Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Support of MSI, HPET and DMAR interrupts.
  4 *
  5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
  6 *	Moved from arch/x86/kernel/apic/io_apic.c.
  7 * Jiang Liu <jiang.liu@linux.intel.com>
  8 *	Convert to hierarchical irqdomain
  9 */
 10#include <linux/mm.h>
 11#include <linux/interrupt.h>
 12#include <linux/irq.h>
 13#include <linux/pci.h>
 14#include <linux/dmar.h>
 15#include <linux/hpet.h>
 16#include <linux/msi.h>
 17#include <asm/irqdomain.h>
 18#include <asm/hpet.h>
 19#include <asm/hw_irq.h>
 20#include <asm/apic.h>
 21#include <asm/irq_remapping.h>
 22#include <asm/xen/hypervisor.h>
 23
 24struct irq_domain *x86_pci_msi_default_domain __ro_after_init;
 25
 26static void irq_msi_update_msg(struct irq_data *irqd, struct irq_cfg *cfg)
 27{
 28	struct msi_msg msg[2] = { [1] = { }, };
 29
 30	__irq_msi_compose_msg(cfg, msg, false);
 31	irq_data_get_irq_chip(irqd)->irq_write_msi_msg(irqd, msg);
 32}
 33
 34static int
 35msi_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force)
 36{
 37	struct irq_cfg old_cfg, *cfg = irqd_cfg(irqd);
 38	struct irq_data *parent = irqd->parent_data;
 39	unsigned int cpu;
 40	int ret;
 41
 42	/* Save the current configuration */
 43	cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
 44	old_cfg = *cfg;
 45
 46	/* Allocate a new target vector */
 47	ret = parent->chip->irq_set_affinity(parent, mask, force);
 48	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
 49		return ret;
 50
 51	/*
 52	 * For non-maskable and non-remapped MSI interrupts the migration
 53	 * to a different destination CPU and a different vector has to be
 54	 * done careful to handle the possible stray interrupt which can be
 55	 * caused by the non-atomic update of the address/data pair.
 56	 *
 57	 * Direct update is possible when:
 58	 * - The MSI is maskable (remapped MSI does not use this code path).
 59	 *   The reservation mode bit is set in this case.
 60	 * - The new vector is the same as the old vector
 61	 * - The old vector is MANAGED_IRQ_SHUTDOWN_VECTOR (interrupt starts up)
 62	 * - The interrupt is not yet started up
 63	 * - The new destination CPU is the same as the old destination CPU
 64	 */
 65	if (!irqd_can_reserve(irqd) ||
 66	    cfg->vector == old_cfg.vector ||
 67	    old_cfg.vector == MANAGED_IRQ_SHUTDOWN_VECTOR ||
 68	    !irqd_is_started(irqd) ||
 69	    cfg->dest_apicid == old_cfg.dest_apicid) {
 70		irq_msi_update_msg(irqd, cfg);
 71		return ret;
 72	}
 73
 74	/*
 75	 * Paranoia: Validate that the interrupt target is the local
 76	 * CPU.
 77	 */
 78	if (WARN_ON_ONCE(cpu != smp_processor_id())) {
 79		irq_msi_update_msg(irqd, cfg);
 80		return ret;
 81	}
 82
 83	/*
 84	 * Redirect the interrupt to the new vector on the current CPU
 85	 * first. This might cause a spurious interrupt on this vector if
 86	 * the device raises an interrupt right between this update and the
 87	 * update to the final destination CPU.
 88	 *
