Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
 
 
 
 
   3 *
   4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   5 *     & Swedish University of Agricultural Sciences.
   6 *
   7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
   8 *     Agricultural Sciences.
   9 *
  10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  11 *
  12 * This work is based on the LPC-trie which is originally described in:
  13 *
  14 * An experimental study of compression methods for dynamic tries
  15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
 
  17 *
  18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  20 *
 
  21 * Code from fib_hash has been reused which includes the following header:
  22 *
 
  23 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  24 *		operating system.  INET is implemented using the  BSD Socket
  25 *		interface as the means of communication with the user level.
  26 *
  27 *		IPv4 FIB: lookup engine and maintenance routines.
  28 *
 
  29 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  30 *
 
 
 
 
 
  31 * Substantial contributions to this work comes from:
  32 *
  33 *		David S. Miller, <davem@davemloft.net>
  34 *		Stephen Hemminger <shemminger@osdl.org>
  35 *		Paul E. McKenney <paulmck@us.ibm.com>
  36 *		Patrick McHardy <kaber@trash.net>
  37 */
  38#include <linux/cache.h>
  39#include <linux/uaccess.h>
 
 
  40#include <linux/bitops.h>
  41#include <linux/types.h>
  42#include <linux/kernel.h>
  43#include <linux/mm.h>
  44#include <linux/string.h>
  45#include <linux/socket.h>
  46#include <linux/sockios.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/inet.h>
  50#include <linux/inetdevice.h>
  51#include <linux/netdevice.h>
  52#include <linux/if_arp.h>
  53#include <linux/proc_fs.h>
  54#include <linux/rcupdate.h>
  55#include <linux/rcupdate_wait.h>
  56#include <linux/skbuff.h>
  57#include <linux/netlink.h>
  58#include <linux/init.h>
  59#include <linux/list.h>
  60#include <linux/slab.h>
 
  61#include <linux/export.h>
  62#include <linux/vmalloc.h>
  63#include <linux/notifier.h>
  64#include <net/net_namespace.h>
  65#include <net/inet_dscp.h>
  66#include <net/ip.h>
  67#include <net/protocol.h>
  68#include <net/route.h>
  69#include <net/tcp.h>
  70#include <net/sock.h>
  71#include <net/ip_fib.h>
  72#include <net/fib_notifier.h>
  73#include <trace/events/fib.h>
  74#include "fib_lookup.h"
  75
  76static int call_fib_entry_notifier(struct notifier_block *nb,
  77				   enum fib_event_type event_type, u32 dst,
  78				   int dst_len, struct fib_alias *fa,
  79				   struct netlink_ext_ack *extack)
  80{
  81	struct fib_entry_notifier_info info = {
  82		.info.extack = extack,
  83		.dst = dst,
  84		.dst_len = dst_len,
  85		.fi = fa->fa_info,
  86		.dscp = fa->fa_dscp,
  87		.type = fa->fa_type,
  88		.tb_id = fa->tb_id,
  89	};
  90	return call_fib4_notifier(nb, event_type, &info.info);
  91}
  92
  93static int call_fib_entry_notifiers(struct net *net,
  94				    enum fib_event_type event_type, u32 dst,
  95				    int dst_len, struct fib_alias *fa,
  96				    struct netlink_ext_ack *extack)
  97{
  98	struct fib_entry_notifier_info info = {
  99		.info.extack = extack,
 100		.dst = dst,
 101		.dst_len = dst_len,
 102		.fi = fa->fa_info,
 103		.dscp = fa->fa_dscp,
 104		.type = fa->fa_type,
 105		.tb_id = fa->tb_id,
 106	};
 107	return call_fib4_notifiers(net, event_type, &info.info);
 108}
 109
 110#define MAX_STAT_DEPTH 32
 111
 112#define KEYLENGTH	(8*sizeof(t_key))
 113#define KEY_MAX		((t_key)~0)
 114
 115typedef unsigned int t_key;
 116
 117#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
 118#define IS_TNODE(n)	((n)->bits)
 119#define IS_LEAF(n)	(!(n)->bits)
 
 
 
 
 120
 121struct key_vector {
 
 122	t_key key;
 123	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 124	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 125	unsigned char slen;
 126	union {
 127		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 128		struct hlist_head leaf;
 129		/* This array is valid if (pos | bits) > 0 (TNODE) */
 130		DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode);
 131	};
 132};
 133
 134struct tnode {
 
 
 
 
 
 
 
 
 
 
 
 135	struct rcu_head rcu;
 136	t_key empty_children;		/* KEYLENGTH bits needed */
 137	t_key full_children;		/* KEYLENGTH bits needed */
 138	struct key_vector __rcu *parent;
 139	struct key_vector kv[1];
 140#define tn_bits kv[0].bits
 141};
 142
 143#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
 144#define LEAF_SIZE	TNODE_SIZE(1)
 
 
 
 
 
 
 
 
 
 
 
 
 145
 146#ifdef CONFIG_IP_FIB_TRIE_STATS
 147struct trie_use_stats {
 148	unsigned int gets;
 149	unsigned int backtrack;
 150	unsigned int semantic_match_passed;
 151	unsigned int semantic_match_miss;
 152	unsigned int null_node_hit;
 153	unsigned int resize_node_skipped;
 154};
 155#endif
 156
 157struct trie_stat {
 158	unsigned int totdepth;
 159	unsigned int maxdepth;
 160	unsigned int tnodes;
 161	unsigned int leaves;
 162	unsigned int nullpointers;
 163	unsigned int prefixes;
 164	unsigned int nodesizes[MAX_STAT_DEPTH];
 165};
 166
 167struct trie {
 168	struct key_vector kv[1];
 169#ifdef CONFIG_IP_FIB_TRIE_STATS
 170	struct trie_use_stats __percpu *stats;
 171#endif
 172};
 173
 174static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 175static unsigned int tnode_free_size;
 
 
 
 
 
 
 
 176
 177/*
 178 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
 179 * especially useful before resizing the root node with PREEMPT_NONE configs;
 180 * the value was obtained experimentally, aiming to avoid visible slowdown.
 181 */
 182unsigned int sysctl_fib_sync_mem = 512 * 1024;
 183unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
 184unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
 185
 186static struct kmem_cache *fn_alias_kmem __ro_after_init;
 187static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 188
 189static inline struct tnode *tn_info(struct key_vector *kv)
 
 
 
 190{
 191	return container_of(kv, struct tnode, kv[0]);
 
 
 
 
 192}
 193
 194/* caller must hold RTNL */
 195#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 196#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 
 
 
 
 
 
 197
 198/* caller must hold RCU read lock or RTNL */
 199#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 200#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 201
 202/* wrapper for rcu_assign_pointer */
 203static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 
 
 204{
 205	if (n)
 206		rcu_assign_pointer(tn_info(n)->parent, tp);
 207}
 208
 209#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 
 
 
 
 
 
 
 
 210
 211/* This provides us with the number of children in this node, in the case of a
 212 * leaf this will return 0 meaning none of the children are accessible.
 213 */
 214static inline unsigned long child_length(const struct key_vector *tn)
 215{
 216	return (1ul << tn->bits) & ~(1ul);
 
 
 217}
 218
 219#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 
 
 
 220
 221static inline unsigned long get_index(t_key key, struct key_vector *kv)
 222{
 223	unsigned long index = key ^ kv->key;
 
 224
 225	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 
 
 
 
 226		return 0;
 
 227
 228	return index >> kv->pos;
 
 
 229}
 230
 231/* To understand this stuff, an understanding of keys and all their bits is
 232 * necessary. Every node in the trie has a key associated with it, but not
 233 * all of the bits in that key are significant.
 234 *
 235 * Consider a node 'n' and its parent 'tp'.
 236 *
 237 * If n is a leaf, every bit in its key is significant. Its presence is
 238 * necessitated by path compression, since during a tree traversal (when
 239 * searching for a leaf - unless we are doing an insertion) we will completely
 240 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 241 * a potentially successful search, that we have indeed been walking the
 242 * correct key path.
 243 *
 244 * Note that we can never "miss" the correct key in the tree if present by
 245 * following the wrong path. Path compression ensures that segments of the key
 246 * that are the same for all keys with a given prefix are skipped, but the
 247 * skipped part *is* identical for each node in the subtrie below the skipped
 248 * bit! trie_insert() in this implementation takes care of that.
 249 *
 250 * if n is an internal node - a 'tnode' here, the various parts of its key
 251 * have many different meanings.
 252 *
 253 * Example:
 254 * _________________________________________________________________
 255 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 256 * -----------------------------------------------------------------
 257 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 258 *
 259 * _________________________________________________________________
 260 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 261 * -----------------------------------------------------------------
 262 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 263 *
 264 * tp->pos = 22
 265 * tp->bits = 3
 266 * n->pos = 13
 267 * n->bits = 4
 268 *
 269 * First, let's just ignore the bits that come before the parent tp, that is
 270 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 271 * point we do not use them for anything.
 272 *
 273 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 274 * index into the parent's child array. That is, they will be used to find
 275 * 'n' among tp's children.
 276 *
 277 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 278 * for the node n.
 279 *
 280 * All the bits we have seen so far are significant to the node n. The rest
 281 * of the bits are really not needed or indeed known in n->key.
 282 *
 283 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 284 * n's child array, and will of course be different for each child.
 285 *
 286 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 287 * at this point.
 288 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289
 290static const int halve_threshold = 25;
 291static const int inflate_threshold = 50;
 292static const int halve_threshold_root = 15;
 293static const int inflate_threshold_root = 30;
 294
 295static inline void alias_free_mem_rcu(struct fib_alias *fa)
 296{
 297	kfree_rcu(fa, rcu);
 
 298}
 299
 300#define TNODE_VMALLOC_MAX \
 301	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 302
 303static void __node_free_rcu(struct rcu_head *head)
 304{
 305	struct tnode *n = container_of(head, struct tnode, rcu);
 306
 307	if (!n->tn_bits)
 308		kmem_cache_free(trie_leaf_kmem, n);
 309	else
 310		kvfree(n);
 311}
 312
 313#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 314
 315static struct tnode *tnode_alloc(int bits)
 316{
 317	size_t size;
 
 
 318
 319	/* verify bits is within bounds */
 320	if (bits > TNODE_VMALLOC_MAX)
 321		return NULL;
 
 322
 323	/* determine size and verify it is non-zero and didn't overflow */
 324	size = TNODE_SIZE(1ul << bits);
 
 
 325
 
 
 326	if (size <= PAGE_SIZE)
 327		return kzalloc(size, GFP_KERNEL);
 328	else
 329		return vzalloc(size);
 330}
 331
 332static inline void empty_child_inc(struct key_vector *n)
 
 
 
 
 
 
 333{
 334	tn_info(n)->empty_children++;
 
 
 335
 336	if (!tn_info(n)->empty_children)
 337		tn_info(n)->full_children++;
 
 
 
 
 338}
 339
 340static inline void empty_child_dec(struct key_vector *n)
 341{
 342	if (!tn_info(n)->empty_children)
 343		tn_info(n)->full_children--;
 
 
 
 344
 345	tn_info(n)->empty_children--;
 
 
 
 
 
 
 346}
 347
 348static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 349{
 350	struct key_vector *l;
 351	struct tnode *kv;
 352
 353	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 354	if (!kv)
 355		return NULL;
 
 
 356
 357	/* initialize key vector */
 358	l = kv->kv;
 359	l->key = key;
 360	l->pos = 0;
 361	l->bits = 0;
 362	l->slen = fa->fa_slen;
 363
 364	/* link leaf to fib alias */
 365	INIT_HLIST_HEAD(&l->leaf);
 366	hlist_add_head(&fa->fa_list, &l->leaf);
 367
 
 
 
 
 
 
 
 368	return l;
 369}
 370
 371static struct key_vector *tnode_new(t_key key, int pos, int bits)
 372{
 373	unsigned int shift = pos + bits;
 374	struct key_vector *tn;
 375	struct tnode *tnode;
 376
 377	/* verify bits and pos their msb bits clear and values are valid */
 378	BUG_ON(!bits || (shift > KEYLENGTH));
 379
 380	tnode = tnode_alloc(bits);
 381	if (!tnode)
 382		return NULL;
 383
 384	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 385		 sizeof(struct key_vector *) << bits);
 386
 387	if (bits == KEYLENGTH)
 388		tnode->full_children = 1;
 389	else
 390		tnode->empty_children = 1ul << bits;
 391
 392	tn = tnode->kv;
 393	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 394	tn->pos = pos;
 395	tn->bits = bits;
 396	tn->slen = pos;
 
 
 
 397
 
 
 398	return tn;
 399}
 400
 401/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 
 402 * and no bits are skipped. See discussion in dyntree paper p. 6
 403 */
 404static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 
 405{
 406	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 
 
 
 407}
 408
 409/* Add a child at position i overwriting the old value.
 410 * Update the value of full_children and empty_children.
 411 */
 412static void put_child(struct key_vector *tn, unsigned long i,
 413		      struct key_vector *n)
 
 
 
 
 
 
 
 
 414{
 415	struct key_vector *chi = get_child(tn, i);
 416	int isfull, wasfull;
 417
 418	BUG_ON(i >= child_length(tn));
 419
 420	/* update emptyChildren, overflow into fullChildren */
 421	if (!n && chi)
 422		empty_child_inc(tn);
 423	if (n && !chi)
 424		empty_child_dec(tn);
 425
 426	/* update fullChildren */
 427	wasfull = tnode_full(tn, chi);
 428	isfull = tnode_full(tn, n);
 429
 
 430	if (wasfull && !isfull)
 431		tn_info(tn)->full_children--;
 432	else if (!wasfull && isfull)
 433		tn_info(tn)->full_children++;
 434
 435	if (n && (tn->slen < n->slen))
 436		tn->slen = n->slen;
 437
 438	rcu_assign_pointer(tn->tnode[i], n);
 439}
 440
 441static void update_children(struct key_vector *tn)
 
 442{
 443	unsigned long i;
 
 
 
 
 444
 445	/* update all of the child parent pointers */
 446	for (i = child_length(tn); i;) {
 447		struct key_vector *inode = get_child(tn, --i);
 448
 449		if (!inode)
 450			continue;
 451
 452		/* Either update the children of a tnode that
 453		 * already belongs to us or update the child
 454		 * to point to ourselves.
 455		 */
 456		if (node_parent(inode) == tn)
 457			update_children(inode);
 458		else
 459			node_set_parent(inode, tn);
 460	}
 461}
 
 
 
 
 
 
 462
 463static inline void put_child_root(struct key_vector *tp, t_key key,
 464				  struct key_vector *n)
 465{
 466	if (IS_TRIE(tp))
 467		rcu_assign_pointer(tp->tnode[0], n);
 468	else
 469		put_child(tp, get_index(key, tp), n);
 470}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471
 472static inline void tnode_free_init(struct key_vector *tn)
 473{
 474	tn_info(tn)->rcu.next = NULL;
 475}
 476
 477static inline void tnode_free_append(struct key_vector *tn,
 478				     struct key_vector *n)
 479{
 480	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 481	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 482}
 483
 484static void tnode_free(struct key_vector *tn)
 485{
 486	struct callback_head *head = &tn_info(tn)->rcu;
 
 
 
 
 487
 488	while (head) {
 489		head = head->next;
 490		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 491		node_free(tn);
 
 492
 493		tn = container_of(head, struct tnode, rcu)->kv;
 494	}
 495
 496	if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
 497		tnode_free_size = 0;
 498		synchronize_net();
 
 
 
 
 499	}
 500}
 501
 502static struct key_vector *replace(struct trie *t,
 503				  struct key_vector *oldtnode,
 504				  struct key_vector *tn)
 505{
 506	struct key_vector *tp = node_parent(oldtnode);
 507	unsigned long i;
 508
 509	/* setup the parent pointer out of and back into this node */
 510	NODE_INIT_PARENT(tn, tp);
 511	put_child_root(tp, tn->key, tn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512
 513	/* update all of the child parent pointers */
 514	update_children(tn);
 515
 516	/* all pointers should be clean so we are done */
 517	tnode_free(oldtnode);
 
 
 
 
 
 
 
 518
 519	/* resize children now that oldtnode is freed */
 520	for (i = child_length(tn); i;) {
 521		struct key_vector *inode = get_child(tn, --i);
 522
 523		/* resize child node */
 524		if (tnode_full(tn, inode))
 525			tn = resize(t, inode);
 
 526	}
 
 
 
 527
 528	return tp;
 
 
 
 
 
 
 
 
 
 
 529}
 530
 531static struct key_vector *inflate(struct trie *t,
 532				  struct key_vector *oldtnode)
 533{
 534	struct key_vector *tn;
 535	unsigned long i;
 536	t_key m;
 537
 538	pr_debug("In inflate\n");
 539
 540	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 541	if (!tn)
 542		goto notnode;
 543
 544	/* prepare oldtnode to be freed */
 545	tnode_free_init(oldtnode);
 546
 547	/* Assemble all of the pointers in our cluster, in this case that
 548	 * represents all of the pointers out of our allocated nodes that
 549	 * point to existing tnodes and the links between our allocated
 550	 * nodes.
 
 551	 */
 552	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 553		struct key_vector *inode = get_child(oldtnode, --i);
 554		struct key_vector *node0, *node1;
 555		unsigned long j, k;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556
 557		/* An empty child */
 558		if (!inode)
 559			continue;
 560
 561		/* A leaf or an internal node with skipped bits */
 562		if (!tnode_full(oldtnode, inode)) {
 563			put_child(tn, get_index(inode->key, tn), inode);
 
 
 
 
 
 
 
 564			continue;
 565		}
 566
 567		/* drop the node in the old tnode free list */
 568		tnode_free_append(oldtnode, inode);
 569
 570		/* An internal node with two children */
 
 
 571		if (inode->bits == 1) {
 572			put_child(tn, 2 * i + 1, get_child(inode, 1));
 573			put_child(tn, 2 * i, get_child(inode, 0));
 
 
 574			continue;
 575		}
 576
 
 
 577		/* We will replace this node 'inode' with two new
 578		 * ones, 'node0' and 'node1', each with half of the
 579		 * original children. The two new nodes will have
 580		 * a position one bit further down the key and this
 581		 * means that the "significant" part of their keys
 582		 * (see the discussion near the top of this file)
 583		 * will differ by one bit, which will be "0" in
 584		 * node0's key and "1" in node1's key. Since we are
 585		 * moving the key position by one step, the bit that
 586		 * we are moving away from - the bit at position
 587		 * (tn->pos) - is the one that will differ between
 588		 * node0 and node1. So... we synthesize that bit in the
 589		 * two new keys.
 
