Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21#include <linux/moduleparam.h>
22#include <linux/module.h>
23#include <linux/init.h>
24
25#include <linux/kernel.h>
26#include <linux/fs.h>
27#include <linux/slab.h>
28#include <linux/errno.h>
29#include <linux/hdreg.h>
30#include <linux/kdev_t.h>
31#include <linux/kref.h>
32#include <linux/blkdev.h>
33#include <linux/cdev.h>
34#include <linux/mutex.h>
35#include <linux/scatterlist.h>
36#include <linux/string.h>
37#include <linux/string_helpers.h>
38#include <linux/delay.h>
39#include <linux/capability.h>
40#include <linux/compat.h>
41#include <linux/pm_runtime.h>
42#include <linux/idr.h>
43#include <linux/debugfs.h>
44#include <linux/rpmb.h>
45
46#include <linux/mmc/ioctl.h>
47#include <linux/mmc/card.h>
48#include <linux/mmc/host.h>
49#include <linux/mmc/mmc.h>
50#include <linux/mmc/sd.h>
51
52#include <linux/uaccess.h>
53#include <linux/unaligned.h>
54
55#include "queue.h"
56#include "block.h"
57#include "core.h"
58#include "card.h"
59#include "crypto.h"
60#include "host.h"
61#include "bus.h"
62#include "mmc_ops.h"
63#include "quirks.h"
64#include "sd_ops.h"
65
66MODULE_ALIAS("mmc:block");
67#ifdef MODULE_PARAM_PREFIX
68#undef MODULE_PARAM_PREFIX
69#endif
70#define MODULE_PARAM_PREFIX "mmcblk."
71
72/*
73 * Set a 10 second timeout for polling write request busy state. Note, mmc core
74 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
75 * second software timer to timeout the whole request, so 10 seconds should be
76 * ample.
77 */
78#define MMC_BLK_TIMEOUT_MS (10 * 1000)
79#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
80#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
81
82/**
83 * struct rpmb_frame - rpmb frame as defined by eMMC 5.1 (JESD84-B51)
84 *
85 * @stuff : stuff bytes
86 * @key_mac : The authentication key or the message authentication
87 * code (MAC) depending on the request/response type.
88 * The MAC will be delivered in the last (or the only)
89 * block of data.
90 * @data : Data to be written or read by signed access.
91 * @nonce : Random number generated by the host for the requests
92 * and copied to the response by the RPMB engine.
93 * @write_counter: Counter value for the total amount of the successful
94 * authenticated data write requests made by the host.
95 * @addr : Address of the data to be programmed to or read
96 * from the RPMB. Address is the serial number of
97 * the accessed block (half sector 256B).
98 * @block_count : Number of blocks (half sectors, 256B) requested to be
99 * read/programmed.
100 * @result : Includes information about the status of the write counter
101 * (valid, expired) and result of the access made to the RPMB.
102 * @req_resp : Defines the type of request and response to/from the memory.
103 *
104 * The stuff bytes and big-endian properties are modeled to fit to the spec.
105 */
106struct rpmb_frame {
107 u8 stuff[196];
108 u8 key_mac[32];
109 u8 data[256];
110 u8 nonce[16];
111 __be32 write_counter;
112 __be16 addr;
113 __be16 block_count;
114 __be16 result;
115 __be16 req_resp;
116} __packed;
117
118#define RPMB_PROGRAM_KEY 0x1 /* Program RPMB Authentication Key */
119#define RPMB_GET_WRITE_COUNTER 0x2 /* Read RPMB write counter */
120#define RPMB_WRITE_DATA 0x3 /* Write data to RPMB partition */
121#define RPMB_READ_DATA 0x4 /* Read data from RPMB partition */
122#define RPMB_RESULT_READ 0x5 /* Read result request (Internal) */
123
124static DEFINE_MUTEX(block_mutex);
125
126/*
127 * The defaults come from config options but can be overriden by module
128 * or bootarg options.
129 */
130static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
131
132/*
133 * We've only got one major, so number of mmcblk devices is
134 * limited to (1 << 20) / number of minors per device. It is also
135 * limited by the MAX_DEVICES below.
136 */
137static int max_devices;
138
139#define MAX_DEVICES 256
140
141static DEFINE_IDA(mmc_blk_ida);
142static DEFINE_IDA(mmc_rpmb_ida);
143
144struct mmc_blk_busy_data {
145 struct mmc_card *card;
146 u32 status;
147};
148
149/*
150 * There is one mmc_blk_data per slot.
151 */
152struct mmc_blk_data {
153 struct device *parent;
154 struct gendisk *disk;
155 struct mmc_queue queue;
156 struct list_head part;
157 struct list_head rpmbs;
158
159 unsigned int flags;
160#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
161#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
162
163 struct kref kref;
164 unsigned int read_only;
165 unsigned int part_type;
166 unsigned int reset_done;
167#define MMC_BLK_READ BIT(0)
168#define MMC_BLK_WRITE BIT(1)
169#define MMC_BLK_DISCARD BIT(2)
170#define MMC_BLK_SECDISCARD BIT(3)
171#define MMC_BLK_CQE_RECOVERY BIT(4)
172#define MMC_BLK_TRIM BIT(5)
173
174 /*
175 * Only set in main mmc_blk_data associated
176 * with mmc_card with dev_set_drvdata, and keeps
177 * track of the current selected device partition.
178 */
179 unsigned int part_curr;
180#define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */
181 int area_type;
182
183 /* debugfs files (only in main mmc_blk_data) */
184 struct dentry *status_dentry;
185 struct dentry *ext_csd_dentry;
186};
187
188/* Device type for RPMB character devices */
189static dev_t mmc_rpmb_devt;
190
191/* Bus type for RPMB character devices */
192static const struct bus_type mmc_rpmb_bus_type = {
193 .name = "mmc_rpmb",
194};
195
196/**
197 * struct mmc_rpmb_data - special RPMB device type for these areas
198 * @dev: the device for the RPMB area
199 * @chrdev: character device for the RPMB area
200 * @id: unique device ID number
201 * @part_index: partition index (0 on first)
202 * @md: parent MMC block device
203 * @rdev: registered RPMB device
204 * @node: list item, so we can put this device on a list
205 */
206struct mmc_rpmb_data {
207 struct device dev;
208 struct cdev chrdev;
209 int id;
210 unsigned int part_index;
211 struct mmc_blk_data *md;
212 struct rpmb_dev *rdev;
213 struct list_head node;
214};
215
216static DEFINE_MUTEX(open_lock);
217
218module_param(perdev_minors, int, 0444);
219MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
220
221static inline int mmc_blk_part_switch(struct mmc_card *card,
222 unsigned int part_type);
223static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
224 struct mmc_card *card,
225 int recovery_mode,
226 struct mmc_queue *mq);
227static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
228static int mmc_spi_err_check(struct mmc_card *card);
229static int mmc_blk_busy_cb(void *cb_data, bool *busy);
230
231static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
232{
233 struct mmc_blk_data *md;
234
235 mutex_lock(&open_lock);
236 md = disk->private_data;
237 if (md && !kref_get_unless_zero(&md->kref))
238 md = NULL;
239 mutex_unlock(&open_lock);
240
241 return md;
242}
243
244static inline int mmc_get_devidx(struct gendisk *disk)
245{
246 int devidx = disk->first_minor / perdev_minors;
247 return devidx;
248}
249
250static void mmc_blk_kref_release(struct kref *ref)
251{
252 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
253 int devidx;
254
255 devidx = mmc_get_devidx(md->disk);
256 ida_free(&mmc_blk_ida, devidx);
257
258 mutex_lock(&open_lock);
259 md->disk->private_data = NULL;
260 mutex_unlock(&open_lock);
261
262 put_disk(md->disk);
263 kfree(md);
264}
265
266static void mmc_blk_put(struct mmc_blk_data *md)
267{
268 kref_put(&md->kref, mmc_blk_kref_release);
269}
270
271static ssize_t power_ro_lock_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273{
274 int ret;
275 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
276 struct mmc_card *card = md->queue.card;
277 int locked = 0;
278
279 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
280 locked = 2;
281 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
282 locked = 1;
283
284 ret = sysfs_emit(buf, "%d\n", locked);
285
286 mmc_blk_put(md);
287
288 return ret;
289}
290
291static ssize_t power_ro_lock_store(struct device *dev,
292 struct device_attribute *attr, const char *buf, size_t count)
293{
294 int ret;
295 struct mmc_blk_data *md, *part_md;
296 struct mmc_queue *mq;
297 struct request *req;
298 unsigned long set;
299
300 if (kstrtoul(buf, 0, &set))
301 return -EINVAL;
302
303 if (set != 1)
304 return count;
305
306 md = mmc_blk_get(dev_to_disk(dev));
307 mq = &md->queue;
308
309 /* Dispatch locking to the block layer */
310 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
311 if (IS_ERR(req)) {
312 count = PTR_ERR(req);
313 goto out_put;
314 }
315 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
316 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
317 blk_execute_rq(req, false);
318 ret = req_to_mmc_queue_req(req)->drv_op_result;
319 blk_mq_free_request(req);
320
321 if (!ret) {
322 pr_info("%s: Locking boot partition ro until next power on\n",
323 md->disk->disk_name);
324 set_disk_ro(md->disk, 1);
325
326 list_for_each_entry(part_md, &md->part, part)
327 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
328 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
329 set_disk_ro(part_md->disk, 1);
330 }
331 }
332out_put:
333 mmc_blk_put(md);
334 return count;
335}
336
337static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
338 power_ro_lock_show, power_ro_lock_store);
339
340static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
341 char *buf)
342{
343 int ret;
344 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
345
346 ret = sysfs_emit(buf, "%d\n",
347 get_disk_ro(dev_to_disk(dev)) ^
348 md->read_only);
349 mmc_blk_put(md);
350 return ret;
351}
352
353static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
354 const char *buf, size_t count)
355{
356 int ret;
357 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
358 unsigned long set;
359
360 if (kstrtoul(buf, 0, &set)) {
361 ret = -EINVAL;
362 goto out;
363 }
364
365 set_disk_ro(dev_to_disk(dev), set || md->read_only);
366 ret = count;
367out:
368 mmc_blk_put(md);
369 return ret;
370}
371
372static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
373
374static struct attribute *mmc_disk_attrs[] = {
375 &dev_attr_force_ro.attr,
376 &dev_attr_ro_lock_until_next_power_on.attr,
377 NULL,
378};
379
380static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
381 struct attribute *a, int n)
382{
383 struct device *dev = kobj_to_dev(kobj);
384 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
385 umode_t mode = a->mode;
386
387 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
388 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
389 md->queue.card->ext_csd.boot_ro_lockable) {
390 mode = S_IRUGO;
391 if (!(md->queue.card->ext_csd.boot_ro_lock &
392 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
393 mode |= S_IWUSR;
394 }
395
396 mmc_blk_put(md);
397 return mode;
398}
399
400static const struct attribute_group mmc_disk_attr_group = {
401 .is_visible = mmc_disk_attrs_is_visible,
402 .attrs = mmc_disk_attrs,
403};
404
405static const struct attribute_group *mmc_disk_attr_groups[] = {
406 &mmc_disk_attr_group,
407 NULL,
408};
409
410static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
411{
412 struct mmc_blk_data *md = mmc_blk_get(disk);
413 int ret = -ENXIO;
414
415 mutex_lock(&block_mutex);
416 if (md) {
417 ret = 0;
418 if ((mode & BLK_OPEN_WRITE) && md->read_only) {
419 mmc_blk_put(md);
420 ret = -EROFS;
421 }
422 }
423 mutex_unlock(&block_mutex);
424
425 return ret;
426}
427
428static void mmc_blk_release(struct gendisk *disk)
429{
430 struct mmc_blk_data *md = disk->private_data;
431
432 mutex_lock(&block_mutex);
433 mmc_blk_put(md);
434 mutex_unlock(&block_mutex);
435}
436
437static int
438mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
439{
440 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
441 geo->heads = 4;
442 geo->sectors = 16;
443 return 0;
444}
445
446struct mmc_blk_ioc_data {
447 struct mmc_ioc_cmd ic;
448 unsigned char *buf;
449 u64 buf_bytes;
450 unsigned int flags;
451#define MMC_BLK_IOC_DROP BIT(0) /* drop this mrq */
452#define MMC_BLK_IOC_SBC BIT(1) /* use mrq.sbc */
453
454 struct mmc_rpmb_data *rpmb;
455};
456
457static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
458 struct mmc_ioc_cmd __user *user)
459{
460 struct mmc_blk_ioc_data *idata;
461 int err;
462
463 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
464 if (!idata) {
465 err = -ENOMEM;
466 goto out;
467 }
468
469 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
470 err = -EFAULT;
471 goto idata_err;
472 }
473
474 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
475 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
476 err = -EOVERFLOW;
477 goto idata_err;
478 }
479
480 if (!idata->buf_bytes) {
481 idata->buf = NULL;
482 return idata;
483 }
484
485 idata->buf = memdup_user((void __user *)(unsigned long)
486 idata->ic.data_ptr, idata->buf_bytes);
487 if (IS_ERR(idata->buf)) {
488 err = PTR_ERR(idata->buf);
489 goto idata_err;
490 }
491
492 return idata;
493
494idata_err:
495 kfree(idata);
496out:
497 return ERR_PTR(err);
498}
499
500static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
501 struct mmc_blk_ioc_data *idata)
502{
503 struct mmc_ioc_cmd *ic = &idata->ic;
504
505 if (copy_to_user(&(ic_ptr->response), ic->response,
506 sizeof(ic->response)))
507 return -EFAULT;
508
509 if (!idata->ic.write_flag) {
510 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
511 idata->buf, idata->buf_bytes))
512 return -EFAULT;
513 }
514
515 return 0;
516}
517
518static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
519 struct mmc_blk_ioc_data **idatas, int i)
520{
521 struct mmc_command cmd = {}, sbc = {};
522 struct mmc_data data = {};
523 struct mmc_request mrq = {};
524 struct scatterlist sg;
525 bool r1b_resp;
526 unsigned int busy_timeout_ms;
527 int err;
528 unsigned int target_part;
529 struct mmc_blk_ioc_data *idata = idatas[i];
530 struct mmc_blk_ioc_data *prev_idata = NULL;
531
532 if (!card || !md || !idata)
533 return -EINVAL;
534
535 if (idata->flags & MMC_BLK_IOC_DROP)
536 return 0;
537
538 if (idata->flags & MMC_BLK_IOC_SBC && i > 0)
539 prev_idata = idatas[i - 1];
540
541 /*
542 * The RPMB accesses comes in from the character device, so we
543 * need to target these explicitly. Else we just target the
544 * partition type for the block device the ioctl() was issued
545 * on.
546 */
547 if (idata->rpmb) {
548 /* Support multiple RPMB partitions */
549 target_part = idata->rpmb->part_index;
550 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
551 } else {
552 target_part = md->part_type;
553 }
554
555 cmd.opcode = idata->ic.opcode;
556 cmd.arg = idata->ic.arg;
557 cmd.flags = idata->ic.flags;
558
559 if (idata->buf_bytes) {
560 data.sg = &sg;
561 data.sg_len = 1;
562 data.blksz = idata->ic.blksz;
563 data.blocks = idata->ic.blocks;
564
565 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
566
567 if (idata->ic.write_flag)
568 data.flags = MMC_DATA_WRITE;
569 else
570 data.flags = MMC_DATA_READ;
571
572 /* data.flags must already be set before doing this. */
573 mmc_set_data_timeout(&data, card);
574
575 /* Allow overriding the timeout_ns for empirical tuning. */
576 if (idata->ic.data_timeout_ns)
577 data.timeout_ns = idata->ic.data_timeout_ns;
578
579 mrq.data = &data;
580 }
581
582 mrq.cmd = &cmd;
583
584 err = mmc_blk_part_switch(card, target_part);
585 if (err)
586 return err;
587
588 if (idata->ic.is_acmd) {
589 err = mmc_app_cmd(card->host, card);
590 if (err)
591 return err;
592 }
593
594 if (idata->rpmb || prev_idata) {
595 sbc.opcode = MMC_SET_BLOCK_COUNT;
596 /*
597 * We don't do any blockcount validation because the max size
598 * may be increased by a future standard. We just copy the
599 * 'Reliable Write' bit here.
600 */
601 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
602 if (prev_idata)
603 sbc.arg = prev_idata->ic.arg;
604 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
605 mrq.sbc = &sbc;
606 }
607
608 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
609 (cmd.opcode == MMC_SWITCH))
610 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
611
612 /* If it's an R1B response we need some more preparations. */
613 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
614 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
615 if (r1b_resp)
616 mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
617
618 mmc_wait_for_req(card->host, &mrq);
619 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
620
621 if (prev_idata) {
622 memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
623 if (sbc.error) {
624 dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
625 __func__, sbc.error);
626 return sbc.error;
627 }
628 }
629
630 if (cmd.error) {
631 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
632 __func__, cmd.error);
633 return cmd.error;
634 }
635 if (data.error) {
636 dev_err(mmc_dev(card->host), "%s: data error %d\n",
637 __func__, data.error);
638 return data.error;
639 }
640
641 /*
642 * Make sure the cache of the PARTITION_CONFIG register and
643 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
644 * changed it successfully.
645 */
646 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
647 (cmd.opcode == MMC_SWITCH)) {
648 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
649 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
650
651 /*
652 * Update cache so the next mmc_blk_part_switch call operates
653 * on up-to-date data.
654 */
655 card->ext_csd.part_config = value;
656 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
657 }
658
659 /*
660 * Make sure to update CACHE_CTRL in case it was changed. The cache
661 * will get turned back on if the card is re-initialized, e.g.
662 * suspend/resume or hw reset in recovery.
663 */
664 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
665 (cmd.opcode == MMC_SWITCH)) {
666 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
667
668 card->ext_csd.cache_ctrl = value;
669 }
670
671 /*
672 * According to the SD specs, some commands require a delay after
673 * issuing the command.
674 */
675 if (idata->ic.postsleep_min_us)
676 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
677
678 if (mmc_host_is_spi(card->host)) {
679 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
680 return mmc_spi_err_check(card);
681 return err;
682 }
683
684 /*
685 * Ensure RPMB, writes and R1B responses are completed by polling with
686 * CMD13. Note that, usually we don't need to poll when using HW busy
687 * detection, but here it's needed since some commands may indicate the
688 * error through the R1 status bits.
689 */
690 if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
691 struct mmc_blk_busy_data cb_data = {
692 .card = card,
693 };
694
695 err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
696 &mmc_blk_busy_cb, &cb_data);
697
698 idata->ic.response[0] = cb_data.status;
699 }
700
701 return err;
702}
703
704static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
705 struct mmc_ioc_cmd __user *ic_ptr,
706 struct mmc_rpmb_data *rpmb)
707{
708 struct mmc_blk_ioc_data *idata;
709 struct mmc_blk_ioc_data *idatas[1];
710 struct mmc_queue *mq;
711 struct mmc_card *card;
712 int err = 0, ioc_err = 0;
713 struct request *req;
714
715 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
716 if (IS_ERR(idata))
717 return PTR_ERR(idata);
718 /* This will be NULL on non-RPMB ioctl():s */
719 idata->rpmb = rpmb;
720
721 card = md->queue.card;
722 if (IS_ERR(card)) {
723 err = PTR_ERR(card);
724 goto cmd_done;
725 }
726
727 /*
728 * Dispatch the ioctl() into the block request queue.
729 */
730 mq = &md->queue;
731 req = blk_mq_alloc_request(mq->queue,
732 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
733 if (IS_ERR(req)) {
734 err = PTR_ERR(req);
735 goto cmd_done;
736 }
737 idatas[0] = idata;
738 req_to_mmc_queue_req(req)->drv_op =
739 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
740 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
741 req_to_mmc_queue_req(req)->drv_op_data = idatas;
742 req_to_mmc_queue_req(req)->ioc_count = 1;
743 blk_execute_rq(req, false);
744 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
745 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
746 blk_mq_free_request(req);
747
748cmd_done:
749 kfree(idata->buf);
750 kfree(idata);
751 return ioc_err ? ioc_err : err;
752}
753
754static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
755 struct mmc_ioc_multi_cmd __user *user,
756 struct mmc_rpmb_data *rpmb)
757{
758 struct mmc_blk_ioc_data **idata = NULL;
759 struct mmc_ioc_cmd __user *cmds = user->cmds;
760 struct mmc_card *card;
761 struct mmc_queue *mq;
762 int err = 0, ioc_err = 0;
763 __u64 num_of_cmds;
764 unsigned int i, n;
765 struct request *req;
766
767 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
768 sizeof(num_of_cmds)))
769 return -EFAULT;
770
771 if (!num_of_cmds)
772 return 0;
773
774 if (num_of_cmds > MMC_IOC_MAX_CMDS)
775 return -EINVAL;
776
777 n = num_of_cmds;
778 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
779 if (!idata)
780 return -ENOMEM;
781
782 for (i = 0; i < n; i++) {
783 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
784 if (IS_ERR(idata[i])) {
785 err = PTR_ERR(idata[i]);
786 n = i;
787 goto cmd_err;
788 }
789 /* This will be NULL on non-RPMB ioctl():s */
790 idata[i]->rpmb = rpmb;
791 }
792
793 card = md->queue.card;
794 if (IS_ERR(card)) {
795 err = PTR_ERR(card);
796 goto cmd_err;
797 }
798
799
800 /*
801 * Dispatch the ioctl()s into the block request queue.
802 */
803 mq = &md->queue;
804 req = blk_mq_alloc_request(mq->queue,
805 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
806 if (IS_ERR(req)) {
807 err = PTR_ERR(req);
808 goto cmd_err;
809 }
810 req_to_mmc_queue_req(req)->drv_op =
811 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
812 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
813 req_to_mmc_queue_req(req)->drv_op_data = idata;
814 req_to_mmc_queue_req(req)->ioc_count = n;
815 blk_execute_rq(req, false);
816 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
817
818 /* copy to user if data and response */
819 for (i = 0; i < n && !err; i++)
820 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
821
822 blk_mq_free_request(req);
823
824cmd_err:
825 for (i = 0; i < n; i++) {
826 kfree(idata[i]->buf);
827 kfree(idata[i]);
828 }
829 kfree(idata);
830 return ioc_err ? ioc_err : err;
831}
832
833static int mmc_blk_check_blkdev(struct block_device *bdev)
834{
835 /*
836 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
837 * whole block device, not on a partition. This prevents overspray
838 * between sibling partitions.