 89	 * If the vector is in use then the installed device handler will
 90	 * denote it as spurious which is no harm as this is a rare event
 91	 * and interrupt handlers have to cope with spurious interrupts
 92	 * anyway. If the vector is unused, then it is marked so it won't
 93	 * trigger the 'No irq handler for vector' warning in
 94	 * common_interrupt().
 95	 *
 96	 * This requires to hold vector lock to prevent concurrent updates to
 97	 * the affected vector.
 98	 */
 99	lock_vector_lock();
100
101	/*
102	 * Mark the new target vector on the local CPU if it is currently
103	 * unused. Reuse the VECTOR_RETRIGGERED state which is also used in
104	 * the CPU hotplug path for a similar purpose. This cannot be
105	 * undone here as the current CPU has interrupts disabled and
106	 * cannot handle the interrupt before the whole set_affinity()
107	 * section is done. In the CPU unplug case, the current CPU is
108	 * about to vanish and will not handle any interrupts anymore. The
109	 * vector is cleaned up when the CPU comes online again.
110	 */
111	if (IS_ERR_OR_NULL(this_cpu_read(vector_irq[cfg->vector])))
112		this_cpu_write(vector_irq[cfg->vector], VECTOR_RETRIGGERED);
113
114	/* Redirect it to the new vector on the local CPU temporarily */
115	old_cfg.vector = cfg->vector;
116	irq_msi_update_msg(irqd, &old_cfg);
117
118	/* Now transition it to the target CPU */
119	irq_msi_update_msg(irqd, cfg);
120
121	/*
122	 * All interrupts after this point are now targeted at the new
123	 * vector/CPU.
124	 *
125	 * Drop vector lock before testing whether the temporary assignment
126	 * to the local CPU was hit by an interrupt raised in the device,
127	 * because the retrigger function acquires vector lock again.
128	 */
129	unlock_vector_lock();
130
131	/*
132	 * Check whether the transition raced with a device interrupt and
133	 * is pending in the local APICs IRR. It is safe to do this outside
134	 * of vector lock as the irq_desc::lock of this interrupt is still
135	 * held and interrupts are disabled: The check is not accessing the
136	 * underlying vector store. It's just checking the local APIC's
137	 * IRR.
138	 */
139	if (lapic_vector_set_in_irr(cfg->vector))
140		irq_data_get_irq_chip(irqd)->irq_retrigger(irqd);
141
142	return ret;
143}
144
145/**
146 * pci_dev_has_default_msi_parent_domain - Check whether the device has the default
147 *					   MSI parent domain associated
148 * @dev:	Pointer to the PCI device
149 */
150bool pci_dev_has_default_msi_parent_domain(struct pci_dev *dev)
151{
152	struct irq_domain *domain = dev_get_msi_domain(&dev->dev);
153
154	if (!domain)
155		domain = dev_get_msi_domain(&dev->bus->dev);
156	if (!domain)
157		return false;
158
159	return domain == x86_vector_domain;
160}
161
162/**
163 * x86_msi_prepare - Setup of msi_alloc_info_t for allocations
164 * @domain:	The domain for which this setup happens
165 * @dev:	The device for which interrupts are allocated
166 * @nvec:	The number of vectors to allocate
