Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/pagewalk.h>
3#include <linux/mm_inline.h>
4#include <linux/hugetlb.h>
5#include <linux/huge_mm.h>
6#include <linux/mount.h>
7#include <linux/ksm.h>
8#include <linux/seq_file.h>
9#include <linux/highmem.h>
10#include <linux/ptrace.h>
11#include <linux/slab.h>
12#include <linux/pagemap.h>
13#include <linux/mempolicy.h>
14#include <linux/rmap.h>
15#include <linux/swap.h>
16#include <linux/sched/mm.h>
17#include <linux/swapops.h>
18#include <linux/mmu_notifier.h>
19#include <linux/page_idle.h>
20#include <linux/shmem_fs.h>
21#include <linux/uaccess.h>
22#include <linux/pkeys.h>
23#include <linux/minmax.h>
24#include <linux/overflow.h>
25#include <linux/buildid.h>
26
27#include <asm/elf.h>
28#include <asm/tlb.h>
29#include <asm/tlbflush.h>
30#include "internal.h"
31
32#define SEQ_PUT_DEC(str, val) \
33 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
34void task_mem(struct seq_file *m, struct mm_struct *mm)
35{
36 unsigned long text, lib, swap, anon, file, shmem;
37 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
38
39 anon = get_mm_counter(mm, MM_ANONPAGES);
40 file = get_mm_counter(mm, MM_FILEPAGES);
41 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
42
43 /*
44 * Note: to minimize their overhead, mm maintains hiwater_vm and
45 * hiwater_rss only when about to *lower* total_vm or rss. Any
46 * collector of these hiwater stats must therefore get total_vm
47 * and rss too, which will usually be the higher. Barriers? not
48 * worth the effort, such snapshots can always be inconsistent.
49 */
50 hiwater_vm = total_vm = mm->total_vm;
51 if (hiwater_vm < mm->hiwater_vm)
52 hiwater_vm = mm->hiwater_vm;
53 hiwater_rss = total_rss = anon + file + shmem;
54 if (hiwater_rss < mm->hiwater_rss)
55 hiwater_rss = mm->hiwater_rss;
56
57 /* split executable areas between text and lib */
58 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
59 text = min(text, mm->exec_vm << PAGE_SHIFT);
60 lib = (mm->exec_vm << PAGE_SHIFT) - text;
61
62 swap = get_mm_counter(mm, MM_SWAPENTS);
63 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
64 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
65 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
66 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
67 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
68 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
69 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
70 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
71 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
72 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
73 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmExe:\t", text >> 10, 8);
76 seq_put_decimal_ull_width(m,
77 " kB\nVmLib:\t", lib >> 10, 8);
78 seq_put_decimal_ull_width(m,
79 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
80 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
81 seq_puts(m, " kB\n");
82 hugetlb_report_usage(m, mm);
83}
84#undef SEQ_PUT_DEC
85
86unsigned long task_vsize(struct mm_struct *mm)
87{
88 return PAGE_SIZE * mm->total_vm;
89}
90
91unsigned long task_statm(struct mm_struct *mm,
92 unsigned long *shared, unsigned long *text,
93 unsigned long *data, unsigned long *resident)
94{
95 *shared = get_mm_counter(mm, MM_FILEPAGES) +
96 get_mm_counter(mm, MM_SHMEMPAGES);
97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 >> PAGE_SHIFT;
99 *data = mm->data_vm + mm->stack_vm;
100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 return mm->total_vm;
102}
103
104#ifdef CONFIG_NUMA
105/*
106 * Save get_task_policy() for show_numa_map().
107 */
108static void hold_task_mempolicy(struct proc_maps_private *priv)
109{
110 struct task_struct *task = priv->task;
111
112 task_lock(task);
113 priv->task_mempolicy = get_task_policy(task);
114 mpol_get(priv->task_mempolicy);
115 task_unlock(task);
116}
117static void release_task_mempolicy(struct proc_maps_private *priv)
118{
119 mpol_put(priv->task_mempolicy);
120}
121#else
122static void hold_task_mempolicy(struct proc_maps_private *priv)
123{
124}
125static void release_task_mempolicy(struct proc_maps_private *priv)
126{
127}
128#endif
129
130static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
131 loff_t *ppos)
132{
133 struct vm_area_struct *vma = vma_next(&priv->iter);
134
135 if (vma) {
136 *ppos = vma->vm_start;
137 } else {
138 *ppos = -2UL;
139 vma = get_gate_vma(priv->mm);
140 }
141
142 return vma;
143}
144
145static void *m_start(struct seq_file *m, loff_t *ppos)
146{
147 struct proc_maps_private *priv = m->private;
148 unsigned long last_addr = *ppos;
149 struct mm_struct *mm;
150
151 /* See m_next(). Zero at the start or after lseek. */
152 if (last_addr == -1UL)
153 return NULL;
154
155 priv->task = get_proc_task(priv->inode);
156 if (!priv->task)
157 return ERR_PTR(-ESRCH);
158
159 mm = priv->mm;
160 if (!mm || !mmget_not_zero(mm)) {
161 put_task_struct(priv->task);
162 priv->task = NULL;
163 return NULL;
164 }
165
166 if (mmap_read_lock_killable(mm)) {
167 mmput(mm);
168 put_task_struct(priv->task);
169 priv->task = NULL;
170 return ERR_PTR(-EINTR);
171 }
172
173 vma_iter_init(&priv->iter, mm, last_addr);
174 hold_task_mempolicy(priv);
175 if (last_addr == -2UL)
176 return get_gate_vma(mm);
177
178 return proc_get_vma(priv, ppos);
179}
180
181static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
182{
183 if (*ppos == -2UL) {
184 *ppos = -1UL;
185 return NULL;
186 }
187 return proc_get_vma(m->private, ppos);
188}
189
190static void m_stop(struct seq_file *m, void *v)
191{
192 struct proc_maps_private *priv = m->private;
193 struct mm_struct *mm = priv->mm;
194
195 if (!priv->task)
196 return;
197
198 release_task_mempolicy(priv);
199 mmap_read_unlock(mm);
200 mmput(mm);
201 put_task_struct(priv->task);
202 priv->task = NULL;
203}
204
205static int proc_maps_open(struct inode *inode, struct file *file,
206 const struct seq_operations *ops, int psize)
207{
208 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
209
210 if (!priv)
211 return -ENOMEM;
212
213 priv->inode = inode;
214 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
215 if (IS_ERR(priv->mm)) {
216 int err = PTR_ERR(priv->mm);
217
218 seq_release_private(inode, file);
219 return err;
220 }
221
222 return 0;
223}
224
225static int proc_map_release(struct inode *inode, struct file *file)
226{
227 struct seq_file *seq = file->private_data;
228 struct proc_maps_private *priv = seq->private;
229
230 if (priv->mm)
231 mmdrop(priv->mm);
232
233 return seq_release_private(inode, file);
234}
235
236static int do_maps_open(struct inode *inode, struct file *file,
237 const struct seq_operations *ops)
238{
239 return proc_maps_open(inode, file, ops,
240 sizeof(struct proc_maps_private));
241}
242
243static void get_vma_name(struct vm_area_struct *vma,
244 const struct path **path,
245 const char **name,
246 const char **name_fmt)
247{
248 struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL;
249
250 *name = NULL;
251 *path = NULL;
252 *name_fmt = NULL;
253
254 /*
255 * Print the dentry name for named mappings, and a
256 * special [heap] marker for the heap:
257 */
258 if (vma->vm_file) {
259 /*
260 * If user named this anon shared memory via
261 * prctl(PR_SET_VMA ..., use the provided name.
262 */
263 if (anon_name) {
264 *name_fmt = "[anon_shmem:%s]";
265 *name = anon_name->name;
266 } else {
267 *path = file_user_path(vma->vm_file);
268 }
269 return;
270 }
271
272 if (vma->vm_ops && vma->vm_ops->name) {
273 *name = vma->vm_ops->name(vma);
274 if (*name)
275 return;
276 }
277
278 *name = arch_vma_name(vma);
279 if (*name)
280 return;
281
282 if (!vma->vm_mm) {
283 *name = "[vdso]";
284 return;
285 }
286
287 if (vma_is_initial_heap(vma)) {
288 *name = "[heap]";
289 return;
290 }
291
292 if (vma_is_initial_stack(vma)) {
293 *name = "[stack]";
294 return;
295 }
296
297 if (anon_name) {
298 *name_fmt = "[anon:%s]";
299 *name = anon_name->name;
300 return;
301 }
302}
303
304static void show_vma_header_prefix(struct seq_file *m,
305 unsigned long start, unsigned long end,
306 vm_flags_t flags, unsigned long long pgoff,
307 dev_t dev, unsigned long ino)
308{
309 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
310 seq_put_hex_ll(m, NULL, start, 8);
311 seq_put_hex_ll(m, "-", end, 8);
312 seq_putc(m, ' ');
313 seq_putc(m, flags & VM_READ ? 'r' : '-');
314 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
315 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
316 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
317 seq_put_hex_ll(m, " ", pgoff, 8);
318 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
319 seq_put_hex_ll(m, ":", MINOR(dev), 2);
320 seq_put_decimal_ull(m, " ", ino);
321 seq_putc(m, ' ');
322}
323
324static void
325show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
326{
327 const struct path *path;
328 const char *name_fmt, *name;
329 vm_flags_t flags = vma->vm_flags;
330 unsigned long ino = 0;
331 unsigned long long pgoff = 0;
332 unsigned long start, end;
333 dev_t dev = 0;
334
335 if (vma->vm_file) {
336 const struct inode *inode = file_user_inode(vma->vm_file);
337
338 dev = inode->i_sb->s_dev;
339 ino = inode->i_ino;
340 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
341 }
342
343 start = vma->vm_start;
344 end = vma->vm_end;
345 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
346
347 get_vma_name(vma, &path, &name, &name_fmt);
348 if (path) {
349 seq_pad(m, ' ');
350 seq_path(m, path, "\n");
351 } else if (name_fmt) {
352 seq_pad(m, ' ');
353 seq_printf(m, name_fmt, name);
354 } else if (name) {
355 seq_pad(m, ' ');
356 seq_puts(m, name);
357 }
358 seq_putc(m, '\n');
359}
360
361static int show_map(struct seq_file *m, void *v)
362{
363 show_map_vma(m, v);
364 return 0;
365}
366
367static const struct seq_operations proc_pid_maps_op = {
368 .start = m_start,
369 .next = m_next,
370 .stop = m_stop,
371 .show = show_map
372};
373
374static int pid_maps_open(struct inode *inode, struct file *file)
375{
376 return do_maps_open(inode, file, &proc_pid_maps_op);
377}
378
379#define PROCMAP_QUERY_VMA_FLAGS ( \
380 PROCMAP_QUERY_VMA_READABLE | \
381 PROCMAP_QUERY_VMA_WRITABLE | \
382 PROCMAP_QUERY_VMA_EXECUTABLE | \
383 PROCMAP_QUERY_VMA_SHARED \
384)
385
386#define PROCMAP_QUERY_VALID_FLAGS_MASK ( \
387 PROCMAP_QUERY_COVERING_OR_NEXT_VMA | \
388 PROCMAP_QUERY_FILE_BACKED_VMA | \
389 PROCMAP_QUERY_VMA_FLAGS \
390)
391
392static int query_vma_setup(struct mm_struct *mm)
393{
394 return mmap_read_lock_killable(mm);
395}
396
397static void query_vma_teardown(struct mm_struct *mm, struct vm_area_struct *vma)
398{
399 mmap_read_unlock(mm);
400}
401
402static struct vm_area_struct *query_vma_find_by_addr(struct mm_struct *mm, unsigned long addr)
403{
404 return find_vma(mm, addr);
405}
406
407static struct vm_area_struct *query_matching_vma(struct mm_struct *mm,
408 unsigned long addr, u32 flags)
409{
410 struct vm_area_struct *vma;
411
412next_vma:
413 vma = query_vma_find_by_addr(mm, addr);
414 if (!vma)
415 goto no_vma;
416
417 /* user requested only file-backed VMA, keep iterating */
418 if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file)
419 goto skip_vma;
420
421 /* VMA permissions should satisfy query flags */
422 if (flags & PROCMAP_QUERY_VMA_FLAGS) {
423 u32 perm = 0;
424
425 if (flags & PROCMAP_QUERY_VMA_READABLE)
426 perm |= VM_READ;
427 if (flags & PROCMAP_QUERY_VMA_WRITABLE)
428 perm |= VM_WRITE;
429 if (flags & PROCMAP_QUERY_VMA_EXECUTABLE)
430 perm |= VM_EXEC;
431 if (flags & PROCMAP_QUERY_VMA_SHARED)
432 perm |= VM_MAYSHARE;
433
434 if ((vma->vm_flags & perm) != perm)
435 goto skip_vma;
436 }
437
438 /* found covering VMA or user is OK with the matching next VMA */
439 if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr)
440 return vma;
441
442skip_vma:
443 /*
444 * If the user needs closest matching VMA, keep iterating.
445 */
446 addr = vma->vm_end;
447 if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA)
448 goto next_vma;
449
450no_vma:
451 return ERR_PTR(-ENOENT);
452}
453
454static int do_procmap_query(struct proc_maps_private *priv, void __user *uarg)
455{
456 struct procmap_query karg;
457 struct vm_area_struct *vma;
458 struct mm_struct *mm;
459 const char *name = NULL;
460 char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL;
461 __u64 usize;
462 int err;
463
464 if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize)))
465 return -EFAULT;
466 /* argument struct can never be that large, reject abuse */
467 if (usize > PAGE_SIZE)
468 return -E2BIG;
469 /* argument struct should have at least query_flags and query_addr fields */
470 if (usize < offsetofend(struct procmap_query, query_addr))
471 return -EINVAL;
472 err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
473 if (err)
474 return err;
475
476 /* reject unknown flags */
477 if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK)
478 return -EINVAL;
479 /* either both buffer address and size are set, or both should be zero */
480 if (!!karg.vma_name_size != !!karg.vma_name_addr)
481 return -EINVAL;
482 if (!!karg.build_id_size != !!karg.build_id_addr)
483 return -EINVAL;
484
485 mm = priv->mm;
486 if (!mm || !mmget_not_zero(mm))
487 return -ESRCH;
488
489 err = query_vma_setup(mm);
490 if (err) {
491 mmput(mm);
492 return err;
493 }
494
495 vma = query_matching_vma(mm, karg.query_addr, karg.query_flags);
496 if (IS_ERR(vma)) {
497 err = PTR_ERR(vma);
498 vma = NULL;
499 goto out;
500 }
501
502 karg.vma_start = vma->vm_start;
503 karg.vma_end = vma->vm_end;
504
505 karg.vma_flags = 0;
506 if (vma->vm_flags & VM_READ)
507 karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE;
508 if (vma->vm_flags & VM_WRITE)
509 karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE;
510 if (vma->vm_flags & VM_EXEC)
511 karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE;
512 if (vma->vm_flags & VM_MAYSHARE)
513 karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED;
514
515 karg.vma_page_size = vma_kernel_pagesize(vma);
516
517 if (vma->vm_file) {
518 const struct inode *inode = file_user_inode(vma->vm_file);
519
520 karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT;
521 karg.dev_major = MAJOR(inode->i_sb->s_dev);
522 karg.dev_minor = MINOR(inode->i_sb->s_dev);
523 karg.inode = inode->i_ino;
524 } else {
525 karg.vma_offset = 0;
526 karg.dev_major = 0;
527 karg.dev_minor = 0;
528 karg.inode = 0;
529 }
530
531 if (karg.build_id_size) {
532 __u32 build_id_sz;
533
534 err = build_id_parse(vma, build_id_buf, &build_id_sz);
535 if (err) {
536 karg.build_id_size = 0;
537 } else {
538 if (karg.build_id_size < build_id_sz) {
539 err = -ENAMETOOLONG;
540 goto out;
541 }
542 karg.build_id_size = build_id_sz;
543 }
544 }
545
546 if (karg.vma_name_size) {
547 size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size);
548 const struct path *path;
549 const char *name_fmt;
550 size_t name_sz = 0;
551
552 get_vma_name(vma, &path, &name, &name_fmt);
553
554 if (path || name_fmt || name) {
555 name_buf = kmalloc(name_buf_sz, GFP_KERNEL);
556 if (!name_buf) {
557 err = -ENOMEM;
558 goto out;
559 }
560 }
561 if (path) {
562 name = d_path(path, name_buf, name_buf_sz);
563 if (IS_ERR(name)) {
564 err = PTR_ERR(name);
565 goto out;
566 }
567 name_sz = name_buf + name_buf_sz - name;
568 } else if (name || name_fmt) {
569 name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name);
570 name = name_buf;
571 }
572 if (name_sz > name_buf_sz) {
573 err = -ENAMETOOLONG;
574 goto out;
575 }
576 karg.vma_name_size = name_sz;
577 }
578
579 /* unlock vma or mmap_lock, and put mm_struct before copying data to user */
580 query_vma_teardown(mm, vma);
581 mmput(mm);
582
583 if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr),
584 name, karg.vma_name_size)) {
585 kfree(name_buf);
586 return -EFAULT;
587 }
588 kfree(name_buf);
589
590 if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr),
591 build_id_buf, karg.build_id_size))
592 return -EFAULT;
593
594 if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize)))
595 return -EFAULT;
596
597 return 0;
598
599out:
600 query_vma_teardown(mm, vma);
601 mmput(mm);
602 kfree(name_buf);
603 return err;
604}
605
606static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
607{
608 struct seq_file *seq = file->private_data;
609 struct proc_maps_private *priv = seq->private;
610
611 switch (cmd) {
612 case PROCMAP_QUERY:
613 return do_procmap_query(priv, (void __user *)arg);
614 default:
615 return -ENOIOCTLCMD;
616 }
617}
618
619const struct file_operations proc_pid_maps_operations = {
620 .open = pid_maps_open,
621 .read = seq_read,
622 .llseek = seq_lseek,
623 .release = proc_map_release,
624 .unlocked_ioctl = procfs_procmap_ioctl,
625 .compat_ioctl = compat_ptr_ioctl,
626};
627
628/*
629 * Proportional Set Size(PSS): my share of RSS.
630 *
631 * PSS of a process is the count of pages it has in memory, where each
632 * page is divided by the number of processes sharing it. So if a
633 * process has 1000 pages all to itself, and 1000 shared with one other
634 * process, its PSS will be 1500.
635 *
636 * To keep (accumulated) division errors low, we adopt a 64bit
637 * fixed-point pss counter to minimize division errors. So (pss >>
638 * PSS_SHIFT) would be the real byte count.
639 *
640 * A shift of 12 before division means (assuming 4K page size):
641 * - 1M 3-user-pages add up to 8KB errors;
642 * - supports mapcount up to 2^24, or 16M;
643 * - supports PSS up to 2^52 bytes, or 4PB.
