Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/parisc/traps.c
  4 *
  5 *  Copyright (C) 1991, 1992  Linus Torvalds
  6 *  Copyright (C) 1999, 2000  Philipp Rumpf <prumpf@tux.org>
  7 */
  8
  9/*
 10 * 'Traps.c' handles hardware traps and faults after we have saved some
 11 * state in 'asm.s'.
 12 */
 13
 14#include <linux/sched.h>
 15#include <linux/sched/debug.h>
 16#include <linux/kernel.h>
 17#include <linux/string.h>
 18#include <linux/errno.h>
 19#include <linux/ptrace.h>
 20#include <linux/timer.h>
 21#include <linux/delay.h>
 22#include <linux/mm.h>
 23#include <linux/module.h>
 24#include <linux/smp.h>
 25#include <linux/spinlock.h>
 26#include <linux/init.h>
 27#include <linux/interrupt.h>
 28#include <linux/console.h>
 29#include <linux/bug.h>
 30#include <linux/ratelimit.h>
 31#include <linux/uaccess.h>
 32#include <linux/kdebug.h>
 33#include <linux/kfence.h>
 34
 35#include <asm/assembly.h>
 36#include <asm/io.h>
 37#include <asm/irq.h>
 38#include <asm/traps.h>
 39#include <linux/unaligned.h>
 40#include <linux/atomic.h>
 41#include <asm/smp.h>
 42#include <asm/pdc.h>
 43#include <asm/pdc_chassis.h>
 44#include <asm/unwind.h>
 45#include <asm/tlbflush.h>
 46#include <asm/cacheflush.h>
 47#include <linux/kgdb.h>
 48#include <linux/kprobes.h>
 49
 50#include "unaligned.h"
 51
 52#if defined(CONFIG_LIGHTWEIGHT_SPINLOCK_CHECK)
 53#include <asm/spinlock.h>
 54#endif
 55
 56#include "../math-emu/math-emu.h"	/* for handle_fpe() */
 57
 58static void parisc_show_stack(struct task_struct *task,
 59	struct pt_regs *regs, const char *loglvl);
 60
 61static int printbinary(char *buf, unsigned long x, int nbits)
 62{
 63	unsigned long mask = 1UL << (nbits - 1);
 64	while (mask != 0) {
 65		*buf++ = (mask & x ? '1' : '0');
 66		mask >>= 1;
 67	}
 68	*buf = '\0';
 69
 70	return nbits;
 71}
 72
 73#ifdef CONFIG_64BIT
 74#define RFMT "%016lx"
 75#else
 76#define RFMT "%08lx"
 77#endif
 78#define FFMT "%016llx"	/* fpregs are 64-bit always */
 79
 80#define PRINTREGS(lvl,r,f,fmt,x)	\
 81	printk("%s%s%02d-%02d  " fmt " " fmt " " fmt " " fmt "\n",	\
 82		lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1],		\
 83		(r)[(x)+2], (r)[(x)+3])
 84
 85static void print_gr(const char *level, struct pt_regs *regs)
 86{
 87	int i;
 88	char buf[64];
 89
 90	printk("%s\n", level);
 91	printk("%s     YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level);
 92	printbinary(buf, regs->gr[0], 32);
 93	printk("%sPSW: %s %s\n", level, buf, print_tainted());
 94
 95	for (i = 0; i < 32; i += 4)
 96		PRINTREGS(level, regs->gr, "r", RFMT, i);
 97}
 98
 99static void print_fr(const char *level, struct pt_regs *regs)
100{
101	int i;
102	char buf[64];
103	struct { u32 sw[2]; } s;
104
105	/* FR are 64bit everywhere. Need to use asm to get the content
106	 * of fpsr/fper1, and we assume that we won't have a FP Identify
107	 * in our way, otherwise we're screwed.
108	 * The fldd is used to restore the T-bit if there was one, as the
109	 * store clears it anyway.
110	 * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */
111	asm volatile ("fstd %%fr0,0(%1)	\n\t"
112		      "fldd 0(%1),%%fr0	\n\t"
113		      : "=m" (s) : "r" (&s) : "r0");
114
115	printk("%s\n", level);
116	printk("%s      VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level);
117	printbinary(buf, s.sw[0], 32);
118	printk("%sFPSR: %s\n", level, buf);
119	printk("%sFPER1: %08x\n", level, s.sw[1]);
120
121	/* here we'll print fr0 again, tho it'll be meaningless */
122	for (i = 0; i < 32; i += 4)
123		PRINTREGS(level, regs->fr, "fr", FFMT, i);
124}
125
126void show_regs(struct pt_regs *regs)
127{
128	int i, user;
129	const char *level;
130	unsigned long cr30, cr31;
131
132	user = user_mode(regs);
133	level = user ? KERN_DEBUG : KERN_CRIT;
134
135	show_regs_print_info(level);
136
137	print_gr(level, regs);
138
139	for (i = 0; i < 8; i += 4)
140		PRINTREGS(level, regs->sr, "sr", RFMT, i);
141
142	if (user)
143		print_fr(level, regs);
144
145	cr30 = mfctl(30);
146	cr31 = mfctl(31);
147	printk("%s\n", level);
148	printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n",
149	       level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]);
150	printk("%s IIR: %08lx    ISR: " RFMT "  IOR: " RFMT "\n",
151	       level, regs->iir, regs->isr, regs->ior);
152	printk("%s CPU: %8d   CR30: " RFMT " CR31: " RFMT "\n",
153	       level, task_cpu(current), cr30, cr31);
154	printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28);
155
156	if (user) {
157		printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]);
158		printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]);
159		printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]);
160	} else {
161		printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]);
162		printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]);
163		printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]);
164
165		parisc_show_stack(current, regs, KERN_DEFAULT);
166	}
167}
168
169static DEFINE_RATELIMIT_STATE(_hppa_rs,
170	DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
171
172#define parisc_printk_ratelimited(critical, regs, fmt, ...)	{	      \
173	if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \
174		printk(fmt, ##__VA_ARGS__);				      \
175		show_regs(regs);					      \
176	}								      \
177}
178
179
180static void do_show_stack(struct unwind_frame_info *info, const char *loglvl)
181{
182	int i = 1;
183
184	printk("%sBacktrace:\n", loglvl);
185	while (i <= MAX_UNWIND_ENTRIES) {
186		if (unwind_once(info) < 0 || info->ip == 0)
187			break;
188
189		if (__kernel_text_address(info->ip)) {
190			printk("%s [<" RFMT ">] %pS\n",
191				loglvl, info->ip, (void *) info->ip);
192			i++;
193		}
194	}
195	printk("%s\n", loglvl);
196}
197
198static void parisc_show_stack(struct task_struct *task,
199	struct pt_regs *regs, const char *loglvl)
200{
201	struct unwind_frame_info info;
 
 
 
 
 
 
 
 
 
 
202
203	unwind_frame_init_task(&info, task, regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
205	do_show_stack(&info, loglvl);
 
