Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block driver for media (i.e., flash cards)
   4 *
   5 * Copyright 2002 Hewlett-Packard Company
   6 * Copyright 2005-2008 Pierre Ossman
   7 *
   8 * Use consistent with the GNU GPL is permitted,
   9 * provided that this copyright notice is
  10 * preserved in its entirety in all copies and derived works.
  11 *
  12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  14 * FITNESS FOR ANY PARTICULAR PURPOSE.
  15 *
  16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  17 *
  18 * Author:  Andrew Christian
  19 *          28 May 2002
  20 */
  21#include <linux/moduleparam.h>
  22#include <linux/module.h>
  23#include <linux/init.h>
  24
  25#include <linux/kernel.h>
  26#include <linux/fs.h>
  27#include <linux/slab.h>
  28#include <linux/errno.h>
  29#include <linux/hdreg.h>
  30#include <linux/kdev_t.h>
  31#include <linux/kref.h>
  32#include <linux/blkdev.h>
  33#include <linux/cdev.h>
  34#include <linux/mutex.h>
  35#include <linux/scatterlist.h>
  36#include <linux/string.h>
  37#include <linux/string_helpers.h>
  38#include <linux/delay.h>
  39#include <linux/capability.h>
  40#include <linux/compat.h>
  41#include <linux/pm_runtime.h>
  42#include <linux/idr.h>
  43#include <linux/debugfs.h>
  44#include <linux/rpmb.h>
  45
  46#include <linux/mmc/ioctl.h>
  47#include <linux/mmc/card.h>
  48#include <linux/mmc/host.h>
  49#include <linux/mmc/mmc.h>
  50#include <linux/mmc/sd.h>
  51
  52#include <linux/uaccess.h>
  53#include <linux/unaligned.h>
  54
  55#include "queue.h"
  56#include "block.h"
  57#include "core.h"
  58#include "card.h"
  59#include "crypto.h"
  60#include "host.h"
  61#include "bus.h"
  62#include "mmc_ops.h"
  63#include "quirks.h"
  64#include "sd_ops.h"
  65
  66MODULE_ALIAS("mmc:block");
  67#ifdef MODULE_PARAM_PREFIX
  68#undef MODULE_PARAM_PREFIX
  69#endif
  70#define MODULE_PARAM_PREFIX "mmcblk."
  71
  72/*
  73 * Set a 10 second timeout for polling write request busy state. Note, mmc core
  74 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
  75 * second software timer to timeout the whole request, so 10 seconds should be
  76 * ample.
  77 */
  78#define MMC_BLK_TIMEOUT_MS  (10 * 1000)
  79#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  80#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
  81
  82/**
  83 * struct rpmb_frame - rpmb frame as defined by eMMC 5.1 (JESD84-B51)
  84 *
  85 * @stuff        : stuff bytes
  86 * @key_mac      : The authentication key or the message authentication
  87 *                 code (MAC) depending on the request/response type.
  88 *                 The MAC will be delivered in the last (or the only)
  89 *                 block of data.
  90 * @data         : Data to be written or read by signed access.
  91 * @nonce        : Random number generated by the host for the requests
  92 *                 and copied to the response by the RPMB engine.
  93 * @write_counter: Counter value for the total amount of the successful
  94 *                 authenticated data write requests made by the host.
  95 * @addr         : Address of the data to be programmed to or read
  96 *                 from the RPMB. Address is the serial number of
  97 *                 the accessed block (half sector 256B).
  98 * @block_count  : Number of blocks (half sectors, 256B) requested to be
  99 *                 read/programmed.
 100 * @result       : Includes information about the status of the write counter
 101 *                 (valid, expired) and result of the access made to the RPMB.
 102 * @req_resp     : Defines the type of request and response to/from the memory.
 103 *
 104 * The stuff bytes and big-endian properties are modeled to fit to the spec.
 105 */
 106struct rpmb_frame {
 107	u8     stuff[196];
 108	u8     key_mac[32];
 109	u8     data[256];
 110	u8     nonce[16];
 111	__be32 write_counter;
 112	__be16 addr;
 113	__be16 block_count;
 114	__be16 result;
 115	__be16 req_resp;
 116} __packed;
 117
 118#define RPMB_PROGRAM_KEY       0x1    /* Program RPMB Authentication Key */
 119#define RPMB_GET_WRITE_COUNTER 0x2    /* Read RPMB write counter */
 120#define RPMB_WRITE_DATA        0x3    /* Write data to RPMB partition */
 121#define RPMB_READ_DATA         0x4    /* Read data from RPMB partition */
 122#define RPMB_RESULT_READ       0x5    /* Read result request  (Internal) */
 123
 124static DEFINE_MUTEX(block_mutex);
 125
 126/*
 127 * The defaults come from config options but can be overriden by module
 128 * or bootarg options.
 129 */
 130static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
 131
 132/*
 133 * We've only got one major, so number of mmcblk devices is
 134 * limited to (1 << 20) / number of minors per device.  It is also
 135 * limited by the MAX_DEVICES below.
 136 */
 137static int max_devices;
 138
 139#define MAX_DEVICES 256
 140
 141static DEFINE_IDA(mmc_blk_ida);
 142static DEFINE_IDA(mmc_rpmb_ida);
 143
 144struct mmc_blk_busy_data {
 145	struct mmc_card *card;
 146	u32 status;
 147};
 148
 149/*
 150 * There is one mmc_blk_data per slot.
 151 */
 152struct mmc_blk_data {
 153	struct device	*parent;
 154	struct gendisk	*disk;
 155	struct mmc_queue queue;
 156	struct list_head part;
 157	struct list_head rpmbs;
 158
 159	unsigned int	flags;
 160#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
 161#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
 162
 163	struct kref	kref;
 164	unsigned int	read_only;
 165	unsigned int	part_type;
 166	unsigned int	reset_done;
 167#define MMC_BLK_READ		BIT(0)
 168#define MMC_BLK_WRITE		BIT(1)
 169#define MMC_BLK_DISCARD		BIT(2)
 170#define MMC_BLK_SECDISCARD	BIT(3)
 171#define MMC_BLK_CQE_RECOVERY	BIT(4)
 172#define MMC_BLK_TRIM		BIT(5)
 173
 174	/*
 175	 * Only set in main mmc_blk_data associated
 176	 * with mmc_card with dev_set_drvdata, and keeps
 177	 * track of the current selected device partition.
 178	 */
 179	unsigned int	part_curr;
 180#define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
 
 181	int	area_type;
 182
 183	/* debugfs files (only in main mmc_blk_data) */
 184	struct dentry *status_dentry;
 185	struct dentry *ext_csd_dentry;
 186};
 187
 188/* Device type for RPMB character devices */
 189static dev_t mmc_rpmb_devt;
 190
 191/* Bus type for RPMB character devices */
 192static const struct bus_type mmc_rpmb_bus_type = {
 193	.name = "mmc_rpmb",
 194};
 195
 196/**
 197 * struct mmc_rpmb_data - special RPMB device type for these areas
 198 * @dev: the device for the RPMB area
 199 * @chrdev: character device for the RPMB area
 200 * @id: unique device ID number
 201 * @part_index: partition index (0 on first)
 202 * @md: parent MMC block device
 203 * @rdev: registered RPMB device
 204 * @node: list item, so we can put this device on a list
 205 */
 206struct mmc_rpmb_data {
 207	struct device dev;
 208	struct cdev chrdev;
 209	int id;
 210	unsigned int part_index;
 211	struct mmc_blk_data *md;
 212	struct rpmb_dev *rdev;
 213	struct list_head node;
 214};
 215
 216static DEFINE_MUTEX(open_lock);
 217
 218module_param(perdev_minors, int, 0444);
 219MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 220
 221static inline int mmc_blk_part_switch(struct mmc_card *card,
 222				      unsigned int part_type);
 223static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
 224			       struct mmc_card *card,
 225			       int recovery_mode,
 226			       struct mmc_queue *mq);
 227static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
 228static int mmc_spi_err_check(struct mmc_card *card);
 229static int mmc_blk_busy_cb(void *cb_data, bool *busy);
 230
 231static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 232{
 233	struct mmc_blk_data *md;
 234
 235	mutex_lock(&open_lock);
 236	md = disk->private_data;
 237	if (md && !kref_get_unless_zero(&md->kref))
 238		md = NULL;
 239	mutex_unlock(&open_lock);
 240
 241	return md;
 242}
 243
 244static inline int mmc_get_devidx(struct gendisk *disk)
 245{
 246	int devidx = disk->first_minor / perdev_minors;
 247	return devidx;
 248}
 249
 250static void mmc_blk_kref_release(struct kref *ref)
 251{
 252	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
 253	int devidx;
 254
 255	devidx = mmc_get_devidx(md->disk);
 256	ida_free(&mmc_blk_ida, devidx);
 257
 258	mutex_lock(&open_lock);
 259	md->disk->private_data = NULL;
 260	mutex_unlock(&open_lock);
 261
 262	put_disk(md->disk);
 263	kfree(md);
 264}
 265
 266static void mmc_blk_put(struct mmc_blk_data *md)
 267{
 268	kref_put(&md->kref, mmc_blk_kref_release);
 269}
 270
 271static ssize_t power_ro_lock_show(struct device *dev,
 272		struct device_attribute *attr, char *buf)
 273{
 274	int ret;
 275	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 276	struct mmc_card *card = md->queue.card;
 277	int locked = 0;
 278
 279	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 280		locked = 2;
 281	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 282		locked = 1;
 283
 284	ret = sysfs_emit(buf, "%d\n", locked);
 285
 286	mmc_blk_put(md);
 287
 288	return ret;
 289}
 290
 291static ssize_t power_ro_lock_store(struct device *dev,
 292		struct device_attribute *attr, const char *buf, size_t count)
 293{
 294	int ret;
 295	struct mmc_blk_data *md, *part_md;
 296	struct mmc_queue *mq;
 297	struct request *req;
 298	unsigned long set;
 299
 300	if (kstrtoul(buf, 0, &set))
 301		return -EINVAL;
 302
 303	if (set != 1)
 304		return count;
 305
 306	md = mmc_blk_get(dev_to_disk(dev));
 307	mq = &md->queue;
 308
 309	/* Dispatch locking to the block layer */
 310	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
 311	if (IS_ERR(req)) {
 312		count = PTR_ERR(req);
 313		goto out_put;
 314	}
 315	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
 316	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
 317	blk_execute_rq(req, false);
 318	ret = req_to_mmc_queue_req(req)->drv_op_result;
 319	blk_mq_free_request(req);
 320
 321	if (!ret) {
 322		pr_info("%s: Locking boot partition ro until next power on\n",
 323			md->disk->disk_name);
 324		set_disk_ro(md->disk, 1);
 325
 326		list_for_each_entry(part_md, &md->part, part)
 327			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 328				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 329				set_disk_ro(part_md->disk, 1);
 330			}
 331	}
 332out_put:
 333	mmc_blk_put(md);
 334	return count;
 335}
 336
 337static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
 338		power_ro_lock_show, power_ro_lock_store);
 339
 340static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 341			     char *buf)
 342{
 343	int ret;
 344	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 345
 346	ret = sysfs_emit(buf, "%d\n",
 347			 get_disk_ro(dev_to_disk(dev)) ^
 348			 md->read_only);
 349	mmc_blk_put(md);
 350	return ret;
 351}
 352
 353static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 354			      const char *buf, size_t count)
 355{
 356	int ret;
 
 357	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 358	unsigned long set;
 359
 360	if (kstrtoul(buf, 0, &set)) {
 361		ret = -EINVAL;
 362		goto out;
 363	}
 364
 365	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 366	ret = count;
 367out:
 368	mmc_blk_put(md);
 369	return ret;
 370}
 371
 372static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
 373
 374static struct attribute *mmc_disk_attrs[] = {
 375	&dev_attr_force_ro.attr,
 376	&dev_attr_ro_lock_until_next_power_on.attr,
 377	NULL,
 378};
 379
 380static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
 381		struct attribute *a, int n)
 382{
 383	struct device *dev = kobj_to_dev(kobj);
 384	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 385	umode_t mode = a->mode;
 386
 387	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
 388	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
 389	    md->queue.card->ext_csd.boot_ro_lockable) {
 390		mode = S_IRUGO;
 391		if (!(md->queue.card->ext_csd.boot_ro_lock &
 392				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
 393			mode |= S_IWUSR;
 394	}
 395
 396	mmc_blk_put(md);
 397	return mode;
 398}
 399
 400static const struct attribute_group mmc_disk_attr_group = {
 401	.is_visible	= mmc_disk_attrs_is_visible,
 402	.attrs		= mmc_disk_attrs,
 403};
 404
 405static const struct attribute_group *mmc_disk_attr_groups[] = {
 406	&mmc_disk_attr_group,
 407	NULL,
 408};
 409
 410static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
 411{
 412	struct mmc_blk_data *md = mmc_blk_get(disk);
 413	int ret = -ENXIO;
 414
 415	mutex_lock(&block_mutex);
 416	if (md) {
 417		ret = 0;
 418		if ((mode & BLK_OPEN_WRITE) && md->read_only) {
 419			mmc_blk_put(md);
 420			ret = -EROFS;
 421		}
 422	}
 423	mutex_unlock(&block_mutex);
 424
 425	return ret;
 426}
 427
 428static void mmc_blk_release(struct gendisk *disk)
 429{
 430	struct mmc_blk_data *md = disk->private_data;
 431
 432	mutex_lock(&block_mutex);
 433	mmc_blk_put(md);
 434	mutex_unlock(&block_mutex);
 435}
 436
 437static int
 438mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 439{
 440	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 441	geo->heads = 4;
 442	geo->sectors = 16;
 443	return 0;
 444}
 445
 446struct mmc_blk_ioc_data {
 447	struct mmc_ioc_cmd ic;
 448	unsigned char *buf;
 449	u64 buf_bytes;
 450	unsigned int flags;
 451#define MMC_BLK_IOC_DROP	BIT(0)	/* drop this mrq */
 452#define MMC_BLK_IOC_SBC	BIT(1)	/* use mrq.sbc */
 453
 454	struct mmc_rpmb_data *rpmb;
 455};
 456
 457static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 458	struct mmc_ioc_cmd __user *user)
 459{
 460	struct mmc_blk_ioc_data *idata;
 461	int err;
 462
 463	idata = kzalloc(sizeof(*idata), GFP_KERNEL);
 464	if (!idata) {
 465		err = -ENOMEM;
 466		goto out;
 467	}
 468
 469	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 470		err = -EFAULT;
 471		goto idata_err;
 472	}
 473
 474	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 475	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 476		err = -EOVERFLOW;
 477		goto idata_err;
 478	}
 479
 480	if (!idata->buf_bytes) {
 481		idata->buf = NULL;
 482		return idata;
 483	}
 484
 485	idata->buf = memdup_user((void __user *)(unsigned long)
 486				 idata->ic.data_ptr, idata->buf_bytes);
 487	if (IS_ERR(idata->buf)) {
 488		err = PTR_ERR(idata->buf);
 489		goto idata_err;
 490	}
 491
 492	return idata;
 493
 494idata_err:
 495	kfree(idata);
 496out:
 497	return ERR_PTR(err);
 498}
 499
 500static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
 501				      struct mmc_blk_ioc_data *idata)
 502{
 503	struct mmc_ioc_cmd *ic = &idata->ic;
 504
 505	if (copy_to_user(&(ic_ptr->response), ic->response,
 506			 sizeof(ic->response)))
 507		return -EFAULT;
 508
 509	if (!idata->ic.write_flag) {
 510		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
 511				 idata->buf, idata->buf_bytes))
 512			return -EFAULT;
 513	}
 514
 515	return 0;
 516}
 517
 518static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
 519			       struct mmc_blk_ioc_data **idatas, int i)
 520{
 521	struct mmc_command cmd = {}, sbc = {};
 522	struct mmc_data data = {};
 523	struct mmc_request mrq = {};
 524	struct scatterlist sg;
 525	bool r1b_resp;
 526	unsigned int busy_timeout_ms;
 527	int err;
 528	unsigned int target_part;
 529	struct mmc_blk_ioc_data *idata = idatas[i];
 530	struct mmc_blk_ioc_data *prev_idata = NULL;
 531
 532	if (!card || !md || !idata)
 533		return -EINVAL;
 534
 535	if (idata->flags & MMC_BLK_IOC_DROP)
 536		return 0;
 537
 538	if (idata->flags & MMC_BLK_IOC_SBC && i > 0)
 539		prev_idata = idatas[i - 1];
 540
 541	/*
 542	 * The RPMB accesses comes in from the character device, so we
 543	 * need to target these explicitly. Else we just target the
 544	 * partition type for the block device the ioctl() was issued
 545	 * on.
 546	 */
 547	if (idata->rpmb) {
 548		/* Support multiple RPMB partitions */
 549		target_part = idata->rpmb->part_index;
 550		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
 551	} else {
 552		target_part = md->part_type;
 553	}
 554
 555	cmd.opcode = idata->ic.opcode;
 556	cmd.arg = idata->ic.arg;
 557	cmd.flags = idata->ic.flags;
 558
 559	if (idata->buf_bytes) {
 560		data.sg = &sg;
 561		data.sg_len = 1;
 562		data.blksz = idata->ic.blksz;
 563		data.blocks = idata->ic.blocks;
 564
 565		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 566
 567		if (idata->ic.write_flag)
 568			data.flags = MMC_DATA_WRITE;
 569		else
 570			data.flags = MMC_DATA_READ;
 571
 572		/* data.flags must already be set before doing this. */
 573		mmc_set_data_timeout(&data, card);
 574
 575		/* Allow overriding the timeout_ns for empirical tuning. */
 576		if (idata->ic.data_timeout_ns)
 577			data.timeout_ns = idata->ic.data_timeout_ns;
 578
 
 
 
 
 
 
 
 
 
 
 
 
 
 579		mrq.data = &data;
 580	}
 581
 582	mrq.cmd = &cmd;
 583
 584	err = mmc_blk_part_switch(card, target_part);
 585	if (err)
 586		return err;
 587
 588	if (idata->ic.is_acmd) {
 589		err = mmc_app_cmd(card->host, card);
 590		if (err)
 591			return err;
 592	}
 593
 594	if (idata->rpmb || prev_idata) {
 595		sbc.opcode = MMC_SET_BLOCK_COUNT;
 596		/*
 597		 * We don't do any blockcount validation because the max size
 598		 * may be increased by a future standard. We just copy the
 599		 * 'Reliable Write' bit here.
 600		 */
 601		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
 602		if (prev_idata)
 603			sbc.arg = prev_idata->ic.arg;
 604		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
 605		mrq.sbc = &sbc;
 606	}
 607
 608	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
 609	    (cmd.opcode == MMC_SWITCH))
 610		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
 611
 612	/* If it's an R1B response we need some more preparations. */
 613	busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
 614	r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
 615	if (r1b_resp)
 616		mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
 617
 618	mmc_wait_for_req(card->host, &mrq);
 619	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
 620
 621	if (prev_idata) {
 622		memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
 623		if (sbc.error) {
 624			dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
 625							__func__, sbc.error);
 626			return sbc.error;
 627		}
 628	}
 629
 630	if (cmd.error) {
 631		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 632						__func__, cmd.error);
 633		return cmd.error;
 634	}
 635	if (data.error) {
 636		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 637						__func__, data.error);
 638		return data.error;
 639	}
 640
 641	/*
 642	 * Make sure the cache of the PARTITION_CONFIG register and
 643	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
 644	 * changed it successfully.
 645	 */
 646	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
 647	    (cmd.opcode == MMC_SWITCH)) {
 648		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 649		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
 650
 651		/*
 652		 * Update cache so the next mmc_blk_part_switch call operates
 653		 * on up-to-date data.
 654		 */
 655		card->ext_csd.part_config = value;
 656		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
 657	}
 658
 659	/*
 660	 * Make sure to update CACHE_CTRL in case it was changed. The cache
 661	 * will get turned back on if the card is re-initialized, e.g.
 662	 * suspend/resume or hw reset in recovery.
 663	 */
 664	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
 665	    (cmd.opcode == MMC_SWITCH)) {
 666		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
 667
 668		card->ext_csd.cache_ctrl = value;
 669	}
 670
 671	/*
 672	 * According to the SD specs, some commands require a delay after
 673	 * issuing the command.
 674	 */
 675	if (idata->ic.postsleep_min_us)
 676		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 677
 678	if (mmc_host_is_spi(card->host)) {
 679		if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
 680			return mmc_spi_err_check(card);
 681		return err;
 682	}
 683
 684	/*
 685	 * Ensure RPMB, writes and R1B responses are completed by polling with
 686	 * CMD13. Note that, usually we don't need to poll when using HW busy
 687	 * detection, but here it's needed since some commands may indicate the
 688	 * error through the R1 status bits.
 689	 */
 690	if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
 691		struct mmc_blk_busy_data cb_data = {
 692			.card = card,
 693		};
 694
 695		err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
 696					  &mmc_blk_busy_cb, &cb_data);
 697
 698		idata->ic.response[0] = cb_data.status;
 699	}
 700
 701	return err;
 702}
 703
 704static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
 705			     struct mmc_ioc_cmd __user *ic_ptr,
 706			     struct mmc_rpmb_data *rpmb)
 707{
 708	struct mmc_blk_ioc_data *idata;
 709	struct mmc_blk_ioc_data *idatas[1];
 710	struct mmc_queue *mq;
 711	struct mmc_card *card;
 712	int err = 0, ioc_err = 0;
 713	struct request *req;
 714
 715	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 716	if (IS_ERR(idata))
 717		return PTR_ERR(idata);
 718	/* This will be NULL on non-RPMB ioctl():s */
 719	idata->rpmb = rpmb;
 720
 721	card = md->queue.card;
 722	if (IS_ERR(card)) {
 723		err = PTR_ERR(card);
 724		goto cmd_done;
 725	}
 726
 727	/*
 728	 * Dispatch the ioctl() into the block request queue.
 729	 */
 730	mq = &md->queue;
 731	req = blk_mq_alloc_request(mq->queue,
 732		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 733	if (IS_ERR(req)) {
 734		err = PTR_ERR(req);
 735		goto cmd_done;
 736	}
 737	idatas[0] = idata;
 738	req_to_mmc_queue_req(req)->drv_op =
 739		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 740	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
 741	req_to_mmc_queue_req(req)->drv_op_data = idatas;
 742	req_to_mmc_queue_req(req)->ioc_count = 1;
 743	blk_execute_rq(req, false);
 744	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 745	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
 746	blk_mq_free_request(req);
 747
 748cmd_done:
 749	kfree(idata->buf);
 750	kfree(idata);
 751	return ioc_err ? ioc_err : err;
 752}
 753
 754static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
 755				   struct mmc_ioc_multi_cmd __user *user,
 756				   struct mmc_rpmb_data *rpmb)
 757{
 758	struct mmc_blk_ioc_data **idata = NULL;
 759	struct mmc_ioc_cmd __user *cmds = user->cmds;
 760	struct mmc_card *card;
 761	struct mmc_queue *mq;
 762	int err = 0, ioc_err = 0;
 763	__u64 num_of_cmds;
 764	unsigned int i, n;
 765	struct request *req;
 766
 767	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
 768			   sizeof(num_of_cmds)))
 769		return -EFAULT;
 770
 771	if (!num_of_cmds)
 772		return 0;
 773
 774	if (num_of_cmds > MMC_IOC_MAX_CMDS)
 775		return -EINVAL;
 776
 777	n = num_of_cmds;
 778	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
 779	if (!idata)
 780		return -ENOMEM;
 781
 782	for (i = 0; i < n; i++) {
 783		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
 784		if (IS_ERR(idata[i])) {
 785			err = PTR_ERR(idata[i]);
 786			n = i;
 787			goto cmd_err;
 788		}
 789		/* This will be NULL on non-RPMB ioctl():s */
 790		idata[i]->rpmb = rpmb;
 791	}
 792
 793	card = md->queue.card;
 794	if (IS_ERR(card)) {
 795		err = PTR_ERR(card);
 796		goto cmd_err;
 797	}
 798
 799
 800	/*
 801	 * Dispatch the ioctl()s into the block request queue.
 802	 */
 803	mq = &md->queue;
 804	req = blk_mq_alloc_request(mq->queue,
 805		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 806	if (IS_ERR(req)) {
 807		err = PTR_ERR(req);
 808		goto cmd_err;
 809	}
 810	req_to_mmc_queue_req(req)->drv_op =
 811		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 812	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
 813	req_to_mmc_queue_req(req)->drv_op_data = idata;
 814	req_to_mmc_queue_req(req)->ioc_count = n;
 815	blk_execute_rq(req, false);
 816	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 817
 818	/* copy to user if data and response */
 819	for (i = 0; i < n && !err; i++)
 820		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
 821
 822	blk_mq_free_request(req);
 823
 824cmd_err:
 825	for (i = 0; i < n; i++) {
 826		kfree(idata[i]->buf);
 827		kfree(idata[i]);
 828	}
 829	kfree(idata);
 830	return ioc_err ? ioc_err : err;
 831}
 832
 833static int mmc_blk_check_blkdev(struct block_device *bdev)
 834{
 835	/*
 836	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 837	 * whole block device, not on a partition.  This prevents overspray
 838	 * between sibling partitions.
 839	 */
 840	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
 841		return -EPERM;
 842	return 0;
 843}
 844
 845static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
 846	unsigned int cmd, unsigned long arg)
 847{
 848	struct mmc_blk_data *md;
 849	int ret;
 850
 851	switch (cmd) {
 852	case MMC_IOC_CMD:
 853		ret = mmc_blk_check_blkdev(bdev);
 854		if (ret)
 855			return ret;
 856		md = mmc_blk_get(bdev->bd_disk);
 857		if (!md)
 858			return -EINVAL;
 859		ret = mmc_blk_ioctl_cmd(md,
 860					(struct mmc_ioc_cmd __user *)arg,
 861					NULL);
 862		mmc_blk_put(md);
 863		return ret;
 864	case MMC_IOC_MULTI_CMD:
 865		ret = mmc_blk_check_blkdev(bdev);
 866		if (ret)
 867			return ret;
 868		md = mmc_blk_get(bdev->bd_disk);
 869		if (!md)
 870			return -EINVAL;
 871		ret = mmc_blk_ioctl_multi_cmd(md,
 872					(struct mmc_ioc_multi_cmd __user *)arg,
 873					NULL);
 874		mmc_blk_put(md);
 875		return ret;
 876	default:
 877		return -EINVAL;
 878	}
 879}
 880
 881#ifdef CONFIG_COMPAT
 882static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
 883	unsigned int cmd, unsigned long arg)
 884{
 885	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 886}
 887#endif
 888
 889static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
 890					  sector_t *sector)
 891{
 892	struct mmc_blk_data *md;
 893	int ret;
 894
 895	md = mmc_blk_get(disk);
 896	if (!md)
 897		return -EINVAL;
 898
 899	if (md->queue.card)
 900		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
 901	else
 902		ret = -ENODEV;
 903
 904	mmc_blk_put(md);
 905
 906	return ret;
 907}
 908
 909static const struct block_device_operations mmc_bdops = {
 910	.open			= mmc_blk_open,
 911	.release		= mmc_blk_release,
 912	.getgeo			= mmc_blk_getgeo,
 913	.owner			= THIS_MODULE,
 914	.ioctl			= mmc_blk_ioctl,
 915#ifdef CONFIG_COMPAT
 916	.compat_ioctl		= mmc_blk_compat_ioctl,
 917#endif
 918	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
 919};
 920
 921static int mmc_blk_part_switch_pre(struct mmc_card *card,
 922				   unsigned int part_type)
 923{
 924	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
 925	const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
 926	int ret = 0;
 927
 928	if ((part_type & mask) == rpmb) {
 929		if (card->ext_csd.cmdq_en) {
 930			ret = mmc_cmdq_disable(card);
 931			if (ret)
 932				return ret;
 933		}
 934		mmc_retune_pause(card->host);
 935	}
 936
 937	return ret;
 938}
 939
 940static int mmc_blk_part_switch_post(struct mmc_card *card,
 941				    unsigned int part_type)
 942{
 943	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
 944	const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
 945	int ret = 0;
 946
 947	if ((part_type & mask) == rpmb) {
 948		mmc_retune_unpause(card->host);
 949		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
 950			ret = mmc_cmdq_enable(card);
 951	}
 952
 953	return ret;
 954}
 955
 956static inline int mmc_blk_part_switch(struct mmc_card *card,
 957				      unsigned int part_type)
 958{
 959	int ret = 0;
 960	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 961
 962	if (main_md->part_curr == part_type)
 963		return 0;
 964
 965	if (mmc_card_mmc(card)) {
 966		u8 part_config = card->ext_csd.part_config;
 967
 968		ret = mmc_blk_part_switch_pre(card, part_type);
 969		if (ret)
 970			return ret;
 971
 972		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 973		part_config |= part_type;
 974
 975		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 976				 EXT_CSD_PART_CONFIG, part_config,
 977				 card->ext_csd.part_time);
 978		if (ret) {
 979			mmc_blk_part_switch_post(card, part_type);
 980			return ret;
 981		}
 982
 983		card->ext_csd.part_config = part_config;
 984
 985		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
 986	}
 987
 988	main_md->part_curr = part_type;
 989	return ret;
 990}
 991
 992static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
 993{
 994	int err;
 995	u32 result;
 996	__be32 *blocks;
 997	u8 resp_sz = mmc_card_ult_capacity(card) ? 8 : 4;
 998	unsigned int noio_flag;
 999
1000	struct mmc_request mrq = {};
1001	struct mmc_command cmd = {};
1002	struct mmc_data data = {};
 