839 */
840 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
841 return -EPERM;
842 return 0;
843}
844
845static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
846 unsigned int cmd, unsigned long arg)
847{
848 struct mmc_blk_data *md;
849 int ret;
850
851 switch (cmd) {
852 case MMC_IOC_CMD:
853 ret = mmc_blk_check_blkdev(bdev);
854 if (ret)
855 return ret;
856 md = mmc_blk_get(bdev->bd_disk);
857 if (!md)
858 return -EINVAL;
859 ret = mmc_blk_ioctl_cmd(md,
860 (struct mmc_ioc_cmd __user *)arg,
861 NULL);
862 mmc_blk_put(md);
863 return ret;
864 case MMC_IOC_MULTI_CMD:
865 ret = mmc_blk_check_blkdev(bdev);
866 if (ret)
867 return ret;
868 md = mmc_blk_get(bdev->bd_disk);
869 if (!md)
870 return -EINVAL;
871 ret = mmc_blk_ioctl_multi_cmd(md,
872 (struct mmc_ioc_multi_cmd __user *)arg,
873 NULL);
874 mmc_blk_put(md);
875 return ret;
876 default:
877 return -EINVAL;
878 }
879}
880
881#ifdef CONFIG_COMPAT
882static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
883 unsigned int cmd, unsigned long arg)
884{
885 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
886}
887#endif
888
889static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
890 sector_t *sector)
891{
892 struct mmc_blk_data *md;
893 int ret;
894
895 md = mmc_blk_get(disk);
896 if (!md)
897 return -EINVAL;
898
899 if (md->queue.card)
900 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
901 else
902 ret = -ENODEV;
903
904 mmc_blk_put(md);
905
906 return ret;
907}
908
909static const struct block_device_operations mmc_bdops = {
910 .open = mmc_blk_open,
911 .release = mmc_blk_release,
912 .getgeo = mmc_blk_getgeo,
913 .owner = THIS_MODULE,
914 .ioctl = mmc_blk_ioctl,
915#ifdef CONFIG_COMPAT
916 .compat_ioctl = mmc_blk_compat_ioctl,
917#endif
918 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
919};
920
921static int mmc_blk_part_switch_pre(struct mmc_card *card,
922 unsigned int part_type)
923{
924 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
925 const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
926 int ret = 0;
927
928 if ((part_type & mask) == rpmb) {
929 if (card->ext_csd.cmdq_en) {
930 ret = mmc_cmdq_disable(card);
931 if (ret)
932 return ret;
933 }
934 mmc_retune_pause(card->host);
935 }
936
937 return ret;
938}
939
940static int mmc_blk_part_switch_post(struct mmc_card *card,
941 unsigned int part_type)
942{
943 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
944 const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
945 int ret = 0;
946
947 if ((part_type & mask) == rpmb) {
948 mmc_retune_unpause(card->host);
949 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
950 ret = mmc_cmdq_enable(card);
951 }
952
953 return ret;
954}
955
956static inline int mmc_blk_part_switch(struct mmc_card *card,
957 unsigned int part_type)
958{
959 int ret = 0;
960 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
961
962 if (main_md->part_curr == part_type)
963 return 0;
964
965 if (mmc_card_mmc(card)) {
966 u8 part_config = card->ext_csd.part_config;
967
968 ret = mmc_blk_part_switch_pre(card, part_type);
969 if (ret)
970 return ret;
971
972 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
973 part_config |= part_type;
974
975 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
976 EXT_CSD_PART_CONFIG, part_config,
977 card->ext_csd.part_time);
978 if (ret) {
979 mmc_blk_part_switch_post(card, part_type);
980 return ret;
981 }
982
983 card->ext_csd.part_config = part_config;
984
985 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
986 }
987
988 main_md->part_curr = part_type;
989 return ret;
990}
991
992static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
993{
994 int err;
995 u32 result;
996 __be32 *blocks;
997 u8 resp_sz = mmc_card_ult_capacity(card) ? 8 : 4;
998 unsigned int noio_flag;
999
1000 struct mmc_request mrq = {};
1001 struct mmc_command cmd = {};
1002 struct mmc_data data = {};
1003 struct scatterlist sg;
1004
1005 err = mmc_app_cmd(card->host, card);
1006 if (err)
1007 return err;
1008
1009 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
1010 cmd.arg = 0;
1011 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1012
1013 data.blksz = resp_sz;
1014 data.blocks = 1;
1015 data.flags = MMC_DATA_READ;
1016 data.sg = &sg;
1017 data.sg_len = 1;
1018 mmc_set_data_timeout(&data, card);
1019
1020 mrq.cmd = &cmd;
1021 mrq.data = &data;
1022
1023 noio_flag = memalloc_noio_save();
1024 blocks = kmalloc(resp_sz, GFP_KERNEL);
1025 memalloc_noio_restore(noio_flag);
1026 if (!blocks)
1027 return -ENOMEM;
1028
1029 sg_init_one(&sg, blocks, resp_sz);
1030
1031 mmc_wait_for_req(card->host, &mrq);
1032
1033 if (mmc_card_ult_capacity(card)) {
1034 /*
1035 * Normally, ACMD22 returns the number of written sectors as
1036 * u32. SDUC, however, returns it as u64. This is not a
1037 * superfluous requirement, because SDUC writes may exceed 2TB.
1038 * For Linux mmc however, the previously write operation could
1039 * not be more than the block layer limits, thus just make room
1040 * for a u64 and cast the response back to u32.
1041 */
1042 result = clamp_val(get_unaligned_be64(blocks), 0, UINT_MAX);
1043 } else {
1044 result = ntohl(*blocks);
1045 }
1046 kfree(blocks);
1047
1048 if (cmd.error || data.error)
1049 return -EIO;
1050
1051 *written_blocks = result;
1052
1053 return 0;
1054}
1055
1056static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
1057{
1058 if (host->actual_clock)
1059 return host->actual_clock / 1000;
1060
1061 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
1062 if (host->ios.clock)
1063 return host->ios.clock / 2000;
1064
1065 /* How can there be no clock */
1066 WARN_ON_ONCE(1);
1067 return 100; /* 100 kHz is minimum possible value */
1068}
1069
1070static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1071 struct mmc_data *data)
1072{
1073 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1074 unsigned int khz;
1075
1076 if (data->timeout_clks) {
1077 khz = mmc_blk_clock_khz(host);
1078 ms += DIV_ROUND_UP(data->timeout_clks, khz);
1079 }
1080
1081 return ms;
1082}
1083
1084/*
1085 * Attempts to reset the card and get back to the requested partition.
1086 * Therefore any error here must result in cancelling the block layer
1087 * request, it must not be reattempted without going through the mmc_blk
1088 * partition sanity checks.
1089 */
1090static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1091 int type)
1092{
1093 int err;
1094 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1095
1096 if (md->reset_done & type)
1097 return -EEXIST;
1098
1099 md->reset_done |= type;
1100 err = mmc_hw_reset(host->card);
1101 /*
1102 * A successful reset will leave the card in the main partition, but
1103 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1104 * in that case.
1105 */
1106 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1107 if (err)
1108 return err;
1109 /* Ensure we switch back to the correct partition */
1110 if (mmc_blk_part_switch(host->card, md->part_type))
1111 /*
1112 * We have failed to get back into the correct
1113 * partition, so we need to abort the whole request.
1114 */
1115 return -ENODEV;
1116 return 0;
1117}
1118
1119static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1120{
1121 md->reset_done &= ~type;
1122}
1123
1124static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1125{
1126 struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1127 int i;
1128
1129 for (i = 1; i < mq_rq->ioc_count; i++) {
1130 if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1131 mmc_op_multi(idata[i]->ic.opcode)) {
1132 idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1133 idata[i]->flags |= MMC_BLK_IOC_SBC;
1134 }
1135 }
1136}
1137
1138/*
1139 * The non-block commands come back from the block layer after it queued it and
1140 * processed it with all other requests and then they get issued in this
1141 * function.
1142 */
1143static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1144{
1145 struct mmc_queue_req *mq_rq;
1146 struct mmc_card *card = mq->card;
1147 struct mmc_blk_data *md = mq->blkdata;
1148 struct mmc_blk_ioc_data **idata;
1149 bool rpmb_ioctl;
1150 u8 **ext_csd;
1151 u32 status;
1152 int ret;
1153 int i;
1154
1155 mq_rq = req_to_mmc_queue_req(req);
1156 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1157
1158 switch (mq_rq->drv_op) {
1159 case MMC_DRV_OP_IOCTL:
1160 if (card->ext_csd.cmdq_en) {
1161 ret = mmc_cmdq_disable(card);
1162 if (ret)
1163 break;
1164 }
1165
1166 mmc_blk_check_sbc(mq_rq);
1167
1168 fallthrough;
1169 case MMC_DRV_OP_IOCTL_RPMB:
1170 idata = mq_rq->drv_op_data;
1171 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1172 ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1173 if (ret)
1174 break;
1175 }
1176 /* Always switch back to main area after RPMB access */
1177 if (rpmb_ioctl)
1178 mmc_blk_part_switch(card, 0);
1179 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1180 mmc_cmdq_enable(card);
1181 break;
1182 case MMC_DRV_OP_BOOT_WP:
1183 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1184 card->ext_csd.boot_ro_lock |
1185 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1186 card->ext_csd.part_time);
1187 if (ret)
1188 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1189 md->disk->disk_name, ret);
1190 else
1191 card->ext_csd.boot_ro_lock |=
1192 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1193 break;
1194 case MMC_DRV_OP_GET_CARD_STATUS:
1195 ret = mmc_send_status(card, &status);
1196 if (!ret)
1197 ret = status;
1198 break;
1199 case MMC_DRV_OP_GET_EXT_CSD:
1200 ext_csd = mq_rq->drv_op_data;
1201 ret = mmc_get_ext_csd(card, ext_csd);
1202 break;
1203 default:
1204 pr_err("%s: unknown driver specific operation\n",
1205 md->disk->disk_name);
1206 ret = -EINVAL;
1207 break;
1208 }
1209 mq_rq->drv_op_result = ret;
1210 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1211}
1212
1213static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1214 int type, unsigned int erase_arg)
1215{
1216 struct mmc_blk_data *md = mq->blkdata;
1217 struct mmc_card *card = md->queue.card;
1218 unsigned int nr;
1219 sector_t from;
1220 int err = 0;
1221 blk_status_t status = BLK_STS_OK;
1222
1223 if (!mmc_can_erase(card)) {
1224 status = BLK_STS_NOTSUPP;
1225 goto fail;
1226 }
1227
1228 from = blk_rq_pos(req);
1229 nr = blk_rq_sectors(req);
1230
1231 do {
1232 err = 0;
1233 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1234 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1235 INAND_CMD38_ARG_EXT_CSD,
1236 erase_arg == MMC_TRIM_ARG ?
1237 INAND_CMD38_ARG_TRIM :
1238 INAND_CMD38_ARG_ERASE,
1239 card->ext_csd.generic_cmd6_time);
1240 }
1241 if (!err)
1242 err = mmc_erase(card, from, nr, erase_arg);
1243 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1244 if (err)
1245 status = BLK_STS_IOERR;
1246 else
1247 mmc_blk_reset_success(md, type);
1248fail:
1249 blk_mq_end_request(req, status);
1250}
1251
1252static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1253{
1254 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1255}
1256
1257static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1258{
1259 struct mmc_blk_data *md = mq->blkdata;
1260 struct mmc_card *card = md->queue.card;
1261 unsigned int arg = card->erase_arg;
1262
1263 if (mmc_card_broken_sd_discard(card))
1264 arg = SD_ERASE_ARG;
1265
1266 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1267}
1268
1269static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1270 struct request *req)
1271{
1272 struct mmc_blk_data *md = mq->blkdata;
1273 struct mmc_card *card = md->queue.card;
1274 unsigned int nr, arg;
1275 sector_t from;
1276 int err = 0, type = MMC_BLK_SECDISCARD;
1277 blk_status_t status = BLK_STS_OK;
1278
1279 if (!(mmc_can_secure_erase_trim(card))) {
1280 status = BLK_STS_NOTSUPP;
1281 goto out;
1282 }
1283
1284 from = blk_rq_pos(req);
1285 nr = blk_rq_sectors(req);
1286
1287 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1288 arg = MMC_SECURE_TRIM1_ARG;
1289 else
1290 arg = MMC_SECURE_ERASE_ARG;
1291
1292retry:
1293 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1294 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1295 INAND_CMD38_ARG_EXT_CSD,
1296 arg == MMC_SECURE_TRIM1_ARG ?
1297 INAND_CMD38_ARG_SECTRIM1 :
1298 INAND_CMD38_ARG_SECERASE,
1299 card->ext_csd.generic_cmd6_time);
1300 if (err)
1301 goto out_retry;
1302 }
1303
1304 err = mmc_erase(card, from, nr, arg);
1305 if (err == -EIO)
1306 goto out_retry;
1307 if (err) {
1308 status = BLK_STS_IOERR;
1309 goto out;
1310 }
1311
1312 if (arg == MMC_SECURE_TRIM1_ARG) {
1313 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1314 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1315 INAND_CMD38_ARG_EXT_CSD,
1316 INAND_CMD38_ARG_SECTRIM2,
1317 card->ext_csd.generic_cmd6_time);
1318 if (err)
1319 goto out_retry;
1320 }
1321
1322 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1323 if (err == -EIO)
1324 goto out_retry;
1325 if (err) {
1326 status = BLK_STS_IOERR;
1327 goto out;
1328 }
1329 }
1330
1331out_retry:
1332 if (err && !mmc_blk_reset(md, card->host, type))
1333 goto retry;
1334 if (!err)
1335 mmc_blk_reset_success(md, type);
1336out:
1337 blk_mq_end_request(req, status);
1338}
1339
1340static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1341{
1342 struct mmc_blk_data *md = mq->blkdata;
1343 struct mmc_card *card = md->queue.card;
1344 int ret = 0;
1345
1346 ret = mmc_flush_cache(card->host);
1347 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1348}
1349
1350/*
1351 * Reformat current write as a reliable write, supporting
1352 * both legacy and the enhanced reliable write MMC cards.
1353 * In each transfer we'll handle only as much as a single
1354 * reliable write can handle, thus finish the request in
1355 * partial completions.
1356 */
1357static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1358 struct mmc_card *card,
1359 struct request *req)
1360{
1361 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1362 /* Legacy mode imposes restrictions on transfers. */
1363 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1364 brq->data.blocks = 1;
1365
1366 if (brq->data.blocks > card->ext_csd.rel_sectors)
1367 brq->data.blocks = card->ext_csd.rel_sectors;
1368 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1369 brq->data.blocks = 1;
1370 }
1371}
1372
1373#define CMD_ERRORS_EXCL_OOR \
1374 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1375 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1376 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1377 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1378 R1_CC_ERROR | /* Card controller error */ \
1379 R1_ERROR) /* General/unknown error */
1380
1381#define CMD_ERRORS \
1382 (CMD_ERRORS_EXCL_OOR | \
1383 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1384
1385static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1386{
1387 u32 val;
1388
1389 /*
1390 * Per the SD specification(physical layer version 4.10)[1],
1391 * section 4.3.3, it explicitly states that "When the last
1392 * block of user area is read using CMD18, the host should
1393 * ignore OUT_OF_RANGE error that may occur even the sequence
1394 * is correct". And JESD84-B51 for eMMC also has a similar
1395 * statement on section 6.8.3.
1396 *
1397 * Multiple block read/write could be done by either predefined
1398 * method, namely CMD23, or open-ending mode. For open-ending mode,
1399 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1400 *
1401 * However the spec[1] doesn't tell us whether we should also
1402 * ignore that for predefined method. But per the spec[1], section
1403 * 4.15 Set Block Count Command, it says"If illegal block count
1404 * is set, out of range error will be indicated during read/write
1405 * operation (For example, data transfer is stopped at user area
1406 * boundary)." In another word, we could expect a out of range error
1407 * in the response for the following CMD18/25. And if argument of
1408 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1409 * we could also expect to get a -ETIMEDOUT or any error number from
1410 * the host drivers due to missing data response(for write)/data(for
1411 * read), as the cards will stop the data transfer by itself per the
1412 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1413 */
1414
1415 if (!brq->stop.error) {
1416 bool oor_with_open_end;
1417 /* If there is no error yet, check R1 response */
1418
1419 val = brq->stop.resp[0] & CMD_ERRORS;
1420 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1421
1422 if (val && !oor_with_open_end)
1423 brq->stop.error = -EIO;
1424 }
1425}
1426
1427static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1428 int recovery_mode, bool *do_rel_wr_p,
1429 bool *do_data_tag_p)
1430{
1431 struct mmc_blk_data *md = mq->blkdata;
1432 struct mmc_card *card = md->queue.card;
1433 struct mmc_blk_request *brq = &mqrq->brq;
1434 struct request *req = mmc_queue_req_to_req(mqrq);
1435 bool do_rel_wr, do_data_tag;
1436
1437 /*
1438 * Reliable writes are used to implement Forced Unit Access and
1439 * are supported only on MMCs.
1440 */
1441 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1442 rq_data_dir(req) == WRITE &&
1443 (md->flags & MMC_BLK_REL_WR);
1444
1445 memset(brq, 0, sizeof(struct mmc_blk_request));
1446
1447 mmc_crypto_prepare_req(mqrq);
1448
1449 brq->mrq.data = &brq->data;
1450 brq->mrq.tag = req->tag;
1451
1452 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1453 brq->stop.arg = 0;
1454
1455 if (rq_data_dir(req) == READ) {
1456 brq->data.flags = MMC_DATA_READ;
1457 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1458 } else {
1459 brq->data.flags = MMC_DATA_WRITE;
1460 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1461 }
1462
1463 brq->data.blksz = 512;
1464 brq->data.blocks = blk_rq_sectors(req);
1465 brq->data.blk_addr = blk_rq_pos(req);
1466
1467 /*
1468 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1469 * The eMMC will give "high" priority tasks priority over "simple"
1470 * priority tasks. Here we always set "simple" priority by not setting
1471 * MMC_DATA_PRIO.
1472 */
1473
1474 /*
1475 * The block layer doesn't support all sector count
1476 * restrictions, so we need to be prepared for too big
1477 * requests.
1478 */
1479 if (brq->data.blocks > card->host->max_blk_count)
1480 brq->data.blocks = card->host->max_blk_count;
1481
1482 if (brq->data.blocks > 1) {
1483 /*
1484 * Some SD cards in SPI mode return a CRC error or even lock up
1485 * completely when trying to read the last block using a
1486 * multiblock read command.
1487 */
1488 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1489 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1490 get_capacity(md->disk)))
1491 brq->data.blocks--;
1492
1493 /*
1494 * After a read error, we redo the request one (native) sector
1495 * at a time in order to accurately determine which
1496 * sectors can be read successfully.
1497 */
1498 if (recovery_mode)
1499 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1500
1501 /*
1502 * Some controllers have HW issues while operating
1503 * in multiple I/O mode
1504 */
1505 if (card->host->ops->multi_io_quirk)
1506 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1507 (rq_data_dir(req) == READ) ?
1508 MMC_DATA_READ : MMC_DATA_WRITE,
1509 brq->data.blocks);
1510 }
1511
1512 if (do_rel_wr) {
1513 mmc_apply_rel_rw(brq, card, req);
1514 brq->data.flags |= MMC_DATA_REL_WR;
1515 }
1516
1517 /*
1518 * Data tag is used only during writing meta data to speed
1519 * up write and any subsequent read of this meta data
1520 */
1521 do_data_tag = card->ext_csd.data_tag_unit_size &&
1522 (req->cmd_flags & REQ_META) &&
1523 (rq_data_dir(req) == WRITE) &&
1524 ((brq->data.blocks * brq->data.blksz) >=
1525 card->ext_csd.data_tag_unit_size);
1526
1527 if (do_data_tag)
1528 brq->data.flags |= MMC_DATA_DAT_TAG;
1529
1530 mmc_set_data_timeout(&brq->data, card);
1531
1532 brq->data.sg = mqrq->sg;
1533 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1534
1535 /*
1536 * Adjust the sg list so it is the same size as the
1537 * request.
1538 */
1539 if (brq->data.blocks != blk_rq_sectors(req)) {
1540 int i, data_size = brq->data.blocks << 9;
1541 struct scatterlist *sg;
1542
1543 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1544 data_size -= sg->length;
1545 if (data_size <= 0) {
1546 sg->length += data_size;
1547 i++;
1548 break;
1549 }
1550 }
1551 brq->data.sg_len = i;
1552 }
1553
1554 if (do_rel_wr_p)
1555 *do_rel_wr_p = do_rel_wr;
1556
1557 if (do_data_tag_p)
1558 *do_data_tag_p = do_data_tag;
1559}
1560
1561#define MMC_CQE_RETRIES 2
1562
1563static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1564{
1565 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1566 struct mmc_request *mrq = &mqrq->brq.mrq;
1567 struct request_queue *q = req->q;
1568 struct mmc_host *host = mq->card->host;
1569 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1570 unsigned long flags;
1571 bool put_card;
1572 int err;
1573
1574 mmc_cqe_post_req(host, mrq);
1575
1576 if (mrq->cmd && mrq->cmd->error)
1577 err = mrq->cmd->error;
1578 else if (mrq->data && mrq->data->error)
1579 err = mrq->data->error;
1580 else
1581 err = 0;
1582
1583 if (err) {
1584 if (mqrq->retries++ < MMC_CQE_RETRIES)
1585 blk_mq_requeue_request(req, true);
1586 else
1587 blk_mq_end_request(req, BLK_STS_IOERR);
1588 } else if (mrq->data) {
1589 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1590 blk_mq_requeue_request(req, true);
1591 else
1592 __blk_mq_end_request(req, BLK_STS_OK);
1593 } else if (mq->in_recovery) {
1594 blk_mq_requeue_request(req, true);
1595 } else {
1596 blk_mq_end_request(req, BLK_STS_OK);
1597 }
1598
1599 spin_lock_irqsave(&mq->lock, flags);
1600
1601 mq->in_flight[issue_type] -= 1;
1602
1603 put_card = (mmc_tot_in_flight(mq) == 0);
1604
1605 mmc_cqe_check_busy(mq);
1606
1607 spin_unlock_irqrestore(&mq->lock, flags);
1608
1609 if (!mq->cqe_busy)
1610 blk_mq_run_hw_queues(q, true);
1611
1612 if (put_card)
1613 mmc_put_card(mq->card, &mq->ctx);
1614}
1615
1616void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1617{
1618 struct mmc_card *card = mq->card;
1619 struct mmc_host *host = card->host;
1620 int err;
1621
1622 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1623
1624 err = mmc_cqe_recovery(host);
1625 if (err)
1626 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1627 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1628
1629 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1630}
1631
1632static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1633{
1634 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1635 brq.mrq);
1636 struct request *req = mmc_queue_req_to_req(mqrq);
1637 struct request_queue *q = req->q;
1638 struct mmc_queue *mq = q->queuedata;
1639
1640 /*
1641 * Block layer timeouts race with completions which means the normal
1642 * completion path cannot be used during recovery.
1643 */
1644 if (mq->in_recovery)
1645 mmc_blk_cqe_complete_rq(mq, req);
1646 else if (likely(!blk_should_fake_timeout(req->q)))
1647 blk_mq_complete_request(req);
1648}
1649
1650static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1651{
1652 mrq->done = mmc_blk_cqe_req_done;
1653 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1654
1655 return mmc_cqe_start_req(host, mrq);
1656}
1657
1658static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1659 struct request *req)
1660{
1661 struct mmc_blk_request *brq = &mqrq->brq;
1662
1663 memset(brq, 0, sizeof(*brq));
1664
1665 brq->mrq.cmd = &brq->cmd;
1666 brq->mrq.tag = req->tag;
1667
1668 return &brq->mrq;
1669}
1670
1671static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1672{
1673 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1674 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1675
1676 mrq->cmd->opcode = MMC_SWITCH;
1677 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1678 (EXT_CSD_FLUSH_CACHE << 16) |
1679 (1 << 8) |
1680 EXT_CSD_CMD_SET_NORMAL;
1681 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1682
1683 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1684}
1685
1686static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1687{
1688 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1689 struct mmc_host *host = mq->card->host;
1690 int err;
1691
1692 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1693 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1694 mmc_pre_req(host, &mqrq->brq.mrq);
1695
1696 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1697 if (err)
1698 mmc_post_req(host, &mqrq->brq.mrq, err);
1699
1700 return err;
1701}
1702
1703static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1704{
1705 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1706 struct mmc_host *host = mq->card->host;
1707
1708 if (host->hsq_enabled)
1709 return mmc_blk_hsq_issue_rw_rq(mq, req);
1710
1711 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1712
1713 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1714}
1715
1716static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1717 struct mmc_card *card,
1718 int recovery_mode,
1719 struct mmc_queue *mq)
1720{
1721 u32 readcmd, writecmd;
1722 struct mmc_blk_request *brq = &mqrq->brq;
1723 struct request *req = mmc_queue_req_to_req(mqrq);
1724 struct mmc_blk_data *md = mq->blkdata;
1725 bool do_rel_wr, do_data_tag;
1726
1727 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1728
1729 brq->mrq.cmd = &brq->cmd;
1730
1731 brq->cmd.arg = blk_rq_pos(req);
1732 if (!mmc_card_blockaddr(card))
1733 brq->cmd.arg <<= 9;
1734 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1735
1736 if (brq->data.blocks > 1 || do_rel_wr) {
1737 /* SPI multiblock writes terminate using a special
1738 * token, not a STOP_TRANSMISSION request.