206}
207
208void show_stack(struct task_struct *t, unsigned long *sp, const char *loglvl)
209{
210	parisc_show_stack(t, NULL, loglvl);
211}
212
213int is_valid_bugaddr(unsigned long iaoq)
214{
215	return 1;
216}
217
218void die_if_kernel(char *str, struct pt_regs *regs, long err)
219{
220	if (user_mode(regs)) {
221		if (err == 0)
222			return; /* STFU */
223
224		parisc_printk_ratelimited(1, regs,
225			KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n",
226			current->comm, task_pid_nr(current), str, err, regs->iaoq[0]);
227
228		return;
229	}
230
231	bust_spinlocks(1);
232
233	oops_enter();
234
235	/* Amuse the user in a SPARC fashion */
236	if (err) printk(KERN_CRIT
237			"      _______________________________ \n"
238			"     < Your System ate a SPARC! Gah! >\n"
239			"      ------------------------------- \n"
240			"             \\   ^__^\n"
241			"                 (__)\\       )\\/\\\n"
242			"                  U  ||----w |\n"
243			"                     ||     ||\n");
244	
245	/* unlock the pdc lock if necessary */
246	pdc_emergency_unlock();
247
 
 
 
 
 
 
 
248	if (err)
249		printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n",
250			current->comm, task_pid_nr(current), str, err);
251
252	/* Wot's wrong wif bein' racy? */
253	if (current->thread.flags & PARISC_KERNEL_DEATH) {
254		printk(KERN_CRIT "%s() recursion detected.\n", __func__);
255		local_irq_enable();
256		while (1);
257	}
258	current->thread.flags |= PARISC_KERNEL_DEATH;
259
260	show_regs(regs);
261	dump_stack();
262	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
263
264	if (in_interrupt())
265		panic("Fatal exception in interrupt");
266
267	if (panic_on_oops)
268		panic("Fatal exception");
269
270	oops_exit();
271	make_task_dead(SIGSEGV);
272}
273
274/* gdb uses break 4,8 */
275#define GDB_BREAK_INSN 0x10004
276static void handle_gdb_break(struct pt_regs *regs, int wot)
277{
278	force_sig_fault(SIGTRAP, wot,
279			(void __user *) (regs->iaoq[0] & ~3));
 
 
 
 
 
280}
281
282static void handle_break(struct pt_regs *regs)
283{
284	unsigned iir = regs->iir;
285
286	if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) {
287		/* check if a BUG() or WARN() trapped here.  */
288		enum bug_trap_type tt;
289		tt = report_bug(regs->iaoq[0] & ~3, regs);
290		if (tt == BUG_TRAP_TYPE_WARN) {
291			regs->iaoq[0] += 4;
292			regs->iaoq[1] += 4;
293			return; /* return to next instruction when WARN_ON().  */
294		}
295		die_if_kernel("Unknown kernel breakpoint", regs,
296			(tt == BUG_TRAP_TYPE_NONE) ? 9 : 0);
297	}
298
299#ifdef CONFIG_KPROBES
300	if (unlikely(iir == PARISC_KPROBES_BREAK_INSN && !user_mode(regs))) {
301		parisc_kprobe_break_handler(regs);
302		return;
303	}
304	if (unlikely(iir == PARISC_KPROBES_BREAK_INSN2 && !user_mode(regs))) {
305		parisc_kprobe_ss_handler(regs);
306		return;
307	}
308#endif
309
310#ifdef CONFIG_KGDB
311	if (unlikely((iir == PARISC_KGDB_COMPILED_BREAK_INSN ||
312		iir == PARISC_KGDB_BREAK_INSN)) && !user_mode(regs)) {
313		kgdb_handle_exception(9, SIGTRAP, 0, regs);
314		return;
315	}
316#endif
317
318#ifdef CONFIG_LIGHTWEIGHT_SPINLOCK_CHECK
319        if ((iir == SPINLOCK_BREAK_INSN) && !user_mode(regs)) {
320		die_if_kernel("Spinlock was trashed", regs, 1);
321	}
322#endif
323
324	if (unlikely(iir != GDB_BREAK_INSN))
325		parisc_printk_ratelimited(0, regs,
326			KERN_DEBUG "break %d,%d: pid=%d command='%s'\n",
327			iir & 31, (iir>>13) & ((1<<13)-1),
328			task_pid_nr(current), current->comm);
329
330	/* send standard GDB signal */
331	handle_gdb_break(regs, TRAP_BRKPT);
332}
333
334static void default_trap(int code, struct pt_regs *regs)
335{
336	printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id());
337	show_regs(regs);
338}
339
340static void transfer_pim_to_trap_frame(struct pt_regs *regs)
 
 
 
341{
342    register int i;
343    extern unsigned int hpmc_pim_data[];
344    struct pdc_hpmc_pim_11 *pim_narrow;
345    struct pdc_hpmc_pim_20 *pim_wide;
346
347    if (boot_cpu_data.cpu_type >= pcxu) {
348
349	pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data;
350
351	/*
352	 * Note: The following code will probably generate a
353	 * bunch of truncation error warnings from the compiler.
354	 * Could be handled with an ifdef, but perhaps there
355	 * is a better way.
356	 */
357
358	regs->gr[0] = pim_wide->cr[22];
359
360	for (i = 1; i < 32; i++)
361	    regs->gr[i] = pim_wide->gr[i];
362
363	for (i = 0; i < 32; i++)
364	    regs->fr[i] = pim_wide->fr[i];
365
366	for (i = 0; i < 8; i++)
367	    regs->sr[i] = pim_wide->sr[i];
368
369	regs->iasq[0] = pim_wide->cr[17];
370	regs->iasq[1] = pim_wide->iasq_back;
371	regs->iaoq[0] = pim_wide->cr[18];
372	regs->iaoq[1] = pim_wide->iaoq_back;
373
374	regs->sar  = pim_wide->cr[11];
375	regs->iir  = pim_wide->cr[19];
376	regs->isr  = pim_wide->cr[20];
377	regs->ior  = pim_wide->cr[21];
378    }
379    else {
380	pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data;
381
382	regs->gr[0] = pim_narrow->cr[22];
383
384	for (i = 1; i < 32; i++)
385	    regs->gr[i] = pim_narrow->gr[i];
386
387	for (i = 0; i < 32; i++)
388	    regs->fr[i] = pim_narrow->fr[i];
389
390	for (i = 0; i < 8; i++)
391	    regs->sr[i] = pim_narrow->sr[i];
392
393	regs->iasq[0] = pim_narrow->cr[17];
394	regs->iasq[1] = pim_narrow->iasq_back;
395	regs->iaoq[0] = pim_narrow->cr[18];
396	regs->iaoq[1] = pim_narrow->iaoq_back;
397
398	regs->sar  = pim_narrow->cr[11];
399	regs->iir  = pim_narrow->cr[19];
400	regs->isr  = pim_narrow->cr[20];
401	regs->ior  = pim_narrow->cr[21];
402    }
403
404    /*
405     * The following fields only have meaning if we came through
406     * another path. So just zero them here.
407     */
408
409    regs->ksp = 0;
410    regs->kpc = 0;
411    regs->orig_r28 = 0;
412}
413
414
415/*
416 * This routine is called as a last resort when everything else
417 * has gone clearly wrong. We get called for faults in kernel space,
418 * and HPMC's.
419 */
420void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset)
421{
422	static DEFINE_SPINLOCK(terminate_lock);
423
424	(void)notify_die(DIE_OOPS, msg, regs, 0, code, SIGTRAP);
425	bust_spinlocks(1);
426
427	set_eiem(0);
428	local_irq_disable();
429	spin_lock(&terminate_lock);
430
431	/* unlock the pdc lock if necessary */
432	pdc_emergency_unlock();
433
 