1003	struct scatterlist sg;
1004
1005	err = mmc_app_cmd(card->host, card);
 
 
 
 
1006	if (err)
1007		return err;
 
 
 
 
1008
1009	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
1010	cmd.arg = 0;
1011	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1012
1013	data.blksz = resp_sz;
1014	data.blocks = 1;
1015	data.flags = MMC_DATA_READ;
1016	data.sg = &sg;
1017	data.sg_len = 1;
1018	mmc_set_data_timeout(&data, card);
1019
1020	mrq.cmd = &cmd;
1021	mrq.data = &data;
1022
1023	noio_flag = memalloc_noio_save();
1024	blocks = kmalloc(resp_sz, GFP_KERNEL);
1025	memalloc_noio_restore(noio_flag);
1026	if (!blocks)
1027		return -ENOMEM;
1028
1029	sg_init_one(&sg, blocks, resp_sz);
1030
1031	mmc_wait_for_req(card->host, &mrq);
1032
1033	if (mmc_card_ult_capacity(card)) {
1034		/*
1035		 * Normally, ACMD22 returns the number of written sectors as
1036		 * u32. SDUC, however, returns it as u64.  This is not a
1037		 * superfluous requirement, because SDUC writes may exceed 2TB.
1038		 * For Linux mmc however, the previously write operation could
1039		 * not be more than the block layer limits, thus just make room
1040		 * for a u64 and cast the response back to u32.
1041		 */
1042		result = clamp_val(get_unaligned_be64(blocks), 0, UINT_MAX);
1043	} else {
1044		result = ntohl(*blocks);
1045	}
1046	kfree(blocks);
1047
1048	if (cmd.error || data.error)
1049		return -EIO;
1050
1051	*written_blocks = result;
1052
1053	return 0;
1054}
1055
1056static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
1057{
1058	if (host->actual_clock)
1059		return host->actual_clock / 1000;
1060
1061	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
1062	if (host->ios.clock)
1063		return host->ios.clock / 2000;
1064
1065	/* How can there be no clock */
1066	WARN_ON_ONCE(1);
1067	return 100; /* 100 kHz is minimum possible value */
1068}
1069
1070static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1071					    struct mmc_data *data)
1072{
1073	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1074	unsigned int khz;
1075
1076	if (data->timeout_clks) {
1077		khz = mmc_blk_clock_khz(host);
1078		ms += DIV_ROUND_UP(data->timeout_clks, khz);
1079	}
1080
1081	return ms;
1082}
1083
1084/*
1085 * Attempts to reset the card and get back to the requested partition.
1086 * Therefore any error here must result in cancelling the block layer
1087 * request, it must not be reattempted without going through the mmc_blk
1088 * partition sanity checks.
1089 */
1090static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1091			 int type)
1092{
1093	int err;
1094	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1095
1096	if (md->reset_done & type)
1097		return -EEXIST;
1098
1099	md->reset_done |= type;
1100	err = mmc_hw_reset(host->card);
1101	/*
1102	 * A successful reset will leave the card in the main partition, but
1103	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1104	 * in that case.
1105	 */
1106	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1107	if (err)
1108		return err;
1109	/* Ensure we switch back to the correct partition */
1110	if (mmc_blk_part_switch(host->card, md->part_type))
1111		/*
1112		 * We have failed to get back into the correct
1113		 * partition, so we need to abort the whole request.
1114		 */
1115		return -ENODEV;
1116	return 0;
 
 
 
 
 
 
 
 
 
1117}
1118
1119static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1120{
1121	md->reset_done &= ~type;
1122}
1123
1124static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1125{
1126	struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1127	int i;
1128
1129	for (i = 1; i < mq_rq->ioc_count; i++) {
1130		if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1131		    mmc_op_multi(idata[i]->ic.opcode)) {
1132			idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1133			idata[i]->flags |= MMC_BLK_IOC_SBC;
1134		}
1135	}
1136}
1137
1138/*
1139 * The non-block commands come back from the block layer after it queued it and
1140 * processed it with all other requests and then they get issued in this
1141 * function.
1142 */
1143static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1144{
1145	struct mmc_queue_req *mq_rq;
1146	struct mmc_card *card = mq->card;
1147	struct mmc_blk_data *md = mq->blkdata;
1148	struct mmc_blk_ioc_data **idata;
1149	bool rpmb_ioctl;
1150	u8 **ext_csd;
1151	u32 status;
1152	int ret;
1153	int i;
1154
1155	mq_rq = req_to_mmc_queue_req(req);
1156	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1157
1158	switch (mq_rq->drv_op) {
1159	case MMC_DRV_OP_IOCTL:
1160		if (card->ext_csd.cmdq_en) {
1161			ret = mmc_cmdq_disable(card);
1162			if (ret)
1163				break;
1164		}
1165
1166		mmc_blk_check_sbc(mq_rq);
1167
1168		fallthrough;
1169	case MMC_DRV_OP_IOCTL_RPMB:
1170		idata = mq_rq->drv_op_data;
1171		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1172			ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1173			if (ret)
1174				break;
1175		}
1176		/* Always switch back to main area after RPMB access */
1177		if (rpmb_ioctl)
1178			mmc_blk_part_switch(card, 0);
1179		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1180			mmc_cmdq_enable(card);
1181		break;
1182	case MMC_DRV_OP_BOOT_WP:
1183		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1184				 card->ext_csd.boot_ro_lock |
1185				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1186				 card->ext_csd.part_time);
1187		if (ret)
1188			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1189			       md->disk->disk_name, ret);
1190		else
1191			card->ext_csd.boot_ro_lock |=
1192				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1193		break;
1194	case MMC_DRV_OP_GET_CARD_STATUS:
1195		ret = mmc_send_status(card, &status);
1196		if (!ret)
1197			ret = status;
1198		break;
1199	case MMC_DRV_OP_GET_EXT_CSD:
1200		ext_csd = mq_rq->drv_op_data;
1201		ret = mmc_get_ext_csd(card, ext_csd);
1202		break;
1203	default:
1204		pr_err("%s: unknown driver specific operation\n",
1205		       md->disk->disk_name);
1206		ret = -EINVAL;
1207		break;
1208	}
1209	mq_rq->drv_op_result = ret;
1210	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1211}
1212
1213static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1214				   int type, unsigned int erase_arg)
1215{
1216	struct mmc_blk_data *md = mq->blkdata;
1217	struct mmc_card *card = md->queue.card;
1218	unsigned int nr;
1219	sector_t from;
1220	int err = 0;
1221	blk_status_t status = BLK_STS_OK;
1222
1223	if (!mmc_can_erase(card)) {
1224		status = BLK_STS_NOTSUPP;
1225		goto fail;
1226	}
1227
1228	from = blk_rq_pos(req);
1229	nr = blk_rq_sectors(req);
1230
1231	do {
1232		err = 0;
1233		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1234			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1235					 INAND_CMD38_ARG_EXT_CSD,
1236					 erase_arg == MMC_TRIM_ARG ?
1237					 INAND_CMD38_ARG_TRIM :
1238					 INAND_CMD38_ARG_ERASE,
1239					 card->ext_csd.generic_cmd6_time);
1240		}
1241		if (!err)
1242			err = mmc_erase(card, from, nr, erase_arg);
1243	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1244	if (err)
1245		status = BLK_STS_IOERR;
1246	else
1247		mmc_blk_reset_success(md, type);
1248fail:
1249	blk_mq_end_request(req, status);
1250}
1251
1252static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1253{
1254	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1255}
1256
1257static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1258{
1259	struct mmc_blk_data *md = mq->blkdata;
1260	struct mmc_card *card = md->queue.card;
1261	unsigned int arg = card->erase_arg;
1262
1263	if (mmc_card_broken_sd_discard(card))
1264		arg = SD_ERASE_ARG;
1265
1266	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1267}
1268
1269static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1270				       struct request *req)
1271{
1272	struct mmc_blk_data *md = mq->blkdata;
1273	struct mmc_card *card = md->queue.card;
1274	unsigned int nr, arg;
1275	sector_t from;
1276	int err = 0, type = MMC_BLK_SECDISCARD;
1277	blk_status_t status = BLK_STS_OK;
1278
1279	if (!(mmc_can_secure_erase_trim(card))) {
1280		status = BLK_STS_NOTSUPP;
1281		goto out;
1282	}
1283
1284	from = blk_rq_pos(req);
1285	nr = blk_rq_sectors(req);
1286
1287	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1288		arg = MMC_SECURE_TRIM1_ARG;
1289	else
1290		arg = MMC_SECURE_ERASE_ARG;
1291
1292retry:
1293	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1294		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1295				 INAND_CMD38_ARG_EXT_CSD,
1296				 arg == MMC_SECURE_TRIM1_ARG ?
1297				 INAND_CMD38_ARG_SECTRIM1 :
1298				 INAND_CMD38_ARG_SECERASE,
1299				 card->ext_csd.generic_cmd6_time);
1300		if (err)
1301			goto out_retry;
1302	}
1303
1304	err = mmc_erase(card, from, nr, arg);
1305	if (err == -EIO)
1306		goto out_retry;
1307	if (err) {
1308		status = BLK_STS_IOERR;
1309		goto out;
1310	}
1311
1312	if (arg == MMC_SECURE_TRIM1_ARG) {
1313		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1314			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1315					 INAND_CMD38_ARG_EXT_CSD,
1316					 INAND_CMD38_ARG_SECTRIM2,
1317					 card->ext_csd.generic_cmd6_time);
1318			if (err)
1319				goto out_retry;
1320		}
1321
1322		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1323		if (err == -EIO)
1324			goto out_retry;
1325		if (err) {
1326			status = BLK_STS_IOERR;
1327			goto out;
1328		}
1329	}
1330
1331out_retry:
1332	if (err && !mmc_blk_reset(md, card->host, type))
1333		goto retry;
1334	if (!err)
1335		mmc_blk_reset_success(md, type);
1336out:
1337	blk_mq_end_request(req, status);
1338}
1339
1340static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1341{
1342	struct mmc_blk_data *md = mq->blkdata;
1343	struct mmc_card *card = md->queue.card;
1344	int ret = 0;
1345
1346	ret = mmc_flush_cache(card->host);
1347	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1348}
1349
1350/*
1351 * Reformat current write as a reliable write, supporting
1352 * both legacy and the enhanced reliable write MMC cards.
1353 * In each transfer we'll handle only as much as a single
1354 * reliable write can handle, thus finish the request in
1355 * partial completions.
1356 */
1357static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1358				    struct mmc_card *card,
1359				    struct request *req)
1360{
1361	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1362		/* Legacy mode imposes restrictions on transfers. */
1363		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1364			brq->data.blocks = 1;
1365
1366		if (brq->data.blocks > card->ext_csd.rel_sectors)
1367			brq->data.blocks = card->ext_csd.rel_sectors;
1368		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1369			brq->data.blocks = 1;
1370	}
1371}
1372
1373#define CMD_ERRORS_EXCL_OOR						\
1374	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1375	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1376	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1377	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1378	 R1_CC_ERROR |		/* Card controller error */		\
1379	 R1_ERROR)		/* General/unknown error */
1380
1381#define CMD_ERRORS							\
1382	(CMD_ERRORS_EXCL_OOR |						\
1383	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1384
1385static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1386{
1387	u32 val;
1388
1389	/*
1390	 * Per the SD specification(physical layer version 4.10)[1],
1391	 * section 4.3.3, it explicitly states that "When the last
1392	 * block of user area is read using CMD18, the host should
1393	 * ignore OUT_OF_RANGE error that may occur even the sequence
1394	 * is correct". And JESD84-B51 for eMMC also has a similar
1395	 * statement on section 6.8.3.
1396	 *
1397	 * Multiple block read/write could be done by either predefined
1398	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1399	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1400	 *
1401	 * However the spec[1] doesn't tell us whether we should also
1402	 * ignore that for predefined method. But per the spec[1], section
1403	 * 4.15 Set Block Count Command, it says"If illegal block count
1404	 * is set, out of range error will be indicated during read/write
1405	 * operation (For example, data transfer is stopped at user area
1406	 * boundary)." In another word, we could expect a out of range error
1407	 * in the response for the following CMD18/25. And if argument of
1408	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1409	 * we could also expect to get a -ETIMEDOUT or any error number from
1410	 * the host drivers due to missing data response(for write)/data(for
1411	 * read), as the cards will stop the data transfer by itself per the
1412	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1413	 */
1414
1415	if (!brq->stop.error) {
1416		bool oor_with_open_end;
1417		/* If there is no error yet, check R1 response */
1418
1419		val = brq->stop.resp[0] & CMD_ERRORS;
1420		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1421
1422		if (val && !oor_with_open_end)
1423			brq->stop.error = -EIO;
1424	}
1425}
1426
1427static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1428			      int recovery_mode, bool *do_rel_wr_p,
1429			      bool *do_data_tag_p)
1430{
1431	struct mmc_blk_data *md = mq->blkdata;
1432	struct mmc_card *card = md->queue.card;
1433	struct mmc_blk_request *brq = &mqrq->brq;
1434	struct request *req = mmc_queue_req_to_req(mqrq);
1435	bool do_rel_wr, do_data_tag;
1436
1437	/*
1438	 * Reliable writes are used to implement Forced Unit Access and
1439	 * are supported only on MMCs.
1440	 */
1441	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1442		    rq_data_dir(req) == WRITE &&
1443		    (md->flags & MMC_BLK_REL_WR);
1444
1445	memset(brq, 0, sizeof(struct mmc_blk_request));
1446
1447	mmc_crypto_prepare_req(mqrq);
1448
1449	brq->mrq.data = &brq->data;
1450	brq->mrq.tag = req->tag;
1451
1452	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1453	brq->stop.arg = 0;
1454
1455	if (rq_data_dir(req) == READ) {
1456		brq->data.flags = MMC_DATA_READ;
1457		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1458	} else {
1459		brq->data.flags = MMC_DATA_WRITE;
1460		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1461	}
1462
1463	brq->data.blksz = 512;
1464	brq->data.blocks = blk_rq_sectors(req);
1465	brq->data.blk_addr = blk_rq_pos(req);
1466
1467	/*
1468	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1469	 * The eMMC will give "high" priority tasks priority over "simple"
1470	 * priority tasks. Here we always set "simple" priority by not setting
1471	 * MMC_DATA_PRIO.
1472	 */
1473
1474	/*
1475	 * The block layer doesn't support all sector count
1476	 * restrictions, so we need to be prepared for too big
1477	 * requests.
1478	 */
1479	if (brq->data.blocks > card->host->max_blk_count)
1480		brq->data.blocks = card->host->max_blk_count;
1481
1482	if (brq->data.blocks > 1) {
1483		/*
1484		 * Some SD cards in SPI mode return a CRC error or even lock up
1485		 * completely when trying to read the last block using a
1486		 * multiblock read command.
1487		 */
1488		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1489		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1490		     get_capacity(md->disk)))
1491			brq->data.blocks--;
1492
1493		/*
1494		 * After a read error, we redo the request one (native) sector
1495		 * at a time in order to accurately determine which
1496		 * sectors can be read successfully.
1497		 */
1498		if (recovery_mode)
1499			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1500
1501		/*
1502		 * Some controllers have HW issues while operating
1503		 * in multiple I/O mode
1504		 */
1505		if (card->host->ops->multi_io_quirk)
1506			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1507						(rq_data_dir(req) == READ) ?
1508						MMC_DATA_READ : MMC_DATA_WRITE,
1509						brq->data.blocks);
1510	}
1511
1512	if (do_rel_wr) {
1513		mmc_apply_rel_rw(brq, card, req);
1514		brq->data.flags |= MMC_DATA_REL_WR;
1515	}
1516
1517	/*
1518	 * Data tag is used only during writing meta data to speed
1519	 * up write and any subsequent read of this meta data
1520	 */
1521	do_data_tag = card->ext_csd.data_tag_unit_size &&
1522		      (req->cmd_flags & REQ_META) &&
1523		      (rq_data_dir(req) == WRITE) &&
1524		      ((brq->data.blocks * brq->data.blksz) >=
1525		       card->ext_csd.data_tag_unit_size);
1526
1527	if (do_data_tag)
1528		brq->data.flags |= MMC_DATA_DAT_TAG;
1529
1530	mmc_set_data_timeout(&brq->data, card);
1531
1532	brq->data.sg = mqrq->sg;
1533	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1534
1535	/*
1536	 * Adjust the sg list so it is the same size as the
1537	 * request.
1538	 */
1539	if (brq->data.blocks != blk_rq_sectors(req)) {
1540		int i, data_size = brq->data.blocks << 9;
1541		struct scatterlist *sg;
1542
1543		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1544			data_size -= sg->length;
1545			if (data_size <= 0) {
1546				sg->length += data_size;
1547				i++;
1548				break;
1549			}
1550		}
1551		brq->data.sg_len = i;
1552	}
1553
1554	if (do_rel_wr_p)
1555		*do_rel_wr_p = do_rel_wr;
1556
1557	if (do_data_tag_p)
1558		*do_data_tag_p = do_data_tag;
1559}
1560
1561#define MMC_CQE_RETRIES 2
1562
1563static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1564{
1565	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1566	struct mmc_request *mrq = &mqrq->brq.mrq;
1567	struct request_queue *q = req->q;
1568	struct mmc_host *host = mq->card->host;
1569	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1570	unsigned long flags;
1571	bool put_card;
1572	int err;
1573
1574	mmc_cqe_post_req(host, mrq);
1575
1576	if (mrq->cmd && mrq->cmd->error)
1577		err = mrq->cmd->error;
1578	else if (mrq->data && mrq->data->error)
1579		err = mrq->data->error;
1580	else
1581		err = 0;
1582
1583	if (err) {
1584		if (mqrq->retries++ < MMC_CQE_RETRIES)
1585			blk_mq_requeue_request(req, true);
1586		else
1587			blk_mq_end_request(req, BLK_STS_IOERR);
1588	} else if (mrq->data) {
1589		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1590			blk_mq_requeue_request(req, true);
1591		else
1592			__blk_mq_end_request(req, BLK_STS_OK);
1593	} else if (mq->in_recovery) {
1594		blk_mq_requeue_request(req, true);
1595	} else {
1596		blk_mq_end_request(req, BLK_STS_OK);
1597	}
1598
1599	spin_lock_irqsave(&mq->lock, flags);
1600
1601	mq->in_flight[issue_type] -= 1;
1602
1603	put_card = (mmc_tot_in_flight(mq) == 0);
1604
1605	mmc_cqe_check_busy(mq);
1606
1607	spin_unlock_irqrestore(&mq->lock, flags);
1608
1609	if (!mq->cqe_busy)
1610		blk_mq_run_hw_queues(q, true);
1611
1612	if (put_card)
1613		mmc_put_card(mq->card, &mq->ctx);
1614}
1615
1616void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1617{
1618	struct mmc_card *card = mq->card;
1619	struct mmc_host *host = card->host;
1620	int err;
1621
1622	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1623
1624	err = mmc_cqe_recovery(host);
1625	if (err)
1626		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1627	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
 