644 */
645#define PSS_SHIFT 12
646
647#ifdef CONFIG_PROC_PAGE_MONITOR
648struct mem_size_stats {
649 unsigned long resident;
650 unsigned long shared_clean;
651 unsigned long shared_dirty;
652 unsigned long private_clean;
653 unsigned long private_dirty;
654 unsigned long referenced;
655 unsigned long anonymous;
656 unsigned long lazyfree;
657 unsigned long anonymous_thp;
658 unsigned long shmem_thp;
659 unsigned long file_thp;
660 unsigned long swap;
661 unsigned long shared_hugetlb;
662 unsigned long private_hugetlb;
663 unsigned long ksm;
664 u64 pss;
665 u64 pss_anon;
666 u64 pss_file;
667 u64 pss_shmem;
668 u64 pss_dirty;
669 u64 pss_locked;
670 u64 swap_pss;
671};
672
673static void smaps_page_accumulate(struct mem_size_stats *mss,
674 struct folio *folio, unsigned long size, unsigned long pss,
675 bool dirty, bool locked, bool private)
676{
677 mss->pss += pss;
678
679 if (folio_test_anon(folio))
680 mss->pss_anon += pss;
681 else if (folio_test_swapbacked(folio))
682 mss->pss_shmem += pss;
683 else
684 mss->pss_file += pss;
685
686 if (locked)
687 mss->pss_locked += pss;
688
689 if (dirty || folio_test_dirty(folio)) {
690 mss->pss_dirty += pss;
691 if (private)
692 mss->private_dirty += size;
693 else
694 mss->shared_dirty += size;
695 } else {
696 if (private)
697 mss->private_clean += size;
698 else
699 mss->shared_clean += size;
700 }
701}
702
703static void smaps_account(struct mem_size_stats *mss, struct page *page,
704 bool compound, bool young, bool dirty, bool locked,
705 bool present)
706{
707 struct folio *folio = page_folio(page);
708 int i, nr = compound ? compound_nr(page) : 1;
709 unsigned long size = nr * PAGE_SIZE;
710
711 /*
712 * First accumulate quantities that depend only on |size| and the type
713 * of the compound page.
714 */
715 if (folio_test_anon(folio)) {
716 mss->anonymous += size;
717 if (!folio_test_swapbacked(folio) && !dirty &&
718 !folio_test_dirty(folio))
719 mss->lazyfree += size;
720 }
721
722 if (folio_test_ksm(folio))
723 mss->ksm += size;
724
725 mss->resident += size;
726 /* Accumulate the size in pages that have been accessed. */
727 if (young || folio_test_young(folio) || folio_test_referenced(folio))
728 mss->referenced += size;
729
730 /*
731 * Then accumulate quantities that may depend on sharing, or that may
732 * differ page-by-page.
733 *
734 * refcount == 1 for present entries guarantees that the folio is mapped
735 * exactly once. For large folios this implies that exactly one
736 * PTE/PMD/... maps (a part of) this folio.
737 *
738 * Treat all non-present entries (where relying on the mapcount and
739 * refcount doesn't make sense) as "maybe shared, but not sure how
740 * often". We treat device private entries as being fake-present.
741 *
742 * Note that it would not be safe to read the mapcount especially for
743 * pages referenced by migration entries, even with the PTL held.
744 */
745 if (folio_ref_count(folio) == 1 || !present) {
746 smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT,
747 dirty, locked, present);
748 return;
749 }
750 /*
751 * We obtain a snapshot of the mapcount. Without holding the folio lock
752 * this snapshot can be slightly wrong as we cannot always read the
753 * mapcount atomically.
754 */
755 for (i = 0; i < nr; i++, page++) {
756 int mapcount = folio_precise_page_mapcount(folio, page);
757 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
758 if (mapcount >= 2)
759 pss /= mapcount;
760 smaps_page_accumulate(mss, folio, PAGE_SIZE, pss,
761 dirty, locked, mapcount < 2);
762 }
763}
764
765#ifdef CONFIG_SHMEM
766static int smaps_pte_hole(unsigned long addr, unsigned long end,
767 __always_unused int depth, struct mm_walk *walk)
768{
769 struct mem_size_stats *mss = walk->private;
770 struct vm_area_struct *vma = walk->vma;
771
772 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
773 linear_page_index(vma, addr),
774 linear_page_index(vma, end));
775
776 return 0;
777}
778#else
779#define smaps_pte_hole NULL
780#endif /* CONFIG_SHMEM */
781
782static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
783{
784#ifdef CONFIG_SHMEM
785 if (walk->ops->pte_hole) {
786 /* depth is not used */
787 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
788 }
789#endif
790}
791
792static void smaps_pte_entry(pte_t *pte, unsigned long addr,
793 struct mm_walk *walk)
794{
795 struct mem_size_stats *mss = walk->private;
796 struct vm_area_struct *vma = walk->vma;
797 bool locked = !!(vma->vm_flags & VM_LOCKED);
798 struct page *page = NULL;
799 bool present = false, young = false, dirty = false;
800 pte_t ptent = ptep_get(pte);
801
802 if (pte_present(ptent)) {
803 page = vm_normal_page(vma, addr, ptent);
804 young = pte_young(ptent);
805 dirty = pte_dirty(ptent);
806 present = true;
807 } else if (is_swap_pte(ptent)) {
808 swp_entry_t swpent = pte_to_swp_entry(ptent);
809
810 if (!non_swap_entry(swpent)) {
811 int mapcount;
812
813 mss->swap += PAGE_SIZE;
814 mapcount = swp_swapcount(swpent);
815 if (mapcount >= 2) {
816 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
817
818 do_div(pss_delta, mapcount);
819 mss->swap_pss += pss_delta;
820 } else {
821 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
822 }
823 } else if (is_pfn_swap_entry(swpent)) {
824 if (is_device_private_entry(swpent))
825 present = true;
826 page = pfn_swap_entry_to_page(swpent);
827 }
828 } else {
829 smaps_pte_hole_lookup(addr, walk);
830 return;
831 }
832
833 if (!page)
834 return;
835
836 smaps_account(mss, page, false, young, dirty, locked, present);
837}
838
839#ifdef CONFIG_TRANSPARENT_HUGEPAGE
840static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
841 struct mm_walk *walk)
842{
843 struct mem_size_stats *mss = walk->private;
844 struct vm_area_struct *vma = walk->vma;
845 bool locked = !!(vma->vm_flags & VM_LOCKED);
846 struct page *page = NULL;
847 bool present = false;
848 struct folio *folio;
849
850 if (pmd_present(*pmd)) {
851 page = vm_normal_page_pmd(vma, addr, *pmd);
852 present = true;
853 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
854 swp_entry_t entry = pmd_to_swp_entry(*pmd);
855
856 if (is_pfn_swap_entry(entry))
857 page = pfn_swap_entry_to_page(entry);
858 }
859 if (IS_ERR_OR_NULL(page))
860 return;
861 folio = page_folio(page);
862 if (folio_test_anon(folio))
863 mss->anonymous_thp += HPAGE_PMD_SIZE;
864 else if (folio_test_swapbacked(folio))
865 mss->shmem_thp += HPAGE_PMD_SIZE;
866 else if (folio_is_zone_device(folio))
867 /* pass */;
868 else
869 mss->file_thp += HPAGE_PMD_SIZE;
870
871 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
872 locked, present);
873}
874#else
875static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
876 struct mm_walk *walk)
877{
878}
879#endif
880
881static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
882 struct mm_walk *walk)
883{
884 struct vm_area_struct *vma = walk->vma;
885 pte_t *pte;
886 spinlock_t *ptl;
887
888 ptl = pmd_trans_huge_lock(pmd, vma);
889 if (ptl) {
890 smaps_pmd_entry(pmd, addr, walk);
891 spin_unlock(ptl);
892 goto out;
893 }
894
895 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
896 if (!pte) {
897 walk->action = ACTION_AGAIN;
898 return 0;
899 }
900 for (; addr != end; pte++, addr += PAGE_SIZE)
901 smaps_pte_entry(pte, addr, walk);
902 pte_unmap_unlock(pte - 1, ptl);
903out:
904 cond_resched();
905 return 0;
906}
907
908static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
909{
910 /*
911 * Don't forget to update Documentation/ on changes.
912 *
913 * The length of the second argument of mnemonics[]
914 * needs to be 3 instead of previously set 2
915 * (i.e. from [BITS_PER_LONG][2] to [BITS_PER_LONG][3])
916 * to avoid spurious
917 * -Werror=unterminated-string-initialization warning
918 * with GCC 15
919 */
920 static const char mnemonics[BITS_PER_LONG][3] = {
921 /*
922 * In case if we meet a flag we don't know about.
923 */
924 [0 ... (BITS_PER_LONG-1)] = "??",
925
926 [ilog2(VM_READ)] = "rd",
927 [ilog2(VM_WRITE)] = "wr",
928 [ilog2(VM_EXEC)] = "ex",
929 [ilog2(VM_SHARED)] = "sh",
930 [ilog2(VM_MAYREAD)] = "mr",
931 [ilog2(VM_MAYWRITE)] = "mw",
932 [ilog2(VM_MAYEXEC)] = "me",
933 [ilog2(VM_MAYSHARE)] = "ms",
934 [ilog2(VM_GROWSDOWN)] = "gd",
935 [ilog2(VM_PFNMAP)] = "pf",
936 [ilog2(VM_LOCKED)] = "lo",
937 [ilog2(VM_IO)] = "io",
938 [ilog2(VM_SEQ_READ)] = "sr",
939 [ilog2(VM_RAND_READ)] = "rr",
940 [ilog2(VM_DONTCOPY)] = "dc",
941 [ilog2(VM_DONTEXPAND)] = "de",
942 [ilog2(VM_LOCKONFAULT)] = "lf",
943 [ilog2(VM_ACCOUNT)] = "ac",
944 [ilog2(VM_NORESERVE)] = "nr",
945 [ilog2(VM_HUGETLB)] = "ht",
946 [ilog2(VM_SYNC)] = "sf",
947 [ilog2(VM_ARCH_1)] = "ar",
948 [ilog2(VM_WIPEONFORK)] = "wf",
949 [ilog2(VM_DONTDUMP)] = "dd",
950#ifdef CONFIG_ARM64_BTI
951 [ilog2(VM_ARM64_BTI)] = "bt",
952#endif
953#ifdef CONFIG_MEM_SOFT_DIRTY
954 [ilog2(VM_SOFTDIRTY)] = "sd",
955#endif
956 [ilog2(VM_MIXEDMAP)] = "mm",
957 [ilog2(VM_HUGEPAGE)] = "hg",
958 [ilog2(VM_NOHUGEPAGE)] = "nh",
959 [ilog2(VM_MERGEABLE)] = "mg",
960 [ilog2(VM_UFFD_MISSING)]= "um",
961 [ilog2(VM_UFFD_WP)] = "uw",
962#ifdef CONFIG_ARM64_MTE
963 [ilog2(VM_MTE)] = "mt",
964 [ilog2(VM_MTE_ALLOWED)] = "",
965#endif
966#ifdef CONFIG_ARCH_HAS_PKEYS
967 /* These come out via ProtectionKey: */
968 [ilog2(VM_PKEY_BIT0)] = "",
969 [ilog2(VM_PKEY_BIT1)] = "",
970 [ilog2(VM_PKEY_BIT2)] = "",
971#if VM_PKEY_BIT3
972 [ilog2(VM_PKEY_BIT3)] = "",
973#endif
974#if VM_PKEY_BIT4
975 [ilog2(VM_PKEY_BIT4)] = "",
976#endif
977#endif /* CONFIG_ARCH_HAS_PKEYS */
978#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
979 [ilog2(VM_UFFD_MINOR)] = "ui",
980#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
981#ifdef CONFIG_ARCH_HAS_USER_SHADOW_STACK
982 [ilog2(VM_SHADOW_STACK)] = "ss",
983#endif
984#if defined(CONFIG_64BIT) || defined(CONFIG_PPC32)
985 [ilog2(VM_DROPPABLE)] = "dp",
986#endif
987#ifdef CONFIG_64BIT
988 [ilog2(VM_SEALED)] = "sl",
989#endif
990 };
991 size_t i;
992
993 seq_puts(m, "VmFlags: ");
994 for (i = 0; i < BITS_PER_LONG; i++) {
995 if (!mnemonics[i][0])
996 continue;
997 if (vma->vm_flags & (1UL << i))
998 seq_printf(m, "%s ", mnemonics[i]);
999 }
1000 seq_putc(m, '\n');
1001}
1002
1003#ifdef CONFIG_HUGETLB_PAGE
1004static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
1005 unsigned long addr, unsigned long end,
1006 struct mm_walk *walk)
1007{
1008 struct mem_size_stats *mss = walk->private;
1009 struct vm_area_struct *vma = walk->vma;
1010 pte_t ptent = huge_ptep_get(walk->mm, addr, pte);
1011 struct folio *folio = NULL;
1012 bool present = false;
1013
1014 if (pte_present(ptent)) {
1015 folio = page_folio(pte_page(ptent));
1016 present = true;
1017 } else if (is_swap_pte(ptent)) {
1018 swp_entry_t swpent = pte_to_swp_entry(ptent);
1019
1020 if (is_pfn_swap_entry(swpent))
1021 folio = pfn_swap_entry_folio(swpent);
1022 }
1023
1024 if (folio) {
1025 /* We treat non-present entries as "maybe shared". */
1026 if (!present || folio_likely_mapped_shared(folio) ||
1027 hugetlb_pmd_shared(pte))
1028 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
1029 else
1030 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
1031 }
1032 return 0;
1033}
1034#else
1035#define smaps_hugetlb_range NULL
1036#endif /* HUGETLB_PAGE */
1037
1038static const struct mm_walk_ops smaps_walk_ops = {
1039 .pmd_entry = smaps_pte_range,
1040 .hugetlb_entry = smaps_hugetlb_range,
1041 .walk_lock = PGWALK_RDLOCK,
1042};
1043
1044static const struct mm_walk_ops smaps_shmem_walk_ops = {
1045 .pmd_entry = smaps_pte_range,
1046 .hugetlb_entry = smaps_hugetlb_range,
1047 .pte_hole = smaps_pte_hole,
1048 .walk_lock = PGWALK_RDLOCK,
1049};
1050
1051/*
1052 * Gather mem stats from @vma with the indicated beginning
1053 * address @start, and keep them in @mss.
1054 *
1055 * Use vm_start of @vma as the beginning address if @start is 0.
1056 */
1057static void smap_gather_stats(struct vm_area_struct *vma,
1058 struct mem_size_stats *mss, unsigned long start)
1059{
1060 const struct mm_walk_ops *ops = &smaps_walk_ops;
1061
1062 /* Invalid start */
1063 if (start >= vma->vm_end)
1064 return;
1065
1066 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
1067 /*
1068 * For shared or readonly shmem mappings we know that all
1069 * swapped out pages belong to the shmem object, and we can
1070 * obtain the swap value much more efficiently. For private
1071 * writable mappings, we might have COW pages that are
1072 * not affected by the parent swapped out pages of the shmem
1073 * object, so we have to distinguish them during the page walk.
1074 * Unless we know that the shmem object (or the part mapped by
1075 * our VMA) has no swapped out pages at all.
1076 */
1077 unsigned long shmem_swapped = shmem_swap_usage(vma);
1078
1079 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
1080 !(vma->vm_flags & VM_WRITE))) {
1081 mss->swap += shmem_swapped;
1082 } else {
1083 ops = &smaps_shmem_walk_ops;
1084 }
1085 }
1086
1087 /* mmap_lock is held in m_start */
1088 if (!start)
1089 walk_page_vma(vma, ops, mss);
1090 else
1091 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
1092}
1093
1094#define SEQ_PUT_DEC(str, val) \
1095 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
1096
1097/* Show the contents common for smaps and smaps_rollup */
1098static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
1099 bool rollup_mode)
1100{
1101 SEQ_PUT_DEC("Rss: ", mss->resident);
1102 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
1103 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT);
1104 if (rollup_mode) {
1105 /*
1106 * These are meaningful only for smaps_rollup, otherwise two of
1107 * them are zero, and the other one is the same as Pss.
1108 */
1109 SEQ_PUT_DEC(" kB\nPss_Anon: ",
1110 mss->pss_anon >> PSS_SHIFT);
1111 SEQ_PUT_DEC(" kB\nPss_File: ",
1112 mss->pss_file >> PSS_SHIFT);
1113 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
1114 mss->pss_shmem >> PSS_SHIFT);
1115 }
1116 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
1117 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
1118 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
1119 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
1120 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
1121 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
1122 SEQ_PUT_DEC(" kB\nKSM: ", mss->ksm);
1123 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
1124 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
1125 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
1126 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
1127 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
1128 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
1129 mss->private_hugetlb >> 10, 7);
1130 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
1131 SEQ_PUT_DEC(" kB\nSwapPss: ",
1132 mss->swap_pss >> PSS_SHIFT);
1133 SEQ_PUT_DEC(" kB\nLocked: ",
1134 mss->pss_locked >> PSS_SHIFT);
1135 seq_puts(m, " kB\n");
1136}
1137
1138static int show_smap(struct seq_file *m, void *v)
1139{
1140 struct vm_area_struct *vma = v;
1141 struct mem_size_stats mss = {};
1142
1143 smap_gather_stats(vma, &mss, 0);
1144
1145 show_map_vma(m, vma);
1146
1147 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
1148 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
1149 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
1150 seq_puts(m, " kB\n");
1151
1152 __show_smap(m, &mss, false);
1153
1154 seq_printf(m, "THPeligible: %8u\n",
1155 !!thp_vma_allowable_orders(vma, vma->vm_flags,
1156 TVA_SMAPS | TVA_ENFORCE_SYSFS, THP_ORDERS_ALL));
1157
1158 if (arch_pkeys_enabled())
1159 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
1160 show_smap_vma_flags(m, vma);
1161
1162 return 0;
1163}
1164
1165static int show_smaps_rollup(struct seq_file *m, void *v)
1166{
1167 struct proc_maps_private *priv = m->private;
1168 struct mem_size_stats mss = {};
1169 struct mm_struct *mm = priv->mm;
1170 struct vm_area_struct *vma;
1171 unsigned long vma_start = 0, last_vma_end = 0;
1172 int ret = 0;
1173 VMA_ITERATOR(vmi, mm, 0);
1174
1175 priv->task = get_proc_task(priv->inode);
1176 if (!priv->task)
1177 return -ESRCH;
1178
1179 if (!mm || !mmget_not_zero(mm)) {
1180 ret = -ESRCH;
1181 goto out_put_task;
1182 }
1183
1184 ret = mmap_read_lock_killable(mm);
1185 if (ret)
1186 goto out_put_mm;
1187
1188 hold_task_mempolicy(priv);
1189 vma = vma_next(&vmi);
1190
1191 if (unlikely(!vma))
1192 goto empty_set;
1193
1194 vma_start = vma->vm_start;
1195 do {
1196 smap_gather_stats(vma, &mss, 0);
1197 last_vma_end = vma->vm_end;
1198
1199 /*
1200 * Release mmap_lock temporarily if someone wants to
1201 * access it for write request.
1202 */
1203 if (mmap_lock_is_contended(mm)) {
1204 vma_iter_invalidate(&vmi);
1205 mmap_read_unlock(mm);
1206 ret = mmap_read_lock_killable(mm);
1207 if (ret) {
1208 release_task_mempolicy(priv);
1209 goto out_put_mm;
1210 }
1211
1212 /*
1213 * After dropping the lock, there are four cases to
1214 * consider. See the following example for explanation.
1215 *
1216 * +------+------+-----------+
1217 * | VMA1 | VMA2 | VMA3 |
1218 * +------+------+-----------+
1219 * | | | |
1220 * 4k 8k 16k 400k
1221 *
1222 * Suppose we drop the lock after reading VMA2 due to
1223 * contention, then we get:
1224 *
1225 * last_vma_end = 16k
1226 *
1227 * 1) VMA2 is freed, but VMA3 exists:
1228 *
1229 * vma_next(vmi) will return VMA3.