 
 
 
434	/* Not all paths will gutter the processor... */
435	switch(code){
436
437	case 1:
438		transfer_pim_to_trap_frame(regs);
439		break;
440
441	default:
 
442		break;
443
444	}
445	    
446	{
447		/* show_stack(NULL, (unsigned long *)regs->gr[30]); */
448		struct unwind_frame_info info;
449		unwind_frame_init(&info, current, regs);
450		do_show_stack(&info, KERN_CRIT);
451	}
452
453	printk("\n");
454	pr_crit("%s: Code=%d (%s) at addr " RFMT "\n",
455		msg, code, trap_name(code), offset);
456	show_regs(regs);
457
458	spin_unlock(&terminate_lock);
459
460	/* put soft power button back under hardware control;
461	 * if the user had pressed it once at any time, the 
462	 * system will shut down immediately right here. */
463	pdc_soft_power_button(0);
464	
465	/* Call kernel panic() so reboot timeouts work properly 
466	 * FIXME: This function should be on the list of
467	 * panic notifiers, and we should call panic
468	 * directly from the location that we wish. 
469	 * e.g. We should not call panic from
470	 * parisc_terminate, but rather the other way around.
471	 * This hack works, prints the panic message twice,
472	 * and it enables reboot timers!
473	 */
474	panic(msg);
475}
476
477void notrace handle_interruption(int code, struct pt_regs *regs)
478{
479	unsigned long fault_address = 0;
480	unsigned long fault_space = 0;
481	int si_code;
482
483	if (!irqs_disabled_flags(regs->gr[0]))
 
 
484	    local_irq_enable();
485
486	/* Security check:
487	 * If the priority level is still user, and the
488	 * faulting space is not equal to the active space
489	 * then the user is attempting something in a space
490	 * that does not belong to them. Kill the process.
491	 *
492	 * This is normally the situation when the user
493	 * attempts to jump into the kernel space at the
494	 * wrong offset, be it at the gateway page or a
495	 * random location.
496	 *
497	 * We cannot normally signal the process because it
498	 * could *be* on the gateway page, and processes
499	 * executing on the gateway page can't have signals
500	 * delivered.
501	 * 
502	 * We merely readjust the address into the users
503	 * space, at a destination address of zero, and
504	 * allow processing to continue.
505	 */
506	if (((unsigned long)regs->iaoq[0] & 3) &&
507	    ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) { 
508		/* Kill the user process later */
509		regs->iaoq[0] = 0 | PRIV_USER;
510		regs->iaoq[1] = regs->iaoq[0] + 4;
511		regs->iasq[0] = regs->iasq[1] = regs->sr[7];
512		regs->gr[0] &= ~PSW_B;
513		return;
514	}
515	
516#if 0
517	printk(KERN_CRIT "Interruption # %d\n", code);
518#endif
519
520	switch(code) {
521
522	case  1:
523		/* High-priority machine check (HPMC) */
524		
525		/* set up a new led state on systems shipped with a LED State panel */
526		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC);
527
528		parisc_terminate("High Priority Machine Check (HPMC)",
529				regs, code, 0);
530		/* NOT REACHED */
531		
532	case  2:
533		/* Power failure interrupt */
534		printk(KERN_CRIT "Power failure interrupt !\n");
535		return;
536
537	case  3:
538		/* Recovery counter trap */
539		regs->gr[0] &= ~PSW_R;
540
541#ifdef CONFIG_KGDB
542		if (kgdb_single_step) {
543			kgdb_handle_exception(0, SIGTRAP, 0, regs);
544			return;
545		}
546#endif
547
548		if (user_space(regs))
549			handle_gdb_break(regs, TRAP_TRACE);
550		/* else this must be the start of a syscall - just let it run */
551		return;
552
553	case  5:
554		/* Low-priority machine check */
555		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC);
556		
557		flush_cache_all();
558		flush_tlb_all();
559		default_trap(code, regs);
560		return;
561
562	case  PARISC_ITLB_TRAP:
563		/* Instruction TLB miss fault/Instruction page fault */
564		fault_address = regs->iaoq[0];
565		fault_space   = regs->iasq[0];
566		break;
567
568	case  8:
569		/* Illegal instruction trap */
570		die_if_kernel("Illegal instruction", regs, code);
571		si_code = ILL_ILLOPC;
572		goto give_sigill;
573
574	case  9:
575		/* Break instruction trap */
576		handle_break(regs);
577		return;
578
579	case 10:
580		/* Privileged operation trap */
581		die_if_kernel("Privileged operation", regs, code);
582		si_code = ILL_PRVOPC;
583		goto give_sigill;
584
585	case 11:
586		/* Privileged register trap */
587		if ((regs->iir & 0xffdfffe0) == 0x034008a0) {
588
589			/* This is a MFCTL cr26/cr27 to gr instruction.
590			 * PCXS traps on this, so we need to emulate it.
591			 */
592
593			if (regs->iir & 0x00200000)
594				regs->gr[regs->iir & 0x1f] = mfctl(27);
595			else
596				regs->gr[regs->iir & 0x1f] = mfctl(26);
597
598			regs->iaoq[0] = regs->iaoq[1];
599			regs->iaoq[1] += 4;
600			regs->iasq[0] = regs->iasq[1];
601			return;
602		}
603
604		die_if_kernel("Privileged register usage", regs, code);
605		si_code = ILL_PRVREG;
606	give_sigill:
607		force_sig_fault(SIGILL, si_code,
608				(void __user *) regs->iaoq[0]);
 
 
609		return;
610
611	case 12:
612		/* Overflow Trap, let the userland signal handler do the cleanup */
613		force_sig_fault(SIGFPE, FPE_INTOVF,
614				(void __user *) regs->iaoq[0]);
 
 
615		return;
616		
617	case 13:
618		/* Conditional Trap
619		   The condition succeeds in an instruction which traps
620		   on condition  */
621		if(user_mode(regs)){
622			/* Let userspace app figure it out from the insn pointed
623			 * to by si_addr.
624			 */
625			force_sig_fault(SIGFPE, FPE_CONDTRAP,
626					(void __user *) regs->iaoq[0]);
 
