Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/parisc/traps.c
  4 *
  5 *  Copyright (C) 1991, 1992  Linus Torvalds
  6 *  Copyright (C) 1999, 2000  Philipp Rumpf <prumpf@tux.org>
  7 */
  8
  9/*
 10 * 'Traps.c' handles hardware traps and faults after we have saved some
 11 * state in 'asm.s'.
 12 */
 13
 14#include <linux/sched.h>
 15#include <linux/sched/debug.h>
 16#include <linux/kernel.h>
 17#include <linux/string.h>
 18#include <linux/errno.h>
 19#include <linux/ptrace.h>
 20#include <linux/timer.h>
 21#include <linux/delay.h>
 22#include <linux/mm.h>
 23#include <linux/module.h>
 24#include <linux/smp.h>
 25#include <linux/spinlock.h>
 26#include <linux/init.h>
 27#include <linux/interrupt.h>
 28#include <linux/console.h>
 29#include <linux/bug.h>
 30#include <linux/ratelimit.h>
 31#include <linux/uaccess.h>
 32#include <linux/kdebug.h>
 33#include <linux/kfence.h>
 34
 35#include <asm/assembly.h>
 36#include <asm/io.h>
 37#include <asm/irq.h>
 38#include <asm/traps.h>
 39#include <linux/unaligned.h>
 40#include <linux/atomic.h>
 41#include <asm/smp.h>
 42#include <asm/pdc.h>
 43#include <asm/pdc_chassis.h>
 44#include <asm/unwind.h>
 45#include <asm/tlbflush.h>
 46#include <asm/cacheflush.h>
 47#include <linux/kgdb.h>
 48#include <linux/kprobes.h>
 49
 50#include "unaligned.h"
 51
 52#if defined(CONFIG_LIGHTWEIGHT_SPINLOCK_CHECK)
 53#include <asm/spinlock.h>
 54#endif
 55
 56#include "../math-emu/math-emu.h"	/* for handle_fpe() */
 57
 58static void parisc_show_stack(struct task_struct *task,
 59	struct pt_regs *regs, const char *loglvl);
 60
 61static int printbinary(char *buf, unsigned long x, int nbits)
 62{
 63	unsigned long mask = 1UL << (nbits - 1);
 64	while (mask != 0) {
 65		*buf++ = (mask & x ? '1' : '0');
 66		mask >>= 1;
 67	}
 68	*buf = '\0';
 69
 70	return nbits;
 71}
 72
 73#ifdef CONFIG_64BIT
 74#define RFMT "%016lx"
 75#else
 76#define RFMT "%08lx"
 77#endif
 78#define FFMT "%016llx"	/* fpregs are 64-bit always */
 79
 80#define PRINTREGS(lvl,r,f,fmt,x)	\
 81	printk("%s%s%02d-%02d  " fmt " " fmt " " fmt " " fmt "\n",	\
 82		lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1],		\
 83		(r)[(x)+2], (r)[(x)+3])
 84
 85static void print_gr(const char *level, struct pt_regs *regs)
 86{
 87	int i;
 88	char buf[64];
 89
 90	printk("%s\n", level);
 91	printk("%s     YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level);
 92	printbinary(buf, regs->gr[0], 32);
 93	printk("%sPSW: %s %s\n", level, buf, print_tainted());
 94
 95	for (i = 0; i < 32; i += 4)
 96		PRINTREGS(level, regs->gr, "r", RFMT, i);
 97}
 98
 99static void print_fr(const char *level, struct pt_regs *regs)
100{
101	int i;
102	char buf[64];
103	struct { u32 sw[2]; } s;
104
105	/* FR are 64bit everywhere. Need to use asm to get the content
106	 * of fpsr/fper1, and we assume that we won't have a FP Identify
107	 * in our way, otherwise we're screwed.
108	 * The fldd is used to restore the T-bit if there was one, as the
109	 * store clears it anyway.
110	 * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */
111	asm volatile ("fstd %%fr0,0(%1)	\n\t"
112		      "fldd 0(%1),%%fr0	\n\t"
113		      : "=m" (s) : "r" (&s) : "r0");
114
115	printk("%s\n", level);
116	printk("%s      VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level);
117	printbinary(buf, s.sw[0], 32);
118	printk("%sFPSR: %s\n", level, buf);
119	printk("%sFPER1: %08x\n", level, s.sw[1]);
120
121	/* here we'll print fr0 again, tho it'll be meaningless */
122	for (i = 0; i < 32; i += 4)
123		PRINTREGS(level, regs->fr, "fr", FFMT, i);
124}
125
126void show_regs(struct pt_regs *regs)
127{
128	int i, user;
129	const char *level;
130	unsigned long cr30, cr31;
131
132	user = user_mode(regs);
133	level = user ? KERN_DEBUG : KERN_CRIT;
134
135	show_regs_print_info(level);
136
137	print_gr(level, regs);
138
139	for (i = 0; i < 8; i += 4)
140		PRINTREGS(level, regs->sr, "sr", RFMT, i);
141
142	if (user)
143		print_fr(level, regs);
144
145	cr30 = mfctl(30);
146	cr31 = mfctl(31);
147	printk("%s\n", level);
148	printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n",
149	       level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]);
150	printk("%s IIR: %08lx    ISR: " RFMT "  IOR: " RFMT "\n",
151	       level, regs->iir, regs->isr, regs->ior);
152	printk("%s CPU: %8d   CR30: " RFMT " CR31: " RFMT "\n",
153	       level, task_cpu(current), cr30, cr31);
154	printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28);
155
156	if (user) {
157		printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]);
158		printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]);
159		printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]);
160	} else {
161		printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]);
162		printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]);
163		printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]);
164
165		parisc_show_stack(current, regs, KERN_DEFAULT);
166	}
167}
168
169static DEFINE_RATELIMIT_STATE(_hppa_rs,
170	DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
171
172#define parisc_printk_ratelimited(critical, regs, fmt, ...)	{	      \
173	if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \
174		printk(fmt, ##__VA_ARGS__);				      \
175		show_regs(regs);					      \
176	}								      \
177}
178
179
180static void do_show_stack(struct unwind_frame_info *info, const char *loglvl)
181{
182	int i = 1;
183
184	printk("%sBacktrace:\n", loglvl);
185	while (i <= MAX_UNWIND_ENTRIES) {
186		if (unwind_once(info) < 0 || info->ip == 0)
187			break;
188
189		if (__kernel_text_address(info->ip)) {
190			printk("%s [<" RFMT ">] %pS\n",
191				loglvl, info->ip, (void *) info->ip);
192			i++;
193		}
194	}
195	printk("%s\n", loglvl);
196}
197
198static void parisc_show_stack(struct task_struct *task,
199	struct pt_regs *regs, const char *loglvl)
200{
201	struct unwind_frame_info info;
202
203	unwind_frame_init_task(&info, task, regs);
204
205	do_show_stack(&info, loglvl);
206}
207
208void show_stack(struct task_struct *t, unsigned long *sp, const char *loglvl)
209{
210	parisc_show_stack(t, NULL, loglvl);
211}
212
213int is_valid_bugaddr(unsigned long iaoq)
214{
215	return 1;
216}
217
218void die_if_kernel(char *str, struct pt_regs *regs, long err)
219{
220	if (user_mode(regs)) {
221		if (err == 0)
222			return; /* STFU */
223
224		parisc_printk_ratelimited(1, regs,
225			KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n",
226			current->comm, task_pid_nr(current), str, err, regs->iaoq[0]);
227
228		return;
229	}
230
231	bust_spinlocks(1);
232
233	oops_enter();
234
235	/* Amuse the user in a SPARC fashion */
236	if (err) printk(KERN_CRIT
237			"      _______________________________ \n"
238			"     < Your System ate a SPARC! Gah! >\n"
239			"      ------------------------------- \n"
240			"             \\   ^__^\n"
241			"                 (__)\\       )\\/\\\n"
242			"                  U  ||----w |\n"
243			"                     ||     ||\n");
244	
245	/* unlock the pdc lock if necessary */
246	pdc_emergency_unlock();
247
 