1230 * In this case, just continue from VMA3.
1231 *
1232 * 2) VMA2 still exists:
1233 *
1234 * vma_next(vmi) will return VMA3.
1235 * In this case, just continue from VMA3.
1236 *
1237 * 3) No more VMAs can be found:
1238 *
1239 * vma_next(vmi) will return NULL.
1240 * No more things to do, just break.
1241 *
1242 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
1243 *
1244 * vma_next(vmi) will return VMA' whose range
1245 * contains last_vma_end.
1246 * Iterate VMA' from last_vma_end.
1247 */
1248 vma = vma_next(&vmi);
1249 /* Case 3 above */
1250 if (!vma)
1251 break;
1252
1253 /* Case 1 and 2 above */
1254 if (vma->vm_start >= last_vma_end) {
1255 smap_gather_stats(vma, &mss, 0);
1256 last_vma_end = vma->vm_end;
1257 continue;
1258 }
1259
1260 /* Case 4 above */
1261 if (vma->vm_end > last_vma_end) {
1262 smap_gather_stats(vma, &mss, last_vma_end);
1263 last_vma_end = vma->vm_end;
1264 }
1265 }
1266 } for_each_vma(vmi, vma);
1267
1268empty_set:
1269 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
1270 seq_pad(m, ' ');
1271 seq_puts(m, "[rollup]\n");
1272
1273 __show_smap(m, &mss, true);
1274
1275 release_task_mempolicy(priv);
1276 mmap_read_unlock(mm);
1277
1278out_put_mm:
1279 mmput(mm);
1280out_put_task:
1281 put_task_struct(priv->task);
1282 priv->task = NULL;
1283
1284 return ret;
1285}
1286#undef SEQ_PUT_DEC
1287
1288static const struct seq_operations proc_pid_smaps_op = {
1289 .start = m_start,
1290 .next = m_next,
1291 .stop = m_stop,
1292 .show = show_smap
1293};
1294
1295static int pid_smaps_open(struct inode *inode, struct file *file)
1296{
1297 return do_maps_open(inode, file, &proc_pid_smaps_op);
1298}
1299
1300static int smaps_rollup_open(struct inode *inode, struct file *file)
1301{
1302 int ret;
1303 struct proc_maps_private *priv;
1304
1305 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1306 if (!priv)
1307 return -ENOMEM;
1308
1309 ret = single_open(file, show_smaps_rollup, priv);
1310 if (ret)
1311 goto out_free;
1312
1313 priv->inode = inode;
1314 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1315 if (IS_ERR(priv->mm)) {
1316 ret = PTR_ERR(priv->mm);
1317
1318 single_release(inode, file);
1319 goto out_free;
1320 }
1321
1322 return 0;
1323
1324out_free:
1325 kfree(priv);
1326 return ret;
1327}
1328
1329static int smaps_rollup_release(struct inode *inode, struct file *file)
1330{
1331 struct seq_file *seq = file->private_data;
1332 struct proc_maps_private *priv = seq->private;
1333
1334 if (priv->mm)
1335 mmdrop(priv->mm);
1336
1337 kfree(priv);
1338 return single_release(inode, file);
1339}
1340
1341const struct file_operations proc_pid_smaps_operations = {
1342 .open = pid_smaps_open,
1343 .read = seq_read,
1344 .llseek = seq_lseek,
1345 .release = proc_map_release,
1346};
1347
1348const struct file_operations proc_pid_smaps_rollup_operations = {
1349 .open = smaps_rollup_open,
1350 .read = seq_read,
1351 .llseek = seq_lseek,
1352 .release = smaps_rollup_release,
1353};
1354
1355enum clear_refs_types {
1356 CLEAR_REFS_ALL = 1,
1357 CLEAR_REFS_ANON,
1358 CLEAR_REFS_MAPPED,
1359 CLEAR_REFS_SOFT_DIRTY,
1360 CLEAR_REFS_MM_HIWATER_RSS,
1361 CLEAR_REFS_LAST,
1362};
1363
1364struct clear_refs_private {
1365 enum clear_refs_types type;
1366};
1367
1368#ifdef CONFIG_MEM_SOFT_DIRTY
1369
1370static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1371{
1372 struct folio *folio;
1373
1374 if (!pte_write(pte))
1375 return false;
1376 if (!is_cow_mapping(vma->vm_flags))
1377 return false;
1378 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1379 return false;
1380 folio = vm_normal_folio(vma, addr, pte);
1381 if (!folio)
1382 return false;
1383 return folio_maybe_dma_pinned(folio);
1384}
1385
1386static inline void clear_soft_dirty(struct vm_area_struct *vma,
1387 unsigned long addr, pte_t *pte)
1388{
1389 /*
1390 * The soft-dirty tracker uses #PF-s to catch writes
1391 * to pages, so write-protect the pte as well. See the
1392 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1393 * of how soft-dirty works.
1394 */
1395 pte_t ptent = ptep_get(pte);
1396
1397 if (pte_present(ptent)) {
1398 pte_t old_pte;
1399
1400 if (pte_is_pinned(vma, addr, ptent))
1401 return;
1402 old_pte = ptep_modify_prot_start(vma, addr, pte);
1403 ptent = pte_wrprotect(old_pte);
1404 ptent = pte_clear_soft_dirty(ptent);
1405 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1406 } else if (is_swap_pte(ptent)) {
1407 ptent = pte_swp_clear_soft_dirty(ptent);
1408 set_pte_at(vma->vm_mm, addr, pte, ptent);
1409 }
1410}
1411#else
1412static inline void clear_soft_dirty(struct vm_area_struct *vma,
1413 unsigned long addr, pte_t *pte)
1414{
1415}
1416#endif
1417
1418#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1419static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1420 unsigned long addr, pmd_t *pmdp)
1421{
1422 pmd_t old, pmd = *pmdp;
1423
1424 if (pmd_present(pmd)) {
1425 /* See comment in change_huge_pmd() */
1426 old = pmdp_invalidate(vma, addr, pmdp);
1427 if (pmd_dirty(old))
1428 pmd = pmd_mkdirty(pmd);
1429 if (pmd_young(old))
1430 pmd = pmd_mkyoung(pmd);
1431
1432 pmd = pmd_wrprotect(pmd);
1433 pmd = pmd_clear_soft_dirty(pmd);
1434
1435 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1436 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1437 pmd = pmd_swp_clear_soft_dirty(pmd);
1438 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1439 }
1440}
1441#else
1442static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1443 unsigned long addr, pmd_t *pmdp)
1444{
1445}
1446#endif
1447
1448static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1449 unsigned long end, struct mm_walk *walk)
1450{
1451 struct clear_refs_private *cp = walk->private;
1452 struct vm_area_struct *vma = walk->vma;
1453 pte_t *pte, ptent;
1454 spinlock_t *ptl;
1455 struct folio *folio;
1456
1457 ptl = pmd_trans_huge_lock(pmd, vma);
1458 if (ptl) {
1459 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1460 clear_soft_dirty_pmd(vma, addr, pmd);
1461 goto out;
1462 }
1463
1464 if (!pmd_present(*pmd))
1465 goto out;
1466
1467 folio = pmd_folio(*pmd);
1468
1469 /* Clear accessed and referenced bits. */
1470 pmdp_test_and_clear_young(vma, addr, pmd);
1471 folio_test_clear_young(folio);
1472 folio_clear_referenced(folio);
1473out:
1474 spin_unlock(ptl);
1475 return 0;
1476 }
1477
1478 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1479 if (!pte) {
1480 walk->action = ACTION_AGAIN;
1481 return 0;
1482 }
1483 for (; addr != end; pte++, addr += PAGE_SIZE) {
1484 ptent = ptep_get(pte);
1485
1486 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1487 clear_soft_dirty(vma, addr, pte);
1488 continue;
1489 }
1490
1491 if (!pte_present(ptent))
1492 continue;
1493
1494 folio = vm_normal_folio(vma, addr, ptent);
1495 if (!folio)
1496 continue;
1497
1498 /* Clear accessed and referenced bits. */
1499 ptep_test_and_clear_young(vma, addr, pte);
1500 folio_test_clear_young(folio);
1501 folio_clear_referenced(folio);
1502 }
1503 pte_unmap_unlock(pte - 1, ptl);
1504 cond_resched();
1505 return 0;
1506}
1507
1508static int clear_refs_test_walk(unsigned long start, unsigned long end,
1509 struct mm_walk *walk)
1510{
1511 struct clear_refs_private *cp = walk->private;
1512 struct vm_area_struct *vma = walk->vma;
1513
1514 if (vma->vm_flags & VM_PFNMAP)
1515 return 1;
1516
1517 /*
1518 * Writing 1 to /proc/pid/clear_refs affects all pages.
1519 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1520 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1521 * Writing 4 to /proc/pid/clear_refs affects all pages.
1522 */
1523 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1524 return 1;
1525 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1526 return 1;
1527 return 0;
1528}
1529
1530static const struct mm_walk_ops clear_refs_walk_ops = {
1531 .pmd_entry = clear_refs_pte_range,
1532 .test_walk = clear_refs_test_walk,
1533 .walk_lock = PGWALK_WRLOCK,
1534};
1535
1536static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1537 size_t count, loff_t *ppos)
1538{
1539 struct task_struct *task;
1540 char buffer[PROC_NUMBUF] = {};
1541 struct mm_struct *mm;
1542 struct vm_area_struct *vma;
1543 enum clear_refs_types type;
1544 int itype;
1545 int rv;
1546
1547 if (count > sizeof(buffer) - 1)
1548 count = sizeof(buffer) - 1;
1549 if (copy_from_user(buffer, buf, count))
1550 return -EFAULT;
1551 rv = kstrtoint(strstrip(buffer), 10, &itype);
1552 if (rv < 0)
1553 return rv;
1554 type = (enum clear_refs_types)itype;
1555 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1556 return -EINVAL;
1557
1558 task = get_proc_task(file_inode(file));
1559 if (!task)
1560 return -ESRCH;
1561 mm = get_task_mm(task);
1562 if (mm) {
1563 VMA_ITERATOR(vmi, mm, 0);
1564 struct mmu_notifier_range range;
1565 struct clear_refs_private cp = {
1566 .type = type,
1567 };
1568
1569 if (mmap_write_lock_killable(mm)) {
1570 count = -EINTR;
1571 goto out_mm;
1572 }
1573 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1574 /*
1575 * Writing 5 to /proc/pid/clear_refs resets the peak
1576 * resident set size to this mm's current rss value.
1577 */
1578 reset_mm_hiwater_rss(mm);
1579 goto out_unlock;
1580 }
1581
1582 if (type == CLEAR_REFS_SOFT_DIRTY) {
1583 for_each_vma(vmi, vma) {
1584 if (!(vma->vm_flags & VM_SOFTDIRTY))
1585 continue;
1586 vm_flags_clear(vma, VM_SOFTDIRTY);
1587 vma_set_page_prot(vma);
1588 }
1589
1590 inc_tlb_flush_pending(mm);
1591 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1592 0, mm, 0, -1UL);
1593 mmu_notifier_invalidate_range_start(&range);
1594 }
1595 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1596 if (type == CLEAR_REFS_SOFT_DIRTY) {
1597 mmu_notifier_invalidate_range_end(&range);
1598 flush_tlb_mm(mm);
1599 dec_tlb_flush_pending(mm);
1600 }
1601out_unlock:
1602 mmap_write_unlock(mm);
1603out_mm:
1604 mmput(mm);
1605 }
1606 put_task_struct(task);
1607
1608 return count;
1609}
1610
1611const struct file_operations proc_clear_refs_operations = {
1612 .write = clear_refs_write,
1613 .llseek = noop_llseek,
1614};
1615
1616typedef struct {
1617 u64 pme;
1618} pagemap_entry_t;
1619
1620struct pagemapread {
1621 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1622 pagemap_entry_t *buffer;
1623 bool show_pfn;
1624};
1625
1626#define PAGEMAP_WALK_SIZE (PMD_SIZE)
1627#define PAGEMAP_WALK_MASK (PMD_MASK)
1628
1629#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1630#define PM_PFRAME_BITS 55
1631#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1632#define PM_SOFT_DIRTY BIT_ULL(55)
1633#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1634#define PM_UFFD_WP BIT_ULL(57)
1635#define PM_FILE BIT_ULL(61)
1636#define PM_SWAP BIT_ULL(62)
1637#define PM_PRESENT BIT_ULL(63)
1638
1639#define PM_END_OF_BUFFER 1
1640
1641static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1642{
1643 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1644}
1645
1646static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1647{
1648 pm->buffer[pm->pos++] = *pme;
1649 if (pm->pos >= pm->len)
1650 return PM_END_OF_BUFFER;
1651 return 0;
1652}
1653
1654static int pagemap_pte_hole(unsigned long start, unsigned long end,
1655 __always_unused int depth, struct mm_walk *walk)
1656{
1657 struct pagemapread *pm = walk->private;
1658 unsigned long addr = start;
1659 int err = 0;
1660
1661 while (addr < end) {
1662 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1663 pagemap_entry_t pme = make_pme(0, 0);
1664 /* End of address space hole, which we mark as non-present. */
1665 unsigned long hole_end;
1666
1667 if (vma)
1668 hole_end = min(end, vma->vm_start);
1669 else
1670 hole_end = end;
1671
1672 for (; addr < hole_end; addr += PAGE_SIZE) {
1673 err = add_to_pagemap(&pme, pm);
1674 if (err)
1675 goto out;
1676 }
1677
1678 if (!vma)
1679 break;
1680
1681 /* Addresses in the VMA. */
1682 if (vma->vm_flags & VM_SOFTDIRTY)
1683 pme = make_pme(0, PM_SOFT_DIRTY);
1684 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1685 err = add_to_pagemap(&pme, pm);
1686 if (err)
1687 goto out;
1688 }
1689 }
1690out:
1691 return err;
1692}
1693
1694static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1695 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1696{
1697 u64 frame = 0, flags = 0;
1698 struct page *page = NULL;
1699 struct folio *folio;
1700
1701 if (pte_present(pte)) {
1702 if (pm->show_pfn)
1703 frame = pte_pfn(pte);
1704 flags |= PM_PRESENT;
1705 page = vm_normal_page(vma, addr, pte);
1706 if (pte_soft_dirty(pte))
1707 flags |= PM_SOFT_DIRTY;
1708 if (pte_uffd_wp(pte))
1709 flags |= PM_UFFD_WP;
1710 } else if (is_swap_pte(pte)) {
1711 swp_entry_t entry;
1712 if (pte_swp_soft_dirty(pte))
1713 flags |= PM_SOFT_DIRTY;
1714 if (pte_swp_uffd_wp(pte))
1715 flags |= PM_UFFD_WP;
1716 entry = pte_to_swp_entry(pte);
1717 if (pm->show_pfn) {
1718 pgoff_t offset;
1719 /*
1720 * For PFN swap offsets, keeping the offset field
1721 * to be PFN only to be compatible with old smaps.
1722 */
1723 if (is_pfn_swap_entry(entry))
1724 offset = swp_offset_pfn(entry);
1725 else
1726 offset = swp_offset(entry);
1727 frame = swp_type(entry) |
1728 (offset << MAX_SWAPFILES_SHIFT);
1729 }
1730 flags |= PM_SWAP;
1731 if (is_pfn_swap_entry(entry))
1732 page = pfn_swap_entry_to_page(entry);
1733 if (pte_marker_entry_uffd_wp(entry))
1734 flags |= PM_UFFD_WP;
1735 }
1736
1737 if (page) {
1738 folio = page_folio(page);
1739 if (!folio_test_anon(folio))
1740 flags |= PM_FILE;
1741 if ((flags & PM_PRESENT) &&
1742 folio_precise_page_mapcount(folio, page) == 1)
1743 flags |= PM_MMAP_EXCLUSIVE;
1744 }
1745 if (vma->vm_flags & VM_SOFTDIRTY)
1746 flags |= PM_SOFT_DIRTY;
1747
1748 return make_pme(frame, flags);
1749}
1750
1751static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1752 struct mm_walk *walk)
1753{
1754 struct vm_area_struct *vma = walk->vma;
1755 struct pagemapread *pm = walk->private;
1756 spinlock_t *ptl;
1757 pte_t *pte, *orig_pte;
1758 int err = 0;
1759#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1760
1761 ptl = pmd_trans_huge_lock(pmdp, vma);
1762 if (ptl) {
1763 unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT;
1764 u64 flags = 0, frame = 0;
1765 pmd_t pmd = *pmdp;
1766 struct page *page = NULL;
1767 struct folio *folio = NULL;
1768
1769 if (vma->vm_flags & VM_SOFTDIRTY)
1770 flags |= PM_SOFT_DIRTY;
1771
1772 if (pmd_present(pmd)) {
1773 page = pmd_page(pmd);
1774
1775 flags |= PM_PRESENT;
1776 if (pmd_soft_dirty(pmd))
1777 flags |= PM_SOFT_DIRTY;
1778 if (pmd_uffd_wp(pmd))
1779 flags |= PM_UFFD_WP;
1780 if (pm->show_pfn)
1781 frame = pmd_pfn(pmd) + idx;
1782 }
1783#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1784 else if (is_swap_pmd(pmd)) {
1785 swp_entry_t entry = pmd_to_swp_entry(pmd);
1786 unsigned long offset;
1787
1788 if (pm->show_pfn) {
1789 if (is_pfn_swap_entry(entry))
1790 offset = swp_offset_pfn(entry) + idx;
1791 else
1792 offset = swp_offset(entry) + idx;
1793 frame = swp_type(entry) |
1794 (offset << MAX_SWAPFILES_SHIFT);
1795 }
1796 flags |= PM_SWAP;
1797 if (pmd_swp_soft_dirty(pmd))
1798 flags |= PM_SOFT_DIRTY;
1799 if (pmd_swp_uffd_wp(pmd))
1800 flags |= PM_UFFD_WP;
1801 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1802 page = pfn_swap_entry_to_page(entry);
1803 }
1804#endif
1805
1806 if (page) {
1807 folio = page_folio(page);
1808 if (!folio_test_anon(folio))
1809 flags |= PM_FILE;
1810 }
1811
1812 for (; addr != end; addr += PAGE_SIZE, idx++) {
1813 u64 cur_flags = flags;
1814 pagemap_entry_t pme;
1815
1816 if (folio && (flags & PM_PRESENT) &&
1817 folio_precise_page_mapcount(folio, page + idx) == 1)
1818 cur_flags |= PM_MMAP_EXCLUSIVE;
1819
1820 pme = make_pme(frame, cur_flags);
1821 err = add_to_pagemap(&pme, pm);
1822 if (err)
1823 break;
1824 if (pm->show_pfn) {
1825 if (flags & PM_PRESENT)
1826 frame++;
1827 else if (flags & PM_SWAP)
1828 frame += (1 << MAX_SWAPFILES_SHIFT);
1829 }
1830 }
1831 spin_unlock(ptl);
1832 return err;
1833 }
1834#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1835
1836 /*
1837 * We can assume that @vma always points to a valid one and @end never
1838 * goes beyond vma->vm_end.
