Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2011 STRATO AG
  4 * written by Arne Jansen <sensille@gmx.net>
  5 */
  6
  7#include <linux/slab.h>
  8#include "messages.h"
  9#include "ulist.h"
 
 10
 11/*
 12 * ulist is a generic data structure to hold a collection of unique u64
 13 * values. The only operations it supports is adding to the list and
 14 * enumerating it.
 15 * It is possible to store an auxiliary value along with the key.
 16 *
 17 * A sample usage for ulists is the enumeration of directed graphs without
 18 * visiting a node twice. The pseudo-code could look like this:
 19 *
 20 * ulist = ulist_alloc();
 21 * ulist_add(ulist, root);
 22 * ULIST_ITER_INIT(&uiter);
 23 *
 24 * while ((elem = ulist_next(ulist, &uiter)) {
 25 * 	for (all child nodes n in elem)
 26 *		ulist_add(ulist, n);
 27 *	do something useful with the node;
 28 * }
 29 * ulist_free(ulist);
 30 *
 31 * This assumes the graph nodes are addressable by u64. This stems from the
 32 * usage for tree enumeration in btrfs, where the logical addresses are
 33 * 64 bit.
 34 *
 35 * It is also useful for tree enumeration which could be done elegantly
 36 * recursively, but is not possible due to kernel stack limitations. The
 37 * loop would be similar to the above.
 38 */
 39
 40/*
 41 * Freshly initialize a ulist.
 42 *
 43 * @ulist:	the ulist to initialize
 44 *
 45 * Note: don't use this function to init an already used ulist, use
 46 * ulist_reinit instead.
 47 */
 48void ulist_init(struct ulist *ulist)
 49{
 50	INIT_LIST_HEAD(&ulist->nodes);
 51	ulist->root = RB_ROOT;
 52	ulist->nnodes = 0;
 53	ulist->prealloc = NULL;
 54}
 55
 56/*
 57 * Free up additionally allocated memory for the ulist.
 58 *
 59 * @ulist:	the ulist from which to free the additional memory
 60 *
 61 * This is useful in cases where the base 'struct ulist' has been statically
 62 * allocated.
 63 */
 64void ulist_release(struct ulist *ulist)
 65{
 66	struct ulist_node *node;
 67	struct ulist_node *next;
 68
 69	list_for_each_entry_safe(node, next, &ulist->nodes, list) {
 70		kfree(node);
 71	}
 72	kfree(ulist->prealloc);
 73	ulist->prealloc = NULL;
 74	ulist->root = RB_ROOT;
 75	INIT_LIST_HEAD(&ulist->nodes);
 76}
 77
 78/*
 79 * Prepare a ulist for reuse.
 80 *
 81 * @ulist:	ulist to be reused
 82 *
 83 * Free up all additional memory allocated for the list elements and reinit
 84 * the ulist.
 85 */
 86void ulist_reinit(struct ulist *ulist)
 87{
 88	ulist_release(ulist);
 89	ulist_init(ulist);
 90}
 91
 92/*
 93 * Dynamically allocate a ulist.
 94 *
 95 * @gfp_mask:	allocation flags to for base allocation
 96 *
 97 * The allocated ulist will be returned in an initialized state.
 98 */
 99struct ulist *ulist_alloc(gfp_t gfp_mask)
100{
101	struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask);
102
103	if (!ulist)
104		return NULL;
105
106	ulist_init(ulist);
107
108	return ulist;
109}
110
111void ulist_prealloc(struct ulist *ulist, gfp_t gfp_mask)
112{
113	if (!ulist->prealloc)
114		ulist->prealloc = kzalloc(sizeof(*ulist->prealloc), gfp_mask);
115}
116
117/*
118 * Free dynamically allocated ulist.
119 *
120 * @ulist:	ulist to free
121 *
122 * It is not necessary to call ulist_release before.
123 */
124void ulist_free(struct ulist *ulist)
125{
126	if (!ulist)
127		return;
128	ulist_release(ulist);
129	kfree(ulist);
130}
131
132static struct ulist_node *ulist_rbtree_search(struct ulist *ulist, u64 val)
133{
134	struct rb_node *n = ulist->root.rb_node;
135	struct ulist_node *u = NULL;
136
137	while (n) {
138		u = rb_entry(n, struct ulist_node, rb_node);
139		if (u->val < val)
140			n = n->rb_right;
141		else if (u->val > val)
142			n = n->rb_left;
143		else
144			return u;
145	}
146	return NULL;
147}
148
149static void ulist_rbtree_erase(struct ulist *ulist, struct ulist_node *node)
150{
151	rb_erase(&node->rb_node, &ulist->root);
152	list_del(&node->list);
153	kfree(node);
154	BUG_ON(ulist->nnodes == 0);
155	ulist->nnodes--;
156}
157
158static int ulist_rbtree_insert(struct ulist *ulist, struct ulist_node *ins)
159{
