Loading...
1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2/*
3 * Copyright (C) 2003-2015, 2018-2025 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7#ifndef __iwl_trans_int_pcie_h__
8#define __iwl_trans_int_pcie_h__
9
10#include <linux/spinlock.h>
11#include <linux/interrupt.h>
12#include <linux/skbuff.h>
13#include <linux/wait.h>
14#include <linux/pci.h>
15#include <linux/timer.h>
16#include <linux/cpu.h>
17
18#include "iwl-fh.h"
19#include "iwl-csr.h"
20#include "iwl-trans.h"
21#include "iwl-debug.h"
22#include "iwl-io.h"
23#include "iwl-op-mode.h"
24#include "iwl-drv.h"
25#include "iwl-context-info.h"
26
27/*
28 * RX related structures and functions
29 */
30#define RX_NUM_QUEUES 1
31#define RX_POST_REQ_ALLOC 2
32#define RX_CLAIM_REQ_ALLOC 8
33#define RX_PENDING_WATERMARK 16
34#define FIRST_RX_QUEUE 512
35
36struct iwl_host_cmd;
37
38/*This file includes the declaration that are internal to the
39 * trans_pcie layer */
40
41/**
42 * struct iwl_rx_mem_buffer
43 * @page_dma: bus address of rxb page
44 * @page: driver's pointer to the rxb page
45 * @list: list entry for the membuffer
46 * @invalid: rxb is in driver ownership - not owned by HW
47 * @vid: index of this rxb in the global table
48 * @offset: indicates which offset of the page (in bytes)
49 * this buffer uses (if multiple RBs fit into one page)
50 */
51struct iwl_rx_mem_buffer {
52 dma_addr_t page_dma;
53 struct page *page;
54 struct list_head list;
55 u32 offset;
56 u16 vid;
57 bool invalid;
58};
59
60/* interrupt statistics */
61struct isr_statistics {
62 u32 hw;
63 u32 sw;
64 u32 err_code;
65 u32 sch;
66 u32 alive;
67 u32 rfkill;
68 u32 ctkill;
69 u32 wakeup;
70 u32 rx;
71 u32 tx;
72 u32 unhandled;
73};
74
75/**
76 * struct iwl_rx_transfer_desc - transfer descriptor
77 * @addr: ptr to free buffer start address
78 * @rbid: unique tag of the buffer
79 * @reserved: reserved
80 */
81struct iwl_rx_transfer_desc {
82 __le16 rbid;
83 __le16 reserved[3];
84 __le64 addr;
85} __packed;
86
87#define IWL_RX_CD_FLAGS_FRAGMENTED BIT(0)
88
89/**
90 * struct iwl_rx_completion_desc - completion descriptor
91 * @reserved1: reserved
92 * @rbid: unique tag of the received buffer
93 * @flags: flags (0: fragmented, all others: reserved)
94 * @reserved2: reserved
95 */
96struct iwl_rx_completion_desc {
97 __le32 reserved1;
98 __le16 rbid;
99 u8 flags;
100 u8 reserved2[25];
101} __packed;
102
103/**
104 * struct iwl_rx_completion_desc_bz - Bz completion descriptor
105 * @rbid: unique tag of the received buffer
106 * @flags: flags (0: fragmented, all others: reserved)
107 * @reserved: reserved
108 */
109struct iwl_rx_completion_desc_bz {
110 __le16 rbid;
111 u8 flags;
112 u8 reserved[1];
113} __packed;
114
115/**
116 * struct iwl_rxq - Rx queue
117 * @id: queue index
118 * @bd: driver's pointer to buffer of receive buffer descriptors (rbd).
119 * Address size is 32 bit in pre-9000 devices and 64 bit in 9000 devices.
120 * In AX210 devices it is a pointer to a list of iwl_rx_transfer_desc's
121 * @bd_dma: bus address of buffer of receive buffer descriptors (rbd)
122 * @used_bd: driver's pointer to buffer of used receive buffer descriptors (rbd)
123 * @used_bd_dma: physical address of buffer of used receive buffer descriptors (rbd)
124 * @read: Shared index to newest available Rx buffer
125 * @write: Shared index to oldest written Rx packet
126 * @write_actual: actual write pointer written to device, since we update in
127 * blocks of 8 only
128 * @free_count: Number of pre-allocated buffers in rx_free
129 * @used_count: Number of RBDs handled to allocator to use for allocation
130 * @write_actual:
131 * @rx_free: list of RBDs with allocated RB ready for use
132 * @rx_used: list of RBDs with no RB attached
133 * @need_update: flag to indicate we need to update read/write index
134 * @rb_stts: driver's pointer to receive buffer status
135 * @rb_stts_dma: bus address of receive buffer status
136 * @lock: per-queue lock
137 * @queue: actual rx queue. Not used for multi-rx queue.
138 * @next_rb_is_fragment: indicates that the previous RB that we handled set
139 * the fragmented flag, so the next one is still another fragment
140 * @napi: NAPI struct for this queue
141 * @queue_size: size of this queue
142 *
143 * NOTE: rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers
144 */
145struct iwl_rxq {
146 int id;
147 void *bd;
148 dma_addr_t bd_dma;
149 void *used_bd;
150 dma_addr_t used_bd_dma;
151 u32 read;
152 u32 write;
153 u32 free_count;
154 u32 used_count;
155 u32 write_actual;
156 u32 queue_size;
157 struct list_head rx_free;
158 struct list_head rx_used;
159 bool need_update, next_rb_is_fragment;
160 void *rb_stts;
161 dma_addr_t rb_stts_dma;
162 spinlock_t lock;
163 struct napi_struct napi;
164 struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE];
165};
166
167/**
168 * struct iwl_rb_allocator - Rx allocator
169 * @req_pending: number of requests the allcator had not processed yet
170 * @req_ready: number of requests honored and ready for claiming
171 * @rbd_allocated: RBDs with pages allocated and ready to be handled to
172 * the queue. This is a list of &struct iwl_rx_mem_buffer
173 * @rbd_empty: RBDs with no page attached for allocator use. This is a list
174 * of &struct iwl_rx_mem_buffer
175 * @lock: protects the rbd_allocated and rbd_empty lists
176 * @alloc_wq: work queue for background calls
177 * @rx_alloc: work struct for background calls
178 */
179struct iwl_rb_allocator {
180 atomic_t req_pending;
181 atomic_t req_ready;
182 struct list_head rbd_allocated;
183 struct list_head rbd_empty;
184 spinlock_t lock;
185 struct workqueue_struct *alloc_wq;
186 struct work_struct rx_alloc;
187};
188
189/**
190 * iwl_get_closed_rb_stts - get closed rb stts from different structs
191 * @trans: transport pointer (for configuration)
192 * @rxq: the rxq to get the rb stts from
193 */
194static inline u16 iwl_get_closed_rb_stts(struct iwl_trans *trans,
195 struct iwl_rxq *rxq)
196{
197 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
198 __le16 *rb_stts = rxq->rb_stts;
199
200 return le16_to_cpu(READ_ONCE(*rb_stts));
201 } else {
202 struct iwl_rb_status *rb_stts = rxq->rb_stts;
203
204 return le16_to_cpu(READ_ONCE(rb_stts->closed_rb_num)) & 0xFFF;
205 }
206}
207
208#ifdef CONFIG_IWLWIFI_DEBUGFS
209/**
210 * enum iwl_fw_mon_dbgfs_state - the different states of the monitor_data
211 * debugfs file
212 *
213 * @IWL_FW_MON_DBGFS_STATE_CLOSED: the file is closed.