 
 
 
 
 
 
248	if (err)
249		printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n",
250			current->comm, task_pid_nr(current), str, err);
251
252	/* Wot's wrong wif bein' racy? */
253	if (current->thread.flags & PARISC_KERNEL_DEATH) {
254		printk(KERN_CRIT "%s() recursion detected.\n", __func__);
255		local_irq_enable();
256		while (1);
257	}
258	current->thread.flags |= PARISC_KERNEL_DEATH;
259
260	show_regs(regs);
261	dump_stack();
262	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
263
264	if (in_interrupt())
265		panic("Fatal exception in interrupt");
266
267	if (panic_on_oops)
268		panic("Fatal exception");
269
270	oops_exit();
271	make_task_dead(SIGSEGV);
272}
273
274/* gdb uses break 4,8 */
275#define GDB_BREAK_INSN 0x10004
276static void handle_gdb_break(struct pt_regs *regs, int wot)
277{
278	force_sig_fault(SIGTRAP, wot,
279			(void __user *) (regs->iaoq[0] & ~3));
280}
281
282static void handle_break(struct pt_regs *regs)
283{
284	unsigned iir = regs->iir;
285
286	if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) {
287		/* check if a BUG() or WARN() trapped here.  */
288		enum bug_trap_type tt;
289		tt = report_bug(regs->iaoq[0] & ~3, regs);
290		if (tt == BUG_TRAP_TYPE_WARN) {
291			regs->iaoq[0] += 4;
292			regs->iaoq[1] += 4;
293			return; /* return to next instruction when WARN_ON().  */
294		}
295		die_if_kernel("Unknown kernel breakpoint", regs,
296			(tt == BUG_TRAP_TYPE_NONE) ? 9 : 0);
297	}
298
299#ifdef CONFIG_KPROBES
300	if (unlikely(iir == PARISC_KPROBES_BREAK_INSN && !user_mode(regs))) {
301		parisc_kprobe_break_handler(regs);
302		return;
303	}
304	if (unlikely(iir == PARISC_KPROBES_BREAK_INSN2 && !user_mode(regs))) {
305		parisc_kprobe_ss_handler(regs);
306		return;
307	}
308#endif
309
310#ifdef CONFIG_KGDB
311	if (unlikely((iir == PARISC_KGDB_COMPILED_BREAK_INSN ||
312		iir == PARISC_KGDB_BREAK_INSN)) && !user_mode(regs)) {
313		kgdb_handle_exception(9, SIGTRAP, 0, regs);
314		return;
315	}
316#endif
317
318#ifdef CONFIG_LIGHTWEIGHT_SPINLOCK_CHECK
319        if ((iir == SPINLOCK_BREAK_INSN) && !user_mode(regs)) {
320		die_if_kernel("Spinlock was trashed", regs, 1);
321	}
322#endif
323
324	if (unlikely(iir != GDB_BREAK_INSN))
325		parisc_printk_ratelimited(0, regs,
326			KERN_DEBUG "break %d,%d: pid=%d command='%s'\n",
327			iir & 31, (iir>>13) & ((1<<13)-1),
328			task_pid_nr(current), current->comm);
329
330	/* send standard GDB signal */
331	handle_gdb_break(regs, TRAP_BRKPT);
332}
333
334static void default_trap(int code, struct pt_regs *regs)
335{
336	printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id());
337	show_regs(regs);
338}
339
340static void transfer_pim_to_trap_frame(struct pt_regs *regs)
 
 
 
341{
342    register int i;
343    extern unsigned int hpmc_pim_data[];
344    struct pdc_hpmc_pim_11 *pim_narrow;
345    struct pdc_hpmc_pim_20 *pim_wide;
346
347    if (boot_cpu_data.cpu_type >= pcxu) {
348
349	pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data;
350
351	/*
352	 * Note: The following code will probably generate a
353	 * bunch of truncation error warnings from the compiler.
354	 * Could be handled with an ifdef, but perhaps there
355	 * is a better way.
356	 */
357
358	regs->gr[0] = pim_wide->cr[22];
359
360	for (i = 1; i < 32; i++)
361	    regs->gr[i] = pim_wide->gr[i];
362
363	for (i = 0; i < 32; i++)
364	    regs->fr[i] = pim_wide->fr[i];
365
366	for (i = 0; i < 8; i++)
367	    regs->sr[i] = pim_wide->sr[i];
368
369	regs->iasq[0] = pim_wide->cr[17];
370	regs->iasq[1] = pim_wide->iasq_back;
371	regs->iaoq[0] = pim_wide->cr[18];
372	regs->iaoq[1] = pim_wide->iaoq_back;
373
374	regs->sar  = pim_wide->cr[11];
375	regs->iir  = pim_wide->cr[19];
376	regs->isr  = pim_wide->cr[20];
377	regs->ior  = pim_wide->cr[21];
378    }
379    else {
380	pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data;
381
382	regs->gr[0] = pim_narrow->cr[22];
383
384	for (i = 1; i < 32; i++)
385	    regs->gr[i] = pim_narrow->gr[i];
386
387	for (i = 0; i < 32; i++)
388	    regs->fr[i] = pim_narrow->fr[i];
389
390	for (i = 0; i < 8; i++)
391	    regs->sr[i] = pim_narrow->sr[i];
392
393	regs->iasq[0] = pim_narrow->cr[17];
394	regs->iasq[1] = pim_narrow->iasq_back;
395	regs->iaoq[0] = pim_narrow->cr[18];
396	regs->iaoq[1] = pim_narrow->iaoq_back;
397
398	regs->sar  = pim_narrow->cr[11];
399	regs->iir  = pim_narrow->cr[19];
400	regs->isr  = pim_narrow->cr[20];
401	regs->ior  = pim_narrow->cr[21];
402    }
403
404    /*
405     * The following fields only have meaning if we came through
406     * another path. So just zero them here.
407     */
408
409    regs->ksp = 0;
410    regs->kpc = 0;
411    regs->orig_r28 = 0;
412}
413
414
415/*
416 * This routine is called as a last resort when everything else
417 * has gone clearly wrong. We get called for faults in kernel space,
418 * and HPMC's.
419 */
420void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset)
421{
422	static DEFINE_SPINLOCK(terminate_lock);
423
424	(void)notify_die(DIE_OOPS, msg, regs, 0, code, SIGTRAP);
425	bust_spinlocks(1);
426
427	set_eiem(0);
428	local_irq_disable();
429	spin_lock(&terminate_lock);
430
431	/* unlock the pdc lock if necessary */
432	pdc_emergency_unlock();
433
 