1628
1629	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1630}
1631
1632static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1633{
1634	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1635						  brq.mrq);
1636	struct request *req = mmc_queue_req_to_req(mqrq);
1637	struct request_queue *q = req->q;
1638	struct mmc_queue *mq = q->queuedata;
1639
1640	/*
1641	 * Block layer timeouts race with completions which means the normal
1642	 * completion path cannot be used during recovery.
1643	 */
1644	if (mq->in_recovery)
1645		mmc_blk_cqe_complete_rq(mq, req);
1646	else if (likely(!blk_should_fake_timeout(req->q)))
1647		blk_mq_complete_request(req);
1648}
1649
1650static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1651{
1652	mrq->done		= mmc_blk_cqe_req_done;
1653	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1654
1655	return mmc_cqe_start_req(host, mrq);
1656}
1657
1658static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1659						 struct request *req)
1660{
1661	struct mmc_blk_request *brq = &mqrq->brq;
1662
1663	memset(brq, 0, sizeof(*brq));
1664
1665	brq->mrq.cmd = &brq->cmd;
1666	brq->mrq.tag = req->tag;
1667
1668	return &brq->mrq;
1669}
1670
1671static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1672{
1673	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1674	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1675
1676	mrq->cmd->opcode = MMC_SWITCH;
1677	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1678			(EXT_CSD_FLUSH_CACHE << 16) |
1679			(1 << 8) |
1680			EXT_CSD_CMD_SET_NORMAL;
1681	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1682
1683	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1684}
1685
1686static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1687{
1688	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1689	struct mmc_host *host = mq->card->host;
1690	int err;
1691
1692	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1693	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1694	mmc_pre_req(host, &mqrq->brq.mrq);
1695
1696	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1697	if (err)
1698		mmc_post_req(host, &mqrq->brq.mrq, err);
1699
1700	return err;
1701}
1702
1703static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1704{
1705	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1706	struct mmc_host *host = mq->card->host;
1707
1708	if (host->hsq_enabled)
1709		return mmc_blk_hsq_issue_rw_rq(mq, req);
1710
1711	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1712
1713	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1714}
1715
1716static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1717			       struct mmc_card *card,
1718			       int recovery_mode,
1719			       struct mmc_queue *mq)
1720{
1721	u32 readcmd, writecmd;
1722	struct mmc_blk_request *brq = &mqrq->brq;
1723	struct request *req = mmc_queue_req_to_req(mqrq);
1724	struct mmc_blk_data *md = mq->blkdata;
1725	bool do_rel_wr, do_data_tag;
1726
1727	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1728
1729	brq->mrq.cmd = &brq->cmd;
1730
1731	brq->cmd.arg = blk_rq_pos(req);
1732	if (!mmc_card_blockaddr(card))
1733		brq->cmd.arg <<= 9;
1734	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1735
1736	if (brq->data.blocks > 1 || do_rel_wr) {
1737		/* SPI multiblock writes terminate using a special
1738		 * token, not a STOP_TRANSMISSION request.
1739		 */
1740		if (!mmc_host_is_spi(card->host) ||
1741		    rq_data_dir(req) == READ)
1742			brq->mrq.stop = &brq->stop;
1743		readcmd = MMC_READ_MULTIPLE_BLOCK;
1744		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1745	} else {
1746		brq->mrq.stop = NULL;
1747		readcmd = MMC_READ_SINGLE_BLOCK;
1748		writecmd = MMC_WRITE_BLOCK;
1749	}
1750	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1751
1752	/*
1753	 * Pre-defined multi-block transfers are preferable to
1754	 * open ended-ones (and necessary for reliable writes).
1755	 * However, it is not sufficient to just send CMD23,
1756	 * and avoid the final CMD12, as on an error condition
1757	 * CMD12 (stop) needs to be sent anyway. This, coupled
1758	 * with Auto-CMD23 enhancements provided by some
1759	 * hosts, means that the complexity of dealing
1760	 * with this is best left to the host. If CMD23 is
1761	 * supported by card and host, we'll fill sbc in and let
1762	 * the host deal with handling it correctly. This means
1763	 * that for hosts that don't expose MMC_CAP_CMD23, no
1764	 * change of behavior will be observed.
1765	 *
1766	 * N.B: Some MMC cards experience perf degradation.
1767	 * We'll avoid using CMD23-bounded multiblock writes for
1768	 * these, while retaining features like reliable writes.
1769	 */
1770	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1771	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1772	     do_data_tag)) {
1773		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1774		brq->sbc.arg = brq->data.blocks |
1775			(do_rel_wr ? (1 << 31) : 0) |
1776			(do_data_tag ? (1 << 29) : 0);
1777		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1778		brq->mrq.sbc = &brq->sbc;
1779	}
1780
1781	if (mmc_card_ult_capacity(card)) {
1782		brq->cmd.ext_addr = blk_rq_pos(req) >> 32;
1783		brq->cmd.has_ext_addr = true;
1784	}
1785}
1786
1787#define MMC_MAX_RETRIES		5
1788#define MMC_DATA_RETRIES	2
1789#define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1790
1791static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1792{
1793	struct mmc_command cmd = {
1794		.opcode = MMC_STOP_TRANSMISSION,
1795		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1796		/* Some hosts wait for busy anyway, so provide a busy timeout */
1797		.busy_timeout = timeout,
1798	};
1799
1800	return mmc_wait_for_cmd(card->host, &cmd, 5);
1801}
1802
1803static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1804{
1805	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1806	struct mmc_blk_request *brq = &mqrq->brq;
1807	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1808	int err;
1809
1810	mmc_retune_hold_now(card->host);
1811
1812	mmc_blk_send_stop(card, timeout);
1813
1814	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1815
1816	mmc_retune_release(card->host);
1817
1818	return err;
1819}
1820
1821#define MMC_READ_SINGLE_RETRIES	2
1822
1823/* Single (native) sector read during recovery */
1824static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1825{
1826	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1827	struct mmc_request *mrq = &mqrq->brq.mrq;
1828	struct mmc_card *card = mq->card;
1829	struct mmc_host *host = card->host;
1830	blk_status_t error = BLK_STS_OK;
1831	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1832
1833	do {
1834		u32 status;
1835		int err;
1836		int retries = 0;
1837
1838		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1839			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
 
1840
1841			mmc_wait_for_req(host, mrq);
 
 
1842
1843			err = mmc_send_status(card, &status);
 
 
1844			if (err)
1845				goto error_exit;
 
1846
1847			if (!mmc_host_is_spi(host) &&
1848			    !mmc_ready_for_data(status)) {
1849				err = mmc_blk_fix_state(card, req);
1850				if (err)
1851					goto error_exit;
1852			}
1853
1854			if (!mrq->cmd->error)
1855				break;
1856		}
1857
1858		if (mrq->cmd->error ||
1859		    mrq->data->error ||
1860		    (!mmc_host_is_spi(host) &&
1861		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1862			error = BLK_STS_IOERR;
1863		else
1864			error = BLK_STS_OK;
1865
1866	} while (blk_update_request(req, error, bytes_per_read));
1867
1868	return;
1869
1870error_exit:
1871	mrq->data->bytes_xfered = 0;
1872	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1873	/* Let it try the remaining request again */
1874	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1875		mqrq->retries = MMC_MAX_RETRIES - 1;
1876}
1877
1878static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1879{
1880	return !!brq->mrq.sbc;
1881}
1882
1883static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1884{
1885	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1886}
1887
1888/*
1889 * Check for errors the host controller driver might not have seen such as
1890 * response mode errors or invalid card state.
1891 */
1892static bool mmc_blk_status_error(struct request *req, u32 status)
1893{
1894	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1895	struct mmc_blk_request *brq = &mqrq->brq;
1896	struct mmc_queue *mq = req->q->queuedata;
1897	u32 stop_err_bits;
1898
1899	if (mmc_host_is_spi(mq->card->host))
1900		return false;
1901
1902	stop_err_bits = mmc_blk_stop_err_bits(brq);
1903
1904	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1905	       brq->stop.resp[0] & stop_err_bits ||
1906	       status            & stop_err_bits ||
1907	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1908}
1909
1910static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1911{
1912	return !brq->sbc.error && !brq->cmd.error &&
1913	       !(brq->cmd.resp[0] & CMD_ERRORS);
1914}
1915
1916/*
1917 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1918 * policy:
1919 * 1. A request that has transferred at least some data is considered
1920 * successful and will be requeued if there is remaining data to
1921 * transfer.
1922 * 2. Otherwise the number of retries is incremented and the request
1923 * will be requeued if there are remaining retries.
1924 * 3. Otherwise the request will be errored out.
1925 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1926 * mqrq->retries. So there are only 4 possible actions here:
1927 *	1. do not accept the bytes_xfered value i.e. set it to zero
1928 *	2. change mqrq->retries to determine the number of retries
1929 *	3. try to reset the card
1930 *	4. read one sector at a time
1931 */
1932static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1933{
1934	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1935	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1936	struct mmc_blk_request *brq = &mqrq->brq;
1937	struct mmc_blk_data *md = mq->blkdata;
1938	struct mmc_card *card = mq->card;
1939	u32 status;
1940	u32 blocks;
1941	int err;
1942
1943	/*
1944	 * Some errors the host driver might not have seen. Set the number of
1945	 * bytes transferred to zero in that case.
1946	 */
1947	err = __mmc_send_status(card, &status, 0);
1948	if (err || mmc_blk_status_error(req, status))
1949		brq->data.bytes_xfered = 0;
1950
1951	mmc_retune_release(card->host);
1952
1953	/*
1954	 * Try again to get the status. This also provides an opportunity for
1955	 * re-tuning.
1956	 */
1957	if (err)
1958		err = __mmc_send_status(card, &status, 0);
1959
1960	/*
1961	 * Nothing more to do after the number of bytes transferred has been
1962	 * updated and there is no card.
1963	 */
1964	if (err && mmc_detect_card_removed(card->host))
1965		return;
1966
1967	/* Try to get back to "tran" state */
1968	if (!mmc_host_is_spi(mq->card->host) &&
1969	    (err || !mmc_ready_for_data(status)))
1970		err = mmc_blk_fix_state(mq->card, req);
1971
1972	/*
1973	 * Special case for SD cards where the card might record the number of
1974	 * blocks written.
1975	 */
1976	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1977	    rq_data_dir(req) == WRITE) {
1978		if (mmc_sd_num_wr_blocks(card, &blocks))
1979			brq->data.bytes_xfered = 0;
1980		else
1981			brq->data.bytes_xfered = blocks << 9;
1982	}
1983
1984	/* Reset if the card is in a bad state */
1985	if (!mmc_host_is_spi(mq->card->host) &&
1986	    err && mmc_blk_reset(md, card->host, type)) {
1987		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1988		mqrq->retries = MMC_NO_RETRIES;
1989		return;
1990	}
1991
1992	/*
1993	 * If anything was done, just return and if there is anything remaining
1994	 * on the request it will get requeued.
1995	 */
1996	if (brq->data.bytes_xfered)
1997		return;
1998
1999	/* Reset before last retry */
2000	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
2001	    mmc_blk_reset(md, card->host, type))
2002		return;
2003
2004	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
2005	if (brq->sbc.error || brq->cmd.error)
2006		return;
2007
2008	/* Reduce the remaining retries for data errors */
2009	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
2010		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
2011		return;
2012	}
2013
2014	if (rq_data_dir(req) == READ && brq->data.blocks >
2015			queue_physical_block_size(mq->queue) >> 9) {
2016		/* Read one (native) sector at a time */
 
2017		mmc_blk_read_single(mq, req);
2018		return;
2019	}
2020}
2021
2022static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
2023{
2024	mmc_blk_eval_resp_error(brq);
2025
2026	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
2027	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
2028}
2029
2030static int mmc_spi_err_check(struct mmc_card *card)
2031{
2032	u32 status = 0;
2033	int err;
2034
2035	/*
2036	 * SPI does not have a TRAN state we have to wait on, instead the
2037	 * card is ready again when it no longer holds the line LOW.
2038	 * We still have to ensure two things here before we know the write
2039	 * was successful:
2040	 * 1. The card has not disconnected during busy and we actually read our
2041	 * own pull-up, thinking it was still connected, so ensure it
2042	 * still responds.
2043	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
2044	 * just reconnected card after being disconnected during busy.
2045	 */
2046	err = __mmc_send_status(card, &status, 0);
2047	if (err)
2048		return err;
2049	/* All R1 and R2 bits of SPI are errors in our case */
2050	if (status)
2051		return -EIO;
2052	return 0;
2053}
2054
2055static int mmc_blk_busy_cb(void *cb_data, bool *busy)
2056{
2057	struct mmc_blk_busy_data *data = cb_data;
2058	u32 status = 0;
2059	int err;
2060
2061	err = mmc_send_status(data->card, &status);
2062	if (err)
2063		return err;
2064
2065	/* Accumulate response error bits. */
2066	data->status |= status;
2067
2068	*busy = !mmc_ready_for_data(status);
2069	return 0;
2070}
2071
2072static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2073{
2074	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2075	struct mmc_blk_busy_data cb_data;
2076	int err;
2077
2078	if (rq_data_dir(req) == READ)
2079		return 0;
2080
2081	if (mmc_host_is_spi(card->host)) {
2082		err = mmc_spi_err_check(card);
2083		if (err)
2084			mqrq->brq.data.bytes_xfered = 0;
2085		return err;
2086	}
2087
2088	cb_data.card = card;
2089	cb_data.status = 0;
2090	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2091				  &mmc_blk_busy_cb, &cb_data);
2092
2093	/*
2094	 * Do not assume data transferred correctly if there are any error bits
2095	 * set.
2096	 */
2097	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2098		mqrq->brq.data.bytes_xfered = 0;
2099		err = err ? err : -EIO;
2100	}
2101
2102	/* Copy the exception bit so it will be seen later on */
2103	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2104		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2105
2106	return err;
2107}
2108
2109static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2110					    struct request *req)
2111{
2112	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2113
2114	mmc_blk_reset_success(mq->blkdata, type);
2115}
2116
2117static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2118{
2119	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2120	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2121
2122	if (nr_bytes) {
2123		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2124			blk_mq_requeue_request(req, true);
2125		else
2126			__blk_mq_end_request(req, BLK_STS_OK);
2127	} else if (!blk_rq_bytes(req)) {
2128		__blk_mq_end_request(req, BLK_STS_IOERR);
2129	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2130		blk_mq_requeue_request(req, true);
2131	} else {
2132		if (mmc_card_removed(mq->card))
2133			req->rq_flags |= RQF_QUIET;
2134		blk_mq_end_request(req, BLK_STS_IOERR);
2135	}
2136}
2137
2138static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2139					struct mmc_queue_req *mqrq)
2140{
2141	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2142	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2143		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2144}
2145
2146static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2147				 struct mmc_queue_req *mqrq)
2148{
2149	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2150		mmc_run_bkops(mq->card);
2151}
2152
2153static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2154{
2155	struct mmc_queue_req *mqrq =
2156		container_of(mrq, struct mmc_queue_req, brq.mrq);
2157	struct request *req = mmc_queue_req_to_req(mqrq);
2158	struct request_queue *q = req->q;
2159	struct mmc_queue *mq = q->queuedata;
2160	struct mmc_host *host = mq->card->host;
2161	unsigned long flags;
2162
2163	if (mmc_blk_rq_error(&mqrq->brq) ||
2164	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2165		spin_lock_irqsave(&mq->lock, flags);
2166		mq->recovery_needed = true;
2167		mq->recovery_req = req;
2168		spin_unlock_irqrestore(&mq->lock, flags);
2169
2170		host->cqe_ops->cqe_recovery_start(host);
2171
2172		schedule_work(&mq->recovery_work);
2173		return;
2174	}
2175
2176	mmc_blk_rw_reset_success(mq, req);
2177
2178	/*
2179	 * Block layer timeouts race with completions which means the normal
2180	 * completion path cannot be used during recovery.
2181	 */
2182	if (mq->in_recovery)
2183		mmc_blk_cqe_complete_rq(mq, req);
2184	else if (likely(!blk_should_fake_timeout(req->q)))
2185		blk_mq_complete_request(req);
2186}
2187
2188void mmc_blk_mq_complete(struct request *req)
2189{
2190	struct mmc_queue *mq = req->q->queuedata;
2191	struct mmc_host *host = mq->card->host;
2192
2193	if (host->cqe_enabled)
2194		mmc_blk_cqe_complete_rq(mq, req);
2195	else if (likely(!blk_should_fake_timeout(req->q)))
2196		mmc_blk_mq_complete_rq(mq, req);
2197}
2198
2199static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2200				       struct request *req)
2201{
2202	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2203	struct mmc_host *host = mq->card->host;
2204
2205	if (mmc_blk_rq_error(&mqrq->brq) ||
2206	    mmc_blk_card_busy(mq->card, req)) {
2207		mmc_blk_mq_rw_recovery(mq, req);
2208	} else {
2209		mmc_blk_rw_reset_success(mq, req);
2210		mmc_retune_release(host);
2211	}
2212
2213	mmc_blk_urgent_bkops(mq, mqrq);
2214}
2215
2216static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2217{
2218	unsigned long flags;
2219	bool put_card;
2220
2221	spin_lock_irqsave(&mq->lock, flags);
2222
2223	mq->in_flight[issue_type] -= 1;
2224
2225	put_card = (mmc_tot_in_flight(mq) == 0);
2226
2227	spin_unlock_irqrestore(&mq->lock, flags);
2228
2229	if (put_card)
2230		mmc_put_card(mq->card, &mq->ctx);
2231}
2232
2233static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2234				bool can_sleep)
2235{
2236	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2237	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2238	struct mmc_request *mrq = &mqrq->brq.mrq;
2239	struct mmc_host *host = mq->card->host;
2240
2241	mmc_post_req(host, mrq, 0);
2242
2243	/*
2244	 * Block layer timeouts race with completions which means the normal
2245	 * completion path cannot be used during recovery.
2246	 */
2247	if (mq->in_recovery) {
2248		mmc_blk_mq_complete_rq(mq, req);
2249	} else if (likely(!blk_should_fake_timeout(req->q))) {
2250		if (can_sleep)
2251			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2252		else
2253			blk_mq_complete_request(req);
2254	}
2255
2256	mmc_blk_mq_dec_in_flight(mq, issue_type);
2257}
2258
2259void mmc_blk_mq_recovery(struct mmc_queue *mq)
2260{
2261	struct request *req = mq->recovery_req;
2262	struct mmc_host *host = mq->card->host;
2263	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2264
2265	mq->recovery_req = NULL;
2266	mq->rw_wait = false;
2267
2268	if (mmc_blk_rq_error(&mqrq->brq)) {
2269		mmc_retune_hold_now(host);
2270		mmc_blk_mq_rw_recovery(mq, req);
2271	}
2272
2273	mmc_blk_urgent_bkops(mq, mqrq);
2274
2275	mmc_blk_mq_post_req(mq, req, true);
2276}
2277
2278static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2279					 struct request **prev_req)
2280{
2281	if (mmc_host_done_complete(mq->card->host))
2282		return;
2283
2284	mutex_lock(&mq->complete_lock);
2285
2286	if (!mq->complete_req)
2287		goto out_unlock;
2288
2289	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2290
2291	if (prev_req)
2292		*prev_req = mq->complete_req;
2293	else
2294		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2295
2296	mq->complete_req = NULL;
2297
2298out_unlock:
2299	mutex_unlock(&mq->complete_lock);
2300}
2301
2302void mmc_blk_mq_complete_work(struct work_struct *work)
2303{
2304	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2305					    complete_work);
2306
2307	mmc_blk_mq_complete_prev_req(mq, NULL);
2308}
2309
2310static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2311{
2312	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2313						  brq.mrq);
2314	struct request *req = mmc_queue_req_to_req(mqrq);
2315	struct request_queue *q = req->q;
2316	struct mmc_queue *mq = q->queuedata;
2317	struct mmc_host *host = mq->card->host;
2318	unsigned long flags;
2319
2320	if (!mmc_host_done_complete(host)) {
2321		bool waiting;
2322
2323		/*
2324		 * We cannot complete the request in this context, so record
2325		 * that there is a request to complete, and that a following
2326		 * request does not need to wait (although it does need to
2327		 * complete complete_req first).
2328		 */
2329		spin_lock_irqsave(&mq->lock, flags);
2330		mq->complete_req = req;
2331		mq->rw_wait = false;
2332		waiting = mq->waiting;
2333		spin_unlock_irqrestore(&mq->lock, flags);
2334
2335		/*
2336		 * If 'waiting' then the waiting task will complete this
2337		 * request, otherwise queue a work to do it. Note that
2338		 * complete_work may still race with the dispatch of a following
2339		 * request.
2340		 */
2341		if (waiting)
2342			wake_up(&mq->wait);
2343		else
2344			queue_work(mq->card->complete_wq, &mq->complete_work);
2345
2346		return;
2347	}
2348
2349	/* Take the recovery path for errors or urgent background operations */
2350	if (mmc_blk_rq_error(&mqrq->brq) ||
2351	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2352		spin_lock_irqsave(&mq->lock, flags);
2353		mq->recovery_needed = true;
2354		mq->recovery_req = req;
2355		spin_unlock_irqrestore(&mq->lock, flags);
2356		wake_up(&mq->wait);
2357		schedule_work(&mq->recovery_work);
2358		return;
2359	}
2360
2361	mmc_blk_rw_reset_success(mq, req);
2362
2363	mq->rw_wait = false;
2364	wake_up(&mq->wait);
2365
2366	/* context unknown */
2367	mmc_blk_mq_post_req(mq, req, false);
2368}
2369
2370static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2371{
2372	unsigned long flags;
2373	bool done;
2374
2375	/*
2376	 * Wait while there is another request in progress, but not if recovery
2377	 * is needed. Also indicate whether there is a request waiting to start.
2378	 */
2379	spin_lock_irqsave(&mq->lock, flags);
2380	if (mq->recovery_needed) {
2381		*err = -EBUSY;
2382		done = true;
2383	} else {
2384		done = !mq->rw_wait;
2385	}
2386	mq->waiting = !done;
2387	spin_unlock_irqrestore(&mq->lock, flags);
2388
2389	return done;
2390}
2391
2392static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2393{
2394	int err = 0;
2395
2396	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2397
2398	/* Always complete the previous request if there is one */
2399	mmc_blk_mq_complete_prev_req(mq, prev_req);
2400
2401	return err;
2402}
2403
2404static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2405				  struct request *req)
2406{
2407	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2408	struct mmc_host *host = mq->card->host;
2409	struct request *prev_req = NULL;
2410	int err = 0;
2411
2412	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2413
2414	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2415
2416	mmc_pre_req(host, &mqrq->brq.mrq);
2417
2418	err = mmc_blk_rw_wait(mq, &prev_req);
2419	if (err)
2420		goto out_post_req;
2421
2422	mq->rw_wait = true;
2423
2424	err = mmc_start_request(host, &mqrq->brq.mrq);
2425
2426	if (prev_req)
2427		mmc_blk_mq_post_req(mq, prev_req, true);
2428
2429	if (err)
2430		mq->rw_wait = false;
2431
2432	/* Release re-tuning here where there is no synchronization required */
2433	if (err || mmc_host_done_complete(host))
2434		mmc_retune_release(host);
2435
2436out_post_req:
2437	if (err)
2438		mmc_post_req(host, &mqrq->brq.mrq, err);
2439
2440	return err;
2441}
2442
2443static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2444{
2445	if (host->cqe_enabled)
2446		return host->cqe_ops->cqe_wait_for_idle(host);
2447
2448	return mmc_blk_rw_wait(mq, NULL);
2449}
2450
2451enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2452{
2453	struct mmc_blk_data *md = mq->blkdata;
2454	struct mmc_card *card = md->queue.card;
2455	struct mmc_host *host = card->host;
2456	int ret;
2457
2458	ret = mmc_blk_part_switch(card, md->part_type);
2459	if (ret)
2460		return MMC_REQ_FAILED_TO_START;
2461
2462	switch (mmc_issue_type(mq, req)) {
2463	case MMC_ISSUE_SYNC:
2464		ret = mmc_blk_wait_for_idle(mq, host);
2465		if (ret)
2466			return MMC_REQ_BUSY;
2467		switch (req_op(req)) {
2468		case REQ_OP_DRV_IN:
2469		case REQ_OP_DRV_OUT:
2470			mmc_blk_issue_drv_op(mq, req);
2471			break;
2472		case REQ_OP_DISCARD:
2473			mmc_blk_issue_discard_rq(mq, req);
2474			break;
2475		case REQ_OP_SECURE_ERASE:
2476			mmc_blk_issue_secdiscard_rq(mq, req);
2477			break;
2478		case REQ_OP_WRITE_ZEROES:
2479			mmc_blk_issue_trim_rq(mq, req);
2480			break;
2481		case REQ_OP_FLUSH:
2482			mmc_blk_issue_flush(mq, req);
2483			break;
2484		default:
2485			WARN_ON_ONCE(1);
2486			return MMC_REQ_FAILED_TO_START;
2487		}
2488		return MMC_REQ_FINISHED;
2489	case MMC_ISSUE_DCMD:
2490	case MMC_ISSUE_ASYNC:
2491		switch (req_op(req)) {
2492		case REQ_OP_FLUSH:
2493			if (!mmc_cache_enabled(host)) {
2494				blk_mq_end_request(req, BLK_STS_OK);
2495				return MMC_REQ_FINISHED;
2496			}
2497			ret = mmc_blk_cqe_issue_flush(mq, req);
2498			break;
2499		case REQ_OP_WRITE:
2500			card->written_flag = true;
2501			fallthrough;
2502		case REQ_OP_READ:
 