214 * @IWL_FW_MON_DBGFS_STATE_OPEN: the file is open.
215 * @IWL_FW_MON_DBGFS_STATE_DISABLED: the file is disabled, once this state is
216 * set the file can no longer be used.
217 */
218enum iwl_fw_mon_dbgfs_state {
219 IWL_FW_MON_DBGFS_STATE_CLOSED,
220 IWL_FW_MON_DBGFS_STATE_OPEN,
221 IWL_FW_MON_DBGFS_STATE_DISABLED,
222};
223#endif
224
225/**
226 * enum iwl_shared_irq_flags - level of sharing for irq
227 * @IWL_SHARED_IRQ_NON_RX: interrupt vector serves non rx causes.
228 * @IWL_SHARED_IRQ_FIRST_RSS: interrupt vector serves first RSS queue.
229 */
230enum iwl_shared_irq_flags {
231 IWL_SHARED_IRQ_NON_RX = BIT(0),
232 IWL_SHARED_IRQ_FIRST_RSS = BIT(1),
233};
234
235/**
236 * enum iwl_image_response_code - image response values
237 * @IWL_IMAGE_RESP_DEF: the default value of the register
238 * @IWL_IMAGE_RESP_SUCCESS: iml was read successfully
239 * @IWL_IMAGE_RESP_FAIL: iml reading failed
240 */
241enum iwl_image_response_code {
242 IWL_IMAGE_RESP_DEF = 0,
243 IWL_IMAGE_RESP_SUCCESS = 1,
244 IWL_IMAGE_RESP_FAIL = 2,
245};
246
247#ifdef CONFIG_IWLWIFI_DEBUGFS
248/**
249 * struct cont_rec: continuous recording data structure
250 * @prev_wr_ptr: the last address that was read in monitor_data
251 * debugfs file
252 * @prev_wrap_cnt: the wrap count that was used during the last read in
253 * monitor_data debugfs file
254 * @state: the state of monitor_data debugfs file as described
255 * in &iwl_fw_mon_dbgfs_state enum
256 * @mutex: locked while reading from monitor_data debugfs file
257 */
258struct cont_rec {
259 u32 prev_wr_ptr;
260 u32 prev_wrap_cnt;
261 u8 state;
262 /* Used to sync monitor_data debugfs file with driver unload flow */
263 struct mutex mutex;
264};
265#endif
266
267enum iwl_pcie_fw_reset_state {
268 FW_RESET_IDLE,
269 FW_RESET_REQUESTED,
270 FW_RESET_OK,
271 FW_RESET_ERROR,
272};
273
274/**
275 * enum iwl_pcie_imr_status - imr dma transfer state
276 * @IMR_D2S_IDLE: default value of the dma transfer
277 * @IMR_D2S_REQUESTED: dma transfer requested
278 * @IMR_D2S_COMPLETED: dma transfer completed
279 * @IMR_D2S_ERROR: dma transfer error
280 */
281enum iwl_pcie_imr_status {
282 IMR_D2S_IDLE,
283 IMR_D2S_REQUESTED,
284 IMR_D2S_COMPLETED,
285 IMR_D2S_ERROR,
286};
287
288/**
289 * struct iwl_pcie_txqs - TX queues data
290 *
291 * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
292 * @page_offs: offset from skb->cb to mac header page pointer
293 * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
294 * @queue_used: bit mask of used queues
295 * @queue_stopped: bit mask of stopped queues
296 * @txq: array of TXQ data structures representing the TXQs
297 * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
298 * @queue_alloc_cmd_ver: queue allocation command version
299 * @bc_pool: bytecount DMA allocations pool
300 * @bc_tbl_size: bytecount table size
301 * @tso_hdr_page: page allocated (per CPU) for A-MSDU headers when doing TSO
302 * (and similar usage)
303 * @cmd: command queue data
304 * @cmd.fifo: FIFO number
305 * @cmd.q_id: queue ID
306 * @cmd.wdg_timeout: watchdog timeout
307 * @tfd: TFD data
308 * @tfd.max_tbs: max number of buffers per TFD
309 * @tfd.size: TFD size
310 * @tfd.addr_size: TFD/TB address size
311 */
312struct iwl_pcie_txqs {
313 unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
314 unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
315 struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
316 struct dma_pool *bc_pool;
317 size_t bc_tbl_size;
318 bool bc_table_dword;
319 u8 page_offs;
320 u8 dev_cmd_offs;
321 struct iwl_tso_hdr_page __percpu *tso_hdr_page;
322
323 struct {
324 u8 fifo;
325 u8 q_id;
326 unsigned int wdg_timeout;
327 } cmd;
328
329 struct {
330 u8 max_tbs;
331 u16 size;
332 u8 addr_size;
333 } tfd;
334
335 struct iwl_dma_ptr scd_bc_tbls;
336
337 u8 queue_alloc_cmd_ver;
338};
339
340/**
341 * struct iwl_trans_pcie - PCIe transport specific data
342 * @rxq: all the RX queue data
343 * @rx_pool: initial pool of iwl_rx_mem_buffer for all the queues
344 * @global_table: table mapping received VID from hw to rxb
345 * @rba: allocator for RX replenishing
346 * @ctxt_info: context information for FW self init
347 * @ctxt_info_gen3: context information for gen3 devices
348 * @prph_info: prph info for self init
349 * @prph_scratch: prph scratch for self init
350 * @ctxt_info_dma_addr: dma addr of context information
351 * @prph_info_dma_addr: dma addr of prph info
352 * @prph_scratch_dma_addr: dma addr of prph scratch
353 * @ctxt_info_dma_addr: dma addr of context information
354 * @iml: image loader image virtual address
355 * @iml_dma_addr: image loader image DMA address
356 * @trans: pointer to the generic transport area
357 * @scd_base_addr: scheduler sram base address in SRAM
358 * @kw: keep warm address
359 * @pnvm_data: holds info about pnvm payloads allocated in DRAM
360 * @reduced_tables_data: holds info about power reduced tablse
361 * payloads allocated in DRAM
362 * @pci_dev: basic pci-network driver stuff
363 * @hw_base: pci hardware address support
364 * @ucode_write_complete: indicates that the ucode has been copied.
365 * @ucode_write_waitq: wait queue for uCode load
366 * @cmd_queue - command queue number
367 * @rx_buf_size: Rx buffer size
368 * @scd_set_active: should the transport configure the SCD for HCMD queue
369 * @rx_page_order: page order for receive buffer size
370 * @rx_buf_bytes: RX buffer (RB) size in bytes
371 * @reg_lock: protect hw register access
372 * @mutex: to protect stop_device / start_fw / start_hw
373 * @fw_mon_data: fw continuous recording data
374 * @cmd_hold_nic_awake: indicates NIC is held awake for APMG workaround
375 * during commands in flight
376 * @msix_entries: array of MSI-X entries
377 * @msix_enabled: true if managed to enable MSI-X
378 * @shared_vec_mask: the type of causes the shared vector handles
379 * (see iwl_shared_irq_flags).