 
 590		 */
 591		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 592		if (!node1)
 593			goto nomem;
 594		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 595
 596		tnode_free_append(tn, node1);
 597		if (!node0)
 598			goto nomem;
 599		tnode_free_append(tn, node0);
 600
 601		/* populate child pointers in new nodes */
 602		for (k = child_length(inode), j = k / 2; j;) {
 603			put_child(node1, --j, get_child(inode, --k));
 604			put_child(node0, j, get_child(inode, j));
 605			put_child(node1, --j, get_child(inode, --k));
 606			put_child(node0, j, get_child(inode, j));
 607		}
 608
 609		/* link new nodes to parent */
 610		NODE_INIT_PARENT(node1, tn);
 611		NODE_INIT_PARENT(node0, tn);
 612
 613		/* link parent to nodes */
 614		put_child(tn, 2 * i + 1, node1);
 615		put_child(tn, 2 * i, node0);
 616	}
 617
 618	/* setup the parent pointers into and out of this node */
 619	return replace(t, oldtnode, tn);
 620nomem:
 621	/* all pointers should be clean so we are done */
 622	tnode_free(tn);
 623notnode:
 624	return NULL;
 625}
 626
 627static struct key_vector *halve(struct trie *t,
 628				struct key_vector *oldtnode)
 629{
 630	struct key_vector *tn;
 631	unsigned long i;
 632
 633	pr_debug("In halve\n");
 
 634
 635	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 636	if (!tn)
 637		goto notnode;
 638
 639	/* prepare oldtnode to be freed */
 640	tnode_free_init(oldtnode);
 641
 642	/* Assemble all of the pointers in our cluster, in this case that
 643	 * represents all of the pointers out of our allocated nodes that
 644	 * point to existing tnodes and the links between our allocated
 645	 * nodes.
 646	 */
 647	for (i = child_length(oldtnode); i;) {
 648		struct key_vector *node1 = get_child(oldtnode, --i);
 649		struct key_vector *node0 = get_child(oldtnode, --i);
 650		struct key_vector *inode;
 651
 652		/* At least one of the children is empty */
 653		if (!node1 || !node0) {
 654			put_child(tn, i / 2, node1 ? : node0);
 655			continue;
 656		}
 
 
 657
 658		/* Two nonempty children */
 659		inode = tnode_new(node0->key, oldtnode->pos, 1);
 660		if (!inode)
 661			goto nomem;
 662		tnode_free_append(tn, inode);
 663
 664		/* initialize pointers out of node */
 665		put_child(inode, 1, node1);
 666		put_child(inode, 0, node0);
 667		NODE_INIT_PARENT(inode, tn);
 668
 669		/* link parent to node */
 670		put_child(tn, i / 2, inode);
 671	}
 672
 673	/* setup the parent pointers into and out of this node */
 674	return replace(t, oldtnode, tn);
 675nomem:
 676	/* all pointers should be clean so we are done */
 677	tnode_free(tn);
 678notnode:
 679	return NULL;
 680}
 681
 682static struct key_vector *collapse(struct trie *t,
 683				   struct key_vector *oldtnode)
 684{
 685	struct key_vector *n, *tp;
 686	unsigned long i;
 
 
 687
 688	/* scan the tnode looking for that one child that might still exist */
 689	for (n = NULL, i = child_length(oldtnode); !n && i;)
 690		n = get_child(oldtnode, --i);
 691
 692	/* compress one level */
 693	tp = node_parent(oldtnode);
 694	put_child_root(tp, oldtnode->key, n);
 695	node_set_parent(n, tp);
 696
 697	/* drop dead node */
 698	node_free(oldtnode);
 699
 700	return tp;
 701}
 
 
 
 
 702
 703static unsigned char update_suffix(struct key_vector *tn)
 704{
 705	unsigned char slen = tn->pos;
 706	unsigned long stride, i;
 707	unsigned char slen_max;
 708
 709	/* only vector 0 can have a suffix length greater than or equal to
 710	 * tn->pos + tn->bits, the second highest node will have a suffix
 711	 * length at most of tn->pos + tn->bits - 1
 712	 */
 713	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 714
 715	/* search though the list of children looking for nodes that might
 716	 * have a suffix greater than the one we currently have.  This is
 717	 * why we start with a stride of 2 since a stride of 1 would
 718	 * represent the nodes with suffix length equal to tn->pos
 719	 */
 720	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 721		struct key_vector *n = get_child(tn, i);
 722
 723		if (!n || (n->slen <= slen))
 724			continue;
 725
 726		/* update stride and slen based on new value */
 727		stride <<= (n->slen - slen);
 728		slen = n->slen;
 729		i &= ~(stride - 1);
 730
 731		/* stop searching if we have hit the maximum possible value */
 732		if (slen >= slen_max)
 733			break;
 734	}
 735
 736	tn->slen = slen;
 
 737
 738	return slen;
 739}
 740
 741/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 742 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 743 * Telecommunications, page 6:
 744 * "A node is doubled if the ratio of non-empty children to all
 745 * children in the *doubled* node is at least 'high'."
 746 *
 747 * 'high' in this instance is the variable 'inflate_threshold'. It
 748 * is expressed as a percentage, so we multiply it with
 749 * child_length() and instead of multiplying by 2 (since the
 750 * child array will be doubled by inflate()) and multiplying
 751 * the left-hand side by 100 (to handle the percentage thing) we
 752 * multiply the left-hand side by 50.
 753 *
 754 * The left-hand side may look a bit weird: child_length(tn)
 755 * - tn->empty_children is of course the number of non-null children
 756 * in the current node. tn->full_children is the number of "full"
 757 * children, that is non-null tnodes with a skip value of 0.
 758 * All of those will be doubled in the resulting inflated tnode, so
 759 * we just count them one extra time here.
 760 *
 761 * A clearer way to write this would be:
 762 *
 763 * to_be_doubled = tn->full_children;
 764 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 765 *     tn->full_children;
 766 *
 767 * new_child_length = child_length(tn) * 2;
 768 *
 769 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 770 *      new_child_length;
 771 * if (new_fill_factor >= inflate_threshold)
 772 *
 773 * ...and so on, tho it would mess up the while () loop.
 774 *
 775 * anyway,
 776 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 777 *      inflate_threshold
 778 *
 779 * avoid a division:
 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 781 *      inflate_threshold * new_child_length
 782 *
 783 * expand not_to_be_doubled and to_be_doubled, and shorten:
 784 * 100 * (child_length(tn) - tn->empty_children +
 785 *    tn->full_children) >= inflate_threshold * new_child_length
 786 *
 787 * expand new_child_length:
 788 * 100 * (child_length(tn) - tn->empty_children +
 789 *    tn->full_children) >=
 790 *      inflate_threshold * child_length(tn) * 2
 791 *
 792 * shorten again:
 793 * 50 * (tn->full_children + child_length(tn) -
 794 *    tn->empty_children) >= inflate_threshold *
 795 *    child_length(tn)
 796 *
 797 */
 798static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 799{
 800	unsigned long used = child_length(tn);
 801	unsigned long threshold = used;
 802
 803	/* Keep root node larger */
 804	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 805	used -= tn_info(tn)->empty_children;
 806	used += tn_info(tn)->full_children;
 
 
 
 807
 808	/* if bits == KEYLENGTH then pos = 0, and will fail below */
 
 
 
 809
 810	return (used > 1) && tn->pos && ((50 * used) >= threshold);
 
 
 
 
 
 
 
 
 
 
 
 811}
 812
 813static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 814{
 815	unsigned long used = child_length(tn);
 816	unsigned long threshold = used;
 817
 818	/* Keep root node larger */
 819	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 820	used -= tn_info(tn)->empty_children;
 
 
 821
 822	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 
 
 823
 824	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 825}
 826
 827static inline bool should_collapse(struct key_vector *tn)
 828{
 829	unsigned long used = child_length(tn);
 830
 831	used -= tn_info(tn)->empty_children;
 832
 833	/* account for bits == KEYLENGTH case */
 834	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 835		used -= KEY_MAX;
 836
 837	/* One child or none, time to drop us from the trie */
 838	return used < 2;
 839}
 840
 841#define MAX_WORK 10
 842static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 843{
 844#ifdef CONFIG_IP_FIB_TRIE_STATS
 845	struct trie_use_stats __percpu *stats = t->stats;
 846#endif
 847	struct key_vector *tp = node_parent(tn);
 848	unsigned long cindex = get_index(tn->key, tp);
 849	int max_work = MAX_WORK;
 850
 851	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 852		 tn, inflate_threshold, halve_threshold);
 853
 854	/* track the tnode via the pointer from the parent instead of
 855	 * doing it ourselves.  This way we can let RCU fully do its
 856	 * thing without us interfering
 857	 */
 858	BUG_ON(tn != get_child(tp, cindex));
 
 859
 860	/* Double as long as the resulting node has a number of
 861	 * nonempty nodes that are above the threshold.
 862	 */
 863	while (should_inflate(tp, tn) && max_work) {
 864		tp = inflate(t, tn);
 865		if (!tp) {
 866#ifdef CONFIG_IP_FIB_TRIE_STATS
 867			this_cpu_inc(stats->resize_node_skipped);
 868#endif
 869			break;
 870		}
 871
 872		max_work--;
 873		tn = get_child(tp, cindex);
 
 874	}
 
 875
 876	/* update parent in case inflate failed */
 877	tp = node_parent(tn);
 878
 879	/* Return if at least one inflate is run */
 880	if (max_work != MAX_WORK)
 881		return tp;
 882
 883	/* Halve as long as the number of empty children in this
 884	 * node is above threshold.
 885	 */
 886	while (should_halve(tp, tn) && max_work) {
 887		tp = halve(t, tn);
 888		if (!tp) {
 889#ifdef CONFIG_IP_FIB_TRIE_STATS
 890			this_cpu_inc(stats->resize_node_skipped);
 891#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 892			break;
 893		}
 894
 895		max_work--;
 896		tn = get_child(tp, cindex);
 897	}
 
 898
 899	/* Only one child remains */
 900	if (should_collapse(tn))
 901		return collapse(t, tn);
 902
 903	/* update parent in case halve failed */
 904	return node_parent(tn);
 905}
 906
 907static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 908{
 909	unsigned char node_slen = tn->slen;
 
 
 910
 911	while ((node_slen > tn->pos) && (node_slen > slen)) {
 912		slen = update_suffix(tn);
 913		if (node_slen == slen)
 914			break;
 915
 916		tn = node_parent(tn);
 917		node_slen = tn->slen;
 918	}
 919}
 920
 921static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 922{
 923	while (tn->slen < slen) {
 924		tn->slen = slen;
 925		tn = node_parent(tn);
 926	}
 927}
 928
 929/* rcu_read_lock needs to be hold by caller from readside */
 930static struct key_vector *fib_find_node(struct trie *t,
 931					struct key_vector **tp, u32 key)
 932{
 933	struct key_vector *pn, *n = t->kv;
 934	unsigned long index = 0;
 935
 936	do {
 937		pn = n;
 938		n = get_child_rcu(n, index);
 939
 940		if (!n)
 
 941			break;
 
 
 942
 943		index = get_cindex(key, n);
 944
 945		/* This bit of code is a bit tricky but it combines multiple
 946		 * checks into a single check.  The prefix consists of the
 947		 * prefix plus zeros for the bits in the cindex. The index
 948		 * is the difference between the key and this value.  From
 949		 * this we can actually derive several pieces of data.
 950		 *   if (index >= (1ul << bits))
 951		 *     we have a mismatch in skip bits and failed
 952		 *   else
 953		 *     we know the value is cindex
 954		 *
 955		 * This check is safe even if bits == KEYLENGTH due to the
 956		 * fact that we can only allocate a node with 32 bits if a
 957		 * long is greater than 32 bits.
 958		 */
 959		if (index >= (1ul << n->bits)) {
 960			n = NULL;
 961			break;
 962		}
 963
 964		/* keep searching until we find a perfect match leaf or NULL */
 965	} while (IS_TNODE(n));
 966
 967	*tp = pn;
 968
 969	return n;
 
 970}
 971
 972/* Return the first fib alias matching DSCP with
 973 * priority less than or equal to PRIO.
 974 * If 'find_first' is set, return the first matching
 975 * fib alias, regardless of DSCP and priority.
 976 */
 977static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 978					dscp_t dscp, u32 prio, u32 tb_id,
 979					bool find_first)
 980{
 981	struct fib_alias *fa;
 982
 983	if (!fah)
 984		return NULL;
 985
 986	hlist_for_each_entry(fa, fah, fa_list) {
 987		/* Avoid Sparse warning when using dscp_t in inequalities */
 988		u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
 989		u8 __dscp = inet_dscp_to_dsfield(dscp);
 990
 991		if (fa->fa_slen < slen)
 992			continue;
 993		if (fa->fa_slen != slen)
 994			break;
 995		if (fa->tb_id > tb_id)
 996			continue;
 997		if (fa->tb_id != tb_id)
 998			break;
 999		if (find_first)
1000			return fa;
1001		if (__fa_dscp > __dscp)
1002			continue;
1003		if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1004			return fa;
1005	}
1006
1007	return NULL;
1008}
1009
1010static struct fib_alias *
1011fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012{
1013	u8 slen = KEYLENGTH - fri->dst_len;
1014	struct key_vector *l, *tp;
1015	struct fib_table *tb;
1016	struct fib_alias *fa;
1017	struct trie *t;
 
 
 
1018
1019	tb = fib_get_table(net, fri->tb_id);
1020	if (!tb)
1021		return NULL;
1022
1023	t = (struct trie *)tb->tb_data;
1024	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025	if (!l)
1026		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
1027
1028	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030		    fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1031		    fa->fa_type == fri->type)
1032			return fa;
1033	}
1034
1035	return NULL;
1036}
1037
1038void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039{
1040	u8 fib_notify_on_flag_change;
1041	struct fib_alias *fa_match;
1042	struct sk_buff *skb;
1043	int err;
 
1044
1045	rcu_read_lock();
1046
1047	fa_match = fib_find_matching_alias(net, fri);
1048	if (!fa_match)
1049		goto out;
1050
1051	/* These are paired with the WRITE_ONCE() happening in this function.
1052	 * The reason is that we are only protected by RCU at this point.
 
 
1053	 */
1054	if (READ_ONCE(fa_match->offload) == fri->offload &&
1055	    READ_ONCE(fa_match->trap) == fri->trap &&
1056	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1057		goto out;
1058
1059	WRITE_ONCE(fa_match->offload, fri->offload);
1060	WRITE_ONCE(fa_match->trap, fri->trap);
1061
1062	fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1063
1064	/* 2 means send notifications only if offload_failed was changed. */
1065	if (fib_notify_on_flag_change == 2 &&
1066	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1067		goto out;
1068
1069	WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1070
1071	if (!fib_notify_on_flag_change)
1072		goto out;
1073
1074	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1075	if (!skb) {
1076		err = -ENOBUFS;
1077		goto errout;
1078	}
1079
1080	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1081	if (err < 0) {
1082		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1083		WARN_ON(err == -EMSGSIZE);
1084		kfree_skb(skb);
1085		goto errout;
1086	}
 
1087
1088	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1089	goto out;
1090
1091errout:
1092	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1093out:
1094	rcu_read_unlock();
1095}
1096EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1097
1098static void trie_rebalance(struct trie *t, struct key_vector *tn)
1099{
1100	while (!IS_TRIE(tn))
1101		tn = resize(t, tn);
1102}
1103
1104static int fib_insert_node(struct trie *t, struct key_vector *tp,
1105			   struct fib_alias *new, t_key key)
1106{
1107	struct key_vector *n, *l;
1108
1109	l = leaf_new(key, new);
1110	if (!l)
1111		goto noleaf;
1112
1113	/* retrieve child from parent node */
1114	n = get_child(tp, get_index(key, tp));
1115
1116	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1117	 *
1118	 *  Add a new tnode here
1119	 *  first tnode need some special handling
1120	 *  leaves us in position for handling as case 3
1121	 */
1122	if (n) {
1123		struct key_vector *tn;
1124
1125		tn = tnode_new(key, __fls(key ^ n->key), 1);
1126		if (!tn)
1127			goto notnode;
1128
1129		/* initialize routes out of node */
1130		NODE_INIT_PARENT(tn, tp);
1131		put_child(tn, get_index(key, tn) ^ 1, n);
1132
1133		/* start adding routes into the node */
1134		put_child_root(tp, key, tn);
1135		node_set_parent(n, tn);
1136
1137		/* parent now has a NULL spot where the leaf can go */
1138		tp = tn;
 
1139	}
1140
1141	/* Case 3: n is NULL, and will just insert a new leaf */
1142	node_push_suffix(tp, new->fa_slen);
1143	NODE_INIT_PARENT(l, tp);
1144	put_child_root(tp, key, l);
1145	trie_rebalance(t, tp);
1146
1147	return 0;
1148notnode:
1149	node_free(l);
1150noleaf:
1151	return -ENOMEM;
1152}
1153
1154static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1155			    struct key_vector *l, struct fib_alias *new,
1156			    struct fib_alias *fa, t_key key)
1157{
1158	if (!l)
1159		return fib_insert_node(t, tp, new, key);
1160
1161	if (fa) {
1162		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1163	} else {
1164		struct fib_alias *last;
 
 
 
 
1165
1166		hlist_for_each_entry(last, &l->leaf, fa_list) {
1167			if (new->fa_slen < last->fa_slen)
1168				break;
1169			if ((new->fa_slen == last->fa_slen) &&
1170			    (new->tb_id > last->tb_id))
1171				break;
1172			fa = last;
 
 
 
 
1173		}
1174
1175		if (fa)
1176			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1177		else
1178			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1179	}
1180
1181	/* if we added to the tail node then we need to update slen */
1182	if (l->slen < new->fa_slen) {
1183		l->slen = new->fa_slen;
1184		node_push_suffix(tp, new->fa_slen);
1185	}
1186
1187	return 0;
1188}
 
1189
1190static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1191{
1192	if (plen > KEYLENGTH) {
1193		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1194		return false;
 
 
 
1195	}
1196
1197	if ((plen < KEYLENGTH) && (key << plen)) {
1198		NL_SET_ERR_MSG(extack,
1199			       "Invalid prefix for given prefix length");
1200		return false;
1201	}
1202
1203	return true;
1204}
1205
1206static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1207			     struct key_vector *l, struct fib_alias *old);
 
 
1208
1209/* Caller must hold RTNL. */
1210int fib_table_insert(struct net *net, struct fib_table *tb,
1211		     struct fib_config *cfg, struct netlink_ext_ack *extack)
 
1212{
1213	struct trie *t = (struct trie *)tb->tb_data;
1214	struct fib_alias *fa, *new_fa;
1215	struct key_vector *l, *tp;
1216	u16 nlflags = NLM_F_EXCL;
1217	struct fib_info *fi;
1218	u8 plen = cfg->fc_dst_len;
1219	u8 slen = KEYLENGTH - plen;
1220	dscp_t dscp;
1221	u32 key;
1222	int err;
 
 
 
 
1223
1224	key = ntohl(cfg->fc_dst);
1225
1226	if (!fib_valid_key_len(key, plen, extack))
 
 
 
 
1227		return -EINVAL;
1228
1229	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1230
1231	fi = fib_create_info(cfg, extack);
1232	if (IS_ERR(fi)) {
1233		err = PTR_ERR(fi);
1234		goto err;
1235	}
1236
1237	dscp = cfg->fc_dscp;
1238	l = fib_find_node(t, &tp, key);
1239	fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
1240				tb->tb_id, false) : NULL;
 
 
 
1241
1242	/* Now fa, if non-NULL, points to the first fib alias
1243	 * with the same keys [prefix,dscp,priority], if such key already
1244	 * exists or to the node before which we will insert new one.
1245	 *
1246	 * If fa is NULL, we will need to allocate a new one and
1247	 * insert to the tail of the section matching the suffix length
1248	 * of the new alias.
 
 
1249	 */
1250
1251	if (fa && fa->fa_dscp == dscp &&
1252	    fa->fa_info->fib_priority == fi->fib_priority) {
1253		struct fib_alias *fa_first, *fa_match;
1254
1255		err = -EEXIST;
1256		if (cfg->fc_nlflags & NLM_F_EXCL)
1257			goto out;
1258
1259		nlflags &= ~NLM_F_EXCL;
1260
1261		/* We have 2 goals:
1262		 * 1. Find exact match for type, scope, fib_info to avoid
1263		 * duplicate routes
1264		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1265		 */
1266		fa_match = NULL;
1267		fa_first = fa;
1268		hlist_for_each_entry_from(fa, fa_list) {
1269			if ((fa->fa_slen != slen) ||
1270			    (fa->tb_id != tb->tb_id) ||
1271			    (fa->fa_dscp != dscp))
1272				break;
1273			if (fa->fa_info->fib_priority != fi->fib_priority)
1274				break;
1275			if (fa->fa_type == cfg->fc_type &&
1276			    fa->fa_info == fi) {
1277				fa_match = fa;
1278				break;
1279			}
1280		}
1281
1282		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1283			struct fib_info *fi_drop;
1284			u8 state;
1285
1286			nlflags |= NLM_F_REPLACE;
1287			fa = fa_first;
1288			if (fa_match) {
1289				if (fa == fa_match)
1290					err = 0;
1291				goto out;
1292			}
1293			err = -ENOBUFS;
1294			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1295			if (!new_fa)
1296				goto out;
1297
1298			fi_drop = fa->fa_info;
1299			new_fa->fa_dscp = fa->fa_dscp;
1300			new_fa->fa_info = fi;
1301			new_fa->fa_type = cfg->fc_type;
1302			state = fa->fa_state;
1303			new_fa->fa_state = state & ~FA_S_ACCESSED;
1304			new_fa->fa_slen = fa->fa_slen;
1305			new_fa->tb_id = tb->tb_id;
1306			new_fa->fa_default = -1;
1307			new_fa->offload = 0;
1308			new_fa->trap = 0;
1309			new_fa->offload_failed = 0;
1310
1311			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1312
1313			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1314					   tb->tb_id, true) == new_fa) {
1315				enum fib_event_type fib_event;
1316
1317				fib_event = FIB_EVENT_ENTRY_REPLACE;
1318				err = call_fib_entry_notifiers(net, fib_event,
1319							       key, plen,
1320							       new_fa, extack);
1321				if (err) {
1322					hlist_replace_rcu(&new_fa->fa_list,
1323							  &fa->fa_list);
1324					goto out_free_new_fa;
1325				}
1326			}
1327
1328			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1329				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1330
 
1331			alias_free_mem_rcu(fa);
1332
1333			fib_release_info(fi_drop);
1334			if (state & FA_S_ACCESSED)
1335				rt_cache_flush(cfg->fc_nlinfo.nl_net);
 
 
1336
1337			goto succeeded;
1338		}
1339		/* Error if we find a perfect match which
1340		 * uses the same scope, type, and nexthop
1341		 * information.
1342		 */
1343		if (fa_match)
1344			goto out;
1345
1346		if (cfg->fc_nlflags & NLM_F_APPEND)
1347			nlflags |= NLM_F_APPEND;
1348		else
1349			fa = fa_first;
1350	}
1351	err = -ENOENT;
1352	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1353		goto out;
1354
1355	nlflags |= NLM_F_CREATE;
1356	err = -ENOBUFS;
1357	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1358	if (!new_fa)
1359		goto out;
1360
1361	new_fa->fa_info = fi;
1362	new_fa->fa_dscp = dscp;
1363	new_fa->fa_type = cfg->fc_type;
1364	new_fa->fa_state = 0;
1365	new_fa->fa_slen = slen;
1366	new_fa->tb_id = tb->tb_id;
1367	new_fa->fa_default = -1;
1368	new_fa->offload = 0;
1369	new_fa->trap = 0;
1370	new_fa->offload_failed = 0;
1371
1372	/* Insert new entry to the list. */
1373	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1374	if (err)
1375		goto out_free_new_fa;
1376
1377	/* The alias was already inserted, so the node must exist. */
1378	l = l ? l : fib_find_node(t, &tp, key);
1379	if (WARN_ON_ONCE(!l)) {
1380		err = -ENOENT;
1381		goto out_free_new_fa;
1382	}
1383
1384	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1385	    new_fa) {
1386		enum fib_event_type fib_event;
1387
1388		fib_event = FIB_EVENT_ENTRY_REPLACE;
1389		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1390					       new_fa, extack);
1391		if (err)
1392			goto out_remove_new_fa;
1393	}
1394
1395	if (!plen)
1396		tb->tb_num_default++;
1397
1398	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1399	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1400		  &cfg->fc_nlinfo, nlflags);
 
