Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include <net/xdp_sock_drv.h>
   5#include "ice_base.h"
   6#include "ice_lib.h"
   7#include "ice_dcb_lib.h"
   8#include "ice_sriov.h"
   9
  10/**
  11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
  12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
  13 *
  14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
  15 */
  16static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
  17{
  18	unsigned int offset, i;
  19
  20	mutex_lock(qs_cfg->qs_mutex);
  21	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
  22					    0, qs_cfg->q_count, 0);
  23	if (offset >= qs_cfg->pf_map_size) {
  24		mutex_unlock(qs_cfg->qs_mutex);
  25		return -ENOMEM;
  26	}
  27
  28	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
  29	for (i = 0; i < qs_cfg->q_count; i++)
  30		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
  31	mutex_unlock(qs_cfg->qs_mutex);
  32
  33	return 0;
  34}
  35
  36/**
  37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
  38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
  39 *
  40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
  41 */
  42static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
  43{
  44	unsigned int i, index = 0;
  45
  46	mutex_lock(qs_cfg->qs_mutex);
  47	for (i = 0; i < qs_cfg->q_count; i++) {
  48		index = find_next_zero_bit(qs_cfg->pf_map,
  49					   qs_cfg->pf_map_size, index);
  50		if (index >= qs_cfg->pf_map_size)
  51			goto err_scatter;
  52		set_bit(index, qs_cfg->pf_map);
  53		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
  54	}
  55	mutex_unlock(qs_cfg->qs_mutex);
  56
  57	return 0;
  58err_scatter:
  59	for (index = 0; index < i; index++) {
  60		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
  61		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
  62	}
  63	mutex_unlock(qs_cfg->qs_mutex);
  64
  65	return -ENOMEM;
  66}
  67
  68/**
  69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
  70 * @pf: the PF being configured
  71 * @pf_q: the PF queue
  72 * @ena: enable or disable state of the queue
  73 *
  74 * This routine will wait for the given Rx queue of the PF to reach the
  75 * enabled or disabled state.
  76 * Returns -ETIMEDOUT in case of failing to reach the requested state after
  77 * multiple retries; else will return 0 in case of success.
  78 */
  79static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
  80{
  81	int i;
  82
  83	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
  84		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
  85			      QRX_CTRL_QENA_STAT_M))
  86			return 0;
  87
  88		usleep_range(20, 40);
  89	}
  90
  91	return -ETIMEDOUT;
  92}
  93
  94/**
  95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
  96 * @vsi: the VSI being configured
  97 * @v_idx: index of the vector in the VSI struct
  98 *
  99 * We allocate one q_vector and set default value for ITR setting associated
 100 * with this q_vector. If allocation fails we return -ENOMEM.
 101 */
 102static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
 103{
 104	struct ice_pf *pf = vsi->back;
 105	struct ice_q_vector *q_vector;
 106	int err;
 107
 108	/* allocate q_vector */
 109	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
 
 110	if (!q_vector)
 111		return -ENOMEM;
 112
 113	q_vector->vsi = vsi;
 114	q_vector->v_idx = v_idx;
 115	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
 116	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
 117	q_vector->tx.itr_mode = ITR_DYNAMIC;
 118	q_vector->rx.itr_mode = ITR_DYNAMIC;
 119	q_vector->tx.type = ICE_TX_CONTAINER;
 120	q_vector->rx.type = ICE_RX_CONTAINER;
 121	q_vector->irq.index = -ENOENT;
 122
 123	if (vsi->type == ICE_VSI_VF) {
 124		ice_calc_vf_reg_idx(vsi->vf, q_vector);
 125		goto out;
 126	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
 127		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
 128
 129		if (ctrl_vsi) {
 130			if (unlikely(!ctrl_vsi->q_vectors)) {
 131				err = -ENOENT;
 132				goto err_free_q_vector;
 133			}
 134
 135			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
 136			goto skip_alloc;
 137		}
 138	}
 139
 140	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
 141	if (q_vector->irq.index < 0) {
 142		err = -ENOMEM;
 143		goto err_free_q_vector;
 144	}
 145
 146skip_alloc:
 147	q_vector->reg_idx = q_vector->irq.index;
 148	q_vector->vf_reg_idx = q_vector->irq.index;
 149
 150	/* only set affinity_mask if the CPU is online */
 151	if (cpu_online(v_idx))
 152		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
 153
 154	/* This will not be called in the driver load path because the netdev
 155	 * will not be created yet. All other cases with register the NAPI
 156	 * handler here (i.e. resume, reset/rebuild, etc.)
 157	 */
 158	if (vsi->netdev)
 159		netif_napi_add_config(vsi->netdev, &q_vector->napi,
 160				      ice_napi_poll, v_idx);
 161
 162out:
 163	/* tie q_vector and VSI together */
 164	vsi->q_vectors[v_idx] = q_vector;
 165
 166	return 0;
 167
 168err_free_q_vector:
 169	kfree(q_vector);
 170
 171	return err;
 172}
 173
 174/**
 175 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
 176 * @vsi: VSI having the memory freed
 177 * @v_idx: index of the vector to be freed
 178 */
 179static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
 180{
 181	struct ice_q_vector *q_vector;
 182	struct ice_pf *pf = vsi->back;
 183	struct ice_tx_ring *tx_ring;
 184	struct ice_rx_ring *rx_ring;
 185	struct device *dev;
 186
 187	dev = ice_pf_to_dev(pf);
 188	if (!vsi->q_vectors[v_idx]) {
 189		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
 190		return;
 191	}
 192	q_vector = vsi->q_vectors[v_idx];
 193
 194	ice_for_each_tx_ring(tx_ring, vsi->q_vectors[v_idx]->tx)
 195		tx_ring->q_vector = NULL;
 196
 197	ice_for_each_rx_ring(rx_ring, vsi->q_vectors[v_idx]->rx)
 198		rx_ring->q_vector = NULL;
 199
 200	/* only VSI with an associated netdev is set up with NAPI */
 201	if (vsi->netdev)
 202		netif_napi_del(&q_vector->napi);
 203
 204	/* release MSIX interrupt if q_vector had interrupt allocated */
 205	if (q_vector->irq.index < 0)
 206		goto free_q_vector;
 207
 208	/* only free last VF ctrl vsi interrupt */
 209	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
 210	    ice_get_vf_ctrl_vsi(pf, vsi))
 211		goto free_q_vector;
 212
 213	ice_free_irq(pf, q_vector->irq);
 214
 215free_q_vector:
 216	kfree(q_vector);
 217	vsi->q_vectors[v_idx] = NULL;
 218}
 219
 220/**
 221 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
 222 * @hw: board specific structure
 223 */
 224static void ice_cfg_itr_gran(struct ice_hw *hw)
 225{
 226	u32 regval = rd32(hw, GLINT_CTL);
 227
 228	/* no need to update global register if ITR gran is already set */
 229	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
 230	    (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
 231	    (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
 232	    (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
 233	    (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
 
 
 
 
 234		return;
 235
 236	regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
 237		 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
 238		 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
 239		 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
 
 
 