 
 
 
434	/* Not all paths will gutter the processor... */
435	switch(code){
436
437	case 1:
438		transfer_pim_to_trap_frame(regs);
439		break;
440
441	default:
442		break;
443
444	}
445	    
446	{
447		/* show_stack(NULL, (unsigned long *)regs->gr[30]); */
448		struct unwind_frame_info info;
449		unwind_frame_init(&info, current, regs);
450		do_show_stack(&info, KERN_CRIT);
451	}
452
453	printk("\n");
454	pr_crit("%s: Code=%d (%s) at addr " RFMT "\n",
455		msg, code, trap_name(code), offset);
456	show_regs(regs);
457
458	spin_unlock(&terminate_lock);
459
460	/* put soft power button back under hardware control;
461	 * if the user had pressed it once at any time, the 
462	 * system will shut down immediately right here. */
463	pdc_soft_power_button(0);
464	
465	/* Call kernel panic() so reboot timeouts work properly 
466	 * FIXME: This function should be on the list of
467	 * panic notifiers, and we should call panic
468	 * directly from the location that we wish. 
469	 * e.g. We should not call panic from
470	 * parisc_terminate, but rather the other way around.
471	 * This hack works, prints the panic message twice,
472	 * and it enables reboot timers!
473	 */
474	panic(msg);
475}
476
477void notrace handle_interruption(int code, struct pt_regs *regs)
478{
479	unsigned long fault_address = 0;
480	unsigned long fault_space = 0;
481	int si_code;
482
483	if (!irqs_disabled_flags(regs->gr[0]))
 
 
484	    local_irq_enable();
485
486	/* Security check:
487	 * If the priority level is still user, and the
488	 * faulting space is not equal to the active space
489	 * then the user is attempting something in a space
490	 * that does not belong to them. Kill the process.
491	 *
492	 * This is normally the situation when the user
493	 * attempts to jump into the kernel space at the
494	 * wrong offset, be it at the gateway page or a
495	 * random location.
496	 *
497	 * We cannot normally signal the process because it
498	 * could *be* on the gateway page, and processes
499	 * executing on the gateway page can't have signals
500	 * delivered.
501	 * 
502	 * We merely readjust the address into the users
503	 * space, at a destination address of zero, and
504	 * allow processing to continue.
505	 */
506	if (((unsigned long)regs->iaoq[0] & 3) &&
507	    ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) { 
508		/* Kill the user process later */
509		regs->iaoq[0] = 0 | PRIV_USER;
510		regs->iaoq[1] = regs->iaoq[0] + 4;
511		regs->iasq[0] = regs->iasq[1] = regs->sr[7];
512		regs->gr[0] &= ~PSW_B;
513		return;
514	}
515	
516#if 0
517	printk(KERN_CRIT "Interruption # %d\n", code);
518#endif
519
520	switch(code) {
521
522	case  1:
523		/* High-priority machine check (HPMC) */
524		
525		/* set up a new led state on systems shipped with a LED State panel */
526		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC);
527
528		parisc_terminate("High Priority Machine Check (HPMC)",
529				regs, code, 0);
530		/* NOT REACHED */
531		
532	case  2:
533		/* Power failure interrupt */
534		printk(KERN_CRIT "Power failure interrupt !\n");
535		return;
536
537	case  3:
538		/* Recovery counter trap */
539		regs->gr[0] &= ~PSW_R;
540
 
 
 
 
 