627			return;
628		} 
629		/* The kernel doesn't want to handle condition codes */
630		break;
631		
632	case 14:
633		/* Assist Exception Trap, i.e. floating point exception. */
634		die_if_kernel("Floating point exception", regs, 0); /* quiet */
635		__inc_irq_stat(irq_fpassist_count);
636		handle_fpe(regs);
637		return;
638
639	case 15:
640		/* Data TLB miss fault/Data page fault */
641		fallthrough;
642	case 16:
643		/* Non-access instruction TLB miss fault */
644		/* The instruction TLB entry needed for the target address of the FIC
645		   is absent, and hardware can't find it, so we get to cleanup */
646		fallthrough;
647	case 17:
648		/* Non-access data TLB miss fault/Non-access data page fault */
649		/* FIXME: 
650			 Still need to add slow path emulation code here!
651			 If the insn used a non-shadow register, then the tlb
652			 handlers could not have their side-effect (e.g. probe
653			 writing to a target register) emulated since rfir would
654			 erase the changes to said register. Instead we have to
655			 setup everything, call this function we are in, and emulate
656			 by hand. Technically we need to emulate:
657			 fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw
658		*/
659		if (code == 17 && handle_nadtlb_fault(regs))
660			return;
661		fault_address = regs->ior;
662		fault_space = regs->isr;
663		break;
664
665	case 18:
666		/* PCXS only -- later cpu's split this into types 26,27 & 28 */
667		/* Check for unaligned access */
668		if (check_unaligned(regs)) {
669			handle_unaligned(regs);
670			return;
671		}
672		fallthrough;
673	case 26: 
674		/* PCXL: Data memory access rights trap */
675		fault_address = regs->ior;
676		fault_space   = regs->isr;
677		break;
678
679	case 19:
680		/* Data memory break trap */
681		regs->gr[0] |= PSW_X; /* So we can single-step over the trap */
682		fallthrough;
683	case 21:
684		/* Page reference trap */
685		handle_gdb_break(regs, TRAP_HWBKPT);
686		return;
687
688	case 25:
689		/* Taken branch trap */
690		regs->gr[0] &= ~PSW_T;
691		if (user_space(regs))
692			handle_gdb_break(regs, TRAP_BRANCH);
693		/* else this must be the start of a syscall - just let it
694		 * run.
695		 */
696		return;
697
698	case  7:  
699		/* Instruction access rights */
700		/* PCXL: Instruction memory protection trap */
701
702		/*
703		 * This could be caused by either: 1) a process attempting
704		 * to execute within a vma that does not have execute
705		 * permission, or 2) an access rights violation caused by a
706		 * flush only translation set up by ptep_get_and_clear().
707		 * So we check the vma permissions to differentiate the two.
708		 * If the vma indicates we have execute permission, then
709		 * the cause is the latter one. In this case, we need to
710		 * call do_page_fault() to fix the problem.
711		 */
712
713		if (user_mode(regs)) {
714			struct vm_area_struct *vma;
715
716			mmap_read_lock(current->mm);
717			vma = find_vma(current->mm,regs->iaoq[0]);
718			if (vma && (regs->iaoq[0] >= vma->vm_start)
719				&& (vma->vm_flags & VM_EXEC)) {
720
721				fault_address = regs->iaoq[0];
722				fault_space = regs->iasq[0];
723
724				mmap_read_unlock(current->mm);
725				break; /* call do_page_fault() */
726			}
727			mmap_read_unlock(current->mm);
728		}
729		/* CPU could not fetch instruction, so clear stale IIR value. */
730		regs->iir = 0xbaadf00d;
731		fallthrough;
732	case 27: 
733		/* Data memory protection ID trap */
734		if (code == 27 && !user_mode(regs) &&
735			fixup_exception(regs))
736			return;
737
738		die_if_kernel("Protection id trap", regs, code);
739		force_sig_fault(SIGSEGV, SEGV_MAPERR,
740				(code == 7)?
741				((void __user *) regs->iaoq[0]) :
742				((void __user *) regs->ior));
 
 
 
 
743		return;
744
745	case 28: 
746		/* Unaligned data reference trap */
747		handle_unaligned(regs);
748		return;
749
750	default:
751		if (user_mode(regs)) {
752			parisc_printk_ratelimited(0, regs, KERN_DEBUG
753				"handle_interruption() pid=%d command='%s'\n",
754				task_pid_nr(current), current->comm);
755			/* SIGBUS, for lack of a better one. */
756			force_sig_fault(SIGBUS, BUS_OBJERR,
757					(void __user *)regs->ior);
 
 
 
758			return;
759		}
760		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
761		
762		parisc_terminate("Unexpected interruption", regs, code, 0);
763		/* NOT REACHED */
764	}
765
766	if (user_mode(regs)) {
767	    if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) {
768		parisc_printk_ratelimited(0, regs, KERN_DEBUG
769				"User fault %d on space 0x%08lx, pid=%d command='%s'\n",
770				code, fault_space,
771				task_pid_nr(current), current->comm);
772		force_sig_fault(SIGSEGV, SEGV_MAPERR,
773				(void __user *)regs->ior);
 
 
 
774		return;
775	    }
776	}
777	else {
778
779	    /*
780	     * The kernel should never fault on its own address space,
781	     * unless pagefault_disable() was called before.
782	     */
783
784	    if (faulthandler_disabled() || fault_space == 0)
785	    {
786		/* Clean up and return if in exception table. */
787		if (fixup_exception(regs))
788			return;
789		/* Clean up and return if handled by kfence. */
790		if (kfence_handle_page_fault(fault_address,
791			parisc_acctyp(code, regs->iir) == VM_WRITE, regs))
792			return;
793		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
794		parisc_terminate("Kernel Fault", regs, code, fault_address);
795	    }
796	}
797
798	do_page_fault(regs, code, fault_address);
799}
800
801
802static void __init initialize_ivt(const void *iva)
803{
 
804	extern const u32 os_hpmc[];
805
806	int i;
807	u32 check = 0;
808	u32 *ivap;
809	u32 instr;
 
810
811	if (strcmp((const char *)iva, "cows can fly"))
812		panic("IVT invalid");
813
814	ivap = (u32 *)iva;
815
816	for (i = 0; i < 8; i++)
817	    *ivap++ = 0;
818
819	/*
820	 * Use PDC_INSTR firmware function to get instruction that invokes
821	 * PDCE_CHECK in HPMC handler.  See programming note at page 1-31 of
822	 * the PA 1.1 Firmware Architecture document.
823	 */
824	if (pdc_instr(&instr) == PDC_OK)
825		ivap[0] = instr;
826
827	/*
828	 * Rules for the checksum of the HPMC handler:
829	 * 1. The IVA does not point to PDC/PDH space (ie: the OS has installed
830	 *    its own IVA).
831	 * 2. The word at IVA + 32 is nonzero.
832	 * 3. If Length (IVA + 60) is not zero, then Length (IVA + 60) and
833	 *    Address (IVA + 56) are word-aligned.
834	 * 4. The checksum of the 8 words starting at IVA + 32 plus the sum of
835	 *    the Length/4 words starting at Address is zero.
836	 */
837
838	/* Setup IVA and compute checksum for HPMC handler */
839	ivap[6] = (u32)__pa(os_hpmc);
840
841	for (i=0; i<8; i++)
842	    check += ivap[i];
843
844	ivap[5] = -check;
845	pr_debug("initialize_ivt: IVA[6] = 0x%08x\n", ivap[6]);
846}
847	
848
849/* early_trap_init() is called before we set up kernel mappings and
850 * write-protect the kernel */
851void  __init early_trap_init(void)
852{
853	extern const void fault_vector_20;
854
855#ifndef CONFIG_64BIT
856	extern const void fault_vector_11;
857	initialize_ivt(&fault_vector_11);
858#endif
859
860	initialize_ivt(&fault_vector_20);
 
