Loading...
1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2/*
3 * Copyright (C) 2003-2015, 2018-2025 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7#ifndef __iwl_trans_int_pcie_h__
8#define __iwl_trans_int_pcie_h__
9
10#include <linux/spinlock.h>
11#include <linux/interrupt.h>
12#include <linux/skbuff.h>
13#include <linux/wait.h>
14#include <linux/pci.h>
15#include <linux/timer.h>
16#include <linux/cpu.h>
17
18#include "iwl-fh.h"
19#include "iwl-csr.h"
20#include "iwl-trans.h"
21#include "iwl-debug.h"
22#include "iwl-io.h"
23#include "iwl-op-mode.h"
24#include "iwl-drv.h"
25#include "iwl-context-info.h"
26
27/*
28 * RX related structures and functions
29 */
30#define RX_NUM_QUEUES 1
31#define RX_POST_REQ_ALLOC 2
32#define RX_CLAIM_REQ_ALLOC 8
33#define RX_PENDING_WATERMARK 16
34#define FIRST_RX_QUEUE 512
35
36struct iwl_host_cmd;
37
38/*This file includes the declaration that are internal to the
39 * trans_pcie layer */
40
41/**
42 * struct iwl_rx_mem_buffer
43 * @page_dma: bus address of rxb page
44 * @page: driver's pointer to the rxb page
45 * @list: list entry for the membuffer
46 * @invalid: rxb is in driver ownership - not owned by HW
47 * @vid: index of this rxb in the global table
48 * @offset: indicates which offset of the page (in bytes)
49 * this buffer uses (if multiple RBs fit into one page)
50 */
51struct iwl_rx_mem_buffer {
52 dma_addr_t page_dma;
53 struct page *page;
54 struct list_head list;
55 u32 offset;
56 u16 vid;
57 bool invalid;
58};
59
60/* interrupt statistics */
61struct isr_statistics {
62 u32 hw;
63 u32 sw;
64 u32 err_code;
65 u32 sch;
66 u32 alive;
67 u32 rfkill;
68 u32 ctkill;
69 u32 wakeup;
70 u32 rx;
71 u32 tx;
72 u32 unhandled;
73};
74
75/**
76 * struct iwl_rx_transfer_desc - transfer descriptor
77 * @addr: ptr to free buffer start address
78 * @rbid: unique tag of the buffer
79 * @reserved: reserved
80 */
81struct iwl_rx_transfer_desc {
82 __le16 rbid;
83 __le16 reserved[3];
84 __le64 addr;
85} __packed;
86
87#define IWL_RX_CD_FLAGS_FRAGMENTED BIT(0)
88
89/**
90 * struct iwl_rx_completion_desc - completion descriptor
91 * @reserved1: reserved
92 * @rbid: unique tag of the received buffer
93 * @flags: flags (0: fragmented, all others: reserved)
94 * @reserved2: reserved
95 */
96struct iwl_rx_completion_desc {
97 __le32 reserved1;
98 __le16 rbid;
99 u8 flags;
100 u8 reserved2[25];
101} __packed;
102
103/**
104 * struct iwl_rx_completion_desc_bz - Bz completion descriptor
105 * @rbid: unique tag of the received buffer
106 * @flags: flags (0: fragmented, all others: reserved)
107 * @reserved: reserved
108 */
109struct iwl_rx_completion_desc_bz {
110 __le16 rbid;
111 u8 flags;
112 u8 reserved[1];
113} __packed;
114
115/**
116 * struct iwl_rxq - Rx queue
117 * @id: queue index
118 * @bd: driver's pointer to buffer of receive buffer descriptors (rbd).
119 * Address size is 32 bit in pre-9000 devices and 64 bit in 9000 devices.
120 * In AX210 devices it is a pointer to a list of iwl_rx_transfer_desc's
121 * @bd_dma: bus address of buffer of receive buffer descriptors (rbd)
122 * @used_bd: driver's pointer to buffer of used receive buffer descriptors (rbd)
123 * @used_bd_dma: physical address of buffer of used receive buffer descriptors (rbd)
124 * @read: Shared index to newest available Rx buffer
125 * @write: Shared index to oldest written Rx packet
126 * @write_actual: actual write pointer written to device, since we update in
127 * blocks of 8 only
128 * @free_count: Number of pre-allocated buffers in rx_free
129 * @used_count: Number of RBDs handled to allocator to use for allocation
130 * @write_actual:
131 * @rx_free: list of RBDs with allocated RB ready for use
132 * @rx_used: list of RBDs with no RB attached
133 * @need_update: flag to indicate we need to update read/write index
134 * @rb_stts: driver's pointer to receive buffer status
135 * @rb_stts_dma: bus address of receive buffer status
136 * @lock: per-queue lock
137 * @queue: actual rx queue. Not used for multi-rx queue.
138 * @next_rb_is_fragment: indicates that the previous RB that we handled set
139 * the fragmented flag, so the next one is still another fragment
140 * @napi: NAPI struct for this queue
141 * @queue_size: size of this queue
142 *
143 * NOTE: rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers
144 */
145struct iwl_rxq {
146 int id;
147 void *bd;
148 dma_addr_t bd_dma;
149 void *used_bd;
150 dma_addr_t used_bd_dma;
151 u32 read;
152 u32 write;
153 u32 free_count;
154 u32 used_count;
155 u32 write_actual;
156 u32 queue_size;
157 struct list_head rx_free;
158 struct list_head rx_used;
159 bool need_update, next_rb_is_fragment;
160 void *rb_stts;
161 dma_addr_t rb_stts_dma;
162 spinlock_t lock;
163 struct napi_struct napi;
164 struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE];
165};
166
167/**
168 * struct iwl_rb_allocator - Rx allocator
169 * @req_pending: number of requests the allcator had not processed yet
170 * @req_ready: number of requests honored and ready for claiming
171 * @rbd_allocated: RBDs with pages allocated and ready to be handled to
172 * the queue. This is a list of &struct iwl_rx_mem_buffer
173 * @rbd_empty: RBDs with no page attached for allocator use. This is a list
174 * of &struct iwl_rx_mem_buffer
175 * @lock: protects the rbd_allocated and rbd_empty lists
176 * @alloc_wq: work queue for background calls
177 * @rx_alloc: work struct for background calls
178 */
179struct iwl_rb_allocator {
180 atomic_t req_pending;
181 atomic_t req_ready;
182 struct list_head rbd_allocated;
183 struct list_head rbd_empty;
184 spinlock_t lock;
185 struct workqueue_struct *alloc_wq;
186 struct work_struct rx_alloc;
187};
188
189/**
190 * iwl_get_closed_rb_stts - get closed rb stts from different structs
191 * @trans: transport pointer (for configuration)
192 * @rxq: the rxq to get the rb stts from
193 */
194static inline u16 iwl_get_closed_rb_stts(struct iwl_trans *trans,
195 struct iwl_rxq *rxq)
196{
197 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
198 __le16 *rb_stts = rxq->rb_stts;
199
200 return le16_to_cpu(READ_ONCE(*rb_stts));
201 } else {
202 struct iwl_rb_status *rb_stts = rxq->rb_stts;
203
204 return le16_to_cpu(READ_ONCE(rb_stts->closed_rb_num)) & 0xFFF;
205 }
206}
207
208#ifdef CONFIG_IWLWIFI_DEBUGFS
209/**
210 * enum iwl_fw_mon_dbgfs_state - the different states of the monitor_data
211 * debugfs file
212 *
213 * @IWL_FW_MON_DBGFS_STATE_CLOSED: the file is closed.
214 * @IWL_FW_MON_DBGFS_STATE_OPEN: the file is open.
215 * @IWL_FW_MON_DBGFS_STATE_DISABLED: the file is disabled, once this state is
216 * set the file can no longer be used.
217 */
218enum iwl_fw_mon_dbgfs_state {
219 IWL_FW_MON_DBGFS_STATE_CLOSED,
220 IWL_FW_MON_DBGFS_STATE_OPEN,
221 IWL_FW_MON_DBGFS_STATE_DISABLED,
222};
223#endif
224
225/**
226 * enum iwl_shared_irq_flags - level of sharing for irq
227 * @IWL_SHARED_IRQ_NON_RX: interrupt vector serves non rx causes.
228 * @IWL_SHARED_IRQ_FIRST_RSS: interrupt vector serves first RSS queue.