1839 */
1840 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1841 if (!pte) {
1842 walk->action = ACTION_AGAIN;
1843 return err;
1844 }
1845 for (; addr < end; pte++, addr += PAGE_SIZE) {
1846 pagemap_entry_t pme;
1847
1848 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1849 err = add_to_pagemap(&pme, pm);
1850 if (err)
1851 break;
1852 }
1853 pte_unmap_unlock(orig_pte, ptl);
1854
1855 cond_resched();
1856
1857 return err;
1858}
1859
1860#ifdef CONFIG_HUGETLB_PAGE
1861/* This function walks within one hugetlb entry in the single call */
1862static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1863 unsigned long addr, unsigned long end,
1864 struct mm_walk *walk)
1865{
1866 struct pagemapread *pm = walk->private;
1867 struct vm_area_struct *vma = walk->vma;
1868 u64 flags = 0, frame = 0;
1869 int err = 0;
1870 pte_t pte;
1871
1872 if (vma->vm_flags & VM_SOFTDIRTY)
1873 flags |= PM_SOFT_DIRTY;
1874
1875 pte = huge_ptep_get(walk->mm, addr, ptep);
1876 if (pte_present(pte)) {
1877 struct folio *folio = page_folio(pte_page(pte));
1878
1879 if (!folio_test_anon(folio))
1880 flags |= PM_FILE;
1881
1882 if (!folio_likely_mapped_shared(folio) &&
1883 !hugetlb_pmd_shared(ptep))
1884 flags |= PM_MMAP_EXCLUSIVE;
1885
1886 if (huge_pte_uffd_wp(pte))
1887 flags |= PM_UFFD_WP;
1888
1889 flags |= PM_PRESENT;
1890 if (pm->show_pfn)
1891 frame = pte_pfn(pte) +
1892 ((addr & ~hmask) >> PAGE_SHIFT);
1893 } else if (pte_swp_uffd_wp_any(pte)) {
1894 flags |= PM_UFFD_WP;
1895 }
1896
1897 for (; addr != end; addr += PAGE_SIZE) {
1898 pagemap_entry_t pme = make_pme(frame, flags);
1899
1900 err = add_to_pagemap(&pme, pm);
1901 if (err)
1902 return err;
1903 if (pm->show_pfn && (flags & PM_PRESENT))
1904 frame++;
1905 }
1906
1907 cond_resched();
1908
1909 return err;
1910}
1911#else
1912#define pagemap_hugetlb_range NULL
1913#endif /* HUGETLB_PAGE */
1914
1915static const struct mm_walk_ops pagemap_ops = {
1916 .pmd_entry = pagemap_pmd_range,
1917 .pte_hole = pagemap_pte_hole,
1918 .hugetlb_entry = pagemap_hugetlb_range,
1919 .walk_lock = PGWALK_RDLOCK,
1920};
1921
1922/*
1923 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1924 *
1925 * For each page in the address space, this file contains one 64-bit entry
1926 * consisting of the following:
1927 *
1928 * Bits 0-54 page frame number (PFN) if present
1929 * Bits 0-4 swap type if swapped
1930 * Bits 5-54 swap offset if swapped
1931 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1932 * Bit 56 page exclusively mapped
1933 * Bit 57 pte is uffd-wp write-protected
1934 * Bits 58-60 zero
1935 * Bit 61 page is file-page or shared-anon
1936 * Bit 62 page swapped
1937 * Bit 63 page present
1938 *
1939 * If the page is not present but in swap, then the PFN contains an
1940 * encoding of the swap file number and the page's offset into the
1941 * swap. Unmapped pages return a null PFN. This allows determining
1942 * precisely which pages are mapped (or in swap) and comparing mapped
1943 * pages between processes.
1944 *
1945 * Efficient users of this interface will use /proc/pid/maps to
1946 * determine which areas of memory are actually mapped and llseek to
1947 * skip over unmapped regions.
1948 */
1949static ssize_t pagemap_read(struct file *file, char __user *buf,
1950 size_t count, loff_t *ppos)
1951{
1952 struct mm_struct *mm = file->private_data;
1953 struct pagemapread pm;
1954 unsigned long src;
1955 unsigned long svpfn;
1956 unsigned long start_vaddr;
1957 unsigned long end_vaddr;
1958 int ret = 0, copied = 0;
1959
1960 if (!mm || !mmget_not_zero(mm))
1961 goto out;
1962
1963 ret = -EINVAL;
1964 /* file position must be aligned */
1965 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1966 goto out_mm;
1967
1968 ret = 0;
1969 if (!count)
1970 goto out_mm;
1971
1972 /* do not disclose physical addresses: attack vector */
1973 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1974
1975 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1976 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1977 ret = -ENOMEM;
1978 if (!pm.buffer)
1979 goto out_mm;
1980
1981 src = *ppos;
1982 svpfn = src / PM_ENTRY_BYTES;
1983 end_vaddr = mm->task_size;
1984
1985 /* watch out for wraparound */
1986 start_vaddr = end_vaddr;
1987 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1988 unsigned long end;
1989
1990 ret = mmap_read_lock_killable(mm);
1991 if (ret)
1992 goto out_free;
1993 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1994 mmap_read_unlock(mm);
1995
1996 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1997 if (end >= start_vaddr && end < mm->task_size)
1998 end_vaddr = end;
1999 }
2000
2001 /* Ensure the address is inside the task */
2002 if (start_vaddr > mm->task_size)
2003 start_vaddr = end_vaddr;
2004
2005 ret = 0;
2006 while (count && (start_vaddr < end_vaddr)) {
2007 int len;
2008 unsigned long end;
2009
2010 pm.pos = 0;
2011 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
2012 /* overflow ? */
2013 if (end < start_vaddr || end > end_vaddr)
2014 end = end_vaddr;
2015 ret = mmap_read_lock_killable(mm);
2016 if (ret)
2017 goto out_free;
2018 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
2019 mmap_read_unlock(mm);
2020 start_vaddr = end;
2021
2022 len = min(count, PM_ENTRY_BYTES * pm.pos);
2023 if (copy_to_user(buf, pm.buffer, len)) {
2024 ret = -EFAULT;
2025 goto out_free;
2026 }
2027 copied += len;
2028 buf += len;
2029 count -= len;
2030 }
2031 *ppos += copied;
2032 if (!ret || ret == PM_END_OF_BUFFER)
2033 ret = copied;
2034
2035out_free:
2036 kfree(pm.buffer);
2037out_mm:
2038 mmput(mm);
2039out:
2040 return ret;
2041}
2042
2043static int pagemap_open(struct inode *inode, struct file *file)
2044{
2045 struct mm_struct *mm;
2046
2047 mm = proc_mem_open(inode, PTRACE_MODE_READ);
2048 if (IS_ERR(mm))
2049 return PTR_ERR(mm);
2050 file->private_data = mm;
2051 return 0;
2052}
2053
2054static int pagemap_release(struct inode *inode, struct file *file)
2055{
2056 struct mm_struct *mm = file->private_data;
2057
2058 if (mm)
2059 mmdrop(mm);
2060 return 0;
2061}
2062
2063#define PM_SCAN_CATEGORIES (PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN | \
2064 PAGE_IS_FILE | PAGE_IS_PRESENT | \
2065 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO | \
2066 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY)
2067#define PM_SCAN_FLAGS (PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
2068
2069struct pagemap_scan_private {
2070 struct pm_scan_arg arg;
2071 unsigned long masks_of_interest, cur_vma_category;
2072 struct page_region *vec_buf;
2073 unsigned long vec_buf_len, vec_buf_index, found_pages;
2074 struct page_region __user *vec_out;
2075};
2076
2077static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
2078 struct vm_area_struct *vma,
2079 unsigned long addr, pte_t pte)
2080{
2081 unsigned long categories = 0;
2082
2083 if (pte_present(pte)) {
2084 struct page *page;
2085
2086 categories |= PAGE_IS_PRESENT;
2087 if (!pte_uffd_wp(pte))
2088 categories |= PAGE_IS_WRITTEN;
2089
2090 if (p->masks_of_interest & PAGE_IS_FILE) {
2091 page = vm_normal_page(vma, addr, pte);
2092 if (page && !PageAnon(page))
2093 categories |= PAGE_IS_FILE;
2094 }
2095
2096 if (is_zero_pfn(pte_pfn(pte)))
2097 categories |= PAGE_IS_PFNZERO;
2098 if (pte_soft_dirty(pte))
2099 categories |= PAGE_IS_SOFT_DIRTY;
2100 } else if (is_swap_pte(pte)) {
2101 swp_entry_t swp;
2102
2103 categories |= PAGE_IS_SWAPPED;
2104 if (!pte_swp_uffd_wp_any(pte))
2105 categories |= PAGE_IS_WRITTEN;
2106
2107 if (p->masks_of_interest & PAGE_IS_FILE) {
2108 swp = pte_to_swp_entry(pte);
2109 if (is_pfn_swap_entry(swp) &&
2110 !folio_test_anon(pfn_swap_entry_folio(swp)))
2111 categories |= PAGE_IS_FILE;
2112 }
2113 if (pte_swp_soft_dirty(pte))
2114 categories |= PAGE_IS_SOFT_DIRTY;
2115 }
2116
2117 return categories;
2118}
2119
2120static void make_uffd_wp_pte(struct vm_area_struct *vma,
2121 unsigned long addr, pte_t *pte, pte_t ptent)
2122{
2123 if (pte_present(ptent)) {
2124 pte_t old_pte;
2125
2126 old_pte = ptep_modify_prot_start(vma, addr, pte);
2127 ptent = pte_mkuffd_wp(old_pte);
2128 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
2129 } else if (is_swap_pte(ptent)) {
2130 ptent = pte_swp_mkuffd_wp(ptent);
2131 set_pte_at(vma->vm_mm, addr, pte, ptent);
2132 } else {
2133 set_pte_at(vma->vm_mm, addr, pte,
2134 make_pte_marker(PTE_MARKER_UFFD_WP));
2135 }
2136}
2137
2138#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2139static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
2140 struct vm_area_struct *vma,
2141 unsigned long addr, pmd_t pmd)
2142{
2143 unsigned long categories = PAGE_IS_HUGE;
2144
2145 if (pmd_present(pmd)) {
2146 struct page *page;
2147
2148 categories |= PAGE_IS_PRESENT;
2149 if (!pmd_uffd_wp(pmd))
2150 categories |= PAGE_IS_WRITTEN;
2151
2152 if (p->masks_of_interest & PAGE_IS_FILE) {
2153 page = vm_normal_page_pmd(vma, addr, pmd);
2154 if (page && !PageAnon(page))
2155 categories |= PAGE_IS_FILE;
2156 }
2157
2158 if (is_zero_pfn(pmd_pfn(pmd)))
2159 categories |= PAGE_IS_PFNZERO;
2160 if (pmd_soft_dirty(pmd))
2161 categories |= PAGE_IS_SOFT_DIRTY;
2162 } else if (is_swap_pmd(pmd)) {
2163 swp_entry_t swp;
2164
2165 categories |= PAGE_IS_SWAPPED;
2166 if (!pmd_swp_uffd_wp(pmd))
2167 categories |= PAGE_IS_WRITTEN;
2168 if (pmd_swp_soft_dirty(pmd))
2169 categories |= PAGE_IS_SOFT_DIRTY;
2170
2171 if (p->masks_of_interest & PAGE_IS_FILE) {
2172 swp = pmd_to_swp_entry(pmd);
2173 if (is_pfn_swap_entry(swp) &&
2174 !folio_test_anon(pfn_swap_entry_folio(swp)))
2175 categories |= PAGE_IS_FILE;
2176 }
2177 }
2178
2179 return categories;
2180}
2181
2182static void make_uffd_wp_pmd(struct vm_area_struct *vma,
2183 unsigned long addr, pmd_t *pmdp)
2184{
2185 pmd_t old, pmd = *pmdp;
2186
2187 if (pmd_present(pmd)) {
2188 old = pmdp_invalidate_ad(vma, addr, pmdp);
2189 pmd = pmd_mkuffd_wp(old);
2190 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2191 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
2192 pmd = pmd_swp_mkuffd_wp(pmd);
2193 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2194 }
2195}
2196#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2197
2198#ifdef CONFIG_HUGETLB_PAGE
2199static unsigned long pagemap_hugetlb_category(pte_t pte)
2200{
2201 unsigned long categories = PAGE_IS_HUGE;
2202
2203 /*
2204 * According to pagemap_hugetlb_range(), file-backed HugeTLB
2205 * page cannot be swapped. So PAGE_IS_FILE is not checked for
2206 * swapped pages.
2207 */
2208 if (pte_present(pte)) {
2209 categories |= PAGE_IS_PRESENT;
2210 if (!huge_pte_uffd_wp(pte))
2211 categories |= PAGE_IS_WRITTEN;
2212 if (!PageAnon(pte_page(pte)))
2213 categories |= PAGE_IS_FILE;
2214 if (is_zero_pfn(pte_pfn(pte)))
2215 categories |= PAGE_IS_PFNZERO;
2216 if (pte_soft_dirty(pte))
2217 categories |= PAGE_IS_SOFT_DIRTY;
2218 } else if (is_swap_pte(pte)) {
2219 categories |= PAGE_IS_SWAPPED;
2220 if (!pte_swp_uffd_wp_any(pte))
2221 categories |= PAGE_IS_WRITTEN;
2222 if (pte_swp_soft_dirty(pte))
2223 categories |= PAGE_IS_SOFT_DIRTY;
2224 }
2225
2226 return categories;
2227}
2228
2229static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
2230 unsigned long addr, pte_t *ptep,
2231 pte_t ptent)
2232{
2233 unsigned long psize;
2234
2235 if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
2236 return;
2237
2238 psize = huge_page_size(hstate_vma(vma));
2239
2240 if (is_hugetlb_entry_migration(ptent))
2241 set_huge_pte_at(vma->vm_mm, addr, ptep,
2242 pte_swp_mkuffd_wp(ptent), psize);
2243 else if (!huge_pte_none(ptent))
2244 huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
2245 huge_pte_mkuffd_wp(ptent));
2246 else
2247 set_huge_pte_at(vma->vm_mm, addr, ptep,
2248 make_pte_marker(PTE_MARKER_UFFD_WP), psize);
2249}
2250#endif /* CONFIG_HUGETLB_PAGE */
2251
2252#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
2253static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
2254 unsigned long addr, unsigned long end)
2255{
2256 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2257
2258 if (cur_buf->start != addr)
2259 cur_buf->end = addr;
2260 else
2261 cur_buf->start = cur_buf->end = 0;
2262
2263 p->found_pages -= (end - addr) / PAGE_SIZE;
2264}
2265#endif
2266
2267static bool pagemap_scan_is_interesting_page(unsigned long categories,
2268 const struct pagemap_scan_private *p)
2269{
2270 categories ^= p->arg.category_inverted;
2271 if ((categories & p->arg.category_mask) != p->arg.category_mask)
2272 return false;
2273 if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
2274 return false;
2275
2276 return true;
2277}
2278
2279static bool pagemap_scan_is_interesting_vma(unsigned long categories,
2280 const struct pagemap_scan_private *p)
2281{
2282 unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
2283
2284 categories ^= p->arg.category_inverted;
2285 if ((categories & required) != required)
2286 return false;
2287
2288 return true;
2289}
2290
2291static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
2292 struct mm_walk *walk)
2293{
2294 struct pagemap_scan_private *p = walk->private;
2295 struct vm_area_struct *vma = walk->vma;
2296 unsigned long vma_category = 0;
2297 bool wp_allowed = userfaultfd_wp_async(vma) &&
2298 userfaultfd_wp_use_markers(vma);
2299
2300 if (!wp_allowed) {
2301 /* User requested explicit failure over wp-async capability */
2302 if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2303 return -EPERM;
2304 /*
2305 * User requires wr-protect, and allows silently skipping
2306 * unsupported vmas.
2307 */
2308 if (p->arg.flags & PM_SCAN_WP_MATCHING)
2309 return 1;
2310 /*
2311 * Then the request doesn't involve wr-protects at all,
2312 * fall through to the rest checks, and allow vma walk.
2313 */
2314 }
2315
2316 if (vma->vm_flags & VM_PFNMAP)
2317 return 1;
2318
2319 if (wp_allowed)
2320 vma_category |= PAGE_IS_WPALLOWED;
2321
2322 if (vma->vm_flags & VM_SOFTDIRTY)
2323 vma_category |= PAGE_IS_SOFT_DIRTY;
2324
2325 if (!pagemap_scan_is_interesting_vma(vma_category, p))
2326 return 1;
2327
2328 p->cur_vma_category = vma_category;
2329
2330 return 0;
2331}
2332
2333static bool pagemap_scan_push_range(unsigned long categories,
2334 struct pagemap_scan_private *p,
2335 unsigned long addr, unsigned long end)
2336{
2337 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2338
2339 /*
2340 * When there is no output buffer provided at all, the sentinel values
2341 * won't match here. There is no other way for `cur_buf->end` to be
2342 * non-zero other than it being non-empty.
2343 */
2344 if (addr == cur_buf->end && categories == cur_buf->categories) {
2345 cur_buf->end = end;
2346 return true;
2347 }
2348
2349 if (cur_buf->end) {
2350 if (p->vec_buf_index >= p->vec_buf_len - 1)
2351 return false;
2352
2353 cur_buf = &p->vec_buf[++p->vec_buf_index];
2354 }
2355
2356 cur_buf->start = addr;
2357 cur_buf->end = end;
2358 cur_buf->categories = categories;
2359
2360 return true;
2361}
2362
2363static int pagemap_scan_output(unsigned long categories,
2364 struct pagemap_scan_private *p,
2365 unsigned long addr, unsigned long *end)
2366{
2367 unsigned long n_pages, total_pages;
2368 int ret = 0;
2369
2370 if (!p->vec_buf)
2371 return 0;
2372
2373 categories &= p->arg.return_mask;
2374
2375 n_pages = (*end - addr) / PAGE_SIZE;
2376 if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2377 total_pages > p->arg.max_pages) {
2378 size_t n_too_much = total_pages - p->arg.max_pages;
2379 *end -= n_too_much * PAGE_SIZE;
2380 n_pages -= n_too_much;
2381 ret = -ENOSPC;
2382 }
2383
2384 if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2385 *end = addr;
2386 n_pages = 0;
2387 ret = -ENOSPC;
2388 }
2389
2390 p->found_pages += n_pages;
2391 if (ret)
2392 p->arg.walk_end = *end;
2393
2394 return ret;
2395}
2396
2397static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2398 unsigned long end, struct mm_walk *walk)
2399{
2400#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2401 struct pagemap_scan_private *p = walk->private;
2402 struct vm_area_struct *vma = walk->vma;
2403 unsigned long categories;
2404 spinlock_t *ptl;
2405 int ret = 0;
2406
2407 ptl = pmd_trans_huge_lock(pmd, vma);
2408 if (!ptl)
2409 return -ENOENT;
2410
2411 categories = p->cur_vma_category |
2412 pagemap_thp_category(p, vma, start, *pmd);
2413
2414 if (!pagemap_scan_is_interesting_page(categories, p))
2415 goto out_unlock;
2416
2417 ret = pagemap_scan_output(categories, p, start, &end);
2418 if (start == end)
2419 goto out_unlock;
2420
2421 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2422 goto out_unlock;
2423 if (~categories & PAGE_IS_WRITTEN)
2424 goto out_unlock;
2425
2426 /*
2427 * Break huge page into small pages if the WP operation
2428 * needs to be performed on a portion of the huge page.