541#ifdef CONFIG_KGDB
542		if (kgdb_single_step) {
543			kgdb_handle_exception(0, SIGTRAP, 0, regs);
544			return;
545		}
546#endif
547
548		if (user_space(regs))
549			handle_gdb_break(regs, TRAP_TRACE);
550		/* else this must be the start of a syscall - just let it run */
551		return;
552
553	case  5:
554		/* Low-priority machine check */
555		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC);
556		
557		flush_cache_all();
558		flush_tlb_all();
559		default_trap(code, regs);
560		return;
561
562	case  PARISC_ITLB_TRAP:
563		/* Instruction TLB miss fault/Instruction page fault */
564		fault_address = regs->iaoq[0];
565		fault_space   = regs->iasq[0];
566		break;
567
568	case  8:
569		/* Illegal instruction trap */
570		die_if_kernel("Illegal instruction", regs, code);
571		si_code = ILL_ILLOPC;
572		goto give_sigill;
573
574	case  9:
575		/* Break instruction trap */
576		handle_break(regs);
577		return;
578
579	case 10:
580		/* Privileged operation trap */
581		die_if_kernel("Privileged operation", regs, code);
582		si_code = ILL_PRVOPC;
583		goto give_sigill;
584
585	case 11:
586		/* Privileged register trap */
587		if ((regs->iir & 0xffdfffe0) == 0x034008a0) {
588
589			/* This is a MFCTL cr26/cr27 to gr instruction.
590			 * PCXS traps on this, so we need to emulate it.
591			 */
592
593			if (regs->iir & 0x00200000)
594				regs->gr[regs->iir & 0x1f] = mfctl(27);
595			else
596				regs->gr[regs->iir & 0x1f] = mfctl(26);
597
598			regs->iaoq[0] = regs->iaoq[1];
599			regs->iaoq[1] += 4;
600			regs->iasq[0] = regs->iasq[1];
601			return;
602		}
603
604		die_if_kernel("Privileged register usage", regs, code);
605		si_code = ILL_PRVREG;
606	give_sigill:
607		force_sig_fault(SIGILL, si_code,
608				(void __user *) regs->iaoq[0]);
609		return;
610
611	case 12:
612		/* Overflow Trap, let the userland signal handler do the cleanup */
613		force_sig_fault(SIGFPE, FPE_INTOVF,
614				(void __user *) regs->iaoq[0]);
615		return;
616		
617	case 13:
618		/* Conditional Trap
619		   The condition succeeds in an instruction which traps
620		   on condition  */
621		if(user_mode(regs)){
622			/* Let userspace app figure it out from the insn pointed
623			 * to by si_addr.
624			 */
625			force_sig_fault(SIGFPE, FPE_CONDTRAP,
626					(void __user *) regs->iaoq[0]);
627			return;
628		} 
629		/* The kernel doesn't want to handle condition codes */
630		break;
631		
632	case 14:
633		/* Assist Exception Trap, i.e. floating point exception. */
634		die_if_kernel("Floating point exception", regs, 0); /* quiet */
635		__inc_irq_stat(irq_fpassist_count);
636		handle_fpe(regs);
637		return;
638
639	case 15:
640		/* Data TLB miss fault/Data page fault */
641		fallthrough;
642	case 16:
643		/* Non-access instruction TLB miss fault */
644		/* The instruction TLB entry needed for the target address of the FIC
645		   is absent, and hardware can't find it, so we get to cleanup */
646		fallthrough;
647	case 17:
648		/* Non-access data TLB miss fault/Non-access data page fault */
649		/* FIXME: 
650			 Still need to add slow path emulation code here!
651			 If the insn used a non-shadow register, then the tlb
652			 handlers could not have their side-effect (e.g. probe
653			 writing to a target register) emulated since rfir would
654			 erase the changes to said register. Instead we have to
655			 setup everything, call this function we are in, and emulate
656			 by hand. Technically we need to emulate:
657			 fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw
658		*/
659		if (code == 17 && handle_nadtlb_fault(regs))
660			return;
661		fault_address = regs->ior;
662		fault_space = regs->isr;
663		break;
664
665	case 18:
666		/* PCXS only -- later cpu's split this into types 26,27 & 28 */
667		/* Check for unaligned access */
668		if (check_unaligned(regs)) {
669			handle_unaligned(regs);
670			return;
671		}
672		fallthrough;
673	case 26: 
674		/* PCXL: Data memory access rights trap */
675		fault_address = regs->ior;
676		fault_space   = regs->isr;
677		break;
678
679	case 19:
680		/* Data memory break trap */
681		regs->gr[0] |= PSW_X; /* So we can single-step over the trap */
682		fallthrough;
683	case 21:
684		/* Page reference trap */
685		handle_gdb_break(regs, TRAP_HWBKPT);
686		return;
687
688	case 25:
689		/* Taken branch trap */
690		regs->gr[0] &= ~PSW_T;
691		if (user_space(regs))
692			handle_gdb_break(regs, TRAP_BRANCH);
693		/* else this must be the start of a syscall - just let it
694		 * run.
695		 */
696		return;
697
698	case  7:  
699		/* Instruction access rights */
700		/* PCXL: Instruction memory protection trap */
701
702		/*
703		 * This could be caused by either: 1) a process attempting
704		 * to execute within a vma that does not have execute
705		 * permission, or 2) an access rights violation caused by a
706		 * flush only translation set up by ptep_get_and_clear().
707		 * So we check the vma permissions to differentiate the two.
708		 * If the vma indicates we have execute permission, then
709		 * the cause is the latter one. In this case, we need to
710		 * call do_page_fault() to fix the problem.
711		 */
712
713		if (user_mode(regs)) {
714			struct vm_area_struct *vma;
715
716			mmap_read_lock(current->mm);
717			vma = find_vma(current->mm,regs->iaoq[0]);
718			if (vma && (regs->iaoq[0] >= vma->vm_start)
719				&& (vma->vm_flags & VM_EXEC)) {
720
721				fault_address = regs->iaoq[0];
722				fault_space = regs->iasq[0];
723
724				mmap_read_unlock(current->mm);
725				break; /* call do_page_fault() */
726			}
727			mmap_read_unlock(current->mm);
728		}
729		/* CPU could not fetch instruction, so clear stale IIR value. */
730		regs->iir = 0xbaadf00d;
731		fallthrough;
732	case 27: 
733		/* Data memory protection ID trap */
734		if (code == 27 && !user_mode(regs) &&
735			fixup_exception(regs))
736			return;
737
738		die_if_kernel("Protection id trap", regs, code);
739		force_sig_fault(SIGSEGV, SEGV_MAPERR,
740				(code == 7)?
741				((void __user *) regs->iaoq[0]) :
742				((void __user *) regs->ior));
743		return;
744
745	case 28: 
746		/* Unaligned data reference trap */
747		handle_unaligned(regs);
748		return;
749
750	default:
751		if (user_mode(regs)) {
752			parisc_printk_ratelimited(0, regs, KERN_DEBUG
753				"handle_interruption() pid=%d command='%s'\n",
754				task_pid_nr(current), current->comm);
755			/* SIGBUS, for lack of a better one. */
756			force_sig_fault(SIGBUS, BUS_OBJERR,
757					(void __user *)regs->ior);
758			return;
759		}
760		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
761		
762		parisc_terminate("Unexpected interruption", regs, code, 0);
763		/* NOT REACHED */
764	}
765
766	if (user_mode(regs)) {
767	    if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) {
768		parisc_printk_ratelimited(0, regs, KERN_DEBUG
769				"User fault %d on space 0x%08lx, pid=%d command='%s'\n",
770				code, fault_space,
771				task_pid_nr(current), current->comm);
772		force_sig_fault(SIGSEGV, SEGV_MAPERR,
773				(void __user *)regs->ior);
774		return;
775	    }
776	}
777	else {
778
779	    /*
780	     * The kernel should never fault on its own address space,
781	     * unless pagefault_disable() was called before.
782	     */
783
784	    if (faulthandler_disabled() || fault_space == 0)
785	    {
786		/* Clean up and return if in exception table. */
787		if (fixup_exception(regs))
788			return;
789		/* Clean up and return if handled by kfence. */
790		if (kfence_handle_page_fault(fault_address,
791			parisc_acctyp(code, regs->iir) == VM_WRITE, regs))
792			return;
793		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
794		parisc_terminate("Kernel Fault", regs, code, fault_address);
795	    }
796	}
797
798	do_page_fault(regs, code, fault_address);
799}
800
801
802static void __init initialize_ivt(const void *iva)
803{
804	extern const u32 os_hpmc[];
805
806	int i;
807	u32 check = 0;
808	u32 *ivap;
 
809	u32 instr;
810
811	if (strcmp((const char *)iva, "cows can fly"))
812		panic("IVT invalid");
813
814	ivap = (u32 *)iva;
815
816	for (i = 0; i < 8; i++)
817	    *ivap++ = 0;
818
819	/*
820	 * Use PDC_INSTR firmware function to get instruction that invokes
821	 * PDCE_CHECK in HPMC handler.  See programming note at page 1-31 of
822	 * the PA 1.1 Firmware Architecture document.
823	 */
824	if (pdc_instr(&instr) == PDC_OK)
825		ivap[0] = instr;
826
827	/*
828	 * Rules for the checksum of the HPMC handler:
829	 * 1. The IVA does not point to PDC/PDH space (ie: the OS has installed
830	 *    its own IVA).
831	 * 2. The word at IVA + 32 is nonzero.
832	 * 3. If Length (IVA + 60) is not zero, then Length (IVA + 60) and
833	 *    Address (IVA + 56) are word-aligned.
834	 * 4. The checksum of the 8 words starting at IVA + 32 plus the sum of
835	 *    the Length/4 words starting at Address is zero.
836	 */
837
838	/* Setup IVA and compute checksum for HPMC handler */
839	ivap[6] = (u32)__pa(os_hpmc);
840
 
 
841	for (i=0; i<8; i++)
842	    check += ivap[i];
843
844	ivap[5] = -check;
845	pr_debug("initialize_ivt: IVA[6] = 0x%08x\n", ivap[6]);
846}
847	
848
849/* early_trap_init() is called before we set up kernel mappings and
850 * write-protect the kernel */
851void  __init early_trap_init(void)
852{
853	extern const void fault_vector_20;
854
855#ifndef CONFIG_64BIT
856	extern const void fault_vector_11;
857	initialize_ivt(&fault_vector_11);
858#endif
859
860	initialize_ivt(&fault_vector_20);
 