229 */
230enum iwl_shared_irq_flags {
231 IWL_SHARED_IRQ_NON_RX = BIT(0),
232 IWL_SHARED_IRQ_FIRST_RSS = BIT(1),
233};
234
235/**
236 * enum iwl_image_response_code - image response values
237 * @IWL_IMAGE_RESP_DEF: the default value of the register
238 * @IWL_IMAGE_RESP_SUCCESS: iml was read successfully
239 * @IWL_IMAGE_RESP_FAIL: iml reading failed
240 */
241enum iwl_image_response_code {
242 IWL_IMAGE_RESP_DEF = 0,
243 IWL_IMAGE_RESP_SUCCESS = 1,
244 IWL_IMAGE_RESP_FAIL = 2,
245};
246
247#ifdef CONFIG_IWLWIFI_DEBUGFS
248/**
249 * struct cont_rec: continuous recording data structure
250 * @prev_wr_ptr: the last address that was read in monitor_data
251 * debugfs file
252 * @prev_wrap_cnt: the wrap count that was used during the last read in
253 * monitor_data debugfs file
254 * @state: the state of monitor_data debugfs file as described
255 * in &iwl_fw_mon_dbgfs_state enum
256 * @mutex: locked while reading from monitor_data debugfs file
257 */
258struct cont_rec {
259 u32 prev_wr_ptr;
260 u32 prev_wrap_cnt;
261 u8 state;
262 /* Used to sync monitor_data debugfs file with driver unload flow */
263 struct mutex mutex;
264};
265#endif
266
267enum iwl_pcie_fw_reset_state {
268 FW_RESET_IDLE,
269 FW_RESET_REQUESTED,
270 FW_RESET_OK,
271 FW_RESET_ERROR,
272};
273
274/**
275 * enum iwl_pcie_imr_status - imr dma transfer state
276 * @IMR_D2S_IDLE: default value of the dma transfer
277 * @IMR_D2S_REQUESTED: dma transfer requested
278 * @IMR_D2S_COMPLETED: dma transfer completed
279 * @IMR_D2S_ERROR: dma transfer error
280 */
281enum iwl_pcie_imr_status {
282 IMR_D2S_IDLE,
283 IMR_D2S_REQUESTED,
284 IMR_D2S_COMPLETED,
285 IMR_D2S_ERROR,
286};
287
288/**
289 * struct iwl_pcie_txqs - TX queues data
290 *
291 * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
292 * @page_offs: offset from skb->cb to mac header page pointer
293 * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
294 * @queue_used: bit mask of used queues
295 * @queue_stopped: bit mask of stopped queues
296 * @txq: array of TXQ data structures representing the TXQs
297 * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
298 * @queue_alloc_cmd_ver: queue allocation command version
299 * @bc_pool: bytecount DMA allocations pool
300 * @bc_tbl_size: bytecount table size
301 * @tso_hdr_page: page allocated (per CPU) for A-MSDU headers when doing TSO
302 * (and similar usage)
303 * @cmd: command queue data
304 * @cmd.fifo: FIFO number
305 * @cmd.q_id: queue ID
306 * @cmd.wdg_timeout: watchdog timeout
307 * @tfd: TFD data
308 * @tfd.max_tbs: max number of buffers per TFD
309 * @tfd.size: TFD size
310 * @tfd.addr_size: TFD/TB address size
311 */
312struct iwl_pcie_txqs {
313 unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
314 unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
315 struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
316 struct dma_pool *bc_pool;
317 size_t bc_tbl_size;
318 bool bc_table_dword;
319 u8 page_offs;
320 u8 dev_cmd_offs;
321 struct iwl_tso_hdr_page __percpu *tso_hdr_page;
322
323 struct {
324 u8 fifo;
325 u8 q_id;
326 unsigned int wdg_timeout;
327 } cmd;
328
329 struct {
330 u8 max_tbs;
331 u16 size;
332 u8 addr_size;
333 } tfd;
334
335 struct iwl_dma_ptr scd_bc_tbls;
336
337 u8 queue_alloc_cmd_ver;
338};
339
340/**
341 * struct iwl_trans_pcie - PCIe transport specific data
342 * @rxq: all the RX queue data
343 * @rx_pool: initial pool of iwl_rx_mem_buffer for all the queues
344 * @global_table: table mapping received VID from hw to rxb
345 * @rba: allocator for RX replenishing
346 * @ctxt_info: context information for FW self init
347 * @ctxt_info_gen3: context information for gen3 devices
348 * @prph_info: prph info for self init
349 * @prph_scratch: prph scratch for self init
350 * @ctxt_info_dma_addr: dma addr of context information
351 * @prph_info_dma_addr: dma addr of prph info
352 * @prph_scratch_dma_addr: dma addr of prph scratch
353 * @ctxt_info_dma_addr: dma addr of context information
354 * @iml: image loader image virtual address
355 * @iml_dma_addr: image loader image DMA address
356 * @trans: pointer to the generic transport area
357 * @scd_base_addr: scheduler sram base address in SRAM
358 * @kw: keep warm address
359 * @pnvm_data: holds info about pnvm payloads allocated in DRAM
360 * @reduced_tables_data: holds info about power reduced tablse
361 * payloads allocated in DRAM
362 * @pci_dev: basic pci-network driver stuff
363 * @hw_base: pci hardware address support
364 * @ucode_write_complete: indicates that the ucode has been copied.
365 * @ucode_write_waitq: wait queue for uCode load
366 * @cmd_queue - command queue number
367 * @rx_buf_size: Rx buffer size
368 * @scd_set_active: should the transport configure the SCD for HCMD queue
369 * @rx_page_order: page order for receive buffer size
370 * @rx_buf_bytes: RX buffer (RB) size in bytes
371 * @reg_lock: protect hw register access
372 * @mutex: to protect stop_device / start_fw / start_hw
373 * @fw_mon_data: fw continuous recording data
374 * @cmd_hold_nic_awake: indicates NIC is held awake for APMG workaround
375 * during commands in flight
376 * @msix_entries: array of MSI-X entries
377 * @msix_enabled: true if managed to enable MSI-X
378 * @shared_vec_mask: the type of causes the shared vector handles
379 * (see iwl_shared_irq_flags).
380 * @alloc_vecs: the number of interrupt vectors allocated by the OS
381 * @def_irq: default irq for non rx causes
382 * @fh_init_mask: initial unmasked fh causes
383 * @hw_init_mask: initial unmasked hw causes
384 * @fh_mask: current unmasked fh causes
385 * @hw_mask: current unmasked hw causes
386 * @in_rescan: true if we have triggered a device rescan
387 * @base_rb_stts: base virtual address of receive buffer status for all queues
388 * @base_rb_stts_dma: base physical address of receive buffer status
389 * @supported_dma_mask: DMA mask to validate the actual address against,
390 * will be DMA_BIT_MASK(11) or DMA_BIT_MASK(12) depending on the device
391 * @alloc_page_lock: spinlock for the page allocator
392 * @alloc_page: allocated page to still use parts of
393 * @alloc_page_used: how much of the allocated page was already used (bytes)
394 * @imr_status: imr dma state machine
395 * @imr_waitq: imr wait queue for dma completion
396 * @rf_name: name/version of the CRF, if any
397 * @use_ict: whether or not ICT (interrupt table) is used
398 * @ict_index: current ICT read index
399 * @ict_tbl: ICT table pointer
400 * @ict_tbl_dma: ICT table DMA address
401 * @inta_mask: interrupt (INT-A) mask
402 * @irq_lock: lock to synchronize IRQ handling
403 * @txq_memory: TXQ allocation array
404 * @sx_waitq: waitqueue for Sx transitions
405 * @sx_complete: completion for Sx transitions
406 * @pcie_dbg_dumped_once: indicates PCIe regs were dumped already
407 * @opmode_down: indicates opmode went away
408 * @num_rx_bufs: number of RX buffers to allocate/use
409 * @no_reclaim_cmds: special commands not using reclaim flow
410 * (firmware workaround)
411 * @n_no_reclaim_cmds: number of special commands not using reclaim flow
412 * @affinity_mask: IRQ affinity mask for each RX queue
413 * @debug_rfkill: RF-kill debugging state, -1 for unset, 0/1 for radio
414 * enable/disable
415 * @fw_reset_handshake: indicates FW reset handshake is needed
416 * @fw_reset_state: state of FW reset handshake
417 * @fw_reset_waitq: waitqueue for FW reset handshake
418 * @is_down: indicates the NIC is down
419 * @isr_stats: interrupt statistics
420 * @napi_dev: (fake) netdev for NAPI registration
421 * @txqs: transport tx queues data.
