Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2011 STRATO AG
  4 * written by Arne Jansen <sensille@gmx.net>
 
  5 */
  6
  7#include <linux/slab.h>
  8#include "messages.h"
  9#include "ulist.h"
 10
 11/*
 12 * ulist is a generic data structure to hold a collection of unique u64
 13 * values. The only operations it supports is adding to the list and
 14 * enumerating it.
 15 * It is possible to store an auxiliary value along with the key.
 16 *
 
 
 
 
 17 * A sample usage for ulists is the enumeration of directed graphs without
 18 * visiting a node twice. The pseudo-code could look like this:
 19 *
 20 * ulist = ulist_alloc();
 21 * ulist_add(ulist, root);
 22 * ULIST_ITER_INIT(&uiter);
 23 *
 24 * while ((elem = ulist_next(ulist, &uiter)) {
 25 * 	for (all child nodes n in elem)
 26 *		ulist_add(ulist, n);
 27 *	do something useful with the node;
 28 * }
 29 * ulist_free(ulist);
 30 *
 31 * This assumes the graph nodes are addressable by u64. This stems from the
 32 * usage for tree enumeration in btrfs, where the logical addresses are
 33 * 64 bit.
 34 *
 35 * It is also useful for tree enumeration which could be done elegantly
 36 * recursively, but is not possible due to kernel stack limitations. The
 37 * loop would be similar to the above.
 38 */
 39
 40/*
 41 * Freshly initialize a ulist.
 42 *
 43 * @ulist:	the ulist to initialize
 44 *
 45 * Note: don't use this function to init an already used ulist, use
 46 * ulist_reinit instead.
 47 */
 48void ulist_init(struct ulist *ulist)
 49{
 50	INIT_LIST_HEAD(&ulist->nodes);
 51	ulist->root = RB_ROOT;
 52	ulist->nnodes = 0;
 53	ulist->prealloc = NULL;
 
 54}
 
 55
 56/*
 57 * Free up additionally allocated memory for the ulist.
 58 *
 59 * @ulist:	the ulist from which to free the additional memory
 60 *
 61 * This is useful in cases where the base 'struct ulist' has been statically
 62 * allocated.
 63 */
 64void ulist_release(struct ulist *ulist)
 65{
 66	struct ulist_node *node;
 67	struct ulist_node *next;
 68
 69	list_for_each_entry_safe(node, next, &ulist->nodes, list) {
 70		kfree(node);
 71	}
 72	kfree(ulist->prealloc);
 73	ulist->prealloc = NULL;
 74	ulist->root = RB_ROOT;
 75	INIT_LIST_HEAD(&ulist->nodes);
 76}
 
 77
 78/*
 79 * Prepare a ulist for reuse.
 80 *
 81 * @ulist:	ulist to be reused
 82 *
 83 * Free up all additional memory allocated for the list elements and reinit
 84 * the ulist.
 85 */
 86void ulist_reinit(struct ulist *ulist)
 87{
 88	ulist_release(ulist);
 89	ulist_init(ulist);
 90}
 
 91
 92/*
 93 * Dynamically allocate a ulist.
 94 *
 95 * @gfp_mask:	allocation flags to for base allocation
 96 *
 97 * The allocated ulist will be returned in an initialized state.
 98 */
 99struct ulist *ulist_alloc(gfp_t gfp_mask)
100{
101	struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask);
102
103	if (!ulist)
104		return NULL;
105
106	ulist_init(ulist);
107
108	return ulist;
109}
 
110
111void ulist_prealloc(struct ulist *ulist, gfp_t gfp_mask)
112{
113	if (!ulist->prealloc)
114		ulist->prealloc = kzalloc(sizeof(*ulist->prealloc), gfp_mask);
115}
116
117/*
118 * Free dynamically allocated ulist.
119 *
120 * @ulist:	ulist to free
121 *
122 * It is not necessary to call ulist_release before.
123 */
124void ulist_free(struct ulist *ulist)
125{
126	if (!ulist)
127		return;
128	ulist_release(ulist);
129	kfree(ulist);
130}
 