 
 240	wr32(hw, GLINT_CTL, regval);
 241}
 242
 243/**
 244 * ice_calc_txq_handle - calculate the queue handle
 245 * @vsi: VSI that ring belongs to
 246 * @ring: ring to get the absolute queue index
 247 * @tc: traffic class number
 248 */
 249static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
 250{
 251	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
 252
 253	if (ring->ch)
 254		return ring->q_index - ring->ch->base_q;
 255
 256	/* Idea here for calculation is that we subtract the number of queue
 257	 * count from TC that ring belongs to from it's absolute queue index
 258	 * and as a result we get the queue's index within TC.
 259	 */
 260	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
 261}
 262
 263/**
 264 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
 265 * @ring: The Tx ring to configure
 266 *
 267 * This enables/disables XPS for a given Tx descriptor ring
 268 * based on the TCs enabled for the VSI that ring belongs to.
 269 */
 270static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
 271{
 272	if (!ring->q_vector || !ring->netdev)
 273		return;
 274
 275	/* We only initialize XPS once, so as not to overwrite user settings */
 276	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
 277		return;
 278
 279	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
 280			    ring->q_index);
 281}
 282
 283/**
 284 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
 285 * @ring: The Tx ring to configure
 286 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
 287 * @pf_q: queue index in the PF space
 288 *
 289 * Configure the Tx descriptor ring in TLAN context.
 290 */
 291static void
 292ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
 293{
 294	struct ice_vsi *vsi = ring->vsi;
 295	struct ice_hw *hw = &vsi->back->hw;
 296
 297	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
 298
 299	tlan_ctx->port_num = vsi->port_info->lport;
 300
 301	/* Transmit Queue Length */
 302	tlan_ctx->qlen = ring->count;
 303
 304	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
 305
 306	/* PF number */
 307	tlan_ctx->pf_num = hw->pf_id;
 308
 309	/* queue belongs to a specific VSI type
 310	 * VF / VM index should be programmed per vmvf_type setting:
 311	 * for vmvf_type = VF, it is VF number between 0-256
 312	 * for vmvf_type = VM, it is VM number between 0-767
 313	 * for PF or EMP this field should be set to zero
 314	 */
 315	switch (vsi->type) {
 316	case ICE_VSI_LB:
 317	case ICE_VSI_CTRL:
 318	case ICE_VSI_PF:
 319		if (ring->ch)
 320			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
 321		else
 322			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
 323		break;
 324	case ICE_VSI_VF:
 325		/* Firmware expects vmvf_num to be absolute VF ID */
 326		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
 327		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
 328		break;
 329	case ICE_VSI_SF:
 330		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
 331		break;
 332	default:
 333		return;
 334	}
 335
 336	/* make sure the context is associated with the right VSI */
 337	if (ring->ch)
 338		tlan_ctx->src_vsi = ring->ch->vsi_num;
 339	else
 340		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
 341
 342	/* Restrict Tx timestamps to the PF VSI */
 343	switch (vsi->type) {
 344	case ICE_VSI_PF:
 345		tlan_ctx->tsyn_ena = 1;
 346		break;
 347	default:
 348		break;
 349	}
 350
 351	tlan_ctx->quanta_prof_idx = ring->quanta_prof_id;
 352
 353	tlan_ctx->tso_ena = ICE_TX_LEGACY;
 354	tlan_ctx->tso_qnum = pf_q;
 355
 356	/* Legacy or Advanced Host Interface:
 357	 * 0: Advanced Host Interface
 358	 * 1: Legacy Host Interface
 359	 */
 360	tlan_ctx->legacy_int = ICE_TX_LEGACY;
 361}
 362
 363/**
 364 * ice_rx_offset - Return expected offset into page to access data
 365 * @rx_ring: Ring we are requesting offset of
 366 *
 367 * Returns the offset value for ring into the data buffer.
 368 */
 369static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
 370{
 371	if (ice_ring_uses_build_skb(rx_ring))
 372		return ICE_SKB_PAD;
 
 
 
 373	return 0;
 374}
 375
 376/**
 377 * ice_setup_rx_ctx - Configure a receive ring context
 378 * @ring: The Rx ring to configure
 379 *
 380 * Configure the Rx descriptor ring in RLAN context.
 381 */
 382static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
 383{
 
 384	struct ice_vsi *vsi = ring->vsi;
 385	u32 rxdid = ICE_RXDID_FLEX_NIC;
 386	struct ice_rlan_ctx rlan_ctx;
 387	struct ice_hw *hw;
 388	u16 pf_q;
 389	int err;
 390
 391	hw = &vsi->back->hw;
 392
 393	/* what is Rx queue number in global space of 2K Rx queues */
 394	pf_q = vsi->rxq_map[ring->q_index];
 395
 396	/* clear the context structure first */
 397	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
 398
 399	/* Receive Queue Base Address.
 400	 * Indicates the starting address of the descriptor queue defined in
 401	 * 128 Byte units.
 402	 */
 403	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
 404
 405	rlan_ctx.qlen = ring->count;
 406
 407	/* Receive Packet Data Buffer Size.
 408	 * The Packet Data Buffer Size is defined in 128 byte units.
 409	 */
 410	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
 411				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));
 412
 413	/* use 32 byte descriptors */
 414	rlan_ctx.dsize = 1;
 415
 416	/* Strip the Ethernet CRC bytes before the packet is posted to host
 417	 * memory.
 418	 */
 419	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
 420
 421	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
 422	 * and it needs to remain 1 for non-DVM capable configurations to not
 423	 * break backward compatibility for VF drivers. Setting this field to 0
 424	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
 425	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
 426	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
 427	 * check for the tag
 428	 */
 429	if (ice_is_dvm_ena(hw))
 430		if (vsi->type == ICE_VSI_VF &&
 431		    ice_vf_is_port_vlan_ena(vsi->vf))
 432			rlan_ctx.l2tsel = 1;
 433		else
 434			rlan_ctx.l2tsel = 0;
 435	else
 436		rlan_ctx.l2tsel = 1;
 437
 438	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
 439	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
 440	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
 441
 442	/* This controls whether VLAN is stripped from inner headers
 443	 * The VLAN in the inner L2 header is stripped to the receive
 444	 * descriptor if enabled by this flag.
 445	 */
 446	rlan_ctx.showiv = 0;
 447
 
 
 
 
 