160	struct rb_node **p = &ulist->root.rb_node;
161	struct rb_node *parent = NULL;
162	struct ulist_node *cur = NULL;
163
164	while (*p) {
165		parent = *p;
166		cur = rb_entry(parent, struct ulist_node, rb_node);
167
168		if (cur->val < ins->val)
169			p = &(*p)->rb_right;
170		else if (cur->val > ins->val)
171			p = &(*p)->rb_left;
172		else
173			return -EEXIST;
174	}
175	rb_link_node(&ins->rb_node, parent, p);
176	rb_insert_color(&ins->rb_node, &ulist->root);
177	return 0;
178}
179
180/*
181 * Add an element to the ulist.
182 *
183 * @ulist:	ulist to add the element to
184 * @val:	value to add to ulist
185 * @aux:	auxiliary value to store along with val
186 * @gfp_mask:	flags to use for allocation
187 *
188 * Note: locking must be provided by the caller. In case of rwlocks write
189 *       locking is needed
190 *
191 * Add an element to a ulist. The @val will only be added if it doesn't
192 * already exist. If it is added, the auxiliary value @aux is stored along with
193 * it. In case @val already exists in the ulist, @aux is ignored, even if
194 * it differs from the already stored value.
195 *
196 * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been
197 * inserted.
198 * In case of allocation failure -ENOMEM is returned and the ulist stays
199 * unaltered.
200 */
201int ulist_add(struct ulist *ulist, u64 val, u64 aux, gfp_t gfp_mask)
202{
203	return ulist_add_merge(ulist, val, aux, NULL, gfp_mask);
204}
205
206int ulist_add_merge(struct ulist *ulist, u64 val, u64 aux,
207		    u64 *old_aux, gfp_t gfp_mask)
208{
209	int ret;
210	struct ulist_node *node;
211
212	node = ulist_rbtree_search(ulist, val);
213	if (node) {
214		if (old_aux)
215			*old_aux = node->aux;
216		return 0;
217	}
218
219	if (ulist->prealloc) {
220		node = ulist->prealloc;
221		ulist->prealloc = NULL;
222	} else {
223		node = kmalloc(sizeof(*node), gfp_mask);
224		if (!node)
225			return -ENOMEM;
226	}
227
228	node->val = val;
229	node->aux = aux;
230
231	ret = ulist_rbtree_insert(ulist, node);
232	ASSERT(!ret);
233	list_add_tail(&node->list, &ulist->nodes);
234	ulist->nnodes++;
235
236	return 1;
237}
238
239/*
240 * Delete one node from ulist.
241 *
242 * @ulist:	ulist to remove node from
243 * @val:	value to delete
244 * @aux:	aux to delete
245 *
246 * The deletion will only be done when *BOTH* val and aux matches.
247 * Return 0 for successful delete.
248 * Return > 0 for not found.
249 */
250int ulist_del(struct ulist *ulist, u64 val, u64 aux)
251{
252	struct ulist_node *node;
253
254	node = ulist_rbtree_search(ulist, val);
255	/* Not found */
256	if (!node)
257		return 1;
258
259	if (node->aux != aux)
260		return 1;
261
262	/* Found and delete */
263	ulist_rbtree_erase(ulist, node);
264	return 0;
265}
266
267/*
268 * Iterate ulist.
269 *
270 * @ulist:	ulist to iterate
271 * @uiter:	iterator variable, initialized with ULIST_ITER_INIT(&iterator)
272 *
273 * Note: locking must be provided by the caller. In case of rwlocks only read
274 *       locking is needed
275 *
276 * This function is used to iterate an ulist.
277 * It returns the next element from the ulist or %NULL when the
278 * end is reached. No guarantee is made with respect to the order in which
279 * the elements are returned. They might neither be returned in order of
280 * addition nor in ascending order.
281 * It is allowed to call ulist_add during an enumeration. Newly added items
282 * are guaranteed to show up in the running enumeration.
283 */
284struct ulist_node *ulist_next(const struct ulist *ulist, struct ulist_iterator *uiter)
285{
286	struct ulist_node *node;
287
288	if (list_empty(&ulist->nodes))
289		return NULL;
290	if (uiter->cur_list && uiter->cur_list->next == &ulist->nodes)
291		return NULL;
292	if (uiter->cur_list) {
293		uiter->cur_list = uiter->cur_list->next;
294	} else {
295		uiter->cur_list = ulist->nodes.next;
296	}
297	node = list_entry(uiter->cur_list, struct ulist_node, list);
298	return node;
299}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2011 STRATO AG
  4 * written by Arne Jansen <sensille@gmx.net>
  5 */
  6
  7#include <linux/slab.h>
 