380 * @alloc_vecs: the number of interrupt vectors allocated by the OS
381 * @def_irq: default irq for non rx causes
382 * @fh_init_mask: initial unmasked fh causes
383 * @hw_init_mask: initial unmasked hw causes
384 * @fh_mask: current unmasked fh causes
385 * @hw_mask: current unmasked hw causes
386 * @in_rescan: true if we have triggered a device rescan
387 * @base_rb_stts: base virtual address of receive buffer status for all queues
388 * @base_rb_stts_dma: base physical address of receive buffer status
389 * @supported_dma_mask: DMA mask to validate the actual address against,
390 * will be DMA_BIT_MASK(11) or DMA_BIT_MASK(12) depending on the device
391 * @alloc_page_lock: spinlock for the page allocator
392 * @alloc_page: allocated page to still use parts of
393 * @alloc_page_used: how much of the allocated page was already used (bytes)
394 * @imr_status: imr dma state machine
395 * @imr_waitq: imr wait queue for dma completion
396 * @rf_name: name/version of the CRF, if any
397 * @use_ict: whether or not ICT (interrupt table) is used
398 * @ict_index: current ICT read index
399 * @ict_tbl: ICT table pointer
400 * @ict_tbl_dma: ICT table DMA address
401 * @inta_mask: interrupt (INT-A) mask
402 * @irq_lock: lock to synchronize IRQ handling
403 * @txq_memory: TXQ allocation array
404 * @sx_waitq: waitqueue for Sx transitions
405 * @sx_complete: completion for Sx transitions
406 * @pcie_dbg_dumped_once: indicates PCIe regs were dumped already
407 * @opmode_down: indicates opmode went away
408 * @num_rx_bufs: number of RX buffers to allocate/use
409 * @no_reclaim_cmds: special commands not using reclaim flow
410 * (firmware workaround)
411 * @n_no_reclaim_cmds: number of special commands not using reclaim flow
412 * @affinity_mask: IRQ affinity mask for each RX queue
413 * @debug_rfkill: RF-kill debugging state, -1 for unset, 0/1 for radio
414 * enable/disable
415 * @fw_reset_handshake: indicates FW reset handshake is needed
416 * @fw_reset_state: state of FW reset handshake
417 * @fw_reset_waitq: waitqueue for FW reset handshake
418 * @is_down: indicates the NIC is down
419 * @isr_stats: interrupt statistics
420 * @napi_dev: (fake) netdev for NAPI registration
421 * @txqs: transport tx queues data.
422 */
423struct iwl_trans_pcie {
424 struct iwl_rxq *rxq;
425 struct iwl_rx_mem_buffer *rx_pool;
426 struct iwl_rx_mem_buffer **global_table;
427 struct iwl_rb_allocator rba;
428 union {
429 struct iwl_context_info *ctxt_info;
430 struct iwl_context_info_gen3 *ctxt_info_gen3;
431 };
432 struct iwl_prph_info *prph_info;
433 struct iwl_prph_scratch *prph_scratch;
434 void *iml;
435 dma_addr_t ctxt_info_dma_addr;
436 dma_addr_t prph_info_dma_addr;
437 dma_addr_t prph_scratch_dma_addr;
438 dma_addr_t iml_dma_addr;
439 struct iwl_trans *trans;
440
441 struct net_device *napi_dev;
442
443 /* INT ICT Table */
444 __le32 *ict_tbl;
445 dma_addr_t ict_tbl_dma;
446 int ict_index;
447 bool use_ict;
448 bool is_down, opmode_down;
449 s8 debug_rfkill;
450 struct isr_statistics isr_stats;
451
452 spinlock_t irq_lock;
453 struct mutex mutex;
454 u32 inta_mask;
455 u32 scd_base_addr;
456 struct iwl_dma_ptr kw;
457
458 /* pnvm data */
459 struct iwl_dram_regions pnvm_data;
460 struct iwl_dram_regions reduced_tables_data;
461
462 struct iwl_txq *txq_memory;
463
464 /* PCI bus related data */
465 struct pci_dev *pci_dev;
466 u8 __iomem *hw_base;
467
468 bool ucode_write_complete;
469 bool sx_complete;
470 wait_queue_head_t ucode_write_waitq;
471 wait_queue_head_t sx_waitq;
472
473 u8 n_no_reclaim_cmds;
474 u8 no_reclaim_cmds[MAX_NO_RECLAIM_CMDS];
475 u16 num_rx_bufs;
476
477 enum iwl_amsdu_size rx_buf_size;
478 bool scd_set_active;
479 bool pcie_dbg_dumped_once;
480 u32 rx_page_order;
481 u32 rx_buf_bytes;
482 u32 supported_dma_mask;
483
484 /* allocator lock for the two values below */
485 spinlock_t alloc_page_lock;
486 struct page *alloc_page;
487 u32 alloc_page_used;
488
489 /*protect hw register */
490 spinlock_t reg_lock;
491 bool cmd_hold_nic_awake;
492
493#ifdef CONFIG_IWLWIFI_DEBUGFS
494 struct cont_rec fw_mon_data;
495#endif
496
497 struct msix_entry msix_entries[IWL_MAX_RX_HW_QUEUES];
498 bool msix_enabled;
499 u8 shared_vec_mask;
500 u32 alloc_vecs;
501 u32 def_irq;
502 u32 fh_init_mask;
503 u32 hw_init_mask;
504 u32 fh_mask;
505 u32 hw_mask;
506 cpumask_t affinity_mask[IWL_MAX_RX_HW_QUEUES];
507 u16 tx_cmd_queue_size;
508 bool in_rescan;
509
510 void *base_rb_stts;
511 dma_addr_t base_rb_stts_dma;
512
513 bool fw_reset_handshake;
514 enum iwl_pcie_fw_reset_state fw_reset_state;
515 wait_queue_head_t fw_reset_waitq;
516 enum iwl_pcie_imr_status imr_status;
517 wait_queue_head_t imr_waitq;
518 char rf_name[32];
519
520 struct iwl_pcie_txqs txqs;
521};
522
523static inline struct iwl_trans_pcie *
524IWL_TRANS_GET_PCIE_TRANS(struct iwl_trans *trans)
525{
526 return (void *)trans->trans_specific;
527}
528
529static inline void iwl_pcie_clear_irq(struct iwl_trans *trans, int queue)
530{
531 /*
532 * Before sending the interrupt the HW disables it to prevent
533 * a nested interrupt. This is done by writing 1 to the corresponding
534 * bit in the mask register. After handling the interrupt, it should be
535 * re-enabled by clearing this bit. This register is defined as
536 * write 1 clear (W1C) register, meaning that it's being clear
537 * by writing 1 to the bit.