 
 448	/* Max packet size for this queue - must not be set to a larger value
 449	 * than 5 x DBUF
 450	 */
 451	rlan_ctx.rxmax = min_t(u32, ring->max_frame,
 452			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
 453
 454	/* Rx queue threshold in units of 64 */
 455	rlan_ctx.lrxqthresh = 1;
 456
 457	/* PF acts as uplink for switchdev; set flex descriptor with src_vsi
 458	 * metadata and flags to allow redirecting to PR netdev
 459	 */
 460	if (ice_is_eswitch_mode_switchdev(vsi->back)) {
 461		ring->flags |= ICE_RX_FLAGS_MULTIDEV;
 462		rxdid = ICE_RXDID_FLEX_NIC_2;
 463	}
 464
 465	/* Enable Flexible Descriptors in the queue context which
 466	 * allows this driver to select a specific receive descriptor format
 467	 * increasing context priority to pick up profile ID; default is 0x01;
 468	 * setting to 0x03 to ensure profile is programming if prev context is
 469	 * of same priority
 470	 */
 471	if (vsi->type != ICE_VSI_VF)
 472		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
 473	else
 474		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
 475					false);
 476
 477	/* Absolute queue number out of 2K needs to be passed */
 478	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
 479	if (err) {
 480		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
 481			pf_q, err);
 482		return -EIO;
 483	}
 484
 485	if (vsi->type == ICE_VSI_VF)
 486		return 0;
 487
 488	/* configure Rx buffer alignment */
 489	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
 490		ice_clear_ring_build_skb_ena(ring);
 491	else
 492		ice_set_ring_build_skb_ena(ring);
 493
 494	ring->rx_offset = ice_rx_offset(ring);
 495
 496	/* init queue specific tail register */
 497	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
 498	writel(0, ring->tail);
 499
 500	return 0;
 501}
 502
 503static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
 504{
 505	void *ctx_ptr = &ring->pkt_ctx;
 506	struct xsk_cb_desc desc = {};
 507
 508	XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
 509	desc.src = &ctx_ptr;
 510	desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
 511		   sizeof(struct xdp_buff);
 512	desc.bytes = sizeof(ctx_ptr);
 513	xsk_pool_fill_cb(ring->xsk_pool, &desc);
 514}
 515
 516/**
 517 * ice_get_frame_sz - calculate xdp_buff::frame_sz
 518 * @rx_ring: the ring being configured
 519 *
 520 * Return frame size based on underlying PAGE_SIZE
 521 */
 522static unsigned int ice_get_frame_sz(struct ice_rx_ring *rx_ring)
 523{
 524	unsigned int frame_sz;
 525
 526#if (PAGE_SIZE >= 8192)
 527	frame_sz = rx_ring->rx_buf_len;
 528#else
 529	frame_sz = ice_rx_pg_size(rx_ring) / 2;
 530#endif
 531
 532	return frame_sz;
 533}
 534
 535/**
 536 * ice_vsi_cfg_rxq - Configure an Rx queue
 537 * @ring: the ring being configured
 538 *
 539 * Return 0 on success and a negative value on error.
 540 */
 541static int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
 542{
 543	struct device *dev = ice_pf_to_dev(ring->vsi->back);
 544	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
 545	int err;
 546
 547	if (ring->vsi->type == ICE_VSI_PF || ring->vsi->type == ICE_VSI_SF) {
 548		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
 549			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
 550						 ring->q_index,
 551						 ring->q_vector->napi.napi_id,
 552						 ring->rx_buf_len);
 553			if (err)
 554				return err;
 555		}
 556
 557		ice_rx_xsk_pool(ring);
 558		if (ring->xsk_pool) {
 559			xdp_rxq_info_unreg(&ring->xdp_rxq);
 560
 561			ring->rx_buf_len =
 562				xsk_pool_get_rx_frame_size(ring->xsk_pool);
 563			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
 564						 ring->q_index,
 565						 ring->q_vector->napi.napi_id,
 566						 ring->rx_buf_len);
 567			if (err)
 568				return err;
 569			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 570							 MEM_TYPE_XSK_BUFF_POOL,
 571							 NULL);
 572			if (err)
 573				return err;
 574			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
 575			ice_xsk_pool_fill_cb(ring);
 576
 577			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
 578				 ring->q_index);
 579		} else {
 580			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
 581				err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
 582							 ring->q_index,
 583							 ring->q_vector->napi.napi_id,
 584							 ring->rx_buf_len);
 585				if (err)
 586					return err;
 587			}
 588
 589			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 590							 MEM_TYPE_PAGE_SHARED,
 591							 NULL);
 592			if (err)
 593				return err;
 594		}
 595	}
 596
 597	xdp_init_buff(&ring->xdp, ice_get_frame_sz(ring), &ring->xdp_rxq);
 598	ring->xdp.data = NULL;
 599	ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
 600	err = ice_setup_rx_ctx(ring);
 601	if (err) {
 602		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
 603			ring->q_index, err);
 604		return err;
 605	}
 606
 607	if (ring->xsk_pool) {
 608		bool ok;
 609
 610		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
 611			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
 612				 num_bufs, ring->q_index);
 613			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
 614
 615			return 0;
 616		}
 617
 618		ok = ice_alloc_rx_bufs_zc(ring, ring->xsk_pool, num_bufs);
 619		if (!ok) {
 620			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
 621
 622			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
 623				 ring->q_index, pf_q);
 624		}
 625
 626		return 0;
 627	}
 628
 629	ice_alloc_rx_bufs(ring, num_bufs);
 630
 631	return 0;
 632}
 633
 634int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
 635{
 636	if (q_idx >= vsi->num_rxq)
 637		return -EINVAL;
 638
 639	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
 640}
 641
 642/**
 643 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
 644 * @vsi: VSI
 645 * @ring: Rx ring to configure
 646 *
 647 * Determine the maximum frame size and Rx buffer length to use for a PF VSI.
 648 * Set these in the associated Rx ring structure.
 649 */
 650static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi, struct ice_rx_ring *ring)
 651{
 652	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
 653		ring->max_frame = ICE_MAX_FRAME_LEGACY_RX;
 654		ring->rx_buf_len = ICE_RXBUF_1664;
 655#if (PAGE_SIZE < 8192)
 656	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
 657		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
 658		ring->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
 659		ring->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
 660#endif
 661	} else {
 662		ring->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
 663		ring->rx_buf_len = ICE_RXBUF_3072;
 664	}
 665}
 666
 667/**
 668 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
 669 * @vsi: the VSI being configured
 670 *
 671 * Return 0 on success and a negative value on error
 672 * Configure the Rx VSI for operation.
 673 */
 674int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
 675{
 676	u16 i;
 677
 678	/* set up individual rings */
 679	ice_for_each_rxq(vsi, i) {
 680		struct ice_rx_ring *ring = vsi->rx_rings[i];
 681		int err;
 682
 683		if (vsi->type != ICE_VSI_VF)
 684			ice_vsi_cfg_frame_size(vsi, ring);
 685
 686		err = ice_vsi_cfg_rxq(ring);
 687		if (err)
 688			return err;
 689	}
 690
 691	return 0;
 692}
 693
 694/**
 695 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
 696 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 697 *
 698 * This function first tries to find contiguous space. If it is not successful,
 699 * it tries with the scatter approach.
 700 *
 701 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 702 */
 703int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
 704{
 705	int ret = 0;
 706
 707	ret = __ice_vsi_get_qs_contig(qs_cfg);
 708	if (ret) {
 709		/* contig failed, so try with scatter approach */
 710		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
 711		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
 712					qs_cfg->scatter_count);
 713		ret = __ice_vsi_get_qs_sc(qs_cfg);
 714	}
 715	return ret;
 716}
 717
 718/**
 719 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
 720 * @vsi: the VSI being configured
 721 * @ena: start or stop the Rx ring
 722 * @rxq_idx: 0-based Rx queue index for the VSI passed in
 723 * @wait: wait or don't wait for configuration to finish in hardware
 724 *
 725 * Return 0 on success and negative on error.
 726 */
 727int
 728ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
 729{
 730	int pf_q = vsi->rxq_map[rxq_idx];
 731	struct ice_pf *pf = vsi->back;
 732	struct ice_hw *hw = &pf->hw;
 733	u32 rx_reg;
 734
 735	rx_reg = rd32(hw, QRX_CTRL(pf_q));
 736
 737	/* Skip if the queue is already in the requested state */
 738	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
 739		return 0;
 740
 741	/* turn on/off the queue */
 742	if (ena)
 743		rx_reg |= QRX_CTRL_QENA_REQ_M;
 744	else
 745		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
 746	wr32(hw, QRX_CTRL(pf_q), rx_reg);
 747
 748	if (!wait)
 749		return 0;
 750
 751	ice_flush(hw);
 752	return ice_pf_rxq_wait(pf, pf_q, ena);
 753}
 754
 755/**
 756 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
 757 * @vsi: the VSI being configured
 758 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
 759 * @rxq_idx: 0-based Rx queue index for the VSI passed in
 760 *
 761 * This routine will wait for the given Rx queue of the VSI to reach the
 762 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
 763 * the requested state after multiple retries; else will return 0 in case of
 764 * success.
 765 */
 766int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
 767{
 768	int pf_q = vsi->rxq_map[rxq_idx];
 769	struct ice_pf *pf = vsi->back;
 770
 771	return ice_pf_rxq_wait(pf, pf_q, ena);
 772}
 773
 774/**
 775 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
 776 * @vsi: the VSI being configured
 777 *
 778 * We allocate one q_vector per queue interrupt. If allocation fails we
 779 * return -ENOMEM.
 780 */
 781int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
 782{
 783	struct device *dev = ice_pf_to_dev(vsi->back);
 784	u16 v_idx;
 785	int err;
 786
 787	if (vsi->q_vectors[0]) {
 788		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
 789		return -EEXIST;
 790	}
 791
 792	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
 793		err = ice_vsi_alloc_q_vector(vsi, v_idx);
 794		if (err)
 795			goto err_out;
 796	}
 797
 798	return 0;
 799
 800err_out:
 801	while (v_idx--)
 802		ice_free_q_vector(vsi, v_idx);
 803
 804	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
 805		vsi->num_q_vectors, vsi->vsi_num, err);
 806	vsi->num_q_vectors = 0;
 807	return err;
 808}
 809
 810/**
 811 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
 812 * @vsi: the VSI being configured
 813 *
 814 * This function maps descriptor rings to the queue-specific vectors allotted
 815 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
 816 * and Rx rings to the vector as "efficiently" as possible.
 817 */
 818void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
 819{
 820	int q_vectors = vsi->num_q_vectors;
 821	u16 tx_rings_rem, rx_rings_rem;
 822	int v_id;
 823
 824	/* initially assigning remaining rings count to VSIs num queue value */
 825	tx_rings_rem = vsi->num_txq;
 826	rx_rings_rem = vsi->num_rxq;
 827
 828	for (v_id = 0; v_id < q_vectors; v_id++) {
 829		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
 830		u8 tx_rings_per_v, rx_rings_per_v;
 831		u16 q_id, q_base;