167 * @alloc:	The allocation info structure to initialize
168 *
169 * This function is to be used for all types of MSI domains above the x86
170 * vector domain and any intermediates. It is always invoked from the
171 * top level interrupt domain. The domain specific allocation
172 * functionality is determined via the @domain's bus token which allows to
173 * map the X86 specific allocation type.
174 */
175static int x86_msi_prepare(struct irq_domain *domain, struct device *dev,
176			   int nvec, msi_alloc_info_t *alloc)
177{
178	struct msi_domain_info *info = domain->host_data;
179
180	init_irq_alloc_info(alloc, NULL);
181
182	switch (info->bus_token) {
183	case DOMAIN_BUS_PCI_DEVICE_MSI:
184		alloc->type = X86_IRQ_ALLOC_TYPE_PCI_MSI;
185		return 0;
186	case DOMAIN_BUS_PCI_DEVICE_MSIX:
187		alloc->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX;
188		return 0;
189	default:
190		return -EINVAL;
191	}
192}
193
194/**
195 * x86_init_dev_msi_info - Domain info setup for MSI domains
196 * @dev:		The device for which the domain should be created
197 * @domain:		The (root) domain providing this callback
198 * @real_parent:	The real parent domain of the to initialize domain
199 * @info:		The domain info for the to initialize domain
200 *
201 * This function is to be used for all types of MSI domains above the x86
202 * vector domain and any intermediates. The domain specific functionality
203 * is determined via the @real_parent.
204 */
205static bool x86_init_dev_msi_info(struct device *dev, struct irq_domain *domain,
206				  struct irq_domain *real_parent, struct msi_domain_info *info)
207{
208	const struct msi_parent_ops *pops = real_parent->msi_parent_ops;
209
210	/* MSI parent domain specific settings */
211	switch (real_parent->bus_token) {
212	case DOMAIN_BUS_ANY:
213		/* Only the vector domain can have the ANY token */
214		if (WARN_ON_ONCE(domain != real_parent))
215			return false;
216		info->chip->irq_set_affinity = msi_set_affinity;
217		break;
218	case DOMAIN_BUS_DMAR:
219	case DOMAIN_BUS_AMDVI:
220		break;
221	default:
222		WARN_ON_ONCE(1);
223		return false;
224	}
225
226	/* Is the target supported? */
227	switch(info->bus_token) {
228	case DOMAIN_BUS_PCI_DEVICE_MSI:
229	case DOMAIN_BUS_PCI_DEVICE_MSIX:
230		break;
231	default:
232		WARN_ON_ONCE(1);
233		return false;
234	}
235
236	/*
237	 * Mask out the domain specific MSI feature flags which are not
238	 * supported by the real parent.
239	 */
240	info->flags			&= pops->supported_flags;
241	/* Enforce the required flags */
242	info->flags			|= X86_VECTOR_MSI_FLAGS_REQUIRED;
243
244	/* This is always invoked from the top level MSI domain! */
245	info->ops->msi_prepare		= x86_msi_prepare;
246
247	info->chip->irq_ack		= irq_chip_ack_parent;
248	info->chip->irq_retrigger	= irq_chip_retrigger_hierarchy;
249	info->chip->flags		|= IRQCHIP_SKIP_SET_WAKE |
250					   IRQCHIP_AFFINITY_PRE_STARTUP;
251
252	info->handler			= handle_edge_irq;
253	info->handler_name		= "edge";
254
255	return true;
256}
 