  8#include "ulist.h"
  9#include "ctree.h"
 10
 11/*
 12 * ulist is a generic data structure to hold a collection of unique u64
 13 * values. The only operations it supports is adding to the list and
 14 * enumerating it.
 15 * It is possible to store an auxiliary value along with the key.
 16 *
 17 * A sample usage for ulists is the enumeration of directed graphs without
 18 * visiting a node twice. The pseudo-code could look like this:
 19 *
 20 * ulist = ulist_alloc();
 21 * ulist_add(ulist, root);
 22 * ULIST_ITER_INIT(&uiter);
 23 *
 24 * while ((elem = ulist_next(ulist, &uiter)) {
 25 * 	for (all child nodes n in elem)
 26 *		ulist_add(ulist, n);
 27 *	do something useful with the node;
 28 * }
 29 * ulist_free(ulist);
 30 *
 31 * This assumes the graph nodes are addressable by u64. This stems from the
 32 * usage for tree enumeration in btrfs, where the logical addresses are
 33 * 64 bit.
 34 *
 35 * It is also useful for tree enumeration which could be done elegantly
 36 * recursively, but is not possible due to kernel stack limitations. The
 37 * loop would be similar to the above.
 38 */
 39
 40/**
 41 * ulist_init - freshly initialize a ulist
 
 42 * @ulist:	the ulist to initialize
 43 *
 44 * Note: don't use this function to init an already used ulist, use
 45 * ulist_reinit instead.
 46 */
 47void ulist_init(struct ulist *ulist)
 48{
 49	INIT_LIST_HEAD(&ulist->nodes);
 50	ulist->root = RB_ROOT;
 51	ulist->nnodes = 0;
 
 52}
 53
 54/**
 55 * ulist_release - free up additionally allocated memory for the ulist
 
 56 * @ulist:	the ulist from which to free the additional memory
 57 *
 58 * This is useful in cases where the base 'struct ulist' has been statically
 59 * allocated.
 60 */
 61void ulist_release(struct ulist *ulist)
 62{
 63	struct ulist_node *node;
 64	struct ulist_node *next;
 65
 66	list_for_each_entry_safe(node, next, &ulist->nodes, list) {
 67		kfree(node);
 68	}
 
 
 69	ulist->root = RB_ROOT;
 70	INIT_LIST_HEAD(&ulist->nodes);
 71}
 72
 73/**
 74 * ulist_reinit - prepare a ulist for reuse
 
 75 * @ulist:	ulist to be reused
 76 *
 77 * Free up all additional memory allocated for the list elements and reinit
 78 * the ulist.
 79 */
 80void ulist_reinit(struct ulist *ulist)
 81{
 82	ulist_release(ulist);
 83	ulist_init(ulist);
 84}
 85
 86/**
 87 * ulist_alloc - dynamically allocate a ulist
 
 88 * @gfp_mask:	allocation flags to for base allocation
 89 *
 90 * The allocated ulist will be returned in an initialized state.
 91 */
 92struct ulist *ulist_alloc(gfp_t gfp_mask)
 93{
 94	struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask);
 95
 96	if (!ulist)
 97		return NULL;
 98
 99	ulist_init(ulist);
100
101	return ulist;
102}
103
104/**
105 * ulist_free - free dynamically allocated ulist
 
 
 
 
 
 
 
106 * @ulist:	ulist to free
107 *
108 * It is not necessary to call ulist_release before.
109 */
110void ulist_free(struct ulist *ulist)
111{
112	if (!ulist)
113		return;
114	ulist_release(ulist);
115	kfree(ulist);
116}
117
118static struct ulist_node *ulist_rbtree_search(struct ulist *ulist, u64 val)
119{
120	struct rb_node *n = ulist->root.rb_node;
121	struct ulist_node *u = NULL;
122
123	while (n) {
124		u = rb_entry(n, struct ulist_node, rb_node);
125		if (u->val < val)
126			n = n->rb_right;
127		else if (u->val > val)
128			n = n->rb_left;
129		else
130			return u;
131	}
132	return NULL;
133}
134
135static void ulist_rbtree_erase(struct ulist *ulist, struct ulist_node *node)
136{
137	rb_erase(&node->rb_node, &ulist->root);
138	list_del(&node->list);
139	kfree(node);
140	BUG_ON(ulist->nnodes == 0);
141	ulist->nnodes--;
142}
143
144static int ulist_rbtree_insert(struct ulist *ulist, struct ulist_node *ins)
145{
146	struct rb_node **p = &ulist->root.rb_node;
147	struct rb_node *parent = NULL;
148	struct ulist_node *cur = NULL;
149
150	while (*p) {
151		parent = *p;
152		cur = rb_entry(parent, struct ulist_node, rb_node);
153
154		if (cur->val < ins->val)
155			p = &(*p)->rb_right;
156		else if (cur->val > ins->val)
157			p = &(*p)->rb_left;
158		else
159			return -EEXIST;
160	}
161	rb_link_node(&ins->rb_node, parent, p);
162	rb_insert_color(&ins->rb_node, &ulist->root);
163	return 0;
164}
165
166/**
167 * ulist_add - add an element to the ulist
 