 832
 833		/* Tx rings mapping to vector */
 834		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
 835						  q_vectors - v_id);
 836		q_vector->num_ring_tx = tx_rings_per_v;
 837		q_vector->tx.tx_ring = NULL;
 838		q_vector->tx.itr_idx = ICE_TX_ITR;
 839		q_base = vsi->num_txq - tx_rings_rem;
 840
 841		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
 842			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
 843
 844			tx_ring->q_vector = q_vector;
 845			tx_ring->next = q_vector->tx.tx_ring;
 846			q_vector->tx.tx_ring = tx_ring;
 847		}
 848		tx_rings_rem -= tx_rings_per_v;
 849
 850		/* Rx rings mapping to vector */
 851		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
 852						  q_vectors - v_id);
 853		q_vector->num_ring_rx = rx_rings_per_v;
 854		q_vector->rx.rx_ring = NULL;
 855		q_vector->rx.itr_idx = ICE_RX_ITR;
 856		q_base = vsi->num_rxq - rx_rings_rem;
 857
 858		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
 859			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
 860
 861			rx_ring->q_vector = q_vector;
 862			rx_ring->next = q_vector->rx.rx_ring;
 863			q_vector->rx.rx_ring = rx_ring;
 864		}
 865		rx_rings_rem -= rx_rings_per_v;
 866	}
 867
 868	if (ice_is_xdp_ena_vsi(vsi))
 869		ice_map_xdp_rings(vsi);
 870}
 871
 872/**
 873 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
 874 * @vsi: the VSI having memory freed
 875 */
 876void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
 877{
 878	int v_idx;
 879
 880	ice_for_each_q_vector(vsi, v_idx)
 881		ice_free_q_vector(vsi, v_idx);
 882
 883	vsi->num_q_vectors = 0;
 884}
 885
 886/**
 887 * ice_vsi_cfg_txq - Configure single Tx queue
 888 * @vsi: the VSI that queue belongs to
 889 * @ring: Tx ring to be configured
 890 * @qg_buf: queue group buffer
 891 */
 892static int
 893ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
 894		struct ice_aqc_add_tx_qgrp *qg_buf)
 895{
 896	u8 buf_len = struct_size(qg_buf, txqs, 1);
 897	struct ice_tlan_ctx tlan_ctx = { 0 };
 898	struct ice_aqc_add_txqs_perq *txq;
 899	struct ice_channel *ch = ring->ch;
 900	struct ice_pf *pf = vsi->back;
 901	struct ice_hw *hw = &pf->hw;
 902	int status;
 903	u16 pf_q;
 904	u8 tc;
 905
 906	/* Configure XPS */
 907	ice_cfg_xps_tx_ring(ring);
 908
 909	pf_q = ring->reg_idx;
 910	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
 911	/* copy context contents into the qg_buf */
 912	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
 913	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
 914		    ice_tlan_ctx_info);
 915
 916	/* init queue specific tail reg. It is referred as
 917	 * transmit comm scheduler queue doorbell.
 918	 */
 919	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
 920
 921	if (IS_ENABLED(CONFIG_DCB))
 922		tc = ring->dcb_tc;
 923	else
 924		tc = 0;
 925
 926	/* Add unique software queue handle of the Tx queue per
 927	 * TC into the VSI Tx ring
 928	 */
 929	ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
 930
 931	if (ch)
 932		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
 933					 ring->q_handle, 1, qg_buf, buf_len,
 934					 NULL);
 935	else
 936		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
 937					 ring->q_handle, 1, qg_buf, buf_len,
 938					 NULL);
 939	if (status) {
 940		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
 941			status);
 942		return status;
 943	}
 944
 945	/* Add Tx Queue TEID into the VSI Tx ring from the
 946	 * response. This will complete configuring and
 947	 * enabling the queue.
 948	 */
 949	txq = &qg_buf->txqs[0];
 950	if (pf_q == le16_to_cpu(txq->txq_id))
 951		ring->txq_teid = le32_to_cpu(txq->q_teid);
 952
 953	return 0;
 954}
 955
 956int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings,
 957			   u16 q_idx)
 958{
 959	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
 960
 961	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
 962		return -EINVAL;
 963
 964	qg_buf->num_txqs = 1;
 965
 966	return ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
 967}
 968
 969/**
 970 * ice_vsi_cfg_txqs - Configure the VSI for Tx
 971 * @vsi: the VSI being configured
 972 * @rings: Tx ring array to be configured
 973 * @count: number of Tx ring array elements
 974 *
 975 * Return 0 on success and a negative value on error
 976 * Configure the Tx VSI for operation.
 977 */
 978static int
 979ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
 980{
 981	DEFINE_RAW_FLEX(struct ice_aqc_add_tx_qgrp, qg_buf, txqs, 1);
 982	int err = 0;
 983	u16 q_idx;
 984
 985	qg_buf->num_txqs = 1;
 986
 987	for (q_idx = 0; q_idx < count; q_idx++) {
 988		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
 989		if (err)
 990			break;
 991	}
 992
 993	return err;
 994}
 995
 996/**
 997 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
 998 * @vsi: the VSI being configured
 999 *
1000 * Return 0 on success and a negative value on error
1001 * Configure the Tx VSI for operation.
1002 */
1003int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1004{
1005	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1006}
1007
1008/**
1009 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1010 * @vsi: the VSI being configured
1011 *
1012 * Return 0 on success and a negative value on error
1013 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1014 */
1015int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1016{
1017	int ret;
1018	int i;
1019
1020	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1021	if (ret)
1022		return ret;
1023
1024	ice_for_each_rxq(vsi, i)
1025		ice_tx_xsk_pool(vsi, i);
1026
1027	return 0;
1028}
1029
1030/**
1031 * ice_cfg_itr - configure the initial interrupt throttle values
1032 * @hw: pointer to the HW structure
1033 * @q_vector: interrupt vector that's being configured
1034 *
1035 * Configure interrupt throttling values for the ring containers that are
1036 * associated with the interrupt vector passed in.
1037 */
1038void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1039{
1040	ice_cfg_itr_gran(hw);
1041
1042	if (q_vector->num_ring_rx)
1043		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
1044
1045	if (q_vector->num_ring_tx)
1046		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
1047
1048	ice_write_intrl(q_vector, q_vector->intrl);
1049}
1050
1051/**
1052 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
1053 * @vsi: the VSI being configured
1054 * @txq: Tx queue being mapped to MSI-X vector
1055 * @msix_idx: MSI-X vector index within the function
1056 * @itr_idx: ITR index of the interrupt cause
1057 *
1058 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
1059 * within the function space.
1060 */
1061void
1062ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
1063{
1064	struct ice_pf *pf = vsi->back;
1065	struct ice_hw *hw = &pf->hw;
1066	u32 val;
1067
1068	itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
1069
1070	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1071	      FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
1072
1073	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1074	if (ice_is_xdp_ena_vsi(vsi)) {
1075		u32 xdp_txq = txq + vsi->num_xdp_txq;
1076
1077		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
1078		     val);
1079	}
1080	ice_flush(hw);
1081}
1082
1083/**
1084 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
1085 * @vsi: the VSI being configured
1086 * @rxq: Rx queue being mapped to MSI-X vector
1087 * @msix_idx: MSI-X vector index within the function
1088 * @itr_idx: ITR index of the interrupt cause
1089 *
1090 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
1091 * within the function space.
1092 */
1093void
1094ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
1095{
1096	struct ice_pf *pf = vsi->back;
1097	struct ice_hw *hw = &pf->hw;
1098	u32 val;
1099
1100	itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
1101
1102	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1103	      FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
1104
1105	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1106
1107	ice_flush(hw);
1108}
1109
1110/**
1111 * ice_trigger_sw_intr - trigger a software interrupt
1112 * @hw: pointer to the HW structure
1113 * @q_vector: interrupt vector to trigger the software interrupt for
1114 */
1115void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
1116{
1117	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
1118	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
1119	     GLINT_DYN_CTL_SWINT_TRIG_M |
1120	     GLINT_DYN_CTL_INTENA_M);
1121}
1122
1123/**
1124 * ice_vsi_stop_tx_ring - Disable single Tx ring
1125 * @vsi: the VSI being configured
1126 * @rst_src: reset source
1127 * @rel_vmvf_num: Relative ID of VF/VM
1128 * @ring: Tx ring to be stopped
1129 * @txq_meta: Meta data of Tx ring to be stopped
1130 */
1131int
1132ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1133		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
1134		     struct ice_txq_meta *txq_meta)
1135{
1136	struct ice_pf *pf = vsi->back;
1137	struct ice_q_vector *q_vector;
1138	struct ice_hw *hw = &pf->hw;
1139	int status;
1140	u32 val;
1141
1142	/* clear cause_ena bit for disabled queues */
1143	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1144	val &= ~QINT_TQCTL_CAUSE_ENA_M;
1145	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1146
1147	/* software is expected to wait for 100 ns */
1148	ndelay(100);
1149
1150	/* trigger a software interrupt for the vector
1151	 * associated to the queue to schedule NAPI handler
1152	 */
1153	q_vector = ring->q_vector;
1154	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1155		ice_trigger_sw_intr(hw, q_vector);
1156
1157	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1158				 txq_meta->tc, 1, &txq_meta->q_handle,
1159				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1160				 rel_vmvf_num, NULL);
1161
1162	/* if the disable queue command was exercised during an
1163	 * active reset flow, -EBUSY is returned.
1164	 * This is not an error as the reset operation disables
1165	 * queues at the hardware level anyway.
1166	 */
1167	if (status == -EBUSY) {
1168		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1169	} else if (status == -ENOENT) {
1170		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1171	} else if (status) {
1172		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1173			status);
1174		return status;
1175	}
1176
1177	return 0;
1178}
1179
1180/**
1181 * ice_fill_txq_meta - Prepare the Tx queue's meta data
1182 * @vsi: VSI that ring belongs to
1183 * @ring: ring that txq_meta will be based on
1184 * @txq_meta: a helper struct that wraps Tx queue's information
1185 *
1186 * Set up a helper struct that will contain all the necessary fields that
1187 * are needed for stopping Tx queue
1188 */
1189void
1190ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
1191		  struct ice_txq_meta *txq_meta)
1192{
1193	struct ice_channel *ch = ring->ch;
1194	u8 tc;
1195
1196	if (IS_ENABLED(CONFIG_DCB))
1197		tc = ring->dcb_tc;
1198	else
1199		tc = 0;
1200
1201	txq_meta->q_id = ring->reg_idx;
1202	txq_meta->q_teid = ring->txq_teid;
1203	txq_meta->q_handle = ring->q_handle;
1204	if (ch) {
1205		txq_meta->vsi_idx = ch->ch_vsi->idx;
1206		txq_meta->tc = 0;
1207	} else {
1208		txq_meta->vsi_idx = vsi->idx;
1209		txq_meta->tc = tc;
1210	}
1211}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c) 2019, Intel Corporation. */
  3
  4#include <net/xdp_sock_drv.h>
  5#include "ice_base.h"
  6#include "ice_lib.h"
  7#include "ice_dcb_lib.h"
 