 
 
 
861}
v4.10.11
 
  1/*
  2 *  linux/arch/parisc/traps.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 *  Copyright (C) 1999, 2000  Philipp Rumpf <prumpf@tux.org>
  6 */
  7
  8/*
  9 * 'Traps.c' handles hardware traps and faults after we have saved some
 10 * state in 'asm.s'.
 11 */
 12
 13#include <linux/sched.h>
 
 14#include <linux/kernel.h>
 15#include <linux/string.h>
 16#include <linux/errno.h>
 17#include <linux/ptrace.h>
 18#include <linux/timer.h>
 19#include <linux/delay.h>
 20#include <linux/mm.h>
 21#include <linux/module.h>
 22#include <linux/smp.h>
 23#include <linux/spinlock.h>
 24#include <linux/init.h>
 25#include <linux/interrupt.h>
 26#include <linux/console.h>
 27#include <linux/bug.h>
 28#include <linux/ratelimit.h>
 29#include <linux/uaccess.h>
 
 
 30
 31#include <asm/assembly.h>
 32#include <asm/io.h>
 33#include <asm/irq.h>
 34#include <asm/traps.h>
 35#include <asm/unaligned.h>
 36#include <linux/atomic.h>
 37#include <asm/smp.h>
 38#include <asm/pdc.h>
 39#include <asm/pdc_chassis.h>
 40#include <asm/unwind.h>
 41#include <asm/tlbflush.h>
 42#include <asm/cacheflush.h>
 
 
 
 
 
 
 