131
132static struct ulist_node *ulist_rbtree_search(struct ulist *ulist, u64 val)
133{
134	struct rb_node *n = ulist->root.rb_node;
135	struct ulist_node *u = NULL;
136
137	while (n) {
138		u = rb_entry(n, struct ulist_node, rb_node);
139		if (u->val < val)
140			n = n->rb_right;
141		else if (u->val > val)
142			n = n->rb_left;
143		else
144			return u;
145	}
146	return NULL;
147}
148
149static void ulist_rbtree_erase(struct ulist *ulist, struct ulist_node *node)
150{
151	rb_erase(&node->rb_node, &ulist->root);
152	list_del(&node->list);
153	kfree(node);
154	BUG_ON(ulist->nnodes == 0);
155	ulist->nnodes--;
156}
157
158static int ulist_rbtree_insert(struct ulist *ulist, struct ulist_node *ins)
159{
160	struct rb_node **p = &ulist->root.rb_node;
161	struct rb_node *parent = NULL;
162	struct ulist_node *cur = NULL;
163
164	while (*p) {
165		parent = *p;
166		cur = rb_entry(parent, struct ulist_node, rb_node);
167
168		if (cur->val < ins->val)
169			p = &(*p)->rb_right;
170		else if (cur->val > ins->val)
171			p = &(*p)->rb_left;
172		else
173			return -EEXIST;
174	}
175	rb_link_node(&ins->rb_node, parent, p);
176	rb_insert_color(&ins->rb_node, &ulist->root);
177	return 0;
178}
179
180/*
181 * Add an element to the ulist.
182 *
183 * @ulist:	ulist to add the element to
184 * @val:	value to add to ulist
185 * @aux:	auxiliary value to store along with val
186 * @gfp_mask:	flags to use for allocation
187 *
188 * Note: locking must be provided by the caller. In case of rwlocks write
189 *       locking is needed
190 *
191 * Add an element to a ulist. The @val will only be added if it doesn't
192 * already exist. If it is added, the auxiliary value @aux is stored along with
193 * it. In case @val already exists in the ulist, @aux is ignored, even if
194 * it differs from the already stored value.
195 *
196 * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been
197 * inserted.
198 * In case of allocation failure -ENOMEM is returned and the ulist stays
199 * unaltered.
200 */
201int ulist_add(struct ulist *ulist, u64 val, u64 aux, gfp_t gfp_mask)
 
202{
203	return ulist_add_merge(ulist, val, aux, NULL, gfp_mask);
204}
205
206int ulist_add_merge(struct ulist *ulist, u64 val, u64 aux,
207		    u64 *old_aux, gfp_t gfp_mask)
208{
209	int ret;
210	struct ulist_node *node;
211
212	node = ulist_rbtree_search(ulist, val);
213	if (node) {
214		if (old_aux)
215			*old_aux = node->aux;
216		return 0;
217	}
218
219	if (ulist->prealloc) {
220		node = ulist->prealloc;
221		ulist->prealloc = NULL;
222	} else {
223		node = kmalloc(sizeof(*node), gfp_mask);
224		if (!node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225			return -ENOMEM;
226	}
227
228	node->val = val;
229	node->aux = aux;
230
231	ret = ulist_rbtree_insert(ulist, node);
232	ASSERT(!ret);
233	list_add_tail(&node->list, &ulist->nodes);
234	ulist->nnodes++;
 
 
 
 
 
 
235
236	return 1;
237}
 
238
239/*
240 * Delete one node from ulist.
241 *
242 * @ulist:	ulist to remove node from
243 * @val:	value to delete
244 * @aux:	aux to delete
245 *
246 * The deletion will only be done when *BOTH* val and aux matches.
247 * Return 0 for successful delete.
248 * Return > 0 for not found.
249 */
250int ulist_del(struct ulist *ulist, u64 val, u64 aux)
251{
252	struct ulist_node *node;
253
254	node = ulist_rbtree_search(ulist, val);
255	/* Not found */
256	if (!node)
257		return 1;
258
259	if (node->aux != aux)
260		return 1;
261
262	/* Found and delete */
263	ulist_rbtree_erase(ulist, node);
264	return 0;
265}
266
267/*
268 * Iterate ulist.
269 *
270 * @ulist:	ulist to iterate
271 * @uiter:	iterator variable, initialized with ULIST_ITER_INIT(&iterator)
272 *
273 * Note: locking must be provided by the caller. In case of rwlocks only read
274 *       locking is needed
275 *
276 * This function is used to iterate an ulist.
277 * It returns the next element from the ulist or %NULL when the
278 * end is reached. No guarantee is made with respect to the order in which
279 * the elements are returned. They might neither be returned in order of
280 * addition nor in ascending order.
281 * It is allowed to call ulist_add during an enumeration. Newly added items
282 * are guaranteed to show up in the running enumeration.
283 */
284struct ulist_node *ulist_next(const struct ulist *ulist, struct ulist_iterator *uiter)
285{
286	struct ulist_node *node;
287
288	if (list_empty(&ulist->nodes))
289		return NULL;
290	if (uiter->cur_list && uiter->cur_list->next == &ulist->nodes)
291		return NULL;
292	if (uiter->cur_list) {
293		uiter->cur_list = uiter->cur_list->next;
294	} else {
295		uiter->cur_list = ulist->nodes.next;
296	}
297	node = list_entry(uiter->cur_list, struct ulist_node, list);
298	return node;
299}
v3.5.6
 