2503			if (host->cqe_enabled)
2504				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2505			else
2506				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2507			break;
2508		default:
2509			WARN_ON_ONCE(1);
2510			ret = -EINVAL;
2511		}
2512		if (!ret)
2513			return MMC_REQ_STARTED;
2514		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2515	default:
2516		WARN_ON_ONCE(1);
2517		return MMC_REQ_FAILED_TO_START;
2518	}
2519}
2520
2521static inline int mmc_blk_readonly(struct mmc_card *card)
2522{
2523	return mmc_card_readonly(card) ||
2524	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2525}
2526
2527/*
2528 * Search for a declared partitions node for the disk in mmc-card related node.
2529 *
2530 * This is to permit support for partition table defined in DT in special case
2531 * where a partition table is not written in the disk and is expected to be
2532 * passed from the running system.
2533 *
2534 * For the user disk, "partitions" node is searched.
2535 * For the special HW disk, "partitions-" node with the appended name is used
2536 * following this conversion table (to adhere to JEDEC naming)
2537 * - boot0 -> partitions-boot1
2538 * - boot1 -> partitions-boot2
2539 * - gp0 -> partitions-gp1
2540 * - gp1 -> partitions-gp2
2541 * - gp2 -> partitions-gp3
2542 * - gp3 -> partitions-gp4
2543 */
2544static struct fwnode_handle *mmc_blk_get_partitions_node(struct device *mmc_dev,
2545							 const char *subname)
2546{
2547	const char *node_name = "partitions";
2548
2549	if (subname) {
2550		mmc_dev = mmc_dev->parent;
2551
2552		/*
2553		 * Check if we are allocating a BOOT disk boot0/1 disk.
2554		 * In DT we use the JEDEC naming boot1/2.
2555		 */
2556		if (!strcmp(subname, "boot0"))
2557			node_name = "partitions-boot1";
2558		if (!strcmp(subname, "boot1"))
2559			node_name = "partitions-boot2";
2560		/*
2561		 * Check if we are allocating a GP disk gp0/1/2/3 disk.
2562		 * In DT we use the JEDEC naming gp1/2/3/4.
2563		 */
2564		if (!strcmp(subname, "gp0"))
2565			node_name = "partitions-gp1";
2566		if (!strcmp(subname, "gp1"))
2567			node_name = "partitions-gp2";
2568		if (!strcmp(subname, "gp2"))
2569			node_name = "partitions-gp3";
2570		if (!strcmp(subname, "gp3"))
2571			node_name = "partitions-gp4";
2572	}
2573
2574	return device_get_named_child_node(mmc_dev, node_name);
2575}
2576
2577static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2578					      struct device *parent,
2579					      sector_t size,
2580					      bool default_ro,
2581					      const char *subname,
2582					      int area_type,
2583					      unsigned int part_type)
2584{
2585	struct fwnode_handle *disk_fwnode;
2586	struct mmc_blk_data *md;
2587	int devidx, ret;
2588	char cap_str[10];
2589	unsigned int features = 0;
2590
2591	devidx = ida_alloc_max(&mmc_blk_ida, max_devices - 1, GFP_KERNEL);
2592	if (devidx < 0) {
2593		/*
2594		 * We get -ENOSPC because there are no more any available
2595		 * devidx. The reason may be that, either userspace haven't yet
2596		 * unmounted the partitions, which postpones mmc_blk_release()
2597		 * from being called, or the device has more partitions than
2598		 * what we support.
2599		 */
2600		if (devidx == -ENOSPC)
2601			dev_err(mmc_dev(card->host),
2602				"no more device IDs available\n");
2603
2604		return ERR_PTR(devidx);
2605	}
2606
2607	md = kzalloc(sizeof(*md), GFP_KERNEL);
2608	if (!md) {
2609		ret = -ENOMEM;
2610		goto out;
2611	}
2612
2613	md->area_type = area_type;
2614
2615	/*
2616	 * Set the read-only status based on the supported commands
2617	 * and the write protect switch.
2618	 */
2619	md->read_only = mmc_blk_readonly(card);
2620
2621	if (mmc_host_cmd23(card->host)) {
2622		if ((mmc_card_mmc(card) &&
2623		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2624		    (mmc_card_sd(card) && !mmc_card_ult_capacity(card) &&
2625		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2626			md->flags |= MMC_BLK_CMD23;
2627	}
2628
2629	if (md->flags & MMC_BLK_CMD23 &&
2630	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2631	     card->ext_csd.rel_sectors)) {
2632		md->flags |= MMC_BLK_REL_WR;
2633		features |= (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2634	} else if (mmc_cache_enabled(card->host)) {
2635		features |= BLK_FEAT_WRITE_CACHE;
2636	}
2637
2638	md->disk = mmc_init_queue(&md->queue, card, features);
2639	if (IS_ERR(md->disk)) {
2640		ret = PTR_ERR(md->disk);
2641		goto err_kfree;
2642	}
2643
2644	INIT_LIST_HEAD(&md->part);
2645	INIT_LIST_HEAD(&md->rpmbs);
2646	kref_init(&md->kref);
2647
2648	md->queue.blkdata = md;
2649	md->part_type = part_type;
2650
2651	md->disk->major	= MMC_BLOCK_MAJOR;
2652	md->disk->minors = perdev_minors;
2653	md->disk->first_minor = devidx * perdev_minors;
2654	md->disk->fops = &mmc_bdops;
2655	md->disk->private_data = md;
2656	md->parent = parent;
2657	set_disk_ro(md->disk, md->read_only || default_ro);
 
2658	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2659		md->disk->flags |= GENHD_FL_NO_PART;
 
2660
2661	/*
2662	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2663	 *
2664	 * - be set for removable media with permanent block devices
2665	 * - be unset for removable block devices with permanent media
2666	 *
2667	 * Since MMC block devices clearly fall under the second
2668	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2669	 * should use the block device creation/destruction hotplug
2670	 * messages to tell when the card is present.
2671	 */
2672
2673	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2674		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2675
2676	set_capacity(md->disk, size);
2677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2678	string_get_size((u64)size, 512, STRING_UNITS_2,
2679			cap_str, sizeof(cap_str));
2680	pr_info("%s: %s %s %s%s\n",
2681		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2682		cap_str, md->read_only ? " (ro)" : "");
2683
2684	/* used in ->open, must be set before add_disk: */
2685	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2686		dev_set_drvdata(&card->dev, md);
2687	disk_fwnode = mmc_blk_get_partitions_node(parent, subname);
2688	ret = add_disk_fwnode(md->parent, md->disk, mmc_disk_attr_groups,
2689			      disk_fwnode);
2690	if (ret)
2691		goto err_put_disk;
2692	return md;
2693
2694 err_put_disk:
2695	put_disk(md->disk);
2696	blk_mq_free_tag_set(&md->queue.tag_set);
2697 err_kfree:
2698	kfree(md);
2699 out:
2700	ida_free(&mmc_blk_ida, devidx);
2701	return ERR_PTR(ret);
2702}
2703
2704static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2705{
2706	sector_t size;
2707
2708	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2709		/*
2710		 * The EXT_CSD sector count is in number or 512 byte
2711		 * sectors.
2712		 */
2713		size = card->ext_csd.sectors;
2714	} else {
2715		/*
2716		 * The CSD capacity field is in units of read_blkbits.
2717		 * set_capacity takes units of 512 bytes.
2718		 */
2719		size = (typeof(sector_t))card->csd.capacity
2720			<< (card->csd.read_blkbits - 9);
2721	}
2722
2723	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2724					MMC_BLK_DATA_AREA_MAIN, 0);
2725}
2726
2727static int mmc_blk_alloc_part(struct mmc_card *card,
2728			      struct mmc_blk_data *md,
2729			      unsigned int part_type,
2730			      sector_t size,
2731			      bool default_ro,
2732			      const char *subname,
2733			      int area_type)
2734{
2735	struct mmc_blk_data *part_md;
2736
2737	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2738				    subname, area_type, part_type);
2739	if (IS_ERR(part_md))
2740		return PTR_ERR(part_md);
 
2741	list_add(&part_md->part, &md->part);
2742
2743	return 0;
2744}
2745
2746/**
2747 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2748 * @filp: the character device file
2749 * @cmd: the ioctl() command
2750 * @arg: the argument from userspace
2751 *
2752 * This will essentially just redirect the ioctl()s coming in over to
2753 * the main block device spawning the RPMB character device.
2754 */
2755static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2756			   unsigned long arg)
2757{
2758	struct mmc_rpmb_data *rpmb = filp->private_data;
2759	int ret;
2760
2761	switch (cmd) {
2762	case MMC_IOC_CMD:
2763		ret = mmc_blk_ioctl_cmd(rpmb->md,
2764					(struct mmc_ioc_cmd __user *)arg,
2765					rpmb);
2766		break;
2767	case MMC_IOC_MULTI_CMD:
2768		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2769					(struct mmc_ioc_multi_cmd __user *)arg,
2770					rpmb);
2771		break;
2772	default:
2773		ret = -EINVAL;
2774		break;
2775	}
2776
2777	return ret;
2778}
2779
2780#ifdef CONFIG_COMPAT
2781static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2782			      unsigned long arg)
2783{
2784	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2785}
2786#endif
2787
2788static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2789{
2790	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2791						  struct mmc_rpmb_data, chrdev);
2792
2793	get_device(&rpmb->dev);
2794	filp->private_data = rpmb;
 
2795
2796	return nonseekable_open(inode, filp);
2797}
2798
2799static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2800{
2801	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2802						  struct mmc_rpmb_data, chrdev);
2803
 
2804	put_device(&rpmb->dev);
2805
2806	return 0;
2807}
2808
2809static const struct file_operations mmc_rpmb_fileops = {
2810	.release = mmc_rpmb_chrdev_release,
2811	.open = mmc_rpmb_chrdev_open,
2812	.owner = THIS_MODULE,
 
2813	.unlocked_ioctl = mmc_rpmb_ioctl,
2814#ifdef CONFIG_COMPAT
2815	.compat_ioctl = mmc_rpmb_ioctl_compat,
2816#endif
2817};
2818
2819static void mmc_blk_rpmb_device_release(struct device *dev)
2820{
2821	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2822
2823	rpmb_dev_unregister(rpmb->rdev);
2824	mmc_blk_put(rpmb->md);
2825	ida_free(&mmc_rpmb_ida, rpmb->id);
2826	kfree(rpmb);
2827}
2828
2829static void free_idata(struct mmc_blk_ioc_data **idata, unsigned int cmd_count)
2830{
2831	unsigned int n;
2832
2833	for (n = 0; n < cmd_count; n++)
2834		kfree(idata[n]);
2835	kfree(idata);
2836}
2837
2838static struct mmc_blk_ioc_data **alloc_idata(struct mmc_rpmb_data *rpmb,
2839					     unsigned int cmd_count)
2840{
2841	struct mmc_blk_ioc_data **idata;
2842	unsigned int n;
2843
2844	idata = kcalloc(cmd_count, sizeof(*idata), GFP_KERNEL);
2845	if (!idata)
2846		return NULL;
2847
2848	for (n = 0; n < cmd_count; n++) {
2849		idata[n] = kcalloc(1, sizeof(**idata), GFP_KERNEL);
2850		if (!idata[n]) {
2851			free_idata(idata, n);
2852			return NULL;
2853		}
2854		idata[n]->rpmb = rpmb;
2855	}
2856
2857	return idata;
2858}
2859
2860static void set_idata(struct mmc_blk_ioc_data *idata, u32 opcode,
2861		      int write_flag, u8 *buf, unsigned int buf_bytes)
2862{
2863	/*
2864	 * The size of an RPMB frame must match what's expected by the
2865	 * hardware.
2866	 */
2867	BUILD_BUG_ON(sizeof(struct rpmb_frame) != 512);
2868
2869	idata->ic.opcode = opcode;
2870	idata->ic.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
2871	idata->ic.write_flag = write_flag;
2872	idata->ic.blksz = sizeof(struct rpmb_frame);
2873	idata->ic.blocks = buf_bytes /  idata->ic.blksz;
2874	idata->buf = buf;
2875	idata->buf_bytes = buf_bytes;
2876}
2877
2878static int mmc_route_rpmb_frames(struct device *dev, u8 *req,
2879				 unsigned int req_len, u8 *resp,
2880				 unsigned int resp_len)
2881{
2882	struct rpmb_frame *frm = (struct rpmb_frame *)req;
2883	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2884	struct mmc_blk_data *md = rpmb->md;
2885	struct mmc_blk_ioc_data **idata;
2886	struct mmc_queue_req *mq_rq;
2887	unsigned int cmd_count;
2888	struct request *rq;
2889	u16 req_type;
2890	bool write;
2891	int ret;
2892
2893	if (IS_ERR(md->queue.card))
2894		return PTR_ERR(md->queue.card);
2895
2896	if (req_len < sizeof(*frm))
2897		return -EINVAL;
2898
2899	req_type = be16_to_cpu(frm->req_resp);
2900	switch (req_type) {
2901	case RPMB_PROGRAM_KEY:
2902		if (req_len != sizeof(struct rpmb_frame) ||
2903		    resp_len != sizeof(struct rpmb_frame))
2904			return -EINVAL;
2905		write = true;
2906		break;
2907	case RPMB_GET_WRITE_COUNTER:
2908		if (req_len != sizeof(struct rpmb_frame) ||
2909		    resp_len != sizeof(struct rpmb_frame))
2910			return -EINVAL;
2911		write = false;
2912		break;
2913	case RPMB_WRITE_DATA:
2914		if (req_len % sizeof(struct rpmb_frame) ||
2915		    resp_len != sizeof(struct rpmb_frame))
2916			return -EINVAL;
2917		write = true;
2918		break;
2919	case RPMB_READ_DATA:
2920		if (req_len != sizeof(struct rpmb_frame) ||
2921		    resp_len % sizeof(struct rpmb_frame))
2922			return -EINVAL;
2923		write = false;
2924		break;
2925	default:
2926		return -EINVAL;
2927	}
2928
2929	if (write)
2930		cmd_count = 3;
2931	else
2932		cmd_count = 2;
2933
2934	idata = alloc_idata(rpmb, cmd_count);
2935	if (!idata)
2936		return -ENOMEM;
2937
2938	if (write) {
2939		struct rpmb_frame *frm = (struct rpmb_frame *)resp;
2940
2941		/* Send write request frame(s) */
2942		set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK,
2943			  1 | MMC_CMD23_ARG_REL_WR, req, req_len);
2944
2945		/* Send result request frame */
2946		memset(frm, 0, sizeof(*frm));
2947		frm->req_resp = cpu_to_be16(RPMB_RESULT_READ);
2948		set_idata(idata[1], MMC_WRITE_MULTIPLE_BLOCK, 1, resp,
2949			  resp_len);
2950
2951		/* Read response frame */
2952		set_idata(idata[2], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2953	} else {
2954		/* Send write request frame(s) */
2955		set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK, 1, req, req_len);
2956
2957		/* Read response frame */
2958		set_idata(idata[1], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2959	}
2960
2961	rq = blk_mq_alloc_request(md->queue.queue, REQ_OP_DRV_OUT, 0);
2962	if (IS_ERR(rq)) {
2963		ret = PTR_ERR(rq);
2964		goto out;
2965	}
2966
2967	mq_rq = req_to_mmc_queue_req(rq);
2968	mq_rq->drv_op = MMC_DRV_OP_IOCTL_RPMB;
2969	mq_rq->drv_op_result = -EIO;
2970	mq_rq->drv_op_data = idata;
2971	mq_rq->ioc_count = cmd_count;
2972	blk_execute_rq(rq, false);
2973	ret = req_to_mmc_queue_req(rq)->drv_op_result;
2974
2975	blk_mq_free_request(rq);
2976
2977out:
2978	free_idata(idata, cmd_count);
2979	return ret;
2980}
2981
2982static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2983				   struct mmc_blk_data *md,
2984				   unsigned int part_index,
2985				   sector_t size,
2986				   const char *subname)
2987{
2988	int devidx, ret;
2989	char rpmb_name[DISK_NAME_LEN];
2990	char cap_str[10];
2991	struct mmc_rpmb_data *rpmb;
2992
2993	/* This creates the minor number for the RPMB char device */
2994	devidx = ida_alloc_max(&mmc_rpmb_ida, max_devices - 1, GFP_KERNEL);
2995	if (devidx < 0)
2996		return devidx;
2997
2998	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2999	if (!rpmb) {
3000		ida_free(&mmc_rpmb_ida, devidx);
3001		return -ENOMEM;
3002	}
3003
3004	snprintf(rpmb_name, sizeof(rpmb_name),
3005		 "mmcblk%u%s", card->host->index, subname ? subname : "");
3006
3007	rpmb->id = devidx;
3008	rpmb->part_index = part_index;
3009	rpmb->dev.init_name = rpmb_name;
3010	rpmb->dev.bus = &mmc_rpmb_bus_type;
3011	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
3012	rpmb->dev.parent = &card->dev;
3013	rpmb->dev.release = mmc_blk_rpmb_device_release;
3014	device_initialize(&rpmb->dev);
3015	dev_set_drvdata(&rpmb->dev, rpmb);
3016	mmc_blk_get(md->disk);
3017	rpmb->md = md;
3018
3019	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
3020	rpmb->chrdev.owner = THIS_MODULE;
3021	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
3022	if (ret) {
3023		pr_err("%s: could not add character device\n", rpmb_name);
3024		goto out_put_device;
3025	}
3026
3027	list_add(&rpmb->node, &md->rpmbs);
3028
3029	string_get_size((u64)size, 512, STRING_UNITS_2,
3030			cap_str, sizeof(cap_str));
3031
3032	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
3033		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
3034		MAJOR(mmc_rpmb_devt), rpmb->id);
3035
3036	return 0;
3037
3038out_put_device:
3039	put_device(&rpmb->dev);
3040	return ret;
3041}
3042
3043static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
3044
3045{
3046	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
3047	put_device(&rpmb->dev);
3048}
3049
3050/* MMC Physical partitions consist of two boot partitions and
3051 * up to four general purpose partitions.
3052 * For each partition enabled in EXT_CSD a block device will be allocatedi
3053 * to provide access to the partition.
3054 */
3055
3056static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
3057{
3058	int idx, ret;
3059
3060	if (!mmc_card_mmc(card))
3061		return 0;
3062
3063	for (idx = 0; idx < card->nr_parts; idx++) {
3064		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
3065			/*
3066			 * RPMB partitions does not provide block access, they
3067			 * are only accessed using ioctl():s. Thus create
3068			 * special RPMB block devices that do not have a
3069			 * backing block queue for these.
3070			 */
3071			ret = mmc_blk_alloc_rpmb_part(card, md,
3072				card->part[idx].part_cfg,
3073				card->part[idx].size >> 9,
3074				card->part[idx].name);
3075			if (ret)
3076				return ret;
3077		} else if (card->part[idx].size) {
3078			ret = mmc_blk_alloc_part(card, md,
3079				card->part[idx].part_cfg,
3080				card->part[idx].size >> 9,
3081				card->part[idx].force_ro,
3082				card->part[idx].name,
3083				card->part[idx].area_type);
3084			if (ret)
3085				return ret;
3086		}
3087	}
3088
3089	return 0;
3090}
3091
3092static void mmc_blk_remove_req(struct mmc_blk_data *md)
3093{
3094	/*
3095	 * Flush remaining requests and free queues. It is freeing the queue
3096	 * that stops new requests from being accepted.
3097	 */
3098	del_gendisk(md->disk);
3099	mmc_cleanup_queue(&md->queue);
3100	mmc_blk_put(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3101}
3102
3103static void mmc_blk_remove_parts(struct mmc_card *card,
3104				 struct mmc_blk_data *md)
3105{
3106	struct list_head *pos, *q;
3107	struct mmc_blk_data *part_md;
3108	struct mmc_rpmb_data *rpmb;
3109
3110	/* Remove RPMB partitions */
3111	list_for_each_safe(pos, q, &md->rpmbs) {
3112		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
3113		list_del(pos);
3114		mmc_blk_remove_rpmb_part(rpmb);
3115	}
3116	/* Remove block partitions */
3117	list_for_each_safe(pos, q, &md->part) {
3118		part_md = list_entry(pos, struct mmc_blk_data, part);
3119		list_del(pos);
3120		mmc_blk_remove_req(part_md);
3121	}
3122}
3123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3124#ifdef CONFIG_DEBUG_FS
3125
3126static int mmc_dbg_card_status_get(void *data, u64 *val)
3127{
3128	struct mmc_card *card = data;
3129	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3130	struct mmc_queue *mq = &md->queue;
3131	struct request *req;
3132	int ret;
3133
3134	/* Ask the block layer about the card status */
3135	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3136	if (IS_ERR(req))
3137		return PTR_ERR(req);
3138	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
3139	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3140	blk_execute_rq(req, false);
3141	ret = req_to_mmc_queue_req(req)->drv_op_result;
3142	if (ret >= 0) {
3143		*val = ret;
3144		ret = 0;
3145	}
3146	blk_mq_free_request(req);
3147
3148	return ret;
3149}
3150DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
3151			 NULL, "%08llx\n");
3152
3153/* That is two digits * 512 + 1 for newline */
3154#define EXT_CSD_STR_LEN 1025
3155
3156static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
3157{
3158	struct mmc_card *card = inode->i_private;
3159	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3160	struct mmc_queue *mq = &md->queue;
3161	struct request *req;
3162	char *buf;
3163	ssize_t n = 0;
3164	u8 *ext_csd;
3165	int err, i;
3166
3167	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
3168	if (!buf)
3169		return -ENOMEM;
3170
3171	/* Ask the block layer for the EXT CSD */
3172	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3173	if (IS_ERR(req)) {
3174		err = PTR_ERR(req);
3175		goto out_free;
3176	}
3177	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
3178	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3179	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
3180	blk_execute_rq(req, false);
3181	err = req_to_mmc_queue_req(req)->drv_op_result;
3182	blk_mq_free_request(req);
3183	if (err) {
3184		pr_err("FAILED %d\n", err);
3185		goto out_free;
3186	}
3187
3188	for (i = 0; i < 512; i++)
3189		n += sprintf(buf + n, "%02x", ext_csd[i]);
3190	n += sprintf(buf + n, "\n");
3191
3192	if (n != EXT_CSD_STR_LEN) {
3193		err = -EINVAL;
3194		kfree(ext_csd);
3195		goto out_free;
3196	}
3197
3198	filp->private_data = buf;
3199	kfree(ext_csd);
3200	return 0;
3201
3202out_free:
3203	kfree(buf);
3204	return err;
3205}
3206
3207static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
3208				size_t cnt, loff_t *ppos)
3209{
3210	char *buf = filp->private_data;
3211
3212	return simple_read_from_buffer(ubuf, cnt, ppos,
3213				       buf, EXT_CSD_STR_LEN);
3214}
3215
3216static int mmc_ext_csd_release(struct inode *inode, struct file *file)
3217{
3218	kfree(file->private_data);
3219	return 0;
3220}
3221
3222static const struct file_operations mmc_dbg_ext_csd_fops = {
3223	.open		= mmc_ext_csd_open,
3224	.read		= mmc_ext_csd_read,
3225	.release	= mmc_ext_csd_release,
3226	.llseek		= default_llseek,
3227};
3228
3229static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3230{
3231	struct dentry *root;
3232
3233	if (!card->debugfs_root)
3234		return;
3235
3236	root = card->debugfs_root;
3237
3238	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
3239		md->status_dentry =
3240			debugfs_create_file_unsafe("status", 0400, root,
3241						   card,
3242						   &mmc_dbg_card_status_fops);
 