538 */
539 iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(queue));
540}
541
542static inline struct iwl_trans *
543iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie)
544{
545 return container_of((void *)trans_pcie, struct iwl_trans,
546 trans_specific);
547}
548
549/*
550 * Convention: trans API functions: iwl_trans_pcie_XXX
551 * Other functions: iwl_pcie_XXX
552 */
553struct iwl_trans
554*iwl_trans_pcie_alloc(struct pci_dev *pdev,
555 const struct pci_device_id *ent,
556 const struct iwl_cfg_trans_params *cfg_trans);
557void iwl_trans_pcie_free(struct iwl_trans *trans);
558void iwl_trans_pcie_free_pnvm_dram_regions(struct iwl_dram_regions *dram_regions,
559 struct device *dev);
560
561bool __iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans);
562#define _iwl_trans_pcie_grab_nic_access(trans) \
563 __cond_lock(nic_access_nobh, \
564 likely(__iwl_trans_pcie_grab_nic_access(trans)))
565
566/*****************************************************
567* RX
568******************************************************/
569int iwl_pcie_rx_init(struct iwl_trans *trans);
570int iwl_pcie_gen2_rx_init(struct iwl_trans *trans);
571irqreturn_t iwl_pcie_msix_isr(int irq, void *data);
572irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id);
573irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id);
574irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id);
575int iwl_pcie_rx_stop(struct iwl_trans *trans);
576void iwl_pcie_rx_free(struct iwl_trans *trans);
577void iwl_pcie_free_rbs_pool(struct iwl_trans *trans);
578void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq);
579void iwl_pcie_rx_napi_sync(struct iwl_trans *trans);
580void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
581 struct iwl_rxq *rxq);
582
583/*****************************************************
584* ICT - interrupt handling
585******************************************************/
586irqreturn_t iwl_pcie_isr(int irq, void *data);
587int iwl_pcie_alloc_ict(struct iwl_trans *trans);
588void iwl_pcie_free_ict(struct iwl_trans *trans);
589void iwl_pcie_reset_ict(struct iwl_trans *trans);
590void iwl_pcie_disable_ict(struct iwl_trans *trans);
591
592/*****************************************************
593* TX / HCMD
594******************************************************/
595/* We need 2 entries for the TX command and header, and another one might
596 * be needed for potential data in the SKB's head. The remaining ones can
597 * be used for frags.
598 */
599#define IWL_TRANS_PCIE_MAX_FRAGS(trans_pcie) ((trans_pcie)->txqs.tfd.max_tbs - 3)
600
601struct iwl_tso_hdr_page {
602 struct page *page;
603 u8 *pos;
604};
605
606/*
607 * Note that we put this struct *last* in the page. By doing that, we ensure
608 * that no TB referencing this page can trigger the 32-bit boundary hardware
609 * bug.
610 */
611struct iwl_tso_page_info {
612 dma_addr_t dma_addr;
613 struct page *next;
614 refcount_t use_count;
615};
616
617#define IWL_TSO_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(struct iwl_tso_page_info))
618#define IWL_TSO_PAGE_INFO(addr) \
619 ((struct iwl_tso_page_info *)(((unsigned long)addr & PAGE_MASK) + \
620 IWL_TSO_PAGE_DATA_SIZE))
621
622int iwl_pcie_tx_init(struct iwl_trans *trans);
623void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr);
624int iwl_pcie_tx_stop(struct iwl_trans *trans);
625void iwl_pcie_tx_free(struct iwl_trans *trans);
626bool iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int queue, u16 ssn,
627 const struct iwl_trans_txq_scd_cfg *cfg,
628 unsigned int wdg_timeout);
629void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue,
630 bool configure_scd);
631void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id,
632 bool shared_mode);
633int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb,
634 struct iwl_device_tx_cmd *dev_cmd, int txq_id);
635void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans);
636void iwl_pcie_hcmd_complete(struct iwl_trans *trans,
637 struct iwl_rx_cmd_buffer *rxb);
638void iwl_trans_pcie_tx_reset(struct iwl_trans *trans);
639int iwl_pcie_txq_alloc(struct iwl_trans *trans, struct iwl_txq *txq,
640 int slots_num, bool cmd_queue);
641
642dma_addr_t iwl_pcie_get_sgt_tb_phys(struct sg_table *sgt, unsigned int offset,
643 unsigned int len);
644struct sg_table *iwl_pcie_prep_tso(struct iwl_trans *trans, struct sk_buff *skb,
645 struct iwl_cmd_meta *cmd_meta,
646 u8 **hdr, unsigned int hdr_room,
647 unsigned int offset);
648
649void iwl_pcie_free_tso_pages(struct iwl_trans *trans, struct sk_buff *skb,
650 struct iwl_cmd_meta *cmd_meta);
651
652static inline dma_addr_t iwl_pcie_get_tso_page_phys(void *addr)
653{
654 dma_addr_t res;
655
656 res = IWL_TSO_PAGE_INFO(addr)->dma_addr;
657 res += (unsigned long)addr & ~PAGE_MASK;
658
659 return res;
660}
661
662static inline dma_addr_t
663iwl_txq_get_first_tb_dma(struct iwl_txq *txq, int idx)
664{
665 return txq->first_tb_dma +
666 sizeof(struct iwl_pcie_first_tb_buf) * idx;
667}
668
669static inline u16 iwl_txq_get_cmd_index(const struct iwl_txq *q, u32 index)
670{
671 return index & (q->n_window - 1);
672}
673
674static inline void *iwl_txq_get_tfd(struct iwl_trans *trans,
675 struct iwl_txq *txq, int idx)
676{
677 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
678
679 if (trans->trans_cfg->gen2)
680 idx = iwl_txq_get_cmd_index(txq, idx);
681
682 return (u8 *)txq->tfds + trans_pcie->txqs.tfd.size * idx;
683}
684
685/*
686 * We need this inline in case dma_addr_t is only 32-bits - since the
687 * hardware is always 64-bit, the issue can still occur in that case,
688 * so use u64 for 'phys' here to force the addition in 64-bit.