  1/*
  2 * Copyright (C) 2011 STRATO AG
  3 * written by Arne Jansen <sensille@gmx.net>
  4 * Distributed under the GNU GPL license version 2.
  5 */
  6
  7#include <linux/slab.h>
  8#include <linux/module.h>
  9#include "ulist.h"
 10
 11/*
 12 * ulist is a generic data structure to hold a collection of unique u64
 13 * values. The only operations it supports is adding to the list and
 14 * enumerating it.
 15 * It is possible to store an auxiliary value along with the key.
 16 *
 17 * The implementation is preliminary and can probably be sped up
 18 * significantly. A first step would be to store the values in an rbtree
 19 * as soon as ULIST_SIZE is exceeded.
 20 *
 21 * A sample usage for ulists is the enumeration of directed graphs without
 22 * visiting a node twice. The pseudo-code could look like this:
 23 *
 24 * ulist = ulist_alloc();
 25 * ulist_add(ulist, root);
 26 * ULIST_ITER_INIT(&uiter);
 27 *
 28 * while ((elem = ulist_next(ulist, &uiter)) {
 29 * 	for (all child nodes n in elem)
 30 *		ulist_add(ulist, n);
 31 *	do something useful with the node;
 32 * }
 33 * ulist_free(ulist);
 34 *
 35 * This assumes the graph nodes are adressable by u64. This stems from the
 36 * usage for tree enumeration in btrfs, where the logical addresses are
 37 * 64 bit.
 38 *
 39 * It is also useful for tree enumeration which could be done elegantly
 40 * recursively, but is not possible due to kernel stack limitations. The
 41 * loop would be similar to the above.
 42 */
 43
 44/**
 45 * ulist_init - freshly initialize a ulist
 
 46 * @ulist:	the ulist to initialize
 47 *
 48 * Note: don't use this function to init an already used ulist, use
 49 * ulist_reinit instead.
 50 */
 51void ulist_init(struct ulist *ulist)
 52{
 
 
 53	ulist->nnodes = 0;
 54	ulist->nodes = ulist->int_nodes;
 55	ulist->nodes_alloced = ULIST_SIZE;
 56}
 57EXPORT_SYMBOL(ulist_init);
 58
 59/**
 60 * ulist_fini - free up additionally allocated memory for the ulist
 
 61 * @ulist:	the ulist from which to free the additional memory
 62 *
 63 * This is useful in cases where the base 'struct ulist' has been statically
 64 * allocated.
 65 */
 66void ulist_fini(struct ulist *ulist)
 67{
 68	/*
 69	 * The first ULIST_SIZE elements are stored inline in struct ulist.
 70	 * Only if more elements are alocated they need to be freed.
 71	 */
 72	if (ulist->nodes_alloced > ULIST_SIZE)
 73		kfree(ulist->nodes);
 74	ulist->nodes_alloced = 0;	/* in case ulist_fini is called twice */
 
 
 
 75}
 76EXPORT_SYMBOL(ulist_fini);
 77
 78/**
 79 * ulist_reinit - prepare a ulist for reuse
 
 80 * @ulist:	ulist to be reused
 81 *
 82 * Free up all additional memory allocated for the list elements and reinit
 83 * the ulist.
 84 */
 85void ulist_reinit(struct ulist *ulist)
 86{
 87	ulist_fini(ulist);
 88	ulist_init(ulist);
 89}
 90EXPORT_SYMBOL(ulist_reinit);
 91
 92/**
 93 * ulist_alloc - dynamically allocate a ulist
 