 
 
1401succeeded:
1402	return 0;
1403
1404out_remove_new_fa:
1405	fib_remove_alias(t, tp, l, new_fa);
1406out_free_new_fa:
1407	kmem_cache_free(fn_alias_kmem, new_fa);
1408out:
1409	fib_release_info(fi);
1410err:
1411	return err;
1412}
1413
1414static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1415{
1416	t_key prefix = n->key;
 
 
 
 
 
1417
1418	return (key ^ prefix) & (prefix | -prefix);
1419}
1420
1421bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1422			 const struct flowi4 *flp)
1423{
1424	if (nhc->nhc_flags & RTNH_F_DEAD)
1425		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1426
1427	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1428	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1429	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1430		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431
1432	if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1433		return false;
 
 
1434
1435	return true;
1436}
1437
1438/* should be called with rcu_read_lock */
1439int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1440		     struct fib_result *res, int fib_flags)
1441{
1442	struct trie *t = (struct trie *) tb->tb_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1443#ifdef CONFIG_IP_FIB_TRIE_STATS
1444	struct trie_use_stats __percpu *stats = t->stats;
1445#endif
1446	const t_key key = ntohl(flp->daddr);
1447	struct key_vector *n, *pn;
1448	struct fib_alias *fa;
1449	unsigned long index;
1450	t_key cindex;
1451
1452	pn = t->kv;
1453	cindex = 0;
1454
1455	n = get_child_rcu(pn, cindex);
1456	if (!n) {
1457		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1458		return -EAGAIN;
1459	}
1460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461#ifdef CONFIG_IP_FIB_TRIE_STATS
1462	this_cpu_inc(stats->gets);
1463#endif
 
 
1464
1465	/* Step 1: Travel to the longest prefix match in the trie */
1466	for (;;) {
1467		index = get_cindex(key, n);
1468
1469		/* This bit of code is a bit tricky but it combines multiple
1470		 * checks into a single check.  The prefix consists of the
1471		 * prefix plus zeros for the "bits" in the prefix. The index
1472		 * is the difference between the key and this value.  From
1473		 * this we can actually derive several pieces of data.
1474		 *   if (index >= (1ul << bits))
1475		 *     we have a mismatch in skip bits and failed
1476		 *   else
1477		 *     we know the value is cindex
1478		 *
1479		 * This check is safe even if bits == KEYLENGTH due to the
1480		 * fact that we can only allocate a node with 32 bits if a
1481		 * long is greater than 32 bits.
1482		 */
1483		if (index >= (1ul << n->bits))
1484			break;
1485
1486		/* we have found a leaf. Prefixes have already been compared */
1487		if (IS_LEAF(n))
1488			goto found;
1489
1490		/* only record pn and cindex if we are going to be chopping
1491		 * bits later.  Otherwise we are just wasting cycles.
1492		 */
1493		if (n->slen > n->pos) {
1494			pn = n;
1495			cindex = index;
1496		}
1497
1498		n = get_child_rcu(n, index);
1499		if (unlikely(!n))
1500			goto backtrace;
1501	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1502
1503	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1504	for (;;) {
1505		/* record the pointer where our next node pointer is stored */
1506		struct key_vector __rcu **cptr = n->tnode;
1507
1508		/* This test verifies that none of the bits that differ
1509		 * between the key and the prefix exist in the region of
1510		 * the lsb and higher in the prefix.
1511		 */
1512		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1513			goto backtrace;
1514
1515		/* exit out and process leaf */
1516		if (unlikely(IS_LEAF(n)))
1517			break;
1518
1519		/* Don't bother recording parent info.  Since we are in
1520		 * prefix match mode we will have to come back to wherever
1521		 * we started this traversal anyway
 
 
 
 
 
 
 
 
 
 
 
 
1522		 */
1523
1524		while ((n = rcu_dereference(*cptr)) == NULL) {
1525backtrace:
1526#ifdef CONFIG_IP_FIB_TRIE_STATS
1527			if (!n)
1528				this_cpu_inc(stats->null_node_hit);
1529#endif
1530			/* If we are at cindex 0 there are no more bits for
1531			 * us to strip at this level so we must ascend back
1532			 * up one level to see if there are any more bits to
1533			 * be stripped there.
1534			 */
1535			while (!cindex) {
1536				t_key pkey = pn->key;
1537
1538				/* If we don't have a parent then there is
1539				 * nothing for us to do as we do not have any
1540				 * further nodes to parse.
1541				 */
1542				if (IS_TRIE(pn)) {
1543					trace_fib_table_lookup(tb->tb_id, flp,
1544							       NULL, -EAGAIN);
1545					return -EAGAIN;
1546				}
1547#ifdef CONFIG_IP_FIB_TRIE_STATS
1548				this_cpu_inc(stats->backtrack);
1549#endif
1550				/* Get Child's index */
1551				pn = node_parent_rcu(pn);
1552				cindex = get_index(pkey, pn);
1553			}
1554
1555			/* strip the least significant bit from the cindex */
1556			cindex &= cindex - 1;
 
 
 
 
 
 
 
 
 
 
1557
1558			/* grab pointer for next child node */
1559			cptr = &pn->tnode[cindex];
1560		}
1561	}
1562
1563found:
1564	/* this line carries forward the xor from earlier in the function */
1565	index = key ^ n->key;
 
 
 
 
1566
1567	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1568	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1569		struct fib_info *fi = fa->fa_info;
1570		struct fib_nh_common *nhc;
1571		int nhsel, err;
1572
1573		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1574			if (index >= (1ul << fa->fa_slen))
1575				continue;
1576		}
1577		if (fa->fa_dscp && !fib_dscp_masked_match(fa->fa_dscp, flp))
1578			continue;
1579		/* Paired with WRITE_ONCE() in fib_release_info() */
1580		if (READ_ONCE(fi->fib_dead))
1581			continue;
1582		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1583			continue;
1584		fib_alias_accessed(fa);
1585		err = fib_props[fa->fa_type].error;
1586		if (unlikely(err < 0)) {
1587out_reject:
1588#ifdef CONFIG_IP_FIB_TRIE_STATS
1589			this_cpu_inc(stats->semantic_match_passed);
1590#endif
1591			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1592			return err;
1593		}
1594		if (fi->fib_flags & RTNH_F_DEAD)
1595			continue;
1596
1597		if (unlikely(fi->nh)) {
1598			if (nexthop_is_blackhole(fi->nh)) {
1599				err = fib_props[RTN_BLACKHOLE].error;
1600				goto out_reject;
1601			}
1602
1603			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1604						     &nhsel);
1605			if (nhc)
1606				goto set_result;
1607			goto miss;
1608		}
1609
1610		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1611			nhc = fib_info_nhc(fi, nhsel);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1612
1613			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1614				continue;
1615set_result:
1616			if (!(fib_flags & FIB_LOOKUP_NOREF))
1617				refcount_inc(&fi->fib_clntref);
1618
1619			res->prefix = htonl(n->key);
1620			res->prefixlen = KEYLENGTH - fa->fa_slen;
1621			res->nh_sel = nhsel;
1622			res->nhc = nhc;
1623			res->type = fa->fa_type;
1624			res->scope = fi->fib_scope;
1625			res->dscp = fa->fa_dscp;
1626			res->fi = fi;
1627			res->table = tb;
1628			res->fa_head = &n->leaf;
1629#ifdef CONFIG_IP_FIB_TRIE_STATS
1630			this_cpu_inc(stats->semantic_match_passed);
1631#endif
1632			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1633
1634			return err;
1635		}
1636	}
1637miss:
1638#ifdef CONFIG_IP_FIB_TRIE_STATS
1639	this_cpu_inc(stats->semantic_match_miss);
1640#endif
1641	goto backtrace;
1642}
1643EXPORT_SYMBOL_GPL(fib_table_lookup);
1644
1645static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1646			     struct key_vector *l, struct fib_alias *old)
 
 
1647{
1648	/* record the location of the previous list_info entry */
1649	struct hlist_node **pprev = old->fa_list.pprev;
1650	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1651
1652	/* remove the fib_alias from the list */
1653	hlist_del_rcu(&old->fa_list);
1654
1655	/* if we emptied the list this leaf will be freed and we can sort
1656	 * out parent suffix lengths as a part of trie_rebalance
1657	 */
1658	if (hlist_empty(&l->leaf)) {
1659		if (tp->slen == l->slen)
1660			node_pull_suffix(tp, tp->pos);
1661		put_child_root(tp, l->key, NULL);
1662		node_free(l);
1663		trie_rebalance(t, tp);
1664		return;
1665	}
1666
1667	/* only access fa if it is pointing at the last valid hlist_node */
1668	if (*pprev)
1669		return;
1670
1671	/* update the trie with the latest suffix length */
1672	l->slen = fa->fa_slen;
1673	node_pull_suffix(tp, fa->fa_slen);
1674}
1675
1676static void fib_notify_alias_delete(struct net *net, u32 key,
1677				    struct hlist_head *fah,
1678				    struct fib_alias *fa_to_delete,
1679				    struct netlink_ext_ack *extack)
1680{
1681	struct fib_alias *fa_next, *fa_to_notify;
1682	u32 tb_id = fa_to_delete->tb_id;
1683	u8 slen = fa_to_delete->fa_slen;
1684	enum fib_event_type fib_event;
1685
1686	/* Do not notify if we do not care about the route. */
1687	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1688		return;
1689
1690	/* Determine if the route should be replaced by the next route in the
1691	 * list.
1692	 */
1693	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1694				   struct fib_alias, fa_list);
1695	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1696		fib_event = FIB_EVENT_ENTRY_REPLACE;
1697		fa_to_notify = fa_next;
1698	} else {
1699		fib_event = FIB_EVENT_ENTRY_DEL;
1700		fa_to_notify = fa_to_delete;
1701	}
1702	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1703				 fa_to_notify, extack);
1704}
1705
1706/* Caller must hold RTNL. */
1707int fib_table_delete(struct net *net, struct fib_table *tb,
1708		     struct fib_config *cfg, struct netlink_ext_ack *extack)
 
1709{
1710	struct trie *t = (struct trie *) tb->tb_data;
 
 
 
1711	struct fib_alias *fa, *fa_to_delete;
1712	struct key_vector *l, *tp;
1713	u8 plen = cfg->fc_dst_len;
1714	u8 slen = KEYLENGTH - plen;
1715	dscp_t dscp;
1716	u32 key;
 
1717
1718	key = ntohl(cfg->fc_dst);
 
1719
1720	if (!fib_valid_key_len(key, plen, extack))
1721		return -EINVAL;
1722
1723	l = fib_find_node(t, &tp, key);
 
 
1724	if (!l)
1725		return -ESRCH;
1726
1727	dscp = cfg->fc_dscp;
1728	fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
 
1729	if (!fa)
1730		return -ESRCH;
1731
1732	pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1733		 inet_dscp_to_dsfield(dscp), t);
1734
1735	fa_to_delete = NULL;
1736	hlist_for_each_entry_from(fa, fa_list) {
 
1737		struct fib_info *fi = fa->fa_info;
1738
1739		if ((fa->fa_slen != slen) ||
1740		    (fa->tb_id != tb->tb_id) ||
1741		    (fa->fa_dscp != dscp))
1742			break;
1743
1744		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1745		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1746		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1747		    (!cfg->fc_prefsrc ||
1748		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1749		    (!cfg->fc_protocol ||
1750		     fi->fib_protocol == cfg->fc_protocol) &&
1751		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1752		    fib_metrics_match(cfg, fi)) {
1753			fa_to_delete = fa;
1754			break;
1755		}
1756	}
1757
1758	if (!fa_to_delete)
1759		return -ESRCH;
1760
1761	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1762	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1763		  &cfg->fc_nlinfo, 0);
1764
 
 
 
 
 
1765	if (!plen)
1766		tb->tb_num_default--;
1767
1768	fib_remove_alias(t, tp, l, fa_to_delete);
 
 
 
 
 
 
1769
1770	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1771		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1772
1773	fib_release_info(fa_to_delete->fa_info);
1774	alias_free_mem_rcu(fa_to_delete);
1775	return 0;
1776}
1777
1778/* Scan for the next leaf starting at the provided key value */
1779static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1780{
1781	struct key_vector *pn, *n = *tn;
1782	unsigned long cindex;
1783
1784	/* this loop is meant to try and find the key in the trie */
1785	do {
1786		/* record parent and next child index */
1787		pn = n;
1788		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1789
1790		if (cindex >> pn->bits)
1791			break;
1792
1793		/* descend into the next child */
1794		n = get_child_rcu(pn, cindex++);
1795		if (!n)
1796			break;
1797
1798		/* guarantee forward progress on the keys */
1799		if (IS_LEAF(n) && (n->key >= key))
1800			goto found;
1801	} while (IS_TNODE(n));
1802
1803	/* this loop will search for the next leaf with a greater key */
1804	while (!IS_TRIE(pn)) {
1805		/* if we exhausted the parent node we will need to climb */
1806		if (cindex >= (1ul << pn->bits)) {
1807			t_key pkey = pn->key;
1808
1809			pn = node_parent_rcu(pn);
1810			cindex = get_index(pkey, pn) + 1;
1811			continue;
 
 
1812		}
1813
1814		/* grab the next available node */
1815		n = get_child_rcu(pn, cindex++);
1816		if (!n)
1817			continue;
1818
1819		/* no need to compare keys since we bumped the index */
1820		if (IS_LEAF(n))
1821			goto found;
1822
1823		/* Rescan start scanning in new node */
1824		pn = n;
1825		cindex = 0;
1826	}
1827
1828	*tn = pn;
1829	return NULL; /* Root of trie */
1830found:
1831	/* if we are at the limit for keys just return NULL for the tnode */
1832	*tn = pn;
1833	return n;
1834}
1835
1836static void fib_trie_free(struct fib_table *tb)
1837{
1838	struct trie *t = (struct trie *)tb->tb_data;
1839	struct key_vector *pn = t->kv;
1840	unsigned long cindex = 1;
1841	struct hlist_node *tmp;
1842	struct fib_alias *fa;
1843
1844	/* walk trie in reverse order and free everything */
1845	for (;;) {
1846		struct key_vector *n;
1847
1848		if (!(cindex--)) {
1849			t_key pkey = pn->key;
1850
1851			if (IS_TRIE(pn))
1852				break;
1853
1854			n = pn;
1855			pn = node_parent(pn);
1856
1857			/* drop emptied tnode */
1858			put_child_root(pn, n->key, NULL);
1859			node_free(n);
1860
1861			cindex = get_index(pkey, pn);
1862
1863			continue;
1864		}
1865
1866		/* grab the next available node */
1867		n = get_child(pn, cindex);
1868		if (!n)
1869			continue;
1870
1871		if (IS_TNODE(n)) {
1872			/* record pn and cindex for leaf walking */
1873			pn = n;
1874			cindex = 1ul << n->bits;
1875
1876			continue;
1877		}
1878
1879		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1880			hlist_del_rcu(&fa->fa_list);
1881			alias_free_mem_rcu(fa);
1882		}
1883
1884		put_child_root(pn, n->key, NULL);
1885		node_free(n);
1886	}
1887
1888#ifdef CONFIG_IP_FIB_TRIE_STATS
1889	free_percpu(t->stats);
1890#endif
1891	kfree(tb);
1892}
1893
1894struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
 
 
 
 
1895{
1896	struct trie *ot = (struct trie *)oldtb->tb_data;
1897	struct key_vector *l, *tp = ot->kv;
1898	struct fib_table *local_tb;
1899	struct fib_alias *fa;
1900	struct trie *lt;
1901	t_key key = 0;
1902
1903	if (oldtb->tb_data == oldtb->__data)
1904		return oldtb;
1905
1906	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1907	if (!local_tb)
1908		return NULL;
1909
1910	lt = (struct trie *)local_tb->tb_data;
1911
1912	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1913		struct key_vector *local_l = NULL, *local_tp;
1914
1915		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1916			struct fib_alias *new_fa;
 
 
1917
1918			if (local_tb->tb_id != fa->tb_id)
 
 
1919				continue;
1920
1921			/* clone fa for new local table */
1922			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1923			if (!new_fa)
1924				goto out;
1925
1926			memcpy(new_fa, fa, sizeof(*fa));
1927
1928			/* insert clone into table */
1929			if (!local_l)
1930				local_l = fib_find_node(lt, &local_tp, l->key);
1931
1932			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1933					     NULL, l->key)) {
1934				kmem_cache_free(fn_alias_kmem, new_fa);
1935				goto out;
1936			}
 
 
 
 
1937		}
1938
1939		/* stop loop if key wrapped back to 0 */
1940		key = l->key + 1;
1941		if (key < l->key)
1942			break;
1943	}
1944
1945	return local_tb;
1946out:
1947	fib_trie_free(local_tb);
1948
1949	return NULL;
1950}
1951
1952/* Caller must hold RTNL */
1953void fib_table_flush_external(struct fib_table *tb)
1954{
1955	struct trie *t = (struct trie *)tb->tb_data;
1956	struct key_vector *pn = t->kv;
1957	unsigned long cindex = 1;
1958	struct hlist_node *tmp;
1959	struct fib_alias *fa;
1960
1961	/* walk trie in reverse order */
1962	for (;;) {
1963		unsigned char slen = 0;
1964		struct key_vector *n;
1965
1966		if (!(cindex--)) {
1967			t_key pkey = pn->key;
1968
1969			/* cannot resize the trie vector */
1970			if (IS_TRIE(pn))
1971				break;
1972
1973			/* update the suffix to address pulled leaves */
1974			if (pn->slen > pn->pos)
1975				update_suffix(pn);
1976
1977			/* resize completed node */
1978			pn = resize(t, pn);
1979			cindex = get_index(pkey, pn);
1980
1981			continue;
1982		}
1983
1984		/* grab the next available node */
1985		n = get_child(pn, cindex);
1986		if (!n)
1987			continue;
1988
1989		if (IS_TNODE(n)) {
1990			/* record pn and cindex for leaf walking */
1991			pn = n;
1992			cindex = 1ul << n->bits;
1993
1994			continue;
1995		}
1996
1997		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1998			/* if alias was cloned to local then we just
1999			 * need to remove the local copy from main
2000			 */
2001			if (tb->tb_id != fa->tb_id) {
2002				hlist_del_rcu(&fa->fa_list);
2003				alias_free_mem_rcu(fa);
2004				continue;
2005			}
2006
2007			/* record local slen */
2008			slen = fa->fa_slen;
2009		}
2010
2011		/* update leaf slen */
2012		n->slen = slen;
2013
2014		if (hlist_empty(&n->leaf)) {
2015			put_child_root(pn, n->key, NULL);
2016			node_free(n);
2017		}
2018	}
2019}
2020
2021/* Caller must hold RTNL. */
2022int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2023{
2024	struct trie *t = (struct trie *)tb->tb_data;
2025	struct nl_info info = { .nl_net = net };
2026	struct key_vector *pn = t->kv;
2027	unsigned long cindex = 1;
2028	struct hlist_node *tmp;
2029	struct fib_alias *fa;
2030	int found = 0;
2031
2032	/* walk trie in reverse order */
2033	for (;;) {
2034		unsigned char slen = 0;
2035		struct key_vector *n;
2036
2037		if (!(cindex--)) {
2038			t_key pkey = pn->key;
2039
2040			/* cannot resize the trie vector */
2041			if (IS_TRIE(pn))
2042				break;
2043
2044			/* update the suffix to address pulled leaves */
2045			if (pn->slen > pn->pos)
2046				update_suffix(pn);
2047
2048			/* resize completed node */
2049			pn = resize(t, pn);
2050			cindex = get_index(pkey, pn);
2051
2052			continue;
2053		}
2054
2055		/* grab the next available node */
2056		n = get_child(pn, cindex);
2057		if (!n)
2058			continue;
2059
2060		if (IS_TNODE(n)) {
2061			/* record pn and cindex for leaf walking */
2062			pn = n;
2063			cindex = 1ul << n->bits;
2064
2065			continue;
2066		}
 