689 */
690static inline bool iwl_txq_crosses_4g_boundary(u64 phys, u16 len)
691{
692 return upper_32_bits(phys) != upper_32_bits(phys + len);
693}
694
695int iwl_txq_space(struct iwl_trans *trans, const struct iwl_txq *q);
696
697static inline void iwl_txq_stop(struct iwl_trans *trans, struct iwl_txq *txq)
698{
699 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
700
701 if (!test_and_set_bit(txq->id, trans_pcie->txqs.queue_stopped)) {
702 iwl_op_mode_queue_full(trans->op_mode, txq->id);
703 IWL_DEBUG_TX_QUEUES(trans, "Stop hwq %d\n", txq->id);
704 } else {
705 IWL_DEBUG_TX_QUEUES(trans, "hwq %d already stopped\n",
706 txq->id);
707 }
708}
709
710/**
711 * iwl_txq_inc_wrap - increment queue index, wrap back to beginning
712 * @trans: the transport (for configuration data)
713 * @index: current index
714 */
715static inline int iwl_txq_inc_wrap(struct iwl_trans *trans, int index)
716{
717 return ++index &
718 (trans->trans_cfg->base_params->max_tfd_queue_size - 1);
719}
720
721/**
722 * iwl_txq_dec_wrap - decrement queue index, wrap back to end
723 * @trans: the transport (for configuration data)
724 * @index: current index
725 */
726static inline int iwl_txq_dec_wrap(struct iwl_trans *trans, int index)
727{
728 return --index &
729 (trans->trans_cfg->base_params->max_tfd_queue_size - 1);
730}
731
732void iwl_txq_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq);
733
734static inline void
735iwl_trans_pcie_wake_queue(struct iwl_trans *trans, struct iwl_txq *txq)
736{
737 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
738
739 if (test_and_clear_bit(txq->id, trans_pcie->txqs.queue_stopped)) {
740 IWL_DEBUG_TX_QUEUES(trans, "Wake hwq %d\n", txq->id);
741 iwl_op_mode_queue_not_full(trans->op_mode, txq->id);
742 }
743}
744
745int iwl_txq_gen2_set_tb(struct iwl_trans *trans,
746 struct iwl_tfh_tfd *tfd, dma_addr_t addr,
747 u16 len);
748
749static inline void iwl_txq_set_tfd_invalid_gen2(struct iwl_trans *trans,
750 struct iwl_tfh_tfd *tfd)
751{
752 tfd->num_tbs = 0;
753
754 iwl_txq_gen2_set_tb(trans, tfd, trans->invalid_tx_cmd.dma,
755 trans->invalid_tx_cmd.size);
756}
757
758void iwl_txq_gen2_tfd_unmap(struct iwl_trans *trans,
759 struct iwl_cmd_meta *meta,
760 struct iwl_tfh_tfd *tfd);
761
762int iwl_txq_dyn_alloc(struct iwl_trans *trans, u32 flags,
763 u32 sta_mask, u8 tid,
764 int size, unsigned int timeout);
765
766int iwl_txq_gen2_tx(struct iwl_trans *trans, struct sk_buff *skb,
767 struct iwl_device_tx_cmd *dev_cmd, int txq_id);
768
769void iwl_txq_dyn_free(struct iwl_trans *trans, int queue);
770void iwl_txq_gen2_tx_free(struct iwl_trans *trans);
771int iwl_txq_init(struct iwl_trans *trans, struct iwl_txq *txq,
772 int slots_num, bool cmd_queue);
773int iwl_txq_gen2_init(struct iwl_trans *trans, int txq_id,
774 int queue_size);
775
776static inline u16 iwl_txq_gen1_tfd_tb_get_len(struct iwl_trans *trans,
777 void *_tfd, u8 idx)
778{
779 struct iwl_tfd *tfd;
780 struct iwl_tfd_tb *tb;
781
782 if (trans->trans_cfg->gen2) {
783 struct iwl_tfh_tfd *tfh_tfd = _tfd;
784 struct iwl_tfh_tb *tfh_tb = &tfh_tfd->tbs[idx];
785
786 return le16_to_cpu(tfh_tb->tb_len);
787 }
788
789 tfd = (struct iwl_tfd *)_tfd;
790 tb = &tfd->tbs[idx];
791
792 return le16_to_cpu(tb->hi_n_len) >> 4;
793}
794
795void iwl_pcie_reclaim(struct iwl_trans *trans, int txq_id, int ssn,
796 struct sk_buff_head *skbs, bool is_flush);
797void iwl_pcie_set_q_ptrs(struct iwl_trans *trans, int txq_id, int ptr);
798void iwl_pcie_freeze_txq_timer(struct iwl_trans *trans,
799 unsigned long txqs, bool freeze);
800int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, int txq_idx);
801int iwl_trans_pcie_wait_txqs_empty(struct iwl_trans *trans, u32 txq_bm);
802
803/*****************************************************
804* Error handling
805******************************************************/
806void iwl_pcie_dump_csr(struct iwl_trans *trans);
807
808/*****************************************************
809* Helpers
810******************************************************/
811static inline void _iwl_disable_interrupts(struct iwl_trans *trans)
812{
813 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
814
815 clear_bit(STATUS_INT_ENABLED, &trans->status);
816 if (!trans_pcie->msix_enabled) {
817 /* disable interrupts from uCode/NIC to host */
818 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
819
820 /* acknowledge/clear/reset any interrupts still pending
821 * from uCode or flow handler (Rx/Tx DMA) */
822 iwl_write32(trans, CSR_INT, 0xffffffff);
823 iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff);
824 } else {
825 /* disable all the interrupt we might use */
826 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
827 trans_pcie->fh_init_mask);
828 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
829 trans_pcie->hw_init_mask);
830 }
831 IWL_DEBUG_ISR(trans, "Disabled interrupts\n");
832}
833
834static inline int iwl_pcie_get_num_sections(const struct fw_img *fw,
835 int start)
836{
837 int i = 0;
838
839 while (start < fw->num_sec &&
840 fw->sec[start].offset != CPU1_CPU2_SEPARATOR_SECTION &&
841 fw->sec[start].offset != PAGING_SEPARATOR_SECTION) {
842 start++;
843 i++;
844 }
845
846 return i;
847}
848
849static inline void iwl_pcie_ctxt_info_free_fw_img(struct iwl_trans *trans)
850{
851 struct iwl_self_init_dram *dram = &trans->init_dram;
852 int i;
853
854 if (!dram->fw) {
855 WARN_ON(dram->fw_cnt);
856 return;
857 }
858
859 for (i = 0; i < dram->fw_cnt; i++)
860 dma_free_coherent(trans->dev, dram->fw[i].size,
861 dram->fw[i].block, dram->fw[i].physical);
862
863 kfree(dram->fw);
864 dram->fw_cnt = 0;
865 dram->fw = NULL;
866}
867
868static inline void iwl_disable_interrupts(struct iwl_trans *trans)
869{
870 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
871
872 spin_lock_bh(&trans_pcie->irq_lock);
873 _iwl_disable_interrupts(trans);
874 spin_unlock_bh(&trans_pcie->irq_lock);
875}
876
877static inline void _iwl_enable_interrupts(struct iwl_trans *trans)
878{
879 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
880
881 IWL_DEBUG_ISR(trans, "Enabling interrupts\n");
882 set_bit(STATUS_INT_ENABLED, &trans->status);
883 if (!trans_pcie->msix_enabled) {
884 trans_pcie->inta_mask = CSR_INI_SET_MASK;
885 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
886 } else {
887 /*
888 * fh/hw_mask keeps all the unmasked causes.
889 * Unlike msi, in msix cause is enabled when it is unset.
890 */
891 trans_pcie->hw_mask = trans_pcie->hw_init_mask;
892 trans_pcie->fh_mask = trans_pcie->fh_init_mask;
893 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
894 ~trans_pcie->fh_mask);
895 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
896 ~trans_pcie->hw_mask);
897 }
898}
899
900static inline void iwl_enable_interrupts(struct iwl_trans *trans)
901{
902 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
903
904 spin_lock_bh(&trans_pcie->irq_lock);
905 _iwl_enable_interrupts(trans);
906 spin_unlock_bh(&trans_pcie->irq_lock);
907}
908static inline void iwl_enable_hw_int_msk_msix(struct iwl_trans *trans, u32 msk)
909{
910 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
911
912 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~msk);
913 trans_pcie->hw_mask = msk;
914}
915
916static inline void iwl_enable_fh_int_msk_msix(struct iwl_trans *trans, u32 msk)
917{
918 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
919
920 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~msk);
921 trans_pcie->fh_mask = msk;
922}
923
924static inline void iwl_enable_fw_load_int(struct iwl_trans *trans)
925{
926 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
927
928 IWL_DEBUG_ISR(trans, "Enabling FW load interrupt\n");
929 if (!trans_pcie->msix_enabled) {
930 trans_pcie->inta_mask = CSR_INT_BIT_FH_TX;
931 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
932 } else {
933 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
934 trans_pcie->hw_init_mask);
935 iwl_enable_fh_int_msk_msix(trans,
936 MSIX_FH_INT_CAUSES_D2S_CH0_NUM);
937 }
938}
939
940static inline void iwl_enable_fw_load_int_ctx_info(struct iwl_trans *trans)
941{
942 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
943
944 IWL_DEBUG_ISR(trans, "Enabling ALIVE interrupt only\n");
945
946 if (!trans_pcie->msix_enabled) {
947 /*
948 * When we'll receive the ALIVE interrupt, the ISR will call
949 * iwl_enable_fw_load_int_ctx_info again to set the ALIVE
950 * interrupt (which is not really needed anymore) but also the
951 * RX interrupt which will allow us to receive the ALIVE
952 * notification (which is Rx) and continue the flow.