 
 
 
 
257
258static const struct msi_parent_ops x86_vector_msi_parent_ops = {
259	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED,
260	.init_dev_msi_info	= x86_init_dev_msi_info,
 
 
 
 
261};
262
263struct irq_domain * __init native_create_pci_msi_domain(void)
264{
265	if (apic_is_disabled)
 
 
 
 
 
 
 
266		return NULL;
267
268	x86_vector_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT;
269	x86_vector_domain->msi_parent_ops = &x86_vector_msi_parent_ops;
270	return x86_vector_domain;
 
 
 
 
 
 
271}
272
273void __init x86_create_pci_msi_domain(void)
274{
275	x86_pci_msi_default_domain = x86_init.irqs.create_pci_msi_domain();
276}
277
278/* Keep around for hyperV */
279int pci_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec,
280		    msi_alloc_info_t *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281{
282	init_irq_alloc_info(arg, NULL);
 
283
284	if (to_pci_dev(dev)->msix_enabled)
285		arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX;
286	else
287		arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSI;
288	return 0;
 
 
289}
290EXPORT_SYMBOL_GPL(pci_msi_prepare);
291
292#ifdef CONFIG_DMAR_TABLE
293/*
294 * The Intel IOMMU (ab)uses the high bits of the MSI address to contain the
295 * high bits of the destination APIC ID. This can't be done in the general
296 * case for MSIs as it would be targeting real memory above 4GiB not the
297 * APIC.
298 */
299static void dmar_msi_compose_msg(struct irq_data *data, struct msi_msg *msg)
300{
301	__irq_msi_compose_msg(irqd_cfg(data), msg, true);
302}
303
304static void dmar_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
305{
306	dmar_msi_write(data->irq, msg);
307}
308
309static struct irq_chip dmar_msi_controller = {
310	.name			= "DMAR-MSI",
311	.irq_unmask		= dmar_msi_unmask,
312	.irq_mask		= dmar_msi_mask,
313	.irq_ack		= irq_chip_ack_parent,
314	.irq_set_affinity	= msi_domain_set_affinity,
315	.irq_retrigger		= irq_chip_retrigger_hierarchy,
316	.irq_compose_msi_msg	= dmar_msi_compose_msg,
317	.irq_write_msi_msg	= dmar_msi_write_msg,
318	.flags			= IRQCHIP_SKIP_SET_WAKE |
319				  IRQCHIP_AFFINITY_PRE_STARTUP,
320};
321
322static int dmar_msi_init(struct irq_domain *domain,
323			 struct msi_domain_info *info, unsigned int virq,
324			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
325{
326	irq_domain_set_info(domain, virq, arg->devid, info->chip, NULL,
327			    handle_edge_irq, arg->data, "edge");
328
329	return 0;
330}
331
332static struct msi_domain_ops dmar_msi_domain_ops = {
333	.msi_init	= dmar_msi_init,
334};
335
336static struct msi_domain_info dmar_msi_domain_info = {
337	.ops		= &dmar_msi_domain_ops,
338	.chip		= &dmar_msi_controller,
339	.flags		= MSI_FLAG_USE_DEF_DOM_OPS,
340};
341
342static struct irq_domain *dmar_get_irq_domain(void)
343{
344	static struct irq_domain *dmar_domain;
345	static DEFINE_MUTEX(dmar_lock);
346	struct fwnode_handle *fn;
347
348	mutex_lock(&dmar_lock);
349	if (dmar_domain)
350		goto out;
351
352	fn = irq_domain_alloc_named_fwnode("DMAR-MSI");
353	if (fn) {
354		dmar_domain = msi_create_irq_domain(fn, &dmar_msi_domain_info,
355						    x86_vector_domain);
356		if (!dmar_domain)
357			irq_domain_free_fwnode(fn);
358	}
359out:
360	mutex_unlock(&dmar_lock);
361	return dmar_domain;
362}
363
364int dmar_alloc_hwirq(int id, int node, void *arg)
365{
366	struct irq_domain *domain = dmar_get_irq_domain();
367	struct irq_alloc_info info;
368
369	if (!domain)
370		return -1;
371
372	init_irq_alloc_info(&info, NULL);
373	info.type = X86_IRQ_ALLOC_TYPE_DMAR;
374	info.devid = id;
375	info.hwirq = id;
376	info.data = arg;
377
378	return irq_domain_alloc_irqs(domain, 1, node, &info);
379}
380
381void dmar_free_hwirq(int irq)
382{
383	irq_domain_free_irqs(irq, 1);
384}
385#endif
386
387bool arch_restore_msi_irqs(struct pci_dev *dev)
388{
389	return xen_initdom_restore_msi(dev);
390}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Support of MSI, HPET and DMAR interrupts.
  4 *
  5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
  6 *	Moved from arch/x86/kernel/apic/io_apic.c.
  7 * Jiang Liu <jiang.liu@linux.intel.com>
  8 *	Convert to hierarchical irqdomain
  9 */
 10#include <linux/mm.h>
 11#include <linux/interrupt.h>
 12#include <linux/irq.h>
 13#include <linux/pci.h>
 14#include <linux/dmar.h>
 15#include <linux/hpet.h>
 16#include <linux/msi.h>
 17#include <asm/irqdomain.h>
 18#include <asm/hpet.h>
 19#include <asm/hw_irq.h>
 20#include <asm/apic.h>
 21#include <asm/irq_remapping.h>
 