 94 * @gfp_mask:	allocation flags to for base allocation
 95 *
 96 * The allocated ulist will be returned in an initialized state.
 97 */
 98struct ulist *ulist_alloc(gfp_t gfp_mask)
 99{
100	struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask);
101
102	if (!ulist)
103		return NULL;
104
105	ulist_init(ulist);
106
107	return ulist;
108}
109EXPORT_SYMBOL(ulist_alloc);
110
111/**
112 * ulist_free - free dynamically allocated ulist
 
 
 
 
 
 
 
113 * @ulist:	ulist to free
114 *
115 * It is not necessary to call ulist_fini before.
116 */
117void ulist_free(struct ulist *ulist)
118{
119	if (!ulist)
120		return;
121	ulist_fini(ulist);
122	kfree(ulist);
123}
124EXPORT_SYMBOL(ulist_free);
125
126/**
127 * ulist_add - add an element to the ulist
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128 * @ulist:	ulist to add the element to
129 * @val:	value to add to ulist
130 * @aux:	auxiliary value to store along with val
131 * @gfp_mask:	flags to use for allocation
132 *
133 * Note: locking must be provided by the caller. In case of rwlocks write
134 *       locking is needed
135 *
136 * Add an element to a ulist. The @val will only be added if it doesn't
137 * already exist. If it is added, the auxiliary value @aux is stored along with
138 * it. In case @val already exists in the ulist, @aux is ignored, even if
139 * it differs from the already stored value.
140 *
141 * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been
142 * inserted.
143 * In case of allocation failure -ENOMEM is returned and the ulist stays
144 * unaltered.
145 */
146int ulist_add(struct ulist *ulist, u64 val, unsigned long aux,
147	      gfp_t gfp_mask)
148{
149	return ulist_add_merge(ulist, val, aux, NULL, gfp_mask);
150}
151
152int ulist_add_merge(struct ulist *ulist, u64 val, unsigned long aux,
153		    unsigned long *old_aux, gfp_t gfp_mask)
154{
155	int i;
 
 
 
 
 
 
 
 
156
157	for (i = 0; i < ulist->nnodes; ++i) {
158		if (ulist->nodes[i].val == val) {
159			if (old_aux)
160				*old_aux = ulist->nodes[i].aux;
161			return 0;
162		}
163	}
164
165	if (ulist->nnodes >= ulist->nodes_alloced) {
166		u64 new_alloced = ulist->nodes_alloced + 128;
167		struct ulist_node *new_nodes;
168		void *old = NULL;
169
170		/*
171		 * if nodes_alloced == ULIST_SIZE no memory has been allocated
172		 * yet, so pass NULL to krealloc
173		 */
174		if (ulist->nodes_alloced > ULIST_SIZE)
175			old = ulist->nodes;
176
177		new_nodes = krealloc(old, sizeof(*new_nodes) * new_alloced,
178				     gfp_mask);
179		if (!new_nodes)
180			return -ENOMEM;
 
 
 
 
181
182		if (!old)
183			memcpy(new_nodes, ulist->int_nodes,
184			       sizeof(ulist->int_nodes));
185
186		ulist->nodes = new_nodes;
187		ulist->nodes_alloced = new_alloced;
188	}
189	ulist->nodes[ulist->nnodes].val = val;
190	ulist->nodes[ulist->nnodes].aux = aux;
191	++ulist->nnodes;
192
193	return 1;
194}
195EXPORT_SYMBOL(ulist_add);
196
197/**
198 * ulist_next - iterate ulist
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199 * @ulist:	ulist to iterate
200 * @uiter:	iterator variable, initialized with ULIST_ITER_INIT(&iterator)
201 *
202 * Note: locking must be provided by the caller. In case of rwlocks only read
203 *       locking is needed
204 *
205 * This function is used to iterate an ulist.
206 * It returns the next element from the ulist or %NULL when the
207 * end is reached. No guarantee is made with respect to the order in which
208 * the elements are returned. They might neither be returned in order of
209 * addition nor in ascending order.
210 * It is allowed to call ulist_add during an enumeration. Newly added items
211 * are guaranteed to show up in the running enumeration.
212 */
213struct ulist_node *ulist_next(struct ulist *ulist, struct ulist_iterator *uiter)
214{
215	if (ulist->nnodes == 0)
 
 
216		return NULL;
217	if (uiter->i < 0 || uiter->i >= ulist->nnodes)
218		return NULL;
219
220	return &ulist->nodes[uiter->i++];
 
 
 
 
 
221}
222EXPORT_SYMBOL(ulist_next);