953 */
954 trans_pcie->inta_mask = CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX;
955 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
956 } else {
957 iwl_enable_hw_int_msk_msix(trans,
958 MSIX_HW_INT_CAUSES_REG_ALIVE);
959 /*
960 * Leave all the FH causes enabled to get the ALIVE
961 * notification.
962 */
963 iwl_enable_fh_int_msk_msix(trans, trans_pcie->fh_init_mask);
964 }
965}
966
967static inline const char *queue_name(struct device *dev,
968 struct iwl_trans_pcie *trans_p, int i)
969{
970 if (trans_p->shared_vec_mask) {
971 int vec = trans_p->shared_vec_mask &
972 IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0;
973
974 if (i == 0)
975 return DRV_NAME ":shared_IRQ";
976
977 return devm_kasprintf(dev, GFP_KERNEL,
978 DRV_NAME ":queue_%d", i + vec);
979 }
980 if (i == 0)
981 return DRV_NAME ":default_queue";
982
983 if (i == trans_p->alloc_vecs - 1)
984 return DRV_NAME ":exception";
985
986 return devm_kasprintf(dev, GFP_KERNEL,
987 DRV_NAME ":queue_%d", i);
988}
989
990static inline void iwl_enable_rfkill_int(struct iwl_trans *trans)
991{
992 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
993
994 IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n");
995 if (!trans_pcie->msix_enabled) {
996 trans_pcie->inta_mask = CSR_INT_BIT_RF_KILL;
997 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
998 } else {
999 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
1000 trans_pcie->fh_init_mask);
1001 iwl_enable_hw_int_msk_msix(trans,
1002 MSIX_HW_INT_CAUSES_REG_RF_KILL);
1003 }
1004
1005 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_9000) {
1006 /*
1007 * On 9000-series devices this bit isn't enabled by default, so
1008 * when we power down the device we need set the bit to allow it
1009 * to wake up the PCI-E bus for RF-kill interrupts.
1010 */
1011 iwl_set_bit(trans, CSR_GP_CNTRL,
1012 CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN);
1013 }
1014}
1015
1016void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq);
1017
1018static inline bool iwl_is_rfkill_set(struct iwl_trans *trans)
1019{
1020 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1021
1022 lockdep_assert_held(&trans_pcie->mutex);
1023
1024 if (trans_pcie->debug_rfkill == 1)
1025 return true;
1026
1027 return !(iwl_read32(trans, CSR_GP_CNTRL) &
1028 CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW);
1029}
1030
1031static inline void __iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans,
1032 u32 reg, u32 mask, u32 value)
1033{
1034 u32 v;
1035
1036#ifdef CONFIG_IWLWIFI_DEBUG
1037 WARN_ON_ONCE(value & ~mask);
1038#endif
1039
1040 v = iwl_read32(trans, reg);
1041 v &= ~mask;
1042 v |= value;
1043 iwl_write32(trans, reg, v);
1044}
1045
1046static inline void __iwl_trans_pcie_clear_bit(struct iwl_trans *trans,
1047 u32 reg, u32 mask)
1048{
1049 __iwl_trans_pcie_set_bits_mask(trans, reg, mask, 0);
1050}
1051
1052static inline void __iwl_trans_pcie_set_bit(struct iwl_trans *trans,
1053 u32 reg, u32 mask)
1054{
1055 __iwl_trans_pcie_set_bits_mask(trans, reg, mask, mask);
1056}
1057
1058static inline bool iwl_pcie_dbg_on(struct iwl_trans *trans)
1059{
1060 return (trans->dbg.dest_tlv || iwl_trans_dbg_ini_valid(trans));
1061}
1062
1063void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state, bool from_irq);
1064void iwl_trans_pcie_dump_regs(struct iwl_trans *trans);
1065
1066#ifdef CONFIG_IWLWIFI_DEBUGFS
1067void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans);
1068void iwl_trans_pcie_debugfs_cleanup(struct iwl_trans *trans);
1069#else
1070static inline void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans) { }
1071#endif
1072
1073void iwl_pcie_rx_allocator_work(struct work_struct *data);
1074
1075/* common trans ops for all generations transports */
1076void iwl_trans_pcie_configure(struct iwl_trans *trans,
1077 const struct iwl_trans_config *trans_cfg);
1078int iwl_trans_pcie_start_hw(struct iwl_trans *trans);
1079void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans);
1080void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val);
1081void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val);
1082u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs);
1083u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg);
1084void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr, u32 val);
1085int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr,
1086 void *buf, int dwords);
1087int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr,
1088 const void *buf, int dwords);
1089int iwl_trans_pcie_sw_reset(struct iwl_trans *trans, bool retake_ownership);
1090struct iwl_trans_dump_data *
1091iwl_trans_pcie_dump_data(struct iwl_trans *trans, u32 dump_mask,
1092 const struct iwl_dump_sanitize_ops *sanitize_ops,
1093 void *sanitize_ctx);
1094int iwl_trans_pcie_d3_resume(struct iwl_trans *trans,
1095 enum iwl_d3_status *status,
1096 bool test, bool reset);
1097int iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test, bool reset);
1098void iwl_trans_pci_interrupts(struct iwl_trans *trans, bool enable);
1099void iwl_trans_pcie_sync_nmi(struct iwl_trans *trans);
1100void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg,
1101 u32 mask, u32 value);
1102int iwl_trans_pcie_read_config32(struct iwl_trans *trans, u32 ofs,
1103 u32 *val);
1104bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans);
1105void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans);
1106
1107/* transport gen 1 exported functions */
1108void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr);
1109int iwl_trans_pcie_start_fw(struct iwl_trans *trans,
1110 const struct fw_img *fw, bool run_in_rfkill);
1111void iwl_trans_pcie_stop_device(struct iwl_trans *trans);
1112
1113/* common functions that are used by gen2 transport */
1114int iwl_pcie_gen2_apm_init(struct iwl_trans *trans);
1115void iwl_pcie_apm_config(struct iwl_trans *trans);
1116int iwl_pcie_prepare_card_hw(struct iwl_trans *trans);
1117void iwl_pcie_synchronize_irqs(struct iwl_trans *trans);
1118bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans);
1119void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans,
1120 bool was_in_rfkill);
1121void iwl_pcie_apm_stop_master(struct iwl_trans *trans);
1122void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie);
1123int iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans,
1124 struct iwl_dma_ptr *ptr, size_t size);
1125void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr);
1126void iwl_pcie_apply_destination(struct iwl_trans *trans);
1127
1128/* common functions that are used by gen3 transport */
1129void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power);
1130
1131/* transport gen 2 exported functions */
1132int iwl_trans_pcie_gen2_start_fw(struct iwl_trans *trans,
1133 const struct fw_img *fw, bool run_in_rfkill);
1134void iwl_trans_pcie_gen2_fw_alive(struct iwl_trans *trans);
1135int iwl_trans_pcie_gen2_send_hcmd(struct iwl_trans *trans,
1136 struct iwl_host_cmd *cmd);