422 */
423struct iwl_trans_pcie {
424 struct iwl_rxq *rxq;
425 struct iwl_rx_mem_buffer *rx_pool;
426 struct iwl_rx_mem_buffer **global_table;
427 struct iwl_rb_allocator rba;
428 union {
429 struct iwl_context_info *ctxt_info;
430 struct iwl_context_info_gen3 *ctxt_info_gen3;
431 };
432 struct iwl_prph_info *prph_info;
433 struct iwl_prph_scratch *prph_scratch;
434 void *iml;
435 dma_addr_t ctxt_info_dma_addr;
436 dma_addr_t prph_info_dma_addr;
437 dma_addr_t prph_scratch_dma_addr;
438 dma_addr_t iml_dma_addr;
439 struct iwl_trans *trans;
440
441 struct net_device *napi_dev;
442
443 /* INT ICT Table */
444 __le32 *ict_tbl;
445 dma_addr_t ict_tbl_dma;
446 int ict_index;
447 bool use_ict;
448 bool is_down, opmode_down;
449 s8 debug_rfkill;
450 struct isr_statistics isr_stats;
451
452 spinlock_t irq_lock;
453 struct mutex mutex;
454 u32 inta_mask;
455 u32 scd_base_addr;
456 struct iwl_dma_ptr kw;
457
458 /* pnvm data */
459 struct iwl_dram_regions pnvm_data;
460 struct iwl_dram_regions reduced_tables_data;
461
462 struct iwl_txq *txq_memory;
463
464 /* PCI bus related data */
465 struct pci_dev *pci_dev;
466 u8 __iomem *hw_base;
467
468 bool ucode_write_complete;
469 bool sx_complete;
470 wait_queue_head_t ucode_write_waitq;
471 wait_queue_head_t sx_waitq;
472
473 u8 n_no_reclaim_cmds;
474 u8 no_reclaim_cmds[MAX_NO_RECLAIM_CMDS];
475 u16 num_rx_bufs;
476
477 enum iwl_amsdu_size rx_buf_size;
478 bool scd_set_active;
479 bool pcie_dbg_dumped_once;
480 u32 rx_page_order;
481 u32 rx_buf_bytes;
482 u32 supported_dma_mask;
483
484 /* allocator lock for the two values below */
485 spinlock_t alloc_page_lock;
486 struct page *alloc_page;
487 u32 alloc_page_used;
488
489 /*protect hw register */
490 spinlock_t reg_lock;
491 bool cmd_hold_nic_awake;
492
493#ifdef CONFIG_IWLWIFI_DEBUGFS
494 struct cont_rec fw_mon_data;
495#endif
496
497 struct msix_entry msix_entries[IWL_MAX_RX_HW_QUEUES];
498 bool msix_enabled;
499 u8 shared_vec_mask;
500 u32 alloc_vecs;
501 u32 def_irq;
502 u32 fh_init_mask;
503 u32 hw_init_mask;
504 u32 fh_mask;
505 u32 hw_mask;
506 cpumask_t affinity_mask[IWL_MAX_RX_HW_QUEUES];
507 u16 tx_cmd_queue_size;
508 bool in_rescan;
509
510 void *base_rb_stts;
511 dma_addr_t base_rb_stts_dma;
512
513 bool fw_reset_handshake;
514 enum iwl_pcie_fw_reset_state fw_reset_state;
515 wait_queue_head_t fw_reset_waitq;
516 enum iwl_pcie_imr_status imr_status;
517 wait_queue_head_t imr_waitq;
518 char rf_name[32];
519
520 struct iwl_pcie_txqs txqs;
521};
522
523static inline struct iwl_trans_pcie *
524IWL_TRANS_GET_PCIE_TRANS(struct iwl_trans *trans)
525{
526 return (void *)trans->trans_specific;
527}
528
529static inline void iwl_pcie_clear_irq(struct iwl_trans *trans, int queue)
530{
531 /*
532 * Before sending the interrupt the HW disables it to prevent
533 * a nested interrupt. This is done by writing 1 to the corresponding
534 * bit in the mask register. After handling the interrupt, it should be
535 * re-enabled by clearing this bit. This register is defined as
536 * write 1 clear (W1C) register, meaning that it's being clear
537 * by writing 1 to the bit.
538 */
539 iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(queue));
540}
541
542static inline struct iwl_trans *
543iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie)
544{
545 return container_of((void *)trans_pcie, struct iwl_trans,
546 trans_specific);
547}
548
549/*
550 * Convention: trans API functions: iwl_trans_pcie_XXX
551 * Other functions: iwl_pcie_XXX
552 */
553struct iwl_trans
554*iwl_trans_pcie_alloc(struct pci_dev *pdev,
555 const struct pci_device_id *ent,
556 const struct iwl_cfg_trans_params *cfg_trans);
557void iwl_trans_pcie_free(struct iwl_trans *trans);
558void iwl_trans_pcie_free_pnvm_dram_regions(struct iwl_dram_regions *dram_regions,
559 struct device *dev);
560
561bool __iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans);
562#define _iwl_trans_pcie_grab_nic_access(trans) \
563 __cond_lock(nic_access_nobh, \
564 likely(__iwl_trans_pcie_grab_nic_access(trans)))
565
566/*****************************************************
567* RX
568******************************************************/
569int iwl_pcie_rx_init(struct iwl_trans *trans);
570int iwl_pcie_gen2_rx_init(struct iwl_trans *trans);
571irqreturn_t iwl_pcie_msix_isr(int irq, void *data);
572irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id);
573irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id);
574irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id);
575int iwl_pcie_rx_stop(struct iwl_trans *trans);
576void iwl_pcie_rx_free(struct iwl_trans *trans);
577void iwl_pcie_free_rbs_pool(struct iwl_trans *trans);
578void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq);
579void iwl_pcie_rx_napi_sync(struct iwl_trans *trans);
580void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
581 struct iwl_rxq *rxq);
582
583/*****************************************************
584* ICT - interrupt handling
585******************************************************/
586irqreturn_t iwl_pcie_isr(int irq, void *data);
587int iwl_pcie_alloc_ict(struct iwl_trans *trans);
588void iwl_pcie_free_ict(struct iwl_trans *trans);
589void iwl_pcie_reset_ict(struct iwl_trans *trans);
590void iwl_pcie_disable_ict(struct iwl_trans *trans);
591
592/*****************************************************
593* TX / HCMD
594******************************************************/
595/* We need 2 entries for the TX command and header, and another one might
596 * be needed for potential data in the SKB's head. The remaining ones can
597 * be used for frags.
598 */
599#define IWL_TRANS_PCIE_MAX_FRAGS(trans_pcie) ((trans_pcie)->txqs.tfd.max_tbs - 3)
600
601struct iwl_tso_hdr_page {
602 struct page *page;
603 u8 *pos;
604};
605
606/*
607 * Note that we put this struct *last* in the page. By doing that, we ensure
608 * that no TB referencing this page can trigger the 32-bit boundary hardware
609 * bug.
610 */
611struct iwl_tso_page_info {
612 dma_addr_t dma_addr;
613 struct page *next;
614 refcount_t use_count;
615};
616
617#define IWL_TSO_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(struct iwl_tso_page_info))
618#define IWL_TSO_PAGE_INFO(addr) \
619 ((struct iwl_tso_page_info *)(((unsigned long)addr & PAGE_MASK) + \
620 IWL_TSO_PAGE_DATA_SIZE))
621
622int iwl_pcie_tx_init(struct iwl_trans *trans);
623void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr);
624int iwl_pcie_tx_stop(struct iwl_trans *trans);
625void iwl_pcie_tx_free(struct iwl_trans *trans);
626bool iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int queue, u16 ssn,
627 const struct iwl_trans_txq_scd_cfg *cfg,
628 unsigned int wdg_timeout);
629void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue,
630 bool configure_scd);
631void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id,
632 bool shared_mode);
633int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb,
634 struct iwl_device_tx_cmd *dev_cmd, int txq_id);
635void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans);
636void iwl_pcie_hcmd_complete(struct iwl_trans *trans,
637 struct iwl_rx_cmd_buffer *rxb);
638void iwl_trans_pcie_tx_reset(struct iwl_trans *trans);
639int iwl_pcie_txq_alloc(struct iwl_trans *trans, struct iwl_txq *txq,
640 int slots_num, bool cmd_queue);
641
642dma_addr_t iwl_pcie_get_sgt_tb_phys(struct sg_table *sgt, unsigned int offset,
643 unsigned int len);
644struct sg_table *iwl_pcie_prep_tso(struct iwl_trans *trans, struct sk_buff *skb,
645 struct iwl_cmd_meta *cmd_meta,
646 u8 **hdr, unsigned int hdr_room,
647 unsigned int offset);
648
649void iwl_pcie_free_tso_pages(struct iwl_trans *trans, struct sk_buff *skb,
650 struct iwl_cmd_meta *cmd_meta);
651
652static inline dma_addr_t iwl_pcie_get_tso_page_phys(void *addr)
653{
654 dma_addr_t res;
655
656 res = IWL_TSO_PAGE_INFO(addr)->dma_addr;
657 res += (unsigned long)addr & ~PAGE_MASK;
658
659 return res;
660}
661
662static inline dma_addr_t
663iwl_txq_get_first_tb_dma(struct iwl_txq *txq, int idx)
664{
665 return txq->first_tb_dma +
666 sizeof(struct iwl_pcie_first_tb_buf) * idx;
667}
668
669static inline u16 iwl_txq_get_cmd_index(const struct iwl_txq *q, u32 index)
670{
671 return index & (q->n_window - 1);
672}
673
674static inline void *iwl_txq_get_tfd(struct iwl_trans *trans,
675 struct iwl_txq *txq, int idx)
676{
677 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
678
679 if (trans->trans_cfg->gen2)
680 idx = iwl_txq_get_cmd_index(txq, idx);
681
682 return (u8 *)txq->tfds + trans_pcie->txqs.tfd.size * idx;
683}
684
685/*
686 * We need this inline in case dma_addr_t is only 32-bits - since the
687 * hardware is always 64-bit, the issue can still occur in that case,
688 * so use u64 for 'phys' here to force the addition in 64-bit.