 
3243	}
3244
3245	if (mmc_card_mmc(card)) {
3246		md->ext_csd_dentry =
3247			debugfs_create_file("ext_csd", S_IRUSR, root, card,
3248					    &mmc_dbg_ext_csd_fops);
 
 
3249	}
 
 
3250}
3251
3252static void mmc_blk_remove_debugfs(struct mmc_card *card,
3253				   struct mmc_blk_data *md)
3254{
3255	if (!card->debugfs_root)
3256		return;
3257
3258	debugfs_remove(md->status_dentry);
3259	md->status_dentry = NULL;
 
 
3260
3261	debugfs_remove(md->ext_csd_dentry);
3262	md->ext_csd_dentry = NULL;
 
 
3263}
3264
3265#else
3266
3267static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3268{
 
3269}
3270
3271static void mmc_blk_remove_debugfs(struct mmc_card *card,
3272				   struct mmc_blk_data *md)
3273{
3274}
3275
3276#endif /* CONFIG_DEBUG_FS */
3277
3278static void mmc_blk_rpmb_add(struct mmc_card *card)
3279{
3280	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3281	struct mmc_rpmb_data *rpmb;
3282	struct rpmb_dev *rdev;
3283	unsigned int n;
3284	u32 cid[4];
3285	struct rpmb_descr descr = {
3286		.type = RPMB_TYPE_EMMC,
3287		.route_frames = mmc_route_rpmb_frames,
3288		.reliable_wr_count = card->ext_csd.enhanced_rpmb_supported ?
3289				     2 : 32,
3290		.capacity = card->ext_csd.raw_rpmb_size_mult,
3291		.dev_id = (void *)cid,
3292		.dev_id_len = sizeof(cid),
3293	};
3294
3295	/*
3296	 * Provice CID as an octet array. The CID needs to be interpreted
3297	 * when used as input to derive the RPMB key since some fields
3298	 * will change due to firmware updates.
3299	 */
3300	for (n = 0; n < 4; n++)
3301		cid[n] = be32_to_cpu((__force __be32)card->raw_cid[n]);
3302
3303	list_for_each_entry(rpmb, &md->rpmbs, node) {
3304		rdev = rpmb_dev_register(&rpmb->dev, &descr);
3305		if (IS_ERR(rdev)) {
3306			pr_warn("%s: could not register RPMB device\n",
3307				dev_name(&rpmb->dev));
3308			continue;
3309		}
3310		rpmb->rdev = rdev;
3311	}
3312}
3313
3314static int mmc_blk_probe(struct mmc_card *card)
3315{
3316	struct mmc_blk_data *md;
3317	int ret = 0;
3318
3319	/*
3320	 * Check that the card supports the command class(es) we need.
3321	 */
3322	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3323		return -ENODEV;
3324
3325	mmc_fixup_device(card, mmc_blk_fixups);
3326
3327	card->complete_wq = alloc_workqueue("mmc_complete",
3328					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3329	if (!card->complete_wq) {
3330		pr_err("Failed to create mmc completion workqueue");
3331		return -ENOMEM;
3332	}
3333
3334	md = mmc_blk_alloc(card);
3335	if (IS_ERR(md)) {
3336		ret = PTR_ERR(md);
3337		goto out_free;
3338	}
3339
3340	ret = mmc_blk_alloc_parts(card, md);
3341	if (ret)
3342		goto out;
3343
 
 
 
 
 
 
 
 
 
 
 
 
3344	/* Add two debugfs entries */
3345	mmc_blk_add_debugfs(card, md);
3346
3347	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3348	pm_runtime_use_autosuspend(&card->dev);
3349
3350	/*
3351	 * Don't enable runtime PM for SD-combo cards here. Leave that
3352	 * decision to be taken during the SDIO init sequence instead.
3353	 */
3354	if (!mmc_card_sd_combo(card)) {
3355		pm_runtime_set_active(&card->dev);
3356		pm_runtime_enable(&card->dev);
3357	}
3358
3359	mmc_blk_rpmb_add(card);
3360
3361	return 0;
3362
3363out:
3364	mmc_blk_remove_parts(card, md);
3365	mmc_blk_remove_req(md);
3366out_free:
3367	destroy_workqueue(card->complete_wq);
3368	return ret;
3369}
3370
3371static void mmc_blk_remove(struct mmc_card *card)
3372{
3373	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3374
3375	mmc_blk_remove_debugfs(card, md);
3376	mmc_blk_remove_parts(card, md);
3377	pm_runtime_get_sync(&card->dev);
3378	if (md->part_curr != md->part_type) {
3379		mmc_claim_host(card->host);
3380		mmc_blk_part_switch(card, md->part_type);
3381		mmc_release_host(card->host);
3382	}
3383	if (!mmc_card_sd_combo(card))
3384		pm_runtime_disable(&card->dev);
3385	pm_runtime_put_noidle(&card->dev);
3386	mmc_blk_remove_req(md);
 
3387	destroy_workqueue(card->complete_wq);
3388}
3389
3390static int _mmc_blk_suspend(struct mmc_card *card)
3391{
3392	struct mmc_blk_data *part_md;
3393	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3394
3395	if (md) {
3396		mmc_queue_suspend(&md->queue);
3397		list_for_each_entry(part_md, &md->part, part) {
3398			mmc_queue_suspend(&part_md->queue);
3399		}
3400	}
3401	return 0;
3402}
3403
3404static void mmc_blk_shutdown(struct mmc_card *card)
3405{
3406	_mmc_blk_suspend(card);
3407}
3408
3409#ifdef CONFIG_PM_SLEEP
3410static int mmc_blk_suspend(struct device *dev)
3411{
3412	struct mmc_card *card = mmc_dev_to_card(dev);
3413
3414	return _mmc_blk_suspend(card);
3415}
3416
3417static int mmc_blk_resume(struct device *dev)
3418{
3419	struct mmc_blk_data *part_md;
3420	struct mmc_blk_data *md = dev_get_drvdata(dev);
3421
3422	if (md) {
3423		/*
3424		 * Resume involves the card going into idle state,
3425		 * so current partition is always the main one.
3426		 */
3427		md->part_curr = md->part_type;
3428		mmc_queue_resume(&md->queue);
3429		list_for_each_entry(part_md, &md->part, part) {
3430			mmc_queue_resume(&part_md->queue);
3431		}
3432	}
3433	return 0;
3434}
3435#endif
3436
3437static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3438
3439static struct mmc_driver mmc_driver = {
3440	.drv		= {
3441		.name	= "mmcblk",
3442		.pm	= &mmc_blk_pm_ops,
3443	},
3444	.probe		= mmc_blk_probe,
3445	.remove		= mmc_blk_remove,
3446	.shutdown	= mmc_blk_shutdown,
3447};
3448
3449static int __init mmc_blk_init(void)
3450{
3451	int res;
3452
3453	res  = bus_register(&mmc_rpmb_bus_type);
3454	if (res < 0) {
3455		pr_err("mmcblk: could not register RPMB bus type\n");
3456		return res;
3457	}
3458	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3459	if (res < 0) {
3460		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3461		goto out_bus_unreg;
3462	}
3463
3464	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3465		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3466
3467	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3468
3469	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3470	if (res)
3471		goto out_chrdev_unreg;
3472
3473	res = mmc_register_driver(&mmc_driver);
3474	if (res)
3475		goto out_blkdev_unreg;
3476
3477	return 0;
3478
3479out_blkdev_unreg:
3480	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3481out_chrdev_unreg:
3482	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3483out_bus_unreg:
3484	bus_unregister(&mmc_rpmb_bus_type);
3485	return res;
3486}
3487
3488static void __exit mmc_blk_exit(void)
3489{
3490	mmc_unregister_driver(&mmc_driver);
3491	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3492	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3493	bus_unregister(&mmc_rpmb_bus_type);
3494}
3495
3496module_init(mmc_blk_init);
3497module_exit(mmc_blk_exit);
3498
3499MODULE_LICENSE("GPL");
3500MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block driver for media (i.e., flash cards)
   4 *
   5 * Copyright 2002 Hewlett-Packard Company
   6 * Copyright 2005-2008 Pierre Ossman
   7 *
   8 * Use consistent with the GNU GPL is permitted,
   9 * provided that this copyright notice is
  10 * preserved in its entirety in all copies and derived works.
  11 *
  12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  14 * FITNESS FOR ANY PARTICULAR PURPOSE.
  15 *
  16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  17 *
  18 * Author:  Andrew Christian
  19 *          28 May 2002
  20 */
  21#include <linux/moduleparam.h>
  22#include <linux/module.h>
  23#include <linux/init.h>
  24
  25#include <linux/kernel.h>
  26#include <linux/fs.h>
  27#include <linux/slab.h>
  28#include <linux/errno.h>
  29#include <linux/hdreg.h>
  30#include <linux/kdev_t.h>
  31#include <linux/kref.h>
  32#include <linux/blkdev.h>
  33#include <linux/cdev.h>
  34#include <linux/mutex.h>
  35#include <linux/scatterlist.h>
 
  36#include <linux/string_helpers.h>
  37#include <linux/delay.h>
  38#include <linux/capability.h>
  39#include <linux/compat.h>
  40#include <linux/pm_runtime.h>
  41#include <linux/idr.h>
  42#include <linux/debugfs.h>
 
  43
  44#include <linux/mmc/ioctl.h>
  45#include <linux/mmc/card.h>
  46#include <linux/mmc/host.h>
  47#include <linux/mmc/mmc.h>
  48#include <linux/mmc/sd.h>
  49
  50#include <linux/uaccess.h>
 
  51
  52#include "queue.h"
  53#include "block.h"
  54#include "core.h"
  55#include "card.h"
  56#include "crypto.h"
  57#include "host.h"
  58#include "bus.h"
  59#include "mmc_ops.h"
  60#include "quirks.h"
  61#include "sd_ops.h"
  62
  63MODULE_ALIAS("mmc:block");
  64#ifdef MODULE_PARAM_PREFIX
  65#undef MODULE_PARAM_PREFIX
  66#endif
  67#define MODULE_PARAM_PREFIX "mmcblk."
  68
  69/*
  70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
  71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
  72 * second software timer to timeout the whole request, so 10 seconds should be
  73 * ample.
  74 */
  75#define MMC_BLK_TIMEOUT_MS  (10 * 1000)
  76#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  77#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
  78
  79#define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
  80				  (rq_data_dir(req) == WRITE))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81static DEFINE_MUTEX(block_mutex);
  82
  83/*
  84 * The defaults come from config options but can be overriden by module
  85 * or bootarg options.
  86 */
  87static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  88
  89/*
  90 * We've only got one major, so number of mmcblk devices is
  91 * limited to (1 << 20) / number of minors per device.  It is also
  92 * limited by the MAX_DEVICES below.
  93 */
  94static int max_devices;
  95
  96#define MAX_DEVICES 256
  97
  98static DEFINE_IDA(mmc_blk_ida);
  99static DEFINE_IDA(mmc_rpmb_ida);
 100
 101struct mmc_blk_busy_data {
 102	struct mmc_card *card;
 103	u32 status;
 104};
 105
 106/*
 107 * There is one mmc_blk_data per slot.
 108 */
 109struct mmc_blk_data {
 110	struct device	*parent;
 111	struct gendisk	*disk;
 112	struct mmc_queue queue;
 113	struct list_head part;
 114	struct list_head rpmbs;
 115
 116	unsigned int	flags;
 117#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
 118#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
 119
 120	struct kref	kref;
 121	unsigned int	read_only;
 122	unsigned int	part_type;
 123	unsigned int	reset_done;
 124#define MMC_BLK_READ		BIT(0)
 125#define MMC_BLK_WRITE		BIT(1)
 126#define MMC_BLK_DISCARD		BIT(2)
 127#define MMC_BLK_SECDISCARD	BIT(3)
 128#define MMC_BLK_CQE_RECOVERY	BIT(4)
 
 129
 130	/*
 131	 * Only set in main mmc_blk_data associated
 132	 * with mmc_card with dev_set_drvdata, and keeps
 133	 * track of the current selected device partition.
 134	 */
 135	unsigned int	part_curr;
 136	struct device_attribute force_ro;
 137	struct device_attribute power_ro_lock;
 138	int	area_type;
 139
 140	/* debugfs files (only in main mmc_blk_data) */
 141	struct dentry *status_dentry;
 142	struct dentry *ext_csd_dentry;
 143};
 144
 145/* Device type for RPMB character devices */
 146static dev_t mmc_rpmb_devt;
 147
 148/* Bus type for RPMB character devices */
 149static struct bus_type mmc_rpmb_bus_type = {
 150	.name = "mmc_rpmb",
 151};
 152
 153/**
 154 * struct mmc_rpmb_data - special RPMB device type for these areas
 155 * @dev: the device for the RPMB area
 156 * @chrdev: character device for the RPMB area
 157 * @id: unique device ID number
 158 * @part_index: partition index (0 on first)
 159 * @md: parent MMC block device
 
 160 * @node: list item, so we can put this device on a list
 161 */
 162struct mmc_rpmb_data {
 163	struct device dev;
 164	struct cdev chrdev;
 165	int id;
 166	unsigned int part_index;
 167	struct mmc_blk_data *md;
 
 168	struct list_head node;
 169};
 170
 171static DEFINE_MUTEX(open_lock);
 172
 173module_param(perdev_minors, int, 0444);
 174MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 175
 176static inline int mmc_blk_part_switch(struct mmc_card *card,
 177				      unsigned int part_type);
 178static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
 179			       struct mmc_card *card,
 180			       int disable_multi,
 181			       struct mmc_queue *mq);
 182static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
 
 
 183
 184static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 185{
 186	struct mmc_blk_data *md;
 187
 188	mutex_lock(&open_lock);
 189	md = disk->private_data;
 190	if (md && !kref_get_unless_zero(&md->kref))
 191		md = NULL;
 192	mutex_unlock(&open_lock);
 193
 194	return md;
 195}
 196
 197static inline int mmc_get_devidx(struct gendisk *disk)
 198{
 199	int devidx = disk->first_minor / perdev_minors;
 200	return devidx;
 201}
 202
 203static void mmc_blk_kref_release(struct kref *ref)
 204{
 205	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
 206	int devidx;
 207
 208	devidx = mmc_get_devidx(md->disk);
 209	ida_simple_remove(&mmc_blk_ida, devidx);
 210
 211	mutex_lock(&open_lock);
 212	md->disk->private_data = NULL;
 213	mutex_unlock(&open_lock);
 214
 215	put_disk(md->disk);
 216	kfree(md);
 217}
 218
 219static void mmc_blk_put(struct mmc_blk_data *md)
 220{
 221	kref_put(&md->kref, mmc_blk_kref_release);
 222}
 223
 224static ssize_t power_ro_lock_show(struct device *dev,
 225		struct device_attribute *attr, char *buf)
 226{
 227	int ret;
 228	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 229	struct mmc_card *card = md->queue.card;
 230	int locked = 0;
 231
 232	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 233		locked = 2;
 234	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 235		locked = 1;
 236
 237	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
 238
 239	mmc_blk_put(md);
 240
 241	return ret;
 242}
 243
 244static ssize_t power_ro_lock_store(struct device *dev,
 245		struct device_attribute *attr, const char *buf, size_t count)
 246{
 247	int ret;
 248	struct mmc_blk_data *md, *part_md;
 249	struct mmc_queue *mq;
 250	struct request *req;
 251	unsigned long set;
 252
 253	if (kstrtoul(buf, 0, &set))
 254		return -EINVAL;
 255
 256	if (set != 1)
 257		return count;
 258
 259	md = mmc_blk_get(dev_to_disk(dev));
 260	mq = &md->queue;
 261
 262	/* Dispatch locking to the block layer */
 263	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
 264	if (IS_ERR(req)) {
 265		count = PTR_ERR(req);
 266		goto out_put;
 267	}
 268	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
 269	blk_execute_rq(NULL, req, 0);
 
 270	ret = req_to_mmc_queue_req(req)->drv_op_result;
 271	blk_put_request(req);
 272
 273	if (!ret) {
 274		pr_info("%s: Locking boot partition ro until next power on\n",
 275			md->disk->disk_name);
 276		set_disk_ro(md->disk, 1);
 277
 278		list_for_each_entry(part_md, &md->part, part)
 279			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 280				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 281				set_disk_ro(part_md->disk, 1);
 282			}
 283	}
 284out_put:
 285	mmc_blk_put(md);
 286	return count;
 287}
 288
 
 
 
 289static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 290			     char *buf)
 291{
 292	int ret;
 293	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 294
 295	ret = snprintf(buf, PAGE_SIZE, "%d\n",
 296		       get_disk_ro(dev_to_disk(dev)) ^
 297		       md->read_only);
 298	mmc_blk_put(md);
 299	return ret;
 300}
 301
 302static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 303			      const char *buf, size_t count)
 304{
 305	int ret;
 306	char *end;
 307	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 308	unsigned long set = simple_strtoul(buf, &end, 0);
 309	if (end == buf) {
 
 310		ret = -EINVAL;
 311		goto out;
 312	}
 313
 314	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 315	ret = count;
 316out:
 317	mmc_blk_put(md);
 318	return ret;
 319}
 320
 321static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
 
 
 
 
 
 
 
 
 
 322{
 323	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324	int ret = -ENXIO;
 325
 326	mutex_lock(&block_mutex);
 327	if (md) {
 328		ret = 0;
 329		if ((mode & FMODE_WRITE) && md->read_only) {
 330			mmc_blk_put(md);
 331			ret = -EROFS;
 332		}
 333	}
 334	mutex_unlock(&block_mutex);
 335
 336	return ret;
 337}
 338
 339static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
 340{
 341	struct mmc_blk_data *md = disk->private_data;
 342
 343	mutex_lock(&block_mutex);
 344	mmc_blk_put(md);
 345	mutex_unlock(&block_mutex);
 346}
 347
 348static int
 349mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 350{
 351	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 352	geo->heads = 4;
 353	geo->sectors = 16;
 354	return 0;
 355}
 356
 357struct mmc_blk_ioc_data {
 358	struct mmc_ioc_cmd ic;
 359	unsigned char *buf;
 360	u64 buf_bytes;
 
 
 
 
 361	struct mmc_rpmb_data *rpmb;
 362};
 363
 364static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 365	struct mmc_ioc_cmd __user *user)
 366{
 367	struct mmc_blk_ioc_data *idata;
 368	int err;
 369
 370	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
 371	if (!idata) {
 372		err = -ENOMEM;
 373		goto out;
 374	}
 375
 376	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 377		err = -EFAULT;
 378		goto idata_err;
 379	}
 380
 381	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 382	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 383		err = -EOVERFLOW;
 384		goto idata_err;
 385	}
 386
 387	if (!idata->buf_bytes) {
 388		idata->buf = NULL;
 389		return idata;
 390	}
 391
 392	idata->buf = memdup_user((void __user *)(unsigned long)
 393				 idata->ic.data_ptr, idata->buf_bytes);
 394	if (IS_ERR(idata->buf)) {
 395		err = PTR_ERR(idata->buf);
 396		goto idata_err;
 397	}
 398
 399	return idata;
 400
 401idata_err:
 402	kfree(idata);
 403out:
 404	return ERR_PTR(err);
 405}
 406
 407static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
 408				      struct mmc_blk_ioc_data *idata)
 409{
 410	struct mmc_ioc_cmd *ic = &idata->ic;
 411
 412	if (copy_to_user(&(ic_ptr->response), ic->response,
 413			 sizeof(ic->response)))
 414		return -EFAULT;
 415
 416	if (!idata->ic.write_flag) {
 417		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
 418				 idata->buf, idata->buf_bytes))
 419			return -EFAULT;
 420	}
 421
 422	return 0;
 423}
 424
 425static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
 426			       struct mmc_blk_ioc_data *idata)
 427{
 428	struct mmc_command cmd = {}, sbc = {};
 429	struct mmc_data data = {};
 430	struct mmc_request mrq = {};
 431	struct scatterlist sg;
 
 
 432	int err;
 433	unsigned int target_part;
 
 
 434
 435	if (!card || !md || !idata)
 436		return -EINVAL;
 437
 
 
 
 
 
 
 438	/*
 439	 * The RPMB accesses comes in from the character device, so we
 440	 * need to target these explicitly. Else we just target the
 441	 * partition type for the block device the ioctl() was issued
 442	 * on.
 443	 */
 444	if (idata->rpmb) {
 445		/* Support multiple RPMB partitions */
 446		target_part = idata->rpmb->part_index;
 447		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
 448	} else {
 449		target_part = md->part_type;
 450	}
 451
 452	cmd.opcode = idata->ic.opcode;
 453	cmd.arg = idata->ic.arg;
 454	cmd.flags = idata->ic.flags;
 455
 456	if (idata->buf_bytes) {
 457		data.sg = &sg;
 458		data.sg_len = 1;
 459		data.blksz = idata->ic.blksz;
 460		data.blocks = idata->ic.blocks;
 461
 462		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 463
 464		if (idata->ic.write_flag)
 465			data.flags = MMC_DATA_WRITE;
 466		else
 467			data.flags = MMC_DATA_READ;
 468
 469		/* data.flags must already be set before doing this. */
 470		mmc_set_data_timeout(&data, card);
 471
 472		/* Allow overriding the timeout_ns for empirical tuning. */
 473		if (idata->ic.data_timeout_ns)
 474			data.timeout_ns = idata->ic.data_timeout_ns;
 475
 476		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 477			/*
 478			 * Pretend this is a data transfer and rely on the
 479			 * host driver to compute timeout.  When all host
 480			 * drivers support cmd.cmd_timeout for R1B, this
 481			 * can be changed to:
 482			 *
 483			 *     mrq.data = NULL;
 484			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
 485			 */
 486			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
 487		}
 488
 489		mrq.data = &data;
 490	}
 491
 492	mrq.cmd = &cmd;
 493
 494	err = mmc_blk_part_switch(card, target_part);
 495	if (err)
 496		return err;
 497
 498	if (idata->ic.is_acmd) {
 499		err = mmc_app_cmd(card->host, card);
 500		if (err)
 501			return err;
 502	}
 503
 504	if (idata->rpmb) {
 505		sbc.opcode = MMC_SET_BLOCK_COUNT;
 506		/*
 507		 * We don't do any blockcount validation because the max size
 508		 * may be increased by a future standard. We just copy the
 509		 * 'Reliable Write' bit here.
 510		 */
 511		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
 
 
 512		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
 513		mrq.sbc = &sbc;
 514	}
 515
 516	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
 517	    (cmd.opcode == MMC_SWITCH))
 518		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
 519
 
 
 
 
 
 
 520	mmc_wait_for_req(card->host, &mrq);
 521	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
 522
 
 
 
 
 
 
 
 
 