 22
 23struct irq_domain *x86_pci_msi_default_domain __ro_after_init;
 24
 25static void irq_msi_update_msg(struct irq_data *irqd, struct irq_cfg *cfg)
 26{
 27	struct msi_msg msg[2] = { [1] = { }, };
 28
 29	__irq_msi_compose_msg(cfg, msg, false);
 30	irq_data_get_irq_chip(irqd)->irq_write_msi_msg(irqd, msg);
 31}
 32
 33static int
 34msi_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force)
 35{
 36	struct irq_cfg old_cfg, *cfg = irqd_cfg(irqd);
 37	struct irq_data *parent = irqd->parent_data;
 38	unsigned int cpu;
 39	int ret;
 40
 41	/* Save the current configuration */
 42	cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
 43	old_cfg = *cfg;
 44
 45	/* Allocate a new target vector */
 46	ret = parent->chip->irq_set_affinity(parent, mask, force);
 47	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
 48		return ret;
 49
 50	/*
 51	 * For non-maskable and non-remapped MSI interrupts the migration
 52	 * to a different destination CPU and a different vector has to be
 53	 * done careful to handle the possible stray interrupt which can be
 54	 * caused by the non-atomic update of the address/data pair.
 55	 *
 56	 * Direct update is possible when:
 57	 * - The MSI is maskable (remapped MSI does not use this code path)).
 58	 *   The quirk bit is not set in this case.
 59	 * - The new vector is the same as the old vector
 60	 * - The old vector is MANAGED_IRQ_SHUTDOWN_VECTOR (interrupt starts up)
 61	 * - The interrupt is not yet started up
 62	 * - The new destination CPU is the same as the old destination CPU
 63	 */
 64	if (!irqd_msi_nomask_quirk(irqd) ||
 65	    cfg->vector == old_cfg.vector ||
 66	    old_cfg.vector == MANAGED_IRQ_SHUTDOWN_VECTOR ||
 67	    !irqd_is_started(irqd) ||
 68	    cfg->dest_apicid == old_cfg.dest_apicid) {
 69		irq_msi_update_msg(irqd, cfg);
 70		return ret;
 71	}
 72
 73	/*
 74	 * Paranoia: Validate that the interrupt target is the local
 75	 * CPU.
 76	 */
 77	if (WARN_ON_ONCE(cpu != smp_processor_id())) {
 78		irq_msi_update_msg(irqd, cfg);
 79		return ret;
 80	}
 81
 82	/*
 83	 * Redirect the interrupt to the new vector on the current CPU
 84	 * first. This might cause a spurious interrupt on this vector if
 85	 * the device raises an interrupt right between this update and the
 86	 * update to the final destination CPU.
 87	 *
 88	 * If the vector is in use then the installed device handler will
 89	 * denote it as spurious which is no harm as this is a rare event
 90	 * and interrupt handlers have to cope with spurious interrupts
 91	 * anyway. If the vector is unused, then it is marked so it won't
 92	 * trigger the 'No irq handler for vector' warning in
 93	 * common_interrupt().
 94	 *
 95	 * This requires to hold vector lock to prevent concurrent updates to
 96	 * the affected vector.
 97	 */
 98	lock_vector_lock();
 99
100	/*
101	 * Mark the new target vector on the local CPU if it is currently
102	 * unused. Reuse the VECTOR_RETRIGGERED state which is also used in
103	 * the CPU hotplug path for a similar purpose. This cannot be
104	 * undone here as the current CPU has interrupts disabled and
105	 * cannot handle the interrupt before the whole set_affinity()
106	 * section is done. In the CPU unplug case, the current CPU is
107	 * about to vanish and will not handle any interrupts anymore. The
108	 * vector is cleaned up when the CPU comes online again.
109	 */
110	if (IS_ERR_OR_NULL(this_cpu_read(vector_irq[cfg->vector])))
111		this_cpu_write(vector_irq[cfg->vector], VECTOR_RETRIGGERED);
112
113	/* Redirect it to the new vector on the local CPU temporarily */
114	old_cfg.vector = cfg->vector;
115	irq_msi_update_msg(irqd, &old_cfg);
116
117	/* Now transition it to the target CPU */
118	irq_msi_update_msg(irqd, cfg);
119
120	/*
121	 * All interrupts after this point are now targeted at the new
122	 * vector/CPU.
123	 *
124	 * Drop vector lock before testing whether the temporary assignment
125	 * to the local CPU was hit by an interrupt raised in the device,
126	 * because the retrigger function acquires vector lock again.
127	 */
128	unlock_vector_lock();
129
130	/*
131	 * Check whether the transition raced with a device interrupt and
132	 * is pending in the local APICs IRR. It is safe to do this outside
133	 * of vector lock as the irq_desc::lock of this interrupt is still
134	 * held and interrupts are disabled: The check is not accessing the
135	 * underlying vector store. It's just checking the local APIC's
136	 * IRR.
137	 */
138	if (lapic_vector_set_in_irr(cfg->vector))
139		irq_data_get_irq_chip(irqd)->irq_retrigger(irqd);
140
141	return ret;
142}
143
144/*
145 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
146 * which implement the MSI or MSI-X Capability Structure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147 */
148static struct irq_chip pci_msi_controller = {
149	.name			= "PCI-MSI",
150	.irq_unmask		= pci_msi_unmask_irq,
151	.irq_mask		= pci_msi_mask_irq,
152	.irq_ack		= irq_chip_ack_parent,
153	.irq_retrigger		= irq_chip_retrigger_hierarchy,
154	.irq_set_affinity	= msi_set_affinity,
155	.flags			= IRQCHIP_SKIP_SET_WAKE |
156				  IRQCHIP_AFFINITY_PRE_STARTUP,
157};
 