2429 */
2430 if (end != start + HPAGE_SIZE) {
2431 spin_unlock(ptl);
2432 split_huge_pmd(vma, pmd, start);
2433 pagemap_scan_backout_range(p, start, end);
2434 /* Report as if there was no THP */
2435 return -ENOENT;
2436 }
2437
2438 make_uffd_wp_pmd(vma, start, pmd);
2439 flush_tlb_range(vma, start, end);
2440out_unlock:
2441 spin_unlock(ptl);
2442 return ret;
2443#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2444 return -ENOENT;
2445#endif
2446}
2447
2448static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2449 unsigned long end, struct mm_walk *walk)
2450{
2451 struct pagemap_scan_private *p = walk->private;
2452 struct vm_area_struct *vma = walk->vma;
2453 unsigned long addr, flush_end = 0;
2454 pte_t *pte, *start_pte;
2455 spinlock_t *ptl;
2456 int ret;
2457
2458 arch_enter_lazy_mmu_mode();
2459
2460 ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2461 if (ret != -ENOENT) {
2462 arch_leave_lazy_mmu_mode();
2463 return ret;
2464 }
2465
2466 ret = 0;
2467 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2468 if (!pte) {
2469 arch_leave_lazy_mmu_mode();
2470 walk->action = ACTION_AGAIN;
2471 return 0;
2472 }
2473
2474 if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2475 /* Fast path for performing exclusive WP */
2476 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2477 pte_t ptent = ptep_get(pte);
2478
2479 if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2480 pte_swp_uffd_wp_any(ptent))
2481 continue;
2482 make_uffd_wp_pte(vma, addr, pte, ptent);
2483 if (!flush_end)
2484 start = addr;
2485 flush_end = addr + PAGE_SIZE;
2486 }
2487 goto flush_and_return;
2488 }
2489
2490 if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2491 p->arg.category_mask == PAGE_IS_WRITTEN &&
2492 p->arg.return_mask == PAGE_IS_WRITTEN) {
2493 for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2494 unsigned long next = addr + PAGE_SIZE;
2495 pte_t ptent = ptep_get(pte);
2496
2497 if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2498 pte_swp_uffd_wp_any(ptent))
2499 continue;
2500 ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2501 p, addr, &next);
2502 if (next == addr)
2503 break;
2504 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2505 continue;
2506 make_uffd_wp_pte(vma, addr, pte, ptent);
2507 if (!flush_end)
2508 start = addr;
2509 flush_end = next;
2510 }
2511 goto flush_and_return;
2512 }
2513
2514 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2515 pte_t ptent = ptep_get(pte);
2516 unsigned long categories = p->cur_vma_category |
2517 pagemap_page_category(p, vma, addr, ptent);
2518 unsigned long next = addr + PAGE_SIZE;
2519
2520 if (!pagemap_scan_is_interesting_page(categories, p))
2521 continue;
2522
2523 ret = pagemap_scan_output(categories, p, addr, &next);
2524 if (next == addr)
2525 break;
2526
2527 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2528 continue;
2529 if (~categories & PAGE_IS_WRITTEN)
2530 continue;
2531
2532 make_uffd_wp_pte(vma, addr, pte, ptent);
2533 if (!flush_end)
2534 start = addr;
2535 flush_end = next;
2536 }
2537
2538flush_and_return:
2539 if (flush_end)
2540 flush_tlb_range(vma, start, addr);
2541
2542 pte_unmap_unlock(start_pte, ptl);
2543 arch_leave_lazy_mmu_mode();
2544
2545 cond_resched();
2546 return ret;
2547}
2548
2549#ifdef CONFIG_HUGETLB_PAGE
2550static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2551 unsigned long start, unsigned long end,
2552 struct mm_walk *walk)
2553{
2554 struct pagemap_scan_private *p = walk->private;
2555 struct vm_area_struct *vma = walk->vma;
2556 unsigned long categories;
2557 spinlock_t *ptl;
2558 int ret = 0;
2559 pte_t pte;
2560
2561 if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2562 /* Go the short route when not write-protecting pages. */
2563
2564 pte = huge_ptep_get(walk->mm, start, ptep);
2565 categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2566
2567 if (!pagemap_scan_is_interesting_page(categories, p))
2568 return 0;
2569
2570 return pagemap_scan_output(categories, p, start, &end);
2571 }
2572
2573 i_mmap_lock_write(vma->vm_file->f_mapping);
2574 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2575
2576 pte = huge_ptep_get(walk->mm, start, ptep);
2577 categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2578
2579 if (!pagemap_scan_is_interesting_page(categories, p))
2580 goto out_unlock;
2581
2582 ret = pagemap_scan_output(categories, p, start, &end);
2583 if (start == end)
2584 goto out_unlock;
2585
2586 if (~categories & PAGE_IS_WRITTEN)
2587 goto out_unlock;
2588
2589 if (end != start + HPAGE_SIZE) {
2590 /* Partial HugeTLB page WP isn't possible. */
2591 pagemap_scan_backout_range(p, start, end);
2592 p->arg.walk_end = start;
2593 ret = 0;
2594 goto out_unlock;
2595 }
2596
2597 make_uffd_wp_huge_pte(vma, start, ptep, pte);
2598 flush_hugetlb_tlb_range(vma, start, end);
2599
2600out_unlock:
2601 spin_unlock(ptl);
2602 i_mmap_unlock_write(vma->vm_file->f_mapping);
2603
2604 return ret;
2605}
2606#else
2607#define pagemap_scan_hugetlb_entry NULL
2608#endif
2609
2610static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2611 int depth, struct mm_walk *walk)
2612{
2613 struct pagemap_scan_private *p = walk->private;
2614 struct vm_area_struct *vma = walk->vma;
2615 int ret, err;
2616
2617 if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2618 return 0;
2619
2620 ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2621 if (addr == end)
2622 return ret;
2623
2624 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2625 return ret;
2626
2627 err = uffd_wp_range(vma, addr, end - addr, true);
2628 if (err < 0)
2629 ret = err;
2630
2631 return ret;
2632}
2633
2634static const struct mm_walk_ops pagemap_scan_ops = {
2635 .test_walk = pagemap_scan_test_walk,
2636 .pmd_entry = pagemap_scan_pmd_entry,
2637 .pte_hole = pagemap_scan_pte_hole,
2638 .hugetlb_entry = pagemap_scan_hugetlb_entry,
2639};
2640
2641static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2642 unsigned long uarg)
2643{
2644 if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2645 return -EFAULT;
2646
2647 if (arg->size != sizeof(struct pm_scan_arg))
2648 return -EINVAL;
2649
2650 /* Validate requested features */
2651 if (arg->flags & ~PM_SCAN_FLAGS)
2652 return -EINVAL;
2653 if ((arg->category_inverted | arg->category_mask |
2654 arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2655 return -EINVAL;
2656
2657 arg->start = untagged_addr((unsigned long)arg->start);
2658 arg->end = untagged_addr((unsigned long)arg->end);
2659 arg->vec = untagged_addr((unsigned long)arg->vec);
2660
2661 /* Validate memory pointers */
2662 if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2663 return -EINVAL;
2664 if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2665 return -EFAULT;
2666 if (!arg->vec && arg->vec_len)
2667 return -EINVAL;
2668 if (UINT_MAX == SIZE_MAX && arg->vec_len > SIZE_MAX)
2669 return -EINVAL;
2670 if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2671 size_mul(arg->vec_len, sizeof(struct page_region))))
2672 return -EFAULT;
2673
2674 /* Fixup default values */
2675 arg->end = ALIGN(arg->end, PAGE_SIZE);
2676 arg->walk_end = 0;
2677 if (!arg->max_pages)
2678 arg->max_pages = ULONG_MAX;
2679
2680 return 0;
2681}
2682
2683static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2684 unsigned long uargl)
2685{
2686 struct pm_scan_arg __user *uarg = (void __user *)uargl;
2687
2688 if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2689 return -EFAULT;
2690
2691 return 0;
2692}
2693
2694static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2695{
2696 if (!p->arg.vec_len)
2697 return 0;
2698
2699 p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2700 p->arg.vec_len);
2701 p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2702 GFP_KERNEL);
2703 if (!p->vec_buf)
2704 return -ENOMEM;
2705
2706 p->vec_buf->start = p->vec_buf->end = 0;
2707 p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2708
2709 return 0;
2710}
2711
2712static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2713{
2714 const struct page_region *buf = p->vec_buf;
2715 long n = p->vec_buf_index;
2716
2717 if (!p->vec_buf)
2718 return 0;
2719
2720 if (buf[n].end != buf[n].start)
2721 n++;
2722
2723 if (!n)
2724 return 0;
2725
2726 if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2727 return -EFAULT;
2728
2729 p->arg.vec_len -= n;
2730 p->vec_out += n;
2731
2732 p->vec_buf_index = 0;
2733 p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2734 p->vec_buf->start = p->vec_buf->end = 0;
2735
2736 return n;
2737}
2738
2739static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2740{
2741 struct pagemap_scan_private p = {0};
2742 unsigned long walk_start;
2743 size_t n_ranges_out = 0;
2744 int ret;
2745
2746 ret = pagemap_scan_get_args(&p.arg, uarg);
2747 if (ret)
2748 return ret;
2749
2750 p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2751 p.arg.return_mask;
2752 ret = pagemap_scan_init_bounce_buffer(&p);
2753 if (ret)
2754 return ret;
2755
2756 for (walk_start = p.arg.start; walk_start < p.arg.end;
2757 walk_start = p.arg.walk_end) {
2758 struct mmu_notifier_range range;
2759 long n_out;
2760
2761 if (fatal_signal_pending(current)) {
2762 ret = -EINTR;
2763 break;
2764 }
2765
2766 ret = mmap_read_lock_killable(mm);
2767 if (ret)
2768 break;
2769
2770 /* Protection change for the range is going to happen. */
2771 if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2772 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2773 mm, walk_start, p.arg.end);
2774 mmu_notifier_invalidate_range_start(&range);
2775 }
2776
2777 ret = walk_page_range(mm, walk_start, p.arg.end,
2778 &pagemap_scan_ops, &p);
2779
2780 if (p.arg.flags & PM_SCAN_WP_MATCHING)
2781 mmu_notifier_invalidate_range_end(&range);
2782
2783 mmap_read_unlock(mm);
2784
2785 n_out = pagemap_scan_flush_buffer(&p);
2786 if (n_out < 0)
2787 ret = n_out;
2788 else
2789 n_ranges_out += n_out;
2790
2791 if (ret != -ENOSPC)
2792 break;
2793
2794 if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2795 break;
2796 }
2797
2798 /* ENOSPC signifies early stop (buffer full) from the walk. */
2799 if (!ret || ret == -ENOSPC)
2800 ret = n_ranges_out;
2801
2802 /* The walk_end isn't set when ret is zero */
2803 if (!p.arg.walk_end)
2804 p.arg.walk_end = p.arg.end;
2805 if (pagemap_scan_writeback_args(&p.arg, uarg))
2806 ret = -EFAULT;
2807
2808 kfree(p.vec_buf);
2809 return ret;
2810}
2811
2812static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2813 unsigned long arg)
2814{
2815 struct mm_struct *mm = file->private_data;
2816
2817 switch (cmd) {
2818 case PAGEMAP_SCAN:
2819 return do_pagemap_scan(mm, arg);
2820
2821 default:
2822 return -EINVAL;
2823 }
2824}
2825
2826const struct file_operations proc_pagemap_operations = {
2827 .llseek = mem_lseek, /* borrow this */
2828 .read = pagemap_read,
2829 .open = pagemap_open,
2830 .release = pagemap_release,
2831 .unlocked_ioctl = do_pagemap_cmd,
2832 .compat_ioctl = do_pagemap_cmd,
2833};
2834#endif /* CONFIG_PROC_PAGE_MONITOR */
2835
2836#ifdef CONFIG_NUMA
2837
2838struct numa_maps {
2839 unsigned long pages;
2840 unsigned long anon;
2841 unsigned long active;
2842 unsigned long writeback;
2843 unsigned long mapcount_max;
2844 unsigned long dirty;
2845 unsigned long swapcache;
2846 unsigned long node[MAX_NUMNODES];
2847};
2848
2849struct numa_maps_private {
2850 struct proc_maps_private proc_maps;
2851 struct numa_maps md;
2852};
2853
2854static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2855 unsigned long nr_pages)
2856{
2857 struct folio *folio = page_folio(page);
2858 int count = folio_precise_page_mapcount(folio, page);
2859
2860 md->pages += nr_pages;
2861 if (pte_dirty || folio_test_dirty(folio))
2862 md->dirty += nr_pages;
2863
2864 if (folio_test_swapcache(folio))
2865 md->swapcache += nr_pages;
2866
2867 if (folio_test_active(folio) || folio_test_unevictable(folio))
2868 md->active += nr_pages;
2869
2870 if (folio_test_writeback(folio))
2871 md->writeback += nr_pages;
2872
2873 if (folio_test_anon(folio))
2874 md->anon += nr_pages;
2875
2876 if (count > md->mapcount_max)
2877 md->mapcount_max = count;
2878
2879 md->node[folio_nid(folio)] += nr_pages;
2880}
2881
2882static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2883 unsigned long addr)
2884{
2885 struct page *page;
2886 int nid;
2887
2888 if (!pte_present(pte))
2889 return NULL;
2890
2891 page = vm_normal_page(vma, addr, pte);
2892 if (!page || is_zone_device_page(page))
2893 return NULL;
2894
2895 if (PageReserved(page))
2896 return NULL;
2897
2898 nid = page_to_nid(page);
2899 if (!node_isset(nid, node_states[N_MEMORY]))
2900 return NULL;
2901
2902 return page;
2903}
2904
2905#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2906static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2907 struct vm_area_struct *vma,
2908 unsigned long addr)
2909{
2910 struct page *page;
2911 int nid;
2912
2913 if (!pmd_present(pmd))
2914 return NULL;
2915
2916 page = vm_normal_page_pmd(vma, addr, pmd);
2917 if (!page)
2918 return NULL;
2919
2920 if (PageReserved(page))
2921 return NULL;
2922
2923 nid = page_to_nid(page);
2924 if (!node_isset(nid, node_states[N_MEMORY]))
2925 return NULL;
2926
2927 return page;
2928}
2929#endif
2930
2931static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2932 unsigned long end, struct mm_walk *walk)
2933{
2934 struct numa_maps *md = walk->private;
2935 struct vm_area_struct *vma = walk->vma;
2936 spinlock_t *ptl;
2937 pte_t *orig_pte;
2938 pte_t *pte;
2939
2940#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2941 ptl = pmd_trans_huge_lock(pmd, vma);
2942 if (ptl) {
2943 struct page *page;
2944
2945 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2946 if (page)
2947 gather_stats(page, md, pmd_dirty(*pmd),
2948 HPAGE_PMD_SIZE/PAGE_SIZE);
2949 spin_unlock(ptl);
2950 return 0;
2951 }
2952#endif
2953 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2954 if (!pte) {
2955 walk->action = ACTION_AGAIN;
2956 return 0;
2957 }
2958 do {
2959 pte_t ptent = ptep_get(pte);
2960 struct page *page = can_gather_numa_stats(ptent, vma, addr);
2961 if (!page)
2962 continue;
2963 gather_stats(page, md, pte_dirty(ptent), 1);
2964
2965 } while (pte++, addr += PAGE_SIZE, addr != end);
2966 pte_unmap_unlock(orig_pte, ptl);
2967 cond_resched();
2968 return 0;
2969}
2970#ifdef CONFIG_HUGETLB_PAGE
2971static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2972 unsigned long addr, unsigned long end, struct mm_walk *walk)
2973{
2974 pte_t huge_pte = huge_ptep_get(walk->mm, addr, pte);
2975 struct numa_maps *md;
2976 struct page *page;
2977
2978 if (!pte_present(huge_pte))
2979 return 0;
2980
2981 page = pte_page(huge_pte);
2982
2983 md = walk->private;
2984 gather_stats(page, md, pte_dirty(huge_pte), 1);
2985 return 0;
2986}
2987
2988#else
2989static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2990 unsigned long addr, unsigned long end, struct mm_walk *walk)
2991{
2992 return 0;
2993}
2994#endif
2995
2996static const struct mm_walk_ops show_numa_ops = {
2997 .hugetlb_entry = gather_hugetlb_stats,
2998 .pmd_entry = gather_pte_stats,
2999 .walk_lock = PGWALK_RDLOCK,
3000};
3001
3002/*
3003 * Display pages allocated per node and memory policy via /proc.
3004 */
3005static int show_numa_map(struct seq_file *m, void *v)
3006{
3007 struct numa_maps_private *numa_priv = m->private;
3008 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
3009 struct vm_area_struct *vma = v;
3010 struct numa_maps *md = &numa_priv->md;
3011 struct file *file = vma->vm_file;
3012 struct mm_struct *mm = vma->vm_mm;
3013 char buffer[64];
3014 struct mempolicy *pol;
3015 pgoff_t ilx;
3016 int nid;
3017
3018 if (!mm)
3019 return 0;
3020
3021 /* Ensure we start with an empty set of numa_maps statistics. */
3022 memset(md, 0, sizeof(*md));
3023
3024 pol = __get_vma_policy(vma, vma->vm_start, &ilx);
3025 if (pol) {
3026 mpol_to_str(buffer, sizeof(buffer), pol);
3027 mpol_cond_put(pol);
3028 } else {
3029 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
3030 }
3031
3032 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
3033
3034 if (file) {
3035 seq_puts(m, " file=");
3036 seq_path(m, file_user_path(file), "\n\t= ");
3037 } else if (vma_is_initial_heap(vma)) {
3038 seq_puts(m, " heap");
3039 } else if (vma_is_initial_stack(vma)) {
3040 seq_puts(m, " stack");
3041 }
3042
3043 if (is_vm_hugetlb_page(vma))
3044 seq_puts(m, " huge");
3045
3046 /* mmap_lock is held by m_start */
3047 walk_page_vma(vma, &show_numa_ops, md);
3048
3049 if (!md->pages)
3050 goto out;
3051
3052 if (md->anon)
3053 seq_printf(m, " anon=%lu", md->anon);
3054
3055 if (md->dirty)
3056 seq_printf(m, " dirty=%lu", md->dirty);
3057
3058 if (md->pages != md->anon && md->pages != md->dirty)
3059 seq_printf(m, " mapped=%lu", md->pages);
3060
3061 if (md->mapcount_max > 1)
3062 seq_printf(m, " mapmax=%lu", md->mapcount_max);
3063
3064 if (md->swapcache)
3065 seq_printf(m, " swapcache=%lu", md->swapcache);
3066
3067 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
3068 seq_printf(m, " active=%lu", md->active);
3069
3070 if (md->writeback)
3071 seq_printf(m, " writeback=%lu", md->writeback);
3072
3073 for_each_node_state(nid, N_MEMORY)
3074 if (md->node[nid])
3075 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
3076
3077 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
3078out:
3079 seq_putc(m, '\n');
3080 return 0;
3081}
3082
3083static const struct seq_operations proc_pid_numa_maps_op = {
3084 .start = m_start,
3085 .next = m_next,
3086 .stop = m_stop,
3087 .show = show_numa_map,
3088};
3089
3090static int pid_numa_maps_open(struct inode *inode, struct file *file)
3091{
3092 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
3093 sizeof(struct numa_maps_private));
3094}
3095
3096const struct file_operations proc_pid_numa_maps_operations = {
3097 .open = pid_numa_maps_open,
3098 .read = seq_read,
3099 .llseek = seq_lseek,
3100 .release = proc_map_release,
3101};
3102
3103#endif /* CONFIG_NUMA */
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/pagewalk.h>
3#include <linux/vmacache.h>
4#include <linux/hugetlb.h>
5#include <linux/huge_mm.h>
6#include <linux/mount.h>
7#include <linux/seq_file.h>
8#include <linux/highmem.h>
9#include <linux/ptrace.h>
10#include <linux/slab.h>
11#include <linux/pagemap.h>
12#include <linux/mempolicy.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
15#include <linux/sched/mm.h>
16#include <linux/swapops.h>
17#include <linux/mmu_notifier.h>
18#include <linux/page_idle.h>
19#include <linux/shmem_fs.h>
20#include <linux/uaccess.h>
21#include <linux/pkeys.h>
22
23#include <asm/elf.h>
24#include <asm/tlb.h>
25#include <asm/tlbflush.h>
26#include "internal.h"
27
28#define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30void task_mem(struct seq_file *m, struct mm_struct *mm)
31{
32 unsigned long text, lib, swap, anon, file, shmem;
33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35 anon = get_mm_counter(mm, MM_ANONPAGES);
36 file = get_mm_counter(mm, MM_FILEPAGES);
37 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39 /*
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
45 */
46 hiwater_vm = total_vm = mm->total_vm;
47 if (hiwater_vm < mm->hiwater_vm)
48 hiwater_vm = mm->hiwater_vm;
49 hiwater_rss = total_rss = anon + file + shmem;
50 if (hiwater_rss < mm->hiwater_rss)
51 hiwater_rss = mm->hiwater_rss;
52
53 /* split executable areas between text and lib */
54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 text = min(text, mm->exec_vm << PAGE_SHIFT);
56 lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58 swap = get_mm_counter(mm, MM_SWAPENTS);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 seq_put_decimal_ull_width(m,
71 " kB\nVmExe:\t", text >> 10, 8);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmLib:\t", lib >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 seq_puts(m, " kB\n");
78 hugetlb_report_usage(m, mm);
79}
80#undef SEQ_PUT_DEC
81
82unsigned long task_vsize(struct mm_struct *mm)
83{
84 return PAGE_SIZE * mm->total_vm;
85}
86
87unsigned long task_statm(struct mm_struct *mm,
88 unsigned long *shared, unsigned long *text,
89 unsigned long *data, unsigned long *resident)
90{
91 *shared = get_mm_counter(mm, MM_FILEPAGES) +
92 get_mm_counter(mm, MM_SHMEMPAGES);
93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 >> PAGE_SHIFT;
95 *data = mm->data_vm + mm->stack_vm;
96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 return mm->total_vm;
98}
99
100#ifdef CONFIG_NUMA
101/*
102 * Save get_task_policy() for show_numa_map().
