2813		}
2814	}
2815
2816	return 0;
2817}
2818
2819static const struct seq_operations fib_trie_seq_ops = {
2820	.start  = fib_trie_seq_start,
2821	.next   = fib_trie_seq_next,
2822	.stop   = fib_trie_seq_stop,
2823	.show   = fib_trie_seq_show,
2824};
2825
2826struct fib_route_iter {
2827	struct seq_net_private p;
2828	struct fib_table *main_tb;
2829	struct key_vector *tnode;
2830	loff_t	pos;
2831	t_key	key;
2832};
2833
2834static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2835					    loff_t pos)
2836{
2837	struct key_vector *l, **tp = &iter->tnode;
2838	t_key key;
2839
2840	/* use cached location of previously found key */
2841	if (iter->pos > 0 && pos >= iter->pos) {
2842		key = iter->key;
2843	} else {
2844		iter->pos = 1;
2845		key = 0;
2846	}
2847
2848	pos -= iter->pos;
2849
2850	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2851		key = l->key + 1;
2852		iter->pos++;
2853		l = NULL;
2854
2855		/* handle unlikely case of a key wrap */
2856		if (!key)
2857			break;
2858	}
2859
2860	if (l)
2861		iter->key = l->key;	/* remember it */
2862	else
2863		iter->pos = 0;		/* forget it */
2864
2865	return l;
2866}
2867
2868static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2869	__acquires(RCU)
2870{
2871	struct fib_route_iter *iter = seq->private;
2872	struct fib_table *tb;
2873	struct trie *t;
2874
2875	rcu_read_lock();
2876
2877	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2878	if (!tb)
2879		return NULL;
2880
2881	iter->main_tb = tb;
2882	t = (struct trie *)tb->tb_data;
2883	iter->tnode = t->kv;
2884
2885	if (*pos != 0)
2886		return fib_route_get_idx(iter, *pos);
2887
2888	iter->pos = 0;
2889	iter->key = KEY_MAX;
2890
2891	return SEQ_START_TOKEN;
2892}
2893
2894static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2895{
2896	struct fib_route_iter *iter = seq->private;
2897	struct key_vector *l = NULL;
2898	t_key key = iter->key + 1;
2899
2900	++*pos;
2901
2902	/* only allow key of 0 for start of sequence */
2903	if ((v == SEQ_START_TOKEN) || key)
2904		l = leaf_walk_rcu(&iter->tnode, key);
2905
2906	if (l) {
2907		iter->key = l->key;
2908		iter->pos++;
2909	} else {
2910		iter->pos = 0;
2911	}
2912
2913	return l;
2914}
2915
2916static void fib_route_seq_stop(struct seq_file *seq, void *v)
2917	__releases(RCU)
2918{
2919	rcu_read_unlock();
2920}
2921
2922static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2923{
2924	unsigned int flags = 0;
2925
2926	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2927		flags = RTF_REJECT;
2928	if (fi) {
2929		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2930
2931		if (nhc->nhc_gw.ipv4)
2932			flags |= RTF_GATEWAY;
2933	}
2934	if (mask == htonl(0xFFFFFFFF))
2935		flags |= RTF_HOST;
2936	flags |= RTF_UP;
2937	return flags;
2938}
2939
2940/*
2941 *	This outputs /proc/net/route.
2942 *	The format of the file is not supposed to be changed
2943 *	and needs to be same as fib_hash output to avoid breaking
2944 *	legacy utilities
2945 */
2946static int fib_route_seq_show(struct seq_file *seq, void *v)
2947{
2948	struct fib_route_iter *iter = seq->private;
2949	struct fib_table *tb = iter->main_tb;
2950	struct fib_alias *fa;
2951	struct key_vector *l = v;
2952	__be32 prefix;
2953
2954	if (v == SEQ_START_TOKEN) {
2955		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2956			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2957			   "\tWindow\tIRTT");
2958		return 0;
2959	}
2960
2961	prefix = htonl(l->key);
2962
2963	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2964		struct fib_info *fi = fa->fa_info;
2965		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2966		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2967
2968		if ((fa->fa_type == RTN_BROADCAST) ||
2969		    (fa->fa_type == RTN_MULTICAST))
2970			continue;
2971
2972		if (fa->tb_id != tb->tb_id)
2973			continue;
2974
2975		seq_setwidth(seq, 127);
2976
2977		if (fi) {
2978			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2979			__be32 gw = 0;
2980
2981			if (nhc->nhc_gw_family == AF_INET)
2982				gw = nhc->nhc_gw.ipv4;
2983
2984			seq_printf(seq,
2985				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2986				   "%d\t%08X\t%d\t%u\t%u",
2987				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2988				   prefix, gw, flags, 0, 0,
2989				   fi->fib_priority,
2990				   mask,
2991				   (fi->fib_advmss ?
2992				    fi->fib_advmss + 40 : 0),
2993				   fi->fib_window,
2994				   fi->fib_rtt >> 3);
2995		} else {
2996			seq_printf(seq,
2997				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2998				   "%d\t%08X\t%d\t%u\t%u",
2999				   prefix, 0, flags, 0, 0, 0,
3000				   mask, 0, 0, 0);
3001		}
3002		seq_pad(seq, '\n');
3003	}
3004
3005	return 0;
3006}
3007
3008static const struct seq_operations fib_route_seq_ops = {
3009	.start  = fib_route_seq_start,
3010	.next   = fib_route_seq_next,
3011	.stop   = fib_route_seq_stop,
3012	.show   = fib_route_seq_show,
3013};
3014
3015int __net_init fib_proc_init(struct net *net)
3016{
3017	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3018			sizeof(struct fib_trie_iter)))
3019		goto out1;
3020
3021	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3022			fib_triestat_seq_show, NULL))
3023		goto out2;
3024
3025	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3026			sizeof(struct fib_route_iter)))
3027		goto out3;
3028
3029	return 0;
3030
3031out3:
3032	remove_proc_entry("fib_triestat", net->proc_net);
3033out2:
3034	remove_proc_entry("fib_trie", net->proc_net);
3035out1:
3036	return -ENOMEM;
3037}
3038
3039void __net_exit fib_proc_exit(struct net *net)
3040{
3041	remove_proc_entry("fib_trie", net->proc_net);
3042	remove_proc_entry("fib_triestat", net->proc_net);
3043	remove_proc_entry("route", net->proc_net);
3044}
3045
3046#endif /* CONFIG_PROC_FS */