1739 */
1740 if (!mmc_host_is_spi(card->host) ||
1741 rq_data_dir(req) == READ)
1742 brq->mrq.stop = &brq->stop;
1743 readcmd = MMC_READ_MULTIPLE_BLOCK;
1744 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1745 } else {
1746 brq->mrq.stop = NULL;
1747 readcmd = MMC_READ_SINGLE_BLOCK;
1748 writecmd = MMC_WRITE_BLOCK;
1749 }
1750 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1751
1752 /*
1753 * Pre-defined multi-block transfers are preferable to
1754 * open ended-ones (and necessary for reliable writes).
1755 * However, it is not sufficient to just send CMD23,
1756 * and avoid the final CMD12, as on an error condition
1757 * CMD12 (stop) needs to be sent anyway. This, coupled
1758 * with Auto-CMD23 enhancements provided by some
1759 * hosts, means that the complexity of dealing
1760 * with this is best left to the host. If CMD23 is
1761 * supported by card and host, we'll fill sbc in and let
1762 * the host deal with handling it correctly. This means
1763 * that for hosts that don't expose MMC_CAP_CMD23, no
1764 * change of behavior will be observed.
1765 *
1766 * N.B: Some MMC cards experience perf degradation.
1767 * We'll avoid using CMD23-bounded multiblock writes for
1768 * these, while retaining features like reliable writes.
1769 */
1770 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1771 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1772 do_data_tag)) {
1773 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1774 brq->sbc.arg = brq->data.blocks |
1775 (do_rel_wr ? (1 << 31) : 0) |
1776 (do_data_tag ? (1 << 29) : 0);
1777 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1778 brq->mrq.sbc = &brq->sbc;
1779 }
1780
1781 if (mmc_card_ult_capacity(card)) {
1782 brq->cmd.ext_addr = blk_rq_pos(req) >> 32;
1783 brq->cmd.has_ext_addr = true;
1784 }
1785}
1786
1787#define MMC_MAX_RETRIES 5
1788#define MMC_DATA_RETRIES 2
1789#define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1790
1791static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1792{
1793 struct mmc_command cmd = {
1794 .opcode = MMC_STOP_TRANSMISSION,
1795 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1796 /* Some hosts wait for busy anyway, so provide a busy timeout */
1797 .busy_timeout = timeout,
1798 };
1799
1800 return mmc_wait_for_cmd(card->host, &cmd, 5);
1801}
1802
1803static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1804{
1805 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1806 struct mmc_blk_request *brq = &mqrq->brq;
1807 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1808 int err;
1809
1810 mmc_retune_hold_now(card->host);
1811
1812 mmc_blk_send_stop(card, timeout);
1813
1814 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1815
1816 mmc_retune_release(card->host);
1817
1818 return err;
1819}
1820
1821#define MMC_READ_SINGLE_RETRIES 2
1822
1823/* Single (native) sector read during recovery */
1824static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1825{
1826 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1827 struct mmc_request *mrq = &mqrq->brq.mrq;
1828 struct mmc_card *card = mq->card;
1829 struct mmc_host *host = card->host;
1830 blk_status_t error = BLK_STS_OK;
1831 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1832
1833 do {
1834 u32 status;
1835 int err;
1836 int retries = 0;
1837
1838 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1839 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1840
1841 mmc_wait_for_req(host, mrq);
1842
1843 err = mmc_send_status(card, &status);
1844 if (err)
1845 goto error_exit;
1846
1847 if (!mmc_host_is_spi(host) &&
1848 !mmc_ready_for_data(status)) {
1849 err = mmc_blk_fix_state(card, req);
1850 if (err)
1851 goto error_exit;
1852 }
1853
1854 if (!mrq->cmd->error)
1855 break;
1856 }
1857
1858 if (mrq->cmd->error ||
1859 mrq->data->error ||
1860 (!mmc_host_is_spi(host) &&
1861 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1862 error = BLK_STS_IOERR;
1863 else
1864 error = BLK_STS_OK;
1865
1866 } while (blk_update_request(req, error, bytes_per_read));
1867
1868 return;
1869
1870error_exit:
1871 mrq->data->bytes_xfered = 0;
1872 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1873 /* Let it try the remaining request again */
1874 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1875 mqrq->retries = MMC_MAX_RETRIES - 1;
1876}
1877
1878static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1879{
1880 return !!brq->mrq.sbc;
1881}
1882
1883static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1884{
1885 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1886}
1887
1888/*
1889 * Check for errors the host controller driver might not have seen such as
1890 * response mode errors or invalid card state.
1891 */
1892static bool mmc_blk_status_error(struct request *req, u32 status)
1893{
1894 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1895 struct mmc_blk_request *brq = &mqrq->brq;
1896 struct mmc_queue *mq = req->q->queuedata;
1897 u32 stop_err_bits;
1898
1899 if (mmc_host_is_spi(mq->card->host))
1900 return false;
1901
1902 stop_err_bits = mmc_blk_stop_err_bits(brq);
1903
1904 return brq->cmd.resp[0] & CMD_ERRORS ||
1905 brq->stop.resp[0] & stop_err_bits ||
1906 status & stop_err_bits ||
1907 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1908}
1909
1910static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1911{
1912 return !brq->sbc.error && !brq->cmd.error &&
1913 !(brq->cmd.resp[0] & CMD_ERRORS);
1914}
1915
1916/*
1917 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1918 * policy:
1919 * 1. A request that has transferred at least some data is considered
1920 * successful and will be requeued if there is remaining data to
1921 * transfer.
1922 * 2. Otherwise the number of retries is incremented and the request
1923 * will be requeued if there are remaining retries.
1924 * 3. Otherwise the request will be errored out.
1925 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1926 * mqrq->retries. So there are only 4 possible actions here:
1927 * 1. do not accept the bytes_xfered value i.e. set it to zero
1928 * 2. change mqrq->retries to determine the number of retries
1929 * 3. try to reset the card
1930 * 4. read one sector at a time
1931 */
1932static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1933{
1934 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1935 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1936 struct mmc_blk_request *brq = &mqrq->brq;
1937 struct mmc_blk_data *md = mq->blkdata;
1938 struct mmc_card *card = mq->card;
1939 u32 status;
1940 u32 blocks;
1941 int err;
1942
1943 /*
1944 * Some errors the host driver might not have seen. Set the number of
1945 * bytes transferred to zero in that case.
1946 */
1947 err = __mmc_send_status(card, &status, 0);
1948 if (err || mmc_blk_status_error(req, status))
1949 brq->data.bytes_xfered = 0;
1950
1951 mmc_retune_release(card->host);
1952
1953 /*
1954 * Try again to get the status. This also provides an opportunity for
1955 * re-tuning.
1956 */
1957 if (err)
1958 err = __mmc_send_status(card, &status, 0);
1959
1960 /*
1961 * Nothing more to do after the number of bytes transferred has been
1962 * updated and there is no card.
1963 */
1964 if (err && mmc_detect_card_removed(card->host))
1965 return;
1966
1967 /* Try to get back to "tran" state */
1968 if (!mmc_host_is_spi(mq->card->host) &&
1969 (err || !mmc_ready_for_data(status)))
1970 err = mmc_blk_fix_state(mq->card, req);
1971
1972 /*
1973 * Special case for SD cards where the card might record the number of
1974 * blocks written.
1975 */
1976 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1977 rq_data_dir(req) == WRITE) {
1978 if (mmc_sd_num_wr_blocks(card, &blocks))
1979 brq->data.bytes_xfered = 0;
1980 else
1981 brq->data.bytes_xfered = blocks << 9;
1982 }
1983
1984 /* Reset if the card is in a bad state */
1985 if (!mmc_host_is_spi(mq->card->host) &&
1986 err && mmc_blk_reset(md, card->host, type)) {
1987 pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1988 mqrq->retries = MMC_NO_RETRIES;
1989 return;
1990 }
1991
1992 /*
1993 * If anything was done, just return and if there is anything remaining
1994 * on the request it will get requeued.
1995 */
1996 if (brq->data.bytes_xfered)
1997 return;
1998
1999 /* Reset before last retry */
2000 if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
2001 mmc_blk_reset(md, card->host, type))
2002 return;
2003
2004 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
2005 if (brq->sbc.error || brq->cmd.error)
2006 return;
2007
2008 /* Reduce the remaining retries for data errors */
2009 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
2010 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
2011 return;
2012 }
2013
2014 if (rq_data_dir(req) == READ && brq->data.blocks >
2015 queue_physical_block_size(mq->queue) >> 9) {
2016 /* Read one (native) sector at a time */
2017 mmc_blk_read_single(mq, req);
2018 return;
2019 }
2020}
2021
2022static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
2023{
2024 mmc_blk_eval_resp_error(brq);
2025
2026 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
2027 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
2028}
2029
2030static int mmc_spi_err_check(struct mmc_card *card)
2031{
2032 u32 status = 0;
2033 int err;
2034
2035 /*
2036 * SPI does not have a TRAN state we have to wait on, instead the
2037 * card is ready again when it no longer holds the line LOW.
2038 * We still have to ensure two things here before we know the write
2039 * was successful:
2040 * 1. The card has not disconnected during busy and we actually read our
2041 * own pull-up, thinking it was still connected, so ensure it
2042 * still responds.
2043 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
2044 * just reconnected card after being disconnected during busy.
2045 */
2046 err = __mmc_send_status(card, &status, 0);
2047 if (err)
2048 return err;
2049 /* All R1 and R2 bits of SPI are errors in our case */
2050 if (status)
2051 return -EIO;
2052 return 0;
2053}
2054
2055static int mmc_blk_busy_cb(void *cb_data, bool *busy)
2056{
2057 struct mmc_blk_busy_data *data = cb_data;
2058 u32 status = 0;
2059 int err;
2060
2061 err = mmc_send_status(data->card, &status);
2062 if (err)
2063 return err;
2064
2065 /* Accumulate response error bits. */
2066 data->status |= status;
2067
2068 *busy = !mmc_ready_for_data(status);
2069 return 0;
2070}
2071
2072static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2073{
2074 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2075 struct mmc_blk_busy_data cb_data;
2076 int err;
2077
2078 if (rq_data_dir(req) == READ)
2079 return 0;
2080
2081 if (mmc_host_is_spi(card->host)) {
2082 err = mmc_spi_err_check(card);
2083 if (err)
2084 mqrq->brq.data.bytes_xfered = 0;
2085 return err;
2086 }
2087
2088 cb_data.card = card;
2089 cb_data.status = 0;
2090 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2091 &mmc_blk_busy_cb, &cb_data);
2092
2093 /*
2094 * Do not assume data transferred correctly if there are any error bits
2095 * set.
2096 */
2097 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2098 mqrq->brq.data.bytes_xfered = 0;
2099 err = err ? err : -EIO;
2100 }
2101
2102 /* Copy the exception bit so it will be seen later on */
2103 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2104 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2105
2106 return err;
2107}
2108
2109static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2110 struct request *req)
2111{
2112 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2113
2114 mmc_blk_reset_success(mq->blkdata, type);
2115}
2116
2117static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2118{
2119 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2120 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2121
2122 if (nr_bytes) {
2123 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2124 blk_mq_requeue_request(req, true);
2125 else
2126 __blk_mq_end_request(req, BLK_STS_OK);
2127 } else if (!blk_rq_bytes(req)) {
2128 __blk_mq_end_request(req, BLK_STS_IOERR);
2129 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2130 blk_mq_requeue_request(req, true);
2131 } else {
2132 if (mmc_card_removed(mq->card))
2133 req->rq_flags |= RQF_QUIET;
2134 blk_mq_end_request(req, BLK_STS_IOERR);
2135 }
2136}
2137
2138static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2139 struct mmc_queue_req *mqrq)
2140{
2141 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2142 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2143 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2144}
2145
2146static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2147 struct mmc_queue_req *mqrq)
2148{
2149 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2150 mmc_run_bkops(mq->card);
2151}
2152
2153static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2154{
2155 struct mmc_queue_req *mqrq =
2156 container_of(mrq, struct mmc_queue_req, brq.mrq);
2157 struct request *req = mmc_queue_req_to_req(mqrq);
2158 struct request_queue *q = req->q;
2159 struct mmc_queue *mq = q->queuedata;
2160 struct mmc_host *host = mq->card->host;
2161 unsigned long flags;
2162
2163 if (mmc_blk_rq_error(&mqrq->brq) ||
2164 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2165 spin_lock_irqsave(&mq->lock, flags);
2166 mq->recovery_needed = true;
2167 mq->recovery_req = req;
2168 spin_unlock_irqrestore(&mq->lock, flags);
2169
2170 host->cqe_ops->cqe_recovery_start(host);
2171
2172 schedule_work(&mq->recovery_work);
2173 return;
2174 }
2175
2176 mmc_blk_rw_reset_success(mq, req);
2177
2178 /*
2179 * Block layer timeouts race with completions which means the normal
2180 * completion path cannot be used during recovery.
2181 */
2182 if (mq->in_recovery)
2183 mmc_blk_cqe_complete_rq(mq, req);
2184 else if (likely(!blk_should_fake_timeout(req->q)))
2185 blk_mq_complete_request(req);
2186}
2187
2188void mmc_blk_mq_complete(struct request *req)
2189{
2190 struct mmc_queue *mq = req->q->queuedata;
2191 struct mmc_host *host = mq->card->host;
2192
2193 if (host->cqe_enabled)
2194 mmc_blk_cqe_complete_rq(mq, req);
2195 else if (likely(!blk_should_fake_timeout(req->q)))
2196 mmc_blk_mq_complete_rq(mq, req);
2197}
2198
2199static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2200 struct request *req)
2201{
2202 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2203 struct mmc_host *host = mq->card->host;
2204
2205 if (mmc_blk_rq_error(&mqrq->brq) ||
2206 mmc_blk_card_busy(mq->card, req)) {
2207 mmc_blk_mq_rw_recovery(mq, req);
2208 } else {
2209 mmc_blk_rw_reset_success(mq, req);
2210 mmc_retune_release(host);
2211 }
2212
2213 mmc_blk_urgent_bkops(mq, mqrq);
2214}
2215
2216static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2217{
2218 unsigned long flags;
2219 bool put_card;
2220
2221 spin_lock_irqsave(&mq->lock, flags);
2222
2223 mq->in_flight[issue_type] -= 1;
2224
2225 put_card = (mmc_tot_in_flight(mq) == 0);
2226
2227 spin_unlock_irqrestore(&mq->lock, flags);
2228
2229 if (put_card)
2230 mmc_put_card(mq->card, &mq->ctx);
2231}
2232
2233static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2234 bool can_sleep)
2235{
2236 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2237 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2238 struct mmc_request *mrq = &mqrq->brq.mrq;
2239 struct mmc_host *host = mq->card->host;
2240
2241 mmc_post_req(host, mrq, 0);
2242
2243 /*
2244 * Block layer timeouts race with completions which means the normal
2245 * completion path cannot be used during recovery.
2246 */
2247 if (mq->in_recovery) {
2248 mmc_blk_mq_complete_rq(mq, req);
2249 } else if (likely(!blk_should_fake_timeout(req->q))) {
2250 if (can_sleep)
2251 blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2252 else
2253 blk_mq_complete_request(req);
2254 }
2255
2256 mmc_blk_mq_dec_in_flight(mq, issue_type);
2257}
2258
2259void mmc_blk_mq_recovery(struct mmc_queue *mq)
2260{
2261 struct request *req = mq->recovery_req;
2262 struct mmc_host *host = mq->card->host;
2263 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2264
2265 mq->recovery_req = NULL;
2266 mq->rw_wait = false;
2267
2268 if (mmc_blk_rq_error(&mqrq->brq)) {
2269 mmc_retune_hold_now(host);
2270 mmc_blk_mq_rw_recovery(mq, req);
2271 }
2272
2273 mmc_blk_urgent_bkops(mq, mqrq);
2274
2275 mmc_blk_mq_post_req(mq, req, true);
2276}
2277
2278static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2279 struct request **prev_req)
2280{
2281 if (mmc_host_done_complete(mq->card->host))
2282 return;
2283
2284 mutex_lock(&mq->complete_lock);
2285
2286 if (!mq->complete_req)
2287 goto out_unlock;
2288
2289 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2290
2291 if (prev_req)
2292 *prev_req = mq->complete_req;
2293 else
2294 mmc_blk_mq_post_req(mq, mq->complete_req, true);
2295
2296 mq->complete_req = NULL;
2297
2298out_unlock:
2299 mutex_unlock(&mq->complete_lock);
2300}
2301
2302void mmc_blk_mq_complete_work(struct work_struct *work)
2303{
2304 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2305 complete_work);
2306
2307 mmc_blk_mq_complete_prev_req(mq, NULL);
2308}
2309
2310static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2311{
2312 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2313 brq.mrq);
2314 struct request *req = mmc_queue_req_to_req(mqrq);
2315 struct request_queue *q = req->q;
2316 struct mmc_queue *mq = q->queuedata;
2317 struct mmc_host *host = mq->card->host;
2318 unsigned long flags;
2319
2320 if (!mmc_host_done_complete(host)) {
2321 bool waiting;
2322
2323 /*
2324 * We cannot complete the request in this context, so record
2325 * that there is a request to complete, and that a following
2326 * request does not need to wait (although it does need to
2327 * complete complete_req first).
2328 */
2329 spin_lock_irqsave(&mq->lock, flags);
2330 mq->complete_req = req;
2331 mq->rw_wait = false;
2332 waiting = mq->waiting;
2333 spin_unlock_irqrestore(&mq->lock, flags);
2334
2335 /*
2336 * If 'waiting' then the waiting task will complete this
2337 * request, otherwise queue a work to do it. Note that
2338 * complete_work may still race with the dispatch of a following
2339 * request.
2340 */
2341 if (waiting)
2342 wake_up(&mq->wait);
2343 else
2344 queue_work(mq->card->complete_wq, &mq->complete_work);
2345
2346 return;
2347 }
2348
2349 /* Take the recovery path for errors or urgent background operations */
2350 if (mmc_blk_rq_error(&mqrq->brq) ||
2351 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2352 spin_lock_irqsave(&mq->lock, flags);
2353 mq->recovery_needed = true;
2354 mq->recovery_req = req;
2355 spin_unlock_irqrestore(&mq->lock, flags);
2356 wake_up(&mq->wait);
2357 schedule_work(&mq->recovery_work);
2358 return;
2359 }
2360
2361 mmc_blk_rw_reset_success(mq, req);
2362
2363 mq->rw_wait = false;
2364 wake_up(&mq->wait);
2365
2366 /* context unknown */
2367 mmc_blk_mq_post_req(mq, req, false);
2368}
2369
2370static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2371{
2372 unsigned long flags;
2373 bool done;
2374
2375 /*
2376 * Wait while there is another request in progress, but not if recovery
2377 * is needed. Also indicate whether there is a request waiting to start.
2378 */
2379 spin_lock_irqsave(&mq->lock, flags);
2380 if (mq->recovery_needed) {
2381 *err = -EBUSY;
2382 done = true;
2383 } else {
2384 done = !mq->rw_wait;
2385 }
2386 mq->waiting = !done;
2387 spin_unlock_irqrestore(&mq->lock, flags);
2388
2389 return done;
2390}
2391
2392static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2393{
2394 int err = 0;
2395
2396 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2397
2398 /* Always complete the previous request if there is one */
2399 mmc_blk_mq_complete_prev_req(mq, prev_req);
2400
2401 return err;
2402}
2403
2404static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2405 struct request *req)
2406{
2407 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2408 struct mmc_host *host = mq->card->host;
2409 struct request *prev_req = NULL;
2410 int err = 0;
2411
2412 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2413
2414 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2415
2416 mmc_pre_req(host, &mqrq->brq.mrq);
2417
2418 err = mmc_blk_rw_wait(mq, &prev_req);
2419 if (err)
2420 goto out_post_req;
2421
2422 mq->rw_wait = true;
2423
2424 err = mmc_start_request(host, &mqrq->brq.mrq);
2425
2426 if (prev_req)
2427 mmc_blk_mq_post_req(mq, prev_req, true);
2428
2429 if (err)
2430 mq->rw_wait = false;
2431
2432 /* Release re-tuning here where there is no synchronization required */
2433 if (err || mmc_host_done_complete(host))
2434 mmc_retune_release(host);
2435
2436out_post_req:
2437 if (err)
2438 mmc_post_req(host, &mqrq->brq.mrq, err);
2439
2440 return err;
2441}
2442
2443static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2444{
2445 if (host->cqe_enabled)
2446 return host->cqe_ops->cqe_wait_for_idle(host);
2447
2448 return mmc_blk_rw_wait(mq, NULL);
2449}
2450
2451enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2452{
2453 struct mmc_blk_data *md = mq->blkdata;
2454 struct mmc_card *card = md->queue.card;
2455 struct mmc_host *host = card->host;
2456 int ret;
2457
2458 ret = mmc_blk_part_switch(card, md->part_type);
2459 if (ret)
2460 return MMC_REQ_FAILED_TO_START;
2461
2462 switch (mmc_issue_type(mq, req)) {
2463 case MMC_ISSUE_SYNC:
2464 ret = mmc_blk_wait_for_idle(mq, host);
2465 if (ret)
2466 return MMC_REQ_BUSY;
2467 switch (req_op(req)) {
2468 case REQ_OP_DRV_IN:
2469 case REQ_OP_DRV_OUT:
2470 mmc_blk_issue_drv_op(mq, req);
2471 break;
2472 case REQ_OP_DISCARD:
2473 mmc_blk_issue_discard_rq(mq, req);
2474 break;
2475 case REQ_OP_SECURE_ERASE:
2476 mmc_blk_issue_secdiscard_rq(mq, req);
2477 break;
2478 case REQ_OP_WRITE_ZEROES:
2479 mmc_blk_issue_trim_rq(mq, req);
2480 break;
2481 case REQ_OP_FLUSH:
2482 mmc_blk_issue_flush(mq, req);
2483 break;
2484 default:
2485 WARN_ON_ONCE(1);
2486 return MMC_REQ_FAILED_TO_START;
2487 }
2488 return MMC_REQ_FINISHED;
2489 case MMC_ISSUE_DCMD:
2490 case MMC_ISSUE_ASYNC:
2491 switch (req_op(req)) {
2492 case REQ_OP_FLUSH:
2493 if (!mmc_cache_enabled(host)) {
2494 blk_mq_end_request(req, BLK_STS_OK);
2495 return MMC_REQ_FINISHED;
2496 }
2497 ret = mmc_blk_cqe_issue_flush(mq, req);
2498 break;
2499 case REQ_OP_WRITE:
2500 card->written_flag = true;
2501 fallthrough;
2502 case REQ_OP_READ:
2503 if (host->cqe_enabled)
2504 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2505 else
2506 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2507 break;
2508 default:
2509 WARN_ON_ONCE(1);
2510 ret = -EINVAL;
2511 }
2512 if (!ret)
2513 return MMC_REQ_STARTED;
2514 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2515 default:
2516 WARN_ON_ONCE(1);
2517 return MMC_REQ_FAILED_TO_START;
2518 }
2519}
2520
2521static inline int mmc_blk_readonly(struct mmc_card *card)
2522{
2523 return mmc_card_readonly(card) ||
2524 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2525}
2526
2527/*
2528 * Search for a declared partitions node for the disk in mmc-card related node.