103 */
104static void hold_task_mempolicy(struct proc_maps_private *priv)
105{
106 struct task_struct *task = priv->task;
107
108 task_lock(task);
109 priv->task_mempolicy = get_task_policy(task);
110 mpol_get(priv->task_mempolicy);
111 task_unlock(task);
112}
113static void release_task_mempolicy(struct proc_maps_private *priv)
114{
115 mpol_put(priv->task_mempolicy);
116}
117#else
118static void hold_task_mempolicy(struct proc_maps_private *priv)
119{
120}
121static void release_task_mempolicy(struct proc_maps_private *priv)
122{
123}
124#endif
125
126static void *m_start(struct seq_file *m, loff_t *ppos)
127{
128 struct proc_maps_private *priv = m->private;
129 unsigned long last_addr = *ppos;
130 struct mm_struct *mm;
131 struct vm_area_struct *vma;
132
133 /* See m_next(). Zero at the start or after lseek. */
134 if (last_addr == -1UL)
135 return NULL;
136
137 priv->task = get_proc_task(priv->inode);
138 if (!priv->task)
139 return ERR_PTR(-ESRCH);
140
141 mm = priv->mm;
142 if (!mm || !mmget_not_zero(mm)) {
143 put_task_struct(priv->task);
144 priv->task = NULL;
145 return NULL;
146 }
147
148 if (mmap_read_lock_killable(mm)) {
149 mmput(mm);
150 put_task_struct(priv->task);
151 priv->task = NULL;
152 return ERR_PTR(-EINTR);
153 }
154
155 hold_task_mempolicy(priv);
156 priv->tail_vma = get_gate_vma(mm);
157
158 vma = find_vma(mm, last_addr);
159 if (vma)
160 return vma;
161
162 return priv->tail_vma;
163}
164
165static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166{
167 struct proc_maps_private *priv = m->private;
168 struct vm_area_struct *next, *vma = v;
169
170 if (vma == priv->tail_vma)
171 next = NULL;
172 else if (vma->vm_next)
173 next = vma->vm_next;
174 else
175 next = priv->tail_vma;
176
177 *ppos = next ? next->vm_start : -1UL;
178
179 return next;
180}
181
182static void m_stop(struct seq_file *m, void *v)
183{
184 struct proc_maps_private *priv = m->private;
185 struct mm_struct *mm = priv->mm;
186
187 if (!priv->task)
188 return;
189
190 release_task_mempolicy(priv);
191 mmap_read_unlock(mm);
192 mmput(mm);
193 put_task_struct(priv->task);
194 priv->task = NULL;
195}
196
197static int proc_maps_open(struct inode *inode, struct file *file,
198 const struct seq_operations *ops, int psize)
199{
200 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201
202 if (!priv)
203 return -ENOMEM;
204
205 priv->inode = inode;
206 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207 if (IS_ERR(priv->mm)) {
208 int err = PTR_ERR(priv->mm);
209
210 seq_release_private(inode, file);
211 return err;
212 }
213
214 return 0;
215}
216
217static int proc_map_release(struct inode *inode, struct file *file)
218{
219 struct seq_file *seq = file->private_data;
220 struct proc_maps_private *priv = seq->private;
221
222 if (priv->mm)
223 mmdrop(priv->mm);
224
225 return seq_release_private(inode, file);
226}
227
228static int do_maps_open(struct inode *inode, struct file *file,
229 const struct seq_operations *ops)
230{
231 return proc_maps_open(inode, file, ops,
232 sizeof(struct proc_maps_private));
233}
234
235/*
236 * Indicate if the VMA is a stack for the given task; for
237 * /proc/PID/maps that is the stack of the main task.
238 */
239static int is_stack(struct vm_area_struct *vma)
240{
241 /*
242 * We make no effort to guess what a given thread considers to be
243 * its "stack". It's not even well-defined for programs written
244 * languages like Go.
245 */
246 return vma->vm_start <= vma->vm_mm->start_stack &&
247 vma->vm_end >= vma->vm_mm->start_stack;
248}
249
250static void show_vma_header_prefix(struct seq_file *m,
251 unsigned long start, unsigned long end,
252 vm_flags_t flags, unsigned long long pgoff,
253 dev_t dev, unsigned long ino)
254{
255 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256 seq_put_hex_ll(m, NULL, start, 8);
257 seq_put_hex_ll(m, "-", end, 8);
258 seq_putc(m, ' ');
259 seq_putc(m, flags & VM_READ ? 'r' : '-');
260 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263 seq_put_hex_ll(m, " ", pgoff, 8);
264 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265 seq_put_hex_ll(m, ":", MINOR(dev), 2);
266 seq_put_decimal_ull(m, " ", ino);
267 seq_putc(m, ' ');
268}
269
270static void
271show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272{
273 struct mm_struct *mm = vma->vm_mm;
274 struct file *file = vma->vm_file;
275 vm_flags_t flags = vma->vm_flags;
276 unsigned long ino = 0;
277 unsigned long long pgoff = 0;
278 unsigned long start, end;
279 dev_t dev = 0;
280 const char *name = NULL;
281
282 if (file) {
283 struct inode *inode = file_inode(vma->vm_file);
284 dev = inode->i_sb->s_dev;
285 ino = inode->i_ino;
286 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287 }
288
289 start = vma->vm_start;
290 end = vma->vm_end;
291 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292
293 /*
294 * Print the dentry name for named mappings, and a
295 * special [heap] marker for the heap:
296 */
297 if (file) {
298 seq_pad(m, ' ');
299 seq_file_path(m, file, "\n");
300 goto done;
301 }
302
303 if (vma->vm_ops && vma->vm_ops->name) {
304 name = vma->vm_ops->name(vma);
305 if (name)
306 goto done;
307 }
308
309 name = arch_vma_name(vma);
310 if (!name) {
311 if (!mm) {
312 name = "[vdso]";
313 goto done;
314 }
315
316 if (vma->vm_start <= mm->brk &&
317 vma->vm_end >= mm->start_brk) {
318 name = "[heap]";
319 goto done;
320 }
321
322 if (is_stack(vma))
323 name = "[stack]";
324 }
325
326done:
327 if (name) {
328 seq_pad(m, ' ');
329 seq_puts(m, name);
330 }
331 seq_putc(m, '\n');
332}
333
334static int show_map(struct seq_file *m, void *v)
335{
336 show_map_vma(m, v);
337 return 0;
338}
339
340static const struct seq_operations proc_pid_maps_op = {
341 .start = m_start,
342 .next = m_next,
343 .stop = m_stop,
344 .show = show_map
345};
346
347static int pid_maps_open(struct inode *inode, struct file *file)
348{
349 return do_maps_open(inode, file, &proc_pid_maps_op);
350}
351
352const struct file_operations proc_pid_maps_operations = {
353 .open = pid_maps_open,
354 .read = seq_read,
355 .llseek = seq_lseek,
356 .release = proc_map_release,
357};
358
359/*
360 * Proportional Set Size(PSS): my share of RSS.
361 *
362 * PSS of a process is the count of pages it has in memory, where each
363 * page is divided by the number of processes sharing it. So if a
364 * process has 1000 pages all to itself, and 1000 shared with one other
365 * process, its PSS will be 1500.
366 *
367 * To keep (accumulated) division errors low, we adopt a 64bit
368 * fixed-point pss counter to minimize division errors. So (pss >>
369 * PSS_SHIFT) would be the real byte count.
370 *
371 * A shift of 12 before division means (assuming 4K page size):
372 * - 1M 3-user-pages add up to 8KB errors;
373 * - supports mapcount up to 2^24, or 16M;
374 * - supports PSS up to 2^52 bytes, or 4PB.
375 */
376#define PSS_SHIFT 12
377
378#ifdef CONFIG_PROC_PAGE_MONITOR
379struct mem_size_stats {
380 unsigned long resident;
381 unsigned long shared_clean;
382 unsigned long shared_dirty;
383 unsigned long private_clean;
384 unsigned long private_dirty;
385 unsigned long referenced;
386 unsigned long anonymous;
387 unsigned long lazyfree;
388 unsigned long anonymous_thp;
389 unsigned long shmem_thp;
390 unsigned long file_thp;
391 unsigned long swap;
392 unsigned long shared_hugetlb;
393 unsigned long private_hugetlb;
394 u64 pss;
395 u64 pss_anon;
396 u64 pss_file;
397 u64 pss_shmem;
398 u64 pss_locked;
399 u64 swap_pss;
400 bool check_shmem_swap;
401};
402
403static void smaps_page_accumulate(struct mem_size_stats *mss,
404 struct page *page, unsigned long size, unsigned long pss,
405 bool dirty, bool locked, bool private)
406{
407 mss->pss += pss;
408
409 if (PageAnon(page))
410 mss->pss_anon += pss;
411 else if (PageSwapBacked(page))
412 mss->pss_shmem += pss;
413 else
414 mss->pss_file += pss;
415
416 if (locked)
417 mss->pss_locked += pss;
418
419 if (dirty || PageDirty(page)) {
420 if (private)
421 mss->private_dirty += size;
422 else
423 mss->shared_dirty += size;
424 } else {
425 if (private)
426 mss->private_clean += size;
427 else
428 mss->shared_clean += size;
429 }
430}
431
432static void smaps_account(struct mem_size_stats *mss, struct page *page,
433 bool compound, bool young, bool dirty, bool locked)
434{
435 int i, nr = compound ? compound_nr(page) : 1;
436 unsigned long size = nr * PAGE_SIZE;
437
438 /*
439 * First accumulate quantities that depend only on |size| and the type
440 * of the compound page.
441 */
442 if (PageAnon(page)) {
443 mss->anonymous += size;
444 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445 mss->lazyfree += size;
446 }
447
448 mss->resident += size;
449 /* Accumulate the size in pages that have been accessed. */
450 if (young || page_is_young(page) || PageReferenced(page))
451 mss->referenced += size;
452
453 /*
454 * Then accumulate quantities that may depend on sharing, or that may
455 * differ page-by-page.
456 *
457 * page_count(page) == 1 guarantees the page is mapped exactly once.
458 * If any subpage of the compound page mapped with PTE it would elevate
459 * page_count().
460 */
461 if (page_count(page) == 1) {
462 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463 locked, true);
464 return;
465 }
466 for (i = 0; i < nr; i++, page++) {
467 int mapcount = page_mapcount(page);
468 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469 if (mapcount >= 2)
470 pss /= mapcount;
471 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472 mapcount < 2);
473 }
474}
475
476#ifdef CONFIG_SHMEM
477static int smaps_pte_hole(unsigned long addr, unsigned long end,
478 __always_unused int depth, struct mm_walk *walk)
479{
480 struct mem_size_stats *mss = walk->private;
481
482 mss->swap += shmem_partial_swap_usage(
483 walk->vma->vm_file->f_mapping, addr, end);
484
485 return 0;
486}
487#else
488#define smaps_pte_hole NULL
489#endif /* CONFIG_SHMEM */
490
491static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492 struct mm_walk *walk)
493{
494 struct mem_size_stats *mss = walk->private;
495 struct vm_area_struct *vma = walk->vma;
496 bool locked = !!(vma->vm_flags & VM_LOCKED);
497 struct page *page = NULL;
498
499 if (pte_present(*pte)) {
500 page = vm_normal_page(vma, addr, *pte);
501 } else if (is_swap_pte(*pte)) {
502 swp_entry_t swpent = pte_to_swp_entry(*pte);
503
504 if (!non_swap_entry(swpent)) {
505 int mapcount;
506
507 mss->swap += PAGE_SIZE;
508 mapcount = swp_swapcount(swpent);
509 if (mapcount >= 2) {
510 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511
512 do_div(pss_delta, mapcount);
513 mss->swap_pss += pss_delta;
514 } else {
515 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516 }
517 } else if (is_pfn_swap_entry(swpent))
518 page = pfn_swap_entry_to_page(swpent);
519 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
520 && pte_none(*pte))) {
521 page = xa_load(&vma->vm_file->f_mapping->i_pages,
522 linear_page_index(vma, addr));
523 if (xa_is_value(page))
524 mss->swap += PAGE_SIZE;
525 return;
526 }
527
528 if (!page)
529 return;
530
531 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
532}
533
534#ifdef CONFIG_TRANSPARENT_HUGEPAGE
535static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
536 struct mm_walk *walk)
537{
538 struct mem_size_stats *mss = walk->private;
539 struct vm_area_struct *vma = walk->vma;
540 bool locked = !!(vma->vm_flags & VM_LOCKED);
541 struct page *page = NULL;
542
543 if (pmd_present(*pmd)) {
544 /* FOLL_DUMP will return -EFAULT on huge zero page */
545 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
546 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
547 swp_entry_t entry = pmd_to_swp_entry(*pmd);
548
549 if (is_migration_entry(entry))
550 page = pfn_swap_entry_to_page(entry);
551 }
552 if (IS_ERR_OR_NULL(page))
553 return;
554 if (PageAnon(page))
555 mss->anonymous_thp += HPAGE_PMD_SIZE;
556 else if (PageSwapBacked(page))
557 mss->shmem_thp += HPAGE_PMD_SIZE;
558 else if (is_zone_device_page(page))
559 /* pass */;
560 else
561 mss->file_thp += HPAGE_PMD_SIZE;
562 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
563}
564#else
565static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
566 struct mm_walk *walk)
567{
568}
569#endif
570
571static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
572 struct mm_walk *walk)
573{
574 struct vm_area_struct *vma = walk->vma;
575 pte_t *pte;
576 spinlock_t *ptl;
577
578 ptl = pmd_trans_huge_lock(pmd, vma);
579 if (ptl) {
580 smaps_pmd_entry(pmd, addr, walk);
581 spin_unlock(ptl);
582 goto out;
583 }
584
585 if (pmd_trans_unstable(pmd))
586 goto out;
587 /*
588 * The mmap_lock held all the way back in m_start() is what
589 * keeps khugepaged out of here and from collapsing things
590 * in here.
591 */
592 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
593 for (; addr != end; pte++, addr += PAGE_SIZE)
594 smaps_pte_entry(pte, addr, walk);
595 pte_unmap_unlock(pte - 1, ptl);
596out:
597 cond_resched();
598 return 0;
599}
600
601static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
602{
603 /*
604 * Don't forget to update Documentation/ on changes.
605 */
606 static const char mnemonics[BITS_PER_LONG][2] = {
607 /*
608 * In case if we meet a flag we don't know about.
609 */
610 [0 ... (BITS_PER_LONG-1)] = "??",
611
612 [ilog2(VM_READ)] = "rd",
613 [ilog2(VM_WRITE)] = "wr",
614 [ilog2(VM_EXEC)] = "ex",
615 [ilog2(VM_SHARED)] = "sh",
616 [ilog2(VM_MAYREAD)] = "mr",
617 [ilog2(VM_MAYWRITE)] = "mw",
618 [ilog2(VM_MAYEXEC)] = "me",
619 [ilog2(VM_MAYSHARE)] = "ms",
620 [ilog2(VM_GROWSDOWN)] = "gd",
621 [ilog2(VM_PFNMAP)] = "pf",
622 [ilog2(VM_DENYWRITE)] = "dw",
623 [ilog2(VM_LOCKED)] = "lo",
624 [ilog2(VM_IO)] = "io",
625 [ilog2(VM_SEQ_READ)] = "sr",
626 [ilog2(VM_RAND_READ)] = "rr",
627 [ilog2(VM_DONTCOPY)] = "dc",
628 [ilog2(VM_DONTEXPAND)] = "de",
629 [ilog2(VM_ACCOUNT)] = "ac",
630 [ilog2(VM_NORESERVE)] = "nr",
631 [ilog2(VM_HUGETLB)] = "ht",
632 [ilog2(VM_SYNC)] = "sf",
633 [ilog2(VM_ARCH_1)] = "ar",
634 [ilog2(VM_WIPEONFORK)] = "wf",
635 [ilog2(VM_DONTDUMP)] = "dd",
636#ifdef CONFIG_ARM64_BTI
637 [ilog2(VM_ARM64_BTI)] = "bt",
638#endif
639#ifdef CONFIG_MEM_SOFT_DIRTY
640 [ilog2(VM_SOFTDIRTY)] = "sd",
641#endif
642 [ilog2(VM_MIXEDMAP)] = "mm",
643 [ilog2(VM_HUGEPAGE)] = "hg",
644 [ilog2(VM_NOHUGEPAGE)] = "nh",
645 [ilog2(VM_MERGEABLE)] = "mg",
646 [ilog2(VM_UFFD_MISSING)]= "um",
647 [ilog2(VM_UFFD_WP)] = "uw",
648#ifdef CONFIG_ARM64_MTE
649 [ilog2(VM_MTE)] = "mt",
650 [ilog2(VM_MTE_ALLOWED)] = "",
651#endif
652#ifdef CONFIG_ARCH_HAS_PKEYS
653 /* These come out via ProtectionKey: */
654 [ilog2(VM_PKEY_BIT0)] = "",
655 [ilog2(VM_PKEY_BIT1)] = "",
656 [ilog2(VM_PKEY_BIT2)] = "",
657 [ilog2(VM_PKEY_BIT3)] = "",
658#if VM_PKEY_BIT4
659 [ilog2(VM_PKEY_BIT4)] = "",
660#endif
661#endif /* CONFIG_ARCH_HAS_PKEYS */
662#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
663 [ilog2(VM_UFFD_MINOR)] = "ui",
664#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
665 };
666 size_t i;
667
668 seq_puts(m, "VmFlags: ");
669 for (i = 0; i < BITS_PER_LONG; i++) {
670 if (!mnemonics[i][0])
671 continue;
672 if (vma->vm_flags & (1UL << i)) {
673 seq_putc(m, mnemonics[i][0]);
674 seq_putc(m, mnemonics[i][1]);
675 seq_putc(m, ' ');
676 }
677 }
678 seq_putc(m, '\n');
679}
680
681#ifdef CONFIG_HUGETLB_PAGE
682static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
683 unsigned long addr, unsigned long end,
684 struct mm_walk *walk)
685{
686 struct mem_size_stats *mss = walk->private;
687 struct vm_area_struct *vma = walk->vma;
688 struct page *page = NULL;
689
690 if (pte_present(*pte)) {
691 page = vm_normal_page(vma, addr, *pte);
692 } else if (is_swap_pte(*pte)) {
693 swp_entry_t swpent = pte_to_swp_entry(*pte);
694
695 if (is_pfn_swap_entry(swpent))
696 page = pfn_swap_entry_to_page(swpent);
697 }
698 if (page) {
699 int mapcount = page_mapcount(page);
700
701 if (mapcount >= 2)
702 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
703 else
704 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
705 }
706 return 0;
707}
708#else
709#define smaps_hugetlb_range NULL
710#endif /* HUGETLB_PAGE */
711
712static const struct mm_walk_ops smaps_walk_ops = {
713 .pmd_entry = smaps_pte_range,
714 .hugetlb_entry = smaps_hugetlb_range,
715};
716
717static const struct mm_walk_ops smaps_shmem_walk_ops = {
718 .pmd_entry = smaps_pte_range,
719 .hugetlb_entry = smaps_hugetlb_range,
720 .pte_hole = smaps_pte_hole,
721};
722
723/*
724 * Gather mem stats from @vma with the indicated beginning
725 * address @start, and keep them in @mss.