 
 
 
861}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/parisc/traps.c
  4 *
  5 *  Copyright (C) 1991, 1992  Linus Torvalds
  6 *  Copyright (C) 1999, 2000  Philipp Rumpf <prumpf@tux.org>
  7 */
  8
  9/*
 10 * 'Traps.c' handles hardware traps and faults after we have saved some
 11 * state in 'asm.s'.
 12 */
 13
 14#include <linux/sched.h>
 15#include <linux/sched/debug.h>
 16#include <linux/kernel.h>
 17#include <linux/string.h>
 18#include <linux/errno.h>
 19#include <linux/ptrace.h>
 20#include <linux/timer.h>
 21#include <linux/delay.h>
 22#include <linux/mm.h>
 23#include <linux/module.h>
 24#include <linux/smp.h>
 25#include <linux/spinlock.h>
 26#include <linux/init.h>
 27#include <linux/interrupt.h>
 28#include <linux/console.h>
 29#include <linux/bug.h>
 30#include <linux/ratelimit.h>
 31#include <linux/uaccess.h>
 32#include <linux/kdebug.h>
 
 33
 34#include <asm/assembly.h>
 35#include <asm/io.h>
 36#include <asm/irq.h>
 37#include <asm/traps.h>
 38#include <asm/unaligned.h>
 39#include <linux/atomic.h>
 40#include <asm/smp.h>
 41#include <asm/pdc.h>
 42#include <asm/pdc_chassis.h>
 43#include <asm/unwind.h>
 44#include <asm/tlbflush.h>
 45#include <asm/cacheflush.h>
 46#include <linux/kgdb.h>
 47#include <linux/kprobes.h>
 48
 
 
 
 
 
 
 49#include "../math-emu/math-emu.h"	/* for handle_fpe() */
 50
 51static void parisc_show_stack(struct task_struct *task,
 52	struct pt_regs *regs, const char *loglvl);
 53
 54static int printbinary(char *buf, unsigned long x, int nbits)
 55{
 56	unsigned long mask = 1UL << (nbits - 1);
 57	while (mask != 0) {
 58		*buf++ = (mask & x ? '1' : '0');
 59		mask >>= 1;
 60	}
 61	*buf = '\0';
 62
 63	return nbits;
 64}
 65
 66#ifdef CONFIG_64BIT
 67#define RFMT "%016lx"
 68#else
 69#define RFMT "%08lx"
 70#endif
 71#define FFMT "%016llx"	/* fpregs are 64-bit always */
 72
 73#define PRINTREGS(lvl,r,f,fmt,x)	\
 74	printk("%s%s%02d-%02d  " fmt " " fmt " " fmt " " fmt "\n",	\
 75		lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1],		\
 76		(r)[(x)+2], (r)[(x)+3])
 77
 78static void print_gr(const char *level, struct pt_regs *regs)
 79{
 80	int i;
 81	char buf[64];
 82
 83	printk("%s\n", level);
 84	printk("%s     YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level);
 85	printbinary(buf, regs->gr[0], 32);
 86	printk("%sPSW: %s %s\n", level, buf, print_tainted());
 87
 88	for (i = 0; i < 32; i += 4)
 89		PRINTREGS(level, regs->gr, "r", RFMT, i);
 90}
 91
 92static void print_fr(const char *level, struct pt_regs *regs)
 93{
 94	int i;
 95	char buf[64];
 96	struct { u32 sw[2]; } s;
 97
 98	/* FR are 64bit everywhere. Need to use asm to get the content
 99	 * of fpsr/fper1, and we assume that we won't have a FP Identify
100	 * in our way, otherwise we're screwed.
101	 * The fldd is used to restore the T-bit if there was one, as the
102	 * store clears it anyway.
103	 * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */
104	asm volatile ("fstd %%fr0,0(%1)	\n\t"
105		      "fldd 0(%1),%%fr0	\n\t"
106		      : "=m" (s) : "r" (&s) : "r0");
107
108	printk("%s\n", level);
109	printk("%s      VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level);
110	printbinary(buf, s.sw[0], 32);
111	printk("%sFPSR: %s\n", level, buf);
112	printk("%sFPER1: %08x\n", level, s.sw[1]);
113
114	/* here we'll print fr0 again, tho it'll be meaningless */
115	for (i = 0; i < 32; i += 4)
116		PRINTREGS(level, regs->fr, "fr", FFMT, i);
117}
118
119void show_regs(struct pt_regs *regs)
120{
121	int i, user;
122	const char *level;
123	unsigned long cr30, cr31;
124
125	user = user_mode(regs);
126	level = user ? KERN_DEBUG : KERN_CRIT;
127
128	show_regs_print_info(level);
129
130	print_gr(level, regs);
131
132	for (i = 0; i < 8; i += 4)
133		PRINTREGS(level, regs->sr, "sr", RFMT, i);
134
135	if (user)
136		print_fr(level, regs);
137
138	cr30 = mfctl(30);
139	cr31 = mfctl(31);
140	printk("%s\n", level);
141	printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n",
142	       level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]);
143	printk("%s IIR: %08lx    ISR: " RFMT "  IOR: " RFMT "\n",
144	       level, regs->iir, regs->isr, regs->ior);
145	printk("%s CPU: %8d   CR30: " RFMT " CR31: " RFMT "\n",
146	       level, current_thread_info()->cpu, cr30, cr31);
147	printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28);
148
149	if (user) {
150		printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]);
151		printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]);
152		printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]);
153	} else {
154		printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]);
155		printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]);
156		printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]);
157
158		parisc_show_stack(current, regs, KERN_DEFAULT);
159	}
160}
161
162static DEFINE_RATELIMIT_STATE(_hppa_rs,
163	DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
164
165#define parisc_printk_ratelimited(critical, regs, fmt, ...)	{	      \
166	if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \
167		printk(fmt, ##__VA_ARGS__);				      \
168		show_regs(regs);					      \
169	}								      \
170}
171
172
173static void do_show_stack(struct unwind_frame_info *info, const char *loglvl)
174{
175	int i = 1;
176
177	printk("%sBacktrace:\n", loglvl);
178	while (i <= MAX_UNWIND_ENTRIES) {
179		if (unwind_once(info) < 0 || info->ip == 0)
180			break;
181
182		if (__kernel_text_address(info->ip)) {
183			printk("%s [<" RFMT ">] %pS\n",
184				loglvl, info->ip, (void *) info->ip);
185			i++;
186		}
187	}
188	printk("%s\n", loglvl);
189}
190
191static void parisc_show_stack(struct task_struct *task,
192	struct pt_regs *regs, const char *loglvl)
193{
194	struct unwind_frame_info info;
195
196	unwind_frame_init_task(&info, task, regs);
197
198	do_show_stack(&info, loglvl);
199}
200
201void show_stack(struct task_struct *t, unsigned long *sp, const char *loglvl)
202{
203	parisc_show_stack(t, NULL, loglvl);
204}
205
206int is_valid_bugaddr(unsigned long iaoq)
207{
208	return 1;
209}
210
211void die_if_kernel(char *str, struct pt_regs *regs, long err)
212{
213	if (user_mode(regs)) {
214		if (err == 0)
215			return; /* STFU */
216
217		parisc_printk_ratelimited(1, regs,
218			KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n",
219			current->comm, task_pid_nr(current), str, err, regs->iaoq[0]);
220
221		return;
222	}
223
224	bust_spinlocks(1);
225
226	oops_enter();
227
228	/* Amuse the user in a SPARC fashion */
229	if (err) printk(KERN_CRIT
230			"      _______________________________ \n"
231			"     < Your System ate a SPARC! Gah! >\n"
232			"      ------------------------------- \n"
233			"             \\   ^__^\n"
234			"                 (__)\\       )\\/\\\n"
235			"                  U  ||----w |\n"
236			"                     ||     ||\n");
237	
238	/* unlock the pdc lock if necessary */
239	pdc_emergency_unlock();
240
241	/* maybe the kernel hasn't booted very far yet and hasn't been able 
242	 * to initialize the serial or STI console. In that case we should 
243	 * re-enable the pdc console, so that the user will be able to 
244	 * identify the problem. */
245	if (!console_drivers)
246		pdc_console_restart();
247	
248	if (err)
249		printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n",
250			current->comm, task_pid_nr(current), str, err);
251
252	/* Wot's wrong wif bein' racy? */
253	if (current->thread.flags & PARISC_KERNEL_DEATH) {
254		printk(KERN_CRIT "%s() recursion detected.\n", __func__);
255		local_irq_enable();
256		while (1);
257	}
258	current->thread.flags |= PARISC_KERNEL_DEATH;
259
260	show_regs(regs);
261	dump_stack();
262	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
263
264	if (in_interrupt())
265		panic("Fatal exception in interrupt");
266
267	if (panic_on_oops)
268		panic("Fatal exception");
269
270	oops_exit();
271	do_exit(SIGSEGV);
272}
273
274/* gdb uses break 4,8 */
275#define GDB_BREAK_INSN 0x10004
276static void handle_gdb_break(struct pt_regs *regs, int wot)
277{
278	force_sig_fault(SIGTRAP, wot,
279			(void __user *) (regs->iaoq[0] & ~3));
280}
281
282static void handle_break(struct pt_regs *regs)
283{
284	unsigned iir = regs->iir;
285
286	if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) {
287		/* check if a BUG() or WARN() trapped here.  */
288		enum bug_trap_type tt;
289		tt = report_bug(regs->iaoq[0] & ~3, regs);
290		if (tt == BUG_TRAP_TYPE_WARN) {
291			regs->iaoq[0] += 4;
292			regs->iaoq[1] += 4;
293			return; /* return to next instruction when WARN_ON().  */
294		}
295		die_if_kernel("Unknown kernel breakpoint", regs,
296			(tt == BUG_TRAP_TYPE_NONE) ? 9 : 0);
297	}
298
299#ifdef CONFIG_KPROBES
300	if (unlikely(iir == PARISC_KPROBES_BREAK_INSN)) {
301		parisc_kprobe_break_handler(regs);
302		return;
303	}
304
 