 
 43
 44#include "../math-emu/math-emu.h"	/* for handle_fpe() */
 45
 46static void parisc_show_stack(struct task_struct *task, unsigned long *sp,
 47	struct pt_regs *regs);
 48
 49static int printbinary(char *buf, unsigned long x, int nbits)
 50{
 51	unsigned long mask = 1UL << (nbits - 1);
 52	while (mask != 0) {
 53		*buf++ = (mask & x ? '1' : '0');
 54		mask >>= 1;
 55	}
 56	*buf = '\0';
 57
 58	return nbits;
 59}
 60
 61#ifdef CONFIG_64BIT
 62#define RFMT "%016lx"
 63#else
 64#define RFMT "%08lx"
 65#endif
 66#define FFMT "%016llx"	/* fpregs are 64-bit always */
 67
 68#define PRINTREGS(lvl,r,f,fmt,x)	\
 69	printk("%s%s%02d-%02d  " fmt " " fmt " " fmt " " fmt "\n",	\
 70		lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1],		\
 71		(r)[(x)+2], (r)[(x)+3])
 72
 73static void print_gr(char *level, struct pt_regs *regs)
 74{
 75	int i;
 76	char buf[64];
 77
 78	printk("%s\n", level);
 79	printk("%s     YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level);
 80	printbinary(buf, regs->gr[0], 32);
 81	printk("%sPSW: %s %s\n", level, buf, print_tainted());
 82
 83	for (i = 0; i < 32; i += 4)
 84		PRINTREGS(level, regs->gr, "r", RFMT, i);
 85}
 86
 87static void print_fr(char *level, struct pt_regs *regs)
 88{
 89	int i;
 90	char buf[64];
 91	struct { u32 sw[2]; } s;
 92
 93	/* FR are 64bit everywhere. Need to use asm to get the content
 94	 * of fpsr/fper1, and we assume that we won't have a FP Identify
 95	 * in our way, otherwise we're screwed.
 96	 * The fldd is used to restore the T-bit if there was one, as the
 97	 * store clears it anyway.
 98	 * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */
 99	asm volatile ("fstd %%fr0,0(%1)	\n\t"
100		      "fldd 0(%1),%%fr0	\n\t"
101		      : "=m" (s) : "r" (&s) : "r0");
102
103	printk("%s\n", level);
104	printk("%s      VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level);
105	printbinary(buf, s.sw[0], 32);
106	printk("%sFPSR: %s\n", level, buf);
107	printk("%sFPER1: %08x\n", level, s.sw[1]);
108
109	/* here we'll print fr0 again, tho it'll be meaningless */
110	for (i = 0; i < 32; i += 4)
111		PRINTREGS(level, regs->fr, "fr", FFMT, i);
112}
113
114void show_regs(struct pt_regs *regs)
115{
116	int i, user;
117	char *level;
118	unsigned long cr30, cr31;
119
120	user = user_mode(regs);
121	level = user ? KERN_DEBUG : KERN_CRIT;
122
123	show_regs_print_info(level);
124
125	print_gr(level, regs);
126
127	for (i = 0; i < 8; i += 4)
128		PRINTREGS(level, regs->sr, "sr", RFMT, i);
129
130	if (user)
131		print_fr(level, regs);
132
133	cr30 = mfctl(30);
134	cr31 = mfctl(31);
135	printk("%s\n", level);
136	printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n",
137	       level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]);
138	printk("%s IIR: %08lx    ISR: " RFMT "  IOR: " RFMT "\n",
139	       level, regs->iir, regs->isr, regs->ior);
140	printk("%s CPU: %8d   CR30: " RFMT " CR31: " RFMT "\n",
141	       level, current_thread_info()->cpu, cr30, cr31);
142	printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28);
143
144	if (user) {
145		printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]);
146		printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]);
147		printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]);
148	} else {
149		printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]);
150		printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]);
151		printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]);
152
153		parisc_show_stack(current, NULL, regs);
154	}
155}
156
157static DEFINE_RATELIMIT_STATE(_hppa_rs,
158	DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
159
160#define parisc_printk_ratelimited(critical, regs, fmt, ...)	{	      \
161	if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \
162		printk(fmt, ##__VA_ARGS__);				      \
163		show_regs(regs);					      \
164	}								      \
165}
166
167
168static void do_show_stack(struct unwind_frame_info *info)
169{
170	int i = 1;
171
172	printk(KERN_CRIT "Backtrace:\n");
173	while (i <= 16) {
174		if (unwind_once(info) < 0 || info->ip == 0)
175			break;
176
177		if (__kernel_text_address(info->ip)) {
178			printk(KERN_CRIT " [<" RFMT ">] %pS\n",
179				info->ip, (void *) info->ip);
180			i++;
181		}
182	}
183	printk(KERN_CRIT "\n");
184}
185
186static void parisc_show_stack(struct task_struct *task, unsigned long *sp,
187	struct pt_regs *regs)
188{
189	struct unwind_frame_info info;
190	struct task_struct *t;
191
192	t = task ? task : current;
193	if (regs) {
194		unwind_frame_init(&info, t, regs);
195		goto show_stack;
196	}
197
198	if (t == current) {
199		unsigned long sp;
200
201HERE:
202		asm volatile ("copy %%r30, %0" : "=r"(sp));
203		{
204			struct pt_regs r;
205
206			memset(&r, 0, sizeof(struct pt_regs));
207			r.iaoq[0] = (unsigned long)&&HERE;
208			r.gr[2] = (unsigned long)__builtin_return_address(0);
209			r.gr[30] = sp;
210
211			unwind_frame_init(&info, current, &r);
212		}
213	} else {
214		unwind_frame_init_from_blocked_task(&info, t);
215	}
216
217show_stack:
218	do_show_stack(&info);
219}
220
221void show_stack(struct task_struct *t, unsigned long *sp)
222{
223	return parisc_show_stack(t, sp, NULL);
224}
225
226int is_valid_bugaddr(unsigned long iaoq)
227{
228	return 1;
229}
230
231void die_if_kernel(char *str, struct pt_regs *regs, long err)
232{
233	if (user_mode(regs)) {
234		if (err == 0)
235			return; /* STFU */
236
237		parisc_printk_ratelimited(1, regs,
238			KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n",
239			current->comm, task_pid_nr(current), str, err, regs->iaoq[0]);
240
241		return;
242	}
243
244	oops_in_progress = 1;
245
246	oops_enter();
247
248	/* Amuse the user in a SPARC fashion */
249	if (err) printk(KERN_CRIT
250			"      _______________________________ \n"
251			"     < Your System ate a SPARC! Gah! >\n"
252			"      ------------------------------- \n"
253			"             \\   ^__^\n"
254			"                 (__)\\       )\\/\\\n"
255			"                  U  ||----w |\n"
256			"                     ||     ||\n");
257	
258	/* unlock the pdc lock if necessary */
259	pdc_emergency_unlock();
260
261	/* maybe the kernel hasn't booted very far yet and hasn't been able 
262	 * to initialize the serial or STI console. In that case we should 
263	 * re-enable the pdc console, so that the user will be able to 
264	 * identify the problem. */
265	if (!console_drivers)
266		pdc_console_restart();
267	
268	if (err)
269		printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n",
270			current->comm, task_pid_nr(current), str, err);
271
272	/* Wot's wrong wif bein' racy? */
273	if (current->thread.flags & PARISC_KERNEL_DEATH) {
274		printk(KERN_CRIT "%s() recursion detected.\n", __func__);
275		local_irq_enable();
276		while (1);
277	}
278	current->thread.flags |= PARISC_KERNEL_DEATH;
279
280	show_regs(regs);
281	dump_stack();
282	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
283
284	if (in_interrupt())
285		panic("Fatal exception in interrupt");
286
287	if (panic_on_oops)
288		panic("Fatal exception");
289
290	oops_exit();
291	do_exit(SIGSEGV);
292}
293
294/* gdb uses break 4,8 */
295#define GDB_BREAK_INSN 0x10004
296static void handle_gdb_break(struct pt_regs *regs, int wot)
297{
298	struct siginfo si;
299
300	si.si_signo = SIGTRAP;
301	si.si_errno = 0;
302	si.si_code = wot;
303	si.si_addr = (void __user *) (regs->iaoq[0] & ~3);
304	force_sig_info(SIGTRAP, &si, current);
305}
306
307static void handle_break(struct pt_regs *regs)
308{
309	unsigned iir = regs->iir;
310
311	if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) {
312		/* check if a BUG() or WARN() trapped here.  */
313		enum bug_trap_type tt;
314		tt = report_bug(regs->iaoq[0] & ~3, regs);
315		if (tt == BUG_TRAP_TYPE_WARN) {
316			regs->iaoq[0] += 4;
317			regs->iaoq[1] += 4;
318			return; /* return to next instruction when WARN_ON().  */
319		}
320		die_if_kernel("Unknown kernel breakpoint", regs,
321			(tt == BUG_TRAP_TYPE_NONE) ? 9 : 0);
322	}
323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324	if (unlikely(iir != GDB_BREAK_INSN))
325		parisc_printk_ratelimited(0, regs,
326			KERN_DEBUG "break %d,%d: pid=%d command='%s'\n",
327			iir & 31, (iir>>13) & ((1<<13)-1),
328			task_pid_nr(current), current->comm);
329
330	/* send standard GDB signal */
331	handle_gdb_break(regs, TRAP_BRKPT);
332}
333
334static void default_trap(int code, struct pt_regs *regs)
335{
336	printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id());
337	show_regs(regs);
338}
339
340void (*cpu_lpmc) (int code, struct pt_regs *regs) __read_mostly = default_trap;
341
342
343void transfer_pim_to_trap_frame(struct pt_regs *regs)
344{
345    register int i;
346    extern unsigned int hpmc_pim_data[];
347    struct pdc_hpmc_pim_11 *pim_narrow;
348    struct pdc_hpmc_pim_20 *pim_wide;
349
350    if (boot_cpu_data.cpu_type >= pcxu) {
351
352	pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data;
353
354	/*
355	 * Note: The following code will probably generate a
356	 * bunch of truncation error warnings from the compiler.
357	 * Could be handled with an ifdef, but perhaps there
358	 * is a better way.
359	 */
360
361	regs->gr[0] = pim_wide->cr[22];
362
363	for (i = 1; i < 32; i++)
364	    regs->gr[i] = pim_wide->gr[i];
365
366	for (i = 0; i < 32; i++)
367	    regs->fr[i] = pim_wide->fr[i];
368
369	for (i = 0; i < 8; i++)
370	    regs->sr[i] = pim_wide->sr[i];
371
372	regs->iasq[0] = pim_wide->cr[17];
373	regs->iasq[1] = pim_wide->iasq_back;
374	regs->iaoq[0] = pim_wide->cr[18];
375	regs->iaoq[1] = pim_wide->iaoq_back;
376
377	regs->sar  = pim_wide->cr[11];
378	regs->iir  = pim_wide->cr[19];
379	regs->isr  = pim_wide->cr[20];
380	regs->ior  = pim_wide->cr[21];
381    }
382    else {
383	pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data;
384
385	regs->gr[0] = pim_narrow->cr[22];
386
387	for (i = 1; i < 32; i++)
388	    regs->gr[i] = pim_narrow->gr[i];
389
390	for (i = 0; i < 32; i++)
391	    regs->fr[i] = pim_narrow->fr[i];
392
393	for (i = 0; i < 8; i++)
394	    regs->sr[i] = pim_narrow->sr[i];
395
396	regs->iasq[0] = pim_narrow->cr[17];
397	regs->iasq[1] = pim_narrow->iasq_back;
398	regs->iaoq[0] = pim_narrow->cr[18];
399	regs->iaoq[1] = pim_narrow->iaoq_back;
400
401	regs->sar  = pim_narrow->cr[11];
402	regs->iir  = pim_narrow->cr[19];
403	regs->isr  = pim_narrow->cr[20];
404	regs->ior  = pim_narrow->cr[21];
405    }
406
407    /*
408     * The following fields only have meaning if we came through
409     * another path. So just zero them here.
410     */
411
412    regs->ksp = 0;
413    regs->kpc = 0;
414    regs->orig_r28 = 0;
415}
416
417
418/*
419 * This routine is called as a last resort when everything else
420 * has gone clearly wrong. We get called for faults in kernel space,
421 * and HPMC's.
422 */
423void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset)
424{
425	static DEFINE_SPINLOCK(terminate_lock);
426
427	oops_in_progress = 1;
 