  8
  9/**
 10 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
 11 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
 12 *
 13 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 14 */
 15static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
 16{
 17	unsigned int offset, i;
 18
 19	mutex_lock(qs_cfg->qs_mutex);
 20	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
 21					    0, qs_cfg->q_count, 0);
 22	if (offset >= qs_cfg->pf_map_size) {
 23		mutex_unlock(qs_cfg->qs_mutex);
 24		return -ENOMEM;
 25	}
 26
 27	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
 28	for (i = 0; i < qs_cfg->q_count; i++)
 29		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
 30	mutex_unlock(qs_cfg->qs_mutex);
 31
 32	return 0;
 33}
 34
 35/**
 36 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
 37 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 38 *
 39 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 40 */
 41static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
 42{
 43	unsigned int i, index = 0;
 44
 45	mutex_lock(qs_cfg->qs_mutex);
 46	for (i = 0; i < qs_cfg->q_count; i++) {
 47		index = find_next_zero_bit(qs_cfg->pf_map,
 48					   qs_cfg->pf_map_size, index);
 49		if (index >= qs_cfg->pf_map_size)
 50			goto err_scatter;
 51		set_bit(index, qs_cfg->pf_map);
 52		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
 53	}
 54	mutex_unlock(qs_cfg->qs_mutex);
 55
 56	return 0;
 57err_scatter:
 58	for (index = 0; index < i; index++) {
 59		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
 60		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
 61	}
 62	mutex_unlock(qs_cfg->qs_mutex);
 63
 64	return -ENOMEM;
 65}
 66
 67/**
 68 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
 69 * @pf: the PF being configured
 70 * @pf_q: the PF queue
 71 * @ena: enable or disable state of the queue
 72 *
 73 * This routine will wait for the given Rx queue of the PF to reach the
 74 * enabled or disabled state.
 75 * Returns -ETIMEDOUT in case of failing to reach the requested state after
 76 * multiple retries; else will return 0 in case of success.
 77 */
 78static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
 79{
 80	int i;
 81
 82	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
 83		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
 84			      QRX_CTRL_QENA_STAT_M))
 85			return 0;
 86
 87		usleep_range(20, 40);
 88	}
 89
 90	return -ETIMEDOUT;
 91}
 92
 93/**
 94 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
 95 * @vsi: the VSI being configured
 96 * @v_idx: index of the vector in the VSI struct
 97 *
 98 * We allocate one q_vector and set default value for ITR setting associated
 99 * with this q_vector. If allocation fails we return -ENOMEM.
100 */
101static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
102{
103	struct ice_pf *pf = vsi->back;
104	struct ice_q_vector *q_vector;
 