2067
2068		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2069			struct fib_info *fi = fa->fa_info;
2070
2071			if (!fi || tb->tb_id != fa->tb_id ||
2072			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2073			     !fib_props[fa->fa_type].error)) {
2074				slen = fa->fa_slen;
2075				continue;
2076			}
2077
2078			/* Do not flush error routes if network namespace is
2079			 * not being dismantled
2080			 */
2081			if (!flush_all && fib_props[fa->fa_type].error) {
2082				slen = fa->fa_slen;
2083				continue;
2084			}
2085
2086			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2087						NULL);
2088			if (fi->pfsrc_removed)
2089				rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa,
2090					  KEYLENGTH - fa->fa_slen, tb->tb_id, &info, 0);
2091			hlist_del_rcu(&fa->fa_list);
2092			fib_release_info(fa->fa_info);
2093			alias_free_mem_rcu(fa);
2094			found++;
2095		}
2096
2097		/* update leaf slen */
2098		n->slen = slen;
2099
2100		if (hlist_empty(&n->leaf)) {
2101			put_child_root(pn, n->key, NULL);
2102			node_free(n);
2103		}
2104	}
2105
 
 
 
2106	pr_debug("trie_flush found=%d\n", found);
2107	return found;
2108}
2109
2110/* derived from fib_trie_free */
2111static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2112				     struct nl_info *info)
2113{
2114	struct trie *t = (struct trie *)tb->tb_data;
2115	struct key_vector *pn = t->kv;
2116	unsigned long cindex = 1;
2117	struct fib_alias *fa;
2118
2119	for (;;) {
2120		struct key_vector *n;
2121
2122		if (!(cindex--)) {
2123			t_key pkey = pn->key;
2124
2125			if (IS_TRIE(pn))
2126				break;
2127
2128			pn = node_parent(pn);
2129			cindex = get_index(pkey, pn);
2130			continue;
2131		}
2132
2133		/* grab the next available node */
2134		n = get_child(pn, cindex);
2135		if (!n)
2136			continue;
2137
2138		if (IS_TNODE(n)) {
2139			/* record pn and cindex for leaf walking */
2140			pn = n;
2141			cindex = 1ul << n->bits;
2142
2143			continue;
2144		}
2145
2146		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2147			struct fib_info *fi = fa->fa_info;
2148
2149			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2150				continue;
2151
2152			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2153				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2154				  info, NLM_F_REPLACE);
2155		}
2156	}
2157}
2158
2159void fib_info_notify_update(struct net *net, struct nl_info *info)
2160{
2161	unsigned int h;
2162
2163	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2164		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2165		struct fib_table *tb;
2166
2167		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2168					 lockdep_rtnl_is_held())
2169			__fib_info_notify_update(net, tb, info);
2170	}
2171}
2172
2173static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2174			   struct notifier_block *nb,
2175			   struct netlink_ext_ack *extack)
2176{
 
2177	struct fib_alias *fa;
2178	int last_slen = -1;
2179	int err;
2180
2181	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2182		struct fib_info *fi = fa->fa_info;
2183
2184		if (!fi)
2185			continue;
2186
2187		/* local and main table can share the same trie,
2188		 * so don't notify twice for the same entry.
2189		 */
2190		if (tb->tb_id != fa->tb_id)
2191			continue;
2192
2193		if (fa->fa_slen == last_slen)
 
 
2194			continue;
 
2195
2196		last_slen = fa->fa_slen;
2197		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2198					      l->key, KEYLENGTH - fa->fa_slen,
2199					      fa, extack);
2200		if (err)
2201			return err;
2202	}
2203	return 0;
2204}
2205
2206static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2207			    struct netlink_ext_ack *extack)
2208{
2209	struct trie *t = (struct trie *)tb->tb_data;
2210	struct key_vector *l, *tp = t->kv;
2211	t_key key = 0;
2212	int err;
2213
2214	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2215		err = fib_leaf_notify(l, tb, nb, extack);
2216		if (err)
2217			return err;
2218
2219		key = l->key + 1;
2220		/* stop in case of wrap around */
2221		if (key < l->key)
2222			break;
2223	}
2224	return 0;
2225}
2226
2227int fib_notify(struct net *net, struct notifier_block *nb,
2228	       struct netlink_ext_ack *extack)
2229{
2230	unsigned int h;
2231	int err;
2232
2233	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2234		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2235		struct fib_table *tb;
2236
2237		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2238			err = fib_table_notify(tb, nb, extack);
2239			if (err)
2240				return err;
2241		}
 
2242	}
2243	return 0;
2244}
2245
2246static void __trie_free_rcu(struct rcu_head *head)
2247{
2248	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2249#ifdef CONFIG_IP_FIB_TRIE_STATS
2250	struct trie *t = (struct trie *)tb->tb_data;
2251
2252	if (tb->tb_data == tb->__data)
2253		free_percpu(t->stats);
2254#endif /* CONFIG_IP_FIB_TRIE_STATS */
2255	kfree(tb);
2256}
2257
2258void fib_free_table(struct fib_table *tb)
2259{
2260	call_rcu(&tb->rcu, __trie_free_rcu);
2261}
2262
2263static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2264			     struct sk_buff *skb, struct netlink_callback *cb,
2265			     struct fib_dump_filter *filter)
2266{
2267	unsigned int flags = NLM_F_MULTI;
2268	__be32 xkey = htonl(l->key);
2269	int i, s_i, i_fa, s_fa, err;
2270	struct fib_alias *fa;
2271
2272	if (filter->filter_set ||
2273	    !filter->dump_exceptions || !filter->dump_routes)
2274		flags |= NLM_F_DUMP_FILTERED;
2275
2276	s_i = cb->args[4];
2277	s_fa = cb->args[5];
2278	i = 0;
2279
2280	/* rcu_read_lock is hold by caller */
2281	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2282		struct fib_info *fi = fa->fa_info;
2283
2284		if (i < s_i)
2285			goto next;
2286
2287		i_fa = 0;
2288
2289		if (tb->tb_id != fa->tb_id)
2290			goto next;
2291
2292		if (filter->filter_set) {
2293			if (filter->rt_type && fa->fa_type != filter->rt_type)
2294				goto next;
2295
2296			if ((filter->protocol &&
2297			     fi->fib_protocol != filter->protocol))
2298				goto next;
2299
2300			if (filter->dev &&
2301			    !fib_info_nh_uses_dev(fi, filter->dev))
2302				goto next;
2303		}
2304
2305		if (filter->dump_routes) {
2306			if (!s_fa) {
2307				struct fib_rt_info fri;
2308
2309				fri.fi = fi;
2310				fri.tb_id = tb->tb_id;
2311				fri.dst = xkey;
2312				fri.dst_len = KEYLENGTH - fa->fa_slen;
2313				fri.dscp = fa->fa_dscp;
2314				fri.type = fa->fa_type;
2315				fri.offload = READ_ONCE(fa->offload);
2316				fri.trap = READ_ONCE(fa->trap);
2317				fri.offload_failed = READ_ONCE(fa->offload_failed);
2318				err = fib_dump_info(skb,
2319						    NETLINK_CB(cb->skb).portid,
2320						    cb->nlh->nlmsg_seq,
2321						    RTM_NEWROUTE, &fri, flags);
2322				if (err < 0)
2323					goto stop;
2324			}
2325
2326			i_fa++;
2327		}
2328
2329		if (filter->dump_exceptions) {
2330			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2331						 &i_fa, s_fa, flags);
2332			if (err < 0)
2333				goto stop;
2334		}
2335
2336next:
2337		i++;
2338	}
2339
2340	cb->args[4] = i;
2341	return skb->len;
2342
2343stop:
2344	cb->args[4] = i;
2345	cb->args[5] = i_fa;
2346	return err;
2347}
2348
2349/* rcu_read_lock needs to be hold by caller from readside */
2350int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2351		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2352{
2353	struct trie *t = (struct trie *)tb->tb_data;
2354	struct key_vector *l, *tp = t->kv;
 
 
 
 
2355	/* Dump starting at last key.
2356	 * Note: 0.0.0.0/0 (ie default) is first key.
2357	 */
2358	int count = cb->args[2];
2359	t_key key = cb->args[3];
2360
2361	/* First time here, count and key are both always 0. Count > 0
2362	 * and key == 0 means the dump has wrapped around and we are done.
2363	 */
2364	if (count && !key)
2365		return 0;
2366
2367	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2368		int err;
2369
2370		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2371		if (err < 0) {
2372			cb->args[3] = key;
2373			cb->args[2] = count;
2374			return err;
 
2375		}
2376
2377		++count;
2378		key = l->key + 1;
2379
2380		memset(&cb->args[4], 0,
2381		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2382
2383		/* stop loop if key wrapped back to 0 */
2384		if (key < l->key)
2385			break;
2386	}
 
 
2387
2388	cb->args[3] = key;
2389	cb->args[2] = count;
2390
2391	return 0;
2392}
2393
2394void __init fib_trie_init(void)
2395{
2396	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2397					  sizeof(struct fib_alias),
2398					  0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2399
2400	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2401					   LEAF_SIZE,
2402					   0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
 
2403}
2404
2405struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
 
2406{
2407	struct fib_table *tb;
2408	struct trie *t;
2409	size_t sz = sizeof(*tb);
2410
2411	if (!alias)
2412		sz += sizeof(struct trie);
2413
2414	tb = kzalloc(sz, GFP_KERNEL);
2415	if (!tb)
 
2416		return NULL;
2417
2418	tb->tb_id = id;
 
2419	tb->tb_num_default = 0;
2420	tb->tb_data = (alias ? alias->__data : tb->__data);
2421
2422	if (alias)
2423		return tb;
2424
2425	t = (struct trie *) tb->tb_data;
2426	t->kv[0].pos = KEYLENGTH;
2427	t->kv[0].slen = KEYLENGTH;
2428#ifdef CONFIG_IP_FIB_TRIE_STATS
2429	t->stats = alloc_percpu(struct trie_use_stats);
2430	if (!t->stats) {
2431		kfree(tb);
2432		tb = NULL;
2433	}
2434#endif
2435
2436	return tb;
2437}
2438
2439#ifdef CONFIG_PROC_FS
2440/* Depth first Trie walk iterator */
2441struct fib_trie_iter {
2442	struct seq_net_private p;
2443	struct fib_table *tb;
2444	struct key_vector *tnode;
2445	unsigned int index;
2446	unsigned int depth;
2447};
2448
2449static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2450{
2451	unsigned long cindex = iter->index;
2452	struct key_vector *pn = iter->tnode;
2453	t_key pkey;
 
 
 
 
2454
2455	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2456		 iter->tnode, iter->index, iter->depth);
 
 
 
2457
2458	while (!IS_TRIE(pn)) {
2459		while (cindex < child_length(pn)) {
2460			struct key_vector *n = get_child_rcu(pn, cindex++);
2461
2462			if (!n)
2463				continue;
2464
2465			if (IS_LEAF(n)) {
2466				iter->tnode = pn;
2467				iter->index = cindex;
2468			} else {
2469				/* push down one level */
2470				iter->tnode = n;
2471				iter->index = 0;
2472				++iter->depth;
2473			}
2474
2475			return n;
2476		}
2477
2478		/* Current node exhausted, pop back up */
2479		pkey = pn->key;
2480		pn = node_parent_rcu(pn);
2481		cindex = get_index(pkey, pn) + 1;
2482		--iter->depth;
2483	}
2484
2485	/* record root node so further searches know we are done */
2486	iter->tnode = pn;
2487	iter->index = 0;
 
 
 
 
 
2488
 
2489	return NULL;
2490}
2491
2492static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2493					     struct trie *t)
2494{
2495	struct key_vector *n, *pn;
2496
2497	if (!t)
2498		return NULL;
2499
2500	pn = t->kv;
2501	n = rcu_dereference(pn->tnode[0]);
2502	if (!n)
2503		return NULL;
2504
2505	if (IS_TNODE(n)) {
2506		iter->tnode = n;
2507		iter->index = 0;
2508		iter->depth = 1;
2509	} else {
2510		iter->tnode = pn;
2511		iter->index = 0;
2512		iter->depth = 0;
2513	}
2514
2515	return n;
2516}
2517
2518static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2519{
2520	struct key_vector *n;
2521	struct fib_trie_iter iter;
2522
2523	memset(s, 0, sizeof(*s));
2524
2525	rcu_read_lock();
2526	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2527		if (IS_LEAF(n)) {
2528			struct fib_alias *fa;
 
 
2529
2530			s->leaves++;
2531			s->totdepth += iter.depth;
2532			if (iter.depth > s->maxdepth)
2533				s->maxdepth = iter.depth;
2534
2535			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2536				++s->prefixes;
2537		} else {
 
 
 
2538			s->tnodes++;
2539			if (n->bits < MAX_STAT_DEPTH)
2540				s->nodesizes[n->bits]++;
2541			s->nullpointers += tn_info(n)->empty_children;
 
 
 
2542		}
2543	}
2544	rcu_read_unlock();
2545}
2546
2547/*
2548 *	This outputs /proc/net/fib_triestats
2549 */
2550static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2551{
2552	unsigned int i, max, pointers, bytes, avdepth;
2553
2554	if (stat->leaves)
2555		avdepth = stat->totdepth*100 / stat->leaves;
2556	else
2557		avdepth = 0;
2558
2559	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2560		   avdepth / 100, avdepth % 100);
2561	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2562
2563	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2564	bytes = LEAF_SIZE * stat->leaves;
2565
2566	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2567	bytes += sizeof(struct fib_alias) * stat->prefixes;
2568
2569	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2570	bytes += TNODE_SIZE(0) * stat->tnodes;
2571
2572	max = MAX_STAT_DEPTH;
2573	while (max > 0 && stat->nodesizes[max-1] == 0)
2574		max--;
2575
2576	pointers = 0;
2577	for (i = 1; i < max; i++)
2578		if (stat->nodesizes[i] != 0) {
2579			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2580			pointers += (1<<i) * stat->nodesizes[i];
2581		}
2582	seq_putc(seq, '\n');
2583	seq_printf(seq, "\tPointers: %u\n", pointers);
2584
2585	bytes += sizeof(struct key_vector *) * pointers;
2586	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2587	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2588}
2589
2590#ifdef CONFIG_IP_FIB_TRIE_STATS
2591static void trie_show_usage(struct seq_file *seq,
2592			    const struct trie_use_stats __percpu *stats)
2593{
2594	struct trie_use_stats s = { 0 };
2595	int cpu;
2596
2597	/* loop through all of the CPUs and gather up the stats */
2598	for_each_possible_cpu(cpu) {
2599		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2600
2601		s.gets += pcpu->gets;
2602		s.backtrack += pcpu->backtrack;
2603		s.semantic_match_passed += pcpu->semantic_match_passed;
2604		s.semantic_match_miss += pcpu->semantic_match_miss;
2605		s.null_node_hit += pcpu->null_node_hit;
2606		s.resize_node_skipped += pcpu->resize_node_skipped;
2607	}
2608
2609	seq_printf(seq, "\nCounters:\n---------\n");
2610	seq_printf(seq, "gets = %u\n", s.gets);
2611	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2612	seq_printf(seq, "semantic match passed = %u\n",
2613		   s.semantic_match_passed);
2614	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2615	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2616	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
 
 
2617}
2618#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2619
2620static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2621{
2622	if (tb->tb_id == RT_TABLE_LOCAL)
2623		seq_puts(seq, "Local:\n");
2624	else if (tb->tb_id == RT_TABLE_MAIN)
2625		seq_puts(seq, "Main:\n");
2626	else
2627		seq_printf(seq, "Id %d:\n", tb->tb_id);
2628}
2629
2630
2631static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2632{
2633	struct net *net = seq->private;
2634	unsigned int h;
2635
2636	seq_printf(seq,
2637		   "Basic info: size of leaf:"
2638		   " %zd bytes, size of tnode: %zd bytes.\n",
2639		   LEAF_SIZE, TNODE_SIZE(0));
2640
2641	rcu_read_lock();
2642	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2643		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
 
2644		struct fib_table *tb;
2645
2646		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2647			struct trie *t = (struct trie *) tb->tb_data;
2648			struct trie_stat stat;
2649
2650			if (!t)
2651				continue;
2652
2653			fib_table_print(seq, tb);
2654
2655			trie_collect_stats(t, &stat);
2656			trie_show_stats(seq, &stat);
2657#ifdef CONFIG_IP_FIB_TRIE_STATS
2658			trie_show_usage(seq, t->stats);
2659#endif
2660		}
2661		cond_resched_rcu();
2662	}
2663	rcu_read_unlock();
2664
2665	return 0;
2666}
2667
2668static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
 
2669{
2670	struct fib_trie_iter *iter = seq->private;
2671	struct net *net = seq_file_net(seq);
2672	loff_t idx = 0;
2673	unsigned int h;
2674
2675	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2676		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
 
2677		struct fib_table *tb;
2678
2679		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2680			struct key_vector *n;
2681
2682			for (n = fib_trie_get_first(iter,
2683						    (struct trie *) tb->tb_data);
2684			     n; n = fib_trie_get_next(iter))
2685				if (pos == idx++) {
2686					iter->tb = tb;
2687					return n;
2688				}
2689		}
2690	}
2691
2692	return NULL;
2693}
2694
2695static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2696	__acquires(RCU)
2697{
2698	rcu_read_lock();
2699	return fib_trie_get_idx(seq, *pos);
2700}
2701
2702static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2703{
2704	struct fib_trie_iter *iter = seq->private;
2705	struct net *net = seq_file_net(seq);
2706	struct fib_table *tb = iter->tb;
2707	struct hlist_node *tb_node;
2708	unsigned int h;
2709	struct key_vector *n;
2710
2711	++*pos;
2712	/* next node in same table */
2713	n = fib_trie_get_next(iter);
2714	if (n)
2715		return n;
2716
2717	/* walk rest of this hash chain */
2718	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2719	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2720		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2721		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2722		if (n)
2723			goto found;
2724	}
2725
2726	/* new hash chain */
2727	while (++h < FIB_TABLE_HASHSZ) {
2728		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2729		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2730			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2731			if (n)
2732				goto found;
2733		}
2734	}
2735	return NULL;
2736
2737found:
2738	iter->tb = tb;
2739	return n;
2740}
2741
2742static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2743	__releases(RCU)
2744{
2745	rcu_read_unlock();
2746}
2747
2748static void seq_indent(struct seq_file *seq, int n)
2749{
2750	while (n-- > 0)
2751		seq_puts(seq, "   ");
2752}
2753
2754static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2755{
2756	switch (s) {
2757	case RT_SCOPE_UNIVERSE: return "universe";
2758	case RT_SCOPE_SITE:	return "site";
2759	case RT_SCOPE_LINK:	return "link";
2760	case RT_SCOPE_HOST:	return "host";
2761	case RT_SCOPE_NOWHERE:	return "nowhere";
2762	default:
2763		snprintf(buf, len, "scope=%d", s);
2764		return buf;
2765	}
2766}
2767
2768static const char *const rtn_type_names[__RTN_MAX] = {
2769	[RTN_UNSPEC] = "UNSPEC",
2770	[RTN_UNICAST] = "UNICAST",
2771	[RTN_LOCAL] = "LOCAL",
2772	[RTN_BROADCAST] = "BROADCAST",
2773	[RTN_ANYCAST] = "ANYCAST",
2774	[RTN_MULTICAST] = "MULTICAST",
2775	[RTN_BLACKHOLE] = "BLACKHOLE",
2776	[RTN_UNREACHABLE] = "UNREACHABLE",
2777	[RTN_PROHIBIT] = "PROHIBIT",
2778	[RTN_THROW] = "THROW",
2779	[RTN_NAT] = "NAT",
2780	[RTN_XRESOLVE] = "XRESOLVE",
2781};
2782
2783static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2784{
2785	if (t < __RTN_MAX && rtn_type_names[t])
2786		return rtn_type_names[t];
2787	snprintf(buf, len, "type %u", t);
2788	return buf;
2789}
2790
2791/* Pretty print the trie */
2792static int fib_trie_seq_show(struct seq_file *seq, void *v)
2793{
2794	const struct fib_trie_iter *iter = seq->private;
2795	struct key_vector *n = v;
2796
2797	if (IS_TRIE(node_parent_rcu(n)))
2798		fib_table_print(seq, iter->tb);
2799
2800	if (IS_TNODE(n)) {
2801		__be32 prf = htonl(n->key);
 
2802
2803		seq_indent(seq, iter->depth-1);
2804		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2805			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2806			   tn_info(n)->full_children,
2807			   tn_info(n)->empty_children);
2808	} else {
2809		__be32 val = htonl(n->key);
2810		struct fib_alias *fa;
 
 
2811
2812		seq_indent(seq, iter->depth);
2813		seq_printf(seq, "  |-- %pI4\n", &val);
2814
2815		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2816			char buf1[32], buf2[32];
 
 
 