726 *
727 * Use vm_start of @vma as the beginning address if @start is 0.
728 */
729static void smap_gather_stats(struct vm_area_struct *vma,
730 struct mem_size_stats *mss, unsigned long start)
731{
732 const struct mm_walk_ops *ops = &smaps_walk_ops;
733
734 /* Invalid start */
735 if (start >= vma->vm_end)
736 return;
737
738#ifdef CONFIG_SHMEM
739 /* In case of smaps_rollup, reset the value from previous vma */
740 mss->check_shmem_swap = false;
741 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
742 /*
743 * For shared or readonly shmem mappings we know that all
744 * swapped out pages belong to the shmem object, and we can
745 * obtain the swap value much more efficiently. For private
746 * writable mappings, we might have COW pages that are
747 * not affected by the parent swapped out pages of the shmem
748 * object, so we have to distinguish them during the page walk.
749 * Unless we know that the shmem object (or the part mapped by
750 * our VMA) has no swapped out pages at all.
751 */
752 unsigned long shmem_swapped = shmem_swap_usage(vma);
753
754 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
755 !(vma->vm_flags & VM_WRITE))) {
756 mss->swap += shmem_swapped;
757 } else {
758 mss->check_shmem_swap = true;
759 ops = &smaps_shmem_walk_ops;
760 }
761 }
762#endif
763 /* mmap_lock is held in m_start */
764 if (!start)
765 walk_page_vma(vma, ops, mss);
766 else
767 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
768}
769
770#define SEQ_PUT_DEC(str, val) \
771 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
772
773/* Show the contents common for smaps and smaps_rollup */
774static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
775 bool rollup_mode)
776{
777 SEQ_PUT_DEC("Rss: ", mss->resident);
778 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
779 if (rollup_mode) {
780 /*
781 * These are meaningful only for smaps_rollup, otherwise two of
782 * them are zero, and the other one is the same as Pss.
783 */
784 SEQ_PUT_DEC(" kB\nPss_Anon: ",
785 mss->pss_anon >> PSS_SHIFT);
786 SEQ_PUT_DEC(" kB\nPss_File: ",
787 mss->pss_file >> PSS_SHIFT);
788 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
789 mss->pss_shmem >> PSS_SHIFT);
790 }
791 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
792 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
793 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
794 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
795 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
796 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
797 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
798 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
799 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
800 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
801 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
802 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
803 mss->private_hugetlb >> 10, 7);
804 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
805 SEQ_PUT_DEC(" kB\nSwapPss: ",
806 mss->swap_pss >> PSS_SHIFT);
807 SEQ_PUT_DEC(" kB\nLocked: ",
808 mss->pss_locked >> PSS_SHIFT);
809 seq_puts(m, " kB\n");
810}
811
812static int show_smap(struct seq_file *m, void *v)
813{
814 struct vm_area_struct *vma = v;
815 struct mem_size_stats mss;
816
817 memset(&mss, 0, sizeof(mss));
818
819 smap_gather_stats(vma, &mss, 0);
820
821 show_map_vma(m, vma);
822
823 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
824 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
825 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
826 seq_puts(m, " kB\n");
827
828 __show_smap(m, &mss, false);
829
830 seq_printf(m, "THPeligible: %d\n",
831 transparent_hugepage_active(vma));
832
833 if (arch_pkeys_enabled())
834 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
835 show_smap_vma_flags(m, vma);
836
837 return 0;
838}
839
840static int show_smaps_rollup(struct seq_file *m, void *v)
841{
842 struct proc_maps_private *priv = m->private;
843 struct mem_size_stats mss;
844 struct mm_struct *mm;
845 struct vm_area_struct *vma;
846 unsigned long last_vma_end = 0;
847 int ret = 0;
848
849 priv->task = get_proc_task(priv->inode);
850 if (!priv->task)
851 return -ESRCH;
852
853 mm = priv->mm;
854 if (!mm || !mmget_not_zero(mm)) {
855 ret = -ESRCH;
856 goto out_put_task;
857 }
858
859 memset(&mss, 0, sizeof(mss));
860
861 ret = mmap_read_lock_killable(mm);
862 if (ret)
863 goto out_put_mm;
864
865 hold_task_mempolicy(priv);
866
867 for (vma = priv->mm->mmap; vma;) {
868 smap_gather_stats(vma, &mss, 0);
869 last_vma_end = vma->vm_end;
870
871 /*
872 * Release mmap_lock temporarily if someone wants to
873 * access it for write request.
874 */
875 if (mmap_lock_is_contended(mm)) {
876 mmap_read_unlock(mm);
877 ret = mmap_read_lock_killable(mm);
878 if (ret) {
879 release_task_mempolicy(priv);
880 goto out_put_mm;
881 }
882
883 /*
884 * After dropping the lock, there are four cases to
885 * consider. See the following example for explanation.
886 *
887 * +------+------+-----------+
888 * | VMA1 | VMA2 | VMA3 |
889 * +------+------+-----------+
890 * | | | |
891 * 4k 8k 16k 400k
892 *
893 * Suppose we drop the lock after reading VMA2 due to
894 * contention, then we get:
895 *
896 * last_vma_end = 16k
897 *
898 * 1) VMA2 is freed, but VMA3 exists:
899 *
900 * find_vma(mm, 16k - 1) will return VMA3.
901 * In this case, just continue from VMA3.
902 *
903 * 2) VMA2 still exists:
904 *
905 * find_vma(mm, 16k - 1) will return VMA2.
906 * Iterate the loop like the original one.
907 *
908 * 3) No more VMAs can be found:
909 *
910 * find_vma(mm, 16k - 1) will return NULL.
911 * No more things to do, just break.
912 *
913 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
914 *
915 * find_vma(mm, 16k - 1) will return VMA' whose range
916 * contains last_vma_end.
917 * Iterate VMA' from last_vma_end.
918 */
919 vma = find_vma(mm, last_vma_end - 1);
920 /* Case 3 above */
921 if (!vma)
922 break;
923
924 /* Case 1 above */
925 if (vma->vm_start >= last_vma_end)
926 continue;
927
928 /* Case 4 above */
929 if (vma->vm_end > last_vma_end)
930 smap_gather_stats(vma, &mss, last_vma_end);
931 }
932 /* Case 2 above */
933 vma = vma->vm_next;
934 }
935
936 show_vma_header_prefix(m, priv->mm->mmap->vm_start,
937 last_vma_end, 0, 0, 0, 0);
938 seq_pad(m, ' ');
939 seq_puts(m, "[rollup]\n");
940
941 __show_smap(m, &mss, true);
942
943 release_task_mempolicy(priv);
944 mmap_read_unlock(mm);
945
946out_put_mm:
947 mmput(mm);
948out_put_task:
949 put_task_struct(priv->task);
950 priv->task = NULL;
951
952 return ret;
953}
954#undef SEQ_PUT_DEC
955
956static const struct seq_operations proc_pid_smaps_op = {
957 .start = m_start,
958 .next = m_next,
959 .stop = m_stop,
960 .show = show_smap
961};
962
963static int pid_smaps_open(struct inode *inode, struct file *file)
964{
965 return do_maps_open(inode, file, &proc_pid_smaps_op);
966}
967
968static int smaps_rollup_open(struct inode *inode, struct file *file)
969{
970 int ret;
971 struct proc_maps_private *priv;
972
973 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
974 if (!priv)
975 return -ENOMEM;
976
977 ret = single_open(file, show_smaps_rollup, priv);
978 if (ret)
979 goto out_free;
980
981 priv->inode = inode;
982 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
983 if (IS_ERR(priv->mm)) {
984 ret = PTR_ERR(priv->mm);
985
986 single_release(inode, file);
987 goto out_free;
988 }
989
990 return 0;
991
992out_free:
993 kfree(priv);
994 return ret;
995}
996
997static int smaps_rollup_release(struct inode *inode, struct file *file)
998{
999 struct seq_file *seq = file->private_data;
1000 struct proc_maps_private *priv = seq->private;
1001
1002 if (priv->mm)
1003 mmdrop(priv->mm);
1004
1005 kfree(priv);
1006 return single_release(inode, file);
1007}
1008
1009const struct file_operations proc_pid_smaps_operations = {
1010 .open = pid_smaps_open,
1011 .read = seq_read,
1012 .llseek = seq_lseek,
1013 .release = proc_map_release,
1014};
1015
1016const struct file_operations proc_pid_smaps_rollup_operations = {
1017 .open = smaps_rollup_open,
1018 .read = seq_read,
1019 .llseek = seq_lseek,
1020 .release = smaps_rollup_release,
1021};
1022
1023enum clear_refs_types {
1024 CLEAR_REFS_ALL = 1,
1025 CLEAR_REFS_ANON,
1026 CLEAR_REFS_MAPPED,
1027 CLEAR_REFS_SOFT_DIRTY,
1028 CLEAR_REFS_MM_HIWATER_RSS,
1029 CLEAR_REFS_LAST,
1030};
1031
1032struct clear_refs_private {
1033 enum clear_refs_types type;
1034};
1035
1036#ifdef CONFIG_MEM_SOFT_DIRTY
1037
1038static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1039{
1040 struct page *page;
1041
1042 if (!pte_write(pte))
1043 return false;
1044 if (!is_cow_mapping(vma->vm_flags))
1045 return false;
1046 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1047 return false;
1048 page = vm_normal_page(vma, addr, pte);
1049 if (!page)
1050 return false;
1051 return page_maybe_dma_pinned(page);
1052}
1053
1054static inline void clear_soft_dirty(struct vm_area_struct *vma,
1055 unsigned long addr, pte_t *pte)
1056{
1057 /*
1058 * The soft-dirty tracker uses #PF-s to catch writes
1059 * to pages, so write-protect the pte as well. See the
1060 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1061 * of how soft-dirty works.
1062 */
1063 pte_t ptent = *pte;
1064
1065 if (pte_present(ptent)) {
1066 pte_t old_pte;
1067
1068 if (pte_is_pinned(vma, addr, ptent))
1069 return;
1070 old_pte = ptep_modify_prot_start(vma, addr, pte);
1071 ptent = pte_wrprotect(old_pte);
1072 ptent = pte_clear_soft_dirty(ptent);
1073 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1074 } else if (is_swap_pte(ptent)) {
1075 ptent = pte_swp_clear_soft_dirty(ptent);
1076 set_pte_at(vma->vm_mm, addr, pte, ptent);
1077 }
1078}
1079#else
1080static inline void clear_soft_dirty(struct vm_area_struct *vma,
1081 unsigned long addr, pte_t *pte)
1082{
1083}
1084#endif
1085
1086#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1087static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1088 unsigned long addr, pmd_t *pmdp)
1089{
1090 pmd_t old, pmd = *pmdp;
1091
1092 if (pmd_present(pmd)) {
1093 /* See comment in change_huge_pmd() */
1094 old = pmdp_invalidate(vma, addr, pmdp);
1095 if (pmd_dirty(old))
1096 pmd = pmd_mkdirty(pmd);
1097 if (pmd_young(old))
1098 pmd = pmd_mkyoung(pmd);
1099
1100 pmd = pmd_wrprotect(pmd);
1101 pmd = pmd_clear_soft_dirty(pmd);
1102
1103 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1104 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1105 pmd = pmd_swp_clear_soft_dirty(pmd);
1106 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1107 }
1108}
1109#else
1110static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1111 unsigned long addr, pmd_t *pmdp)
1112{
1113}
1114#endif
1115
1116static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1117 unsigned long end, struct mm_walk *walk)
1118{
1119 struct clear_refs_private *cp = walk->private;
1120 struct vm_area_struct *vma = walk->vma;
1121 pte_t *pte, ptent;
1122 spinlock_t *ptl;
1123 struct page *page;
1124
1125 ptl = pmd_trans_huge_lock(pmd, vma);
1126 if (ptl) {
1127 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1128 clear_soft_dirty_pmd(vma, addr, pmd);
1129 goto out;
1130 }
1131
1132 if (!pmd_present(*pmd))
1133 goto out;
1134
1135 page = pmd_page(*pmd);
1136
1137 /* Clear accessed and referenced bits. */
1138 pmdp_test_and_clear_young(vma, addr, pmd);
1139 test_and_clear_page_young(page);
1140 ClearPageReferenced(page);
1141out:
1142 spin_unlock(ptl);
1143 return 0;
1144 }
1145
1146 if (pmd_trans_unstable(pmd))
1147 return 0;
1148
1149 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1150 for (; addr != end; pte++, addr += PAGE_SIZE) {
1151 ptent = *pte;
1152
1153 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1154 clear_soft_dirty(vma, addr, pte);
1155 continue;
1156 }
1157
1158 if (!pte_present(ptent))
1159 continue;
1160
1161 page = vm_normal_page(vma, addr, ptent);
1162 if (!page)
1163 continue;
1164
1165 /* Clear accessed and referenced bits. */
1166 ptep_test_and_clear_young(vma, addr, pte);
1167 test_and_clear_page_young(page);
1168 ClearPageReferenced(page);
1169 }
1170 pte_unmap_unlock(pte - 1, ptl);
1171 cond_resched();
1172 return 0;
1173}
1174
1175static int clear_refs_test_walk(unsigned long start, unsigned long end,
1176 struct mm_walk *walk)
1177{
1178 struct clear_refs_private *cp = walk->private;
1179 struct vm_area_struct *vma = walk->vma;
1180
1181 if (vma->vm_flags & VM_PFNMAP)
1182 return 1;
1183
1184 /*
1185 * Writing 1 to /proc/pid/clear_refs affects all pages.
1186 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1187 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1188 * Writing 4 to /proc/pid/clear_refs affects all pages.
1189 */
1190 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1191 return 1;
1192 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1193 return 1;
1194 return 0;
1195}
1196
1197static const struct mm_walk_ops clear_refs_walk_ops = {
1198 .pmd_entry = clear_refs_pte_range,
1199 .test_walk = clear_refs_test_walk,
1200};
1201
1202static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1203 size_t count, loff_t *ppos)
1204{
1205 struct task_struct *task;
1206 char buffer[PROC_NUMBUF];
1207 struct mm_struct *mm;
1208 struct vm_area_struct *vma;
1209 enum clear_refs_types type;
1210 int itype;
1211 int rv;
1212
1213 memset(buffer, 0, sizeof(buffer));
1214 if (count > sizeof(buffer) - 1)
1215 count = sizeof(buffer) - 1;
1216 if (copy_from_user(buffer, buf, count))
1217 return -EFAULT;
1218 rv = kstrtoint(strstrip(buffer), 10, &itype);
1219 if (rv < 0)
1220 return rv;
1221 type = (enum clear_refs_types)itype;
1222 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1223 return -EINVAL;
1224
1225 task = get_proc_task(file_inode(file));
1226 if (!task)
1227 return -ESRCH;
1228 mm = get_task_mm(task);
1229 if (mm) {
1230 struct mmu_notifier_range range;
1231 struct clear_refs_private cp = {
1232 .type = type,
1233 };
1234
1235 if (mmap_write_lock_killable(mm)) {
1236 count = -EINTR;
1237 goto out_mm;
1238 }
1239 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1240 /*
1241 * Writing 5 to /proc/pid/clear_refs resets the peak
1242 * resident set size to this mm's current rss value.