 
 
305#endif
306
307#ifdef CONFIG_KGDB
308	if (unlikely(iir == PARISC_KGDB_COMPILED_BREAK_INSN ||
309		iir == PARISC_KGDB_BREAK_INSN)) {
310		kgdb_handle_exception(9, SIGTRAP, 0, regs);
311		return;
312	}
313#endif
314
 
 
 
 
 
 
315	if (unlikely(iir != GDB_BREAK_INSN))
316		parisc_printk_ratelimited(0, regs,
317			KERN_DEBUG "break %d,%d: pid=%d command='%s'\n",
318			iir & 31, (iir>>13) & ((1<<13)-1),
319			task_pid_nr(current), current->comm);
320
321	/* send standard GDB signal */
322	handle_gdb_break(regs, TRAP_BRKPT);
323}
324
325static void default_trap(int code, struct pt_regs *regs)
326{
327	printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id());
328	show_regs(regs);
329}
330
331void (*cpu_lpmc) (int code, struct pt_regs *regs) __read_mostly = default_trap;
332
333
334void transfer_pim_to_trap_frame(struct pt_regs *regs)
335{
336    register int i;
337    extern unsigned int hpmc_pim_data[];
338    struct pdc_hpmc_pim_11 *pim_narrow;
339    struct pdc_hpmc_pim_20 *pim_wide;
340
341    if (boot_cpu_data.cpu_type >= pcxu) {
342
343	pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data;
344
345	/*
346	 * Note: The following code will probably generate a
347	 * bunch of truncation error warnings from the compiler.
348	 * Could be handled with an ifdef, but perhaps there
349	 * is a better way.
350	 */
351
352	regs->gr[0] = pim_wide->cr[22];
353
354	for (i = 1; i < 32; i++)
355	    regs->gr[i] = pim_wide->gr[i];
356
357	for (i = 0; i < 32; i++)
358	    regs->fr[i] = pim_wide->fr[i];
359
360	for (i = 0; i < 8; i++)
361	    regs->sr[i] = pim_wide->sr[i];
362
363	regs->iasq[0] = pim_wide->cr[17];
364	regs->iasq[1] = pim_wide->iasq_back;
365	regs->iaoq[0] = pim_wide->cr[18];
366	regs->iaoq[1] = pim_wide->iaoq_back;
367
368	regs->sar  = pim_wide->cr[11];
369	regs->iir  = pim_wide->cr[19];
370	regs->isr  = pim_wide->cr[20];
371	regs->ior  = pim_wide->cr[21];
372    }
373    else {
374	pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data;
375
376	regs->gr[0] = pim_narrow->cr[22];
377
378	for (i = 1; i < 32; i++)
379	    regs->gr[i] = pim_narrow->gr[i];
380
381	for (i = 0; i < 32; i++)
382	    regs->fr[i] = pim_narrow->fr[i];
383
384	for (i = 0; i < 8; i++)
385	    regs->sr[i] = pim_narrow->sr[i];
386
387	regs->iasq[0] = pim_narrow->cr[17];
388	regs->iasq[1] = pim_narrow->iasq_back;
389	regs->iaoq[0] = pim_narrow->cr[18];
390	regs->iaoq[1] = pim_narrow->iaoq_back;
391
392	regs->sar  = pim_narrow->cr[11];
393	regs->iir  = pim_narrow->cr[19];
394	regs->isr  = pim_narrow->cr[20];
395	regs->ior  = pim_narrow->cr[21];
396    }
397
398    /*
399     * The following fields only have meaning if we came through
400     * another path. So just zero them here.
401     */
402
403    regs->ksp = 0;
404    regs->kpc = 0;
405    regs->orig_r28 = 0;
406}
407
408
409/*
410 * This routine is called as a last resort when everything else
411 * has gone clearly wrong. We get called for faults in kernel space,
412 * and HPMC's.
413 */
414void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset)
415{
416	static DEFINE_SPINLOCK(terminate_lock);
417
418	(void)notify_die(DIE_OOPS, msg, regs, 0, code, SIGTRAP);
419	bust_spinlocks(1);
420
421	set_eiem(0);
422	local_irq_disable();
423	spin_lock(&terminate_lock);
424
425	/* unlock the pdc lock if necessary */
426	pdc_emergency_unlock();
427
428	/* restart pdc console if necessary */
429	if (!console_drivers)
430		pdc_console_restart();
431
432	/* Not all paths will gutter the processor... */
433	switch(code){
434
435	case 1:
436		transfer_pim_to_trap_frame(regs);
437		break;
438
439	default:
440		break;
441
442	}
443	    
444	{
445		/* show_stack(NULL, (unsigned long *)regs->gr[30]); */
446		struct unwind_frame_info info;
447		unwind_frame_init(&info, current, regs);
448		do_show_stack(&info, KERN_CRIT);
449	}
450
451	printk("\n");
452	pr_crit("%s: Code=%d (%s) at addr " RFMT "\n",
453		msg, code, trap_name(code), offset);
454	show_regs(regs);
455
456	spin_unlock(&terminate_lock);
457
458	/* put soft power button back under hardware control;
459	 * if the user had pressed it once at any time, the 
460	 * system will shut down immediately right here. */
461	pdc_soft_power_button(0);
462	
463	/* Call kernel panic() so reboot timeouts work properly 
464	 * FIXME: This function should be on the list of
465	 * panic notifiers, and we should call panic
466	 * directly from the location that we wish. 
467	 * e.g. We should not call panic from
468	 * parisc_terminate, but rather the oter way around.
469	 * This hack works, prints the panic message twice,
470	 * and it enables reboot timers!
471	 */
472	panic(msg);
473}
474
475void notrace handle_interruption(int code, struct pt_regs *regs)
476{
477	unsigned long fault_address = 0;
478	unsigned long fault_space = 0;
479	int si_code;
480
481	if (code == 1)
482	    pdc_console_restart();  /* switch back to pdc if HPMC */
483	else
484	    local_irq_enable();
485
486	/* Security check:
487	 * If the priority level is still user, and the
488	 * faulting space is not equal to the active space
489	 * then the user is attempting something in a space