2817
2818			seq_indent(seq, iter->depth + 1);
2819			seq_printf(seq, "  /%zu %s %s",
2820				   KEYLENGTH - fa->fa_slen,
2821				   rtn_scope(buf1, sizeof(buf1),
2822					     fa->fa_info->fib_scope),
2823				   rtn_type(buf2, sizeof(buf2),
2824					    fa->fa_type));
2825			if (fa->fa_dscp)
2826				seq_printf(seq, " tos=%d",
2827					   inet_dscp_to_dsfield(fa->fa_dscp));
2828			seq_putc(seq, '\n');
2829		}
2830	}
2831
2832	return 0;
2833}
2834
2835static const struct seq_operations fib_trie_seq_ops = {
2836	.start  = fib_trie_seq_start,
2837	.next   = fib_trie_seq_next,
2838	.stop   = fib_trie_seq_stop,
2839	.show   = fib_trie_seq_show,
2840};
2841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2842struct fib_route_iter {
2843	struct seq_net_private p;
2844	struct fib_table *main_tb;
2845	struct key_vector *tnode;
2846	loff_t	pos;
2847	t_key	key;
2848};
2849
2850static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2851					    loff_t pos)
2852{
2853	struct key_vector *l, **tp = &iter->tnode;
2854	t_key key;
2855
2856	/* use cached location of previously found key */
2857	if (iter->pos > 0 && pos >= iter->pos) {
2858		key = iter->key;
2859	} else {
2860		iter->pos = 1;
2861		key = 0;
2862	}
2863
2864	pos -= iter->pos;
2865
2866	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2867		key = l->key + 1;
2868		iter->pos++;
2869		l = NULL;
2870
2871		/* handle unlikely case of a key wrap */
2872		if (!key)
2873			break;
2874	}
2875
2876	if (l)
2877		iter->key = l->key;	/* remember it */
2878	else
2879		iter->pos = 0;		/* forget it */
2880
2881	return l;
2882}
2883
2884static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2885	__acquires(RCU)
2886{
2887	struct fib_route_iter *iter = seq->private;
2888	struct fib_table *tb;
2889	struct trie *t;
2890
2891	rcu_read_lock();
2892
2893	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2894	if (!tb)
2895		return NULL;
2896
2897	iter->main_tb = tb;
2898	t = (struct trie *)tb->tb_data;
2899	iter->tnode = t->kv;
2900
2901	if (*pos != 0)
2902		return fib_route_get_idx(iter, *pos);
2903
2904	iter->pos = 0;
2905	iter->key = KEY_MAX;
2906
2907	return SEQ_START_TOKEN;
2908}
2909
2910static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2911{
2912	struct fib_route_iter *iter = seq->private;
2913	struct key_vector *l = NULL;
2914	t_key key = iter->key + 1;
2915
2916	++*pos;
2917
2918	/* only allow key of 0 for start of sequence */
2919	if ((v == SEQ_START_TOKEN) || key)
2920		l = leaf_walk_rcu(&iter->tnode, key);
2921
2922	if (l) {
2923		iter->key = l->key;
2924		iter->pos++;
2925	} else {
2926		iter->pos = 0;
 
 
 
 
2927	}
2928
 
 
 
 
2929	return l;
2930}
2931
2932static void fib_route_seq_stop(struct seq_file *seq, void *v)
2933	__releases(RCU)
2934{
2935	rcu_read_unlock();
2936}
2937
2938static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2939{
2940	unsigned int flags = 0;
2941
2942	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2943		flags = RTF_REJECT;
2944	if (fi) {
2945		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2946
2947		if (nhc->nhc_gw.ipv4)
2948			flags |= RTF_GATEWAY;
2949	}
2950	if (mask == htonl(0xFFFFFFFF))
2951		flags |= RTF_HOST;
2952	flags |= RTF_UP;
2953	return flags;
2954}
2955
2956/*
2957 *	This outputs /proc/net/route.
2958 *	The format of the file is not supposed to be changed
2959 *	and needs to be same as fib_hash output to avoid breaking
2960 *	legacy utilities
2961 */
2962static int fib_route_seq_show(struct seq_file *seq, void *v)
2963{
2964	struct fib_route_iter *iter = seq->private;
2965	struct fib_table *tb = iter->main_tb;
2966	struct fib_alias *fa;
2967	struct key_vector *l = v;
2968	__be32 prefix;
2969
2970	if (v == SEQ_START_TOKEN) {
2971		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2972			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2973			   "\tWindow\tIRTT");
2974		return 0;
2975	}
2976
2977	prefix = htonl(l->key);
 
 
2978
2979	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2980		struct fib_info *fi = fa->fa_info;
2981		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2982		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2983
2984		if ((fa->fa_type == RTN_BROADCAST) ||
2985		    (fa->fa_type == RTN_MULTICAST))
2986			continue;
 
2987
2988		if (fa->tb_id != tb->tb_id)
2989			continue;
 
2990
2991		seq_setwidth(seq, 127);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2992
2993		if (fi) {
2994			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2995			__be32 gw = 0;
2996
2997			if (nhc->nhc_gw_family == AF_INET)
2998				gw = nhc->nhc_gw.ipv4;
2999
3000			seq_printf(seq,
3001				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
3002				   "%d\t%08X\t%d\t%u\t%u",
3003				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
3004				   prefix, gw, flags, 0, 0,
3005				   fi->fib_priority,
3006				   mask,
3007				   (fi->fib_advmss ?
3008				    fi->fib_advmss + 40 : 0),
3009				   fi->fib_window,
3010				   fi->fib_rtt >> 3);
3011		} else {
3012			seq_printf(seq,
3013				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
3014				   "%d\t%08X\t%d\t%u\t%u",
3015				   prefix, 0, flags, 0, 0, 0,
3016				   mask, 0, 0, 0);
3017		}
3018		seq_pad(seq, '\n');
3019	}
3020
3021	return 0;
3022}
3023
3024static const struct seq_operations fib_route_seq_ops = {
3025	.start  = fib_route_seq_start,
3026	.next   = fib_route_seq_next,
3027	.stop   = fib_route_seq_stop,
3028	.show   = fib_route_seq_show,
3029};
3030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3031int __net_init fib_proc_init(struct net *net)
3032{
3033	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3034			sizeof(struct fib_trie_iter)))
3035		goto out1;
3036
3037	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3038			fib_triestat_seq_show, NULL))
3039		goto out2;
3040
3041	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3042			sizeof(struct fib_route_iter)))
3043		goto out3;
3044
3045	return 0;
3046
3047out3:
3048	remove_proc_entry("fib_triestat", net->proc_net);
3049out2:
3050	remove_proc_entry("fib_trie", net->proc_net);
3051out1:
3052	return -ENOMEM;
3053}
3054
3055void __net_exit fib_proc_exit(struct net *net)
3056{
3057	remove_proc_entry("fib_trie", net->proc_net);
3058	remove_proc_entry("fib_triestat", net->proc_net);
3059	remove_proc_entry("route", net->proc_net);
3060}
3061
3062#endif /* CONFIG_PROC_FS */
v3.5.6
 
   1/*
   2 *   This program is free software; you can redistribute it and/or
   3 *   modify it under the terms of the GNU General Public License
   4 *   as published by the Free Software Foundation; either version
   5 *   2 of the License, or (at your option) any later version.
   6 *
   7 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   8 *     & Swedish University of Agricultural Sciences.
   9 *
  10 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
  11 *     Agricultural Sciences.
  12 *
  13 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  14 *
  15 * This work is based on the LPC-trie which is originally described in:
  16 *
  17 * An experimental study of compression methods for dynamic tries
  18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20 *
  21 *
  22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24 *
  25 *
  26 * Code from fib_hash has been reused which includes the following header:
  27 *
  28 *
  29 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  30 *		operating system.  INET is implemented using the  BSD Socket
  31 *		interface as the means of communication with the user level.
  32 *
  33 *		IPv4 FIB: lookup engine and maintenance routines.
  34 *
  35 *
  36 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37 *
  38 *		This program is free software; you can redistribute it and/or
  39 *		modify it under the terms of the GNU General Public License
  40 *		as published by the Free Software Foundation; either version
  41 *		2 of the License, or (at your option) any later version.
  42 *
  43 * Substantial contributions to this work comes from:
  44 *
  45 *		David S. Miller, <davem@davemloft.net>
  46 *		Stephen Hemminger <shemminger@osdl.org>
  47 *		Paul E. McKenney <paulmck@us.ibm.com>
  48 *		Patrick McHardy <kaber@trash.net>
  49 */
  50
  51#define VERSION "0.409"
  52
  53#include <asm/uaccess.h>
  54#include <linux/bitops.h>
  55#include <linux/types.h>
  56#include <linux/kernel.h>
  57#include <linux/mm.h>
  58#include <linux/string.h>
  59#include <linux/socket.h>
  60#include <linux/sockios.h>
  61#include <linux/errno.h>
  62#include <linux/in.h>
  63#include <linux/inet.h>
  64#include <linux/inetdevice.h>
  65#include <linux/netdevice.h>
  66#include <linux/if_arp.h>
  67#include <linux/proc_fs.h>
  68#include <linux/rcupdate.h>
 
  69#include <linux/skbuff.h>
  70#include <linux/netlink.h>
  71#include <linux/init.h>
  72#include <linux/list.h>
  73#include <linux/slab.h>
  74#include <linux/prefetch.h>
  75#include <linux/export.h>
 
 
  76#include <net/net_namespace.h>
 
  77#include <net/ip.h>
  78#include <net/protocol.h>
  79#include <net/route.h>
  80#include <net/tcp.h>
  81#include <net/sock.h>
  82#include <net/ip_fib.h>
 
 
  83#include "fib_lookup.h"
  84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85#define MAX_STAT_DEPTH 32
  86
  87#define KEYLENGTH (8*sizeof(t_key))
 
  88
  89typedef unsigned int t_key;
  90
  91#define T_TNODE 0
  92#define T_LEAF  1
  93#define NODE_TYPE_MASK	0x1UL
  94#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
  95
  96#define IS_TNODE(n) (!(n->parent & T_LEAF))
  97#define IS_LEAF(n) (n->parent & T_LEAF)
  98
  99struct rt_trie_node {
 100	unsigned long parent;
 101	t_key key;
 
 
 
 
 
 
 
 
 
 102};
 103
 104struct leaf {
 105	unsigned long parent;
 106	t_key key;
 107	struct hlist_head list;
 108	struct rcu_head rcu;
 109};
 110
 111struct leaf_info {
 112	struct hlist_node hlist;
 113	int plen;
 114	u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
 115	struct list_head falh;
 116	struct rcu_head rcu;
 
 
 
 
 
 117};
 118
 119struct tnode {
 120	unsigned long parent;
 121	t_key key;
 122	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
 123	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
 124	unsigned int full_children;	/* KEYLENGTH bits needed */
 125	unsigned int empty_children;	/* KEYLENGTH bits needed */
 126	union {
 127		struct rcu_head rcu;
 128		struct work_struct work;
 129		struct tnode *tnode_free;
 130	};
 131	struct rt_trie_node __rcu *child[0];
 132};
 133
 134#ifdef CONFIG_IP_FIB_TRIE_STATS
 135struct trie_use_stats {
 136	unsigned int gets;
 137	unsigned int backtrack;
 138	unsigned int semantic_match_passed;
 139	unsigned int semantic_match_miss;
 140	unsigned int null_node_hit;
 141	unsigned int resize_node_skipped;
 142};
 143#endif
 144
 145struct trie_stat {
 146	unsigned int totdepth;
 147	unsigned int maxdepth;
 148	unsigned int tnodes;
 149	unsigned int leaves;
 150	unsigned int nullpointers;
 151	unsigned int prefixes;
 152	unsigned int nodesizes[MAX_STAT_DEPTH];
 153};
 154
 155struct trie {
 156	struct rt_trie_node __rcu *trie;
 157#ifdef CONFIG_IP_FIB_TRIE_STATS
 158	struct trie_use_stats stats;
 159#endif
 160};
 161
 162static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
 163static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
 164				  int wasfull);
 165static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
 166static struct tnode *inflate(struct trie *t, struct tnode *tn);
 167static struct tnode *halve(struct trie *t, struct tnode *tn);
 168/* tnodes to free after resize(); protected by RTNL */
 169static struct tnode *tnode_free_head;
 170static size_t tnode_free_size;
 171
 172/*
 173 * synchronize_rcu after call_rcu for that many pages; it should be especially
 174 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 175 * obtained experimentally, aiming to avoid visible slowdown.
 176 */
 177static const int sync_pages = 128;
 
 
 178
 179static struct kmem_cache *fn_alias_kmem __read_mostly;
 180static struct kmem_cache *trie_leaf_kmem __read_mostly;
 181
 182/*
 183 * caller must hold RTNL
 184 */
 185static inline struct tnode *node_parent(const struct rt_trie_node *node)
 186{
 187	unsigned long parent;
 188
 189	parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
 190
 191	return (struct tnode *)(parent & ~NODE_TYPE_MASK);
 192}
 193
 194/*
 195 * caller must hold RCU read lock or RTNL
 196 */
 197static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
 198{
 199	unsigned long parent;
 200
 201	parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
 202							   lockdep_rtnl_is_held());
 203
 204	return (struct tnode *)(parent & ~NODE_TYPE_MASK);
 205}
 
 206
 207/* Same as rcu_assign_pointer
 208 * but that macro() assumes that value is a pointer.
 209 */
 210static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
 211{
 212	smp_wmb();
 213	node->parent = (unsigned long)ptr | NODE_TYPE(node);
 214}
 215
 216/*
 217 * caller must hold RTNL
 218 */
 219static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
 220{
 221	BUG_ON(i >= 1U << tn->bits);
 222
 223	return rtnl_dereference(tn->child[i]);
 224}
 225
 226/*
 227 * caller must hold RCU read lock or RTNL
 228 */
 229static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
 230{
 231	BUG_ON(i >= 1U << tn->bits);
 232
 233	return rcu_dereference_rtnl(tn->child[i]);
 234}
 235
 236static inline int tnode_child_length(const struct tnode *tn)
 237{
 238	return 1 << tn->bits;
 239}
 240
 241static inline t_key mask_pfx(t_key k, unsigned int l)
 242{
 243	return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
 244}
 245
 246static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
 247{
 248	if (offset < KEYLENGTH)
 249		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
 250	else
 251		return 0;
 252}
 253
 254static inline int tkey_equals(t_key a, t_key b)
 255{
 256	return a == b;
 257}
 258
 259static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
 260{
 261	if (bits == 0 || offset >= KEYLENGTH)
 262		return 1;
 263	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
 264	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
 265}
 266
 267static inline int tkey_mismatch(t_key a, int offset, t_key b)
 268{
 269	t_key diff = a ^ b;
 270	int i = offset;
 271
 272	if (!diff)
 273		return 0;
 274	while ((diff << i) >> (KEYLENGTH-1) == 0)
 275		i++;
 276	return i;
 277}
 278
 279/*
 280  To understand this stuff, an understanding of keys and all their bits is
 281  necessary. Every node in the trie has a key associated with it, but not
 282  all of the bits in that key are significant.
 283
 284  Consider a node 'n' and its parent 'tp'.
 285
 286  If n is a leaf, every bit in its key is significant. Its presence is
 287  necessitated by path compression, since during a tree traversal (when
 288  searching for a leaf - unless we are doing an insertion) we will completely
 289  ignore all skipped bits we encounter. Thus we need to verify, at the end of
 290  a potentially successful search, that we have indeed been walking the
 291  correct key path.
 292
 293  Note that we can never "miss" the correct key in the tree if present by
 294  following the wrong path. Path compression ensures that segments of the key
 295  that are the same for all keys with a given prefix are skipped, but the
 296  skipped part *is* identical for each node in the subtrie below the skipped
 297  bit! trie_insert() in this implementation takes care of that - note the
 298  call to tkey_sub_equals() in trie_insert().
 299
 300  if n is an internal node - a 'tnode' here, the various parts of its key
 301  have many different meanings.
 302
 303  Example:
 304  _________________________________________________________________
 305  | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 306  -----------------------------------------------------------------
 307    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
 308
 309  _________________________________________________________________
 310  | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 311  -----------------------------------------------------------------
 312   16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
 313
 314  tp->pos = 7
 315  tp->bits = 3
 316  n->pos = 15
 317  n->bits = 4
 318
 319  First, let's just ignore the bits that come before the parent tp, that is
 320  the bits from 0 to (tp->pos-1). They are *known* but at this point we do
 321  not use them for anything.
 322
 323  The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 324  index into the parent's child array. That is, they will be used to find
 325  'n' among tp's children.
 326
 327  The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
 328  for the node n.
 329
 330  All the bits we have seen so far are significant to the node n. The rest
 331  of the bits are really not needed or indeed known in n->key.
 332
 333  The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 334  n's child array, and will of course be different for each child.
 335
 336
 337  The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
 338  at this point.
 339
 340*/
 341
 342static inline void check_tnode(const struct tnode *tn)
 343{
 344	WARN_ON(tn && tn->pos+tn->bits > 32);
 345}
 346
 347static const int halve_threshold = 25;
 348static const int inflate_threshold = 50;
 349static const int halve_threshold_root = 15;
 350static const int inflate_threshold_root = 30;
 351
 352static void __alias_free_mem(struct rcu_head *head)
 353{
 354	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 355	kmem_cache_free(fn_alias_kmem, fa);
 356}
 357
 358static inline void alias_free_mem_rcu(struct fib_alias *fa)
 
 
 
 359{
 360	call_rcu(&fa->rcu, __alias_free_mem);
 
 
 
 
 
 361}
 362
 363static void __leaf_free_rcu(struct rcu_head *head)
 
 
 364{
 365	struct leaf *l = container_of(head, struct leaf, rcu);
 366	kmem_cache_free(trie_leaf_kmem, l);
 367}
 368
 369static inline void free_leaf(struct leaf *l)
 370{
 371	call_rcu_bh(&l->rcu, __leaf_free_rcu);
 372}
 373
 374static inline void free_leaf_info(struct leaf_info *leaf)
 375{
 376	kfree_rcu(leaf, rcu);
 377}
 378
 379static struct tnode *tnode_alloc(size_t size)
 380{
 381	if (size <= PAGE_SIZE)
 382		return kzalloc(size, GFP_KERNEL);
 383	else
 384		return vzalloc(size);
 385}
 386
 387static void __tnode_vfree(struct work_struct *arg)
 388{
 389	struct tnode *tn = container_of(arg, struct tnode, work);
 390	vfree(tn);
 391}
 392
 393static void __tnode_free_rcu(struct rcu_head *head)
 394{
 395	struct tnode *tn = container_of(head, struct tnode, rcu);
 396	size_t size = sizeof(struct tnode) +
 397		      (sizeof(struct rt_trie_node *) << tn->bits);
 398
 399	if (size <= PAGE_SIZE)
 400		kfree(tn);
 401	else {
 402		INIT_WORK(&tn->work, __tnode_vfree);
 403		schedule_work(&tn->work);
 404	}
 405}
 406
 407static inline void tnode_free(struct tnode *tn)
 408{
 409	if (IS_LEAF(tn))
 410		free_leaf((struct leaf *) tn);
 411	else
 412		call_rcu(&tn->rcu, __tnode_free_rcu);
 413}
 414
 415static void tnode_free_safe(struct tnode *tn)
 416{
 417	BUG_ON(IS_LEAF(tn));
 418	tn->tnode_free = tnode_free_head;
 419	tnode_free_head = tn;
 420	tnode_free_size += sizeof(struct tnode) +
 421			   (sizeof(struct rt_trie_node *) << tn->bits);
 422}
 423
 424static void tnode_free_flush(void)
 425{
 426	struct tnode *tn;
 
 427
 428	while ((tn = tnode_free_head)) {
 429		tnode_free_head = tn->tnode_free;
 430		tn->tnode_free = NULL;
 431		tnode_free(tn);
 432	}
 433
 434	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
 435		tnode_free_size = 0;
 436		synchronize_rcu();
 437	}
 438}
 
 
 
 
 
 439
 440static struct leaf *leaf_new(void)
 441{
 442	struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 443	if (l) {
 444		l->parent = T_LEAF;
 445		INIT_HLIST_HEAD(&l->list);
 446	}
 447	return l;
 448}
 449
 450static struct leaf_info *leaf_info_new(int plen)
 451{
 452	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
 453	if (li) {
 454		li->plen = plen;
 455		li->mask_plen = ntohl(inet_make_mask(plen));
 456		INIT_LIST_HEAD(&li->falh);
 457	}
 458	return li;
 459}
 
 
 
 
 
 460
 461static struct tnode *tnode_new(t_key key, int pos, int bits)
 462{
 463	size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
 464	struct tnode *tn = tnode_alloc(sz);
 465
 466	if (tn) {
 467		tn->parent = T_TNODE;
 468		tn->pos = pos;
 469		tn->bits = bits;
 470		tn->key = key;
 471		tn->full_children = 0;
 472		tn->empty_children = 1<<bits;
 473	}
 474
 475	pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
 476		 sizeof(struct rt_trie_node) << bits);
 477	return tn;
 478}
 479
 480/*
 481 * Check whether a tnode 'n' is "full", i.e. it is an internal node
 482 * and no bits are skipped. See discussion in dyntree paper p. 6
 483 */
 484
 485static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
 486{
 487	if (n == NULL || IS_LEAF(n))
 488		return 0;
 489
 490	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
 491}
 492
 493static inline void put_child(struct trie *t, struct tnode *tn, int i,
 494			     struct rt_trie_node *n)
 495{
 496	tnode_put_child_reorg(tn, i, n, -1);
 497}
 498
 499 /*
 500  * Add a child at position i overwriting the old value.
 501  * Update the value of full_children and empty_children.
 502  */
 503
 504static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
 505				  int wasfull)
 506{
 507	struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
 508	int isfull;
 509
 510	BUG_ON(i >= 1<<tn->bits);
 511
 512	/* update emptyChildren */
 513	if (n == NULL && chi != NULL)
 514		tn->empty_children++;
 515	else if (n != NULL && chi == NULL)
 516		tn->empty_children--;
 517
 518	/* update fullChildren */
 519	if (wasfull == -1)
 520		wasfull = tnode_full(tn, chi);
 521
 522	isfull = tnode_full(tn, n);
 523	if (wasfull && !isfull)
 524		tn->full_children--;
 525	else if (!wasfull && isfull)
 526		tn->full_children++;
 527
 528	if (n)
 529		node_set_parent(n, tn);
 530
 531	rcu_assign_pointer(tn->child[i], n);
 532}
 533
 534#define MAX_WORK 10
 535static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
 536{
 537	int i;
 538	struct tnode *old_tn;
 539	int inflate_threshold_use;
 540	int halve_threshold_use;
 541	int max_work;
 542
 543	if (!tn)
 544		return NULL;
 