689 */
690static inline bool iwl_txq_crosses_4g_boundary(u64 phys, u16 len)
691{
692 return upper_32_bits(phys) != upper_32_bits(phys + len);
693}
694
695int iwl_txq_space(struct iwl_trans *trans, const struct iwl_txq *q);
696
697static inline void iwl_txq_stop(struct iwl_trans *trans, struct iwl_txq *txq)
698{
699 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
700
701 if (!test_and_set_bit(txq->id, trans_pcie->txqs.queue_stopped)) {
702 iwl_op_mode_queue_full(trans->op_mode, txq->id);
703 IWL_DEBUG_TX_QUEUES(trans, "Stop hwq %d\n", txq->id);
704 } else {
705 IWL_DEBUG_TX_QUEUES(trans, "hwq %d already stopped\n",
706 txq->id);
707 }
708}
709
710/**
711 * iwl_txq_inc_wrap - increment queue index, wrap back to beginning
712 * @trans: the transport (for configuration data)
713 * @index: current index
714 */
715static inline int iwl_txq_inc_wrap(struct iwl_trans *trans, int index)
716{
717 return ++index &
718 (trans->trans_cfg->base_params->max_tfd_queue_size - 1);
719}
720
721/**
722 * iwl_txq_dec_wrap - decrement queue index, wrap back to end
723 * @trans: the transport (for configuration data)
724 * @index: current index
725 */
726static inline int iwl_txq_dec_wrap(struct iwl_trans *trans, int index)
727{
728 return --index &
729 (trans->trans_cfg->base_params->max_tfd_queue_size - 1);
730}
731
732void iwl_txq_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq);
733
734static inline void
735iwl_trans_pcie_wake_queue(struct iwl_trans *trans, struct iwl_txq *txq)
736{
737 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
738
739 if (test_and_clear_bit(txq->id, trans_pcie->txqs.queue_stopped)) {
740 IWL_DEBUG_TX_QUEUES(trans, "Wake hwq %d\n", txq->id);
741 iwl_op_mode_queue_not_full(trans->op_mode, txq->id);
742 }
743}
744
745int iwl_txq_gen2_set_tb(struct iwl_trans *trans,
746 struct iwl_tfh_tfd *tfd, dma_addr_t addr,
747 u16 len);
748
749static inline void iwl_txq_set_tfd_invalid_gen2(struct iwl_trans *trans,
750 struct iwl_tfh_tfd *tfd)
751{
752 tfd->num_tbs = 0;
753
754 iwl_txq_gen2_set_tb(trans, tfd, trans->invalid_tx_cmd.dma,
755 trans->invalid_tx_cmd.size);
756}
757
758void iwl_txq_gen2_tfd_unmap(struct iwl_trans *trans,
759 struct iwl_cmd_meta *meta,
760 struct iwl_tfh_tfd *tfd);
761
762int iwl_txq_dyn_alloc(struct iwl_trans *trans, u32 flags,
763 u32 sta_mask, u8 tid,
764 int size, unsigned int timeout);
765
766int iwl_txq_gen2_tx(struct iwl_trans *trans, struct sk_buff *skb,
767 struct iwl_device_tx_cmd *dev_cmd, int txq_id);
768
769void iwl_txq_dyn_free(struct iwl_trans *trans, int queue);
770void iwl_txq_gen2_tx_free(struct iwl_trans *trans);
771int iwl_txq_init(struct iwl_trans *trans, struct iwl_txq *txq,
772 int slots_num, bool cmd_queue);
773int iwl_txq_gen2_init(struct iwl_trans *trans, int txq_id,
774 int queue_size);
775
776static inline u16 iwl_txq_gen1_tfd_tb_get_len(struct iwl_trans *trans,
777 void *_tfd, u8 idx)
778{
779 struct iwl_tfd *tfd;
780 struct iwl_tfd_tb *tb;
781
782 if (trans->trans_cfg->gen2) {
783 struct iwl_tfh_tfd *tfh_tfd = _tfd;
784 struct iwl_tfh_tb *tfh_tb = &tfh_tfd->tbs[idx];
785
786 return le16_to_cpu(tfh_tb->tb_len);
787 }
788
789 tfd = (struct iwl_tfd *)_tfd;
790 tb = &tfd->tbs[idx];
791
792 return le16_to_cpu(tb->hi_n_len) >> 4;
793}
794
795void iwl_pcie_reclaim(struct iwl_trans *trans, int txq_id, int ssn,
796 struct sk_buff_head *skbs, bool is_flush);
797void iwl_pcie_set_q_ptrs(struct iwl_trans *trans, int txq_id, int ptr);
798void iwl_pcie_freeze_txq_timer(struct iwl_trans *trans,
799 unsigned long txqs, bool freeze);
800int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, int txq_idx);
801int iwl_trans_pcie_wait_txqs_empty(struct iwl_trans *trans, u32 txq_bm);
802
803/*****************************************************
804* Error handling
805******************************************************/
806void iwl_pcie_dump_csr(struct iwl_trans *trans);
807
808/*****************************************************
809* Helpers
810******************************************************/
811static inline void _iwl_disable_interrupts(struct iwl_trans *trans)
812{
813 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
814
815 clear_bit(STATUS_INT_ENABLED, &trans->status);
816 if (!trans_pcie->msix_enabled) {
817 /* disable interrupts from uCode/NIC to host */
818 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
819
820 /* acknowledge/clear/reset any interrupts still pending
821 * from uCode or flow handler (Rx/Tx DMA) */
822 iwl_write32(trans, CSR_INT, 0xffffffff);
823 iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff);
824 } else {
825 /* disable all the interrupt we might use */
826 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
827 trans_pcie->fh_init_mask);
828 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
829 trans_pcie->hw_init_mask);
830 }
831 IWL_DEBUG_ISR(trans, "Disabled interrupts\n");
832}
833
834static inline int iwl_pcie_get_num_sections(const struct fw_img *fw,
835 int start)
836{
837 int i = 0;
838
839 while (start < fw->num_sec &&
840 fw->sec[start].offset != CPU1_CPU2_SEPARATOR_SECTION &&
841 fw->sec[start].offset != PAGING_SEPARATOR_SECTION) {
842 start++;
843 i++;
844 }
845
846 return i;
847}
848
849static inline void iwl_pcie_ctxt_info_free_fw_img(struct iwl_trans *trans)
850{
851 struct iwl_self_init_dram *dram = &trans->init_dram;
852 int i;
853
854 if (!dram->fw) {
855 WARN_ON(dram->fw_cnt);
856 return;
857 }
858
859 for (i = 0; i < dram->fw_cnt; i++)
860 dma_free_coherent(trans->dev, dram->fw[i].size,
861 dram->fw[i].block, dram->fw[i].physical);
862
863 kfree(dram->fw);
864 dram->fw_cnt = 0;
865 dram->fw = NULL;
866}
867
868static inline void iwl_disable_interrupts(struct iwl_trans *trans)
869{
870 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
871
872 spin_lock_bh(&trans_pcie->irq_lock);
873 _iwl_disable_interrupts(trans);
874 spin_unlock_bh(&trans_pcie->irq_lock);
875}
876
877static inline void _iwl_enable_interrupts(struct iwl_trans *trans)
878{
879 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
880
881 IWL_DEBUG_ISR(trans, "Enabling interrupts\n");
882 set_bit(STATUS_INT_ENABLED, &trans->status);
883 if (!trans_pcie->msix_enabled) {
884 trans_pcie->inta_mask = CSR_INI_SET_MASK;
885 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
886 } else {
887 /*
888 * fh/hw_mask keeps all the unmasked causes.