490	 * that does not belong to them. Kill the process.
491	 *
492	 * This is normally the situation when the user
493	 * attempts to jump into the kernel space at the
494	 * wrong offset, be it at the gateway page or a
495	 * random location.
496	 *
497	 * We cannot normally signal the process because it
498	 * could *be* on the gateway page, and processes
499	 * executing on the gateway page can't have signals
500	 * delivered.
501	 * 
502	 * We merely readjust the address into the users
503	 * space, at a destination address of zero, and
504	 * allow processing to continue.
505	 */
506	if (((unsigned long)regs->iaoq[0] & 3) &&
507	    ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) { 
508		/* Kill the user process later */
509		regs->iaoq[0] = 0 | 3;
510		regs->iaoq[1] = regs->iaoq[0] + 4;
511		regs->iasq[0] = regs->iasq[1] = regs->sr[7];
512		regs->gr[0] &= ~PSW_B;
513		return;
514	}
515	
516#if 0
517	printk(KERN_CRIT "Interruption # %d\n", code);
518#endif
519
520	switch(code) {
521
522	case  1:
523		/* High-priority machine check (HPMC) */
524		
525		/* set up a new led state on systems shipped with a LED State panel */
526		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC);
527
528		parisc_terminate("High Priority Machine Check (HPMC)",
529				regs, code, 0);
530		/* NOT REACHED */
531		
532	case  2:
533		/* Power failure interrupt */
534		printk(KERN_CRIT "Power failure interrupt !\n");
535		return;
536
537	case  3:
538		/* Recovery counter trap */
539		regs->gr[0] &= ~PSW_R;
540
541#ifdef CONFIG_KPROBES
542		if (parisc_kprobe_ss_handler(regs))
543			return;
544#endif
545
546#ifdef CONFIG_KGDB
547		if (kgdb_single_step) {
548			kgdb_handle_exception(0, SIGTRAP, 0, regs);
549			return;
550		}
551#endif
552
553		if (user_space(regs))
554			handle_gdb_break(regs, TRAP_TRACE);
555		/* else this must be the start of a syscall - just let it run */
556		return;
557
558	case  5:
559		/* Low-priority machine check */
560		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC);
561		
562		flush_cache_all();
563		flush_tlb_all();
564		cpu_lpmc(5, regs);
565		return;
566
567	case  PARISC_ITLB_TRAP:
568		/* Instruction TLB miss fault/Instruction page fault */
569		fault_address = regs->iaoq[0];
570		fault_space   = regs->iasq[0];
571		break;
572
573	case  8:
574		/* Illegal instruction trap */
575		die_if_kernel("Illegal instruction", regs, code);
576		si_code = ILL_ILLOPC;
577		goto give_sigill;
578
579	case  9:
580		/* Break instruction trap */
581		handle_break(regs);
582		return;
583
584	case 10:
585		/* Privileged operation trap */
586		die_if_kernel("Privileged operation", regs, code);
587		si_code = ILL_PRVOPC;
588		goto give_sigill;
589
590	case 11:
591		/* Privileged register trap */
592		if ((regs->iir & 0xffdfffe0) == 0x034008a0) {
593
594			/* This is a MFCTL cr26/cr27 to gr instruction.
595			 * PCXS traps on this, so we need to emulate it.
596			 */
597
598			if (regs->iir & 0x00200000)
599				regs->gr[regs->iir & 0x1f] = mfctl(27);
600			else
601				regs->gr[regs->iir & 0x1f] = mfctl(26);
602
603			regs->iaoq[0] = regs->iaoq[1];
604			regs->iaoq[1] += 4;
605			regs->iasq[0] = regs->iasq[1];
606			return;
607		}
608
609		die_if_kernel("Privileged register usage", regs, code);
610		si_code = ILL_PRVREG;
611	give_sigill:
612		force_sig_fault(SIGILL, si_code,
613				(void __user *) regs->iaoq[0]);
614		return;
615
616	case 12:
617		/* Overflow Trap, let the userland signal handler do the cleanup */
618		force_sig_fault(SIGFPE, FPE_INTOVF,
619				(void __user *) regs->iaoq[0]);
620		return;
621		
622	case 13:
623		/* Conditional Trap
624		   The condition succeeds in an instruction which traps
625		   on condition  */
626		if(user_mode(regs)){
627			/* Let userspace app figure it out from the insn pointed
628			 * to by si_addr.
629			 */
630			force_sig_fault(SIGFPE, FPE_CONDTRAP,
631					(void __user *) regs->iaoq[0]);
632			return;
633		} 
634		/* The kernel doesn't want to handle condition codes */
635		break;
636		
637	case 14:
638		/* Assist Exception Trap, i.e. floating point exception. */
639		die_if_kernel("Floating point exception", regs, 0); /* quiet */
640		__inc_irq_stat(irq_fpassist_count);
641		handle_fpe(regs);
642		return;
643
644	case 15:
645		/* Data TLB miss fault/Data page fault */
646		fallthrough;
647	case 16:
648		/* Non-access instruction TLB miss fault */
649		/* The instruction TLB entry needed for the target address of the FIC
650		   is absent, and hardware can't find it, so we get to cleanup */
651		fallthrough;
652	case 17:
653		/* Non-access data TLB miss fault/Non-access data page fault */
654		/* FIXME: 
655			 Still need to add slow path emulation code here!
656			 If the insn used a non-shadow register, then the tlb
657			 handlers could not have their side-effect (e.g. probe
658			 writing to a target register) emulated since rfir would
659			 erase the changes to said register. Instead we have to
660			 setup everything, call this function we are in, and emulate
661			 by hand. Technically we need to emulate:
662			 fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw
663		*/
 