168 * @ulist:	ulist to add the element to
169 * @val:	value to add to ulist
170 * @aux:	auxiliary value to store along with val
171 * @gfp_mask:	flags to use for allocation
172 *
173 * Note: locking must be provided by the caller. In case of rwlocks write
174 *       locking is needed
175 *
176 * Add an element to a ulist. The @val will only be added if it doesn't
177 * already exist. If it is added, the auxiliary value @aux is stored along with
178 * it. In case @val already exists in the ulist, @aux is ignored, even if
179 * it differs from the already stored value.
180 *
181 * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been
182 * inserted.
183 * In case of allocation failure -ENOMEM is returned and the ulist stays
184 * unaltered.
185 */
186int ulist_add(struct ulist *ulist, u64 val, u64 aux, gfp_t gfp_mask)
187{
188	return ulist_add_merge(ulist, val, aux, NULL, gfp_mask);
189}
190
191int ulist_add_merge(struct ulist *ulist, u64 val, u64 aux,
192		    u64 *old_aux, gfp_t gfp_mask)
193{
194	int ret;
195	struct ulist_node *node;
196
197	node = ulist_rbtree_search(ulist, val);
198	if (node) {
199		if (old_aux)
200			*old_aux = node->aux;
201		return 0;
202	}
203	node = kmalloc(sizeof(*node), gfp_mask);
204	if (!node)
205		return -ENOMEM;
 
 
 
 
 
 
206
207	node->val = val;
208	node->aux = aux;
209
210	ret = ulist_rbtree_insert(ulist, node);
211	ASSERT(!ret);
212	list_add_tail(&node->list, &ulist->nodes);
213	ulist->nnodes++;
214
215	return 1;
216}
217
218/*
219 * ulist_del - delete one node from ulist
 
220 * @ulist:	ulist to remove node from
221 * @val:	value to delete
222 * @aux:	aux to delete
223 *
224 * The deletion will only be done when *BOTH* val and aux matches.
225 * Return 0 for successful delete.
226 * Return > 0 for not found.
227 */
228int ulist_del(struct ulist *ulist, u64 val, u64 aux)
229{
230	struct ulist_node *node;
231
232	node = ulist_rbtree_search(ulist, val);
233	/* Not found */
234	if (!node)
235		return 1;
236
237	if (node->aux != aux)
238		return 1;
239
240	/* Found and delete */
241	ulist_rbtree_erase(ulist, node);
242	return 0;
243}
244
245/**
246 * ulist_next - iterate ulist
 
247 * @ulist:	ulist to iterate
248 * @uiter:	iterator variable, initialized with ULIST_ITER_INIT(&iterator)
249 *
250 * Note: locking must be provided by the caller. In case of rwlocks only read
251 *       locking is needed
252 *
253 * This function is used to iterate an ulist.
254 * It returns the next element from the ulist or %NULL when the
255 * end is reached. No guarantee is made with respect to the order in which
256 * the elements are returned. They might neither be returned in order of
257 * addition nor in ascending order.
258 * It is allowed to call ulist_add during an enumeration. Newly added items
259 * are guaranteed to show up in the running enumeration.
260 */
261struct ulist_node *ulist_next(struct ulist *ulist, struct ulist_iterator *uiter)
262{
263	struct ulist_node *node;
264
265	if (list_empty(&ulist->nodes))
266		return NULL;
267	if (uiter->cur_list && uiter->cur_list->next == &ulist->nodes)
268		return NULL;
269	if (uiter->cur_list) {
270		uiter->cur_list = uiter->cur_list->next;
271	} else {
272		uiter->cur_list = ulist->nodes.next;
273	}
274	node = list_entry(uiter->cur_list, struct ulist_node, list);
275	return node;
276}