1137void iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans);
1138void _iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans);
1139void iwl_pcie_d3_complete_suspend(struct iwl_trans *trans,
1140 bool test, bool reset);
1141int iwl_pcie_gen2_enqueue_hcmd(struct iwl_trans *trans,
1142 struct iwl_host_cmd *cmd);
1143int iwl_pcie_enqueue_hcmd(struct iwl_trans *trans,
1144 struct iwl_host_cmd *cmd);
1145void iwl_trans_pcie_copy_imr_fh(struct iwl_trans *trans,
1146 u32 dst_addr, u64 src_addr, u32 byte_cnt);
1147int iwl_trans_pcie_copy_imr(struct iwl_trans *trans,
1148 u32 dst_addr, u64 src_addr, u32 byte_cnt);
1149int iwl_trans_pcie_rxq_dma_data(struct iwl_trans *trans, int queue,
1150 struct iwl_trans_rxq_dma_data *data);
1151
1152#endif /* __iwl_trans_int_pcie_h__ */
1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2/*
3 * Copyright (C) 2003-2015, 2018-2022 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7#ifndef __iwl_trans_int_pcie_h__
8#define __iwl_trans_int_pcie_h__
9
10#include <linux/spinlock.h>
11#include <linux/interrupt.h>
12#include <linux/skbuff.h>
13#include <linux/wait.h>
14#include <linux/pci.h>
15#include <linux/timer.h>
16#include <linux/cpu.h>
17
18#include "iwl-fh.h"
19#include "iwl-csr.h"
20#include "iwl-trans.h"
21#include "iwl-debug.h"
22#include "iwl-io.h"
23#include "iwl-op-mode.h"
24#include "iwl-drv.h"
25#include "queue/tx.h"
26
27/*
28 * RX related structures and functions
29 */
30#define RX_NUM_QUEUES 1
31#define RX_POST_REQ_ALLOC 2
32#define RX_CLAIM_REQ_ALLOC 8
33#define RX_PENDING_WATERMARK 16
34#define FIRST_RX_QUEUE 512
35
36struct iwl_host_cmd;
37
38/*This file includes the declaration that are internal to the
39 * trans_pcie layer */
40
41/**
42 * struct iwl_rx_mem_buffer
43 * @page_dma: bus address of rxb page
44 * @page: driver's pointer to the rxb page
45 * @list: list entry for the membuffer
46 * @invalid: rxb is in driver ownership - not owned by HW
47 * @vid: index of this rxb in the global table
48 * @offset: indicates which offset of the page (in bytes)
49 * this buffer uses (if multiple RBs fit into one page)
50 */
51struct iwl_rx_mem_buffer {
52 dma_addr_t page_dma;
53 struct page *page;
54 struct list_head list;
55 u32 offset;
56 u16 vid;
57 bool invalid;
58};
59
60/**
61 * struct isr_statistics - interrupt statistics
62 *
63 */
64struct isr_statistics {
65 u32 hw;
66 u32 sw;
67 u32 err_code;
68 u32 sch;
69 u32 alive;
70 u32 rfkill;
71 u32 ctkill;
72 u32 wakeup;
73 u32 rx;
74 u32 tx;
75 u32 unhandled;
76};
77
78/**
79 * struct iwl_rx_transfer_desc - transfer descriptor
80 * @addr: ptr to free buffer start address
81 * @rbid: unique tag of the buffer
82 * @reserved: reserved
83 */
84struct iwl_rx_transfer_desc {
85 __le16 rbid;
86 __le16 reserved[3];
87 __le64 addr;
88} __packed;
89
90#define IWL_RX_CD_FLAGS_FRAGMENTED BIT(0)
91
92/**
93 * struct iwl_rx_completion_desc - completion descriptor
94 * @reserved1: reserved
95 * @rbid: unique tag of the received buffer
96 * @flags: flags (0: fragmented, all others: reserved)
97 * @reserved2: reserved
98 */
99struct iwl_rx_completion_desc {
100 __le32 reserved1;
101 __le16 rbid;
102 u8 flags;
103 u8 reserved2[25];
104} __packed;
105
106/**
107 * struct iwl_rx_completion_desc_bz - Bz completion descriptor
108 * @rbid: unique tag of the received buffer
109 * @flags: flags (0: fragmented, all others: reserved)
110 * @reserved: reserved
111 */
112struct iwl_rx_completion_desc_bz {
113 __le16 rbid;
114 u8 flags;
115 u8 reserved[1];
116} __packed;
117
118/**
119 * struct iwl_rxq - Rx queue
120 * @id: queue index
121 * @bd: driver's pointer to buffer of receive buffer descriptors (rbd).
122 * Address size is 32 bit in pre-9000 devices and 64 bit in 9000 devices.
123 * In AX210 devices it is a pointer to a list of iwl_rx_transfer_desc's
124 * @bd_dma: bus address of buffer of receive buffer descriptors (rbd)
125 * @used_bd: driver's pointer to buffer of used receive buffer descriptors (rbd)
126 * @used_bd_dma: physical address of buffer of used receive buffer descriptors (rbd)
127 * @read: Shared index to newest available Rx buffer
128 * @write: Shared index to oldest written Rx packet
129 * @free_count: Number of pre-allocated buffers in rx_free
130 * @used_count: Number of RBDs handled to allocator to use for allocation
131 * @write_actual:
132 * @rx_free: list of RBDs with allocated RB ready for use
133 * @rx_used: list of RBDs with no RB attached
134 * @need_update: flag to indicate we need to update read/write index
135 * @rb_stts: driver's pointer to receive buffer status
136 * @rb_stts_dma: bus address of receive buffer status
137 * @lock:
138 * @queue: actual rx queue. Not used for multi-rx queue.
139 * @next_rb_is_fragment: indicates that the previous RB that we handled set
140 * the fragmented flag, so the next one is still another fragment
141 *
142 * NOTE: rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers
143 */
144struct iwl_rxq {
145 int id;
146 void *bd;
147 dma_addr_t bd_dma;
148 void *used_bd;
149 dma_addr_t used_bd_dma;
150 u32 read;
151 u32 write;
152 u32 free_count;
153 u32 used_count;
154 u32 write_actual;
155 u32 queue_size;
156 struct list_head rx_free;
157 struct list_head rx_used;
158 bool need_update, next_rb_is_fragment;
159 void *rb_stts;
160 dma_addr_t rb_stts_dma;
161 spinlock_t lock;
162 struct napi_struct napi;
163 struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE];
164};
165
166/**
167 * struct iwl_rb_allocator - Rx allocator
168 * @req_pending: number of requests the allcator had not processed yet
169 * @req_ready: number of requests honored and ready for claiming
170 * @rbd_allocated: RBDs with pages allocated and ready to be handled to
171 * the queue. This is a list of &struct iwl_rx_mem_buffer
172 * @rbd_empty: RBDs with no page attached for allocator use. This is a list
173 * of &struct iwl_rx_mem_buffer
174 * @lock: protects the rbd_allocated and rbd_empty lists
175 * @alloc_wq: work queue for background calls
176 * @rx_alloc: work struct for background calls
177 */
178struct iwl_rb_allocator {
179 atomic_t req_pending;
180 atomic_t req_ready;
181 struct list_head rbd_allocated;
182 struct list_head rbd_empty;
183 spinlock_t lock;
184 struct workqueue_struct *alloc_wq;
185 struct work_struct rx_alloc;
186};
187
188/**
189 * iwl_get_closed_rb_stts - get closed rb stts from different structs
190 * @rxq - the rxq to get the rb stts from
191 */
192static inline __le16 iwl_get_closed_rb_stts(struct iwl_trans *trans,
193 struct iwl_rxq *rxq)
194{
195 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
196 __le16 *rb_stts = rxq->rb_stts;
197
198 return READ_ONCE(*rb_stts);
199 } else {
200 struct iwl_rb_status *rb_stts = rxq->rb_stts;
201
202 return READ_ONCE(rb_stts->closed_rb_num);
203 }
204}
205
206#ifdef CONFIG_IWLWIFI_DEBUGFS
207/**
208 * enum iwl_fw_mon_dbgfs_state - the different states of the monitor_data
209 * debugfs file
210 *
211 * @IWL_FW_MON_DBGFS_STATE_CLOSED: the file is closed.