2529 *
2530 * This is to permit support for partition table defined in DT in special case
2531 * where a partition table is not written in the disk and is expected to be
2532 * passed from the running system.
2533 *
2534 * For the user disk, "partitions" node is searched.
2535 * For the special HW disk, "partitions-" node with the appended name is used
2536 * following this conversion table (to adhere to JEDEC naming)
2537 * - boot0 -> partitions-boot1
2538 * - boot1 -> partitions-boot2
2539 * - gp0 -> partitions-gp1
2540 * - gp1 -> partitions-gp2
2541 * - gp2 -> partitions-gp3
2542 * - gp3 -> partitions-gp4
2543 */
2544static struct fwnode_handle *mmc_blk_get_partitions_node(struct device *mmc_dev,
2545 const char *subname)
2546{
2547 const char *node_name = "partitions";
2548
2549 if (subname) {
2550 mmc_dev = mmc_dev->parent;
2551
2552 /*
2553 * Check if we are allocating a BOOT disk boot0/1 disk.
2554 * In DT we use the JEDEC naming boot1/2.
2555 */
2556 if (!strcmp(subname, "boot0"))
2557 node_name = "partitions-boot1";
2558 if (!strcmp(subname, "boot1"))
2559 node_name = "partitions-boot2";
2560 /*
2561 * Check if we are allocating a GP disk gp0/1/2/3 disk.
2562 * In DT we use the JEDEC naming gp1/2/3/4.
2563 */
2564 if (!strcmp(subname, "gp0"))
2565 node_name = "partitions-gp1";
2566 if (!strcmp(subname, "gp1"))
2567 node_name = "partitions-gp2";
2568 if (!strcmp(subname, "gp2"))
2569 node_name = "partitions-gp3";
2570 if (!strcmp(subname, "gp3"))
2571 node_name = "partitions-gp4";
2572 }
2573
2574 return device_get_named_child_node(mmc_dev, node_name);
2575}
2576
2577static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2578 struct device *parent,
2579 sector_t size,
2580 bool default_ro,
2581 const char *subname,
2582 int area_type,
2583 unsigned int part_type)
2584{
2585 struct fwnode_handle *disk_fwnode;
2586 struct mmc_blk_data *md;
2587 int devidx, ret;
2588 char cap_str[10];
2589 unsigned int features = 0;
2590
2591 devidx = ida_alloc_max(&mmc_blk_ida, max_devices - 1, GFP_KERNEL);
2592 if (devidx < 0) {
2593 /*
2594 * We get -ENOSPC because there are no more any available
2595 * devidx. The reason may be that, either userspace haven't yet
2596 * unmounted the partitions, which postpones mmc_blk_release()
2597 * from being called, or the device has more partitions than
2598 * what we support.
2599 */
2600 if (devidx == -ENOSPC)
2601 dev_err(mmc_dev(card->host),
2602 "no more device IDs available\n");
2603
2604 return ERR_PTR(devidx);
2605 }
2606
2607 md = kzalloc(sizeof(*md), GFP_KERNEL);
2608 if (!md) {
2609 ret = -ENOMEM;
2610 goto out;
2611 }
2612
2613 md->area_type = area_type;
2614
2615 /*
2616 * Set the read-only status based on the supported commands
2617 * and the write protect switch.
2618 */
2619 md->read_only = mmc_blk_readonly(card);
2620
2621 if (mmc_host_cmd23(card->host)) {
2622 if ((mmc_card_mmc(card) &&
2623 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2624 (mmc_card_sd(card) && !mmc_card_ult_capacity(card) &&
2625 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2626 md->flags |= MMC_BLK_CMD23;
2627 }
2628
2629 if (md->flags & MMC_BLK_CMD23 &&
2630 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2631 card->ext_csd.rel_sectors)) {
2632 md->flags |= MMC_BLK_REL_WR;
2633 features |= (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2634 } else if (mmc_cache_enabled(card->host)) {
2635 features |= BLK_FEAT_WRITE_CACHE;
2636 }
2637
2638 md->disk = mmc_init_queue(&md->queue, card, features);
2639 if (IS_ERR(md->disk)) {
2640 ret = PTR_ERR(md->disk);
2641 goto err_kfree;
2642 }
2643
2644 INIT_LIST_HEAD(&md->part);
2645 INIT_LIST_HEAD(&md->rpmbs);
2646 kref_init(&md->kref);
2647
2648 md->queue.blkdata = md;
2649 md->part_type = part_type;
2650
2651 md->disk->major = MMC_BLOCK_MAJOR;
2652 md->disk->minors = perdev_minors;
2653 md->disk->first_minor = devidx * perdev_minors;
2654 md->disk->fops = &mmc_bdops;
2655 md->disk->private_data = md;
2656 md->parent = parent;
2657 set_disk_ro(md->disk, md->read_only || default_ro);
2658 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2659 md->disk->flags |= GENHD_FL_NO_PART;
2660
2661 /*
2662 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2663 *
2664 * - be set for removable media with permanent block devices
2665 * - be unset for removable block devices with permanent media
2666 *
2667 * Since MMC block devices clearly fall under the second
2668 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2669 * should use the block device creation/destruction hotplug
2670 * messages to tell when the card is present.
2671 */
2672
2673 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2674 "mmcblk%u%s", card->host->index, subname ? subname : "");
2675
2676 set_capacity(md->disk, size);
2677
2678 string_get_size((u64)size, 512, STRING_UNITS_2,
2679 cap_str, sizeof(cap_str));
2680 pr_info("%s: %s %s %s%s\n",
2681 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2682 cap_str, md->read_only ? " (ro)" : "");
2683
2684 /* used in ->open, must be set before add_disk: */
2685 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2686 dev_set_drvdata(&card->dev, md);
2687 disk_fwnode = mmc_blk_get_partitions_node(parent, subname);
2688 ret = add_disk_fwnode(md->parent, md->disk, mmc_disk_attr_groups,
2689 disk_fwnode);
2690 if (ret)
2691 goto err_put_disk;
2692 return md;
2693
2694 err_put_disk:
2695 put_disk(md->disk);
2696 blk_mq_free_tag_set(&md->queue.tag_set);
2697 err_kfree:
2698 kfree(md);
2699 out:
2700 ida_free(&mmc_blk_ida, devidx);
2701 return ERR_PTR(ret);
2702}
2703
2704static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2705{
2706 sector_t size;
2707
2708 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2709 /*
2710 * The EXT_CSD sector count is in number or 512 byte
2711 * sectors.
2712 */
2713 size = card->ext_csd.sectors;
2714 } else {
2715 /*
2716 * The CSD capacity field is in units of read_blkbits.
2717 * set_capacity takes units of 512 bytes.
2718 */
2719 size = (typeof(sector_t))card->csd.capacity
2720 << (card->csd.read_blkbits - 9);
2721 }
2722
2723 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2724 MMC_BLK_DATA_AREA_MAIN, 0);
2725}
2726
2727static int mmc_blk_alloc_part(struct mmc_card *card,
2728 struct mmc_blk_data *md,
2729 unsigned int part_type,
2730 sector_t size,
2731 bool default_ro,
2732 const char *subname,
2733 int area_type)
2734{
2735 struct mmc_blk_data *part_md;
2736
2737 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2738 subname, area_type, part_type);
2739 if (IS_ERR(part_md))
2740 return PTR_ERR(part_md);
2741 list_add(&part_md->part, &md->part);
2742
2743 return 0;
2744}
2745
2746/**
2747 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2748 * @filp: the character device file
2749 * @cmd: the ioctl() command
2750 * @arg: the argument from userspace
2751 *
2752 * This will essentially just redirect the ioctl()s coming in over to
2753 * the main block device spawning the RPMB character device.
2754 */
2755static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2756 unsigned long arg)
2757{
2758 struct mmc_rpmb_data *rpmb = filp->private_data;
2759 int ret;
2760
2761 switch (cmd) {
2762 case MMC_IOC_CMD:
2763 ret = mmc_blk_ioctl_cmd(rpmb->md,
2764 (struct mmc_ioc_cmd __user *)arg,
2765 rpmb);
2766 break;
2767 case MMC_IOC_MULTI_CMD:
2768 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2769 (struct mmc_ioc_multi_cmd __user *)arg,
2770 rpmb);
2771 break;
2772 default:
2773 ret = -EINVAL;
2774 break;
2775 }
2776
2777 return ret;
2778}
2779
2780#ifdef CONFIG_COMPAT
2781static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2782 unsigned long arg)
2783{
2784 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2785}
2786#endif
2787
2788static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2789{
2790 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2791 struct mmc_rpmb_data, chrdev);
2792
2793 get_device(&rpmb->dev);
2794 filp->private_data = rpmb;
2795
2796 return nonseekable_open(inode, filp);
2797}
2798
2799static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2800{
2801 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2802 struct mmc_rpmb_data, chrdev);
2803
2804 put_device(&rpmb->dev);
2805
2806 return 0;
2807}
2808
2809static const struct file_operations mmc_rpmb_fileops = {
2810 .release = mmc_rpmb_chrdev_release,
2811 .open = mmc_rpmb_chrdev_open,
2812 .owner = THIS_MODULE,
2813 .unlocked_ioctl = mmc_rpmb_ioctl,
2814#ifdef CONFIG_COMPAT
2815 .compat_ioctl = mmc_rpmb_ioctl_compat,
2816#endif
2817};
2818
2819static void mmc_blk_rpmb_device_release(struct device *dev)
2820{
2821 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2822
2823 rpmb_dev_unregister(rpmb->rdev);
2824 mmc_blk_put(rpmb->md);
2825 ida_free(&mmc_rpmb_ida, rpmb->id);
2826 kfree(rpmb);
2827}
2828
2829static void free_idata(struct mmc_blk_ioc_data **idata, unsigned int cmd_count)
2830{
2831 unsigned int n;
2832
2833 for (n = 0; n < cmd_count; n++)
2834 kfree(idata[n]);
2835 kfree(idata);
2836}
2837
2838static struct mmc_blk_ioc_data **alloc_idata(struct mmc_rpmb_data *rpmb,
2839 unsigned int cmd_count)
2840{
2841 struct mmc_blk_ioc_data **idata;
2842 unsigned int n;
2843
2844 idata = kcalloc(cmd_count, sizeof(*idata), GFP_KERNEL);
2845 if (!idata)
2846 return NULL;
2847
2848 for (n = 0; n < cmd_count; n++) {
2849 idata[n] = kcalloc(1, sizeof(**idata), GFP_KERNEL);
2850 if (!idata[n]) {
2851 free_idata(idata, n);
2852 return NULL;
2853 }
2854 idata[n]->rpmb = rpmb;
2855 }
2856
2857 return idata;
2858}
2859
2860static void set_idata(struct mmc_blk_ioc_data *idata, u32 opcode,
2861 int write_flag, u8 *buf, unsigned int buf_bytes)
2862{
2863 /*
2864 * The size of an RPMB frame must match what's expected by the
2865 * hardware.
2866 */
2867 BUILD_BUG_ON(sizeof(struct rpmb_frame) != 512);
2868
2869 idata->ic.opcode = opcode;
2870 idata->ic.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
2871 idata->ic.write_flag = write_flag;
2872 idata->ic.blksz = sizeof(struct rpmb_frame);
2873 idata->ic.blocks = buf_bytes / idata->ic.blksz;
2874 idata->buf = buf;
2875 idata->buf_bytes = buf_bytes;
2876}
2877
2878static int mmc_route_rpmb_frames(struct device *dev, u8 *req,
2879 unsigned int req_len, u8 *resp,
2880 unsigned int resp_len)
2881{
2882 struct rpmb_frame *frm = (struct rpmb_frame *)req;
2883 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2884 struct mmc_blk_data *md = rpmb->md;
2885 struct mmc_blk_ioc_data **idata;
2886 struct mmc_queue_req *mq_rq;
2887 unsigned int cmd_count;
2888 struct request *rq;
2889 u16 req_type;
2890 bool write;
2891 int ret;
2892
2893 if (IS_ERR(md->queue.card))
2894 return PTR_ERR(md->queue.card);
2895
2896 if (req_len < sizeof(*frm))
2897 return -EINVAL;
2898
2899 req_type = be16_to_cpu(frm->req_resp);
2900 switch (req_type) {
2901 case RPMB_PROGRAM_KEY:
2902 if (req_len != sizeof(struct rpmb_frame) ||
2903 resp_len != sizeof(struct rpmb_frame))
2904 return -EINVAL;
2905 write = true;
2906 break;
2907 case RPMB_GET_WRITE_COUNTER:
2908 if (req_len != sizeof(struct rpmb_frame) ||
2909 resp_len != sizeof(struct rpmb_frame))
2910 return -EINVAL;
2911 write = false;
2912 break;
2913 case RPMB_WRITE_DATA:
2914 if (req_len % sizeof(struct rpmb_frame) ||
2915 resp_len != sizeof(struct rpmb_frame))
2916 return -EINVAL;
2917 write = true;
2918 break;
2919 case RPMB_READ_DATA:
2920 if (req_len != sizeof(struct rpmb_frame) ||
2921 resp_len % sizeof(struct rpmb_frame))
2922 return -EINVAL;
2923 write = false;
2924 break;
2925 default:
2926 return -EINVAL;
2927 }
2928
2929 if (write)
2930 cmd_count = 3;
2931 else
2932 cmd_count = 2;
2933
2934 idata = alloc_idata(rpmb, cmd_count);
2935 if (!idata)
2936 return -ENOMEM;
2937
2938 if (write) {
2939 struct rpmb_frame *frm = (struct rpmb_frame *)resp;
2940
2941 /* Send write request frame(s) */
2942 set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK,
2943 1 | MMC_CMD23_ARG_REL_WR, req, req_len);
2944
2945 /* Send result request frame */
2946 memset(frm, 0, sizeof(*frm));
2947 frm->req_resp = cpu_to_be16(RPMB_RESULT_READ);
2948 set_idata(idata[1], MMC_WRITE_MULTIPLE_BLOCK, 1, resp,
2949 resp_len);
2950
2951 /* Read response frame */
2952 set_idata(idata[2], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2953 } else {
2954 /* Send write request frame(s) */
2955 set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK, 1, req, req_len);
2956
2957 /* Read response frame */
2958 set_idata(idata[1], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2959 }
2960
2961 rq = blk_mq_alloc_request(md->queue.queue, REQ_OP_DRV_OUT, 0);
2962 if (IS_ERR(rq)) {
2963 ret = PTR_ERR(rq);
2964 goto out;
2965 }
2966
2967 mq_rq = req_to_mmc_queue_req(rq);
2968 mq_rq->drv_op = MMC_DRV_OP_IOCTL_RPMB;
2969 mq_rq->drv_op_result = -EIO;
2970 mq_rq->drv_op_data = idata;
2971 mq_rq->ioc_count = cmd_count;
2972 blk_execute_rq(rq, false);
2973 ret = req_to_mmc_queue_req(rq)->drv_op_result;
2974
2975 blk_mq_free_request(rq);
2976
2977out:
2978 free_idata(idata, cmd_count);
2979 return ret;
2980}
2981
2982static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2983 struct mmc_blk_data *md,
2984 unsigned int part_index,
2985 sector_t size,
2986 const char *subname)
2987{
2988 int devidx, ret;
2989 char rpmb_name[DISK_NAME_LEN];
2990 char cap_str[10];
2991 struct mmc_rpmb_data *rpmb;
2992
2993 /* This creates the minor number for the RPMB char device */
2994 devidx = ida_alloc_max(&mmc_rpmb_ida, max_devices - 1, GFP_KERNEL);
2995 if (devidx < 0)
2996 return devidx;
2997
2998 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2999 if (!rpmb) {
3000 ida_free(&mmc_rpmb_ida, devidx);
3001 return -ENOMEM;
3002 }
3003
3004 snprintf(rpmb_name, sizeof(rpmb_name),
3005 "mmcblk%u%s", card->host->index, subname ? subname : "");
3006
3007 rpmb->id = devidx;
3008 rpmb->part_index = part_index;
3009 rpmb->dev.init_name = rpmb_name;
3010 rpmb->dev.bus = &mmc_rpmb_bus_type;
3011 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
3012 rpmb->dev.parent = &card->dev;
3013 rpmb->dev.release = mmc_blk_rpmb_device_release;
3014 device_initialize(&rpmb->dev);
3015 dev_set_drvdata(&rpmb->dev, rpmb);
3016 mmc_blk_get(md->disk);
3017 rpmb->md = md;
3018
3019 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
3020 rpmb->chrdev.owner = THIS_MODULE;
3021 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
3022 if (ret) {
3023 pr_err("%s: could not add character device\n", rpmb_name);
3024 goto out_put_device;
3025 }
3026
3027 list_add(&rpmb->node, &md->rpmbs);
3028
3029 string_get_size((u64)size, 512, STRING_UNITS_2,
3030 cap_str, sizeof(cap_str));
3031
3032 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
3033 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
3034 MAJOR(mmc_rpmb_devt), rpmb->id);
3035
3036 return 0;
3037
3038out_put_device:
3039 put_device(&rpmb->dev);
3040 return ret;
3041}
3042
3043static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
3044
3045{
3046 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
3047 put_device(&rpmb->dev);
3048}
3049
3050/* MMC Physical partitions consist of two boot partitions and
3051 * up to four general purpose partitions.
3052 * For each partition enabled in EXT_CSD a block device will be allocatedi
3053 * to provide access to the partition.
3054 */
3055
3056static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
3057{
3058 int idx, ret;
3059
3060 if (!mmc_card_mmc(card))
3061 return 0;
3062
3063 for (idx = 0; idx < card->nr_parts; idx++) {
3064 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
3065 /*
3066 * RPMB partitions does not provide block access, they
3067 * are only accessed using ioctl():s. Thus create
3068 * special RPMB block devices that do not have a
3069 * backing block queue for these.
3070 */
3071 ret = mmc_blk_alloc_rpmb_part(card, md,
3072 card->part[idx].part_cfg,
3073 card->part[idx].size >> 9,
3074 card->part[idx].name);
3075 if (ret)
3076 return ret;
3077 } else if (card->part[idx].size) {
3078 ret = mmc_blk_alloc_part(card, md,
3079 card->part[idx].part_cfg,
3080 card->part[idx].size >> 9,
3081 card->part[idx].force_ro,
3082 card->part[idx].name,
3083 card->part[idx].area_type);
3084 if (ret)
3085 return ret;
3086 }
3087 }
3088
3089 return 0;
3090}
3091
3092static void mmc_blk_remove_req(struct mmc_blk_data *md)
3093{
3094 /*
3095 * Flush remaining requests and free queues. It is freeing the queue
3096 * that stops new requests from being accepted.
3097 */
3098 del_gendisk(md->disk);
3099 mmc_cleanup_queue(&md->queue);
3100 mmc_blk_put(md);
3101}
3102
3103static void mmc_blk_remove_parts(struct mmc_card *card,
3104 struct mmc_blk_data *md)
3105{
3106 struct list_head *pos, *q;
3107 struct mmc_blk_data *part_md;
3108 struct mmc_rpmb_data *rpmb;
3109
3110 /* Remove RPMB partitions */
3111 list_for_each_safe(pos, q, &md->rpmbs) {
3112 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
3113 list_del(pos);
3114 mmc_blk_remove_rpmb_part(rpmb);
3115 }
3116 /* Remove block partitions */
3117 list_for_each_safe(pos, q, &md->part) {
3118 part_md = list_entry(pos, struct mmc_blk_data, part);
3119 list_del(pos);
3120 mmc_blk_remove_req(part_md);
3121 }
3122}
3123
3124#ifdef CONFIG_DEBUG_FS
3125
3126static int mmc_dbg_card_status_get(void *data, u64 *val)
3127{
3128 struct mmc_card *card = data;
3129 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3130 struct mmc_queue *mq = &md->queue;
3131 struct request *req;
3132 int ret;
3133
3134 /* Ask the block layer about the card status */
3135 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3136 if (IS_ERR(req))
3137 return PTR_ERR(req);
3138 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
3139 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3140 blk_execute_rq(req, false);
3141 ret = req_to_mmc_queue_req(req)->drv_op_result;
3142 if (ret >= 0) {
3143 *val = ret;
3144 ret = 0;
3145 }
3146 blk_mq_free_request(req);
3147
3148 return ret;
3149}
3150DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
3151 NULL, "%08llx\n");
3152
3153/* That is two digits * 512 + 1 for newline */
3154#define EXT_CSD_STR_LEN 1025
3155
3156static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
3157{
3158 struct mmc_card *card = inode->i_private;
3159 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3160 struct mmc_queue *mq = &md->queue;
3161 struct request *req;
3162 char *buf;
3163 ssize_t n = 0;
3164 u8 *ext_csd;
3165 int err, i;
3166
3167 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
3168 if (!buf)
3169 return -ENOMEM;
3170
3171 /* Ask the block layer for the EXT CSD */
3172 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3173 if (IS_ERR(req)) {
3174 err = PTR_ERR(req);
3175 goto out_free;
3176 }
3177 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
3178 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3179 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
3180 blk_execute_rq(req, false);
3181 err = req_to_mmc_queue_req(req)->drv_op_result;
3182 blk_mq_free_request(req);
3183 if (err) {
3184 pr_err("FAILED %d\n", err);
3185 goto out_free;
3186 }
3187
3188 for (i = 0; i < 512; i++)
3189 n += sprintf(buf + n, "%02x", ext_csd[i]);
3190 n += sprintf(buf + n, "\n");
3191
3192 if (n != EXT_CSD_STR_LEN) {
3193 err = -EINVAL;
3194 kfree(ext_csd);
3195 goto out_free;
3196 }
3197
3198 filp->private_data = buf;
3199 kfree(ext_csd);
3200 return 0;
3201
3202out_free:
3203 kfree(buf);
3204 return err;
3205}
3206
3207static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
3208 size_t cnt, loff_t *ppos)
3209{
3210 char *buf = filp->private_data;
3211
3212 return simple_read_from_buffer(ubuf, cnt, ppos,
3213 buf, EXT_CSD_STR_LEN);
3214}
3215
3216static int mmc_ext_csd_release(struct inode *inode, struct file *file)
3217{
3218 kfree(file->private_data);
3219 return 0;
3220}
3221
3222static const struct file_operations mmc_dbg_ext_csd_fops = {
3223 .open = mmc_ext_csd_open,
3224 .read = mmc_ext_csd_read,
3225 .release = mmc_ext_csd_release,
3226 .llseek = default_llseek,
3227};
3228
3229static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3230{
3231 struct dentry *root;
3232
3233 if (!card->debugfs_root)
3234 return;
3235
3236 root = card->debugfs_root;
3237
3238 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
3239 md->status_dentry =
3240 debugfs_create_file_unsafe("status", 0400, root,
3241 card,
3242 &mmc_dbg_card_status_fops);
3243 }
3244
3245 if (mmc_card_mmc(card)) {
3246 md->ext_csd_dentry =
3247 debugfs_create_file("ext_csd", S_IRUSR, root, card,
3248 &mmc_dbg_ext_csd_fops);
3249 }
3250}
3251
3252static void mmc_blk_remove_debugfs(struct mmc_card *card,
3253 struct mmc_blk_data *md)
3254{
3255 if (!card->debugfs_root)
3256 return;
3257
3258 debugfs_remove(md->status_dentry);
3259 md->status_dentry = NULL;
3260
3261 debugfs_remove(md->ext_csd_dentry);
3262 md->ext_csd_dentry = NULL;
3263}
3264
3265#else
3266
3267static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3268{
3269}
3270
3271static void mmc_blk_remove_debugfs(struct mmc_card *card,
3272 struct mmc_blk_data *md)
3273{
3274}
3275
3276#endif /* CONFIG_DEBUG_FS */
3277
3278static void mmc_blk_rpmb_add(struct mmc_card *card)
3279{
3280 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3281 struct mmc_rpmb_data *rpmb;
3282 struct rpmb_dev *rdev;
3283 unsigned int n;
3284 u32 cid[4];
3285 struct rpmb_descr descr = {
3286 .type = RPMB_TYPE_EMMC,
3287 .route_frames = mmc_route_rpmb_frames,
3288 .reliable_wr_count = card->ext_csd.enhanced_rpmb_supported ?