 545
 546	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 547		 tn, inflate_threshold, halve_threshold);
 548
 549	/* No children */
 550	if (tn->empty_children == tnode_child_length(tn)) {
 551		tnode_free_safe(tn);
 552		return NULL;
 
 
 
 
 553	}
 554	/* One child */
 555	if (tn->empty_children == tnode_child_length(tn) - 1)
 556		goto one_child;
 557	/*
 558	 * Double as long as the resulting node has a number of
 559	 * nonempty nodes that are above the threshold.
 560	 */
 561
 562	/*
 563	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 564	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 565	 * Telecommunications, page 6:
 566	 * "A node is doubled if the ratio of non-empty children to all
 567	 * children in the *doubled* node is at least 'high'."
 568	 *
 569	 * 'high' in this instance is the variable 'inflate_threshold'. It
 570	 * is expressed as a percentage, so we multiply it with
 571	 * tnode_child_length() and instead of multiplying by 2 (since the
 572	 * child array will be doubled by inflate()) and multiplying
 573	 * the left-hand side by 100 (to handle the percentage thing) we
 574	 * multiply the left-hand side by 50.
 575	 *
 576	 * The left-hand side may look a bit weird: tnode_child_length(tn)
 577	 * - tn->empty_children is of course the number of non-null children
 578	 * in the current node. tn->full_children is the number of "full"
 579	 * children, that is non-null tnodes with a skip value of 0.
 580	 * All of those will be doubled in the resulting inflated tnode, so
 581	 * we just count them one extra time here.
 582	 *
 583	 * A clearer way to write this would be:
 584	 *
 585	 * to_be_doubled = tn->full_children;
 586	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
 587	 *     tn->full_children;
 588	 *
 589	 * new_child_length = tnode_child_length(tn) * 2;
 590	 *
 591	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 592	 *      new_child_length;
 593	 * if (new_fill_factor >= inflate_threshold)
 594	 *
 595	 * ...and so on, tho it would mess up the while () loop.
 596	 *
 597	 * anyway,
 598	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 599	 *      inflate_threshold
 600	 *
 601	 * avoid a division:
 602	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 603	 *      inflate_threshold * new_child_length
 604	 *
 605	 * expand not_to_be_doubled and to_be_doubled, and shorten:
 606	 * 100 * (tnode_child_length(tn) - tn->empty_children +
 607	 *    tn->full_children) >= inflate_threshold * new_child_length
 608	 *
 609	 * expand new_child_length:
 610	 * 100 * (tnode_child_length(tn) - tn->empty_children +
 611	 *    tn->full_children) >=
 612	 *      inflate_threshold * tnode_child_length(tn) * 2
 613	 *
 614	 * shorten again:
 615	 * 50 * (tn->full_children + tnode_child_length(tn) -
 616	 *    tn->empty_children) >= inflate_threshold *
 617	 *    tnode_child_length(tn)
 618	 *
 619	 */
 620
 621	check_tnode(tn);
 
 
 
 622
 623	/* Keep root node larger  */
 
 
 
 
 
 624
 625	if (!node_parent((struct rt_trie_node *)tn)) {
 626		inflate_threshold_use = inflate_threshold_root;
 627		halve_threshold_use = halve_threshold_root;
 628	} else {
 629		inflate_threshold_use = inflate_threshold;
 630		halve_threshold_use = halve_threshold;
 631	}
 632
 633	max_work = MAX_WORK;
 634	while ((tn->full_children > 0 &&  max_work-- &&
 635		50 * (tn->full_children + tnode_child_length(tn)
 636		      - tn->empty_children)
 637		>= inflate_threshold_use * tnode_child_length(tn))) {
 638
 639		old_tn = tn;
 640		tn = inflate(t, tn);
 641
 642		if (IS_ERR(tn)) {
 643			tn = old_tn;
 644#ifdef CONFIG_IP_FIB_TRIE_STATS
 645			t->stats.resize_node_skipped++;
 646#endif
 647			break;
 648		}
 649	}
 
 650
 651	check_tnode(tn);
 
 
 
 
 
 652
 653	/* Return if at least one inflate is run */
 654	if (max_work != MAX_WORK)
 655		return (struct rt_trie_node *) tn;
 656
 657	/*
 658	 * Halve as long as the number of empty children in this
 659	 * node is above threshold.
 660	 */
 661
 662	max_work = MAX_WORK;
 663	while (tn->bits > 1 &&  max_work-- &&
 664	       100 * (tnode_child_length(tn) - tn->empty_children) <
 665	       halve_threshold_use * tnode_child_length(tn)) {
 666
 667		old_tn = tn;
 668		tn = halve(t, tn);
 669		if (IS_ERR(tn)) {
 670			tn = old_tn;
 671#ifdef CONFIG_IP_FIB_TRIE_STATS
 672			t->stats.resize_node_skipped++;
 673#endif
 674			break;
 675		}
 676	}
 677
 
 
 678
 679	/* Only one child remains */
 680	if (tn->empty_children == tnode_child_length(tn) - 1) {
 681one_child:
 682		for (i = 0; i < tnode_child_length(tn); i++) {
 683			struct rt_trie_node *n;
 684
 685			n = rtnl_dereference(tn->child[i]);
 686			if (!n)
 687				continue;
 688
 689			/* compress one level */
 
 
 690
 691			node_set_parent(n, NULL);
 692			tnode_free_safe(tn);
 693			return n;
 694		}
 695	}
 696	return (struct rt_trie_node *) tn;
 697}
 698
 699
 700static void tnode_clean_free(struct tnode *tn)
 701{
 702	int i;
 703	struct tnode *tofree;
 704
 705	for (i = 0; i < tnode_child_length(tn); i++) {
 706		tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
 707		if (tofree)
 708			tnode_free(tofree);
 709	}
 710	tnode_free(tn);
 711}
 712
 713static struct tnode *inflate(struct trie *t, struct tnode *tn)
 
 714{
 715	struct tnode *oldtnode = tn;
 716	int olen = tnode_child_length(tn);
 717	int i;
 718
 719	pr_debug("In inflate\n");
 720
 721	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
 
 
 722
 723	if (!tn)
 724		return ERR_PTR(-ENOMEM);
 725
 726	/*
 727	 * Preallocate and store tnodes before the actual work so we
 728	 * don't get into an inconsistent state if memory allocation
 729	 * fails. In case of failure we return the oldnode and  inflate
 730	 * of tnode is ignored.
 731	 */
 732
 733	for (i = 0; i < olen; i++) {
 734		struct tnode *inode;
 735
 736		inode = (struct tnode *) tnode_get_child(oldtnode, i);
 737		if (inode &&
 738		    IS_TNODE(inode) &&
 739		    inode->pos == oldtnode->pos + oldtnode->bits &&
 740		    inode->bits > 1) {
 741			struct tnode *left, *right;
 742			t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
 743
 744			left = tnode_new(inode->key&(~m), inode->pos + 1,
 745					 inode->bits - 1);
 746			if (!left)
 747				goto nomem;
 748
 749			right = tnode_new(inode->key|m, inode->pos + 1,
 750					  inode->bits - 1);
 751
 752			if (!right) {
 753				tnode_free(left);
 754				goto nomem;
 755			}
 756
 757			put_child(t, tn, 2*i, (struct rt_trie_node *) left);
 758			put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
 759		}
 760	}
 761
 762	for (i = 0; i < olen; i++) {
 763		struct tnode *inode;
 764		struct rt_trie_node *node = tnode_get_child(oldtnode, i);
 765		struct tnode *left, *right;
 766		int size, j;
 767
 768		/* An empty child */
 769		if (node == NULL)
 770			continue;
 771
 772		/* A leaf or an internal node with skipped bits */
 773
 774		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
 775		   tn->pos + tn->bits - 1) {
 776			if (tkey_extract_bits(node->key,
 777					      oldtnode->pos + oldtnode->bits,
 778					      1) == 0)
 779				put_child(t, tn, 2*i, node);
 780			else
 781				put_child(t, tn, 2*i+1, node);
 782			continue;
 783		}
 784
 
 
 
 785		/* An internal node with two children */
 786		inode = (struct tnode *) node;
 787
 788		if (inode->bits == 1) {
 789			put_child(t, tn, 2*i, rtnl_dereference(inode->child[0]));
 790			put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1]));
 791
 792			tnode_free_safe(inode);
 793			continue;
 794		}
 795
 796		/* An internal node with more than two children */
 797
 798		/* We will replace this node 'inode' with two new
 799		 * ones, 'left' and 'right', each with half of the
 800		 * original children. The two new nodes will have
 801		 * a position one bit further down the key and this
 802		 * means that the "significant" part of their keys
 803		 * (see the discussion near the top of this file)
 804		 * will differ by one bit, which will be "0" in
 805		 * left's key and "1" in right's key. Since we are
 806		 * moving the key position by one step, the bit that
 807		 * we are moving away from - the bit at position
 808		 * (inode->pos) - is the one that will differ between
 809		 * left and right. So... we synthesize that bit in the
 810		 * two  new keys.
 811		 * The mask 'm' below will be a single "one" bit at
 812		 * the position (inode->pos)
 813		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814
 815		/* Use the old key, but set the new significant
 816		 *   bit to zero.
 817		 */
 
 
 818
 819		left = (struct tnode *) tnode_get_child(tn, 2*i);
 820		put_child(t, tn, 2*i, NULL);
 821
 822		BUG_ON(!left);
 
 
 823
 824		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
 825		put_child(t, tn, 2*i+1, NULL);
 826
 827		BUG_ON(!right);
 
 
 
 
 
 
 
 
 828
 829		size = tnode_child_length(left);
 830		for (j = 0; j < size; j++) {
 831			put_child(t, left, j, rtnl_dereference(inode->child[j]));
 832			put_child(t, right, j, rtnl_dereference(inode->child[j + size]));
 833		}
 834		put_child(t, tn, 2*i, resize(t, left));
 835		put_child(t, tn, 2*i+1, resize(t, right));
 836
 837		tnode_free_safe(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 838	}
 839	tnode_free_safe(oldtnode);
 840	return tn;
 
 841nomem:
 842	tnode_clean_free(tn);
 843	return ERR_PTR(-ENOMEM);
 
 
 844}
 845
 846static struct tnode *halve(struct trie *t, struct tnode *tn)
 
 847{
 848	struct tnode *oldtnode = tn;
 849	struct rt_trie_node *left, *right;
 850	int i;
 851	int olen = tnode_child_length(tn);
 852
 853	pr_debug("In halve\n");
 
 
 854
 855	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
 
 
 
 856
 857	if (!tn)
 858		return ERR_PTR(-ENOMEM);
 859
 860	/*
 861	 * Preallocate and store tnodes before the actual work so we
 862	 * don't get into an inconsistent state if memory allocation
 863	 * fails. In case of failure we return the oldnode and halve
 864	 * of tnode is ignored.
 865	 */
 866
 867	for (i = 0; i < olen; i += 2) {
 868		left = tnode_get_child(oldtnode, i);
 869		right = tnode_get_child(oldtnode, i+1);
 
 
 870
 871		/* Two nonempty children */
 872		if (left && right) {
 873			struct tnode *newn;
 
 
 874
 875			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
 
 
 
 
 
 
 876
 877			if (!newn)
 878				goto nomem;
 879
 880			put_child(t, tn, i/2, (struct rt_trie_node *)newn);
 881		}
 
 
 882
 
 
 
 883	}
 884
 885	for (i = 0; i < olen; i += 2) {
 886		struct tnode *newBinNode;
 887
 888		left = tnode_get_child(oldtnode, i);
 889		right = tnode_get_child(oldtnode, i+1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 890
 891		/* At least one of the children is empty */
 892		if (left == NULL) {
 893			if (right == NULL)    /* Both are empty */
 894				continue;
 895			put_child(t, tn, i/2, right);
 896			continue;
 897		}
 898
 899		if (right == NULL) {
 900			put_child(t, tn, i/2, left);
 901			continue;
 902		}
 903
 904		/* Two nonempty children */
 905		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
 906		put_child(t, tn, i/2, NULL);
 907		put_child(t, newBinNode, 0, left);
 908		put_child(t, newBinNode, 1, right);
 909		put_child(t, tn, i/2, resize(t, newBinNode));
 910	}
 911	tnode_free_safe(oldtnode);
 912	return tn;
 913nomem:
 914	tnode_clean_free(tn);
 915	return ERR_PTR(-ENOMEM);
 916}
 917
 918/* readside must use rcu_read_lock currently dump routines
 919 via get_fa_head and dump */
 
 
 920
 921static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
 922{
 923	struct hlist_head *head = &l->list;
 924	struct hlist_node *node;
 925	struct leaf_info *li;
 926
 927	hlist_for_each_entry_rcu(li, node, head, hlist)
 928		if (li->plen == plen)
 929			return li;
 930
 931	return NULL;
 932}
 933
 934static inline struct list_head *get_fa_head(struct leaf *l, int plen)
 935{
 936	struct leaf_info *li = find_leaf_info(l, plen);
 
 
 937
 938	if (!li)
 939		return NULL;
 
 940
 941	return &li->falh;
 
 942}
 943
 944static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
 
 945{
 946	struct leaf_info *li = NULL, *last = NULL;
 947	struct hlist_node *node;
 
 
 
 
 
 
 
 948
 949	if (hlist_empty(head)) {
 950		hlist_add_head_rcu(&new->hlist, head);
 951	} else {
 952		hlist_for_each_entry(li, node, head, hlist) {
 953			if (new->plen > li->plen)
 954				break;
 955
 956			last = li;
 
 
 
 
 
 
 
 
 
 957		}
 958		if (last)
 959			hlist_add_after_rcu(&last->hlist, &new->hlist);
 960		else
 961			hlist_add_before_rcu(&new->hlist, &li->hlist);
 962	}
 963}
 964
 965/* rcu_read_lock needs to be hold by caller from readside */
 
 
 
 
 
 966
 967static struct leaf *
 968fib_find_node(struct trie *t, u32 key)
 969{
 970	int pos;
 971	struct tnode *tn;
 972	struct rt_trie_node *n;
 973
 974	pos = 0;
 975	n = rcu_dereference_rtnl(t->trie);
 976
 977	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
 978		tn = (struct tnode *) n;
 979
 980		check_tnode(tn);
 981
 982		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
 983			pos = tn->pos + tn->bits;
 984			n = tnode_get_child_rcu(tn,
 985						tkey_extract_bits(key,
 986								  tn->pos,
 987								  tn->bits));
 988		} else
 989			break;
 
 
 
 
 990	}
 991	/* Case we have found a leaf. Compare prefixes */
 992
 993	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
 994		return (struct leaf *)n;
 
 995
 996	return NULL;
 
 997}
 998
 999static void trie_rebalance(struct trie *t, struct tnode *tn)
1000{
1001	int wasfull;
1002	t_key cindex, key;
1003	struct tnode *tp;
1004
1005	key = tn->key;
 
 
 
1006
1007	while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
1008		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1009		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1010		tn = (struct tnode *) resize(t, (struct tnode *)tn);
1011
1012		tnode_put_child_reorg((struct tnode *)tp, cindex,
1013				      (struct rt_trie_node *)tn, wasfull);
 
 
 
 
 
 
 
 
 
 
 
 
1014
1015		tp = node_parent((struct rt_trie_node *) tn);
1016		if (!tp)
1017			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1018
1019		tnode_free_flush();
1020		if (!tp)
1021			break;
1022		tn = tp;
1023	}
1024
1025	/* Handle last (top) tnode */
1026	if (IS_TNODE(tn))
1027		tn = (struct tnode *)resize(t, (struct tnode *)tn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028
1029	rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1030	tnode_free_flush();
1031}
1032
1033/* only used from updater-side */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034
1035static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
 
1036{
1037	int pos, newpos;
1038	struct tnode *tp = NULL, *tn = NULL;
1039	struct rt_trie_node *n;
1040	struct leaf *l;
1041	int missbit;
1042	struct list_head *fa_head = NULL;
1043	struct leaf_info *li;
1044	t_key cindex;
1045
1046	pos = 0;
1047	n = rtnl_dereference(t->trie);
 
1048
1049	/* If we point to NULL, stop. Either the tree is empty and we should
1050	 * just put a new leaf in if, or we have reached an empty child slot,
1051	 * and we should just put our new leaf in that.
1052	 * If we point to a T_TNODE, check if it matches our key. Note that
1053	 * a T_TNODE might be skipping any number of bits - its 'pos' need
1054	 * not be the parent's 'pos'+'bits'!
1055	 *
1056	 * If it does match the current key, get pos/bits from it, extract
1057	 * the index from our key, push the T_TNODE and walk the tree.
1058	 *
1059	 * If it doesn't, we have to replace it with a new T_TNODE.
1060	 *
1061	 * If we point to a T_LEAF, it might or might not have the same key
1062	 * as we do. If it does, just change the value, update the T_LEAF's
1063	 * value, and return it.
1064	 * If it doesn't, we need to replace it with a T_TNODE.
1065	 */
1066
1067	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
1068		tn = (struct tnode *) n;
 
 
 
 
1069
1070		check_tnode(tn);
 
1071
1072		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1073			tp = tn;
1074			pos = tn->pos + tn->bits;
1075			n = tnode_get_child(tn,
1076					    tkey_extract_bits(key,
1077							      tn->pos,
1078							      tn->bits));
1079
1080			BUG_ON(n && node_parent(n) != tn);
1081		} else
1082			break;
1083	}
 
1084
1085	/*
1086	 * n  ----> NULL, LEAF or TNODE
1087	 *
1088	 * tp is n's (parent) ----> NULL or TNODE
1089	 */
 
 
 
 
1090
1091	BUG_ON(tp && IS_LEAF(tp));
 
1092
1093	/* Case 1: n is a leaf. Compare prefixes */
1094
1095	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1096		l = (struct leaf *) n;
1097		li = leaf_info_new(plen);
 
 
 
 
 
 
1098
1099		if (!li)
1100			return NULL;
 
 
 
1101
1102		fa_head = &li->falh;
1103		insert_leaf_info(&l->list, li);
1104		goto done;
 
 
 
1105	}
1106	l = leaf_new();
1107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108	if (!l)
1109		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110
1111	l->key = key;
1112	li = leaf_info_new(plen);
 
1113
1114	if (!li) {
1115		free_leaf(l);
1116		return NULL;
1117	}
1118
1119	fa_head = &li->falh;
1120	insert_leaf_info(&l->list, li);
 
 
 
1121
1122	if (t->trie && n == NULL) {
1123		/* Case 2: n is NULL, and will just insert a new leaf */
 
 
 
 
1124
1125		node_set_parent((struct rt_trie_node *)l, tp);
 
 
 
 
 
1126
1127		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1128		put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
1129	} else {
1130		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1131		/*
1132		 *  Add a new tnode here
1133		 *  first tnode need some special handling
1134		 */
1135
1136		if (tp)
1137			pos = tp->pos+tp->bits;
1138		else
1139			pos = 0;
1140
1141		if (n) {
1142			newpos = tkey_mismatch(key, pos, n->key);
1143			tn = tnode_new(n->key, newpos, 1);
1144		} else {
1145			newpos = 0;
1146			tn = tnode_new(key, newpos, 1); /* First tnode */
1147		}
1148
1149		if (!tn) {
1150			free_leaf_info(li);
1151			free_leaf(l);
1152			return NULL;
1153		}
1154
1155		node_set_parent((struct rt_trie_node *)tn, tp);
 
 
 
 
1156
1157		missbit = tkey_extract_bits(key, newpos, 1);
1158		put_child(t, tn, missbit, (struct rt_trie_node *)l);
1159		put_child(t, tn, 1-missbit, n);
1160
1161		if (tp) {
1162			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1163			put_child(t, (struct tnode *)tp, cindex,
1164				  (struct rt_trie_node *)tn);
1165		} else {
1166			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1167			tp = tn;
1168		}
1169	}
1170
1171	if (tp && tp->pos + tp->bits > 32)
1172		pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1173			tp, tp->pos, tp->bits, key, plen);
 
 
1174
1175	/* Rebalance the trie */
 
1176
1177	trie_rebalance(t, tp);
1178done:
1179	return fa_head;
1180}
1181
1182/*
1183 * Caller must hold RTNL.
1184 */
1185int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1186{
1187	struct trie *t = (struct trie *) tb->tb_data;
1188	struct fib_alias *fa, *new_fa;
1189	struct list_head *fa_head = NULL;
 