 
 
 
 
 
 
 
158
159int pci_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec,
160		    msi_alloc_info_t *arg)
 
 
 
 
 
 
 
 
 
 
 
161{
162	struct pci_dev *pdev = to_pci_dev(dev);
163	struct msi_desc *desc = first_pci_msi_entry(pdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
165	init_irq_alloc_info(arg, NULL);
166	if (desc->msi_attrib.is_msix) {
167		arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX;
168	} else {
169		arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSI;
170		arg->flags |= X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
 
 
171	}
172
173	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174}
175EXPORT_SYMBOL_GPL(pci_msi_prepare);
176
177static struct msi_domain_ops pci_msi_domain_ops = {
178	.msi_prepare	= pci_msi_prepare,
179};
180
181static struct msi_domain_info pci_msi_domain_info = {
182	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
183			  MSI_FLAG_PCI_MSIX,
184	.ops		= &pci_msi_domain_ops,
185	.chip		= &pci_msi_controller,
186	.handler	= handle_edge_irq,
187	.handler_name	= "edge",
188};
189
190struct irq_domain * __init native_create_pci_msi_domain(void)
191{
192	struct fwnode_handle *fn;
193	struct irq_domain *d;
194
195	if (disable_apic)
196		return NULL;
197
198	fn = irq_domain_alloc_named_fwnode("PCI-MSI");
199	if (!fn)
200		return NULL;
201
202	d = pci_msi_create_irq_domain(fn, &pci_msi_domain_info,
203				      x86_vector_domain);
204	if (!d) {
205		irq_domain_free_fwnode(fn);
206		pr_warn("Failed to initialize PCI-MSI irqdomain.\n");
207	} else {
208		d->flags |= IRQ_DOMAIN_MSI_NOMASK_QUIRK;
209	}
210	return d;
211}
212
213void __init x86_create_pci_msi_domain(void)
214{
215	x86_pci_msi_default_domain = x86_init.irqs.create_pci_msi_domain();
216}
217
218#ifdef CONFIG_IRQ_REMAP
219static struct irq_chip pci_msi_ir_controller = {
220	.name			= "IR-PCI-MSI",
221	.irq_unmask		= pci_msi_unmask_irq,
222	.irq_mask		= pci_msi_mask_irq,
223	.irq_ack		= irq_chip_ack_parent,
224	.irq_retrigger		= irq_chip_retrigger_hierarchy,
225	.flags			= IRQCHIP_SKIP_SET_WAKE |
226				  IRQCHIP_AFFINITY_PRE_STARTUP,
227};
228
229static struct msi_domain_info pci_msi_ir_domain_info = {
230	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
231			  MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
232	.ops		= &pci_msi_domain_ops,
233	.chip		= &pci_msi_ir_controller,
234	.handler	= handle_edge_irq,
235	.handler_name	= "edge",
236};
237
238struct irq_domain *arch_create_remap_msi_irq_domain(struct irq_domain *parent,
239						    const char *name, int id)
240{
241	struct fwnode_handle *fn;
242	struct irq_domain *d;
243
244	fn = irq_domain_alloc_named_id_fwnode(name, id);
245	if (!fn)
246		return NULL;
247	d = pci_msi_create_irq_domain(fn, &pci_msi_ir_domain_info, parent);