 523	if (cmd.error) {
 524		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 525						__func__, cmd.error);
 526		return cmd.error;
 527	}
 528	if (data.error) {
 529		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 530						__func__, data.error);
 531		return data.error;
 532	}
 533
 534	/*
 535	 * Make sure the cache of the PARTITION_CONFIG register and
 536	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
 537	 * changed it successfully.
 538	 */
 539	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
 540	    (cmd.opcode == MMC_SWITCH)) {
 541		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 542		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
 543
 544		/*
 545		 * Update cache so the next mmc_blk_part_switch call operates
 546		 * on up-to-date data.
 547		 */
 548		card->ext_csd.part_config = value;
 549		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
 550	}
 551
 552	/*
 553	 * Make sure to update CACHE_CTRL in case it was changed. The cache
 554	 * will get turned back on if the card is re-initialized, e.g.
 555	 * suspend/resume or hw reset in recovery.
 556	 */
 557	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
 558	    (cmd.opcode == MMC_SWITCH)) {
 559		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
 560
 561		card->ext_csd.cache_ctrl = value;
 562	}
 563
 564	/*
 565	 * According to the SD specs, some commands require a delay after
 566	 * issuing the command.
 567	 */
 568	if (idata->ic.postsleep_min_us)
 569		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 570
 571	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 572		/*
 573		 * Ensure RPMB/R1B command has completed by polling CMD13
 574		 * "Send Status".
 575		 */
 576		err = mmc_poll_for_busy(card, MMC_BLK_TIMEOUT_MS, false,
 577					MMC_BUSY_IO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578	}
 579
 580	return err;
 581}
 582
 583static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
 584			     struct mmc_ioc_cmd __user *ic_ptr,
 585			     struct mmc_rpmb_data *rpmb)
 586{
 587	struct mmc_blk_ioc_data *idata;
 588	struct mmc_blk_ioc_data *idatas[1];
 589	struct mmc_queue *mq;
 590	struct mmc_card *card;
 591	int err = 0, ioc_err = 0;
 592	struct request *req;
 593
 594	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 595	if (IS_ERR(idata))
 596		return PTR_ERR(idata);
 597	/* This will be NULL on non-RPMB ioctl():s */
 598	idata->rpmb = rpmb;
 599
 600	card = md->queue.card;
 601	if (IS_ERR(card)) {
 602		err = PTR_ERR(card);
 603		goto cmd_done;
 604	}
 605
 606	/*
 607	 * Dispatch the ioctl() into the block request queue.
 608	 */
 609	mq = &md->queue;
 610	req = blk_get_request(mq->queue,
 611		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 612	if (IS_ERR(req)) {
 613		err = PTR_ERR(req);
 614		goto cmd_done;
 615	}
 616	idatas[0] = idata;
 617	req_to_mmc_queue_req(req)->drv_op =
 618		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 
 619	req_to_mmc_queue_req(req)->drv_op_data = idatas;
 620	req_to_mmc_queue_req(req)->ioc_count = 1;
 621	blk_execute_rq(NULL, req, 0);
 622	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 623	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
 624	blk_put_request(req);
 625
 626cmd_done:
 627	kfree(idata->buf);
 628	kfree(idata);
 629	return ioc_err ? ioc_err : err;
 630}
 631
 632static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
 633				   struct mmc_ioc_multi_cmd __user *user,
 634				   struct mmc_rpmb_data *rpmb)
 635{
 636	struct mmc_blk_ioc_data **idata = NULL;
 637	struct mmc_ioc_cmd __user *cmds = user->cmds;
 638	struct mmc_card *card;
 639	struct mmc_queue *mq;
 640	int i, err = 0, ioc_err = 0;
 641	__u64 num_of_cmds;
 
 642	struct request *req;
 643
 644	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
 645			   sizeof(num_of_cmds)))
 646		return -EFAULT;
 647
 648	if (!num_of_cmds)
 649		return 0;
 650
 651	if (num_of_cmds > MMC_IOC_MAX_CMDS)
 652		return -EINVAL;
 653
 654	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
 
 655	if (!idata)
 656		return -ENOMEM;
 657
 658	for (i = 0; i < num_of_cmds; i++) {
 659		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
 660		if (IS_ERR(idata[i])) {
 661			err = PTR_ERR(idata[i]);
 662			num_of_cmds = i;
 663			goto cmd_err;
 664		}
 665		/* This will be NULL on non-RPMB ioctl():s */
 666		idata[i]->rpmb = rpmb;
 667	}
 668
 669	card = md->queue.card;
 670	if (IS_ERR(card)) {
 671		err = PTR_ERR(card);
 672		goto cmd_err;
 673	}
 674
 675
 676	/*
 677	 * Dispatch the ioctl()s into the block request queue.
 678	 */
 679	mq = &md->queue;
 680	req = blk_get_request(mq->queue,
 681		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 682	if (IS_ERR(req)) {
 683		err = PTR_ERR(req);
 684		goto cmd_err;
 685	}
 686	req_to_mmc_queue_req(req)->drv_op =
 687		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 
 688	req_to_mmc_queue_req(req)->drv_op_data = idata;
 689	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
 690	blk_execute_rq(NULL, req, 0);
 691	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 692
 693	/* copy to user if data and response */
 694	for (i = 0; i < num_of_cmds && !err; i++)
 695		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
 696
 697	blk_put_request(req);
 698
 699cmd_err:
 700	for (i = 0; i < num_of_cmds; i++) {
 701		kfree(idata[i]->buf);
 702		kfree(idata[i]);
 703	}
 704	kfree(idata);
 705	return ioc_err ? ioc_err : err;
 706}
 707
 708static int mmc_blk_check_blkdev(struct block_device *bdev)
 709{
 710	/*
 711	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 712	 * whole block device, not on a partition.  This prevents overspray
 713	 * between sibling partitions.
 714	 */
 715	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
 716		return -EPERM;
 717	return 0;
 718}
 719
 720static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
 721	unsigned int cmd, unsigned long arg)
 722{
 723	struct mmc_blk_data *md;
 724	int ret;
 725
 726	switch (cmd) {
 727	case MMC_IOC_CMD:
 728		ret = mmc_blk_check_blkdev(bdev);
 729		if (ret)
 730			return ret;
 731		md = mmc_blk_get(bdev->bd_disk);
 732		if (!md)
 733			return -EINVAL;
 734		ret = mmc_blk_ioctl_cmd(md,
 735					(struct mmc_ioc_cmd __user *)arg,
 736					NULL);
 737		mmc_blk_put(md);
 738		return ret;
 739	case MMC_IOC_MULTI_CMD:
 740		ret = mmc_blk_check_blkdev(bdev);
 741		if (ret)
 742			return ret;
 743		md = mmc_blk_get(bdev->bd_disk);
 744		if (!md)
 745			return -EINVAL;
 746		ret = mmc_blk_ioctl_multi_cmd(md,
 747					(struct mmc_ioc_multi_cmd __user *)arg,
 748					NULL);
 749		mmc_blk_put(md);
 750		return ret;
 751	default:
 752		return -EINVAL;
 753	}
 754}
 755
 756#ifdef CONFIG_COMPAT
 757static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
 758	unsigned int cmd, unsigned long arg)
 759{
 760	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 761}
 762#endif
 763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 764static const struct block_device_operations mmc_bdops = {
 765	.open			= mmc_blk_open,
 766	.release		= mmc_blk_release,
 767	.getgeo			= mmc_blk_getgeo,
 768	.owner			= THIS_MODULE,
 769	.ioctl			= mmc_blk_ioctl,
 770#ifdef CONFIG_COMPAT
 771	.compat_ioctl		= mmc_blk_compat_ioctl,
 772#endif
 
 773};
 774
 775static int mmc_blk_part_switch_pre(struct mmc_card *card,
 776				   unsigned int part_type)
 777{
 
 
 778	int ret = 0;
 779
 780	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 781		if (card->ext_csd.cmdq_en) {
 782			ret = mmc_cmdq_disable(card);
 783			if (ret)
 784				return ret;
 785		}
 786		mmc_retune_pause(card->host);
 787	}
 788
 789	return ret;
 790}
 791
 792static int mmc_blk_part_switch_post(struct mmc_card *card,
 793				    unsigned int part_type)
 794{
 
 
 795	int ret = 0;
 796
 797	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 798		mmc_retune_unpause(card->host);
 799		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
 800			ret = mmc_cmdq_enable(card);
 801	}
 802
 803	return ret;
 804}
 805
 806static inline int mmc_blk_part_switch(struct mmc_card *card,
 807				      unsigned int part_type)
 808{
 809	int ret = 0;
 810	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 811
 812	if (main_md->part_curr == part_type)
 813		return 0;
 814
 815	if (mmc_card_mmc(card)) {
 816		u8 part_config = card->ext_csd.part_config;
 817
 818		ret = mmc_blk_part_switch_pre(card, part_type);
 819		if (ret)
 820			return ret;
 821
 822		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 823		part_config |= part_type;
 824
 825		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 826				 EXT_CSD_PART_CONFIG, part_config,
 827				 card->ext_csd.part_time);
 828		if (ret) {
 829			mmc_blk_part_switch_post(card, part_type);
 830			return ret;
 831		}
 832
 833		card->ext_csd.part_config = part_config;
 834
 835		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
 836	}
 837
 838	main_md->part_curr = part_type;
 839	return ret;
 840}
 841
 842static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
 843{
 844	int err;
 845	u32 result;
 846	__be32 *blocks;
 
 
 847
 848	struct mmc_request mrq = {};
 849	struct mmc_command cmd = {};
 850	struct mmc_data data = {};
 851
 852	struct scatterlist sg;
 853
 854	cmd.opcode = MMC_APP_CMD;
 855	cmd.arg = card->rca << 16;
 856	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 857
 858	err = mmc_wait_for_cmd(card->host, &cmd, 0);
 859	if (err)
 860		return err;
 861	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
 862		return -EIO;
 863
 864	memset(&cmd, 0, sizeof(struct mmc_command));
 865
 866	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
 867	cmd.arg = 0;
 868	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 869
 870	data.blksz = 4;
 871	data.blocks = 1;
 872	data.flags = MMC_DATA_READ;
 873	data.sg = &sg;
 874	data.sg_len = 1;
 875	mmc_set_data_timeout(&data, card);
 876
 877	mrq.cmd = &cmd;
 878	mrq.data = &data;
 879
 880	blocks = kmalloc(4, GFP_KERNEL);
 
 
 881	if (!blocks)
 882		return -ENOMEM;
 883
 884	sg_init_one(&sg, blocks, 4);
 885
 886	mmc_wait_for_req(card->host, &mrq);
 887
 888	result = ntohl(*blocks);
 
 
 
 
 
 
 
 
 
 
 
 
 889	kfree(blocks);
 890
 891	if (cmd.error || data.error)
 892		return -EIO;
 893
 894	*written_blocks = result;
 895
 896	return 0;
 897}
 898
 899static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
 900{
 901	if (host->actual_clock)
 902		return host->actual_clock / 1000;
 903
 904	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
 905	if (host->ios.clock)
 906		return host->ios.clock / 2000;
 907
 908	/* How can there be no clock */
 909	WARN_ON_ONCE(1);
 910	return 100; /* 100 kHz is minimum possible value */
 911}
 912
 913static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
 914					    struct mmc_data *data)
 915{
 916	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
 917	unsigned int khz;
 918
 919	if (data->timeout_clks) {
 920		khz = mmc_blk_clock_khz(host);
 921		ms += DIV_ROUND_UP(data->timeout_clks, khz);
 922	}
 923
 924	return ms;
 925}
 926
 
 
 
 
 
 
 927static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
 928			 int type)
 929{
 930	int err;
 
 931
 932	if (md->reset_done & type)
 933		return -EEXIST;
 934
 935	md->reset_done |= type;
 936	err = mmc_hw_reset(host);
 
 
 
 
 
 
 
 
 937	/* Ensure we switch back to the correct partition */
 938	if (err) {
 939		struct mmc_blk_data *main_md =
 940			dev_get_drvdata(&host->card->dev);
 941		int part_err;
 942
 943		main_md->part_curr = main_md->part_type;
 944		part_err = mmc_blk_part_switch(host->card, md->part_type);
 945		if (part_err) {
 946			/*
 947			 * We have failed to get back into the correct
 948			 * partition, so we need to abort the whole request.
 949			 */
 950			return -ENODEV;
 951		}
 952	}
 953	return err;
 954}
 955
 956static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
 957{
 958	md->reset_done &= ~type;
 959}
 960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961/*
 962 * The non-block commands come back from the block layer after it queued it and
 963 * processed it with all other requests and then they get issued in this
 964 * function.
 965 */
 966static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
 967{
 968	struct mmc_queue_req *mq_rq;
 969	struct mmc_card *card = mq->card;
 970	struct mmc_blk_data *md = mq->blkdata;
 971	struct mmc_blk_ioc_data **idata;
 972	bool rpmb_ioctl;
 973	u8 **ext_csd;
 974	u32 status;
 975	int ret;
 976	int i;
 977
 978	mq_rq = req_to_mmc_queue_req(req);
 979	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
 980
 981	switch (mq_rq->drv_op) {
 982	case MMC_DRV_OP_IOCTL:
 983		if (card->ext_csd.cmdq_en) {
 984			ret = mmc_cmdq_disable(card);
 985			if (ret)
 986				break;
 987		}
 
 
 
 988		fallthrough;
 989	case MMC_DRV_OP_IOCTL_RPMB:
 990		idata = mq_rq->drv_op_data;
 991		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
 992			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
 993			if (ret)
 994				break;
 995		}
 996		/* Always switch back to main area after RPMB access */
 997		if (rpmb_ioctl)
 998			mmc_blk_part_switch(card, 0);
 999		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1000			mmc_cmdq_enable(card);
1001		break;
1002	case MMC_DRV_OP_BOOT_WP:
1003		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1004				 card->ext_csd.boot_ro_lock |
1005				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1006				 card->ext_csd.part_time);
1007		if (ret)
1008			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1009			       md->disk->disk_name, ret);
1010		else
1011			card->ext_csd.boot_ro_lock |=
1012				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1013		break;
1014	case MMC_DRV_OP_GET_CARD_STATUS:
1015		ret = mmc_send_status(card, &status);
1016		if (!ret)
1017			ret = status;
1018		break;
1019	case MMC_DRV_OP_GET_EXT_CSD:
1020		ext_csd = mq_rq->drv_op_data;
1021		ret = mmc_get_ext_csd(card, ext_csd);
1022		break;
1023	default:
1024		pr_err("%s: unknown driver specific operation\n",
1025		       md->disk->disk_name);
1026		ret = -EINVAL;
1027		break;
1028	}
1029	mq_rq->drv_op_result = ret;
1030	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1031}
1032
1033static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
 
1034{
1035	struct mmc_blk_data *md = mq->blkdata;
1036	struct mmc_card *card = md->queue.card;
1037	unsigned int from, nr;
1038	int err = 0, type = MMC_BLK_DISCARD;
 
1039	blk_status_t status = BLK_STS_OK;
1040
1041	if (!mmc_can_erase(card)) {
1042		status = BLK_STS_NOTSUPP;
1043		goto fail;
1044	}
1045
1046	from = blk_rq_pos(req);
1047	nr = blk_rq_sectors(req);
1048
1049	do {
1050		err = 0;
1051		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1052			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1053					 INAND_CMD38_ARG_EXT_CSD,
1054					 card->erase_arg == MMC_TRIM_ARG ?
1055					 INAND_CMD38_ARG_TRIM :
1056					 INAND_CMD38_ARG_ERASE,
1057					 card->ext_csd.generic_cmd6_time);
1058		}
1059		if (!err)
1060			err = mmc_erase(card, from, nr, card->erase_arg);
1061	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1062	if (err)
1063		status = BLK_STS_IOERR;
1064	else
1065		mmc_blk_reset_success(md, type);
1066fail:
1067	blk_mq_end_request(req, status);
1068}
1069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1071				       struct request *req)
1072{
1073	struct mmc_blk_data *md = mq->blkdata;
1074	struct mmc_card *card = md->queue.card;
1075	unsigned int from, nr, arg;
 
1076	int err = 0, type = MMC_BLK_SECDISCARD;
1077	blk_status_t status = BLK_STS_OK;
1078
1079	if (!(mmc_can_secure_erase_trim(card))) {
1080		status = BLK_STS_NOTSUPP;
1081		goto out;
1082	}
1083
1084	from = blk_rq_pos(req);
1085	nr = blk_rq_sectors(req);
1086
1087	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1088		arg = MMC_SECURE_TRIM1_ARG;
1089	else
1090		arg = MMC_SECURE_ERASE_ARG;
1091
1092retry:
1093	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1094		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1095				 INAND_CMD38_ARG_EXT_CSD,
1096				 arg == MMC_SECURE_TRIM1_ARG ?
1097				 INAND_CMD38_ARG_SECTRIM1 :
1098				 INAND_CMD38_ARG_SECERASE,
1099				 card->ext_csd.generic_cmd6_time);
1100		if (err)
1101			goto out_retry;
1102	}
1103
1104	err = mmc_erase(card, from, nr, arg);
1105	if (err == -EIO)
1106		goto out_retry;
1107	if (err) {
1108		status = BLK_STS_IOERR;
1109		goto out;
1110	}
1111
1112	if (arg == MMC_SECURE_TRIM1_ARG) {
1113		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1114			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1115					 INAND_CMD38_ARG_EXT_CSD,
1116					 INAND_CMD38_ARG_SECTRIM2,
1117					 card->ext_csd.generic_cmd6_time);
1118			if (err)
1119				goto out_retry;
1120		}
1121
1122		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1123		if (err == -EIO)
1124			goto out_retry;
1125		if (err) {
1126			status = BLK_STS_IOERR;
1127			goto out;
1128		}
1129	}
1130
1131out_retry:
1132	if (err && !mmc_blk_reset(md, card->host, type))
1133		goto retry;
1134	if (!err)
1135		mmc_blk_reset_success(md, type);
1136out:
1137	blk_mq_end_request(req, status);
1138}
1139
1140static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1141{
1142	struct mmc_blk_data *md = mq->blkdata;
1143	struct mmc_card *card = md->queue.card;
1144	int ret = 0;
1145
1146	ret = mmc_flush_cache(card->host);
1147	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1148}
1149
1150/*
1151 * Reformat current write as a reliable write, supporting
1152 * both legacy and the enhanced reliable write MMC cards.
1153 * In each transfer we'll handle only as much as a single
1154 * reliable write can handle, thus finish the request in
1155 * partial completions.
1156 */
1157static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1158				    struct mmc_card *card,
1159				    struct request *req)
1160{
1161	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1162		/* Legacy mode imposes restrictions on transfers. */
1163		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1164			brq->data.blocks = 1;
1165
1166		if (brq->data.blocks > card->ext_csd.rel_sectors)
1167			brq->data.blocks = card->ext_csd.rel_sectors;
1168		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1169			brq->data.blocks = 1;
1170	}
1171}
1172
1173#define CMD_ERRORS_EXCL_OOR						\
1174	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1175	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1176	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1177	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1178	 R1_CC_ERROR |		/* Card controller error */		\
1179	 R1_ERROR)		/* General/unknown error */
1180
1181#define CMD_ERRORS							\
1182	(CMD_ERRORS_EXCL_OOR |						\
1183	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1184
1185static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1186{
1187	u32 val;
1188
1189	/*
1190	 * Per the SD specification(physical layer version 4.10)[1],
1191	 * section 4.3.3, it explicitly states that "When the last
1192	 * block of user area is read using CMD18, the host should
1193	 * ignore OUT_OF_RANGE error that may occur even the sequence
1194	 * is correct". And JESD84-B51 for eMMC also has a similar
1195	 * statement on section 6.8.3.
1196	 *
1197	 * Multiple block read/write could be done by either predefined
1198	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1199	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1200	 *
1201	 * However the spec[1] doesn't tell us whether we should also
1202	 * ignore that for predefined method. But per the spec[1], section
1203	 * 4.15 Set Block Count Command, it says"If illegal block count
1204	 * is set, out of range error will be indicated during read/write
1205	 * operation (For example, data transfer is stopped at user area
1206	 * boundary)." In another word, we could expect a out of range error
1207	 * in the response for the following CMD18/25. And if argument of
1208	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1209	 * we could also expect to get a -ETIMEDOUT or any error number from
1210	 * the host drivers due to missing data response(for write)/data(for
1211	 * read), as the cards will stop the data transfer by itself per the
1212	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1213	 */
1214
1215	if (!brq->stop.error) {
1216		bool oor_with_open_end;
1217		/* If there is no error yet, check R1 response */
1218
1219		val = brq->stop.resp[0] & CMD_ERRORS;
1220		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1221
1222		if (val && !oor_with_open_end)
1223			brq->stop.error = -EIO;
1224	}
1225}
1226
1227static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1228			      int disable_multi, bool *do_rel_wr_p,
1229			      bool *do_data_tag_p)
1230{
1231	struct mmc_blk_data *md = mq->blkdata;
1232	struct mmc_card *card = md->queue.card;
1233	struct mmc_blk_request *brq = &mqrq->brq;
1234	struct request *req = mmc_queue_req_to_req(mqrq);
1235	bool do_rel_wr, do_data_tag;
1236
1237	/*
1238	 * Reliable writes are used to implement Forced Unit Access and
1239	 * are supported only on MMCs.
1240	 */
1241	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1242		    rq_data_dir(req) == WRITE &&
1243		    (md->flags & MMC_BLK_REL_WR);
1244
1245	memset(brq, 0, sizeof(struct mmc_blk_request));
1246
1247	mmc_crypto_prepare_req(mqrq);
1248
1249	brq->mrq.data = &brq->data;
1250	brq->mrq.tag = req->tag;
1251
1252	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1253	brq->stop.arg = 0;
1254
1255	if (rq_data_dir(req) == READ) {
1256		brq->data.flags = MMC_DATA_READ;
1257		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1258	} else {
1259		brq->data.flags = MMC_DATA_WRITE;
1260		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1261	}
1262
1263	brq->data.blksz = 512;
1264	brq->data.blocks = blk_rq_sectors(req);
1265	brq->data.blk_addr = blk_rq_pos(req);
1266
1267	/*
1268	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1269	 * The eMMC will give "high" priority tasks priority over "simple"
1270	 * priority tasks. Here we always set "simple" priority by not setting
1271	 * MMC_DATA_PRIO.
1272	 */
1273
1274	/*
1275	 * The block layer doesn't support all sector count
1276	 * restrictions, so we need to be prepared for too big
1277	 * requests.
1278	 */
1279	if (brq->data.blocks > card->host->max_blk_count)
1280		brq->data.blocks = card->host->max_blk_count;
1281
1282	if (brq->data.blocks > 1) {
1283		/*
1284		 * Some SD cards in SPI mode return a CRC error or even lock up
1285		 * completely when trying to read the last block using a
1286		 * multiblock read command.
1287		 */
1288		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1289		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1290		     get_capacity(md->disk)))
1291			brq->data.blocks--;
1292
1293		/*
1294		 * After a read error, we redo the request one sector
1295		 * at a time in order to accurately determine which
1296		 * sectors can be read successfully.
1297		 */
1298		if (disable_multi)
1299			brq->data.blocks = 1;
1300
1301		/*
1302		 * Some controllers have HW issues while operating
1303		 * in multiple I/O mode
1304		 */
1305		if (card->host->ops->multi_io_quirk)
1306			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1307						(rq_data_dir(req) == READ) ?
1308						MMC_DATA_READ : MMC_DATA_WRITE,
1309						brq->data.blocks);
1310	}
1311
1312	if (do_rel_wr) {
1313		mmc_apply_rel_rw(brq, card, req);
1314		brq->data.flags |= MMC_DATA_REL_WR;
1315	}
1316
1317	/*
1318	 * Data tag is used only during writing meta data to speed
1319	 * up write and any subsequent read of this meta data
1320	 */
1321	do_data_tag = card->ext_csd.data_tag_unit_size &&
1322		      (req->cmd_flags & REQ_META) &&
1323		      (rq_data_dir(req) == WRITE) &&
1324		      ((brq->data.blocks * brq->data.blksz) >=
1325		       card->ext_csd.data_tag_unit_size);
1326
1327	if (do_data_tag)
1328		brq->data.flags |= MMC_DATA_DAT_TAG;
1329
1330	mmc_set_data_timeout(&brq->data, card);
1331
1332	brq->data.sg = mqrq->sg;
1333	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1334
1335	/*
1336	 * Adjust the sg list so it is the same size as the
1337	 * request.
1338	 */
1339	if (brq->data.blocks != blk_rq_sectors(req)) {
1340		int i, data_size = brq->data.blocks << 9;
1341		struct scatterlist *sg;
1342
1343		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1344			data_size -= sg->length;
1345			if (data_size <= 0) {
1346				sg->length += data_size;
1347				i++;
1348				break;
1349			}
1350		}
1351		brq->data.sg_len = i;
1352	}
1353
1354	if (do_rel_wr_p)
1355		*do_rel_wr_p = do_rel_wr;
1356
1357	if (do_data_tag_p)
1358		*do_data_tag_p = do_data_tag;
1359}
1360
1361#define MMC_CQE_RETRIES 2
1362
1363static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1364{
1365	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1366	struct mmc_request *mrq = &mqrq->brq.mrq;
1367	struct request_queue *q = req->q;
1368	struct mmc_host *host = mq->card->host;
1369	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1370	unsigned long flags;
1371	bool put_card;
1372	int err;
1373
1374	mmc_cqe_post_req(host, mrq);
1375
1376	if (mrq->cmd && mrq->cmd->error)
1377		err = mrq->cmd->error;
1378	else if (mrq->data && mrq->data->error)
1379		err = mrq->data->error;
1380	else
1381		err = 0;
1382
1383	if (err) {
1384		if (mqrq->retries++ < MMC_CQE_RETRIES)
1385			blk_mq_requeue_request(req, true);
1386		else
1387			blk_mq_end_request(req, BLK_STS_IOERR);
1388	} else if (mrq->data) {
1389		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1390			blk_mq_requeue_request(req, true);
1391		else
1392			__blk_mq_end_request(req, BLK_STS_OK);
 