3289 2 : 32,
3290 .capacity = card->ext_csd.raw_rpmb_size_mult,
3291 .dev_id = (void *)cid,
3292 .dev_id_len = sizeof(cid),
3293 };
3294
3295 /*
3296 * Provice CID as an octet array. The CID needs to be interpreted
3297 * when used as input to derive the RPMB key since some fields
3298 * will change due to firmware updates.
3299 */
3300 for (n = 0; n < 4; n++)
3301 cid[n] = be32_to_cpu((__force __be32)card->raw_cid[n]);
3302
3303 list_for_each_entry(rpmb, &md->rpmbs, node) {
3304 rdev = rpmb_dev_register(&rpmb->dev, &descr);
3305 if (IS_ERR(rdev)) {
3306 pr_warn("%s: could not register RPMB device\n",
3307 dev_name(&rpmb->dev));
3308 continue;
3309 }
3310 rpmb->rdev = rdev;
3311 }
3312}
3313
3314static int mmc_blk_probe(struct mmc_card *card)
3315{
3316 struct mmc_blk_data *md;
3317 int ret = 0;
3318
3319 /*
3320 * Check that the card supports the command class(es) we need.
3321 */
3322 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3323 return -ENODEV;
3324
3325 mmc_fixup_device(card, mmc_blk_fixups);
3326
3327 card->complete_wq = alloc_workqueue("mmc_complete",
3328 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3329 if (!card->complete_wq) {
3330 pr_err("Failed to create mmc completion workqueue");
3331 return -ENOMEM;
3332 }
3333
3334 md = mmc_blk_alloc(card);
3335 if (IS_ERR(md)) {
3336 ret = PTR_ERR(md);
3337 goto out_free;
3338 }
3339
3340 ret = mmc_blk_alloc_parts(card, md);
3341 if (ret)
3342 goto out;
3343
3344 /* Add two debugfs entries */
3345 mmc_blk_add_debugfs(card, md);
3346
3347 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3348 pm_runtime_use_autosuspend(&card->dev);
3349
3350 /*
3351 * Don't enable runtime PM for SD-combo cards here. Leave that
3352 * decision to be taken during the SDIO init sequence instead.
3353 */
3354 if (!mmc_card_sd_combo(card)) {
3355 pm_runtime_set_active(&card->dev);
3356 pm_runtime_enable(&card->dev);
3357 }
3358
3359 mmc_blk_rpmb_add(card);
3360
3361 return 0;
3362
3363out:
3364 mmc_blk_remove_parts(card, md);
3365 mmc_blk_remove_req(md);
3366out_free:
3367 destroy_workqueue(card->complete_wq);
3368 return ret;
3369}
3370
3371static void mmc_blk_remove(struct mmc_card *card)
3372{
3373 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3374
3375 mmc_blk_remove_debugfs(card, md);
3376 mmc_blk_remove_parts(card, md);
3377 pm_runtime_get_sync(&card->dev);
3378 if (md->part_curr != md->part_type) {
3379 mmc_claim_host(card->host);
3380 mmc_blk_part_switch(card, md->part_type);
3381 mmc_release_host(card->host);
3382 }
3383 if (!mmc_card_sd_combo(card))
3384 pm_runtime_disable(&card->dev);
3385 pm_runtime_put_noidle(&card->dev);
3386 mmc_blk_remove_req(md);
3387 destroy_workqueue(card->complete_wq);
3388}
3389
3390static int _mmc_blk_suspend(struct mmc_card *card)
3391{
3392 struct mmc_blk_data *part_md;
3393 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3394
3395 if (md) {
3396 mmc_queue_suspend(&md->queue);
3397 list_for_each_entry(part_md, &md->part, part) {
3398 mmc_queue_suspend(&part_md->queue);
3399 }
3400 }
3401 return 0;
3402}
3403
3404static void mmc_blk_shutdown(struct mmc_card *card)
3405{
3406 _mmc_blk_suspend(card);
3407}
3408
3409#ifdef CONFIG_PM_SLEEP
3410static int mmc_blk_suspend(struct device *dev)
3411{
3412 struct mmc_card *card = mmc_dev_to_card(dev);
3413
3414 return _mmc_blk_suspend(card);
3415}
3416
3417static int mmc_blk_resume(struct device *dev)
3418{
3419 struct mmc_blk_data *part_md;
3420 struct mmc_blk_data *md = dev_get_drvdata(dev);
3421
3422 if (md) {
3423 /*
3424 * Resume involves the card going into idle state,
3425 * so current partition is always the main one.
3426 */
3427 md->part_curr = md->part_type;
3428 mmc_queue_resume(&md->queue);
3429 list_for_each_entry(part_md, &md->part, part) {
3430 mmc_queue_resume(&part_md->queue);
3431 }
3432 }
3433 return 0;
3434}
3435#endif
3436
3437static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3438
3439static struct mmc_driver mmc_driver = {
3440 .drv = {
3441 .name = "mmcblk",
3442 .pm = &mmc_blk_pm_ops,
3443 },
3444 .probe = mmc_blk_probe,
3445 .remove = mmc_blk_remove,
3446 .shutdown = mmc_blk_shutdown,
3447};
3448
3449static int __init mmc_blk_init(void)
3450{
3451 int res;
3452
3453 res = bus_register(&mmc_rpmb_bus_type);
3454 if (res < 0) {
3455 pr_err("mmcblk: could not register RPMB bus type\n");
3456 return res;
3457 }
3458 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3459 if (res < 0) {
3460 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3461 goto out_bus_unreg;
3462 }
3463
3464 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3465 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3466
3467 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3468
3469 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3470 if (res)
3471 goto out_chrdev_unreg;
3472
3473 res = mmc_register_driver(&mmc_driver);
3474 if (res)
3475 goto out_blkdev_unreg;
3476
3477 return 0;
3478
3479out_blkdev_unreg:
3480 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3481out_chrdev_unreg:
3482 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3483out_bus_unreg:
3484 bus_unregister(&mmc_rpmb_bus_type);
3485 return res;
3486}
3487
3488static void __exit mmc_blk_exit(void)
3489{
3490 mmc_unregister_driver(&mmc_driver);
3491 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3492 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3493 bus_unregister(&mmc_rpmb_bus_type);
3494}
3495
3496module_init(mmc_blk_init);
3497module_exit(mmc_blk_exit);
3498
3499MODULE_LICENSE("GPL");
3500MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21#include <linux/moduleparam.h>
22#include <linux/module.h>
23#include <linux/init.h>
24
25#include <linux/kernel.h>
26#include <linux/fs.h>
27#include <linux/slab.h>
28#include <linux/errno.h>
29#include <linux/hdreg.h>
30#include <linux/kdev_t.h>
31#include <linux/kref.h>
32#include <linux/blkdev.h>
33#include <linux/cdev.h>
34#include <linux/mutex.h>
35#include <linux/scatterlist.h>
36#include <linux/string_helpers.h>
37#include <linux/delay.h>
38#include <linux/capability.h>
39#include <linux/compat.h>
40#include <linux/pm_runtime.h>
41#include <linux/idr.h>
42#include <linux/debugfs.h>
43
44#include <linux/mmc/ioctl.h>
45#include <linux/mmc/card.h>
46#include <linux/mmc/host.h>
47#include <linux/mmc/mmc.h>
48#include <linux/mmc/sd.h>
49
50#include <linux/uaccess.h>
51
52#include "queue.h"
53#include "block.h"
54#include "core.h"
55#include "card.h"
56#include "crypto.h"
57#include "host.h"
58#include "bus.h"
59#include "mmc_ops.h"
60#include "quirks.h"
61#include "sd_ops.h"
62
63MODULE_ALIAS("mmc:block");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "mmcblk."
68
69/*
70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72 * second software timer to timeout the whole request, so 10 seconds should be
73 * ample.
74 */
75#define MMC_BLK_TIMEOUT_MS (10 * 1000)
76#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78
79#define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
80 (rq_data_dir(req) == WRITE))
81static DEFINE_MUTEX(block_mutex);
82
83/*
84 * The defaults come from config options but can be overriden by module
85 * or bootarg options.
86 */
87static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88
89/*
90 * We've only got one major, so number of mmcblk devices is
91 * limited to (1 << 20) / number of minors per device. It is also
92 * limited by the MAX_DEVICES below.
93 */
94static int max_devices;
95
96#define MAX_DEVICES 256
97
98static DEFINE_IDA(mmc_blk_ida);
99static DEFINE_IDA(mmc_rpmb_ida);
100
101struct mmc_blk_busy_data {
102 struct mmc_card *card;
103 u32 status;
104};
105
106/*
107 * There is one mmc_blk_data per slot.
108 */
109struct mmc_blk_data {
110 struct device *parent;
111 struct gendisk *disk;
112 struct mmc_queue queue;
113 struct list_head part;
114 struct list_head rpmbs;
115
116 unsigned int flags;
117#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
118#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
119
120 struct kref kref;
121 unsigned int read_only;
122 unsigned int part_type;
123 unsigned int reset_done;
124#define MMC_BLK_READ BIT(0)
125#define MMC_BLK_WRITE BIT(1)
126#define MMC_BLK_DISCARD BIT(2)
127#define MMC_BLK_SECDISCARD BIT(3)
128#define MMC_BLK_CQE_RECOVERY BIT(4)
129
130 /*
131 * Only set in main mmc_blk_data associated
132 * with mmc_card with dev_set_drvdata, and keeps
133 * track of the current selected device partition.
134 */
135 unsigned int part_curr;
136 struct device_attribute force_ro;
137 struct device_attribute power_ro_lock;
138 int area_type;
139
140 /* debugfs files (only in main mmc_blk_data) */
141 struct dentry *status_dentry;
142 struct dentry *ext_csd_dentry;
143};
144
145/* Device type for RPMB character devices */
146static dev_t mmc_rpmb_devt;
147
148/* Bus type for RPMB character devices */
149static struct bus_type mmc_rpmb_bus_type = {
150 .name = "mmc_rpmb",
151};
152
153/**
154 * struct mmc_rpmb_data - special RPMB device type for these areas
155 * @dev: the device for the RPMB area
156 * @chrdev: character device for the RPMB area
157 * @id: unique device ID number
158 * @part_index: partition index (0 on first)
159 * @md: parent MMC block device
160 * @node: list item, so we can put this device on a list
161 */
162struct mmc_rpmb_data {
163 struct device dev;
164 struct cdev chrdev;
165 int id;
166 unsigned int part_index;
167 struct mmc_blk_data *md;
168 struct list_head node;
169};
170
171static DEFINE_MUTEX(open_lock);
172
173module_param(perdev_minors, int, 0444);
174MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
175
176static inline int mmc_blk_part_switch(struct mmc_card *card,
177 unsigned int part_type);
178static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
179 struct mmc_card *card,
180 int disable_multi,
181 struct mmc_queue *mq);
182static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
183
184static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
185{
186 struct mmc_blk_data *md;
187
188 mutex_lock(&open_lock);
189 md = disk->private_data;
190 if (md && !kref_get_unless_zero(&md->kref))
191 md = NULL;
192 mutex_unlock(&open_lock);
193
194 return md;
195}
196
197static inline int mmc_get_devidx(struct gendisk *disk)
198{
199 int devidx = disk->first_minor / perdev_minors;
200 return devidx;
201}
202
203static void mmc_blk_kref_release(struct kref *ref)
204{
205 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
206 int devidx;
207
208 devidx = mmc_get_devidx(md->disk);
209 ida_simple_remove(&mmc_blk_ida, devidx);
210
211 mutex_lock(&open_lock);
212 md->disk->private_data = NULL;
213 mutex_unlock(&open_lock);
214
215 put_disk(md->disk);
216 kfree(md);
217}
218
219static void mmc_blk_put(struct mmc_blk_data *md)
220{
221 kref_put(&md->kref, mmc_blk_kref_release);
222}
223
224static ssize_t power_ro_lock_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
226{
227 int ret;
228 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
229 struct mmc_card *card = md->queue.card;
230 int locked = 0;
231
232 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
233 locked = 2;
234 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
235 locked = 1;
236
237 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
238
239 mmc_blk_put(md);
240
241 return ret;
242}
243
244static ssize_t power_ro_lock_store(struct device *dev,
245 struct device_attribute *attr, const char *buf, size_t count)
246{
247 int ret;
248 struct mmc_blk_data *md, *part_md;
249 struct mmc_queue *mq;
250 struct request *req;
251 unsigned long set;
252
253 if (kstrtoul(buf, 0, &set))
254 return -EINVAL;
255
256 if (set != 1)
257 return count;
258
259 md = mmc_blk_get(dev_to_disk(dev));
260 mq = &md->queue;
261
262 /* Dispatch locking to the block layer */
263 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
264 if (IS_ERR(req)) {
265 count = PTR_ERR(req);
266 goto out_put;
267 }
268 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
269 blk_execute_rq(NULL, req, 0);
270 ret = req_to_mmc_queue_req(req)->drv_op_result;
271 blk_put_request(req);
272
273 if (!ret) {
274 pr_info("%s: Locking boot partition ro until next power on\n",
275 md->disk->disk_name);
276 set_disk_ro(md->disk, 1);
277
278 list_for_each_entry(part_md, &md->part, part)
279 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
280 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
281 set_disk_ro(part_md->disk, 1);
282 }
283 }
284out_put:
285 mmc_blk_put(md);
286 return count;
287}
288
289static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
290 char *buf)
291{
292 int ret;
293 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
294
295 ret = snprintf(buf, PAGE_SIZE, "%d\n",
296 get_disk_ro(dev_to_disk(dev)) ^
297 md->read_only);
298 mmc_blk_put(md);
299 return ret;
300}
301
302static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
303 const char *buf, size_t count)
304{
305 int ret;
306 char *end;
307 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
308 unsigned long set = simple_strtoul(buf, &end, 0);
309 if (end == buf) {
310 ret = -EINVAL;
311 goto out;
312 }
313
314 set_disk_ro(dev_to_disk(dev), set || md->read_only);
315 ret = count;
316out:
317 mmc_blk_put(md);
318 return ret;
319}
320
321static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
322{
323 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
324 int ret = -ENXIO;
325
326 mutex_lock(&block_mutex);
327 if (md) {
328 ret = 0;
329 if ((mode & FMODE_WRITE) && md->read_only) {
330 mmc_blk_put(md);
331 ret = -EROFS;
332 }
333 }
334 mutex_unlock(&block_mutex);
335
336 return ret;
337}
338
339static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
340{
341 struct mmc_blk_data *md = disk->private_data;
342
343 mutex_lock(&block_mutex);
344 mmc_blk_put(md);
345 mutex_unlock(&block_mutex);
346}
347
348static int
349mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
350{
351 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
352 geo->heads = 4;
353 geo->sectors = 16;
354 return 0;
355}
356
357struct mmc_blk_ioc_data {
358 struct mmc_ioc_cmd ic;
359 unsigned char *buf;
360 u64 buf_bytes;
361 struct mmc_rpmb_data *rpmb;
362};
363
364static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
365 struct mmc_ioc_cmd __user *user)
366{
367 struct mmc_blk_ioc_data *idata;
368 int err;
369
370 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
371 if (!idata) {
372 err = -ENOMEM;
373 goto out;
374 }
375
376 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
377 err = -EFAULT;
378 goto idata_err;
379 }
380
381 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
382 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
383 err = -EOVERFLOW;
384 goto idata_err;
385 }
386
387 if (!idata->buf_bytes) {
388 idata->buf = NULL;
389 return idata;
390 }
391
392 idata->buf = memdup_user((void __user *)(unsigned long)
393 idata->ic.data_ptr, idata->buf_bytes);
394 if (IS_ERR(idata->buf)) {
395 err = PTR_ERR(idata->buf);
396 goto idata_err;
397 }
398
399 return idata;
400
401idata_err:
402 kfree(idata);
403out:
404 return ERR_PTR(err);
405}
406
407static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
408 struct mmc_blk_ioc_data *idata)
409{
410 struct mmc_ioc_cmd *ic = &idata->ic;
411
412 if (copy_to_user(&(ic_ptr->response), ic->response,
413 sizeof(ic->response)))
414 return -EFAULT;
415
416 if (!idata->ic.write_flag) {
417 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
418 idata->buf, idata->buf_bytes))
419 return -EFAULT;
420 }
421
422 return 0;
423}
424
425static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
426 struct mmc_blk_ioc_data *idata)
427{
428 struct mmc_command cmd = {}, sbc = {};
429 struct mmc_data data = {};
430 struct mmc_request mrq = {};
431 struct scatterlist sg;
432 int err;
433 unsigned int target_part;
434
435 if (!card || !md || !idata)
436 return -EINVAL;
437
438 /*
439 * The RPMB accesses comes in from the character device, so we
440 * need to target these explicitly. Else we just target the
441 * partition type for the block device the ioctl() was issued
442 * on.
443 */
444 if (idata->rpmb) {
445 /* Support multiple RPMB partitions */
446 target_part = idata->rpmb->part_index;
447 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
448 } else {
449 target_part = md->part_type;
450 }
451
452 cmd.opcode = idata->ic.opcode;
453 cmd.arg = idata->ic.arg;
454 cmd.flags = idata->ic.flags;
455
456 if (idata->buf_bytes) {
457 data.sg = &sg;
458 data.sg_len = 1;
459 data.blksz = idata->ic.blksz;
460 data.blocks = idata->ic.blocks;
461
462 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
463
464 if (idata->ic.write_flag)
465 data.flags = MMC_DATA_WRITE;
466 else
467 data.flags = MMC_DATA_READ;
468
469 /* data.flags must already be set before doing this. */
470 mmc_set_data_timeout(&data, card);
471
472 /* Allow overriding the timeout_ns for empirical tuning. */
473 if (idata->ic.data_timeout_ns)
474 data.timeout_ns = idata->ic.data_timeout_ns;
475
476 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
477 /*
478 * Pretend this is a data transfer and rely on the
479 * host driver to compute timeout. When all host
480 * drivers support cmd.cmd_timeout for R1B, this
481 * can be changed to:
482 *
483 * mrq.data = NULL;
484 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
485 */
486 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
487 }
488
489 mrq.data = &data;
490 }
491
492 mrq.cmd = &cmd;
493
494 err = mmc_blk_part_switch(card, target_part);
495 if (err)
496 return err;
497
498 if (idata->ic.is_acmd) {
499 err = mmc_app_cmd(card->host, card);
500 if (err)
501 return err;
502 }
503
504 if (idata->rpmb) {
505 sbc.opcode = MMC_SET_BLOCK_COUNT;
506 /*
507 * We don't do any blockcount validation because the max size
508 * may be increased by a future standard. We just copy the
509 * 'Reliable Write' bit here.
510 */
511 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
512 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
513 mrq.sbc = &sbc;
514 }
515
516 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
517 (cmd.opcode == MMC_SWITCH))
518 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
519
520 mmc_wait_for_req(card->host, &mrq);
521 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
522
523 if (cmd.error) {
524 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
525 __func__, cmd.error);
526 return cmd.error;
527 }
528 if (data.error) {
529 dev_err(mmc_dev(card->host), "%s: data error %d\n",
530 __func__, data.error);
531 return data.error;
532 }
533
534 /*
535 * Make sure the cache of the PARTITION_CONFIG register and
536 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
537 * changed it successfully.
538 */
539 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
540 (cmd.opcode == MMC_SWITCH)) {
541 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
542 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
543
544 /*
545 * Update cache so the next mmc_blk_part_switch call operates
546 * on up-to-date data.
547 */
548 card->ext_csd.part_config = value;
549 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
550 }
551
552 /*
553 * Make sure to update CACHE_CTRL in case it was changed. The cache
554 * will get turned back on if the card is re-initialized, e.g.
555 * suspend/resume or hw reset in recovery.
556 */
557 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
558 (cmd.opcode == MMC_SWITCH)) {
559 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
560
561 card->ext_csd.cache_ctrl = value;
562 }
563
564 /*
565 * According to the SD specs, some commands require a delay after
566 * issuing the command.
567 */
568 if (idata->ic.postsleep_min_us)
569 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
570
571 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
572 /*
573 * Ensure RPMB/R1B command has completed by polling CMD13
574 * "Send Status".
575 */
576 err = mmc_poll_for_busy(card, MMC_BLK_TIMEOUT_MS, false,
577 MMC_BUSY_IO);
578 }
579
580 return err;
581}
582
583static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
584 struct mmc_ioc_cmd __user *ic_ptr,
585 struct mmc_rpmb_data *rpmb)
586{
587 struct mmc_blk_ioc_data *idata;
588 struct mmc_blk_ioc_data *idatas[1];
589 struct mmc_queue *mq;
590 struct mmc_card *card;
591 int err = 0, ioc_err = 0;
592 struct request *req;
593
594 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
595 if (IS_ERR(idata))
596 return PTR_ERR(idata);
597 /* This will be NULL on non-RPMB ioctl():s */
598 idata->rpmb = rpmb;
599
600 card = md->queue.card;
601 if (IS_ERR(card)) {
602 err = PTR_ERR(card);
603 goto cmd_done;
604 }
605
606 /*
607 * Dispatch the ioctl() into the block request queue.