248	if (!d)
249		irq_domain_free_fwnode(fn);
250	return d;
251}
252#endif
253
254#ifdef CONFIG_DMAR_TABLE
255/*
256 * The Intel IOMMU (ab)uses the high bits of the MSI address to contain the
257 * high bits of the destination APIC ID. This can't be done in the general
258 * case for MSIs as it would be targeting real memory above 4GiB not the
259 * APIC.
260 */
261static void dmar_msi_compose_msg(struct irq_data *data, struct msi_msg *msg)
262{
263	__irq_msi_compose_msg(irqd_cfg(data), msg, true);
264}
265
266static void dmar_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
267{
268	dmar_msi_write(data->irq, msg);
269}
270
271static struct irq_chip dmar_msi_controller = {
272	.name			= "DMAR-MSI",
273	.irq_unmask		= dmar_msi_unmask,
274	.irq_mask		= dmar_msi_mask,
275	.irq_ack		= irq_chip_ack_parent,
276	.irq_set_affinity	= msi_domain_set_affinity,
277	.irq_retrigger		= irq_chip_retrigger_hierarchy,
278	.irq_compose_msi_msg	= dmar_msi_compose_msg,
279	.irq_write_msi_msg	= dmar_msi_write_msg,
280	.flags			= IRQCHIP_SKIP_SET_WAKE |
281				  IRQCHIP_AFFINITY_PRE_STARTUP,
282};
283
284static int dmar_msi_init(struct irq_domain *domain,
285			 struct msi_domain_info *info, unsigned int virq,
286			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
287{
288	irq_domain_set_info(domain, virq, arg->devid, info->chip, NULL,
289			    handle_edge_irq, arg->data, "edge");
290
291	return 0;
292}
293
294static struct msi_domain_ops dmar_msi_domain_ops = {
295	.msi_init	= dmar_msi_init,
296};
297
298static struct msi_domain_info dmar_msi_domain_info = {
299	.ops		= &dmar_msi_domain_ops,
300	.chip		= &dmar_msi_controller,
301	.flags		= MSI_FLAG_USE_DEF_DOM_OPS,
302};
303
304static struct irq_domain *dmar_get_irq_domain(void)
305{
306	static struct irq_domain *dmar_domain;
307	static DEFINE_MUTEX(dmar_lock);
308	struct fwnode_handle *fn;
309
310	mutex_lock(&dmar_lock);
311	if (dmar_domain)
312		goto out;
313
314	fn = irq_domain_alloc_named_fwnode("DMAR-MSI");
315	if (fn) {
316		dmar_domain = msi_create_irq_domain(fn, &dmar_msi_domain_info,
317						    x86_vector_domain);
318		if (!dmar_domain)
319			irq_domain_free_fwnode(fn);
320	}
321out:
322	mutex_unlock(&dmar_lock);
323	return dmar_domain;
324}
325
326int dmar_alloc_hwirq(int id, int node, void *arg)
327{
328	struct irq_domain *domain = dmar_get_irq_domain();
329	struct irq_alloc_info info;
330
331	if (!domain)
332		return -1;
333
334	init_irq_alloc_info(&info, NULL);
335	info.type = X86_IRQ_ALLOC_TYPE_DMAR;
336	info.devid = id;
337	info.hwirq = id;
338	info.data = arg;
339
340	return irq_domain_alloc_irqs(domain, 1, node, &info);
341}
342
343void dmar_free_hwirq(int irq)
344{
345	irq_domain_free_irqs(irq, 1);
346}
347#endif