889 * Unlike msi, in msix cause is enabled when it is unset.
890 */
891 trans_pcie->hw_mask = trans_pcie->hw_init_mask;
892 trans_pcie->fh_mask = trans_pcie->fh_init_mask;
893 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
894 ~trans_pcie->fh_mask);
895 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
896 ~trans_pcie->hw_mask);
897 }
898}
899
900static inline void iwl_enable_interrupts(struct iwl_trans *trans)
901{
902 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
903
904 spin_lock_bh(&trans_pcie->irq_lock);
905 _iwl_enable_interrupts(trans);
906 spin_unlock_bh(&trans_pcie->irq_lock);
907}
908static inline void iwl_enable_hw_int_msk_msix(struct iwl_trans *trans, u32 msk)
909{
910 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
911
912 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~msk);
913 trans_pcie->hw_mask = msk;
914}
915
916static inline void iwl_enable_fh_int_msk_msix(struct iwl_trans *trans, u32 msk)
917{
918 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
919
920 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~msk);
921 trans_pcie->fh_mask = msk;
922}
923
924static inline void iwl_enable_fw_load_int(struct iwl_trans *trans)
925{
926 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
927
928 IWL_DEBUG_ISR(trans, "Enabling FW load interrupt\n");
929 if (!trans_pcie->msix_enabled) {
930 trans_pcie->inta_mask = CSR_INT_BIT_FH_TX;
931 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
932 } else {
933 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
934 trans_pcie->hw_init_mask);
935 iwl_enable_fh_int_msk_msix(trans,
936 MSIX_FH_INT_CAUSES_D2S_CH0_NUM);
937 }
938}
939
940static inline void iwl_enable_fw_load_int_ctx_info(struct iwl_trans *trans)
941{
942 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
943
944 IWL_DEBUG_ISR(trans, "Enabling ALIVE interrupt only\n");
945
946 if (!trans_pcie->msix_enabled) {
947 /*
948 * When we'll receive the ALIVE interrupt, the ISR will call
949 * iwl_enable_fw_load_int_ctx_info again to set the ALIVE
950 * interrupt (which is not really needed anymore) but also the
951 * RX interrupt which will allow us to receive the ALIVE
952 * notification (which is Rx) and continue the flow.
953 */
954 trans_pcie->inta_mask = CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX;
955 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
956 } else {
957 iwl_enable_hw_int_msk_msix(trans,
958 MSIX_HW_INT_CAUSES_REG_ALIVE);
959 /*
960 * Leave all the FH causes enabled to get the ALIVE
961 * notification.
962 */
963 iwl_enable_fh_int_msk_msix(trans, trans_pcie->fh_init_mask);
964 }
965}
966
967static inline const char *queue_name(struct device *dev,
968 struct iwl_trans_pcie *trans_p, int i)
969{
970 if (trans_p->shared_vec_mask) {
971 int vec = trans_p->shared_vec_mask &
972 IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0;
973
974 if (i == 0)
975 return DRV_NAME ":shared_IRQ";
976
977 return devm_kasprintf(dev, GFP_KERNEL,
978 DRV_NAME ":queue_%d", i + vec);
979 }
980 if (i == 0)
981 return DRV_NAME ":default_queue";
982
983 if (i == trans_p->alloc_vecs - 1)
984 return DRV_NAME ":exception";
985
986 return devm_kasprintf(dev, GFP_KERNEL,
987 DRV_NAME ":queue_%d", i);
988}
989
990static inline void iwl_enable_rfkill_int(struct iwl_trans *trans)
991{
992 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
993
994 IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n");
995 if (!trans_pcie->msix_enabled) {
996 trans_pcie->inta_mask = CSR_INT_BIT_RF_KILL;
997 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
998 } else {
999 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
1000 trans_pcie->fh_init_mask);
1001 iwl_enable_hw_int_msk_msix(trans,
1002 MSIX_HW_INT_CAUSES_REG_RF_KILL);
1003 }
1004
1005 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_9000) {
1006 /*
1007 * On 9000-series devices this bit isn't enabled by default, so
1008 * when we power down the device we need set the bit to allow it
1009 * to wake up the PCI-E bus for RF-kill interrupts.
1010 */
1011 iwl_set_bit(trans, CSR_GP_CNTRL,
1012 CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN);
1013 }
1014}
1015
1016void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq);
1017
1018static inline bool iwl_is_rfkill_set(struct iwl_trans *trans)
1019{
1020 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1021
1022 lockdep_assert_held(&trans_pcie->mutex);
1023
1024 if (trans_pcie->debug_rfkill == 1)
1025 return true;
1026
1027 return !(iwl_read32(trans, CSR_GP_CNTRL) &
1028 CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW);
1029}
1030
1031static inline void __iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans,
1032 u32 reg, u32 mask, u32 value)
1033{
1034 u32 v;
1035
1036#ifdef CONFIG_IWLWIFI_DEBUG
1037 WARN_ON_ONCE(value & ~mask);
1038#endif
1039
1040 v = iwl_read32(trans, reg);
1041 v &= ~mask;
1042 v |= value;
1043 iwl_write32(trans, reg, v);
1044}
1045
1046static inline void __iwl_trans_pcie_clear_bit(struct iwl_trans *trans,
1047 u32 reg, u32 mask)
1048{
1049 __iwl_trans_pcie_set_bits_mask(trans, reg, mask, 0);
1050}
1051
1052static inline void __iwl_trans_pcie_set_bit(struct iwl_trans *trans,
1053 u32 reg, u32 mask)
1054{
1055 __iwl_trans_pcie_set_bits_mask(trans, reg, mask, mask);
1056}
1057
1058static inline bool iwl_pcie_dbg_on(struct iwl_trans *trans)
1059{
1060 return (trans->dbg.dest_tlv || iwl_trans_dbg_ini_valid(trans));
1061}
1062
1063void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state, bool from_irq);
1064void iwl_trans_pcie_dump_regs(struct iwl_trans *trans);
1065
1066#ifdef CONFIG_IWLWIFI_DEBUGFS
1067void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans);
1068void iwl_trans_pcie_debugfs_cleanup(struct iwl_trans *trans);
1069#else
1070static inline void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans) { }
1071#endif
1072
1073void iwl_pcie_rx_allocator_work(struct work_struct *data);
1074
1075/* common trans ops for all generations transports */
1076void iwl_trans_pcie_configure(struct iwl_trans *trans,
1077 const struct iwl_trans_config *trans_cfg);
1078int iwl_trans_pcie_start_hw(struct iwl_trans *trans);
1079void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans);
1080void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val);
1081void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val);
1082u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs);
1083u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg);
1084void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr, u32 val);
1085int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr,
1086 void *buf, int dwords);
1087int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr,
1088 const void *buf, int dwords);
1089int iwl_trans_pcie_sw_reset(struct iwl_trans *trans, bool retake_ownership);
1090struct iwl_trans_dump_data *
1091iwl_trans_pcie_dump_data(struct iwl_trans *trans, u32 dump_mask,
1092 const struct iwl_dump_sanitize_ops *sanitize_ops,
1093 void *sanitize_ctx);
1094int iwl_trans_pcie_d3_resume(struct iwl_trans *trans,
1095 enum iwl_d3_status *status,
1096 bool test, bool reset);
1097int iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test, bool reset);
1098void iwl_trans_pci_interrupts(struct iwl_trans *trans, bool enable);
1099void iwl_trans_pcie_sync_nmi(struct iwl_trans *trans);
1100void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg,
1101 u32 mask, u32 value);
1102int iwl_trans_pcie_read_config32(struct iwl_trans *trans, u32 ofs,
1103 u32 *val);
1104bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans);
1105void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans);
1106
1107/* transport gen 1 exported functions */
1108void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr);
1109int iwl_trans_pcie_start_fw(struct iwl_trans *trans,
1110 const struct fw_img *fw, bool run_in_rfkill);
1111void iwl_trans_pcie_stop_device(struct iwl_trans *trans);
1112
1113/* common functions that are used by gen2 transport */
1114int iwl_pcie_gen2_apm_init(struct iwl_trans *trans);
1115void iwl_pcie_apm_config(struct iwl_trans *trans);
1116int iwl_pcie_prepare_card_hw(struct iwl_trans *trans);
1117void iwl_pcie_synchronize_irqs(struct iwl_trans *trans);
1118bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans);
1119void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans,
1120 bool was_in_rfkill);
1121void iwl_pcie_apm_stop_master(struct iwl_trans *trans);
1122void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie);
1123int iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans,
1124 struct iwl_dma_ptr *ptr, size_t size);
1125void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr);
1126void iwl_pcie_apply_destination(struct iwl_trans *trans);
1127
1128/* common functions that are used by gen3 transport */
1129void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power);
1130
1131/* transport gen 2 exported functions */
1132int iwl_trans_pcie_gen2_start_fw(struct iwl_trans *trans,
1133 const struct fw_img *fw, bool run_in_rfkill);
1134void iwl_trans_pcie_gen2_fw_alive(struct iwl_trans *trans);
1135int iwl_trans_pcie_gen2_send_hcmd(struct iwl_trans *trans,
1136 struct iwl_host_cmd *cmd);
1137void iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans);
1138void _iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans);
1139void iwl_pcie_d3_complete_suspend(struct iwl_trans *trans,
1140 bool test, bool reset);
1141int iwl_pcie_gen2_enqueue_hcmd(struct iwl_trans *trans,
1142 struct iwl_host_cmd *cmd);
1143int iwl_pcie_enqueue_hcmd(struct iwl_trans *trans,
1144 struct iwl_host_cmd *cmd);
1145void iwl_trans_pcie_copy_imr_fh(struct iwl_trans *trans,
1146 u32 dst_addr, u64 src_addr, u32 byte_cnt);
1147int iwl_trans_pcie_copy_imr(struct iwl_trans *trans,
1148 u32 dst_addr, u64 src_addr, u32 byte_cnt);
1149int iwl_trans_pcie_rxq_dma_data(struct iwl_trans *trans, int queue,
1150 struct iwl_trans_rxq_dma_data *data);
1151
1152#endif /* __iwl_trans_int_pcie_h__ */
1/******************************************************************************
2 *
3 * Copyright(c) 2003 - 2015 Intel Corporation. All rights reserved.