428
429	set_eiem(0);
430	local_irq_disable();
431	spin_lock(&terminate_lock);
432
433	/* unlock the pdc lock if necessary */
434	pdc_emergency_unlock();
435
436	/* restart pdc console if necessary */
437	if (!console_drivers)
438		pdc_console_restart();
439
440	/* Not all paths will gutter the processor... */
441	switch(code){
442
443	case 1:
444		transfer_pim_to_trap_frame(regs);
445		break;
446
447	default:
448		/* Fall through */
449		break;
450
451	}
452	    
453	{
454		/* show_stack(NULL, (unsigned long *)regs->gr[30]); */
455		struct unwind_frame_info info;
456		unwind_frame_init(&info, current, regs);
457		do_show_stack(&info);
458	}
459
460	printk("\n");
461	pr_crit("%s: Code=%d (%s) regs=%p (Addr=" RFMT ")\n",
462		msg, code, trap_name(code), regs, offset);
463	show_regs(regs);
464
465	spin_unlock(&terminate_lock);
466
467	/* put soft power button back under hardware control;
468	 * if the user had pressed it once at any time, the 
469	 * system will shut down immediately right here. */
470	pdc_soft_power_button(0);
471	
472	/* Call kernel panic() so reboot timeouts work properly 
473	 * FIXME: This function should be on the list of
474	 * panic notifiers, and we should call panic
475	 * directly from the location that we wish. 
476	 * e.g. We should not call panic from
477	 * parisc_terminate, but rather the oter way around.
478	 * This hack works, prints the panic message twice,
479	 * and it enables reboot timers!
480	 */
481	panic(msg);
482}
483
484void notrace handle_interruption(int code, struct pt_regs *regs)
485{
486	unsigned long fault_address = 0;
487	unsigned long fault_space = 0;
488	struct siginfo si;
489
490	if (code == 1)
491	    pdc_console_restart();  /* switch back to pdc if HPMC */
492	else
493	    local_irq_enable();
494
495	/* Security check:
496	 * If the priority level is still user, and the
497	 * faulting space is not equal to the active space
498	 * then the user is attempting something in a space
499	 * that does not belong to them. Kill the process.
500	 *
501	 * This is normally the situation when the user
502	 * attempts to jump into the kernel space at the
503	 * wrong offset, be it at the gateway page or a
504	 * random location.
505	 *
506	 * We cannot normally signal the process because it
507	 * could *be* on the gateway page, and processes
508	 * executing on the gateway page can't have signals
509	 * delivered.
510	 * 
511	 * We merely readjust the address into the users
512	 * space, at a destination address of zero, and
513	 * allow processing to continue.
514	 */
515	if (((unsigned long)regs->iaoq[0] & 3) &&
516	    ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) { 
517		/* Kill the user process later */
518		regs->iaoq[0] = 0 | 3;
519		regs->iaoq[1] = regs->iaoq[0] + 4;
520		regs->iasq[0] = regs->iasq[1] = regs->sr[7];
521		regs->gr[0] &= ~PSW_B;
522		return;
523	}
524	
525#if 0
526	printk(KERN_CRIT "Interruption # %d\n", code);
527#endif
528
529	switch(code) {
530
531	case  1:
532		/* High-priority machine check (HPMC) */
533		
534		/* set up a new led state on systems shipped with a LED State panel */
535		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC);
536
537		parisc_terminate("High Priority Machine Check (HPMC)",
538				regs, code, 0);
539		/* NOT REACHED */
540		
541	case  2:
542		/* Power failure interrupt */
543		printk(KERN_CRIT "Power failure interrupt !\n");
544		return;
545
546	case  3:
547		/* Recovery counter trap */
548		regs->gr[0] &= ~PSW_R;
 
 
 
 
 
 
 
 
549		if (user_space(regs))
550			handle_gdb_break(regs, TRAP_TRACE);
551		/* else this must be the start of a syscall - just let it run */
552		return;
553
554	case  5:
555		/* Low-priority machine check */
556		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC);
557		
558		flush_cache_all();
559		flush_tlb_all();
560		cpu_lpmc(5, regs);
561		return;
562
563	case  6:
564		/* Instruction TLB miss fault/Instruction page fault */
565		fault_address = regs->iaoq[0];
566		fault_space   = regs->iasq[0];
567		break;
568
569	case  8:
570		/* Illegal instruction trap */
571		die_if_kernel("Illegal instruction", regs, code);
572		si.si_code = ILL_ILLOPC;
573		goto give_sigill;
574
575	case  9:
576		/* Break instruction trap */
577		handle_break(regs);
578		return;
579
580	case 10:
581		/* Privileged operation trap */
582		die_if_kernel("Privileged operation", regs, code);
583		si.si_code = ILL_PRVOPC;
584		goto give_sigill;
585
586	case 11:
587		/* Privileged register trap */
588		if ((regs->iir & 0xffdfffe0) == 0x034008a0) {
589
590			/* This is a MFCTL cr26/cr27 to gr instruction.
591			 * PCXS traps on this, so we need to emulate it.
592			 */
593
594			if (regs->iir & 0x00200000)
595				regs->gr[regs->iir & 0x1f] = mfctl(27);
596			else
597				regs->gr[regs->iir & 0x1f] = mfctl(26);
598
599			regs->iaoq[0] = regs->iaoq[1];
600			regs->iaoq[1] += 4;
601			regs->iasq[0] = regs->iasq[1];
602			return;
603		}
604
605		die_if_kernel("Privileged register usage", regs, code);
606		si.si_code = ILL_PRVREG;
607	give_sigill:
608		si.si_signo = SIGILL;
609		si.si_errno = 0;
610		si.si_addr = (void __user *) regs->iaoq[0];
611		force_sig_info(SIGILL, &si, current);
612		return;
613
614	case 12:
615		/* Overflow Trap, let the userland signal handler do the cleanup */
616		si.si_signo = SIGFPE;
617		si.si_code = FPE_INTOVF;
618		si.si_addr = (void __user *) regs->iaoq[0];
619		force_sig_info(SIGFPE, &si, current);
620		return;
621		
622	case 13:
623		/* Conditional Trap
624		   The condition succeeds in an instruction which traps
625		   on condition  */
626		if(user_mode(regs)){
627			si.si_signo = SIGFPE;
628			/* Set to zero, and let the userspace app figure it out from
629			   the insn pointed to by si_addr */
630			si.si_code = 0;
631			si.si_addr = (void __user *) regs->iaoq[0];
632			force_sig_info(SIGFPE, &si, current);
633			return;
634		} 
635		/* The kernel doesn't want to handle condition codes */
636		break;
637		
638	case 14:
639		/* Assist Exception Trap, i.e. floating point exception. */
640		die_if_kernel("Floating point exception", regs, 0); /* quiet */
641		__inc_irq_stat(irq_fpassist_count);
642		handle_fpe(regs);
643		return;
644
645	case 15:
646		/* Data TLB miss fault/Data page fault */
647		/* Fall through */
648	case 16:
649		/* Non-access instruction TLB miss fault */
650		/* The instruction TLB entry needed for the target address of the FIC
651		   is absent, and hardware can't find it, so we get to cleanup */
652		/* Fall through */
653	case 17:
654		/* Non-access data TLB miss fault/Non-access data page fault */
655		/* FIXME: 
656			 Still need to add slow path emulation code here!
657			 If the insn used a non-shadow register, then the tlb
658			 handlers could not have their side-effect (e.g. probe
659			 writing to a target register) emulated since rfir would
660			 erase the changes to said register. Instead we have to
661			 setup everything, call this function we are in, and emulate
662			 by hand. Technically we need to emulate:
663			 fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw
664		*/
 