1190	struct fib_info *fi;
1191	int plen = cfg->fc_dst_len;
1192	u8 tos = cfg->fc_tos;
1193	u32 key, mask;
 
1194	int err;
1195	struct leaf *l;
1196
1197	if (plen > 32)
1198		return -EINVAL;
1199
1200	key = ntohl(cfg->fc_dst);
1201
1202	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1203
1204	mask = ntohl(inet_make_mask(plen));
1205
1206	if (key & ~mask)
1207		return -EINVAL;
1208
1209	key = key & mask;
1210
1211	fi = fib_create_info(cfg);
1212	if (IS_ERR(fi)) {
1213		err = PTR_ERR(fi);
1214		goto err;
1215	}
1216
1217	l = fib_find_node(t, key);
1218	fa = NULL;
1219
1220	if (l) {
1221		fa_head = get_fa_head(l, plen);
1222		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1223	}
1224
1225	/* Now fa, if non-NULL, points to the first fib alias
1226	 * with the same keys [prefix,tos,priority], if such key already
1227	 * exists or to the node before which we will insert new one.
1228	 *
1229	 * If fa is NULL, we will need to allocate a new one and
1230	 * insert to the head of f.
1231	 *
1232	 * If f is NULL, no fib node matched the destination key
1233	 * and we need to allocate a new one of those as well.
1234	 */
1235
1236	if (fa && fa->fa_tos == tos &&
1237	    fa->fa_info->fib_priority == fi->fib_priority) {
1238		struct fib_alias *fa_first, *fa_match;
1239
1240		err = -EEXIST;
1241		if (cfg->fc_nlflags & NLM_F_EXCL)
1242			goto out;
1243
 
 
1244		/* We have 2 goals:
1245		 * 1. Find exact match for type, scope, fib_info to avoid
1246		 * duplicate routes
1247		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1248		 */
1249		fa_match = NULL;
1250		fa_first = fa;
1251		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1252		list_for_each_entry_continue(fa, fa_head, fa_list) {
1253			if (fa->fa_tos != tos)
 
1254				break;
1255			if (fa->fa_info->fib_priority != fi->fib_priority)
1256				break;
1257			if (fa->fa_type == cfg->fc_type &&
1258			    fa->fa_info == fi) {
1259				fa_match = fa;
1260				break;
1261			}
1262		}
1263
1264		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1265			struct fib_info *fi_drop;
1266			u8 state;
1267
 
1268			fa = fa_first;
1269			if (fa_match) {
1270				if (fa == fa_match)
1271					err = 0;
1272				goto out;
1273			}
1274			err = -ENOBUFS;
1275			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1276			if (new_fa == NULL)
1277				goto out;
1278
1279			fi_drop = fa->fa_info;
1280			new_fa->fa_tos = fa->fa_tos;
1281			new_fa->fa_info = fi;
1282			new_fa->fa_type = cfg->fc_type;
1283			state = fa->fa_state;
1284			new_fa->fa_state = state & ~FA_S_ACCESSED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285
1286			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1287			alias_free_mem_rcu(fa);
1288
1289			fib_release_info(fi_drop);
1290			if (state & FA_S_ACCESSED)
1291				rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1292			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1293				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1294
1295			goto succeeded;
1296		}
1297		/* Error if we find a perfect match which
1298		 * uses the same scope, type, and nexthop
1299		 * information.
1300		 */
1301		if (fa_match)
1302			goto out;
1303
1304		if (!(cfg->fc_nlflags & NLM_F_APPEND))
 
 
1305			fa = fa_first;
1306	}
1307	err = -ENOENT;
1308	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1309		goto out;
1310
 
1311	err = -ENOBUFS;
1312	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1313	if (new_fa == NULL)
1314		goto out;
1315
1316	new_fa->fa_info = fi;
1317	new_fa->fa_tos = tos;
1318	new_fa->fa_type = cfg->fc_type;
1319	new_fa->fa_state = 0;
1320	/*
1321	 * Insert new entry to the list.
1322	 */
1323
1324	if (!fa_head) {
1325		fa_head = fib_insert_node(t, key, plen);
1326		if (unlikely(!fa_head)) {
1327			err = -ENOMEM;
1328			goto out_free_new_fa;
1329		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1330	}
1331
1332	if (!plen)
1333		tb->tb_num_default++;
1334
1335	list_add_tail_rcu(&new_fa->fa_list,
1336			  (fa ? &fa->fa_list : fa_head));
1337
1338	rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1339	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1340		  &cfg->fc_nlinfo, 0);
1341succeeded:
1342	return 0;
1343
 
 
1344out_free_new_fa:
1345	kmem_cache_free(fn_alias_kmem, new_fa);
1346out:
1347	fib_release_info(fi);
1348err:
1349	return err;
1350}
1351
1352/* should be called with rcu_read_lock */
1353static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1354		      t_key key,  const struct flowi4 *flp,
1355		      struct fib_result *res, int fib_flags)
1356{
1357	struct leaf_info *li;
1358	struct hlist_head *hhead = &l->list;
1359	struct hlist_node *node;
1360
1361	hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1362		struct fib_alias *fa;
1363
1364		if (l->key != (key & li->mask_plen))
1365			continue;
1366
1367		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1368			struct fib_info *fi = fa->fa_info;
1369			int nhsel, err;
1370
1371			if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1372				continue;
1373			if (fi->fib_dead)
1374				continue;
1375			if (fa->fa_info->fib_scope < flp->flowi4_scope)
1376				continue;
1377			fib_alias_accessed(fa);
1378			err = fib_props[fa->fa_type].error;
1379			if (err) {
1380#ifdef CONFIG_IP_FIB_TRIE_STATS
1381				t->stats.semantic_match_passed++;
1382#endif
1383				return err;
1384			}
1385			if (fi->fib_flags & RTNH_F_DEAD)
1386				continue;
1387			for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1388				const struct fib_nh *nh = &fi->fib_nh[nhsel];
1389
1390				if (nh->nh_flags & RTNH_F_DEAD)
1391					continue;
1392				if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1393					continue;
1394
1395#ifdef CONFIG_IP_FIB_TRIE_STATS
1396				t->stats.semantic_match_passed++;
1397#endif
1398				res->prefixlen = li->plen;
1399				res->nh_sel = nhsel;
1400				res->type = fa->fa_type;
1401				res->scope = fa->fa_info->fib_scope;
1402				res->fi = fi;
1403				res->table = tb;
1404				res->fa_head = &li->falh;
1405				if (!(fib_flags & FIB_LOOKUP_NOREF))
1406					atomic_inc(&fi->fib_clntref);
1407				return 0;
1408			}
1409		}
1410
1411#ifdef CONFIG_IP_FIB_TRIE_STATS
1412		t->stats.semantic_match_miss++;
1413#endif
1414	}
1415
1416	return 1;
1417}
1418
 
1419int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1420		     struct fib_result *res, int fib_flags)
1421{
1422	struct trie *t = (struct trie *) tb->tb_data;
1423	int ret;
1424	struct rt_trie_node *n;
1425	struct tnode *pn;
1426	unsigned int pos, bits;
1427	t_key key = ntohl(flp->daddr);
1428	unsigned int chopped_off;
1429	t_key cindex = 0;
1430	unsigned int current_prefix_length = KEYLENGTH;
1431	struct tnode *cn;
1432	t_key pref_mismatch;
1433
1434	rcu_read_lock();
1435
1436	n = rcu_dereference(t->trie);
1437	if (!n)
1438		goto failed;
1439
1440#ifdef CONFIG_IP_FIB_TRIE_STATS
1441	t->stats.gets++;
1442#endif
 
 
 
 
 
1443
1444	/* Just a leaf? */
1445	if (IS_LEAF(n)) {
1446		ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1447		goto found;
 
 
 
1448	}
1449
1450	pn = (struct tnode *) n;
1451	chopped_off = 0;
1452
1453	while (pn) {
1454		pos = pn->pos;
1455		bits = pn->bits;
1456
1457		if (!chopped_off)
1458			cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1459						   pos, bits);
1460
1461		n = tnode_get_child_rcu(pn, cindex);
1462
1463		if (n == NULL) {
1464#ifdef CONFIG_IP_FIB_TRIE_STATS
1465			t->stats.null_node_hit++;
1466#endif
1467			goto backtrace;
1468		}
1469
1470		if (IS_LEAF(n)) {
1471			ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1472			if (ret > 0)
1473				goto backtrace;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474			goto found;
 
 
 
 
 
 
 
1475		}
1476
1477		cn = (struct tnode *)n;
1478
1479		/*
1480		 * It's a tnode, and we can do some extra checks here if we
1481		 * like, to avoid descending into a dead-end branch.
1482		 * This tnode is in the parent's child array at index
1483		 * key[p_pos..p_pos+p_bits] but potentially with some bits
1484		 * chopped off, so in reality the index may be just a
1485		 * subprefix, padded with zero at the end.
1486		 * We can also take a look at any skipped bits in this
1487		 * tnode - everything up to p_pos is supposed to be ok,
1488		 * and the non-chopped bits of the index (se previous
1489		 * paragraph) are also guaranteed ok, but the rest is
1490		 * considered unknown.
1491		 *
1492		 * The skipped bits are key[pos+bits..cn->pos].
1493		 */
1494
1495		/* If current_prefix_length < pos+bits, we are already doing
1496		 * actual prefix  matching, which means everything from
1497		 * pos+(bits-chopped_off) onward must be zero along some
1498		 * branch of this subtree - otherwise there is *no* valid
1499		 * prefix present. Here we can only check the skipped
1500		 * bits. Remember, since we have already indexed into the
1501		 * parent's child array, we know that the bits we chopped of
1502		 * *are* zero.
1503		 */
 
 
1504
1505		/* NOTA BENE: Checking only skipped bits
1506		   for the new node here */
 
1507
1508		if (current_prefix_length < pos+bits) {
1509			if (tkey_extract_bits(cn->key, current_prefix_length,
1510						cn->pos - current_prefix_length)
1511			    || !(cn->child[0]))
1512				goto backtrace;
1513		}
1514
1515		/*
1516		 * If chopped_off=0, the index is fully validated and we
1517		 * only need to look at the skipped bits for this, the new,
1518		 * tnode. What we actually want to do is to find out if
1519		 * these skipped bits match our key perfectly, or if we will
1520		 * have to count on finding a matching prefix further down,
1521		 * because if we do, we would like to have some way of
1522		 * verifying the existence of such a prefix at this point.
1523		 */
1524
1525		/* The only thing we can do at this point is to verify that
1526		 * any such matching prefix can indeed be a prefix to our
1527		 * key, and if the bits in the node we are inspecting that
1528		 * do not match our key are not ZERO, this cannot be true.
1529		 * Thus, find out where there is a mismatch (before cn->pos)
1530		 * and verify that all the mismatching bits are zero in the
1531		 * new tnode's key.
1532		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1533
1534		/*
1535		 * Note: We aren't very concerned about the piece of
1536		 * the key that precede pn->pos+pn->bits, since these
1537		 * have already been checked. The bits after cn->pos
1538		 * aren't checked since these are by definition
1539		 * "unknown" at this point. Thus, what we want to see
1540		 * is if we are about to enter the "prefix matching"
1541		 * state, and in that case verify that the skipped
1542		 * bits that will prevail throughout this subtree are
1543		 * zero, as they have to be if we are to find a
1544		 * matching prefix.
1545		 */
1546
1547		pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
 
 
 
1548
1549		/*
1550		 * In short: If skipped bits in this node do not match
1551		 * the search key, enter the "prefix matching"
1552		 * state.directly.
1553		 */
1554		if (pref_mismatch) {
1555			int mp = KEYLENGTH - fls(pref_mismatch);
1556
1557			if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1558				goto backtrace;
 
 
 
1559
1560			if (current_prefix_length >= cn->pos)
1561				current_prefix_length = mp;
 
1562		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563
1564		pn = (struct tnode *)n; /* Descend */
1565		chopped_off = 0;
1566		continue;
 
 
1567
1568backtrace:
1569		chopped_off++;
 
 
 
 
1570
1571		/* As zero don't change the child key (cindex) */
1572		while ((chopped_off <= pn->bits)
1573		       && !(cindex & (1<<(chopped_off-1))))
1574			chopped_off++;
1575
1576		/* Decrease current_... with bits chopped off */
1577		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1578			current_prefix_length = pn->pos + pn->bits
1579				- chopped_off;
1580
1581		/*
1582		 * Either we do the actual chop off according or if we have
1583		 * chopped off all bits in this tnode walk up to our parent.
1584		 */
1585
1586		if (chopped_off <= pn->bits) {
1587			cindex &= ~(1 << (chopped_off-1));
1588		} else {
1589			struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1590			if (!parent)
1591				goto failed;
1592
1593			/* Get Child's index */
1594			cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1595			pn = parent;
1596			chopped_off = 0;
1597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1598#ifdef CONFIG_IP_FIB_TRIE_STATS
1599			t->stats.backtrack++;
1600#endif
1601			goto backtrace;
 
 
1602		}
1603	}
1604failed:
1605	ret = 1;
1606found:
1607	rcu_read_unlock();
1608	return ret;
1609}
1610EXPORT_SYMBOL_GPL(fib_table_lookup);
1611
1612/*
1613 * Remove the leaf and return parent.
1614 */
1615static void trie_leaf_remove(struct trie *t, struct leaf *l)
1616{
1617	struct tnode *tp = node_parent((struct rt_trie_node *) l);
 
 
1618
1619	pr_debug("entering trie_leaf_remove(%p)\n", l);
 
1620
1621	if (tp) {
1622		t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1623		put_child(t, (struct tnode *)tp, cindex, NULL);
 
 
 
 
 
1624		trie_rebalance(t, tp);
1625	} else
1626		RCU_INIT_POINTER(t->trie, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1627
1628	free_leaf(l);
 
 
 
 
 
 
 
 
 
 
 
 
 
1629}
1630
1631/*
1632 * Caller must hold RTNL.
1633 */
1634int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1635{
1636	struct trie *t = (struct trie *) tb->tb_data;
1637	u32 key, mask;
1638	int plen = cfg->fc_dst_len;
1639	u8 tos = cfg->fc_tos;
1640	struct fib_alias *fa, *fa_to_delete;
1641	struct list_head *fa_head;
1642	struct leaf *l;
1643	struct leaf_info *li;
1644
1645	if (plen > 32)
1646		return -EINVAL;
1647
1648	key = ntohl(cfg->fc_dst);
1649	mask = ntohl(inet_make_mask(plen));
1650
1651	if (key & ~mask)
1652		return -EINVAL;
1653
1654	key = key & mask;
1655	l = fib_find_node(t, key);
1656
1657	if (!l)
1658		return -ESRCH;
1659
1660	fa_head = get_fa_head(l, plen);
1661	fa = fib_find_alias(fa_head, tos, 0);
1662
1663	if (!fa)
1664		return -ESRCH;
1665
1666	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
 
1667
1668	fa_to_delete = NULL;
1669	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1670	list_for_each_entry_continue(fa, fa_head, fa_list) {
1671		struct fib_info *fi = fa->fa_info;
1672
1673		if (fa->fa_tos != tos)
 
 
1674			break;
1675
1676		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1677		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1678		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1679		    (!cfg->fc_prefsrc ||
1680		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1681		    (!cfg->fc_protocol ||
1682		     fi->fib_protocol == cfg->fc_protocol) &&
1683		    fib_nh_match(cfg, fi) == 0) {
 
1684			fa_to_delete = fa;
1685			break;
1686		}
1687	}
1688
1689	if (!fa_to_delete)
1690		return -ESRCH;
1691
1692	fa = fa_to_delete;
1693	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1694		  &cfg->fc_nlinfo, 0);
1695
1696	l = fib_find_node(t, key);
1697	li = find_leaf_info(l, plen);
1698
1699	list_del_rcu(&fa->fa_list);
1700
1701	if (!plen)
1702		tb->tb_num_default--;
1703
1704	if (list_empty(fa_head)) {
1705		hlist_del_rcu(&li->hlist);
1706		free_leaf_info(li);
1707	}
1708
1709	if (hlist_empty(&l->list))
1710		trie_leaf_remove(t, l);
1711
1712	if (fa->fa_state & FA_S_ACCESSED)
1713		rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1714
1715	fib_release_info(fa->fa_info);
1716	alias_free_mem_rcu(fa);
1717	return 0;
1718}
1719
1720static int trie_flush_list(struct list_head *head)
 
1721{
1722	struct fib_alias *fa, *fa_node;
1723	int found = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1724
1725	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1726		struct fib_info *fi = fa->fa_info;
 
 
 
1727
1728		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1729			list_del_rcu(&fa->fa_list);
1730			fib_release_info(fa->fa_info);
1731			alias_free_mem_rcu(fa);
1732			found++;
1733		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1734	}
1735	return found;
 
 
 
 
 
 
1736}
1737
1738static int trie_flush_leaf(struct leaf *l)
1739{
1740	int found = 0;
1741	struct hlist_head *lih = &l->list;
1742	struct hlist_node *node, *tmp;
1743	struct leaf_info *li = NULL;
1744
1745	hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1746		found += trie_flush_list(&li->falh);
1747
1748		if (list_empty(&li->falh)) {
1749			hlist_del_rcu(&li->hlist);
1750			free_leaf_info(li);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751		}
 
 
 
1752	}
1753	return found;
 
 
 
 
1754}
1755
1756/*
1757 * Scan for the next right leaf starting at node p->child[idx]
1758 * Since we have back pointer, no recursion necessary.
1759 */
1760static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1761{
1762	do {
1763		t_key idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764
1765		if (c)
1766			idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1767		else
1768			idx = 0;
1769
1770		while (idx < 1u << p->bits) {
1771			c = tnode_get_child_rcu(p, idx++);
1772			if (!c)
1773				continue;
1774
1775			if (IS_LEAF(c)) {
1776				prefetch(rcu_dereference_rtnl(p->child[idx]));
1777				return (struct leaf *) c;
 
 
 
 
 
 
 
 
 
 
 
 
1778			}
1779
1780			/* Rescan start scanning in new node */
1781			p = (struct tnode *) c;
1782			idx = 0;
1783		}
1784
1785		/* Node empty, walk back up to parent */
1786		c = (struct rt_trie_node *) p;
1787	} while ((p = node_parent_rcu(c)) != NULL);
 
 
1788
1789	return NULL; /* Root of trie */
 
 
 
 
1790}
1791
1792static struct leaf *trie_firstleaf(struct trie *t)
 
1793{
1794	struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795
1796	if (!n)
1797		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1798
1799	if (IS_LEAF(n))          /* trie is just a leaf */
1800		return (struct leaf *) n;
1801
1802	return leaf_walk_rcu(n, NULL);
 
 
 
 
1803}
1804
1805static struct leaf *trie_nextleaf(struct leaf *l)
 
1806{
1807	struct rt_trie_node *c = (struct rt_trie_node *) l;
1808	struct tnode *p = node_parent_rcu(c);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809
1810	if (!p)
1811		return NULL;	/* trie with just one leaf */
 
 
1812
1813	return leaf_walk_rcu(p, c);
1814}
 
 
1815
1816static struct leaf *trie_leafindex(struct trie *t, int index)
1817{
1818	struct leaf *l = trie_firstleaf(t);
1819
1820	while (l && index-- > 0)
1821		l = trie_nextleaf(l);
1822
1823	return l;
1824}
 
 
 
 
1825
 
 
 
 
 
 
 
1826
1827/*
1828 * Caller must hold RTNL.
1829 */
1830int fib_table_flush(struct fib_table *tb)
1831{
1832	struct trie *t = (struct trie *) tb->tb_data;
1833	struct leaf *l, *ll = NULL;
1834	int found = 0;
 
 
1835
1836	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1837		found += trie_flush_leaf(l);
1838
1839		if (ll && hlist_empty(&ll->list))
1840			trie_leaf_remove(t, ll);
1841		ll = l;
 
1842	}
1843
1844	if (ll && hlist_empty(&ll->list))
1845		trie_leaf_remove(t, ll);
1846
1847	pr_debug("trie_flush found=%d\n", found);
1848	return found;
1849}
1850
1851void fib_free_table(struct fib_table *tb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852{
1853	kfree(tb);
 
 
 
 
 
 
 
 
 
1854}
1855
1856static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1857			   struct fib_table *tb,
1858			   struct sk_buff *skb, struct netlink_callback *cb)
1859{
1860	int i, s_i;
1861	struct fib_alias *fa;
1862	__be32 xkey = htonl(key);
 
 
 
 
1863
1864	s_i = cb->args[5];
1865	i = 0;
1866
1867	/* rcu_read_lock is hold by caller */
 
 
 
 
1868
1869	list_for_each_entry_rcu(fa, fah, fa_list) {
1870		if (i < s_i) {
1871			i++;
1872			continue;
1873		}
1874
1875		if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1876				  cb->nlh->nlmsg_seq,
1877				  RTM_NEWROUTE,
1878				  tb->tb_id,
1879				  fa->fa_type,
1880				  xkey,
1881				  plen,
1882				  fa->fa_tos,
1883				  fa->fa_info, NLM_F_MULTI) < 0) {
1884			cb->args[5] = i;
1885			return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1886		}
1887		i++;
1888	}
1889	cb->args[5] = i;
1890	return skb->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891}
1892
1893static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1894			struct sk_buff *skb, struct netlink_callback *cb)
 