608 */
609 mq = &md->queue;
610 req = blk_get_request(mq->queue,
611 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
612 if (IS_ERR(req)) {
613 err = PTR_ERR(req);
614 goto cmd_done;
615 }
616 idatas[0] = idata;
617 req_to_mmc_queue_req(req)->drv_op =
618 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
619 req_to_mmc_queue_req(req)->drv_op_data = idatas;
620 req_to_mmc_queue_req(req)->ioc_count = 1;
621 blk_execute_rq(NULL, req, 0);
622 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
623 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
624 blk_put_request(req);
625
626cmd_done:
627 kfree(idata->buf);
628 kfree(idata);
629 return ioc_err ? ioc_err : err;
630}
631
632static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
633 struct mmc_ioc_multi_cmd __user *user,
634 struct mmc_rpmb_data *rpmb)
635{
636 struct mmc_blk_ioc_data **idata = NULL;
637 struct mmc_ioc_cmd __user *cmds = user->cmds;
638 struct mmc_card *card;
639 struct mmc_queue *mq;
640 int i, err = 0, ioc_err = 0;
641 __u64 num_of_cmds;
642 struct request *req;
643
644 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
645 sizeof(num_of_cmds)))
646 return -EFAULT;
647
648 if (!num_of_cmds)
649 return 0;
650
651 if (num_of_cmds > MMC_IOC_MAX_CMDS)
652 return -EINVAL;
653
654 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
655 if (!idata)
656 return -ENOMEM;
657
658 for (i = 0; i < num_of_cmds; i++) {
659 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
660 if (IS_ERR(idata[i])) {
661 err = PTR_ERR(idata[i]);
662 num_of_cmds = i;
663 goto cmd_err;
664 }
665 /* This will be NULL on non-RPMB ioctl():s */
666 idata[i]->rpmb = rpmb;
667 }
668
669 card = md->queue.card;
670 if (IS_ERR(card)) {
671 err = PTR_ERR(card);
672 goto cmd_err;
673 }
674
675
676 /*
677 * Dispatch the ioctl()s into the block request queue.
678 */
679 mq = &md->queue;
680 req = blk_get_request(mq->queue,
681 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
682 if (IS_ERR(req)) {
683 err = PTR_ERR(req);
684 goto cmd_err;
685 }
686 req_to_mmc_queue_req(req)->drv_op =
687 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
688 req_to_mmc_queue_req(req)->drv_op_data = idata;
689 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
690 blk_execute_rq(NULL, req, 0);
691 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
692
693 /* copy to user if data and response */
694 for (i = 0; i < num_of_cmds && !err; i++)
695 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
696
697 blk_put_request(req);
698
699cmd_err:
700 for (i = 0; i < num_of_cmds; i++) {
701 kfree(idata[i]->buf);
702 kfree(idata[i]);
703 }
704 kfree(idata);
705 return ioc_err ? ioc_err : err;
706}
707
708static int mmc_blk_check_blkdev(struct block_device *bdev)
709{
710 /*
711 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
712 * whole block device, not on a partition. This prevents overspray
713 * between sibling partitions.
714 */
715 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
716 return -EPERM;
717 return 0;
718}
719
720static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
721 unsigned int cmd, unsigned long arg)
722{
723 struct mmc_blk_data *md;
724 int ret;
725
726 switch (cmd) {
727 case MMC_IOC_CMD:
728 ret = mmc_blk_check_blkdev(bdev);
729 if (ret)
730 return ret;
731 md = mmc_blk_get(bdev->bd_disk);
732 if (!md)
733 return -EINVAL;
734 ret = mmc_blk_ioctl_cmd(md,
735 (struct mmc_ioc_cmd __user *)arg,
736 NULL);
737 mmc_blk_put(md);
738 return ret;
739 case MMC_IOC_MULTI_CMD:
740 ret = mmc_blk_check_blkdev(bdev);
741 if (ret)
742 return ret;
743 md = mmc_blk_get(bdev->bd_disk);
744 if (!md)
745 return -EINVAL;
746 ret = mmc_blk_ioctl_multi_cmd(md,
747 (struct mmc_ioc_multi_cmd __user *)arg,
748 NULL);
749 mmc_blk_put(md);
750 return ret;
751 default:
752 return -EINVAL;
753 }
754}
755
756#ifdef CONFIG_COMPAT
757static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
758 unsigned int cmd, unsigned long arg)
759{
760 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
761}
762#endif
763
764static const struct block_device_operations mmc_bdops = {
765 .open = mmc_blk_open,
766 .release = mmc_blk_release,
767 .getgeo = mmc_blk_getgeo,
768 .owner = THIS_MODULE,
769 .ioctl = mmc_blk_ioctl,
770#ifdef CONFIG_COMPAT
771 .compat_ioctl = mmc_blk_compat_ioctl,
772#endif
773};
774
775static int mmc_blk_part_switch_pre(struct mmc_card *card,
776 unsigned int part_type)
777{
778 int ret = 0;
779
780 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
781 if (card->ext_csd.cmdq_en) {
782 ret = mmc_cmdq_disable(card);
783 if (ret)
784 return ret;
785 }
786 mmc_retune_pause(card->host);
787 }
788
789 return ret;
790}
791
792static int mmc_blk_part_switch_post(struct mmc_card *card,
793 unsigned int part_type)
794{
795 int ret = 0;
796
797 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
798 mmc_retune_unpause(card->host);
799 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
800 ret = mmc_cmdq_enable(card);
801 }
802
803 return ret;
804}
805
806static inline int mmc_blk_part_switch(struct mmc_card *card,
807 unsigned int part_type)
808{
809 int ret = 0;
810 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
811
812 if (main_md->part_curr == part_type)
813 return 0;
814
815 if (mmc_card_mmc(card)) {
816 u8 part_config = card->ext_csd.part_config;
817
818 ret = mmc_blk_part_switch_pre(card, part_type);
819 if (ret)
820 return ret;
821
822 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
823 part_config |= part_type;
824
825 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
826 EXT_CSD_PART_CONFIG, part_config,
827 card->ext_csd.part_time);
828 if (ret) {
829 mmc_blk_part_switch_post(card, part_type);
830 return ret;
831 }
832
833 card->ext_csd.part_config = part_config;
834
835 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
836 }
837
838 main_md->part_curr = part_type;
839 return ret;
840}
841
842static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
843{
844 int err;
845 u32 result;
846 __be32 *blocks;
847
848 struct mmc_request mrq = {};
849 struct mmc_command cmd = {};
850 struct mmc_data data = {};
851
852 struct scatterlist sg;
853
854 cmd.opcode = MMC_APP_CMD;
855 cmd.arg = card->rca << 16;
856 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
857
858 err = mmc_wait_for_cmd(card->host, &cmd, 0);
859 if (err)
860 return err;
861 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
862 return -EIO;
863
864 memset(&cmd, 0, sizeof(struct mmc_command));
865
866 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
867 cmd.arg = 0;
868 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
869
870 data.blksz = 4;
871 data.blocks = 1;
872 data.flags = MMC_DATA_READ;
873 data.sg = &sg;
874 data.sg_len = 1;
875 mmc_set_data_timeout(&data, card);
876
877 mrq.cmd = &cmd;
878 mrq.data = &data;
879
880 blocks = kmalloc(4, GFP_KERNEL);
881 if (!blocks)
882 return -ENOMEM;
883
884 sg_init_one(&sg, blocks, 4);
885
886 mmc_wait_for_req(card->host, &mrq);
887
888 result = ntohl(*blocks);
889 kfree(blocks);
890
891 if (cmd.error || data.error)
892 return -EIO;
893
894 *written_blocks = result;
895
896 return 0;
897}
898
899static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
900{
901 if (host->actual_clock)
902 return host->actual_clock / 1000;
903
904 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
905 if (host->ios.clock)
906 return host->ios.clock / 2000;
907
908 /* How can there be no clock */
909 WARN_ON_ONCE(1);
910 return 100; /* 100 kHz is minimum possible value */
911}
912
913static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
914 struct mmc_data *data)
915{
916 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
917 unsigned int khz;
918
919 if (data->timeout_clks) {
920 khz = mmc_blk_clock_khz(host);
921 ms += DIV_ROUND_UP(data->timeout_clks, khz);
922 }
923
924 return ms;
925}
926
927static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
928 int type)
929{
930 int err;
931
932 if (md->reset_done & type)
933 return -EEXIST;
934
935 md->reset_done |= type;
936 err = mmc_hw_reset(host);
937 /* Ensure we switch back to the correct partition */
938 if (err) {
939 struct mmc_blk_data *main_md =
940 dev_get_drvdata(&host->card->dev);
941 int part_err;
942
943 main_md->part_curr = main_md->part_type;
944 part_err = mmc_blk_part_switch(host->card, md->part_type);
945 if (part_err) {
946 /*
947 * We have failed to get back into the correct
948 * partition, so we need to abort the whole request.
949 */
950 return -ENODEV;
951 }
952 }
953 return err;
954}
955
956static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
957{
958 md->reset_done &= ~type;
959}
960
961/*
962 * The non-block commands come back from the block layer after it queued it and
963 * processed it with all other requests and then they get issued in this
964 * function.
965 */
966static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
967{
968 struct mmc_queue_req *mq_rq;
969 struct mmc_card *card = mq->card;
970 struct mmc_blk_data *md = mq->blkdata;
971 struct mmc_blk_ioc_data **idata;
972 bool rpmb_ioctl;
973 u8 **ext_csd;
974 u32 status;
975 int ret;
976 int i;
977
978 mq_rq = req_to_mmc_queue_req(req);
979 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
980
981 switch (mq_rq->drv_op) {
982 case MMC_DRV_OP_IOCTL:
983 if (card->ext_csd.cmdq_en) {
984 ret = mmc_cmdq_disable(card);
985 if (ret)
986 break;
987 }
988 fallthrough;
989 case MMC_DRV_OP_IOCTL_RPMB:
990 idata = mq_rq->drv_op_data;
991 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
992 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
993 if (ret)
994 break;
995 }
996 /* Always switch back to main area after RPMB access */
997 if (rpmb_ioctl)
998 mmc_blk_part_switch(card, 0);
999 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1000 mmc_cmdq_enable(card);
1001 break;
1002 case MMC_DRV_OP_BOOT_WP:
1003 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1004 card->ext_csd.boot_ro_lock |
1005 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1006 card->ext_csd.part_time);
1007 if (ret)
1008 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1009 md->disk->disk_name, ret);
1010 else
1011 card->ext_csd.boot_ro_lock |=
1012 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1013 break;
1014 case MMC_DRV_OP_GET_CARD_STATUS:
1015 ret = mmc_send_status(card, &status);
1016 if (!ret)
1017 ret = status;
1018 break;
1019 case MMC_DRV_OP_GET_EXT_CSD:
1020 ext_csd = mq_rq->drv_op_data;
1021 ret = mmc_get_ext_csd(card, ext_csd);
1022 break;
1023 default:
1024 pr_err("%s: unknown driver specific operation\n",
1025 md->disk->disk_name);
1026 ret = -EINVAL;
1027 break;
1028 }
1029 mq_rq->drv_op_result = ret;
1030 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1031}
1032
1033static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1034{
1035 struct mmc_blk_data *md = mq->blkdata;
1036 struct mmc_card *card = md->queue.card;
1037 unsigned int from, nr;
1038 int err = 0, type = MMC_BLK_DISCARD;
1039 blk_status_t status = BLK_STS_OK;
1040
1041 if (!mmc_can_erase(card)) {
1042 status = BLK_STS_NOTSUPP;
1043 goto fail;
1044 }
1045
1046 from = blk_rq_pos(req);
1047 nr = blk_rq_sectors(req);
1048
1049 do {
1050 err = 0;
1051 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1052 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1053 INAND_CMD38_ARG_EXT_CSD,
1054 card->erase_arg == MMC_TRIM_ARG ?
1055 INAND_CMD38_ARG_TRIM :
1056 INAND_CMD38_ARG_ERASE,
1057 card->ext_csd.generic_cmd6_time);
1058 }
1059 if (!err)
1060 err = mmc_erase(card, from, nr, card->erase_arg);
1061 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1062 if (err)
1063 status = BLK_STS_IOERR;
1064 else
1065 mmc_blk_reset_success(md, type);
1066fail:
1067 blk_mq_end_request(req, status);
1068}
1069
1070static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1071 struct request *req)
1072{
1073 struct mmc_blk_data *md = mq->blkdata;
1074 struct mmc_card *card = md->queue.card;
1075 unsigned int from, nr, arg;
1076 int err = 0, type = MMC_BLK_SECDISCARD;
1077 blk_status_t status = BLK_STS_OK;
1078
1079 if (!(mmc_can_secure_erase_trim(card))) {
1080 status = BLK_STS_NOTSUPP;
1081 goto out;
1082 }
1083
1084 from = blk_rq_pos(req);
1085 nr = blk_rq_sectors(req);
1086
1087 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1088 arg = MMC_SECURE_TRIM1_ARG;
1089 else
1090 arg = MMC_SECURE_ERASE_ARG;
1091
1092retry:
1093 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1094 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1095 INAND_CMD38_ARG_EXT_CSD,
1096 arg == MMC_SECURE_TRIM1_ARG ?
1097 INAND_CMD38_ARG_SECTRIM1 :
1098 INAND_CMD38_ARG_SECERASE,
1099 card->ext_csd.generic_cmd6_time);
1100 if (err)
1101 goto out_retry;
1102 }
1103
1104 err = mmc_erase(card, from, nr, arg);
1105 if (err == -EIO)
1106 goto out_retry;
1107 if (err) {
1108 status = BLK_STS_IOERR;
1109 goto out;
1110 }
1111
1112 if (arg == MMC_SECURE_TRIM1_ARG) {
1113 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1114 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1115 INAND_CMD38_ARG_EXT_CSD,
1116 INAND_CMD38_ARG_SECTRIM2,
1117 card->ext_csd.generic_cmd6_time);
1118 if (err)
1119 goto out_retry;
1120 }
1121
1122 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1123 if (err == -EIO)
1124 goto out_retry;
1125 if (err) {
1126 status = BLK_STS_IOERR;
1127 goto out;
1128 }
1129 }
1130
1131out_retry:
1132 if (err && !mmc_blk_reset(md, card->host, type))
1133 goto retry;
1134 if (!err)
1135 mmc_blk_reset_success(md, type);
1136out:
1137 blk_mq_end_request(req, status);
1138}
1139
1140static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1141{
1142 struct mmc_blk_data *md = mq->blkdata;
1143 struct mmc_card *card = md->queue.card;
1144 int ret = 0;
1145
1146 ret = mmc_flush_cache(card->host);
1147 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1148}
1149
1150/*
1151 * Reformat current write as a reliable write, supporting
1152 * both legacy and the enhanced reliable write MMC cards.
1153 * In each transfer we'll handle only as much as a single
1154 * reliable write can handle, thus finish the request in
1155 * partial completions.
1156 */
1157static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1158 struct mmc_card *card,
1159 struct request *req)
1160{
1161 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1162 /* Legacy mode imposes restrictions on transfers. */
1163 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1164 brq->data.blocks = 1;
1165
1166 if (brq->data.blocks > card->ext_csd.rel_sectors)
1167 brq->data.blocks = card->ext_csd.rel_sectors;
1168 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1169 brq->data.blocks = 1;
1170 }
1171}
1172
1173#define CMD_ERRORS_EXCL_OOR \
1174 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1175 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1176 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1177 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1178 R1_CC_ERROR | /* Card controller error */ \
1179 R1_ERROR) /* General/unknown error */
1180
1181#define CMD_ERRORS \
1182 (CMD_ERRORS_EXCL_OOR | \
1183 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1184
1185static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1186{
1187 u32 val;
1188
1189 /*
1190 * Per the SD specification(physical layer version 4.10)[1],
1191 * section 4.3.3, it explicitly states that "When the last
1192 * block of user area is read using CMD18, the host should
1193 * ignore OUT_OF_RANGE error that may occur even the sequence
1194 * is correct". And JESD84-B51 for eMMC also has a similar
1195 * statement on section 6.8.3.
1196 *
1197 * Multiple block read/write could be done by either predefined
1198 * method, namely CMD23, or open-ending mode. For open-ending mode,
1199 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1200 *
1201 * However the spec[1] doesn't tell us whether we should also
1202 * ignore that for predefined method. But per the spec[1], section
1203 * 4.15 Set Block Count Command, it says"If illegal block count
1204 * is set, out of range error will be indicated during read/write
1205 * operation (For example, data transfer is stopped at user area
1206 * boundary)." In another word, we could expect a out of range error
1207 * in the response for the following CMD18/25. And if argument of
1208 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1209 * we could also expect to get a -ETIMEDOUT or any error number from
1210 * the host drivers due to missing data response(for write)/data(for
1211 * read), as the cards will stop the data transfer by itself per the
1212 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1213 */
1214
1215 if (!brq->stop.error) {
1216 bool oor_with_open_end;
1217 /* If there is no error yet, check R1 response */
1218
1219 val = brq->stop.resp[0] & CMD_ERRORS;
1220 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1221
1222 if (val && !oor_with_open_end)
1223 brq->stop.error = -EIO;
1224 }
1225}
1226
1227static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1228 int disable_multi, bool *do_rel_wr_p,
1229 bool *do_data_tag_p)
1230{
1231 struct mmc_blk_data *md = mq->blkdata;
1232 struct mmc_card *card = md->queue.card;
1233 struct mmc_blk_request *brq = &mqrq->brq;
1234 struct request *req = mmc_queue_req_to_req(mqrq);
1235 bool do_rel_wr, do_data_tag;
1236
1237 /*
1238 * Reliable writes are used to implement Forced Unit Access and
1239 * are supported only on MMCs.
1240 */
1241 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1242 rq_data_dir(req) == WRITE &&
1243 (md->flags & MMC_BLK_REL_WR);
1244
1245 memset(brq, 0, sizeof(struct mmc_blk_request));
1246
1247 mmc_crypto_prepare_req(mqrq);
1248
1249 brq->mrq.data = &brq->data;
1250 brq->mrq.tag = req->tag;
1251
1252 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1253 brq->stop.arg = 0;
1254
1255 if (rq_data_dir(req) == READ) {
1256 brq->data.flags = MMC_DATA_READ;
1257 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1258 } else {
1259 brq->data.flags = MMC_DATA_WRITE;
1260 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1261 }
1262
1263 brq->data.blksz = 512;
1264 brq->data.blocks = blk_rq_sectors(req);
1265 brq->data.blk_addr = blk_rq_pos(req);
1266
1267 /*
1268 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1269 * The eMMC will give "high" priority tasks priority over "simple"
1270 * priority tasks. Here we always set "simple" priority by not setting
1271 * MMC_DATA_PRIO.
1272 */
1273
1274 /*
1275 * The block layer doesn't support all sector count
1276 * restrictions, so we need to be prepared for too big
1277 * requests.
1278 */
1279 if (brq->data.blocks > card->host->max_blk_count)
1280 brq->data.blocks = card->host->max_blk_count;
1281
1282 if (brq->data.blocks > 1) {
1283 /*
1284 * Some SD cards in SPI mode return a CRC error or even lock up
1285 * completely when trying to read the last block using a
1286 * multiblock read command.
1287 */
1288 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1289 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1290 get_capacity(md->disk)))
1291 brq->data.blocks--;
1292
1293 /*
1294 * After a read error, we redo the request one sector
1295 * at a time in order to accurately determine which
1296 * sectors can be read successfully.
1297 */
1298 if (disable_multi)
1299 brq->data.blocks = 1;
1300
1301 /*
1302 * Some controllers have HW issues while operating
1303 * in multiple I/O mode
1304 */
1305 if (card->host->ops->multi_io_quirk)
1306 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1307 (rq_data_dir(req) == READ) ?
1308 MMC_DATA_READ : MMC_DATA_WRITE,
1309 brq->data.blocks);
1310 }
1311
1312 if (do_rel_wr) {
1313 mmc_apply_rel_rw(brq, card, req);
1314 brq->data.flags |= MMC_DATA_REL_WR;
1315 }
1316
1317 /*
1318 * Data tag is used only during writing meta data to speed
1319 * up write and any subsequent read of this meta data
1320 */
1321 do_data_tag = card->ext_csd.data_tag_unit_size &&
1322 (req->cmd_flags & REQ_META) &&
1323 (rq_data_dir(req) == WRITE) &&
1324 ((brq->data.blocks * brq->data.blksz) >=
1325 card->ext_csd.data_tag_unit_size);
1326
1327 if (do_data_tag)
1328 brq->data.flags |= MMC_DATA_DAT_TAG;
1329
1330 mmc_set_data_timeout(&brq->data, card);
1331
1332 brq->data.sg = mqrq->sg;
1333 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1334
1335 /*
1336 * Adjust the sg list so it is the same size as the
1337 * request.
1338 */
1339 if (brq->data.blocks != blk_rq_sectors(req)) {
1340 int i, data_size = brq->data.blocks << 9;
1341 struct scatterlist *sg;
1342
1343 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1344 data_size -= sg->length;
1345 if (data_size <= 0) {
1346 sg->length += data_size;
1347 i++;
1348 break;
1349 }
1350 }
1351 brq->data.sg_len = i;
1352 }
1353
1354 if (do_rel_wr_p)
1355 *do_rel_wr_p = do_rel_wr;
1356
1357 if (do_data_tag_p)
1358 *do_data_tag_p = do_data_tag;
1359}
1360
1361#define MMC_CQE_RETRIES 2
1362
1363static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1364{
1365 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1366 struct mmc_request *mrq = &mqrq->brq.mrq;
1367 struct request_queue *q = req->q;
1368 struct mmc_host *host = mq->card->host;
1369 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1370 unsigned long flags;
1371 bool put_card;
1372 int err;
1373
1374 mmc_cqe_post_req(host, mrq);
1375
1376 if (mrq->cmd && mrq->cmd->error)
1377 err = mrq->cmd->error;
1378 else if (mrq->data && mrq->data->error)
1379 err = mrq->data->error;
1380 else
1381 err = 0;
1382
1383 if (err) {
1384 if (mqrq->retries++ < MMC_CQE_RETRIES)
1385 blk_mq_requeue_request(req, true);
1386 else
1387 blk_mq_end_request(req, BLK_STS_IOERR);
1388 } else if (mrq->data) {
1389 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1390 blk_mq_requeue_request(req, true);
1391 else
1392 __blk_mq_end_request(req, BLK_STS_OK);
1393 } else {
1394 blk_mq_end_request(req, BLK_STS_OK);
1395 }
1396
1397 spin_lock_irqsave(&mq->lock, flags);
1398
1399 mq->in_flight[issue_type] -= 1;
1400
1401 put_card = (mmc_tot_in_flight(mq) == 0);
1402
1403 mmc_cqe_check_busy(mq);
1404
1405 spin_unlock_irqrestore(&mq->lock, flags);
1406
1407 if (!mq->cqe_busy)
1408 blk_mq_run_hw_queues(q, true);
1409
1410 if (put_card)
1411 mmc_put_card(mq->card, &mq->ctx);
1412}
1413
1414void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1415{
1416 struct mmc_card *card = mq->card;
1417 struct mmc_host *host = card->host;
1418 int err;
1419
1420 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1421
1422 err = mmc_cqe_recovery(host);
1423 if (err)
1424 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1425 else
1426 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1427
1428 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1429}
1430
1431static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1432{
1433 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1434 brq.mrq);
1435 struct request *req = mmc_queue_req_to_req(mqrq);
1436 struct request_queue *q = req->q;
1437 struct mmc_queue *mq = q->queuedata;
1438
1439 /*
1440 * Block layer timeouts race with completions which means the normal
1441 * completion path cannot be used during recovery.