1243 */
1244 reset_mm_hiwater_rss(mm);
1245 goto out_unlock;
1246 }
1247
1248 if (type == CLEAR_REFS_SOFT_DIRTY) {
1249 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1250 if (!(vma->vm_flags & VM_SOFTDIRTY))
1251 continue;
1252 vma->vm_flags &= ~VM_SOFTDIRTY;
1253 vma_set_page_prot(vma);
1254 }
1255
1256 inc_tlb_flush_pending(mm);
1257 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1258 0, NULL, mm, 0, -1UL);
1259 mmu_notifier_invalidate_range_start(&range);
1260 }
1261 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1262 &cp);
1263 if (type == CLEAR_REFS_SOFT_DIRTY) {
1264 mmu_notifier_invalidate_range_end(&range);
1265 flush_tlb_mm(mm);
1266 dec_tlb_flush_pending(mm);
1267 }
1268out_unlock:
1269 mmap_write_unlock(mm);
1270out_mm:
1271 mmput(mm);
1272 }
1273 put_task_struct(task);
1274
1275 return count;
1276}
1277
1278const struct file_operations proc_clear_refs_operations = {
1279 .write = clear_refs_write,
1280 .llseek = noop_llseek,
1281};
1282
1283typedef struct {
1284 u64 pme;
1285} pagemap_entry_t;
1286
1287struct pagemapread {
1288 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1289 pagemap_entry_t *buffer;
1290 bool show_pfn;
1291};
1292
1293#define PAGEMAP_WALK_SIZE (PMD_SIZE)
1294#define PAGEMAP_WALK_MASK (PMD_MASK)
1295
1296#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1297#define PM_PFRAME_BITS 55
1298#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1299#define PM_SOFT_DIRTY BIT_ULL(55)
1300#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1301#define PM_UFFD_WP BIT_ULL(57)
1302#define PM_FILE BIT_ULL(61)
1303#define PM_SWAP BIT_ULL(62)
1304#define PM_PRESENT BIT_ULL(63)
1305
1306#define PM_END_OF_BUFFER 1
1307
1308static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1309{
1310 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1311}
1312
1313static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1314 struct pagemapread *pm)
1315{
1316 pm->buffer[pm->pos++] = *pme;
1317 if (pm->pos >= pm->len)
1318 return PM_END_OF_BUFFER;
1319 return 0;
1320}
1321
1322static int pagemap_pte_hole(unsigned long start, unsigned long end,
1323 __always_unused int depth, struct mm_walk *walk)
1324{
1325 struct pagemapread *pm = walk->private;
1326 unsigned long addr = start;
1327 int err = 0;
1328
1329 while (addr < end) {
1330 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1331 pagemap_entry_t pme = make_pme(0, 0);
1332 /* End of address space hole, which we mark as non-present. */
1333 unsigned long hole_end;
1334
1335 if (vma)
1336 hole_end = min(end, vma->vm_start);
1337 else
1338 hole_end = end;
1339
1340 for (; addr < hole_end; addr += PAGE_SIZE) {
1341 err = add_to_pagemap(addr, &pme, pm);
1342 if (err)
1343 goto out;
1344 }
1345
1346 if (!vma)
1347 break;
1348
1349 /* Addresses in the VMA. */
1350 if (vma->vm_flags & VM_SOFTDIRTY)
1351 pme = make_pme(0, PM_SOFT_DIRTY);
1352 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1353 err = add_to_pagemap(addr, &pme, pm);
1354 if (err)
1355 goto out;
1356 }
1357 }
1358out:
1359 return err;
1360}
1361
1362static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1363 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1364{
1365 u64 frame = 0, flags = 0;
1366 struct page *page = NULL;
1367
1368 if (pte_present(pte)) {
1369 if (pm->show_pfn)
1370 frame = pte_pfn(pte);
1371 flags |= PM_PRESENT;
1372 page = vm_normal_page(vma, addr, pte);
1373 if (pte_soft_dirty(pte))
1374 flags |= PM_SOFT_DIRTY;
1375 if (pte_uffd_wp(pte))
1376 flags |= PM_UFFD_WP;
1377 } else if (is_swap_pte(pte)) {
1378 swp_entry_t entry;
1379 if (pte_swp_soft_dirty(pte))
1380 flags |= PM_SOFT_DIRTY;
1381 if (pte_swp_uffd_wp(pte))
1382 flags |= PM_UFFD_WP;
1383 entry = pte_to_swp_entry(pte);
1384 if (pm->show_pfn)
1385 frame = swp_type(entry) |
1386 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1387 flags |= PM_SWAP;
1388 if (is_pfn_swap_entry(entry))
1389 page = pfn_swap_entry_to_page(entry);
1390 }
1391
1392 if (page && !PageAnon(page))
1393 flags |= PM_FILE;
1394 if (page && page_mapcount(page) == 1)
1395 flags |= PM_MMAP_EXCLUSIVE;
1396 if (vma->vm_flags & VM_SOFTDIRTY)
1397 flags |= PM_SOFT_DIRTY;
1398
1399 return make_pme(frame, flags);
1400}
1401
1402static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1403 struct mm_walk *walk)
1404{
1405 struct vm_area_struct *vma = walk->vma;
1406 struct pagemapread *pm = walk->private;
1407 spinlock_t *ptl;
1408 pte_t *pte, *orig_pte;
1409 int err = 0;
1410
1411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412 ptl = pmd_trans_huge_lock(pmdp, vma);
1413 if (ptl) {
1414 u64 flags = 0, frame = 0;
1415 pmd_t pmd = *pmdp;
1416 struct page *page = NULL;
1417
1418 if (vma->vm_flags & VM_SOFTDIRTY)
1419 flags |= PM_SOFT_DIRTY;
1420
1421 if (pmd_present(pmd)) {
1422 page = pmd_page(pmd);
1423
1424 flags |= PM_PRESENT;
1425 if (pmd_soft_dirty(pmd))
1426 flags |= PM_SOFT_DIRTY;
1427 if (pmd_uffd_wp(pmd))
1428 flags |= PM_UFFD_WP;
1429 if (pm->show_pfn)
1430 frame = pmd_pfn(pmd) +
1431 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1432 }
1433#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1434 else if (is_swap_pmd(pmd)) {
1435 swp_entry_t entry = pmd_to_swp_entry(pmd);
1436 unsigned long offset;
1437
1438 if (pm->show_pfn) {
1439 offset = swp_offset(entry) +
1440 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1441 frame = swp_type(entry) |
1442 (offset << MAX_SWAPFILES_SHIFT);
1443 }
1444 flags |= PM_SWAP;
1445 if (pmd_swp_soft_dirty(pmd))
1446 flags |= PM_SOFT_DIRTY;
1447 if (pmd_swp_uffd_wp(pmd))
1448 flags |= PM_UFFD_WP;
1449 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1450 page = pfn_swap_entry_to_page(entry);
1451 }
1452#endif
1453
1454 if (page && page_mapcount(page) == 1)
1455 flags |= PM_MMAP_EXCLUSIVE;
1456
1457 for (; addr != end; addr += PAGE_SIZE) {
1458 pagemap_entry_t pme = make_pme(frame, flags);
1459
1460 err = add_to_pagemap(addr, &pme, pm);
1461 if (err)
1462 break;
1463 if (pm->show_pfn) {
1464 if (flags & PM_PRESENT)
1465 frame++;
1466 else if (flags & PM_SWAP)
1467 frame += (1 << MAX_SWAPFILES_SHIFT);
1468 }
1469 }
1470 spin_unlock(ptl);
1471 return err;
1472 }
1473
1474 if (pmd_trans_unstable(pmdp))
1475 return 0;
1476#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1477
1478 /*
1479 * We can assume that @vma always points to a valid one and @end never
1480 * goes beyond vma->vm_end.
1481 */
1482 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1483 for (; addr < end; pte++, addr += PAGE_SIZE) {
1484 pagemap_entry_t pme;
1485
1486 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1487 err = add_to_pagemap(addr, &pme, pm);
1488 if (err)
1489 break;
1490 }
1491 pte_unmap_unlock(orig_pte, ptl);
1492
1493 cond_resched();
1494
1495 return err;
1496}
1497
1498#ifdef CONFIG_HUGETLB_PAGE
1499/* This function walks within one hugetlb entry in the single call */
1500static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1501 unsigned long addr, unsigned long end,
1502 struct mm_walk *walk)
1503{
1504 struct pagemapread *pm = walk->private;
1505 struct vm_area_struct *vma = walk->vma;
1506 u64 flags = 0, frame = 0;
1507 int err = 0;
1508 pte_t pte;
1509
1510 if (vma->vm_flags & VM_SOFTDIRTY)
1511 flags |= PM_SOFT_DIRTY;
1512
1513 pte = huge_ptep_get(ptep);
1514 if (pte_present(pte)) {
1515 struct page *page = pte_page(pte);
1516
1517 if (!PageAnon(page))
1518 flags |= PM_FILE;
1519
1520 if (page_mapcount(page) == 1)
1521 flags |= PM_MMAP_EXCLUSIVE;
1522
1523 flags |= PM_PRESENT;
1524 if (pm->show_pfn)
1525 frame = pte_pfn(pte) +
1526 ((addr & ~hmask) >> PAGE_SHIFT);
1527 }
1528
1529 for (; addr != end; addr += PAGE_SIZE) {
1530 pagemap_entry_t pme = make_pme(frame, flags);
1531
1532 err = add_to_pagemap(addr, &pme, pm);
1533 if (err)
1534 return err;
1535 if (pm->show_pfn && (flags & PM_PRESENT))
1536 frame++;
1537 }
1538
1539 cond_resched();
1540
1541 return err;
1542}
1543#else
1544#define pagemap_hugetlb_range NULL
1545#endif /* HUGETLB_PAGE */
1546
1547static const struct mm_walk_ops pagemap_ops = {
1548 .pmd_entry = pagemap_pmd_range,
1549 .pte_hole = pagemap_pte_hole,
1550 .hugetlb_entry = pagemap_hugetlb_range,
1551};
1552
1553/*
1554 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1555 *
1556 * For each page in the address space, this file contains one 64-bit entry
1557 * consisting of the following:
1558 *
1559 * Bits 0-54 page frame number (PFN) if present
1560 * Bits 0-4 swap type if swapped
1561 * Bits 5-54 swap offset if swapped
1562 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1563 * Bit 56 page exclusively mapped
1564 * Bits 57-60 zero
1565 * Bit 61 page is file-page or shared-anon
1566 * Bit 62 page swapped
1567 * Bit 63 page present
1568 *
1569 * If the page is not present but in swap, then the PFN contains an
1570 * encoding of the swap file number and the page's offset into the
1571 * swap. Unmapped pages return a null PFN. This allows determining
1572 * precisely which pages are mapped (or in swap) and comparing mapped
1573 * pages between processes.
1574 *
1575 * Efficient users of this interface will use /proc/pid/maps to
1576 * determine which areas of memory are actually mapped and llseek to
1577 * skip over unmapped regions.
1578 */
1579static ssize_t pagemap_read(struct file *file, char __user *buf,
1580 size_t count, loff_t *ppos)
1581{
1582 struct mm_struct *mm = file->private_data;
1583 struct pagemapread pm;
1584 unsigned long src;
1585 unsigned long svpfn;
1586 unsigned long start_vaddr;
1587 unsigned long end_vaddr;
1588 int ret = 0, copied = 0;
1589
1590 if (!mm || !mmget_not_zero(mm))
1591 goto out;
1592
1593 ret = -EINVAL;
1594 /* file position must be aligned */
1595 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1596 goto out_mm;
1597
1598 ret = 0;
1599 if (!count)
1600 goto out_mm;
1601
1602 /* do not disclose physical addresses: attack vector */
1603 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1604
1605 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1606 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1607 ret = -ENOMEM;
1608 if (!pm.buffer)
1609 goto out_mm;
1610
1611 src = *ppos;
1612 svpfn = src / PM_ENTRY_BYTES;
1613 end_vaddr = mm->task_size;
1614
1615 /* watch out for wraparound */
1616 start_vaddr = end_vaddr;
1617 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1618 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1619
1620 /* Ensure the address is inside the task */
1621 if (start_vaddr > mm->task_size)
1622 start_vaddr = end_vaddr;
1623
1624 /*
1625 * The odds are that this will stop walking way
1626 * before end_vaddr, because the length of the
1627 * user buffer is tracked in "pm", and the walk
1628 * will stop when we hit the end of the buffer.
1629 */
1630 ret = 0;
1631 while (count && (start_vaddr < end_vaddr)) {
1632 int len;
1633 unsigned long end;
1634
1635 pm.pos = 0;
1636 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1637 /* overflow ? */
1638 if (end < start_vaddr || end > end_vaddr)
1639 end = end_vaddr;
1640 ret = mmap_read_lock_killable(mm);
1641 if (ret)
1642 goto out_free;
1643 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1644 mmap_read_unlock(mm);
1645 start_vaddr = end;
1646
1647 len = min(count, PM_ENTRY_BYTES * pm.pos);
1648 if (copy_to_user(buf, pm.buffer, len)) {
1649 ret = -EFAULT;
1650 goto out_free;
1651 }
1652 copied += len;
1653 buf += len;
1654 count -= len;
1655 }
1656 *ppos += copied;
1657 if (!ret || ret == PM_END_OF_BUFFER)
1658 ret = copied;
1659
1660out_free:
1661 kfree(pm.buffer);
1662out_mm:
1663 mmput(mm);
1664out:
1665 return ret;
1666}
1667
1668static int pagemap_open(struct inode *inode, struct file *file)
1669{
1670 struct mm_struct *mm;
1671
1672 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1673 if (IS_ERR(mm))
1674 return PTR_ERR(mm);
1675 file->private_data = mm;
1676 return 0;
1677}
1678
1679static int pagemap_release(struct inode *inode, struct file *file)
1680{
1681 struct mm_struct *mm = file->private_data;
1682
1683 if (mm)
1684 mmdrop(mm);
1685 return 0;
1686}
1687
1688const struct file_operations proc_pagemap_operations = {
1689 .llseek = mem_lseek, /* borrow this */
1690 .read = pagemap_read,
1691 .open = pagemap_open,
1692 .release = pagemap_release,
1693};
1694#endif /* CONFIG_PROC_PAGE_MONITOR */
1695
1696#ifdef CONFIG_NUMA
1697
1698struct numa_maps {
1699 unsigned long pages;
1700 unsigned long anon;
1701 unsigned long active;
1702 unsigned long writeback;
1703 unsigned long mapcount_max;
1704 unsigned long dirty;
1705 unsigned long swapcache;
1706 unsigned long node[MAX_NUMNODES];
1707};
1708
1709struct numa_maps_private {
1710 struct proc_maps_private proc_maps;
1711 struct numa_maps md;
1712};
1713
1714static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1715 unsigned long nr_pages)
1716{
1717 int count = page_mapcount(page);
1718
1719 md->pages += nr_pages;
1720 if (pte_dirty || PageDirty(page))
1721 md->dirty += nr_pages;
1722
1723 if (PageSwapCache(page))
1724 md->swapcache += nr_pages;
1725
1726 if (PageActive(page) || PageUnevictable(page))
1727 md->active += nr_pages;
1728
1729 if (PageWriteback(page))
1730 md->writeback += nr_pages;
1731
1732 if (PageAnon(page))
1733 md->anon += nr_pages;
1734
1735 if (count > md->mapcount_max)
1736 md->mapcount_max = count;
1737
1738 md->node[page_to_nid(page)] += nr_pages;
1739}
1740
1741static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1742 unsigned long addr)
1743{
1744 struct page *page;
1745 int nid;
1746
1747 if (!pte_present(pte))
1748 return NULL;
1749
1750 page = vm_normal_page(vma, addr, pte);
1751 if (!page)
1752 return NULL;
1753
1754 if (PageReserved(page))
1755 return NULL;
1756
1757 nid = page_to_nid(page);
1758 if (!node_isset(nid, node_states[N_MEMORY]))
1759 return NULL;
1760
1761 return page;
1762}
1763
1764#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1765static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1766 struct vm_area_struct *vma,
1767 unsigned long addr)
1768{
1769 struct page *page;
1770 int nid;
1771
1772 if (!pmd_present(pmd))
1773 return NULL;
1774
1775 page = vm_normal_page_pmd(vma, addr, pmd);
1776 if (!page)
1777 return NULL;
1778
1779 if (PageReserved(page))
1780 return NULL;
1781
1782 nid = page_to_nid(page);
1783 if (!node_isset(nid, node_states[N_MEMORY]))
1784 return NULL;
1785
1786 return page;
1787}
1788#endif
1789
1790static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1791 unsigned long end, struct mm_walk *walk)
1792{
1793 struct numa_maps *md = walk->private;
1794 struct vm_area_struct *vma = walk->vma;
1795 spinlock_t *ptl;
1796 pte_t *orig_pte;
1797 pte_t *pte;
1798
1799#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1800 ptl = pmd_trans_huge_lock(pmd, vma);
1801 if (ptl) {
1802 struct page *page;
1803
1804 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1805 if (page)
1806 gather_stats(page, md, pmd_dirty(*pmd),
1807 HPAGE_PMD_SIZE/PAGE_SIZE);
1808 spin_unlock(ptl);
1809 return 0;
1810 }
1811
1812 if (pmd_trans_unstable(pmd))
1813 return 0;
1814#endif
1815 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1816 do {
1817 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1818 if (!page)
1819 continue;
1820 gather_stats(page, md, pte_dirty(*pte), 1);
1821
1822 } while (pte++, addr += PAGE_SIZE, addr != end);
1823 pte_unmap_unlock(orig_pte, ptl);
1824 cond_resched();
1825 return 0;
1826}
1827#ifdef CONFIG_HUGETLB_PAGE
1828static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1829 unsigned long addr, unsigned long end, struct mm_walk *walk)
1830{
1831 pte_t huge_pte = huge_ptep_get(pte);
1832 struct numa_maps *md;
1833 struct page *page;
1834
1835 if (!pte_present(huge_pte))
1836 return 0;
1837
1838 page = pte_page(huge_pte);
1839 if (!page)
1840 return 0;
1841
1842 md = walk->private;
1843 gather_stats(page, md, pte_dirty(huge_pte), 1);
1844 return 0;
1845}
1846
1847#else
1848static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1849 unsigned long addr, unsigned long end, struct mm_walk *walk)
1850{
1851 return 0;
1852}
1853#endif
1854
1855static const struct mm_walk_ops show_numa_ops = {
1856 .hugetlb_entry = gather_hugetlb_stats,
1857 .pmd_entry = gather_pte_stats,
1858};
1859
1860/*
1861 * Display pages allocated per node and memory policy via /proc.
1862 */
1863static int show_numa_map(struct seq_file *m, void *v)
1864{
1865 struct numa_maps_private *numa_priv = m->private;
1866 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1867 struct vm_area_struct *vma = v;
1868 struct numa_maps *md = &numa_priv->md;
1869 struct file *file = vma->vm_file;
1870 struct mm_struct *mm = vma->vm_mm;
1871 struct mempolicy *pol;
1872 char buffer[64];
1873 int nid;
1874
1875 if (!mm)
1876 return 0;
1877
1878 /* Ensure we start with an empty set of numa_maps statistics. */
1879 memset(md, 0, sizeof(*md));
1880
1881 pol = __get_vma_policy(vma, vma->vm_start);
1882 if (pol) {
1883 mpol_to_str(buffer, sizeof(buffer), pol);
1884 mpol_cond_put(pol);
1885 } else {
1886 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1887 }
1888
1889 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1890
1891 if (file) {
1892 seq_puts(m, " file=");
1893 seq_file_path(m, file, "\n\t= ");
1894 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1895 seq_puts(m, " heap");
1896 } else if (is_stack(vma)) {
1897 seq_puts(m, " stack");
1898 }
1899
1900 if (is_vm_hugetlb_page(vma))
1901 seq_puts(m, " huge");
1902
1903 /* mmap_lock is held by m_start */
1904 walk_page_vma(vma, &show_numa_ops, md);
1905
1906 if (!md->pages)
1907 goto out;
1908
1909 if (md->anon)
1910 seq_printf(m, " anon=%lu", md->anon);
1911
1912 if (md->dirty)
1913 seq_printf(m, " dirty=%lu", md->dirty);
1914
1915 if (md->pages != md->anon && md->pages != md->dirty)
1916 seq_printf(m, " mapped=%lu", md->pages);
1917
1918 if (md->mapcount_max > 1)
1919 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1920
1921 if (md->swapcache)
1922 seq_printf(m, " swapcache=%lu", md->swapcache);
1923
1924 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1925 seq_printf(m, " active=%lu", md->active);
1926
1927 if (md->writeback)
1928 seq_printf(m, " writeback=%lu", md->writeback);
1929
1930 for_each_node_state(nid, N_MEMORY)
1931 if (md->node[nid])
1932 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1933
1934 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1935out:
1936 seq_putc(m, '\n');
1937 return 0;
1938}
1939
1940static const struct seq_operations proc_pid_numa_maps_op = {
1941 .start = m_start,
1942 .next = m_next,
1943 .stop = m_stop,
1944 .show = show_numa_map,
1945};
1946
1947static int pid_numa_maps_open(struct inode *inode, struct file *file)
1948{
1949 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1950 sizeof(struct numa_maps_private));
1951}
1952
1953const struct file_operations proc_pid_numa_maps_operations = {
1954 .open = pid_numa_maps_open,
1955 .read = seq_read,
1956 .llseek = seq_lseek,
1957 .release = proc_map_release,
1958};
1959
1960#endif /* CONFIG_NUMA */