105
106	/* allocate q_vector */
107	q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
108				GFP_KERNEL);
109	if (!q_vector)
110		return -ENOMEM;
111
112	q_vector->vsi = vsi;
113	q_vector->v_idx = v_idx;
114	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
115	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
116	q_vector->tx.itr_mode = ITR_DYNAMIC;
117	q_vector->rx.itr_mode = ITR_DYNAMIC;
 
 
 
118
119	if (vsi->type == ICE_VSI_VF)
 
120		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121	/* only set affinity_mask if the CPU is online */
122	if (cpu_online(v_idx))
123		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
124
125	/* This will not be called in the driver load path because the netdev
126	 * will not be created yet. All other cases with register the NAPI
127	 * handler here (i.e. resume, reset/rebuild, etc.)
128	 */
129	if (vsi->netdev)
130		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
131			       NAPI_POLL_WEIGHT);
132
133out:
134	/* tie q_vector and VSI together */
135	vsi->q_vectors[v_idx] = q_vector;
136
137	return 0;
 
 
 
 
 
138}
139
140/**
141 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
142 * @vsi: VSI having the memory freed
143 * @v_idx: index of the vector to be freed
144 */
145static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
146{
147	struct ice_q_vector *q_vector;
148	struct ice_pf *pf = vsi->back;
149	struct ice_ring *ring;
 
150	struct device *dev;
151
152	dev = ice_pf_to_dev(pf);
153	if (!vsi->q_vectors[v_idx]) {
154		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
155		return;
156	}
157	q_vector = vsi->q_vectors[v_idx];
158
159	ice_for_each_ring(ring, q_vector->tx)
160		ring->q_vector = NULL;
161	ice_for_each_ring(ring, q_vector->rx)
162		ring->q_vector = NULL;
 
163
164	/* only VSI with an associated netdev is set up with NAPI */
165	if (vsi->netdev)
166		netif_napi_del(&q_vector->napi);
167
168	devm_kfree(dev, q_vector);
 
 
 
 
 
 
 
 
 
 
 
 
169	vsi->q_vectors[v_idx] = NULL;
170}
171
172/**
173 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
174 * @hw: board specific structure
175 */
176static void ice_cfg_itr_gran(struct ice_hw *hw)
177{
178	u32 regval = rd32(hw, GLINT_CTL);
179
180	/* no need to update global register if ITR gran is already set */
181	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
182	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
183	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
184	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
185	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
186	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
187	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
188	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
189	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
190		return;
191
192	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
193		  GLINT_CTL_ITR_GRAN_200_M) |
194		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
195		  GLINT_CTL_ITR_GRAN_100_M) |
196		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
197		  GLINT_CTL_ITR_GRAN_50_M) |
198		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
199		  GLINT_CTL_ITR_GRAN_25_M);
200	wr32(hw, GLINT_CTL, regval);
201}
202
203/**
204 * ice_calc_q_handle - calculate the queue handle
205 * @vsi: VSI that ring belongs to
206 * @ring: ring to get the absolute queue index
207 * @tc: traffic class number
208 */
209static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
210{
211	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
212
 
 
 
213	/* Idea here for calculation is that we subtract the number of queue
214	 * count from TC that ring belongs to from it's absolute queue index
215	 * and as a result we get the queue's index within TC.
216	 */
217	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
218}
219
220/**
221 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
222 * @ring: The Tx ring to configure
223 *
224 * This enables/disables XPS for a given Tx descriptor ring
225 * based on the TCs enabled for the VSI that ring belongs to.
226 */
227static void ice_cfg_xps_tx_ring(struct ice_ring *ring)
228{
229	if (!ring->q_vector || !ring->netdev)
230		return;
231
232	/* We only initialize XPS once, so as not to overwrite user settings */
233	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
234		return;
235
236	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
237			    ring->q_index);
238}
239
240/**
241 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
242 * @ring: The Tx ring to configure
243 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
244 * @pf_q: queue index in the PF space
245 *
246 * Configure the Tx descriptor ring in TLAN context.
247 */
248static void
249ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
250{
251	struct ice_vsi *vsi = ring->vsi;
252	struct ice_hw *hw = &vsi->back->hw;
253
254	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
255
256	tlan_ctx->port_num = vsi->port_info->lport;
257
258	/* Transmit Queue Length */
259	tlan_ctx->qlen = ring->count;
260
261	ice_set_cgd_num(tlan_ctx, ring);
262
263	/* PF number */
264	tlan_ctx->pf_num = hw->pf_id;
265
266	/* queue belongs to a specific VSI type
267	 * VF / VM index should be programmed per vmvf_type setting:
268	 * for vmvf_type = VF, it is VF number between 0-256
269	 * for vmvf_type = VM, it is VM number between 0-767
270	 * for PF or EMP this field should be set to zero
271	 */
272	switch (vsi->type) {
273	case ICE_VSI_LB:
274	case ICE_VSI_CTRL:
275	case ICE_VSI_PF:
276		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
 
 
 
277		break;
278	case ICE_VSI_VF:
279		/* Firmware expects vmvf_num to be absolute VF ID */
280		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
281		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
282		break;
 
 
 
283	default:
284		return;
285	}
286
287	/* make sure the context is associated with the right VSI */
288	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
 
 
 
289
290	/* Restrict Tx timestamps to the PF VSI */
291	switch (vsi->type) {
292	case ICE_VSI_PF:
293		tlan_ctx->tsyn_ena = 1;
294		break;
295	default:
296		break;
297	}
298
 
 
299	tlan_ctx->tso_ena = ICE_TX_LEGACY;
300	tlan_ctx->tso_qnum = pf_q;
301
302	/* Legacy or Advanced Host Interface:
303	 * 0: Advanced Host Interface
304	 * 1: Legacy Host Interface
305	 */
306	tlan_ctx->legacy_int = ICE_TX_LEGACY;
307}
308
309/**
310 * ice_rx_offset - Return expected offset into page to access data
311 * @rx_ring: Ring we are requesting offset of
312 *
313 * Returns the offset value for ring into the data buffer.
314 */
315static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
316{
317	if (ice_ring_uses_build_skb(rx_ring))
318		return ICE_SKB_PAD;
319	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
320		return XDP_PACKET_HEADROOM;
321
322	return 0;
323}
324
325/**
326 * ice_setup_rx_ctx - Configure a receive ring context
327 * @ring: The Rx ring to configure
328 *
329 * Configure the Rx descriptor ring in RLAN context.
330 */
331static int ice_setup_rx_ctx(struct ice_ring *ring)
332{
333	int chain_len = ICE_MAX_CHAINED_RX_BUFS;
334	struct ice_vsi *vsi = ring->vsi;
335	u32 rxdid = ICE_RXDID_FLEX_NIC;
336	struct ice_rlan_ctx rlan_ctx;
337	struct ice_hw *hw;
338	u16 pf_q;
339	int err;
340
341	hw = &vsi->back->hw;
342
343	/* what is Rx queue number in global space of 2K Rx queues */
344	pf_q = vsi->rxq_map[ring->q_index];
345
346	/* clear the context structure first */
347	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
348
349	/* Receive Queue Base Address.
350	 * Indicates the starting address of the descriptor queue defined in
351	 * 128 Byte units.
352	 */
353	rlan_ctx.base = ring->dma >> 7;
354
355	rlan_ctx.qlen = ring->count;
356
357	/* Receive Packet Data Buffer Size.
358	 * The Packet Data Buffer Size is defined in 128 byte units.
359	 */
360	rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
 
361
362	/* use 32 byte descriptors */
363	rlan_ctx.dsize = 1;
364
365	/* Strip the Ethernet CRC bytes before the packet is posted to host
366	 * memory.
367	 */
368	rlan_ctx.crcstrip = 1;
369
370	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
371	rlan_ctx.l2tsel = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372
373	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
374	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
375	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
376
377	/* This controls whether VLAN is stripped from inner headers
378	 * The VLAN in the inner L2 header is stripped to the receive
379	 * descriptor if enabled by this flag.
380	 */
381	rlan_ctx.showiv = 0;
382
383	/* For AF_XDP ZC, we disallow packets to span on
384	 * multiple buffers, thus letting us skip that
385	 * handling in the fast-path.
386	 */
387	if (ring->xsk_pool)
388		chain_len = 1;
389	/* Max packet size for this queue - must not be set to a larger value
390	 * than 5 x DBUF
391	 */
392	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
393			       chain_len * ring->rx_buf_len);
394
395	/* Rx queue threshold in units of 64 */
396	rlan_ctx.lrxqthresh = 1;
397
 