4 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5 * Copyright(c) 2016 Intel Deutschland GmbH
6 *
7 * Portions of this file are derived from the ipw3945 project, as well
8 * as portions of the ieee80211 subsystem header files.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called LICENSE.
25 *
26 * Contact Information:
27 * Intel Linux Wireless <linuxwifi@intel.com>
28 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
29 *
30 *****************************************************************************/
31#ifndef __iwl_trans_int_pcie_h__
32#define __iwl_trans_int_pcie_h__
33
34#include <linux/spinlock.h>
35#include <linux/interrupt.h>
36#include <linux/skbuff.h>
37#include <linux/wait.h>
38#include <linux/pci.h>
39#include <linux/timer.h>
40
41#include "iwl-fh.h"
42#include "iwl-csr.h"
43#include "iwl-trans.h"
44#include "iwl-debug.h"
45#include "iwl-io.h"
46#include "iwl-op-mode.h"
47
48/* We need 2 entries for the TX command and header, and another one might
49 * be needed for potential data in the SKB's head. The remaining ones can
50 * be used for frags.
51 */
52#define IWL_PCIE_MAX_FRAGS (IWL_NUM_OF_TBS - 3)
53
54/*
55 * RX related structures and functions
56 */
57#define RX_NUM_QUEUES 1
58#define RX_POST_REQ_ALLOC 2
59#define RX_CLAIM_REQ_ALLOC 8
60#define RX_PENDING_WATERMARK 16
61
62struct iwl_host_cmd;
63
64/*This file includes the declaration that are internal to the
65 * trans_pcie layer */
66
67/**
68 * struct iwl_rx_mem_buffer
69 * @page_dma: bus address of rxb page
70 * @page: driver's pointer to the rxb page
71 * @vid: index of this rxb in the global table
72 */
73struct iwl_rx_mem_buffer {
74 dma_addr_t page_dma;
75 struct page *page;
76 u16 vid;
77 struct list_head list;
78};
79
80/**
81 * struct isr_statistics - interrupt statistics
82 *
83 */
84struct isr_statistics {
85 u32 hw;
86 u32 sw;
87 u32 err_code;
88 u32 sch;
89 u32 alive;
90 u32 rfkill;
91 u32 ctkill;
92 u32 wakeup;
93 u32 rx;
94 u32 tx;
95 u32 unhandled;
96};
97
98/**
99 * struct iwl_rxq - Rx queue
100 * @id: queue index
101 * @bd: driver's pointer to buffer of receive buffer descriptors (rbd).
102 * Address size is 32 bit in pre-9000 devices and 64 bit in 9000 devices.
103 * @bd_dma: bus address of buffer of receive buffer descriptors (rbd)
104 * @ubd: driver's pointer to buffer of used receive buffer descriptors (rbd)
105 * @ubd_dma: physical address of buffer of used receive buffer descriptors (rbd)
106 * @read: Shared index to newest available Rx buffer
107 * @write: Shared index to oldest written Rx packet
108 * @free_count: Number of pre-allocated buffers in rx_free
109 * @used_count: Number of RBDs handled to allocator to use for allocation
110 * @write_actual:
111 * @rx_free: list of RBDs with allocated RB ready for use
112 * @rx_used: list of RBDs with no RB attached
113 * @need_update: flag to indicate we need to update read/write index
114 * @rb_stts: driver's pointer to receive buffer status
115 * @rb_stts_dma: bus address of receive buffer status
116 * @lock:
117 * @queue: actual rx queue. Not used for multi-rx queue.
118 *
119 * NOTE: rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers
120 */
121struct iwl_rxq {
122 int id;
123 void *bd;
124 dma_addr_t bd_dma;
125 __le32 *used_bd;
126 dma_addr_t used_bd_dma;
127 u32 read;
128 u32 write;
129 u32 free_count;
130 u32 used_count;
131 u32 write_actual;
132 u32 queue_size;
133 struct list_head rx_free;
134 struct list_head rx_used;
135 bool need_update;
136 struct iwl_rb_status *rb_stts;
137 dma_addr_t rb_stts_dma;
138 spinlock_t lock;
139 struct napi_struct napi;
140 struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE];
141};
142
143/**
144 * struct iwl_rb_allocator - Rx allocator
145 * @req_pending: number of requests the allcator had not processed yet
146 * @req_ready: number of requests honored and ready for claiming
147 * @rbd_allocated: RBDs with pages allocated and ready to be handled to
148 * the queue. This is a list of &struct iwl_rx_mem_buffer
149 * @rbd_empty: RBDs with no page attached for allocator use. This is a list
150 * of &struct iwl_rx_mem_buffer
151 * @lock: protects the rbd_allocated and rbd_empty lists
152 * @alloc_wq: work queue for background calls
153 * @rx_alloc: work struct for background calls
154 */
155struct iwl_rb_allocator {
156 atomic_t req_pending;
157 atomic_t req_ready;
158 struct list_head rbd_allocated;
159 struct list_head rbd_empty;
160 spinlock_t lock;
161 struct workqueue_struct *alloc_wq;
162 struct work_struct rx_alloc;
163};
164
165struct iwl_dma_ptr {
166 dma_addr_t dma;
167 void *addr;
168 size_t size;
169};
170
171/**
172 * iwl_queue_inc_wrap - increment queue index, wrap back to beginning
173 * @index -- current index
174 */
175static inline int iwl_queue_inc_wrap(int index)
176{
177 return ++index & (TFD_QUEUE_SIZE_MAX - 1);
178}
179
180/**
181 * iwl_queue_dec_wrap - decrement queue index, wrap back to end
182 * @index -- current index
183 */
184static inline int iwl_queue_dec_wrap(int index)
185{
186 return --index & (TFD_QUEUE_SIZE_MAX - 1);
187}
188
189struct iwl_cmd_meta {
190 /* only for SYNC commands, iff the reply skb is wanted */
191 struct iwl_host_cmd *source;
192 u32 flags;
193};
194
195/*
196 * Generic queue structure
197 *
198 * Contains common data for Rx and Tx queues.
199 *
200 * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
201 * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
202 * there might be HW changes in the future). For the normal TX
203 * queues, n_window, which is the size of the software queue data
204 * is also 256; however, for the command queue, n_window is only
205 * 32 since we don't need so many commands pending. Since the HW
206 * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256. As a result,
207 * the software buffers (in the variables @meta, @txb in struct
208 * iwl_txq) only have 32 entries, while the HW buffers (@tfds in
209 * the same struct) have 256.
210 * This means that we end up with the following:
211 * HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
212 * SW entries: | 0 | ... | 31 |
213 * where N is a number between 0 and 7. This means that the SW
214 * data is a window overlayed over the HW queue.