 
1393	} else {
1394		blk_mq_end_request(req, BLK_STS_OK);
1395	}
1396
1397	spin_lock_irqsave(&mq->lock, flags);
1398
1399	mq->in_flight[issue_type] -= 1;
1400
1401	put_card = (mmc_tot_in_flight(mq) == 0);
1402
1403	mmc_cqe_check_busy(mq);
1404
1405	spin_unlock_irqrestore(&mq->lock, flags);
1406
1407	if (!mq->cqe_busy)
1408		blk_mq_run_hw_queues(q, true);
1409
1410	if (put_card)
1411		mmc_put_card(mq->card, &mq->ctx);
1412}
1413
1414void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1415{
1416	struct mmc_card *card = mq->card;
1417	struct mmc_host *host = card->host;
1418	int err;
1419
1420	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1421
1422	err = mmc_cqe_recovery(host);
1423	if (err)
1424		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1425	else
1426		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1427
1428	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1429}
1430
1431static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1432{
1433	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1434						  brq.mrq);
1435	struct request *req = mmc_queue_req_to_req(mqrq);
1436	struct request_queue *q = req->q;
1437	struct mmc_queue *mq = q->queuedata;
1438
1439	/*
1440	 * Block layer timeouts race with completions which means the normal
1441	 * completion path cannot be used during recovery.
1442	 */
1443	if (mq->in_recovery)
1444		mmc_blk_cqe_complete_rq(mq, req);
1445	else if (likely(!blk_should_fake_timeout(req->q)))
1446		blk_mq_complete_request(req);
1447}
1448
1449static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1450{
1451	mrq->done		= mmc_blk_cqe_req_done;
1452	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1453
1454	return mmc_cqe_start_req(host, mrq);
1455}
1456
1457static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1458						 struct request *req)
1459{
1460	struct mmc_blk_request *brq = &mqrq->brq;
1461
1462	memset(brq, 0, sizeof(*brq));
1463
1464	brq->mrq.cmd = &brq->cmd;
1465	brq->mrq.tag = req->tag;
1466
1467	return &brq->mrq;
1468}
1469
1470static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1471{
1472	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1473	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1474
1475	mrq->cmd->opcode = MMC_SWITCH;
1476	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1477			(EXT_CSD_FLUSH_CACHE << 16) |
1478			(1 << 8) |
1479			EXT_CSD_CMD_SET_NORMAL;
1480	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1481
1482	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1483}
1484
1485static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1486{
1487	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1488	struct mmc_host *host = mq->card->host;
1489	int err;
1490
1491	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1492	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1493	mmc_pre_req(host, &mqrq->brq.mrq);
1494
1495	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1496	if (err)
1497		mmc_post_req(host, &mqrq->brq.mrq, err);
1498
1499	return err;
1500}
1501
1502static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1503{
1504	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1505	struct mmc_host *host = mq->card->host;
1506
1507	if (host->hsq_enabled)
1508		return mmc_blk_hsq_issue_rw_rq(mq, req);
1509
1510	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1511
1512	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1513}
1514
1515static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1516			       struct mmc_card *card,
1517			       int disable_multi,
1518			       struct mmc_queue *mq)
1519{
1520	u32 readcmd, writecmd;
1521	struct mmc_blk_request *brq = &mqrq->brq;
1522	struct request *req = mmc_queue_req_to_req(mqrq);
1523	struct mmc_blk_data *md = mq->blkdata;
1524	bool do_rel_wr, do_data_tag;
1525
1526	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1527
1528	brq->mrq.cmd = &brq->cmd;
1529
1530	brq->cmd.arg = blk_rq_pos(req);
1531	if (!mmc_card_blockaddr(card))
1532		brq->cmd.arg <<= 9;
1533	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1534
1535	if (brq->data.blocks > 1 || do_rel_wr) {
1536		/* SPI multiblock writes terminate using a special
1537		 * token, not a STOP_TRANSMISSION request.
1538		 */
1539		if (!mmc_host_is_spi(card->host) ||
1540		    rq_data_dir(req) == READ)
1541			brq->mrq.stop = &brq->stop;
1542		readcmd = MMC_READ_MULTIPLE_BLOCK;
1543		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1544	} else {
1545		brq->mrq.stop = NULL;
1546		readcmd = MMC_READ_SINGLE_BLOCK;
1547		writecmd = MMC_WRITE_BLOCK;
1548	}
1549	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1550
1551	/*
1552	 * Pre-defined multi-block transfers are preferable to
1553	 * open ended-ones (and necessary for reliable writes).
1554	 * However, it is not sufficient to just send CMD23,
1555	 * and avoid the final CMD12, as on an error condition
1556	 * CMD12 (stop) needs to be sent anyway. This, coupled
1557	 * with Auto-CMD23 enhancements provided by some
1558	 * hosts, means that the complexity of dealing
1559	 * with this is best left to the host. If CMD23 is
1560	 * supported by card and host, we'll fill sbc in and let
1561	 * the host deal with handling it correctly. This means
1562	 * that for hosts that don't expose MMC_CAP_CMD23, no
1563	 * change of behavior will be observed.
1564	 *
1565	 * N.B: Some MMC cards experience perf degradation.
1566	 * We'll avoid using CMD23-bounded multiblock writes for
1567	 * these, while retaining features like reliable writes.
1568	 */
1569	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1570	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1571	     do_data_tag)) {
1572		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1573		brq->sbc.arg = brq->data.blocks |
1574			(do_rel_wr ? (1 << 31) : 0) |
1575			(do_data_tag ? (1 << 29) : 0);
1576		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1577		brq->mrq.sbc = &brq->sbc;
1578	}
 
 
 
 
 
1579}
1580
1581#define MMC_MAX_RETRIES		5
1582#define MMC_DATA_RETRIES	2
1583#define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1584
1585static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1586{
1587	struct mmc_command cmd = {
1588		.opcode = MMC_STOP_TRANSMISSION,
1589		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1590		/* Some hosts wait for busy anyway, so provide a busy timeout */
1591		.busy_timeout = timeout,
1592	};
1593
1594	return mmc_wait_for_cmd(card->host, &cmd, 5);
1595}
1596
1597static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1598{
1599	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1600	struct mmc_blk_request *brq = &mqrq->brq;
1601	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1602	int err;
1603
1604	mmc_retune_hold_now(card->host);
1605
1606	mmc_blk_send_stop(card, timeout);
1607
1608	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1609
1610	mmc_retune_release(card->host);
1611
1612	return err;
1613}
1614
1615#define MMC_READ_SINGLE_RETRIES	2
1616
1617/* Single sector read during recovery */
1618static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1619{
1620	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1621	struct mmc_request *mrq = &mqrq->brq.mrq;
1622	struct mmc_card *card = mq->card;
1623	struct mmc_host *host = card->host;
1624	blk_status_t error = BLK_STS_OK;
1625	int retries = 0;
1626
1627	do {
1628		u32 status;
1629		int err;
 
1630
1631		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1632
1633		mmc_wait_for_req(host, mrq);
1634
1635		err = mmc_send_status(card, &status);
1636		if (err)
1637			goto error_exit;
1638
1639		if (!mmc_host_is_spi(host) &&
1640		    !mmc_ready_for_data(status)) {
1641			err = mmc_blk_fix_state(card, req);
1642			if (err)
1643				goto error_exit;
1644		}
1645
1646		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1647			continue;
 
 
 
 
1648
1649		retries = 0;
 
 
1650
1651		if (mrq->cmd->error ||
1652		    mrq->data->error ||
1653		    (!mmc_host_is_spi(host) &&
1654		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1655			error = BLK_STS_IOERR;
1656		else
1657			error = BLK_STS_OK;
1658
1659	} while (blk_update_request(req, error, 512));
1660
1661	return;
1662
1663error_exit:
1664	mrq->data->bytes_xfered = 0;
1665	blk_update_request(req, BLK_STS_IOERR, 512);
1666	/* Let it try the remaining request again */
1667	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1668		mqrq->retries = MMC_MAX_RETRIES - 1;
1669}
1670
1671static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1672{
1673	return !!brq->mrq.sbc;
1674}
1675
1676static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1677{
1678	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1679}
1680
1681/*
1682 * Check for errors the host controller driver might not have seen such as
1683 * response mode errors or invalid card state.
1684 */
1685static bool mmc_blk_status_error(struct request *req, u32 status)
1686{
1687	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1688	struct mmc_blk_request *brq = &mqrq->brq;
1689	struct mmc_queue *mq = req->q->queuedata;
1690	u32 stop_err_bits;
1691
1692	if (mmc_host_is_spi(mq->card->host))
1693		return false;
1694
1695	stop_err_bits = mmc_blk_stop_err_bits(brq);
1696
1697	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1698	       brq->stop.resp[0] & stop_err_bits ||
1699	       status            & stop_err_bits ||
1700	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1701}
1702
1703static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1704{
1705	return !brq->sbc.error && !brq->cmd.error &&
1706	       !(brq->cmd.resp[0] & CMD_ERRORS);
1707}
1708
1709/*
1710 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1711 * policy:
1712 * 1. A request that has transferred at least some data is considered
1713 * successful and will be requeued if there is remaining data to
1714 * transfer.
1715 * 2. Otherwise the number of retries is incremented and the request
1716 * will be requeued if there are remaining retries.
1717 * 3. Otherwise the request will be errored out.
1718 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1719 * mqrq->retries. So there are only 4 possible actions here:
1720 *	1. do not accept the bytes_xfered value i.e. set it to zero
1721 *	2. change mqrq->retries to determine the number of retries
1722 *	3. try to reset the card
1723 *	4. read one sector at a time
1724 */
1725static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1726{
1727	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1728	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1729	struct mmc_blk_request *brq = &mqrq->brq;
1730	struct mmc_blk_data *md = mq->blkdata;
1731	struct mmc_card *card = mq->card;
1732	u32 status;
1733	u32 blocks;
1734	int err;
1735
1736	/*
1737	 * Some errors the host driver might not have seen. Set the number of
1738	 * bytes transferred to zero in that case.
1739	 */
1740	err = __mmc_send_status(card, &status, 0);
1741	if (err || mmc_blk_status_error(req, status))
1742		brq->data.bytes_xfered = 0;
1743
1744	mmc_retune_release(card->host);
1745
1746	/*
1747	 * Try again to get the status. This also provides an opportunity for
1748	 * re-tuning.
1749	 */
1750	if (err)
1751		err = __mmc_send_status(card, &status, 0);
1752
1753	/*
1754	 * Nothing more to do after the number of bytes transferred has been
1755	 * updated and there is no card.
1756	 */
1757	if (err && mmc_detect_card_removed(card->host))
1758		return;
1759
1760	/* Try to get back to "tran" state */
1761	if (!mmc_host_is_spi(mq->card->host) &&
1762	    (err || !mmc_ready_for_data(status)))
1763		err = mmc_blk_fix_state(mq->card, req);
1764
1765	/*
1766	 * Special case for SD cards where the card might record the number of
1767	 * blocks written.
1768	 */
1769	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1770	    rq_data_dir(req) == WRITE) {
1771		if (mmc_sd_num_wr_blocks(card, &blocks))
1772			brq->data.bytes_xfered = 0;
1773		else
1774			brq->data.bytes_xfered = blocks << 9;
1775	}
1776
1777	/* Reset if the card is in a bad state */
1778	if (!mmc_host_is_spi(mq->card->host) &&
1779	    err && mmc_blk_reset(md, card->host, type)) {
1780		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1781		mqrq->retries = MMC_NO_RETRIES;
1782		return;
1783	}
1784
1785	/*
1786	 * If anything was done, just return and if there is anything remaining
1787	 * on the request it will get requeued.
1788	 */
1789	if (brq->data.bytes_xfered)
1790		return;
1791
1792	/* Reset before last retry */
1793	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1794		mmc_blk_reset(md, card->host, type);
 
1795
1796	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1797	if (brq->sbc.error || brq->cmd.error)
1798		return;
1799
1800	/* Reduce the remaining retries for data errors */
1801	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1802		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1803		return;
1804	}
1805
1806	/* FIXME: Missing single sector read for large sector size */
1807	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1808	    brq->data.blocks > 1) {
1809		/* Read one sector at a time */
1810		mmc_blk_read_single(mq, req);
1811		return;
1812	}
1813}
1814
1815static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1816{
1817	mmc_blk_eval_resp_error(brq);
1818
1819	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1820	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1821}
1822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1824{
1825	struct mmc_blk_busy_data *data = cb_data;
1826	u32 status = 0;
1827	int err;
1828
1829	err = mmc_send_status(data->card, &status);
1830	if (err)
1831		return err;
1832
1833	/* Accumulate response error bits. */
1834	data->status |= status;
1835
1836	*busy = !mmc_ready_for_data(status);
1837	return 0;
1838}
1839
1840static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1841{
1842	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1843	struct mmc_blk_busy_data cb_data;
1844	int err;
1845
1846	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1847		return 0;
1848
 
 
 
 
 
 
 
1849	cb_data.card = card;
1850	cb_data.status = 0;
1851	err = __mmc_poll_for_busy(card, MMC_BLK_TIMEOUT_MS, &mmc_blk_busy_cb,
1852				  &cb_data);
1853
1854	/*
1855	 * Do not assume data transferred correctly if there are any error bits
1856	 * set.
1857	 */
1858	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1859		mqrq->brq.data.bytes_xfered = 0;
1860		err = err ? err : -EIO;
1861	}
1862
1863	/* Copy the exception bit so it will be seen later on */
1864	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1865		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1866
1867	return err;
1868}
1869
1870static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1871					    struct request *req)
1872{
1873	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1874
1875	mmc_blk_reset_success(mq->blkdata, type);
1876}
1877
1878static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1879{
1880	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1881	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1882
1883	if (nr_bytes) {
1884		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1885			blk_mq_requeue_request(req, true);
1886		else
1887			__blk_mq_end_request(req, BLK_STS_OK);
1888	} else if (!blk_rq_bytes(req)) {
1889		__blk_mq_end_request(req, BLK_STS_IOERR);
1890	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1891		blk_mq_requeue_request(req, true);
1892	} else {
1893		if (mmc_card_removed(mq->card))
1894			req->rq_flags |= RQF_QUIET;
1895		blk_mq_end_request(req, BLK_STS_IOERR);
1896	}
1897}
1898
1899static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1900					struct mmc_queue_req *mqrq)
1901{
1902	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1903	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1904		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1905}
1906
1907static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1908				 struct mmc_queue_req *mqrq)
1909{
1910	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1911		mmc_run_bkops(mq->card);
1912}
1913
1914static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1915{
1916	struct mmc_queue_req *mqrq =
1917		container_of(mrq, struct mmc_queue_req, brq.mrq);
1918	struct request *req = mmc_queue_req_to_req(mqrq);
1919	struct request_queue *q = req->q;
1920	struct mmc_queue *mq = q->queuedata;
1921	struct mmc_host *host = mq->card->host;
1922	unsigned long flags;
1923
1924	if (mmc_blk_rq_error(&mqrq->brq) ||
1925	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1926		spin_lock_irqsave(&mq->lock, flags);
1927		mq->recovery_needed = true;
1928		mq->recovery_req = req;
1929		spin_unlock_irqrestore(&mq->lock, flags);
1930
1931		host->cqe_ops->cqe_recovery_start(host);
1932
1933		schedule_work(&mq->recovery_work);
1934		return;
1935	}
1936
1937	mmc_blk_rw_reset_success(mq, req);
1938
1939	/*
1940	 * Block layer timeouts race with completions which means the normal
1941	 * completion path cannot be used during recovery.
1942	 */
1943	if (mq->in_recovery)
1944		mmc_blk_cqe_complete_rq(mq, req);
1945	else if (likely(!blk_should_fake_timeout(req->q)))
1946		blk_mq_complete_request(req);
1947}
1948
1949void mmc_blk_mq_complete(struct request *req)
1950{
1951	struct mmc_queue *mq = req->q->queuedata;
1952	struct mmc_host *host = mq->card->host;
1953
1954	if (host->cqe_enabled)
1955		mmc_blk_cqe_complete_rq(mq, req);
1956	else if (likely(!blk_should_fake_timeout(req->q)))
1957		mmc_blk_mq_complete_rq(mq, req);
1958}
1959
1960static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1961				       struct request *req)
1962{
1963	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1964	struct mmc_host *host = mq->card->host;
1965
1966	if (mmc_blk_rq_error(&mqrq->brq) ||
1967	    mmc_blk_card_busy(mq->card, req)) {
1968		mmc_blk_mq_rw_recovery(mq, req);
1969	} else {
1970		mmc_blk_rw_reset_success(mq, req);
1971		mmc_retune_release(host);
1972	}
1973
1974	mmc_blk_urgent_bkops(mq, mqrq);
1975}
1976
1977static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1978{
1979	unsigned long flags;
1980	bool put_card;
1981
1982	spin_lock_irqsave(&mq->lock, flags);
1983
1984	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1985
1986	put_card = (mmc_tot_in_flight(mq) == 0);
1987
1988	spin_unlock_irqrestore(&mq->lock, flags);
1989
1990	if (put_card)
1991		mmc_put_card(mq->card, &mq->ctx);
1992}
1993
1994static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
 
1995{
 
1996	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1997	struct mmc_request *mrq = &mqrq->brq.mrq;
1998	struct mmc_host *host = mq->card->host;
1999
2000	mmc_post_req(host, mrq, 0);
2001
2002	/*
2003	 * Block layer timeouts race with completions which means the normal
2004	 * completion path cannot be used during recovery.
2005	 */
2006	if (mq->in_recovery)
2007		mmc_blk_mq_complete_rq(mq, req);
2008	else if (likely(!blk_should_fake_timeout(req->q)))
2009		blk_mq_complete_request(req);
 
 
 
 
2010
2011	mmc_blk_mq_dec_in_flight(mq, req);
2012}
2013
2014void mmc_blk_mq_recovery(struct mmc_queue *mq)
2015{
2016	struct request *req = mq->recovery_req;
2017	struct mmc_host *host = mq->card->host;
2018	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2019
2020	mq->recovery_req = NULL;
2021	mq->rw_wait = false;
2022
2023	if (mmc_blk_rq_error(&mqrq->brq)) {
2024		mmc_retune_hold_now(host);
2025		mmc_blk_mq_rw_recovery(mq, req);
2026	}
2027
2028	mmc_blk_urgent_bkops(mq, mqrq);
2029
2030	mmc_blk_mq_post_req(mq, req);
2031}
2032
2033static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2034					 struct request **prev_req)
2035{
2036	if (mmc_host_done_complete(mq->card->host))
2037		return;
2038
2039	mutex_lock(&mq->complete_lock);
2040
2041	if (!mq->complete_req)
2042		goto out_unlock;
2043
2044	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2045
2046	if (prev_req)
2047		*prev_req = mq->complete_req;
2048	else
2049		mmc_blk_mq_post_req(mq, mq->complete_req);
2050
2051	mq->complete_req = NULL;
2052
2053out_unlock:
2054	mutex_unlock(&mq->complete_lock);
2055}
2056
2057void mmc_blk_mq_complete_work(struct work_struct *work)
2058{
2059	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2060					    complete_work);
2061
2062	mmc_blk_mq_complete_prev_req(mq, NULL);
2063}
2064
2065static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2066{
2067	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2068						  brq.mrq);
2069	struct request *req = mmc_queue_req_to_req(mqrq);
2070	struct request_queue *q = req->q;
2071	struct mmc_queue *mq = q->queuedata;
2072	struct mmc_host *host = mq->card->host;
2073	unsigned long flags;
2074
2075	if (!mmc_host_done_complete(host)) {
2076		bool waiting;
2077
2078		/*
2079		 * We cannot complete the request in this context, so record
2080		 * that there is a request to complete, and that a following
2081		 * request does not need to wait (although it does need to
2082		 * complete complete_req first).
2083		 */
2084		spin_lock_irqsave(&mq->lock, flags);
2085		mq->complete_req = req;
2086		mq->rw_wait = false;
2087		waiting = mq->waiting;
2088		spin_unlock_irqrestore(&mq->lock, flags);
2089
2090		/*
2091		 * If 'waiting' then the waiting task will complete this
2092		 * request, otherwise queue a work to do it. Note that
2093		 * complete_work may still race with the dispatch of a following
2094		 * request.
2095		 */
2096		if (waiting)
2097			wake_up(&mq->wait);
2098		else
2099			queue_work(mq->card->complete_wq, &mq->complete_work);
2100
2101		return;
2102	}
2103
2104	/* Take the recovery path for errors or urgent background operations */
2105	if (mmc_blk_rq_error(&mqrq->brq) ||
2106	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2107		spin_lock_irqsave(&mq->lock, flags);
2108		mq->recovery_needed = true;
2109		mq->recovery_req = req;
2110		spin_unlock_irqrestore(&mq->lock, flags);
2111		wake_up(&mq->wait);
2112		schedule_work(&mq->recovery_work);
2113		return;
2114	}
2115
2116	mmc_blk_rw_reset_success(mq, req);
2117
2118	mq->rw_wait = false;
2119	wake_up(&mq->wait);
2120
2121	mmc_blk_mq_post_req(mq, req);
 
2122}
2123
2124static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2125{
2126	unsigned long flags;
2127	bool done;
2128
2129	/*
2130	 * Wait while there is another request in progress, but not if recovery
2131	 * is needed. Also indicate whether there is a request waiting to start.
2132	 */
2133	spin_lock_irqsave(&mq->lock, flags);
2134	if (mq->recovery_needed) {
2135		*err = -EBUSY;
2136		done = true;
2137	} else {
2138		done = !mq->rw_wait;
2139	}
2140	mq->waiting = !done;
2141	spin_unlock_irqrestore(&mq->lock, flags);
2142
2143	return done;
2144}
2145
2146static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2147{
2148	int err = 0;
2149
2150	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2151
2152	/* Always complete the previous request if there is one */
2153	mmc_blk_mq_complete_prev_req(mq, prev_req);
2154
2155	return err;
2156}
2157
2158static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2159				  struct request *req)
2160{
2161	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2162	struct mmc_host *host = mq->card->host;
2163	struct request *prev_req = NULL;
2164	int err = 0;
2165
2166	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2167
2168	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2169
2170	mmc_pre_req(host, &mqrq->brq.mrq);
2171
2172	err = mmc_blk_rw_wait(mq, &prev_req);
2173	if (err)
2174		goto out_post_req;
2175
2176	mq->rw_wait = true;
2177
2178	err = mmc_start_request(host, &mqrq->brq.mrq);
2179
2180	if (prev_req)
2181		mmc_blk_mq_post_req(mq, prev_req);
2182
2183	if (err)
2184		mq->rw_wait = false;
2185
2186	/* Release re-tuning here where there is no synchronization required */
2187	if (err || mmc_host_done_complete(host))
2188		mmc_retune_release(host);
2189
2190out_post_req:
2191	if (err)
2192		mmc_post_req(host, &mqrq->brq.mrq, err);
2193
2194	return err;
2195}
2196
2197static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2198{
2199	if (host->cqe_enabled)
2200		return host->cqe_ops->cqe_wait_for_idle(host);
2201
2202	return mmc_blk_rw_wait(mq, NULL);
2203}
2204
2205enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2206{
2207	struct mmc_blk_data *md = mq->blkdata;
2208	struct mmc_card *card = md->queue.card;
2209	struct mmc_host *host = card->host;
2210	int ret;
2211
2212	ret = mmc_blk_part_switch(card, md->part_type);
2213	if (ret)
2214		return MMC_REQ_FAILED_TO_START;
2215
2216	switch (mmc_issue_type(mq, req)) {
2217	case MMC_ISSUE_SYNC:
2218		ret = mmc_blk_wait_for_idle(mq, host);
2219		if (ret)
2220			return MMC_REQ_BUSY;
2221		switch (req_op(req)) {
2222		case REQ_OP_DRV_IN:
2223		case REQ_OP_DRV_OUT:
2224			mmc_blk_issue_drv_op(mq, req);
2225			break;
2226		case REQ_OP_DISCARD:
2227			mmc_blk_issue_discard_rq(mq, req);
2228			break;
2229		case REQ_OP_SECURE_ERASE:
2230			mmc_blk_issue_secdiscard_rq(mq, req);
2231			break;
 
 
 