1895{
1896	struct leaf_info *li;
1897	struct hlist_node *node;
1898	int i, s_i;
 
 
 
 
 
1899
1900	s_i = cb->args[4];
 
1901	i = 0;
1902
1903	/* rcu_read_lock is hold by caller */
1904	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1905		if (i < s_i) {
1906			i++;
1907			continue;
1908		}
 
 
1909
1910		if (i > s_i)
1911			cb->args[5] = 0;
1912
1913		if (list_empty(&li->falh))
1914			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1915
1916		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1917			cb->args[4] = i;
1918			return -1;
 
 
1919		}
 
 
1920		i++;
1921	}
1922
1923	cb->args[4] = i;
1924	return skb->len;
 
 
 
 
 
1925}
1926
 
1927int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1928		   struct netlink_callback *cb)
1929{
1930	struct leaf *l;
1931	struct trie *t = (struct trie *) tb->tb_data;
1932	t_key key = cb->args[2];
1933	int count = cb->args[3];
1934
1935	rcu_read_lock();
1936	/* Dump starting at last key.
1937	 * Note: 0.0.0.0/0 (ie default) is first key.
1938	 */
1939	if (count == 0)
1940		l = trie_firstleaf(t);
1941	else {
1942		/* Normally, continue from last key, but if that is missing
1943		 * fallback to using slow rescan
1944		 */
1945		l = fib_find_node(t, key);
1946		if (!l)
1947			l = trie_leafindex(t, count);
1948	}
 
1949
1950	while (l) {
1951		cb->args[2] = l->key;
1952		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1953			cb->args[3] = count;
1954			rcu_read_unlock();
1955			return -1;
1956		}
1957
1958		++count;
1959		l = trie_nextleaf(l);
 
1960		memset(&cb->args[4], 0,
1961		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
 
 
 
 
1962	}
1963	cb->args[3] = count;
1964	rcu_read_unlock();
1965
1966	return skb->len;
 
 
 
1967}
1968
1969void __init fib_trie_init(void)
1970{
1971	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1972					  sizeof(struct fib_alias),
1973					  0, SLAB_PANIC, NULL);
1974
1975	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1976					   max(sizeof(struct leaf),
1977					       sizeof(struct leaf_info)),
1978					   0, SLAB_PANIC, NULL);
1979}
1980
1981
1982struct fib_table *fib_trie_table(u32 id)
1983{
1984	struct fib_table *tb;
1985	struct trie *t;
 
 
 
 
1986
1987	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1988		     GFP_KERNEL);
1989	if (tb == NULL)
1990		return NULL;
1991
1992	tb->tb_id = id;
1993	tb->tb_default = -1;
1994	tb->tb_num_default = 0;
 
 
 
 
1995
1996	t = (struct trie *) tb->tb_data;
1997	memset(t, 0, sizeof(*t));
 
 
 
 
 
 
 
 
1998
1999	return tb;
2000}
2001
2002#ifdef CONFIG_PROC_FS
2003/* Depth first Trie walk iterator */
2004struct fib_trie_iter {
2005	struct seq_net_private p;
2006	struct fib_table *tb;
2007	struct tnode *tnode;
2008	unsigned int index;
2009	unsigned int depth;
2010};
2011
2012static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2013{
2014	struct tnode *tn = iter->tnode;
2015	unsigned int cindex = iter->index;
2016	struct tnode *p;
2017
2018	/* A single entry routing table */
2019	if (!tn)
2020		return NULL;
2021
2022	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2023		 iter->tnode, iter->index, iter->depth);
2024rescan:
2025	while (cindex < (1<<tn->bits)) {
2026		struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2027
2028		if (n) {
 
 
 
 
 
 
2029			if (IS_LEAF(n)) {
2030				iter->tnode = tn;
2031				iter->index = cindex + 1;
2032			} else {
2033				/* push down one level */
2034				iter->tnode = (struct tnode *) n;
2035				iter->index = 0;
2036				++iter->depth;
2037			}
 
2038			return n;
2039		}
2040
2041		++cindex;
 
 
 
 
2042	}
2043
2044	/* Current node exhausted, pop back up */
2045	p = node_parent_rcu((struct rt_trie_node *)tn);
2046	if (p) {
2047		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2048		tn = p;
2049		--iter->depth;
2050		goto rescan;
2051	}
2052
2053	/* got root? */
2054	return NULL;
2055}
2056
2057static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2058				       struct trie *t)
2059{
2060	struct rt_trie_node *n;
2061
2062	if (!t)
2063		return NULL;
2064
2065	n = rcu_dereference(t->trie);
 
2066	if (!n)
2067		return NULL;
2068
2069	if (IS_TNODE(n)) {
2070		iter->tnode = (struct tnode *) n;
2071		iter->index = 0;
2072		iter->depth = 1;
2073	} else {
2074		iter->tnode = NULL;
2075		iter->index = 0;
2076		iter->depth = 0;
2077	}
2078
2079	return n;
2080}
2081
2082static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2083{
2084	struct rt_trie_node *n;
2085	struct fib_trie_iter iter;
2086
2087	memset(s, 0, sizeof(*s));
2088
2089	rcu_read_lock();
2090	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2091		if (IS_LEAF(n)) {
2092			struct leaf *l = (struct leaf *)n;
2093			struct leaf_info *li;
2094			struct hlist_node *tmp;
2095
2096			s->leaves++;
2097			s->totdepth += iter.depth;
2098			if (iter.depth > s->maxdepth)
2099				s->maxdepth = iter.depth;
2100
2101			hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2102				++s->prefixes;
2103		} else {
2104			const struct tnode *tn = (const struct tnode *) n;
2105			int i;
2106
2107			s->tnodes++;
2108			if (tn->bits < MAX_STAT_DEPTH)
2109				s->nodesizes[tn->bits]++;
2110
2111			for (i = 0; i < (1<<tn->bits); i++)
2112				if (!tn->child[i])
2113					s->nullpointers++;
2114		}
2115	}
2116	rcu_read_unlock();
2117}
2118
2119/*
2120 *	This outputs /proc/net/fib_triestats
2121 */
2122static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2123{
2124	unsigned int i, max, pointers, bytes, avdepth;
2125
2126	if (stat->leaves)
2127		avdepth = stat->totdepth*100 / stat->leaves;
2128	else
2129		avdepth = 0;
2130
2131	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2132		   avdepth / 100, avdepth % 100);
2133	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2134
2135	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2136	bytes = sizeof(struct leaf) * stat->leaves;
2137
2138	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2139	bytes += sizeof(struct leaf_info) * stat->prefixes;
2140
2141	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2142	bytes += sizeof(struct tnode) * stat->tnodes;
2143
2144	max = MAX_STAT_DEPTH;
2145	while (max > 0 && stat->nodesizes[max-1] == 0)
2146		max--;
2147
2148	pointers = 0;
2149	for (i = 1; i <= max; i++)
2150		if (stat->nodesizes[i] != 0) {
2151			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2152			pointers += (1<<i) * stat->nodesizes[i];
2153		}
2154	seq_putc(seq, '\n');
2155	seq_printf(seq, "\tPointers: %u\n", pointers);
2156
2157	bytes += sizeof(struct rt_trie_node *) * pointers;
2158	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2159	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2160}
2161
2162#ifdef CONFIG_IP_FIB_TRIE_STATS
2163static void trie_show_usage(struct seq_file *seq,
2164			    const struct trie_use_stats *stats)
2165{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2166	seq_printf(seq, "\nCounters:\n---------\n");
2167	seq_printf(seq, "gets = %u\n", stats->gets);
2168	seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2169	seq_printf(seq, "semantic match passed = %u\n",
2170		   stats->semantic_match_passed);
2171	seq_printf(seq, "semantic match miss = %u\n",
2172		   stats->semantic_match_miss);
2173	seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2174	seq_printf(seq, "skipped node resize = %u\n\n",
2175		   stats->resize_node_skipped);
2176}
2177#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2178
2179static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2180{
2181	if (tb->tb_id == RT_TABLE_LOCAL)
2182		seq_puts(seq, "Local:\n");
2183	else if (tb->tb_id == RT_TABLE_MAIN)
2184		seq_puts(seq, "Main:\n");
2185	else
2186		seq_printf(seq, "Id %d:\n", tb->tb_id);
2187}
2188
2189
2190static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2191{
2192	struct net *net = (struct net *)seq->private;
2193	unsigned int h;
2194
2195	seq_printf(seq,
2196		   "Basic info: size of leaf:"
2197		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2198		   sizeof(struct leaf), sizeof(struct tnode));
2199
 
2200	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2201		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2202		struct hlist_node *node;
2203		struct fib_table *tb;
2204
2205		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2206			struct trie *t = (struct trie *) tb->tb_data;
2207			struct trie_stat stat;
2208
2209			if (!t)
2210				continue;
2211
2212			fib_table_print(seq, tb);
2213
2214			trie_collect_stats(t, &stat);
2215			trie_show_stats(seq, &stat);
2216#ifdef CONFIG_IP_FIB_TRIE_STATS
2217			trie_show_usage(seq, &t->stats);
2218#endif
2219		}
 
2220	}
 
2221
2222	return 0;
2223}
2224
2225static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2226{
2227	return single_open_net(inode, file, fib_triestat_seq_show);
2228}
2229
2230static const struct file_operations fib_triestat_fops = {
2231	.owner	= THIS_MODULE,
2232	.open	= fib_triestat_seq_open,
2233	.read	= seq_read,
2234	.llseek	= seq_lseek,
2235	.release = single_release_net,
2236};
2237
2238static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2239{
2240	struct fib_trie_iter *iter = seq->private;
2241	struct net *net = seq_file_net(seq);
2242	loff_t idx = 0;
2243	unsigned int h;
2244
2245	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2246		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2247		struct hlist_node *node;
2248		struct fib_table *tb;
2249
2250		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2251			struct rt_trie_node *n;
2252
2253			for (n = fib_trie_get_first(iter,
2254						    (struct trie *) tb->tb_data);
2255			     n; n = fib_trie_get_next(iter))
2256				if (pos == idx++) {
2257					iter->tb = tb;
2258					return n;
2259				}
2260		}
2261	}
2262
2263	return NULL;
2264}
2265
2266static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2267	__acquires(RCU)
2268{
2269	rcu_read_lock();
2270	return fib_trie_get_idx(seq, *pos);
2271}
2272
2273static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2274{
2275	struct fib_trie_iter *iter = seq->private;
2276	struct net *net = seq_file_net(seq);
2277	struct fib_table *tb = iter->tb;
2278	struct hlist_node *tb_node;
2279	unsigned int h;
2280	struct rt_trie_node *n;
2281
2282	++*pos;
2283	/* next node in same table */
2284	n = fib_trie_get_next(iter);
2285	if (n)
2286		return n;
2287
2288	/* walk rest of this hash chain */
2289	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2290	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2291		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2292		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2293		if (n)
2294			goto found;
2295	}
2296
2297	/* new hash chain */
2298	while (++h < FIB_TABLE_HASHSZ) {
2299		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2300		hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2301			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2302			if (n)
2303				goto found;
2304		}
2305	}
2306	return NULL;
2307
2308found:
2309	iter->tb = tb;
2310	return n;
2311}
2312
2313static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2314	__releases(RCU)
2315{
2316	rcu_read_unlock();
2317}
2318
2319static void seq_indent(struct seq_file *seq, int n)
2320{
2321	while (n-- > 0)
2322		seq_puts(seq, "   ");
2323}
2324
2325static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2326{
2327	switch (s) {
2328	case RT_SCOPE_UNIVERSE: return "universe";
2329	case RT_SCOPE_SITE:	return "site";
2330	case RT_SCOPE_LINK:	return "link";
2331	case RT_SCOPE_HOST:	return "host";
2332	case RT_SCOPE_NOWHERE:	return "nowhere";
2333	default:
2334		snprintf(buf, len, "scope=%d", s);
2335		return buf;
2336	}
2337}
2338
2339static const char *const rtn_type_names[__RTN_MAX] = {
2340	[RTN_UNSPEC] = "UNSPEC",
2341	[RTN_UNICAST] = "UNICAST",
2342	[RTN_LOCAL] = "LOCAL",
2343	[RTN_BROADCAST] = "BROADCAST",
2344	[RTN_ANYCAST] = "ANYCAST",
2345	[RTN_MULTICAST] = "MULTICAST",
2346	[RTN_BLACKHOLE] = "BLACKHOLE",
2347	[RTN_UNREACHABLE] = "UNREACHABLE",
2348	[RTN_PROHIBIT] = "PROHIBIT",
2349	[RTN_THROW] = "THROW",
2350	[RTN_NAT] = "NAT",
2351	[RTN_XRESOLVE] = "XRESOLVE",
2352};
2353
2354static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2355{
2356	if (t < __RTN_MAX && rtn_type_names[t])
2357		return rtn_type_names[t];
2358	snprintf(buf, len, "type %u", t);
2359	return buf;
2360}
2361
2362/* Pretty print the trie */
2363static int fib_trie_seq_show(struct seq_file *seq, void *v)
2364{
2365	const struct fib_trie_iter *iter = seq->private;
2366	struct rt_trie_node *n = v;
2367
2368	if (!node_parent_rcu(n))
2369		fib_table_print(seq, iter->tb);
2370
2371	if (IS_TNODE(n)) {
2372		struct tnode *tn = (struct tnode *) n;
2373		__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2374
2375		seq_indent(seq, iter->depth-1);
2376		seq_printf(seq, "  +-- %pI4/%d %d %d %d\n",
2377			   &prf, tn->pos, tn->bits, tn->full_children,
2378			   tn->empty_children);
2379
2380	} else {
2381		struct leaf *l = (struct leaf *) n;
2382		struct leaf_info *li;
2383		struct hlist_node *node;
2384		__be32 val = htonl(l->key);
2385
2386		seq_indent(seq, iter->depth);
2387		seq_printf(seq, "  |-- %pI4\n", &val);
2388
2389		hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2390			struct fib_alias *fa;
2391
2392			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2393				char buf1[32], buf2[32];
2394
2395				seq_indent(seq, iter->depth+1);
2396				seq_printf(seq, "  /%d %s %s", li->plen,
2397					   rtn_scope(buf1, sizeof(buf1),
2398						     fa->fa_info->fib_scope),
2399					   rtn_type(buf2, sizeof(buf2),
2400						    fa->fa_type));
2401				if (fa->fa_tos)
2402					seq_printf(seq, " tos=%d", fa->fa_tos);
2403				seq_putc(seq, '\n');
2404			}
 
2405		}
2406	}
2407
2408	return 0;
2409}
2410
2411static const struct seq_operations fib_trie_seq_ops = {
2412	.start  = fib_trie_seq_start,
2413	.next   = fib_trie_seq_next,
2414	.stop   = fib_trie_seq_stop,
2415	.show   = fib_trie_seq_show,
2416};
2417
2418static int fib_trie_seq_open(struct inode *inode, struct file *file)
2419{
2420	return seq_open_net(inode, file, &fib_trie_seq_ops,
2421			    sizeof(struct fib_trie_iter));
2422}
2423
2424static const struct file_operations fib_trie_fops = {
2425	.owner  = THIS_MODULE,
2426	.open   = fib_trie_seq_open,
2427	.read   = seq_read,
2428	.llseek = seq_lseek,
2429	.release = seq_release_net,
2430};
2431
2432struct fib_route_iter {
2433	struct seq_net_private p;
2434	struct trie *main_trie;
 
2435	loff_t	pos;
2436	t_key	key;
2437};
2438
2439static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
 
2440{
2441	struct leaf *l = NULL;
2442	struct trie *t = iter->main_trie;
2443
2444	/* use cache location of last found key */
2445	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2446		pos -= iter->pos;
2447	else {
2448		iter->pos = 0;
2449		l = trie_firstleaf(t);
2450	}
2451
2452	while (l && pos-- > 0) {
 
 
 
2453		iter->pos++;
2454		l = trie_nextleaf(l);
 
 
 
 
2455	}
2456
2457	if (l)
2458		iter->key = pos;	/* remember it */
2459	else
2460		iter->pos = 0;		/* forget it */
2461
2462	return l;
2463}
2464
2465static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2466	__acquires(RCU)
2467{
2468	struct fib_route_iter *iter = seq->private;
2469	struct fib_table *tb;
 
2470
2471	rcu_read_lock();
 
2472	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2473	if (!tb)
2474		return NULL;
2475
2476	iter->main_trie = (struct trie *) tb->tb_data;
2477	if (*pos == 0)
2478		return SEQ_START_TOKEN;
2479	else
2480		return fib_route_get_idx(iter, *pos - 1);
 
 
 
 
 
 
2481}
2482
2483static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2484{
2485	struct fib_route_iter *iter = seq->private;
2486	struct leaf *l = v;
 
2487
2488	++*pos;
2489	if (v == SEQ_START_TOKEN) {
 
 
 
 
 
 
 
 
2490		iter->pos = 0;
2491		l = trie_firstleaf(iter->main_trie);
2492	} else {
2493		iter->pos++;
2494		l = trie_nextleaf(l);
2495	}
2496
2497	if (l)
2498		iter->key = l->key;
2499	else
2500		iter->pos = 0;
2501	return l;
2502}
2503
2504static void fib_route_seq_stop(struct seq_file *seq, void *v)
2505	__releases(RCU)
2506{
2507	rcu_read_unlock();
2508}
2509
2510static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2511{
2512	unsigned int flags = 0;
2513
2514	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2515		flags = RTF_REJECT;
2516	if (fi && fi->fib_nh->nh_gw)
2517		flags |= RTF_GATEWAY;
 
 
 
 
2518	if (mask == htonl(0xFFFFFFFF))
2519		flags |= RTF_HOST;
2520	flags |= RTF_UP;
2521	return flags;
2522}
2523
2524/*
2525 *	This outputs /proc/net/route.
2526 *	The format of the file is not supposed to be changed
2527 *	and needs to be same as fib_hash output to avoid breaking
2528 *	legacy utilities
2529 */
2530static int fib_route_seq_show(struct seq_file *seq, void *v)
2531{
2532	struct leaf *l = v;
2533	struct leaf_info *li;
2534	struct hlist_node *node;
 
 
2535
2536	if (v == SEQ_START_TOKEN) {
2537		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2538			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2539			   "\tWindow\tIRTT");
2540		return 0;
2541	}
2542
2543	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2544		struct fib_alias *fa;
2545		__be32 mask, prefix;
2546
2547		mask = inet_make_mask(li->plen);
2548		prefix = htonl(l->key);
 
 
2549
2550		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2551			const struct fib_info *fi = fa->fa_info;
2552			unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2553			int len;
2554
2555			if (fa->fa_type == RTN_BROADCAST
2556			    || fa->fa_type == RTN_MULTICAST)
2557				continue;
2558
2559			if (fi)
2560				seq_printf(seq,
2561					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2562					 "%d\t%08X\t%d\t%u\t%u%n",
2563					 fi->fib_dev ? fi->fib_dev->name : "*",
2564					 prefix,
2565					 fi->fib_nh->nh_gw, flags, 0, 0,
2566					 fi->fib_priority,
2567					 mask,
2568					 (fi->fib_advmss ?
2569					  fi->fib_advmss + 40 : 0),
2570					 fi->fib_window,
2571					 fi->fib_rtt >> 3, &len);
2572			else
2573				seq_printf(seq,
2574					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2575					 "%d\t%08X\t%d\t%u\t%u%n",
2576					 prefix, 0, flags, 0, 0, 0,
2577					 mask, 0, 0, 0, &len);
2578
2579			seq_printf(seq, "%*s\n", 127 - len, "");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2580		}
 
2581	}
2582
2583	return 0;
2584}
2585
2586static const struct seq_operations fib_route_seq_ops = {
2587	.start  = fib_route_seq_start,
2588	.next   = fib_route_seq_next,
2589	.stop   = fib_route_seq_stop,
2590	.show   = fib_route_seq_show,
2591};
2592
2593static int fib_route_seq_open(struct inode *inode, struct file *file)
2594{
2595	return seq_open_net(inode, file, &fib_route_seq_ops,
2596			    sizeof(struct fib_route_iter));
2597}
2598
2599static const struct file_operations fib_route_fops = {
2600	.owner  = THIS_MODULE,
2601	.open   = fib_route_seq_open,
2602	.read   = seq_read,
2603	.llseek = seq_lseek,
2604	.release = seq_release_net,
2605};
2606
2607int __net_init fib_proc_init(struct net *net)
2608{
2609	if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
 
2610		goto out1;
2611
2612	if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2613				  &fib_triestat_fops))
2614		goto out2;
2615
2616	if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
 
2617		goto out3;
2618
2619	return 0;
2620
2621out3:
2622	proc_net_remove(net, "fib_triestat");
2623out2:
2624	proc_net_remove(net, "fib_trie");
2625out1:
2626	return -ENOMEM;
2627}
2628
2629void __net_exit fib_proc_exit(struct net *net)
2630{
2631	proc_net_remove(net, "fib_trie");
2632	proc_net_remove(net, "fib_triestat");
2633	proc_net_remove(net, "route");
2634}
2635
2636#endif /* CONFIG_PROC_FS */