 
665		fault_address = regs->ior;
666		fault_space = regs->isr;
667		break;
668
669	case 18:
670		/* PCXS only -- later cpu's split this into types 26,27 & 28 */
671		/* Check for unaligned access */
672		if (check_unaligned(regs)) {
673			handle_unaligned(regs);
674			return;
675		}
676		/* Fall Through */
677	case 26: 
678		/* PCXL: Data memory access rights trap */
679		fault_address = regs->ior;
680		fault_space   = regs->isr;
681		break;
682
683	case 19:
684		/* Data memory break trap */
685		regs->gr[0] |= PSW_X; /* So we can single-step over the trap */
686		/* fall thru */
687	case 21:
688		/* Page reference trap */
689		handle_gdb_break(regs, TRAP_HWBKPT);
690		return;
691
692	case 25:
693		/* Taken branch trap */
694		regs->gr[0] &= ~PSW_T;
695		if (user_space(regs))
696			handle_gdb_break(regs, TRAP_BRANCH);
697		/* else this must be the start of a syscall - just let it
698		 * run.
699		 */
700		return;
701
702	case  7:  
703		/* Instruction access rights */
704		/* PCXL: Instruction memory protection trap */
705
706		/*
707		 * This could be caused by either: 1) a process attempting
708		 * to execute within a vma that does not have execute
709		 * permission, or 2) an access rights violation caused by a
710		 * flush only translation set up by ptep_get_and_clear().
711		 * So we check the vma permissions to differentiate the two.
712		 * If the vma indicates we have execute permission, then
713		 * the cause is the latter one. In this case, we need to
714		 * call do_page_fault() to fix the problem.
715		 */
716
717		if (user_mode(regs)) {
718			struct vm_area_struct *vma;
719
720			down_read(&current->mm->mmap_sem);
721			vma = find_vma(current->mm,regs->iaoq[0]);
722			if (vma && (regs->iaoq[0] >= vma->vm_start)
723				&& (vma->vm_flags & VM_EXEC)) {
724
725				fault_address = regs->iaoq[0];
726				fault_space = regs->iasq[0];
727
728				up_read(&current->mm->mmap_sem);
729				break; /* call do_page_fault() */
730			}
731			up_read(&current->mm->mmap_sem);
732		}
733		/* Fall Through */
 
 
734	case 27: 
735		/* Data memory protection ID trap */
736		if (code == 27 && !user_mode(regs) &&
737			fixup_exception(regs))
738			return;
739
740		die_if_kernel("Protection id trap", regs, code);
741		si.si_code = SEGV_MAPERR;
742		si.si_signo = SIGSEGV;
743		si.si_errno = 0;
744		if (code == 7)
745		    si.si_addr = (void __user *) regs->iaoq[0];
746		else
747		    si.si_addr = (void __user *) regs->ior;
748		force_sig_info(SIGSEGV, &si, current);
749		return;
750
751	case 28: 
752		/* Unaligned data reference trap */
753		handle_unaligned(regs);
754		return;
755
756	default:
757		if (user_mode(regs)) {
758			parisc_printk_ratelimited(0, regs, KERN_DEBUG
759				"handle_interruption() pid=%d command='%s'\n",
760				task_pid_nr(current), current->comm);
761			/* SIGBUS, for lack of a better one. */
762			si.si_signo = SIGBUS;
763			si.si_code = BUS_OBJERR;
764			si.si_errno = 0;
765			si.si_addr = (void __user *) regs->ior;
766			force_sig_info(SIGBUS, &si, current);
767			return;
768		}
769		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
770		
771		parisc_terminate("Unexpected interruption", regs, code, 0);
772		/* NOT REACHED */
773	}
774
775	if (user_mode(regs)) {
776	    if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) {
777		parisc_printk_ratelimited(0, regs, KERN_DEBUG
778				"User fault %d on space 0x%08lx, pid=%d command='%s'\n",
779				code, fault_space,
780				task_pid_nr(current), current->comm);
781		si.si_signo = SIGSEGV;
782		si.si_errno = 0;
783		si.si_code = SEGV_MAPERR;
784		si.si_addr = (void __user *) regs->ior;
785		force_sig_info(SIGSEGV, &si, current);
786		return;
787	    }
788	}
789	else {
790
791	    /*
792	     * The kernel should never fault on its own address space,
793	     * unless pagefault_disable() was called before.
794	     */
795
796	    if (fault_space == 0 && !faulthandler_disabled())
797	    {
798		/* Clean up and return if in exception table. */
799		if (fixup_exception(regs))
800			return;
 
 
 
 
801		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
802		parisc_terminate("Kernel Fault", regs, code, fault_address);
803	    }
804	}
805
806	do_page_fault(regs, code, fault_address);
807}
808
809
810void __init initialize_ivt(const void *iva)
811{
812	extern u32 os_hpmc_size;
813	extern const u32 os_hpmc[];
814
815	int i;
816	u32 check = 0;
817	u32 *ivap;
818	u32 *hpmcp;
819	u32 length;
820
821	if (strcmp((const char *)iva, "cows can fly"))
822		panic("IVT invalid");
823
824	ivap = (u32 *)iva;
825
826	for (i = 0; i < 8; i++)
827	    *ivap++ = 0;
828
829	/* Compute Checksum for HPMC handler */
830	length = os_hpmc_size;
831	ivap[7] = length;
 
 
 
 
832
833	hpmcp = (u32 *)os_hpmc;
 
 
 
 
 
 
 
 
 
834
835	for (i=0; i<length/4; i++)
836	    check += *hpmcp++;
837
838	for (i=0; i<8; i++)
839	    check += ivap[i];
840
841	ivap[5] = -check;
 
842}
843	
844
845/* early_trap_init() is called before we set up kernel mappings and
846 * write-protect the kernel */
847void  __init early_trap_init(void)
848{
849	extern const void fault_vector_20;
850
851#ifndef CONFIG_64BIT
852	extern const void fault_vector_11;
853	initialize_ivt(&fault_vector_11);
854#endif
855
856	initialize_ivt(&fault_vector_20);
857}
858
859void __init trap_init(void)
860{
861}