1442 */
1443 if (mq->in_recovery)
1444 mmc_blk_cqe_complete_rq(mq, req);
1445 else if (likely(!blk_should_fake_timeout(req->q)))
1446 blk_mq_complete_request(req);
1447}
1448
1449static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1450{
1451 mrq->done = mmc_blk_cqe_req_done;
1452 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1453
1454 return mmc_cqe_start_req(host, mrq);
1455}
1456
1457static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1458 struct request *req)
1459{
1460 struct mmc_blk_request *brq = &mqrq->brq;
1461
1462 memset(brq, 0, sizeof(*brq));
1463
1464 brq->mrq.cmd = &brq->cmd;
1465 brq->mrq.tag = req->tag;
1466
1467 return &brq->mrq;
1468}
1469
1470static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1471{
1472 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1473 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1474
1475 mrq->cmd->opcode = MMC_SWITCH;
1476 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1477 (EXT_CSD_FLUSH_CACHE << 16) |
1478 (1 << 8) |
1479 EXT_CSD_CMD_SET_NORMAL;
1480 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1481
1482 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1483}
1484
1485static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1486{
1487 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1488 struct mmc_host *host = mq->card->host;
1489 int err;
1490
1491 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1492 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1493 mmc_pre_req(host, &mqrq->brq.mrq);
1494
1495 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1496 if (err)
1497 mmc_post_req(host, &mqrq->brq.mrq, err);
1498
1499 return err;
1500}
1501
1502static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1503{
1504 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1505 struct mmc_host *host = mq->card->host;
1506
1507 if (host->hsq_enabled)
1508 return mmc_blk_hsq_issue_rw_rq(mq, req);
1509
1510 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1511
1512 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1513}
1514
1515static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1516 struct mmc_card *card,
1517 int disable_multi,
1518 struct mmc_queue *mq)
1519{
1520 u32 readcmd, writecmd;
1521 struct mmc_blk_request *brq = &mqrq->brq;
1522 struct request *req = mmc_queue_req_to_req(mqrq);
1523 struct mmc_blk_data *md = mq->blkdata;
1524 bool do_rel_wr, do_data_tag;
1525
1526 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1527
1528 brq->mrq.cmd = &brq->cmd;
1529
1530 brq->cmd.arg = blk_rq_pos(req);
1531 if (!mmc_card_blockaddr(card))
1532 brq->cmd.arg <<= 9;
1533 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1534
1535 if (brq->data.blocks > 1 || do_rel_wr) {
1536 /* SPI multiblock writes terminate using a special
1537 * token, not a STOP_TRANSMISSION request.
1538 */
1539 if (!mmc_host_is_spi(card->host) ||
1540 rq_data_dir(req) == READ)
1541 brq->mrq.stop = &brq->stop;
1542 readcmd = MMC_READ_MULTIPLE_BLOCK;
1543 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1544 } else {
1545 brq->mrq.stop = NULL;
1546 readcmd = MMC_READ_SINGLE_BLOCK;
1547 writecmd = MMC_WRITE_BLOCK;
1548 }
1549 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1550
1551 /*
1552 * Pre-defined multi-block transfers are preferable to
1553 * open ended-ones (and necessary for reliable writes).
1554 * However, it is not sufficient to just send CMD23,
1555 * and avoid the final CMD12, as on an error condition
1556 * CMD12 (stop) needs to be sent anyway. This, coupled
1557 * with Auto-CMD23 enhancements provided by some
1558 * hosts, means that the complexity of dealing
1559 * with this is best left to the host. If CMD23 is
1560 * supported by card and host, we'll fill sbc in and let
1561 * the host deal with handling it correctly. This means
1562 * that for hosts that don't expose MMC_CAP_CMD23, no
1563 * change of behavior will be observed.
1564 *
1565 * N.B: Some MMC cards experience perf degradation.
1566 * We'll avoid using CMD23-bounded multiblock writes for
1567 * these, while retaining features like reliable writes.
1568 */
1569 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1570 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1571 do_data_tag)) {
1572 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1573 brq->sbc.arg = brq->data.blocks |
1574 (do_rel_wr ? (1 << 31) : 0) |
1575 (do_data_tag ? (1 << 29) : 0);
1576 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1577 brq->mrq.sbc = &brq->sbc;
1578 }
1579}
1580
1581#define MMC_MAX_RETRIES 5
1582#define MMC_DATA_RETRIES 2
1583#define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1584
1585static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1586{
1587 struct mmc_command cmd = {
1588 .opcode = MMC_STOP_TRANSMISSION,
1589 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1590 /* Some hosts wait for busy anyway, so provide a busy timeout */
1591 .busy_timeout = timeout,
1592 };
1593
1594 return mmc_wait_for_cmd(card->host, &cmd, 5);
1595}
1596
1597static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1598{
1599 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1600 struct mmc_blk_request *brq = &mqrq->brq;
1601 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1602 int err;
1603
1604 mmc_retune_hold_now(card->host);
1605
1606 mmc_blk_send_stop(card, timeout);
1607
1608 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1609
1610 mmc_retune_release(card->host);
1611
1612 return err;
1613}
1614
1615#define MMC_READ_SINGLE_RETRIES 2
1616
1617/* Single sector read during recovery */
1618static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1619{
1620 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1621 struct mmc_request *mrq = &mqrq->brq.mrq;
1622 struct mmc_card *card = mq->card;
1623 struct mmc_host *host = card->host;
1624 blk_status_t error = BLK_STS_OK;
1625 int retries = 0;
1626
1627 do {
1628 u32 status;
1629 int err;
1630
1631 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1632
1633 mmc_wait_for_req(host, mrq);
1634
1635 err = mmc_send_status(card, &status);
1636 if (err)
1637 goto error_exit;
1638
1639 if (!mmc_host_is_spi(host) &&
1640 !mmc_ready_for_data(status)) {
1641 err = mmc_blk_fix_state(card, req);
1642 if (err)
1643 goto error_exit;
1644 }
1645
1646 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1647 continue;
1648
1649 retries = 0;
1650
1651 if (mrq->cmd->error ||
1652 mrq->data->error ||
1653 (!mmc_host_is_spi(host) &&
1654 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1655 error = BLK_STS_IOERR;
1656 else
1657 error = BLK_STS_OK;
1658
1659 } while (blk_update_request(req, error, 512));
1660
1661 return;
1662
1663error_exit:
1664 mrq->data->bytes_xfered = 0;
1665 blk_update_request(req, BLK_STS_IOERR, 512);
1666 /* Let it try the remaining request again */
1667 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1668 mqrq->retries = MMC_MAX_RETRIES - 1;
1669}
1670
1671static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1672{
1673 return !!brq->mrq.sbc;
1674}
1675
1676static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1677{
1678 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1679}
1680
1681/*
1682 * Check for errors the host controller driver might not have seen such as
1683 * response mode errors or invalid card state.
1684 */
1685static bool mmc_blk_status_error(struct request *req, u32 status)
1686{
1687 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1688 struct mmc_blk_request *brq = &mqrq->brq;
1689 struct mmc_queue *mq = req->q->queuedata;
1690 u32 stop_err_bits;
1691
1692 if (mmc_host_is_spi(mq->card->host))
1693 return false;
1694
1695 stop_err_bits = mmc_blk_stop_err_bits(brq);
1696
1697 return brq->cmd.resp[0] & CMD_ERRORS ||
1698 brq->stop.resp[0] & stop_err_bits ||
1699 status & stop_err_bits ||
1700 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1701}
1702
1703static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1704{
1705 return !brq->sbc.error && !brq->cmd.error &&
1706 !(brq->cmd.resp[0] & CMD_ERRORS);
1707}
1708
1709/*
1710 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1711 * policy:
1712 * 1. A request that has transferred at least some data is considered
1713 * successful and will be requeued if there is remaining data to
1714 * transfer.
1715 * 2. Otherwise the number of retries is incremented and the request
1716 * will be requeued if there are remaining retries.
1717 * 3. Otherwise the request will be errored out.
1718 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1719 * mqrq->retries. So there are only 4 possible actions here:
1720 * 1. do not accept the bytes_xfered value i.e. set it to zero
1721 * 2. change mqrq->retries to determine the number of retries
1722 * 3. try to reset the card
1723 * 4. read one sector at a time
1724 */
1725static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1726{
1727 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1728 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1729 struct mmc_blk_request *brq = &mqrq->brq;
1730 struct mmc_blk_data *md = mq->blkdata;
1731 struct mmc_card *card = mq->card;
1732 u32 status;
1733 u32 blocks;
1734 int err;
1735
1736 /*
1737 * Some errors the host driver might not have seen. Set the number of
1738 * bytes transferred to zero in that case.
1739 */
1740 err = __mmc_send_status(card, &status, 0);
1741 if (err || mmc_blk_status_error(req, status))
1742 brq->data.bytes_xfered = 0;
1743
1744 mmc_retune_release(card->host);
1745
1746 /*
1747 * Try again to get the status. This also provides an opportunity for
1748 * re-tuning.
1749 */
1750 if (err)
1751 err = __mmc_send_status(card, &status, 0);
1752
1753 /*
1754 * Nothing more to do after the number of bytes transferred has been
1755 * updated and there is no card.
1756 */
1757 if (err && mmc_detect_card_removed(card->host))
1758 return;
1759
1760 /* Try to get back to "tran" state */
1761 if (!mmc_host_is_spi(mq->card->host) &&
1762 (err || !mmc_ready_for_data(status)))
1763 err = mmc_blk_fix_state(mq->card, req);
1764
1765 /*
1766 * Special case for SD cards where the card might record the number of
1767 * blocks written.
1768 */
1769 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1770 rq_data_dir(req) == WRITE) {
1771 if (mmc_sd_num_wr_blocks(card, &blocks))
1772 brq->data.bytes_xfered = 0;
1773 else
1774 brq->data.bytes_xfered = blocks << 9;
1775 }
1776
1777 /* Reset if the card is in a bad state */
1778 if (!mmc_host_is_spi(mq->card->host) &&
1779 err && mmc_blk_reset(md, card->host, type)) {
1780 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1781 mqrq->retries = MMC_NO_RETRIES;
1782 return;
1783 }
1784
1785 /*
1786 * If anything was done, just return and if there is anything remaining
1787 * on the request it will get requeued.
1788 */
1789 if (brq->data.bytes_xfered)
1790 return;
1791
1792 /* Reset before last retry */
1793 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1794 mmc_blk_reset(md, card->host, type);
1795
1796 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1797 if (brq->sbc.error || brq->cmd.error)
1798 return;
1799
1800 /* Reduce the remaining retries for data errors */
1801 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1802 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1803 return;
1804 }
1805
1806 /* FIXME: Missing single sector read for large sector size */
1807 if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1808 brq->data.blocks > 1) {
1809 /* Read one sector at a time */
1810 mmc_blk_read_single(mq, req);
1811 return;
1812 }
1813}
1814
1815static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1816{
1817 mmc_blk_eval_resp_error(brq);
1818
1819 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1820 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1821}
1822
1823static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1824{
1825 struct mmc_blk_busy_data *data = cb_data;
1826 u32 status = 0;
1827 int err;
1828
1829 err = mmc_send_status(data->card, &status);
1830 if (err)
1831 return err;
1832
1833 /* Accumulate response error bits. */
1834 data->status |= status;
1835
1836 *busy = !mmc_ready_for_data(status);
1837 return 0;
1838}
1839
1840static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1841{
1842 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1843 struct mmc_blk_busy_data cb_data;
1844 int err;
1845
1846 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1847 return 0;
1848
1849 cb_data.card = card;
1850 cb_data.status = 0;
1851 err = __mmc_poll_for_busy(card, MMC_BLK_TIMEOUT_MS, &mmc_blk_busy_cb,
1852 &cb_data);
1853
1854 /*
1855 * Do not assume data transferred correctly if there are any error bits
1856 * set.
1857 */
1858 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1859 mqrq->brq.data.bytes_xfered = 0;
1860 err = err ? err : -EIO;
1861 }
1862
1863 /* Copy the exception bit so it will be seen later on */
1864 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1865 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1866
1867 return err;
1868}
1869
1870static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1871 struct request *req)
1872{
1873 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1874
1875 mmc_blk_reset_success(mq->blkdata, type);
1876}
1877
1878static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1879{
1880 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1881 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1882
1883 if (nr_bytes) {
1884 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1885 blk_mq_requeue_request(req, true);
1886 else
1887 __blk_mq_end_request(req, BLK_STS_OK);
1888 } else if (!blk_rq_bytes(req)) {
1889 __blk_mq_end_request(req, BLK_STS_IOERR);
1890 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1891 blk_mq_requeue_request(req, true);
1892 } else {
1893 if (mmc_card_removed(mq->card))
1894 req->rq_flags |= RQF_QUIET;
1895 blk_mq_end_request(req, BLK_STS_IOERR);
1896 }
1897}
1898
1899static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1900 struct mmc_queue_req *mqrq)
1901{
1902 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1903 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1904 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1905}
1906
1907static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1908 struct mmc_queue_req *mqrq)
1909{
1910 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1911 mmc_run_bkops(mq->card);
1912}
1913
1914static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1915{
1916 struct mmc_queue_req *mqrq =
1917 container_of(mrq, struct mmc_queue_req, brq.mrq);
1918 struct request *req = mmc_queue_req_to_req(mqrq);
1919 struct request_queue *q = req->q;
1920 struct mmc_queue *mq = q->queuedata;
1921 struct mmc_host *host = mq->card->host;
1922 unsigned long flags;
1923
1924 if (mmc_blk_rq_error(&mqrq->brq) ||
1925 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1926 spin_lock_irqsave(&mq->lock, flags);
1927 mq->recovery_needed = true;
1928 mq->recovery_req = req;
1929 spin_unlock_irqrestore(&mq->lock, flags);
1930
1931 host->cqe_ops->cqe_recovery_start(host);
1932
1933 schedule_work(&mq->recovery_work);
1934 return;
1935 }
1936
1937 mmc_blk_rw_reset_success(mq, req);
1938
1939 /*
1940 * Block layer timeouts race with completions which means the normal
1941 * completion path cannot be used during recovery.
1942 */
1943 if (mq->in_recovery)
1944 mmc_blk_cqe_complete_rq(mq, req);
1945 else if (likely(!blk_should_fake_timeout(req->q)))
1946 blk_mq_complete_request(req);
1947}
1948
1949void mmc_blk_mq_complete(struct request *req)
1950{
1951 struct mmc_queue *mq = req->q->queuedata;
1952 struct mmc_host *host = mq->card->host;
1953
1954 if (host->cqe_enabled)
1955 mmc_blk_cqe_complete_rq(mq, req);
1956 else if (likely(!blk_should_fake_timeout(req->q)))
1957 mmc_blk_mq_complete_rq(mq, req);
1958}
1959
1960static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1961 struct request *req)
1962{
1963 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1964 struct mmc_host *host = mq->card->host;
1965
1966 if (mmc_blk_rq_error(&mqrq->brq) ||
1967 mmc_blk_card_busy(mq->card, req)) {
1968 mmc_blk_mq_rw_recovery(mq, req);
1969 } else {
1970 mmc_blk_rw_reset_success(mq, req);
1971 mmc_retune_release(host);
1972 }
1973
1974 mmc_blk_urgent_bkops(mq, mqrq);
1975}
1976
1977static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1978{
1979 unsigned long flags;
1980 bool put_card;
1981
1982 spin_lock_irqsave(&mq->lock, flags);
1983
1984 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1985
1986 put_card = (mmc_tot_in_flight(mq) == 0);
1987
1988 spin_unlock_irqrestore(&mq->lock, flags);
1989
1990 if (put_card)
1991 mmc_put_card(mq->card, &mq->ctx);
1992}
1993
1994static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1995{
1996 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1997 struct mmc_request *mrq = &mqrq->brq.mrq;
1998 struct mmc_host *host = mq->card->host;
1999
2000 mmc_post_req(host, mrq, 0);
2001
2002 /*
2003 * Block layer timeouts race with completions which means the normal
2004 * completion path cannot be used during recovery.
2005 */
2006 if (mq->in_recovery)
2007 mmc_blk_mq_complete_rq(mq, req);
2008 else if (likely(!blk_should_fake_timeout(req->q)))
2009 blk_mq_complete_request(req);
2010
2011 mmc_blk_mq_dec_in_flight(mq, req);
2012}
2013
2014void mmc_blk_mq_recovery(struct mmc_queue *mq)
2015{
2016 struct request *req = mq->recovery_req;
2017 struct mmc_host *host = mq->card->host;
2018 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2019
2020 mq->recovery_req = NULL;
2021 mq->rw_wait = false;
2022
2023 if (mmc_blk_rq_error(&mqrq->brq)) {
2024 mmc_retune_hold_now(host);
2025 mmc_blk_mq_rw_recovery(mq, req);
2026 }
2027
2028 mmc_blk_urgent_bkops(mq, mqrq);
2029
2030 mmc_blk_mq_post_req(mq, req);
2031}
2032
2033static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2034 struct request **prev_req)
2035{
2036 if (mmc_host_done_complete(mq->card->host))
2037 return;
2038
2039 mutex_lock(&mq->complete_lock);
2040
2041 if (!mq->complete_req)
2042 goto out_unlock;
2043
2044 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2045
2046 if (prev_req)
2047 *prev_req = mq->complete_req;
2048 else
2049 mmc_blk_mq_post_req(mq, mq->complete_req);
2050
2051 mq->complete_req = NULL;
2052
2053out_unlock:
2054 mutex_unlock(&mq->complete_lock);
2055}
2056
2057void mmc_blk_mq_complete_work(struct work_struct *work)
2058{
2059 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2060 complete_work);
2061
2062 mmc_blk_mq_complete_prev_req(mq, NULL);
2063}
2064
2065static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2066{
2067 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2068 brq.mrq);
2069 struct request *req = mmc_queue_req_to_req(mqrq);
2070 struct request_queue *q = req->q;
2071 struct mmc_queue *mq = q->queuedata;
2072 struct mmc_host *host = mq->card->host;
2073 unsigned long flags;
2074
2075 if (!mmc_host_done_complete(host)) {
2076 bool waiting;
2077
2078 /*
2079 * We cannot complete the request in this context, so record
2080 * that there is a request to complete, and that a following
2081 * request does not need to wait (although it does need to
2082 * complete complete_req first).
2083 */
2084 spin_lock_irqsave(&mq->lock, flags);
2085 mq->complete_req = req;
2086 mq->rw_wait = false;
2087 waiting = mq->waiting;
2088 spin_unlock_irqrestore(&mq->lock, flags);
2089
2090 /*
2091 * If 'waiting' then the waiting task will complete this
2092 * request, otherwise queue a work to do it. Note that
2093 * complete_work may still race with the dispatch of a following
2094 * request.
2095 */
2096 if (waiting)
2097 wake_up(&mq->wait);
2098 else
2099 queue_work(mq->card->complete_wq, &mq->complete_work);
2100
2101 return;
2102 }
2103
2104 /* Take the recovery path for errors or urgent background operations */
2105 if (mmc_blk_rq_error(&mqrq->brq) ||
2106 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2107 spin_lock_irqsave(&mq->lock, flags);
2108 mq->recovery_needed = true;
2109 mq->recovery_req = req;
2110 spin_unlock_irqrestore(&mq->lock, flags);
2111 wake_up(&mq->wait);
2112 schedule_work(&mq->recovery_work);
2113 return;
2114 }
2115
2116 mmc_blk_rw_reset_success(mq, req);
2117
2118 mq->rw_wait = false;
2119 wake_up(&mq->wait);
2120
2121 mmc_blk_mq_post_req(mq, req);
2122}
2123
2124static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2125{
2126 unsigned long flags;
2127 bool done;
2128
2129 /*
2130 * Wait while there is another request in progress, but not if recovery
2131 * is needed. Also indicate whether there is a request waiting to start.
2132 */
2133 spin_lock_irqsave(&mq->lock, flags);
2134 if (mq->recovery_needed) {
2135 *err = -EBUSY;
2136 done = true;
2137 } else {
2138 done = !mq->rw_wait;
2139 }
2140 mq->waiting = !done;
2141 spin_unlock_irqrestore(&mq->lock, flags);
2142
2143 return done;
2144}
2145
2146static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2147{
2148 int err = 0;
2149
2150 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2151
2152 /* Always complete the previous request if there is one */
2153 mmc_blk_mq_complete_prev_req(mq, prev_req);
2154
2155 return err;
2156}
2157
2158static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2159 struct request *req)
2160{
2161 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2162 struct mmc_host *host = mq->card->host;
2163 struct request *prev_req = NULL;
2164 int err = 0;
2165
2166 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2167
2168 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2169
2170 mmc_pre_req(host, &mqrq->brq.mrq);
2171
2172 err = mmc_blk_rw_wait(mq, &prev_req);
2173 if (err)
2174 goto out_post_req;
2175
2176 mq->rw_wait = true;
2177
2178 err = mmc_start_request(host, &mqrq->brq.mrq);
2179
2180 if (prev_req)
2181 mmc_blk_mq_post_req(mq, prev_req);
2182
2183 if (err)
2184 mq->rw_wait = false;
2185
2186 /* Release re-tuning here where there is no synchronization required */
2187 if (err || mmc_host_done_complete(host))
2188 mmc_retune_release(host);
2189
2190out_post_req:
2191 if (err)
2192 mmc_post_req(host, &mqrq->brq.mrq, err);
2193
2194 return err;
2195}
2196
2197static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2198{
2199 if (host->cqe_enabled)
2200 return host->cqe_ops->cqe_wait_for_idle(host);
2201
2202 return mmc_blk_rw_wait(mq, NULL);
2203}
2204
2205enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2206{
2207 struct mmc_blk_data *md = mq->blkdata;
2208 struct mmc_card *card = md->queue.card;
2209 struct mmc_host *host = card->host;
2210 int ret;
2211
2212 ret = mmc_blk_part_switch(card, md->part_type);
2213 if (ret)
2214 return MMC_REQ_FAILED_TO_START;
2215
2216 switch (mmc_issue_type(mq, req)) {
2217 case MMC_ISSUE_SYNC:
2218 ret = mmc_blk_wait_for_idle(mq, host);
2219 if (ret)
2220 return MMC_REQ_BUSY;
2221 switch (req_op(req)) {
2222 case REQ_OP_DRV_IN:
2223 case REQ_OP_DRV_OUT:
2224 mmc_blk_issue_drv_op(mq, req);
2225 break;
2226 case REQ_OP_DISCARD:
2227 mmc_blk_issue_discard_rq(mq, req);
2228 break;
2229 case REQ_OP_SECURE_ERASE:
2230 mmc_blk_issue_secdiscard_rq(mq, req);
2231 break;
2232 case REQ_OP_FLUSH:
2233 mmc_blk_issue_flush(mq, req);
2234 break;
2235 default:
2236 WARN_ON_ONCE(1);
2237 return MMC_REQ_FAILED_TO_START;
2238 }
2239 return MMC_REQ_FINISHED;
2240 case MMC_ISSUE_DCMD:
2241 case MMC_ISSUE_ASYNC:
2242 switch (req_op(req)) {
2243 case REQ_OP_FLUSH:
2244 if (!mmc_cache_enabled(host)) {
2245 blk_mq_end_request(req, BLK_STS_OK);
2246 return MMC_REQ_FINISHED;
2247 }
2248 ret = mmc_blk_cqe_issue_flush(mq, req);
2249 break;
2250 case REQ_OP_READ:
2251 case REQ_OP_WRITE:
2252 if (host->cqe_enabled)
2253 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2254 else
2255 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2256 break;
2257 default:
2258 WARN_ON_ONCE(1);
2259 ret = -EINVAL;
2260 }
2261 if (!ret)
2262 return MMC_REQ_STARTED;
2263 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2264 default:
2265 WARN_ON_ONCE(1);
2266 return MMC_REQ_FAILED_TO_START;
2267 }
2268}
2269
2270static inline int mmc_blk_readonly(struct mmc_card *card)
2271{
2272 return mmc_card_readonly(card) ||
2273 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2274}
2275
2276static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2277 struct device *parent,
2278 sector_t size,
2279 bool default_ro,
2280 const char *subname,
2281 int area_type)
2282{
2283 struct mmc_blk_data *md;
2284 int devidx, ret;
2285 char cap_str[10];
2286
2287 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2288 if (devidx < 0) {
2289 /*
2290 * We get -ENOSPC because there are no more any available
2291 * devidx. The reason may be that, either userspace haven't yet
2292 * unmounted the partitions, which postpones mmc_blk_release()
2293 * from being called, or the device has more partitions than
2294 * what we support.