 
664		fault_address = regs->ior;
665		fault_space = regs->isr;
666		break;
667
668	case 18:
669		/* PCXS only -- later cpu's split this into types 26,27 & 28 */
670		/* Check for unaligned access */
671		if (check_unaligned(regs)) {
672			handle_unaligned(regs);
673			return;
674		}
675		fallthrough;
676	case 26: 
677		/* PCXL: Data memory access rights trap */
678		fault_address = regs->ior;
679		fault_space   = regs->isr;
680		break;
681
682	case 19:
683		/* Data memory break trap */
684		regs->gr[0] |= PSW_X; /* So we can single-step over the trap */
685		fallthrough;
686	case 21:
687		/* Page reference trap */
688		handle_gdb_break(regs, TRAP_HWBKPT);
689		return;
690
691	case 25:
692		/* Taken branch trap */
693		regs->gr[0] &= ~PSW_T;
694		if (user_space(regs))
695			handle_gdb_break(regs, TRAP_BRANCH);
696		/* else this must be the start of a syscall - just let it
697		 * run.
698		 */
699		return;
700
701	case  7:  
702		/* Instruction access rights */
703		/* PCXL: Instruction memory protection trap */
704
705		/*
706		 * This could be caused by either: 1) a process attempting
707		 * to execute within a vma that does not have execute
708		 * permission, or 2) an access rights violation caused by a
709		 * flush only translation set up by ptep_get_and_clear().
710		 * So we check the vma permissions to differentiate the two.
711		 * If the vma indicates we have execute permission, then
712		 * the cause is the latter one. In this case, we need to
713		 * call do_page_fault() to fix the problem.
714		 */
715
716		if (user_mode(regs)) {
717			struct vm_area_struct *vma;
718
719			mmap_read_lock(current->mm);
720			vma = find_vma(current->mm,regs->iaoq[0]);
721			if (vma && (regs->iaoq[0] >= vma->vm_start)
722				&& (vma->vm_flags & VM_EXEC)) {
723
724				fault_address = regs->iaoq[0];
725				fault_space = regs->iasq[0];
726
727				mmap_read_unlock(current->mm);
728				break; /* call do_page_fault() */
729			}
730			mmap_read_unlock(current->mm);
731		}
 
 
732		fallthrough;
733	case 27: 
734		/* Data memory protection ID trap */
735		if (code == 27 && !user_mode(regs) &&
736			fixup_exception(regs))
737			return;
738
739		die_if_kernel("Protection id trap", regs, code);
740		force_sig_fault(SIGSEGV, SEGV_MAPERR,
741				(code == 7)?
742				((void __user *) regs->iaoq[0]) :
743				((void __user *) regs->ior));
744		return;
745
746	case 28: 
747		/* Unaligned data reference trap */
748		handle_unaligned(regs);
749		return;
750
751	default:
752		if (user_mode(regs)) {
753			parisc_printk_ratelimited(0, regs, KERN_DEBUG
754				"handle_interruption() pid=%d command='%s'\n",
755				task_pid_nr(current), current->comm);
756			/* SIGBUS, for lack of a better one. */
757			force_sig_fault(SIGBUS, BUS_OBJERR,
758					(void __user *)regs->ior);
759			return;
760		}
761		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
762		
763		parisc_terminate("Unexpected interruption", regs, code, 0);
764		/* NOT REACHED */
765	}
766
767	if (user_mode(regs)) {
768	    if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) {
769		parisc_printk_ratelimited(0, regs, KERN_DEBUG
770				"User fault %d on space 0x%08lx, pid=%d command='%s'\n",
771				code, fault_space,
772				task_pid_nr(current), current->comm);
773		force_sig_fault(SIGSEGV, SEGV_MAPERR,
774				(void __user *)regs->ior);
775		return;
776	    }
777	}
778	else {
779
780	    /*
781	     * The kernel should never fault on its own address space,
782	     * unless pagefault_disable() was called before.
783	     */
784
785	    if (fault_space == 0 && !faulthandler_disabled())
786	    {
787		/* Clean up and return if in exception table. */
788		if (fixup_exception(regs))
789			return;
 
 
 
 
790		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
791		parisc_terminate("Kernel Fault", regs, code, fault_address);
792	    }
793	}
794
795	do_page_fault(regs, code, fault_address);
796}
797
798
799void __init initialize_ivt(const void *iva)
800{
801	extern const u32 os_hpmc[];
802
803	int i;
804	u32 check = 0;
805	u32 *ivap;
806	u32 *hpmcp;
807	u32 instr;
808
809	if (strcmp((const char *)iva, "cows can fly"))
810		panic("IVT invalid");
811
812	ivap = (u32 *)iva;
813
814	for (i = 0; i < 8; i++)
815	    *ivap++ = 0;
816
817	/*
818	 * Use PDC_INSTR firmware function to get instruction that invokes
819	 * PDCE_CHECK in HPMC handler.  See programming note at page 1-31 of
820	 * the PA 1.1 Firmware Architecture document.
821	 */
822	if (pdc_instr(&instr) == PDC_OK)
823		ivap[0] = instr;
824
825	/*
826	 * Rules for the checksum of the HPMC handler:
827	 * 1. The IVA does not point to PDC/PDH space (ie: the OS has installed
828	 *    its own IVA).
829	 * 2. The word at IVA + 32 is nonzero.
830	 * 3. If Length (IVA + 60) is not zero, then Length (IVA + 60) and
831	 *    Address (IVA + 56) are word-aligned.
832	 * 4. The checksum of the 8 words starting at IVA + 32 plus the sum of
833	 *    the Length/4 words starting at Address is zero.
834	 */
835
836	/* Setup IVA and compute checksum for HPMC handler */
837	ivap[6] = (u32)__pa(os_hpmc);
838
839	hpmcp = (u32 *)os_hpmc;
840
841	for (i=0; i<8; i++)
842	    check += ivap[i];
843
844	ivap[5] = -check;
845	pr_debug("initialize_ivt: IVA[6] = 0x%08x\n", ivap[6]);
846}
847	
848
849/* early_trap_init() is called before we set up kernel mappings and
850 * write-protect the kernel */
851void  __init early_trap_init(void)
852{
853	extern const void fault_vector_20;
854
855#ifndef CONFIG_64BIT
856	extern const void fault_vector_11;
857	initialize_ivt(&fault_vector_11);
858#endif
859
860	initialize_ivt(&fault_vector_20);
861}
862
863void __init trap_init(void)
864{
865}