 
 
 
 
 
 
 
398	/* Enable Flexible Descriptors in the queue context which
399	 * allows this driver to select a specific receive descriptor format
400	 * increasing context priority to pick up profile ID; default is 0x01;
401	 * setting to 0x03 to ensure profile is programming if prev context is
402	 * of same priority
403	 */
404	if (vsi->type != ICE_VSI_VF)
405		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
406	else
407		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
408					false);
409
410	/* Absolute queue number out of 2K needs to be passed */
411	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
412	if (err) {
413		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
414			pf_q, err);
415		return -EIO;
416	}
417
418	if (vsi->type == ICE_VSI_VF)
419		return 0;
420
421	/* configure Rx buffer alignment */
422	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
423		ice_clear_ring_build_skb_ena(ring);
424	else
425		ice_set_ring_build_skb_ena(ring);
426
427	ring->rx_offset = ice_rx_offset(ring);
428
429	/* init queue specific tail register */
430	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
431	writel(0, ring->tail);
432
433	return 0;
434}
435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436/**
437 * ice_vsi_cfg_rxq - Configure an Rx queue
438 * @ring: the ring being configured
439 *
440 * Return 0 on success and a negative value on error.
441 */
442int ice_vsi_cfg_rxq(struct ice_ring *ring)
443{
444	struct device *dev = ice_pf_to_dev(ring->vsi->back);
445	u16 num_bufs = ICE_DESC_UNUSED(ring);
446	int err;
447
448	ring->rx_buf_len = ring->vsi->rx_buf_len;
449
450	if (ring->vsi->type == ICE_VSI_PF) {
451		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
452			/* coverity[check_return] */
453			xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
454					 ring->q_index, ring->q_vector->napi.napi_id);
 
 
455
456		ring->xsk_pool = ice_xsk_pool(ring);
457		if (ring->xsk_pool) {
458			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
459
460			ring->rx_buf_len =
461				xsk_pool_get_rx_frame_size(ring->xsk_pool);
 
 
 
 
 
 
462			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
463							 MEM_TYPE_XSK_BUFF_POOL,
464							 NULL);
465			if (err)
466				return err;
467			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
 
468
469			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
470				 ring->q_index);
471		} else {
472			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
473				/* coverity[check_return] */
474				xdp_rxq_info_reg(&ring->xdp_rxq,
475						 ring->netdev,
476						 ring->q_index, ring->q_vector->napi.napi_id);
 
 
 
477
478			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
479							 MEM_TYPE_PAGE_SHARED,
480							 NULL);
481			if (err)
482				return err;
483		}
484	}
485
 
 
 
486	err = ice_setup_rx_ctx(ring);
487	if (err) {
488		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
489			ring->q_index, err);
490		return err;
491	}
492
493	if (ring->xsk_pool) {
494		bool ok;
495
496		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
497			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
498				 num_bufs, ring->q_index);
499			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
500
501			return 0;
502		}
503
504		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
505		if (!ok) {
506			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
507
508			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
509				 ring->q_index, pf_q);
510		}
511
512		return 0;
513	}
514
515	ice_alloc_rx_bufs(ring, num_bufs);
516
517	return 0;
518}
519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
520/**
521 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
522 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
523 *
524 * This function first tries to find contiguous space. If it is not successful,
525 * it tries with the scatter approach.
526 *
527 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
528 */
529int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
530{
531	int ret = 0;
532
533	ret = __ice_vsi_get_qs_contig(qs_cfg);
534	if (ret) {
535		/* contig failed, so try with scatter approach */
536		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
537		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
538					qs_cfg->scatter_count);
539		ret = __ice_vsi_get_qs_sc(qs_cfg);
540	}
541	return ret;
542}
543
544/**
545 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
546 * @vsi: the VSI being configured
547 * @ena: start or stop the Rx ring
548 * @rxq_idx: 0-based Rx queue index for the VSI passed in
549 * @wait: wait or don't wait for configuration to finish in hardware
550 *
551 * Return 0 on success and negative on error.
552 */
553int
554ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
555{
556	int pf_q = vsi->rxq_map[rxq_idx];
557	struct ice_pf *pf = vsi->back;
558	struct ice_hw *hw = &pf->hw;
559	u32 rx_reg;
560
561	rx_reg = rd32(hw, QRX_CTRL(pf_q));
562
563	/* Skip if the queue is already in the requested state */
564	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
565		return 0;
566
567	/* turn on/off the queue */
568	if (ena)
569		rx_reg |= QRX_CTRL_QENA_REQ_M;
570	else
571		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
572	wr32(hw, QRX_CTRL(pf_q), rx_reg);
573
574	if (!wait)
575		return 0;
576
577	ice_flush(hw);
578	return ice_pf_rxq_wait(pf, pf_q, ena);
579}
580
581/**
582 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
583 * @vsi: the VSI being configured
584 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
585 * @rxq_idx: 0-based Rx queue index for the VSI passed in
586 *
587 * This routine will wait for the given Rx queue of the VSI to reach the
588 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
589 * the requested state after multiple retries; else will return 0 in case of
590 * success.
591 */
592int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
593{
594	int pf_q = vsi->rxq_map[rxq_idx];
595	struct ice_pf *pf = vsi->back;
596
597	return ice_pf_rxq_wait(pf, pf_q, ena);
598}
599
600/**
601 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
602 * @vsi: the VSI being configured
603 *
604 * We allocate one q_vector per queue interrupt. If allocation fails we
605 * return -ENOMEM.
606 */
607int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
608{
609	struct device *dev = ice_pf_to_dev(vsi->back);
610	u16 v_idx;
611	int err;
612
613	if (vsi->q_vectors[0]) {
614		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
615		return -EEXIST;
616	}
617
618	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
619		err = ice_vsi_alloc_q_vector(vsi, v_idx);
620		if (err)
621			goto err_out;
622	}
623
624	return 0;
625
626err_out:
627	while (v_idx--)
628		ice_free_q_vector(vsi, v_idx);
629
630	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
631		vsi->num_q_vectors, vsi->vsi_num, err);
632	vsi->num_q_vectors = 0;
633	return err;
634}
635
636/**
637 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
638 * @vsi: the VSI being configured
639 *
640 * This function maps descriptor rings to the queue-specific vectors allotted
641 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
642 * and Rx rings to the vector as "efficiently" as possible.
643 */
644void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
645{
646	int q_vectors = vsi->num_q_vectors;
647	u16 tx_rings_rem, rx_rings_rem;
648	int v_id;
649
650	/* initially assigning remaining rings count to VSIs num queue value */
651	tx_rings_rem = vsi->num_txq;
652	rx_rings_rem = vsi->num_rxq;
653
654	for (v_id = 0; v_id < q_vectors; v_id++) {
655		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
656		u8 tx_rings_per_v, rx_rings_per_v;
657		u16 q_id, q_base;
658
659		/* Tx rings mapping to vector */
660		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
661						  q_vectors - v_id);
662		q_vector->num_ring_tx = tx_rings_per_v;
663		q_vector->tx.ring = NULL;
664		q_vector->tx.itr_idx = ICE_TX_ITR;
665		q_base = vsi->num_txq - tx_rings_rem;
666
667		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
668			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
669
670			tx_ring->q_vector = q_vector;
671			tx_ring->next = q_vector->tx.ring;
672			q_vector->tx.ring = tx_ring;
673		}
674		tx_rings_rem -= tx_rings_per_v;
675
676		/* Rx rings mapping to vector */
677		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
678						  q_vectors - v_id);
679		q_vector->num_ring_rx = rx_rings_per_v;
680		q_vector->rx.ring = NULL;
681		q_vector->rx.itr_idx = ICE_RX_ITR;
682		q_base = vsi->num_rxq - rx_rings_rem;
683
684		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
685			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
686
687			rx_ring->q_vector = q_vector;
688			rx_ring->next = q_vector->rx.ring;
689			q_vector->rx.ring = rx_ring;
690		}
691		rx_rings_rem -= rx_rings_per_v;
692	}
 