2295 */
2296 if (devidx == -ENOSPC)
2297 dev_err(mmc_dev(card->host),
2298 "no more device IDs available\n");
2299
2300 return ERR_PTR(devidx);
2301 }
2302
2303 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2304 if (!md) {
2305 ret = -ENOMEM;
2306 goto out;
2307 }
2308
2309 md->area_type = area_type;
2310
2311 /*
2312 * Set the read-only status based on the supported commands
2313 * and the write protect switch.
2314 */
2315 md->read_only = mmc_blk_readonly(card);
2316
2317 md->disk = mmc_init_queue(&md->queue, card);
2318 if (IS_ERR(md->disk)) {
2319 ret = PTR_ERR(md->disk);
2320 goto err_kfree;
2321 }
2322
2323 INIT_LIST_HEAD(&md->part);
2324 INIT_LIST_HEAD(&md->rpmbs);
2325 kref_init(&md->kref);
2326
2327 md->queue.blkdata = md;
2328
2329 md->disk->major = MMC_BLOCK_MAJOR;
2330 md->disk->minors = perdev_minors;
2331 md->disk->first_minor = devidx * perdev_minors;
2332 md->disk->fops = &mmc_bdops;
2333 md->disk->private_data = md;
2334 md->parent = parent;
2335 set_disk_ro(md->disk, md->read_only || default_ro);
2336 md->disk->flags = GENHD_FL_EXT_DEVT;
2337 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2338 md->disk->flags |= GENHD_FL_NO_PART_SCAN
2339 | GENHD_FL_SUPPRESS_PARTITION_INFO;
2340
2341 /*
2342 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2343 *
2344 * - be set for removable media with permanent block devices
2345 * - be unset for removable block devices with permanent media
2346 *
2347 * Since MMC block devices clearly fall under the second
2348 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2349 * should use the block device creation/destruction hotplug
2350 * messages to tell when the card is present.
2351 */
2352
2353 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2354 "mmcblk%u%s", card->host->index, subname ? subname : "");
2355
2356 set_capacity(md->disk, size);
2357
2358 if (mmc_host_cmd23(card->host)) {
2359 if ((mmc_card_mmc(card) &&
2360 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2361 (mmc_card_sd(card) &&
2362 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2363 md->flags |= MMC_BLK_CMD23;
2364 }
2365
2366 if (mmc_card_mmc(card) &&
2367 md->flags & MMC_BLK_CMD23 &&
2368 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2369 card->ext_csd.rel_sectors)) {
2370 md->flags |= MMC_BLK_REL_WR;
2371 blk_queue_write_cache(md->queue.queue, true, true);
2372 }
2373
2374 string_get_size((u64)size, 512, STRING_UNITS_2,
2375 cap_str, sizeof(cap_str));
2376 pr_info("%s: %s %s %s %s\n",
2377 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2378 cap_str, md->read_only ? "(ro)" : "");
2379
2380 return md;
2381
2382 err_kfree:
2383 kfree(md);
2384 out:
2385 ida_simple_remove(&mmc_blk_ida, devidx);
2386 return ERR_PTR(ret);
2387}
2388
2389static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2390{
2391 sector_t size;
2392
2393 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2394 /*
2395 * The EXT_CSD sector count is in number or 512 byte
2396 * sectors.
2397 */
2398 size = card->ext_csd.sectors;
2399 } else {
2400 /*
2401 * The CSD capacity field is in units of read_blkbits.
2402 * set_capacity takes units of 512 bytes.
2403 */
2404 size = (typeof(sector_t))card->csd.capacity
2405 << (card->csd.read_blkbits - 9);
2406 }
2407
2408 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2409 MMC_BLK_DATA_AREA_MAIN);
2410}
2411
2412static int mmc_blk_alloc_part(struct mmc_card *card,
2413 struct mmc_blk_data *md,
2414 unsigned int part_type,
2415 sector_t size,
2416 bool default_ro,
2417 const char *subname,
2418 int area_type)
2419{
2420 struct mmc_blk_data *part_md;
2421
2422 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2423 subname, area_type);
2424 if (IS_ERR(part_md))
2425 return PTR_ERR(part_md);
2426 part_md->part_type = part_type;
2427 list_add(&part_md->part, &md->part);
2428
2429 return 0;
2430}
2431
2432/**
2433 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2434 * @filp: the character device file
2435 * @cmd: the ioctl() command
2436 * @arg: the argument from userspace
2437 *
2438 * This will essentially just redirect the ioctl()s coming in over to
2439 * the main block device spawning the RPMB character device.
2440 */
2441static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2442 unsigned long arg)
2443{
2444 struct mmc_rpmb_data *rpmb = filp->private_data;
2445 int ret;
2446
2447 switch (cmd) {
2448 case MMC_IOC_CMD:
2449 ret = mmc_blk_ioctl_cmd(rpmb->md,
2450 (struct mmc_ioc_cmd __user *)arg,
2451 rpmb);
2452 break;
2453 case MMC_IOC_MULTI_CMD:
2454 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2455 (struct mmc_ioc_multi_cmd __user *)arg,
2456 rpmb);
2457 break;
2458 default:
2459 ret = -EINVAL;
2460 break;
2461 }
2462
2463 return ret;
2464}
2465
2466#ifdef CONFIG_COMPAT
2467static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2468 unsigned long arg)
2469{
2470 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2471}
2472#endif
2473
2474static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2475{
2476 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2477 struct mmc_rpmb_data, chrdev);
2478
2479 get_device(&rpmb->dev);
2480 filp->private_data = rpmb;
2481 mmc_blk_get(rpmb->md->disk);
2482
2483 return nonseekable_open(inode, filp);
2484}
2485
2486static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2487{
2488 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2489 struct mmc_rpmb_data, chrdev);
2490
2491 mmc_blk_put(rpmb->md);
2492 put_device(&rpmb->dev);
2493
2494 return 0;
2495}
2496
2497static const struct file_operations mmc_rpmb_fileops = {
2498 .release = mmc_rpmb_chrdev_release,
2499 .open = mmc_rpmb_chrdev_open,
2500 .owner = THIS_MODULE,
2501 .llseek = no_llseek,
2502 .unlocked_ioctl = mmc_rpmb_ioctl,
2503#ifdef CONFIG_COMPAT
2504 .compat_ioctl = mmc_rpmb_ioctl_compat,
2505#endif
2506};
2507
2508static void mmc_blk_rpmb_device_release(struct device *dev)
2509{
2510 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2511
2512 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2513 kfree(rpmb);
2514}
2515
2516static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2517 struct mmc_blk_data *md,
2518 unsigned int part_index,
2519 sector_t size,
2520 const char *subname)
2521{
2522 int devidx, ret;
2523 char rpmb_name[DISK_NAME_LEN];
2524 char cap_str[10];
2525 struct mmc_rpmb_data *rpmb;
2526
2527 /* This creates the minor number for the RPMB char device */
2528 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2529 if (devidx < 0)
2530 return devidx;
2531
2532 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2533 if (!rpmb) {
2534 ida_simple_remove(&mmc_rpmb_ida, devidx);
2535 return -ENOMEM;
2536 }
2537
2538 snprintf(rpmb_name, sizeof(rpmb_name),
2539 "mmcblk%u%s", card->host->index, subname ? subname : "");
2540
2541 rpmb->id = devidx;
2542 rpmb->part_index = part_index;
2543 rpmb->dev.init_name = rpmb_name;
2544 rpmb->dev.bus = &mmc_rpmb_bus_type;
2545 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2546 rpmb->dev.parent = &card->dev;
2547 rpmb->dev.release = mmc_blk_rpmb_device_release;
2548 device_initialize(&rpmb->dev);
2549 dev_set_drvdata(&rpmb->dev, rpmb);
2550 rpmb->md = md;
2551
2552 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2553 rpmb->chrdev.owner = THIS_MODULE;
2554 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2555 if (ret) {
2556 pr_err("%s: could not add character device\n", rpmb_name);
2557 goto out_put_device;
2558 }
2559
2560 list_add(&rpmb->node, &md->rpmbs);
2561
2562 string_get_size((u64)size, 512, STRING_UNITS_2,
2563 cap_str, sizeof(cap_str));
2564
2565 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2566 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2567 MAJOR(mmc_rpmb_devt), rpmb->id);
2568
2569 return 0;
2570
2571out_put_device:
2572 put_device(&rpmb->dev);
2573 return ret;
2574}
2575
2576static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2577
2578{
2579 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2580 put_device(&rpmb->dev);
2581}
2582
2583/* MMC Physical partitions consist of two boot partitions and
2584 * up to four general purpose partitions.
2585 * For each partition enabled in EXT_CSD a block device will be allocatedi
2586 * to provide access to the partition.
2587 */
2588
2589static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2590{
2591 int idx, ret;
2592
2593 if (!mmc_card_mmc(card))
2594 return 0;
2595
2596 for (idx = 0; idx < card->nr_parts; idx++) {
2597 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2598 /*
2599 * RPMB partitions does not provide block access, they
2600 * are only accessed using ioctl():s. Thus create
2601 * special RPMB block devices that do not have a
2602 * backing block queue for these.
2603 */
2604 ret = mmc_blk_alloc_rpmb_part(card, md,
2605 card->part[idx].part_cfg,
2606 card->part[idx].size >> 9,
2607 card->part[idx].name);
2608 if (ret)
2609 return ret;
2610 } else if (card->part[idx].size) {
2611 ret = mmc_blk_alloc_part(card, md,
2612 card->part[idx].part_cfg,
2613 card->part[idx].size >> 9,
2614 card->part[idx].force_ro,
2615 card->part[idx].name,
2616 card->part[idx].area_type);
2617 if (ret)
2618 return ret;
2619 }
2620 }
2621
2622 return 0;
2623}
2624
2625static void mmc_blk_remove_req(struct mmc_blk_data *md)
2626{
2627 struct mmc_card *card;
2628
2629 if (md) {
2630 /*
2631 * Flush remaining requests and free queues. It
2632 * is freeing the queue that stops new requests
2633 * from being accepted.
2634 */
2635 card = md->queue.card;
2636 if (md->disk->flags & GENHD_FL_UP) {
2637 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2638 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2639 card->ext_csd.boot_ro_lockable)
2640 device_remove_file(disk_to_dev(md->disk),
2641 &md->power_ro_lock);
2642
2643 del_gendisk(md->disk);
2644 }
2645 mmc_cleanup_queue(&md->queue);
2646 mmc_blk_put(md);
2647 }
2648}
2649
2650static void mmc_blk_remove_parts(struct mmc_card *card,
2651 struct mmc_blk_data *md)
2652{
2653 struct list_head *pos, *q;
2654 struct mmc_blk_data *part_md;
2655 struct mmc_rpmb_data *rpmb;
2656
2657 /* Remove RPMB partitions */
2658 list_for_each_safe(pos, q, &md->rpmbs) {
2659 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2660 list_del(pos);
2661 mmc_blk_remove_rpmb_part(rpmb);
2662 }
2663 /* Remove block partitions */
2664 list_for_each_safe(pos, q, &md->part) {
2665 part_md = list_entry(pos, struct mmc_blk_data, part);
2666 list_del(pos);
2667 mmc_blk_remove_req(part_md);
2668 }
2669}
2670
2671static int mmc_add_disk(struct mmc_blk_data *md)
2672{
2673 int ret;
2674 struct mmc_card *card = md->queue.card;
2675
2676 device_add_disk(md->parent, md->disk, NULL);
2677 md->force_ro.show = force_ro_show;
2678 md->force_ro.store = force_ro_store;
2679 sysfs_attr_init(&md->force_ro.attr);
2680 md->force_ro.attr.name = "force_ro";
2681 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2682 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2683 if (ret)
2684 goto force_ro_fail;
2685
2686 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2687 card->ext_csd.boot_ro_lockable) {
2688 umode_t mode;
2689
2690 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2691 mode = S_IRUGO;
2692 else
2693 mode = S_IRUGO | S_IWUSR;
2694
2695 md->power_ro_lock.show = power_ro_lock_show;
2696 md->power_ro_lock.store = power_ro_lock_store;
2697 sysfs_attr_init(&md->power_ro_lock.attr);
2698 md->power_ro_lock.attr.mode = mode;
2699 md->power_ro_lock.attr.name =
2700 "ro_lock_until_next_power_on";
2701 ret = device_create_file(disk_to_dev(md->disk),
2702 &md->power_ro_lock);
2703 if (ret)
2704 goto power_ro_lock_fail;
2705 }
2706 return ret;
2707
2708power_ro_lock_fail:
2709 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2710force_ro_fail:
2711 del_gendisk(md->disk);
2712
2713 return ret;
2714}
2715
2716#ifdef CONFIG_DEBUG_FS
2717
2718static int mmc_dbg_card_status_get(void *data, u64 *val)
2719{
2720 struct mmc_card *card = data;
2721 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2722 struct mmc_queue *mq = &md->queue;
2723 struct request *req;
2724 int ret;
2725
2726 /* Ask the block layer about the card status */
2727 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2728 if (IS_ERR(req))
2729 return PTR_ERR(req);
2730 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2731 blk_execute_rq(NULL, req, 0);
2732 ret = req_to_mmc_queue_req(req)->drv_op_result;
2733 if (ret >= 0) {
2734 *val = ret;
2735 ret = 0;
2736 }
2737 blk_put_request(req);
2738
2739 return ret;
2740}
2741DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2742 NULL, "%08llx\n");
2743
2744/* That is two digits * 512 + 1 for newline */
2745#define EXT_CSD_STR_LEN 1025
2746
2747static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2748{
2749 struct mmc_card *card = inode->i_private;
2750 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2751 struct mmc_queue *mq = &md->queue;
2752 struct request *req;
2753 char *buf;
2754 ssize_t n = 0;
2755 u8 *ext_csd;
2756 int err, i;
2757
2758 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2759 if (!buf)
2760 return -ENOMEM;
2761
2762 /* Ask the block layer for the EXT CSD */
2763 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2764 if (IS_ERR(req)) {
2765 err = PTR_ERR(req);
2766 goto out_free;
2767 }
2768 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2769 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2770 blk_execute_rq(NULL, req, 0);
2771 err = req_to_mmc_queue_req(req)->drv_op_result;
2772 blk_put_request(req);
2773 if (err) {
2774 pr_err("FAILED %d\n", err);
2775 goto out_free;
2776 }
2777
2778 for (i = 0; i < 512; i++)
2779 n += sprintf(buf + n, "%02x", ext_csd[i]);
2780 n += sprintf(buf + n, "\n");
2781
2782 if (n != EXT_CSD_STR_LEN) {
2783 err = -EINVAL;
2784 kfree(ext_csd);
2785 goto out_free;
2786 }
2787
2788 filp->private_data = buf;
2789 kfree(ext_csd);
2790 return 0;
2791
2792out_free:
2793 kfree(buf);
2794 return err;
2795}
2796
2797static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2798 size_t cnt, loff_t *ppos)
2799{
2800 char *buf = filp->private_data;
2801
2802 return simple_read_from_buffer(ubuf, cnt, ppos,
2803 buf, EXT_CSD_STR_LEN);
2804}
2805
2806static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2807{
2808 kfree(file->private_data);
2809 return 0;
2810}
2811
2812static const struct file_operations mmc_dbg_ext_csd_fops = {
2813 .open = mmc_ext_csd_open,
2814 .read = mmc_ext_csd_read,
2815 .release = mmc_ext_csd_release,
2816 .llseek = default_llseek,
2817};
2818
2819static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2820{
2821 struct dentry *root;
2822
2823 if (!card->debugfs_root)
2824 return 0;
2825
2826 root = card->debugfs_root;
2827
2828 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2829 md->status_dentry =
2830 debugfs_create_file_unsafe("status", 0400, root,
2831 card,
2832 &mmc_dbg_card_status_fops);
2833 if (!md->status_dentry)
2834 return -EIO;
2835 }
2836
2837 if (mmc_card_mmc(card)) {
2838 md->ext_csd_dentry =
2839 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2840 &mmc_dbg_ext_csd_fops);
2841 if (!md->ext_csd_dentry)
2842 return -EIO;
2843 }
2844
2845 return 0;
2846}
2847
2848static void mmc_blk_remove_debugfs(struct mmc_card *card,
2849 struct mmc_blk_data *md)
2850{
2851 if (!card->debugfs_root)
2852 return;
2853
2854 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2855 debugfs_remove(md->status_dentry);
2856 md->status_dentry = NULL;
2857 }
2858
2859 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2860 debugfs_remove(md->ext_csd_dentry);
2861 md->ext_csd_dentry = NULL;
2862 }
2863}
2864
2865#else
2866
2867static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2868{
2869 return 0;
2870}
2871
2872static void mmc_blk_remove_debugfs(struct mmc_card *card,
2873 struct mmc_blk_data *md)
2874{
2875}
2876
2877#endif /* CONFIG_DEBUG_FS */
2878
2879static int mmc_blk_probe(struct mmc_card *card)
2880{
2881 struct mmc_blk_data *md, *part_md;
2882 int ret = 0;
2883
2884 /*
2885 * Check that the card supports the command class(es) we need.
2886 */
2887 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2888 return -ENODEV;
2889
2890 mmc_fixup_device(card, mmc_blk_fixups);
2891
2892 card->complete_wq = alloc_workqueue("mmc_complete",
2893 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2894 if (!card->complete_wq) {
2895 pr_err("Failed to create mmc completion workqueue");
2896 return -ENOMEM;
2897 }
2898
2899 md = mmc_blk_alloc(card);
2900 if (IS_ERR(md)) {
2901 ret = PTR_ERR(md);
2902 goto out_free;
2903 }
2904
2905 ret = mmc_blk_alloc_parts(card, md);
2906 if (ret)
2907 goto out;
2908
2909 dev_set_drvdata(&card->dev, md);
2910
2911 ret = mmc_add_disk(md);
2912 if (ret)
2913 goto out;
2914
2915 list_for_each_entry(part_md, &md->part, part) {
2916 ret = mmc_add_disk(part_md);
2917 if (ret)
2918 goto out;
2919 }
2920
2921 /* Add two debugfs entries */
2922 mmc_blk_add_debugfs(card, md);
2923
2924 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2925 pm_runtime_use_autosuspend(&card->dev);
2926
2927 /*
2928 * Don't enable runtime PM for SD-combo cards here. Leave that
2929 * decision to be taken during the SDIO init sequence instead.
2930 */
2931 if (card->type != MMC_TYPE_SD_COMBO) {
2932 pm_runtime_set_active(&card->dev);
2933 pm_runtime_enable(&card->dev);
2934 }
2935
2936 return 0;
2937
2938out:
2939 mmc_blk_remove_parts(card, md);
2940 mmc_blk_remove_req(md);
2941out_free:
2942 destroy_workqueue(card->complete_wq);
2943 return ret;
2944}
2945
2946static void mmc_blk_remove(struct mmc_card *card)
2947{
2948 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2949
2950 mmc_blk_remove_debugfs(card, md);
2951 mmc_blk_remove_parts(card, md);
2952 pm_runtime_get_sync(&card->dev);
2953 if (md->part_curr != md->part_type) {
2954 mmc_claim_host(card->host);
2955 mmc_blk_part_switch(card, md->part_type);
2956 mmc_release_host(card->host);
2957 }
2958 if (card->type != MMC_TYPE_SD_COMBO)
2959 pm_runtime_disable(&card->dev);
2960 pm_runtime_put_noidle(&card->dev);
2961 mmc_blk_remove_req(md);
2962 dev_set_drvdata(&card->dev, NULL);
2963 destroy_workqueue(card->complete_wq);
2964}
2965
2966static int _mmc_blk_suspend(struct mmc_card *card)
2967{
2968 struct mmc_blk_data *part_md;
2969 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2970
2971 if (md) {
2972 mmc_queue_suspend(&md->queue);
2973 list_for_each_entry(part_md, &md->part, part) {
2974 mmc_queue_suspend(&part_md->queue);
2975 }
2976 }
2977 return 0;
2978}
2979
2980static void mmc_blk_shutdown(struct mmc_card *card)
2981{
2982 _mmc_blk_suspend(card);
2983}
2984
2985#ifdef CONFIG_PM_SLEEP
2986static int mmc_blk_suspend(struct device *dev)
2987{
2988 struct mmc_card *card = mmc_dev_to_card(dev);
2989
2990 return _mmc_blk_suspend(card);
2991}
2992
2993static int mmc_blk_resume(struct device *dev)
2994{
2995 struct mmc_blk_data *part_md;
2996 struct mmc_blk_data *md = dev_get_drvdata(dev);
2997
2998 if (md) {
2999 /*
3000 * Resume involves the card going into idle state,
3001 * so current partition is always the main one.
3002 */
3003 md->part_curr = md->part_type;
3004 mmc_queue_resume(&md->queue);
3005 list_for_each_entry(part_md, &md->part, part) {
3006 mmc_queue_resume(&part_md->queue);
3007 }
3008 }
3009 return 0;
3010}
3011#endif
3012
3013static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3014
3015static struct mmc_driver mmc_driver = {
3016 .drv = {
3017 .name = "mmcblk",
3018 .pm = &mmc_blk_pm_ops,
3019 },
3020 .probe = mmc_blk_probe,
3021 .remove = mmc_blk_remove,
3022 .shutdown = mmc_blk_shutdown,
3023};
3024
3025static int __init mmc_blk_init(void)
3026{
3027 int res;
3028
3029 res = bus_register(&mmc_rpmb_bus_type);
3030 if (res < 0) {
3031 pr_err("mmcblk: could not register RPMB bus type\n");
3032 return res;
3033 }
3034 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3035 if (res < 0) {
3036 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3037 goto out_bus_unreg;
3038 }
3039
3040 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3041 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3042
3043 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3044
3045 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3046 if (res)
3047 goto out_chrdev_unreg;
3048
3049 res = mmc_register_driver(&mmc_driver);
3050 if (res)
3051 goto out_blkdev_unreg;
3052
3053 return 0;
3054
3055out_blkdev_unreg:
3056 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3057out_chrdev_unreg:
3058 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3059out_bus_unreg:
3060 bus_unregister(&mmc_rpmb_bus_type);
3061 return res;
3062}
3063
3064static void __exit mmc_blk_exit(void)
3065{
3066 mmc_unregister_driver(&mmc_driver);
3067 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3068 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3069 bus_unregister(&mmc_rpmb_bus_type);
3070}
3071
3072module_init(mmc_blk_init);
3073module_exit(mmc_blk_exit);
3074
3075MODULE_LICENSE("GPL");
3076MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3077