2232		case REQ_OP_FLUSH:
2233			mmc_blk_issue_flush(mq, req);
2234			break;
2235		default:
2236			WARN_ON_ONCE(1);
2237			return MMC_REQ_FAILED_TO_START;
2238		}
2239		return MMC_REQ_FINISHED;
2240	case MMC_ISSUE_DCMD:
2241	case MMC_ISSUE_ASYNC:
2242		switch (req_op(req)) {
2243		case REQ_OP_FLUSH:
2244			if (!mmc_cache_enabled(host)) {
2245				blk_mq_end_request(req, BLK_STS_OK);
2246				return MMC_REQ_FINISHED;
2247			}
2248			ret = mmc_blk_cqe_issue_flush(mq, req);
2249			break;
 
 
 
2250		case REQ_OP_READ:
2251		case REQ_OP_WRITE:
2252			if (host->cqe_enabled)
2253				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2254			else
2255				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2256			break;
2257		default:
2258			WARN_ON_ONCE(1);
2259			ret = -EINVAL;
2260		}
2261		if (!ret)
2262			return MMC_REQ_STARTED;
2263		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2264	default:
2265		WARN_ON_ONCE(1);
2266		return MMC_REQ_FAILED_TO_START;
2267	}
2268}
2269
2270static inline int mmc_blk_readonly(struct mmc_card *card)
2271{
2272	return mmc_card_readonly(card) ||
2273	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2274}
2275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2276static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2277					      struct device *parent,
2278					      sector_t size,
2279					      bool default_ro,
2280					      const char *subname,
2281					      int area_type)
 
2282{
 
2283	struct mmc_blk_data *md;
2284	int devidx, ret;
2285	char cap_str[10];
 
2286
2287	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2288	if (devidx < 0) {
2289		/*
2290		 * We get -ENOSPC because there are no more any available
2291		 * devidx. The reason may be that, either userspace haven't yet
2292		 * unmounted the partitions, which postpones mmc_blk_release()
2293		 * from being called, or the device has more partitions than
2294		 * what we support.
2295		 */
2296		if (devidx == -ENOSPC)
2297			dev_err(mmc_dev(card->host),
2298				"no more device IDs available\n");
2299
2300		return ERR_PTR(devidx);
2301	}
2302
2303	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2304	if (!md) {
2305		ret = -ENOMEM;
2306		goto out;
2307	}
2308
2309	md->area_type = area_type;
2310
2311	/*
2312	 * Set the read-only status based on the supported commands
2313	 * and the write protect switch.
2314	 */
2315	md->read_only = mmc_blk_readonly(card);
2316
2317	md->disk = mmc_init_queue(&md->queue, card);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2318	if (IS_ERR(md->disk)) {
2319		ret = PTR_ERR(md->disk);
2320		goto err_kfree;
2321	}
2322
2323	INIT_LIST_HEAD(&md->part);
2324	INIT_LIST_HEAD(&md->rpmbs);
2325	kref_init(&md->kref);
2326
2327	md->queue.blkdata = md;
 
2328
2329	md->disk->major	= MMC_BLOCK_MAJOR;
2330	md->disk->minors = perdev_minors;
2331	md->disk->first_minor = devidx * perdev_minors;
2332	md->disk->fops = &mmc_bdops;
2333	md->disk->private_data = md;
2334	md->parent = parent;
2335	set_disk_ro(md->disk, md->read_only || default_ro);
2336	md->disk->flags = GENHD_FL_EXT_DEVT;
2337	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2338		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2339				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2340
2341	/*
2342	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2343	 *
2344	 * - be set for removable media with permanent block devices
2345	 * - be unset for removable block devices with permanent media
2346	 *
2347	 * Since MMC block devices clearly fall under the second
2348	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2349	 * should use the block device creation/destruction hotplug
2350	 * messages to tell when the card is present.
2351	 */
2352
2353	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2354		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2355
2356	set_capacity(md->disk, size);
2357
2358	if (mmc_host_cmd23(card->host)) {
2359		if ((mmc_card_mmc(card) &&
2360		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2361		    (mmc_card_sd(card) &&
2362		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2363			md->flags |= MMC_BLK_CMD23;
2364	}
2365
2366	if (mmc_card_mmc(card) &&
2367	    md->flags & MMC_BLK_CMD23 &&
2368	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2369	     card->ext_csd.rel_sectors)) {
2370		md->flags |= MMC_BLK_REL_WR;
2371		blk_queue_write_cache(md->queue.queue, true, true);
2372	}
2373
2374	string_get_size((u64)size, 512, STRING_UNITS_2,
2375			cap_str, sizeof(cap_str));
2376	pr_info("%s: %s %s %s %s\n",
2377		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2378		cap_str, md->read_only ? "(ro)" : "");
2379
 
 
 
 
 
 
 
 
2380	return md;
2381
 
 
 
2382 err_kfree:
2383	kfree(md);
2384 out:
2385	ida_simple_remove(&mmc_blk_ida, devidx);
2386	return ERR_PTR(ret);
2387}
2388
2389static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2390{
2391	sector_t size;
2392
2393	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2394		/*
2395		 * The EXT_CSD sector count is in number or 512 byte
2396		 * sectors.
2397		 */
2398		size = card->ext_csd.sectors;
2399	} else {
2400		/*
2401		 * The CSD capacity field is in units of read_blkbits.
2402		 * set_capacity takes units of 512 bytes.
2403		 */
2404		size = (typeof(sector_t))card->csd.capacity
2405			<< (card->csd.read_blkbits - 9);
2406	}
2407
2408	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2409					MMC_BLK_DATA_AREA_MAIN);
2410}
2411
2412static int mmc_blk_alloc_part(struct mmc_card *card,
2413			      struct mmc_blk_data *md,
2414			      unsigned int part_type,
2415			      sector_t size,
2416			      bool default_ro,
2417			      const char *subname,
2418			      int area_type)
2419{
2420	struct mmc_blk_data *part_md;
2421
2422	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2423				    subname, area_type);
2424	if (IS_ERR(part_md))
2425		return PTR_ERR(part_md);
2426	part_md->part_type = part_type;
2427	list_add(&part_md->part, &md->part);
2428
2429	return 0;
2430}
2431
2432/**
2433 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2434 * @filp: the character device file
2435 * @cmd: the ioctl() command
2436 * @arg: the argument from userspace
2437 *
2438 * This will essentially just redirect the ioctl()s coming in over to
2439 * the main block device spawning the RPMB character device.
2440 */
2441static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2442			   unsigned long arg)
2443{
2444	struct mmc_rpmb_data *rpmb = filp->private_data;
2445	int ret;
2446
2447	switch (cmd) {
2448	case MMC_IOC_CMD:
2449		ret = mmc_blk_ioctl_cmd(rpmb->md,
2450					(struct mmc_ioc_cmd __user *)arg,
2451					rpmb);
2452		break;
2453	case MMC_IOC_MULTI_CMD:
2454		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2455					(struct mmc_ioc_multi_cmd __user *)arg,
2456					rpmb);
2457		break;
2458	default:
2459		ret = -EINVAL;
2460		break;
2461	}
2462
2463	return ret;
2464}
2465
2466#ifdef CONFIG_COMPAT
2467static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2468			      unsigned long arg)
2469{
2470	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2471}
2472#endif
2473
2474static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2475{
2476	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2477						  struct mmc_rpmb_data, chrdev);
2478
2479	get_device(&rpmb->dev);
2480	filp->private_data = rpmb;
2481	mmc_blk_get(rpmb->md->disk);
2482
2483	return nonseekable_open(inode, filp);
2484}
2485
2486static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2487{
2488	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2489						  struct mmc_rpmb_data, chrdev);
2490
2491	mmc_blk_put(rpmb->md);
2492	put_device(&rpmb->dev);
2493
2494	return 0;
2495}
2496
2497static const struct file_operations mmc_rpmb_fileops = {
2498	.release = mmc_rpmb_chrdev_release,
2499	.open = mmc_rpmb_chrdev_open,
2500	.owner = THIS_MODULE,
2501	.llseek = no_llseek,
2502	.unlocked_ioctl = mmc_rpmb_ioctl,
2503#ifdef CONFIG_COMPAT
2504	.compat_ioctl = mmc_rpmb_ioctl_compat,
2505#endif
2506};
2507
2508static void mmc_blk_rpmb_device_release(struct device *dev)
2509{
2510	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2511
2512	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
 
 
2513	kfree(rpmb);
2514}
2515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2516static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2517				   struct mmc_blk_data *md,
2518				   unsigned int part_index,
2519				   sector_t size,
2520				   const char *subname)
2521{
2522	int devidx, ret;
2523	char rpmb_name[DISK_NAME_LEN];
2524	char cap_str[10];
2525	struct mmc_rpmb_data *rpmb;
2526
2527	/* This creates the minor number for the RPMB char device */
2528	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2529	if (devidx < 0)
2530		return devidx;
2531
2532	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2533	if (!rpmb) {
2534		ida_simple_remove(&mmc_rpmb_ida, devidx);
2535		return -ENOMEM;
2536	}
2537
2538	snprintf(rpmb_name, sizeof(rpmb_name),
2539		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2540
2541	rpmb->id = devidx;
2542	rpmb->part_index = part_index;
2543	rpmb->dev.init_name = rpmb_name;
2544	rpmb->dev.bus = &mmc_rpmb_bus_type;
2545	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2546	rpmb->dev.parent = &card->dev;
2547	rpmb->dev.release = mmc_blk_rpmb_device_release;
2548	device_initialize(&rpmb->dev);
2549	dev_set_drvdata(&rpmb->dev, rpmb);
 
2550	rpmb->md = md;
2551
2552	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2553	rpmb->chrdev.owner = THIS_MODULE;
2554	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2555	if (ret) {
2556		pr_err("%s: could not add character device\n", rpmb_name);
2557		goto out_put_device;
2558	}
2559
2560	list_add(&rpmb->node, &md->rpmbs);
2561
2562	string_get_size((u64)size, 512, STRING_UNITS_2,
2563			cap_str, sizeof(cap_str));
2564
2565	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2566		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2567		MAJOR(mmc_rpmb_devt), rpmb->id);
2568
2569	return 0;
2570
2571out_put_device:
2572	put_device(&rpmb->dev);
2573	return ret;
2574}
2575
2576static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2577
2578{
2579	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2580	put_device(&rpmb->dev);
2581}
2582
2583/* MMC Physical partitions consist of two boot partitions and
2584 * up to four general purpose partitions.
2585 * For each partition enabled in EXT_CSD a block device will be allocatedi
2586 * to provide access to the partition.
2587 */
2588
2589static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2590{
2591	int idx, ret;
2592
2593	if (!mmc_card_mmc(card))
2594		return 0;
2595
2596	for (idx = 0; idx < card->nr_parts; idx++) {
2597		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2598			/*
2599			 * RPMB partitions does not provide block access, they
2600			 * are only accessed using ioctl():s. Thus create
2601			 * special RPMB block devices that do not have a
2602			 * backing block queue for these.
2603			 */
2604			ret = mmc_blk_alloc_rpmb_part(card, md,
2605				card->part[idx].part_cfg,
2606				card->part[idx].size >> 9,
2607				card->part[idx].name);
2608			if (ret)
2609				return ret;
2610		} else if (card->part[idx].size) {
2611			ret = mmc_blk_alloc_part(card, md,
2612				card->part[idx].part_cfg,
2613				card->part[idx].size >> 9,
2614				card->part[idx].force_ro,
2615				card->part[idx].name,
2616				card->part[idx].area_type);
2617			if (ret)
2618				return ret;
2619		}
2620	}
2621
2622	return 0;
2623}
2624
2625static void mmc_blk_remove_req(struct mmc_blk_data *md)
2626{
2627	struct mmc_card *card;
2628
2629	if (md) {
2630		/*
2631		 * Flush remaining requests and free queues. It
2632		 * is freeing the queue that stops new requests
2633		 * from being accepted.
2634		 */
2635		card = md->queue.card;
2636		if (md->disk->flags & GENHD_FL_UP) {
2637			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2638			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2639					card->ext_csd.boot_ro_lockable)
2640				device_remove_file(disk_to_dev(md->disk),
2641					&md->power_ro_lock);
2642
2643			del_gendisk(md->disk);
2644		}
2645		mmc_cleanup_queue(&md->queue);
2646		mmc_blk_put(md);
2647	}
2648}
2649
2650static void mmc_blk_remove_parts(struct mmc_card *card,
2651				 struct mmc_blk_data *md)
2652{
2653	struct list_head *pos, *q;
2654	struct mmc_blk_data *part_md;
2655	struct mmc_rpmb_data *rpmb;
2656
2657	/* Remove RPMB partitions */
2658	list_for_each_safe(pos, q, &md->rpmbs) {
2659		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2660		list_del(pos);
2661		mmc_blk_remove_rpmb_part(rpmb);
2662	}
2663	/* Remove block partitions */
2664	list_for_each_safe(pos, q, &md->part) {
2665		part_md = list_entry(pos, struct mmc_blk_data, part);
2666		list_del(pos);
2667		mmc_blk_remove_req(part_md);
2668	}
2669}
2670
2671static int mmc_add_disk(struct mmc_blk_data *md)
2672{
2673	int ret;
2674	struct mmc_card *card = md->queue.card;
2675
2676	device_add_disk(md->parent, md->disk, NULL);
2677	md->force_ro.show = force_ro_show;
2678	md->force_ro.store = force_ro_store;
2679	sysfs_attr_init(&md->force_ro.attr);
2680	md->force_ro.attr.name = "force_ro";
2681	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2682	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2683	if (ret)
2684		goto force_ro_fail;
2685
2686	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2687	     card->ext_csd.boot_ro_lockable) {
2688		umode_t mode;
2689
2690		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2691			mode = S_IRUGO;
2692		else
2693			mode = S_IRUGO | S_IWUSR;
2694
2695		md->power_ro_lock.show = power_ro_lock_show;
2696		md->power_ro_lock.store = power_ro_lock_store;
2697		sysfs_attr_init(&md->power_ro_lock.attr);
2698		md->power_ro_lock.attr.mode = mode;
2699		md->power_ro_lock.attr.name =
2700					"ro_lock_until_next_power_on";
2701		ret = device_create_file(disk_to_dev(md->disk),
2702				&md->power_ro_lock);
2703		if (ret)
2704			goto power_ro_lock_fail;
2705	}
2706	return ret;
2707
2708power_ro_lock_fail:
2709	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2710force_ro_fail:
2711	del_gendisk(md->disk);
2712
2713	return ret;
2714}
2715
2716#ifdef CONFIG_DEBUG_FS
2717
2718static int mmc_dbg_card_status_get(void *data, u64 *val)
2719{
2720	struct mmc_card *card = data;
2721	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2722	struct mmc_queue *mq = &md->queue;
2723	struct request *req;
2724	int ret;
2725
2726	/* Ask the block layer about the card status */
2727	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2728	if (IS_ERR(req))
2729		return PTR_ERR(req);
2730	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2731	blk_execute_rq(NULL, req, 0);
 
2732	ret = req_to_mmc_queue_req(req)->drv_op_result;
2733	if (ret >= 0) {
2734		*val = ret;
2735		ret = 0;
2736	}
2737	blk_put_request(req);
2738
2739	return ret;
2740}
2741DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2742			 NULL, "%08llx\n");
2743
2744/* That is two digits * 512 + 1 for newline */
2745#define EXT_CSD_STR_LEN 1025
2746
2747static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2748{
2749	struct mmc_card *card = inode->i_private;
2750	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2751	struct mmc_queue *mq = &md->queue;
2752	struct request *req;
2753	char *buf;
2754	ssize_t n = 0;
2755	u8 *ext_csd;
2756	int err, i;
2757
2758	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2759	if (!buf)
2760		return -ENOMEM;
2761
2762	/* Ask the block layer for the EXT CSD */
2763	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2764	if (IS_ERR(req)) {
2765		err = PTR_ERR(req);
2766		goto out_free;
2767	}
2768	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
 
2769	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2770	blk_execute_rq(NULL, req, 0);
2771	err = req_to_mmc_queue_req(req)->drv_op_result;
2772	blk_put_request(req);
2773	if (err) {
2774		pr_err("FAILED %d\n", err);
2775		goto out_free;
2776	}
2777
2778	for (i = 0; i < 512; i++)
2779		n += sprintf(buf + n, "%02x", ext_csd[i]);
2780	n += sprintf(buf + n, "\n");
2781
2782	if (n != EXT_CSD_STR_LEN) {
2783		err = -EINVAL;
2784		kfree(ext_csd);
2785		goto out_free;
2786	}
2787
2788	filp->private_data = buf;
2789	kfree(ext_csd);
2790	return 0;
2791
2792out_free:
2793	kfree(buf);
2794	return err;
2795}
2796
2797static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2798				size_t cnt, loff_t *ppos)
2799{
2800	char *buf = filp->private_data;
2801
2802	return simple_read_from_buffer(ubuf, cnt, ppos,
2803				       buf, EXT_CSD_STR_LEN);
2804}
2805
2806static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2807{
2808	kfree(file->private_data);
2809	return 0;
2810}
2811
2812static const struct file_operations mmc_dbg_ext_csd_fops = {
2813	.open		= mmc_ext_csd_open,
2814	.read		= mmc_ext_csd_read,
2815	.release	= mmc_ext_csd_release,
2816	.llseek		= default_llseek,
2817};
2818
2819static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2820{
2821	struct dentry *root;
2822
2823	if (!card->debugfs_root)
2824		return 0;
2825
2826	root = card->debugfs_root;
2827
2828	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2829		md->status_dentry =
2830			debugfs_create_file_unsafe("status", 0400, root,
2831						   card,
2832						   &mmc_dbg_card_status_fops);
2833		if (!md->status_dentry)
2834			return -EIO;
2835	}
2836
2837	if (mmc_card_mmc(card)) {
2838		md->ext_csd_dentry =
2839			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2840					    &mmc_dbg_ext_csd_fops);
2841		if (!md->ext_csd_dentry)
2842			return -EIO;
2843	}
2844
2845	return 0;
2846}
2847
2848static void mmc_blk_remove_debugfs(struct mmc_card *card,
2849				   struct mmc_blk_data *md)
2850{
2851	if (!card->debugfs_root)
2852		return;
2853
2854	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2855		debugfs_remove(md->status_dentry);
2856		md->status_dentry = NULL;
2857	}
2858
2859	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2860		debugfs_remove(md->ext_csd_dentry);
2861		md->ext_csd_dentry = NULL;
2862	}
2863}
2864
2865#else
2866
2867static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2868{
2869	return 0;
2870}
2871
2872static void mmc_blk_remove_debugfs(struct mmc_card *card,
2873				   struct mmc_blk_data *md)
2874{
2875}
2876
2877#endif /* CONFIG_DEBUG_FS */
2878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2879static int mmc_blk_probe(struct mmc_card *card)
2880{
2881	struct mmc_blk_data *md, *part_md;
2882	int ret = 0;
2883
2884	/*
2885	 * Check that the card supports the command class(es) we need.
2886	 */
2887	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2888		return -ENODEV;
2889
2890	mmc_fixup_device(card, mmc_blk_fixups);
2891
2892	card->complete_wq = alloc_workqueue("mmc_complete",
2893					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2894	if (!card->complete_wq) {
2895		pr_err("Failed to create mmc completion workqueue");
2896		return -ENOMEM;
2897	}
2898
2899	md = mmc_blk_alloc(card);
2900	if (IS_ERR(md)) {
2901		ret = PTR_ERR(md);
2902		goto out_free;
2903	}
2904
2905	ret = mmc_blk_alloc_parts(card, md);
2906	if (ret)
2907		goto out;
2908
2909	dev_set_drvdata(&card->dev, md);
2910
2911	ret = mmc_add_disk(md);
2912	if (ret)
2913		goto out;
2914
2915	list_for_each_entry(part_md, &md->part, part) {
2916		ret = mmc_add_disk(part_md);
2917		if (ret)
2918			goto out;
2919	}
2920
2921	/* Add two debugfs entries */
2922	mmc_blk_add_debugfs(card, md);
2923
2924	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2925	pm_runtime_use_autosuspend(&card->dev);
2926
2927	/*
2928	 * Don't enable runtime PM for SD-combo cards here. Leave that
2929	 * decision to be taken during the SDIO init sequence instead.
2930	 */
2931	if (card->type != MMC_TYPE_SD_COMBO) {
2932		pm_runtime_set_active(&card->dev);
2933		pm_runtime_enable(&card->dev);
2934	}
2935
 
 
2936	return 0;
2937
2938out:
2939	mmc_blk_remove_parts(card, md);
2940	mmc_blk_remove_req(md);
2941out_free:
2942	destroy_workqueue(card->complete_wq);
2943	return ret;
2944}
2945
2946static void mmc_blk_remove(struct mmc_card *card)
2947{
2948	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2949
2950	mmc_blk_remove_debugfs(card, md);
2951	mmc_blk_remove_parts(card, md);
2952	pm_runtime_get_sync(&card->dev);
2953	if (md->part_curr != md->part_type) {
2954		mmc_claim_host(card->host);
2955		mmc_blk_part_switch(card, md->part_type);
2956		mmc_release_host(card->host);
2957	}
2958	if (card->type != MMC_TYPE_SD_COMBO)
2959		pm_runtime_disable(&card->dev);
2960	pm_runtime_put_noidle(&card->dev);
2961	mmc_blk_remove_req(md);
2962	dev_set_drvdata(&card->dev, NULL);
2963	destroy_workqueue(card->complete_wq);
2964}
2965
2966static int _mmc_blk_suspend(struct mmc_card *card)
2967{
2968	struct mmc_blk_data *part_md;
2969	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2970
2971	if (md) {
2972		mmc_queue_suspend(&md->queue);
2973		list_for_each_entry(part_md, &md->part, part) {
2974			mmc_queue_suspend(&part_md->queue);
2975		}
2976	}
2977	return 0;
2978}
2979
2980static void mmc_blk_shutdown(struct mmc_card *card)
2981{
2982	_mmc_blk_suspend(card);
2983}
2984
2985#ifdef CONFIG_PM_SLEEP
2986static int mmc_blk_suspend(struct device *dev)
2987{
2988	struct mmc_card *card = mmc_dev_to_card(dev);
2989
2990	return _mmc_blk_suspend(card);
2991}
2992
2993static int mmc_blk_resume(struct device *dev)
2994{
2995	struct mmc_blk_data *part_md;
2996	struct mmc_blk_data *md = dev_get_drvdata(dev);
2997
2998	if (md) {
2999		/*
3000		 * Resume involves the card going into idle state,
3001		 * so current partition is always the main one.
3002		 */
3003		md->part_curr = md->part_type;
3004		mmc_queue_resume(&md->queue);
3005		list_for_each_entry(part_md, &md->part, part) {
3006			mmc_queue_resume(&part_md->queue);
3007		}
3008	}
3009	return 0;
3010}
3011#endif
3012
3013static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3014
3015static struct mmc_driver mmc_driver = {
3016	.drv		= {
3017		.name	= "mmcblk",
3018		.pm	= &mmc_blk_pm_ops,
3019	},
3020	.probe		= mmc_blk_probe,
3021	.remove		= mmc_blk_remove,
3022	.shutdown	= mmc_blk_shutdown,
3023};
3024
3025static int __init mmc_blk_init(void)
3026{
3027	int res;
3028
3029	res  = bus_register(&mmc_rpmb_bus_type);
3030	if (res < 0) {
3031		pr_err("mmcblk: could not register RPMB bus type\n");
3032		return res;
3033	}
3034	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3035	if (res < 0) {
3036		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3037		goto out_bus_unreg;
3038	}
3039
3040	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3041		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3042
3043	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3044
3045	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3046	if (res)
3047		goto out_chrdev_unreg;
3048
3049	res = mmc_register_driver(&mmc_driver);
3050	if (res)
3051		goto out_blkdev_unreg;
3052
3053	return 0;
3054
3055out_blkdev_unreg:
3056	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3057out_chrdev_unreg:
3058	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3059out_bus_unreg:
3060	bus_unregister(&mmc_rpmb_bus_type);
3061	return res;
3062}
3063
3064static void __exit mmc_blk_exit(void)
3065{
3066	mmc_unregister_driver(&mmc_driver);
3067	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3068	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3069	bus_unregister(&mmc_rpmb_bus_type);
3070}
3071
3072module_init(mmc_blk_init);
3073module_exit(mmc_blk_exit);
3074
3075MODULE_LICENSE("GPL");
3076MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3077