215 */
216struct iwl_queue {
217 int write_ptr; /* 1-st empty entry (index) host_w*/
218 int read_ptr; /* last used entry (index) host_r*/
219 /* use for monitoring and recovering the stuck queue */
220 dma_addr_t dma_addr; /* physical addr for BD's */
221 int n_window; /* safe queue window */
222 u32 id;
223 int low_mark; /* low watermark, resume queue if free
224 * space more than this */
225 int high_mark; /* high watermark, stop queue if free
226 * space less than this */
227};
228
229#define TFD_TX_CMD_SLOTS 256
230#define TFD_CMD_SLOTS 32
231
232/*
233 * The FH will write back to the first TB only, so we need
234 * to copy some data into the buffer regardless of whether
235 * it should be mapped or not. This indicates how big the
236 * first TB must be to include the scratch buffer. Since
237 * the scratch is 4 bytes at offset 12, it's 16 now. If we
238 * make it bigger then allocations will be bigger and copy
239 * slower, so that's probably not useful.
240 */
241#define IWL_HCMD_SCRATCHBUF_SIZE 16
242
243struct iwl_pcie_txq_entry {
244 struct iwl_device_cmd *cmd;
245 struct sk_buff *skb;
246 /* buffer to free after command completes */
247 const void *free_buf;
248 struct iwl_cmd_meta meta;
249};
250
251struct iwl_pcie_txq_scratch_buf {
252 struct iwl_cmd_header hdr;
253 u8 buf[8];
254 __le32 scratch;
255};
256
257/**
258 * struct iwl_txq - Tx Queue for DMA
259 * @q: generic Rx/Tx queue descriptor
260 * @tfds: transmit frame descriptors (DMA memory)
261 * @scratchbufs: start of command headers, including scratch buffers, for
262 * the writeback -- this is DMA memory and an array holding one buffer
263 * for each command on the queue
264 * @scratchbufs_dma: DMA address for the scratchbufs start
265 * @entries: transmit entries (driver state)
266 * @lock: queue lock
267 * @stuck_timer: timer that fires if queue gets stuck
268 * @trans_pcie: pointer back to transport (for timer)
269 * @need_update: indicates need to update read/write index
270 * @active: stores if queue is active
271 * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
272 * @wd_timeout: queue watchdog timeout (jiffies) - per queue
273 * @frozen: tx stuck queue timer is frozen
274 * @frozen_expiry_remainder: remember how long until the timer fires
275 *
276 * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
277 * descriptors) and required locking structures.
278 */
279struct iwl_txq {
280 struct iwl_queue q;
281 struct iwl_tfd *tfds;
282 struct iwl_pcie_txq_scratch_buf *scratchbufs;
283 dma_addr_t scratchbufs_dma;
284 struct iwl_pcie_txq_entry *entries;
285 spinlock_t lock;
286 unsigned long frozen_expiry_remainder;
287 struct timer_list stuck_timer;
288 struct iwl_trans_pcie *trans_pcie;
289 bool need_update;
290 bool frozen;
291 u8 active;
292 bool ampdu;
293 bool block;
294 unsigned long wd_timeout;
295 struct sk_buff_head overflow_q;
296};
297
298static inline dma_addr_t
299iwl_pcie_get_scratchbuf_dma(struct iwl_txq *txq, int idx)
300{
301 return txq->scratchbufs_dma +
302 sizeof(struct iwl_pcie_txq_scratch_buf) * idx;
303}
304
305struct iwl_tso_hdr_page {
306 struct page *page;
307 u8 *pos;
308};
309
310/**
311 * struct iwl_trans_pcie - PCIe transport specific data
312 * @rxq: all the RX queue data
313 * @rx_pool: initial pool of iwl_rx_mem_buffer for all the queues
314 * @global_table: table mapping received VID from hw to rxb
315 * @rba: allocator for RX replenishing
316 * @drv - pointer to iwl_drv
317 * @trans: pointer to the generic transport area
318 * @scd_base_addr: scheduler sram base address in SRAM
319 * @scd_bc_tbls: pointer to the byte count table of the scheduler
320 * @kw: keep warm address
321 * @pci_dev: basic pci-network driver stuff
322 * @hw_base: pci hardware address support
323 * @ucode_write_complete: indicates that the ucode has been copied.
324 * @ucode_write_waitq: wait queue for uCode load
325 * @cmd_queue - command queue number
326 * @rx_buf_size: Rx buffer size
327 * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
328 * @scd_set_active: should the transport configure the SCD for HCMD queue
329 * @wide_cmd_header: true when ucode supports wide command header format
330 * @sw_csum_tx: if true, then the transport will compute the csum of the TXed
331 * frame.
332 * @rx_page_order: page order for receive buffer size
333 * @reg_lock: protect hw register access
334 * @mutex: to protect stop_device / start_fw / start_hw
335 * @cmd_in_flight: true when we have a host command in flight
336 * @fw_mon_phys: physical address of the buffer for the firmware monitor
337 * @fw_mon_page: points to the first page of the buffer for the firmware monitor
338 * @fw_mon_size: size of the buffer for the firmware monitor
339 * @msix_entries: array of MSI-X entries
340 * @msix_enabled: true if managed to enable MSI-X
341 * @allocated_vector: the number of interrupt vector allocated by the OS
342 * @default_irq_num: default irq for non rx interrupt
343 * @fh_init_mask: initial unmasked fh causes
344 * @hw_init_mask: initial unmasked hw causes
345 * @fh_mask: current unmasked fh causes
346 * @hw_mask: current unmasked hw causes
347 */
348struct iwl_trans_pcie {
349 struct iwl_rxq *rxq;
350 struct iwl_rx_mem_buffer rx_pool[RX_POOL_SIZE];
351 struct iwl_rx_mem_buffer *global_table[MQ_RX_TABLE_SIZE];
352 struct iwl_rb_allocator rba;
353 struct iwl_trans *trans;
354 struct iwl_drv *drv;
355
356 struct net_device napi_dev;
357
358 struct __percpu iwl_tso_hdr_page *tso_hdr_page;
359
360 /* INT ICT Table */
361 __le32 *ict_tbl;
362 dma_addr_t ict_tbl_dma;
363 int ict_index;
364 bool use_ict;
365 bool is_down;
366 struct isr_statistics isr_stats;
367
368 spinlock_t irq_lock;
369 struct mutex mutex;
370 u32 inta_mask;
371 u32 scd_base_addr;
372 struct iwl_dma_ptr scd_bc_tbls;
373 struct iwl_dma_ptr kw;
374
375 struct iwl_txq *txq;
376 unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_HW_QUEUES)];
377 unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_HW_QUEUES)];
378
379 /* PCI bus related data */
380 struct pci_dev *pci_dev;
381 void __iomem *hw_base;
382
383 bool ucode_write_complete;
384 wait_queue_head_t ucode_write_waitq;
385 wait_queue_head_t wait_command_queue;
386 wait_queue_head_t d0i3_waitq;
387
388 u8 cmd_queue;
389 u8 cmd_fifo;
390 unsigned int cmd_q_wdg_timeout;
391 u8 n_no_reclaim_cmds;
392 u8 no_reclaim_cmds[MAX_NO_RECLAIM_CMDS];
393
394 enum iwl_amsdu_size rx_buf_size;
395 bool bc_table_dword;
396 bool scd_set_active;
397 bool wide_cmd_header;
398 bool sw_csum_tx;
399 u32 rx_page_order;
400
401 /*protect hw register */
402 spinlock_t reg_lock;
403 bool cmd_hold_nic_awake;
404 bool ref_cmd_in_flight;
405
406 /* protect ref counter */
407 spinlock_t ref_lock;
408 u32 ref_count;
409
410 dma_addr_t fw_mon_phys;
411 struct page *fw_mon_page;
412 u32 fw_mon_size;
413
414 struct msix_entry msix_entries[IWL_MAX_RX_HW_QUEUES];
415 bool msix_enabled;
416 u32 allocated_vector;
417 u32 default_irq_num;
418 u32 fh_init_mask;
419 u32 hw_init_mask;
420 u32 fh_mask;
421 u32 hw_mask;
422};
423
424static inline struct iwl_trans_pcie *
425IWL_TRANS_GET_PCIE_TRANS(struct iwl_trans *trans)
426{
427 return (void *)trans->trans_specific;
428}
429
430static inline struct iwl_trans *
431iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie)
432{
433 return container_of((void *)trans_pcie, struct iwl_trans,
434 trans_specific);
435}
436
437/*
438 * Convention: trans API functions: iwl_trans_pcie_XXX
439 * Other functions: iwl_pcie_XXX
440 */
441struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev,
442 const struct pci_device_id *ent,
443 const struct iwl_cfg *cfg);
444void iwl_trans_pcie_free(struct iwl_trans *trans);
445
446/*****************************************************
447* RX
448******************************************************/
449int iwl_pcie_rx_init(struct iwl_trans *trans);
450irqreturn_t iwl_pcie_msix_isr(int irq, void *data);
451irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id);
452irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id);
453irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id);
454int iwl_pcie_rx_stop(struct iwl_trans *trans);
455void iwl_pcie_rx_free(struct iwl_trans *trans);
456
457/*****************************************************
458* ICT - interrupt handling
459******************************************************/
460irqreturn_t iwl_pcie_isr(int irq, void *data);
461int iwl_pcie_alloc_ict(struct iwl_trans *trans);
462void iwl_pcie_free_ict(struct iwl_trans *trans);
463void iwl_pcie_reset_ict(struct iwl_trans *trans);
464void iwl_pcie_disable_ict(struct iwl_trans *trans);
465
466/*****************************************************
467* TX / HCMD
468******************************************************/
469int iwl_pcie_tx_init(struct iwl_trans *trans);
470void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr);
471int iwl_pcie_tx_stop(struct iwl_trans *trans);
472void iwl_pcie_tx_free(struct iwl_trans *trans);
473void iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int queue, u16 ssn,
474 const struct iwl_trans_txq_scd_cfg *cfg,
475 unsigned int wdg_timeout);
476void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue,
477 bool configure_scd);
478int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb,
479 struct iwl_device_cmd *dev_cmd, int txq_id);
480void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans);
481int iwl_trans_pcie_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
482void iwl_pcie_hcmd_complete(struct iwl_trans *trans,
483 struct iwl_rx_cmd_buffer *rxb);
484void iwl_trans_pcie_reclaim(struct iwl_trans *trans, int txq_id, int ssn,
485 struct sk_buff_head *skbs);
486void iwl_trans_pcie_tx_reset(struct iwl_trans *trans);
487
488void iwl_trans_pcie_ref(struct iwl_trans *trans);
489void iwl_trans_pcie_unref(struct iwl_trans *trans);
490
491static inline u16 iwl_pcie_tfd_tb_get_len(struct iwl_tfd *tfd, u8 idx)
492{
493 struct iwl_tfd_tb *tb = &tfd->tbs[idx];
494
495 return le16_to_cpu(tb->hi_n_len) >> 4;
496}
497
498/*****************************************************
499* Error handling
500******************************************************/
501void iwl_pcie_dump_csr(struct iwl_trans *trans);
502
503/*****************************************************
504* Helpers
505******************************************************/
506static inline void iwl_disable_interrupts(struct iwl_trans *trans)
507{
508 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
509
510 clear_bit(STATUS_INT_ENABLED, &trans->status);
511 if (!trans_pcie->msix_enabled) {
512 /* disable interrupts from uCode/NIC to host */
513 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
514
515 /* acknowledge/clear/reset any interrupts still pending
516 * from uCode or flow handler (Rx/Tx DMA) */
517 iwl_write32(trans, CSR_INT, 0xffffffff);
518 iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff);
519 } else {
520 /* disable all the interrupt we might use */
521 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
522 trans_pcie->fh_init_mask);
523 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
524 trans_pcie->hw_init_mask);
525 }
526 IWL_DEBUG_ISR(trans, "Disabled interrupts\n");
527}
528
529static inline void iwl_enable_interrupts(struct iwl_trans *trans)
530{
531 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
532
533 IWL_DEBUG_ISR(trans, "Enabling interrupts\n");
534 set_bit(STATUS_INT_ENABLED, &trans->status);
535 if (!trans_pcie->msix_enabled) {
536 trans_pcie->inta_mask = CSR_INI_SET_MASK;
537 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
538 } else {
539 /*
540 * fh/hw_mask keeps all the unmasked causes.
541 * Unlike msi, in msix cause is enabled when it is unset.
542 */
543 trans_pcie->hw_mask = trans_pcie->hw_init_mask;
544 trans_pcie->fh_mask = trans_pcie->fh_init_mask;
545 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
546 ~trans_pcie->fh_mask);
547 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
548 ~trans_pcie->hw_mask);
549 }
550}
551
552static inline void iwl_enable_hw_int_msk_msix(struct iwl_trans *trans, u32 msk)
553{
554 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
555
556 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~msk);
557 trans_pcie->hw_mask = msk;
558}
559
560static inline void iwl_enable_fh_int_msk_msix(struct iwl_trans *trans, u32 msk)
561{
562 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
563
564 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~msk);
565 trans_pcie->fh_mask = msk;
566}
567
568static inline void iwl_enable_fw_load_int(struct iwl_trans *trans)
569{
570 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
571
572 IWL_DEBUG_ISR(trans, "Enabling FW load interrupt\n");
573 if (!trans_pcie->msix_enabled) {
574 trans_pcie->inta_mask = CSR_INT_BIT_FH_TX;
575 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
576 } else {
577 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
578 trans_pcie->hw_init_mask);
579 iwl_enable_fh_int_msk_msix(trans,
580 MSIX_FH_INT_CAUSES_D2S_CH0_NUM);
581 }
582}
583
584static inline void iwl_enable_rfkill_int(struct iwl_trans *trans)
585{
586 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
587
588 IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n");
589 if (!trans_pcie->msix_enabled) {
590 trans_pcie->inta_mask = CSR_INT_BIT_RF_KILL;
591 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
592 } else {
593 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
594 trans_pcie->fh_init_mask);
595 iwl_enable_hw_int_msk_msix(trans,
596 MSIX_HW_INT_CAUSES_REG_RF_KILL);
597 }
598}
599
600static inline void iwl_wake_queue(struct iwl_trans *trans,
601 struct iwl_txq *txq)
602{
603 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
604
605 if (test_and_clear_bit(txq->q.id, trans_pcie->queue_stopped)) {
606 IWL_DEBUG_TX_QUEUES(trans, "Wake hwq %d\n", txq->q.id);
607 iwl_op_mode_queue_not_full(trans->op_mode, txq->q.id);
608 }
609}
610
611static inline void iwl_stop_queue(struct iwl_trans *trans,
612 struct iwl_txq *txq)
613{
614 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
615
616 if (!test_and_set_bit(txq->q.id, trans_pcie->queue_stopped)) {
617 iwl_op_mode_queue_full(trans->op_mode, txq->q.id);
618 IWL_DEBUG_TX_QUEUES(trans, "Stop hwq %d\n", txq->q.id);
619 } else
620 IWL_DEBUG_TX_QUEUES(trans, "hwq %d already stopped\n",
621 txq->q.id);
622}
623
624static inline bool iwl_queue_used(const struct iwl_queue *q, int i)
625{
626 return q->write_ptr >= q->read_ptr ?
627 (i >= q->read_ptr && i < q->write_ptr) :
628 !(i < q->read_ptr && i >= q->write_ptr);
629}
630
631static inline u8 get_cmd_index(struct iwl_queue *q, u32 index)
632{
633 return index & (q->n_window - 1);
634}
635
636static inline bool iwl_is_rfkill_set(struct iwl_trans *trans)
637{
638 return !(iwl_read32(trans, CSR_GP_CNTRL) &
639 CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW);
640}
641
642static inline void __iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans,
643 u32 reg, u32 mask, u32 value)
644{
645 u32 v;
646
647#ifdef CONFIG_IWLWIFI_DEBUG
648 WARN_ON_ONCE(value & ~mask);
649#endif
650
651 v = iwl_read32(trans, reg);
652 v &= ~mask;
653 v |= value;
654 iwl_write32(trans, reg, v);
655}
656
657static inline void __iwl_trans_pcie_clear_bit(struct iwl_trans *trans,
658 u32 reg, u32 mask)
659{
660 __iwl_trans_pcie_set_bits_mask(trans, reg, mask, 0);
661}
662
663static inline void __iwl_trans_pcie_set_bit(struct iwl_trans *trans,
664 u32 reg, u32 mask)
665{
666 __iwl_trans_pcie_set_bits_mask(trans, reg, mask, mask);
667}
668
669void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state);
670
671#ifdef CONFIG_IWLWIFI_DEBUGFS
672int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans);
673#else
674static inline int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans)
675{
676 return 0;
677}
678#endif
679
680int iwl_pci_fw_exit_d0i3(struct iwl_trans *trans);
681int iwl_pci_fw_enter_d0i3(struct iwl_trans *trans);
682
683#endif /* __iwl_trans_int_pcie_h__ */