 
 
693}
694
695/**
696 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
697 * @vsi: the VSI having memory freed
698 */
699void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
700{
701	int v_idx;
702
703	ice_for_each_q_vector(vsi, v_idx)
704		ice_free_q_vector(vsi, v_idx);
 
 
705}
706
707/**
708 * ice_vsi_cfg_txq - Configure single Tx queue
709 * @vsi: the VSI that queue belongs to
710 * @ring: Tx ring to be configured
711 * @qg_buf: queue group buffer
712 */
713int
714ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
715		struct ice_aqc_add_tx_qgrp *qg_buf)
716{
717	u8 buf_len = struct_size(qg_buf, txqs, 1);
718	struct ice_tlan_ctx tlan_ctx = { 0 };
719	struct ice_aqc_add_txqs_perq *txq;
 
720	struct ice_pf *pf = vsi->back;
721	struct ice_hw *hw = &pf->hw;
722	enum ice_status status;
723	u16 pf_q;
724	u8 tc;
725
726	/* Configure XPS */
727	ice_cfg_xps_tx_ring(ring);
728
729	pf_q = ring->reg_idx;
730	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
731	/* copy context contents into the qg_buf */
732	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
733	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
734		    ice_tlan_ctx_info);
735
736	/* init queue specific tail reg. It is referred as
737	 * transmit comm scheduler queue doorbell.
738	 */
739	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
740
741	if (IS_ENABLED(CONFIG_DCB))
742		tc = ring->dcb_tc;
743	else
744		tc = 0;
745
746	/* Add unique software queue handle of the Tx queue per
747	 * TC into the VSI Tx ring
748	 */
749	ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
750
751	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
752				 1, qg_buf, buf_len, NULL);
 
 
 
 
 
 
753	if (status) {
754		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n",
755			ice_stat_str(status));
756		return -ENODEV;
757	}
758
759	/* Add Tx Queue TEID into the VSI Tx ring from the
760	 * response. This will complete configuring and
761	 * enabling the queue.
762	 */
763	txq = &qg_buf->txqs[0];
764	if (pf_q == le16_to_cpu(txq->txq_id))
765		ring->txq_teid = le32_to_cpu(txq->q_teid);
766
767	return 0;
768}
769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
770/**
771 * ice_cfg_itr - configure the initial interrupt throttle values
772 * @hw: pointer to the HW structure
773 * @q_vector: interrupt vector that's being configured
774 *
775 * Configure interrupt throttling values for the ring containers that are
776 * associated with the interrupt vector passed in.
777 */
778void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
779{
780	ice_cfg_itr_gran(hw);
781
782	if (q_vector->num_ring_rx)
783		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
784
785	if (q_vector->num_ring_tx)
786		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
787
788	ice_write_intrl(q_vector, q_vector->intrl);
789}
790
791/**
792 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
793 * @vsi: the VSI being configured
794 * @txq: Tx queue being mapped to MSI-X vector
795 * @msix_idx: MSI-X vector index within the function
796 * @itr_idx: ITR index of the interrupt cause
797 *
798 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
799 * within the function space.
800 */
801void
802ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
803{
804	struct ice_pf *pf = vsi->back;
805	struct ice_hw *hw = &pf->hw;
806	u32 val;
807
808	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
809
810	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
811	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
812
813	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
814	if (ice_is_xdp_ena_vsi(vsi)) {
815		u32 xdp_txq = txq + vsi->num_xdp_txq;
816
817		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
818		     val);
819	}
820	ice_flush(hw);
821}
822
823/**
824 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
825 * @vsi: the VSI being configured
826 * @rxq: Rx queue being mapped to MSI-X vector
827 * @msix_idx: MSI-X vector index within the function
828 * @itr_idx: ITR index of the interrupt cause
829 *
830 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
831 * within the function space.
832 */
833void
834ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
835{
836	struct ice_pf *pf = vsi->back;
837	struct ice_hw *hw = &pf->hw;
838	u32 val;
839
840	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
841
842	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
843	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
844
845	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
846
847	ice_flush(hw);
848}
849
850/**
851 * ice_trigger_sw_intr - trigger a software interrupt
852 * @hw: pointer to the HW structure
853 * @q_vector: interrupt vector to trigger the software interrupt for
854 */
855void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
856{
857	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
858	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
859	     GLINT_DYN_CTL_SWINT_TRIG_M |
860	     GLINT_DYN_CTL_INTENA_M);
861}
862
863/**
864 * ice_vsi_stop_tx_ring - Disable single Tx ring
865 * @vsi: the VSI being configured
866 * @rst_src: reset source
867 * @rel_vmvf_num: Relative ID of VF/VM
868 * @ring: Tx ring to be stopped
869 * @txq_meta: Meta data of Tx ring to be stopped
870 */
871int
872ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
873		     u16 rel_vmvf_num, struct ice_ring *ring,
874		     struct ice_txq_meta *txq_meta)
875{
876	struct ice_pf *pf = vsi->back;
877	struct ice_q_vector *q_vector;
878	struct ice_hw *hw = &pf->hw;
879	enum ice_status status;
880	u32 val;
881
882	/* clear cause_ena bit for disabled queues */
883	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
884	val &= ~QINT_TQCTL_CAUSE_ENA_M;
885	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
886
887	/* software is expected to wait for 100 ns */
888	ndelay(100);
889
890	/* trigger a software interrupt for the vector
891	 * associated to the queue to schedule NAPI handler
892	 */
893	q_vector = ring->q_vector;
894	if (q_vector)
895		ice_trigger_sw_intr(hw, q_vector);
896
897	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
898				 txq_meta->tc, 1, &txq_meta->q_handle,
899				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
900				 rel_vmvf_num, NULL);
901
902	/* if the disable queue command was exercised during an
903	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
904	 * This is not an error as the reset operation disables
905	 * queues at the hardware level anyway.
906	 */
907	if (status == ICE_ERR_RESET_ONGOING) {
908		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
909	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
910		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
911	} else if (status) {
912		dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n",
913			ice_stat_str(status));
914		return -ENODEV;
915	}
916
917	return 0;
918}
919
920/**
921 * ice_fill_txq_meta - Prepare the Tx queue's meta data
922 * @vsi: VSI that ring belongs to
923 * @ring: ring that txq_meta will be based on
924 * @txq_meta: a helper struct that wraps Tx queue's information
925 *
926 * Set up a helper struct that will contain all the necessary fields that
927 * are needed for stopping Tx queue
928 */
929void
930ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
931		  struct ice_txq_meta *txq_meta)
932{
 
933	u8 tc;
934
935	if (IS_ENABLED(CONFIG_DCB))
936		tc = ring->dcb_tc;
937	else
938		tc = 0;
939
940	txq_meta->q_id = ring->reg_idx;
941	txq_meta->q_teid = ring->txq_teid;
942	txq_meta->q_handle = ring->q_handle;
943	txq_meta->vsi_idx = vsi->idx;
944	txq_meta->tc = tc;
 
 
 
 
 
945}