212 * @IWL_FW_MON_DBGFS_STATE_OPEN: the file is open.
213 * @IWL_FW_MON_DBGFS_STATE_DISABLED: the file is disabled, once this state is
214 * set the file can no longer be used.
215 */
216enum iwl_fw_mon_dbgfs_state {
217 IWL_FW_MON_DBGFS_STATE_CLOSED,
218 IWL_FW_MON_DBGFS_STATE_OPEN,
219 IWL_FW_MON_DBGFS_STATE_DISABLED,
220};
221#endif
222
223/**
224 * enum iwl_shared_irq_flags - level of sharing for irq
225 * @IWL_SHARED_IRQ_NON_RX: interrupt vector serves non rx causes.
226 * @IWL_SHARED_IRQ_FIRST_RSS: interrupt vector serves first RSS queue.
227 */
228enum iwl_shared_irq_flags {
229 IWL_SHARED_IRQ_NON_RX = BIT(0),
230 IWL_SHARED_IRQ_FIRST_RSS = BIT(1),
231};
232
233/**
234 * enum iwl_image_response_code - image response values
235 * @IWL_IMAGE_RESP_DEF: the default value of the register
236 * @IWL_IMAGE_RESP_SUCCESS: iml was read successfully
237 * @IWL_IMAGE_RESP_FAIL: iml reading failed
238 */
239enum iwl_image_response_code {
240 IWL_IMAGE_RESP_DEF = 0,
241 IWL_IMAGE_RESP_SUCCESS = 1,
242 IWL_IMAGE_RESP_FAIL = 2,
243};
244
245/**
246 * struct cont_rec: continuous recording data structure
247 * @prev_wr_ptr: the last address that was read in monitor_data
248 * debugfs file
249 * @prev_wrap_cnt: the wrap count that was used during the last read in
250 * monitor_data debugfs file
251 * @state: the state of monitor_data debugfs file as described
252 * in &iwl_fw_mon_dbgfs_state enum
253 * @mutex: locked while reading from monitor_data debugfs file
254 */
255#ifdef CONFIG_IWLWIFI_DEBUGFS
256struct cont_rec {
257 u32 prev_wr_ptr;
258 u32 prev_wrap_cnt;
259 u8 state;
260 /* Used to sync monitor_data debugfs file with driver unload flow */
261 struct mutex mutex;
262};
263#endif
264
265enum iwl_pcie_fw_reset_state {
266 FW_RESET_IDLE,
267 FW_RESET_REQUESTED,
268 FW_RESET_OK,
269 FW_RESET_ERROR,
270};
271
272/**
273 * enum wl_pcie_imr_status - imr dma transfer state
274 * @IMR_D2S_IDLE: default value of the dma transfer
275 * @IMR_D2S_REQUESTED: dma transfer requested
276 * @IMR_D2S_COMPLETED: dma transfer completed
277 * @IMR_D2S_ERROR: dma transfer error
278 */
279enum iwl_pcie_imr_status {
280 IMR_D2S_IDLE,
281 IMR_D2S_REQUESTED,
282 IMR_D2S_COMPLETED,
283 IMR_D2S_ERROR,
284};
285
286/**
287 * struct iwl_trans_pcie - PCIe transport specific data
288 * @rxq: all the RX queue data
289 * @rx_pool: initial pool of iwl_rx_mem_buffer for all the queues
290 * @global_table: table mapping received VID from hw to rxb
291 * @rba: allocator for RX replenishing
292 * @ctxt_info: context information for FW self init
293 * @ctxt_info_gen3: context information for gen3 devices
294 * @prph_info: prph info for self init
295 * @prph_scratch: prph scratch for self init
296 * @ctxt_info_dma_addr: dma addr of context information
297 * @prph_info_dma_addr: dma addr of prph info
298 * @prph_scratch_dma_addr: dma addr of prph scratch
299 * @ctxt_info_dma_addr: dma addr of context information
300 * @init_dram: DRAM data of firmware image (including paging).
301 * Context information addresses will be taken from here.
302 * This is driver's local copy for keeping track of size and
303 * count for allocating and freeing the memory.
304 * @iml: image loader image virtual address
305 * @iml_dma_addr: image loader image DMA address
306 * @trans: pointer to the generic transport area
307 * @scd_base_addr: scheduler sram base address in SRAM
308 * @kw: keep warm address
309 * @pnvm_dram: DRAM area that contains the PNVM data
310 * @pci_dev: basic pci-network driver stuff
311 * @hw_base: pci hardware address support
312 * @ucode_write_complete: indicates that the ucode has been copied.
313 * @ucode_write_waitq: wait queue for uCode load
314 * @cmd_queue - command queue number
315 * @def_rx_queue - default rx queue number
316 * @rx_buf_size: Rx buffer size
317 * @scd_set_active: should the transport configure the SCD for HCMD queue
318 * @rx_page_order: page order for receive buffer size
319 * @rx_buf_bytes: RX buffer (RB) size in bytes
320 * @reg_lock: protect hw register access
321 * @mutex: to protect stop_device / start_fw / start_hw
322 * @cmd_in_flight: true when we have a host command in flight
323#ifdef CONFIG_IWLWIFI_DEBUGFS
324 * @fw_mon_data: fw continuous recording data
325#endif
326 * @msix_entries: array of MSI-X entries
327 * @msix_enabled: true if managed to enable MSI-X
328 * @shared_vec_mask: the type of causes the shared vector handles
329 * (see iwl_shared_irq_flags).
330 * @alloc_vecs: the number of interrupt vectors allocated by the OS
331 * @def_irq: default irq for non rx causes
332 * @fh_init_mask: initial unmasked fh causes
333 * @hw_init_mask: initial unmasked hw causes
334 * @fh_mask: current unmasked fh causes
335 * @hw_mask: current unmasked hw causes
336 * @in_rescan: true if we have triggered a device rescan
337 * @base_rb_stts: base virtual address of receive buffer status for all queues
338 * @base_rb_stts_dma: base physical address of receive buffer status
339 * @supported_dma_mask: DMA mask to validate the actual address against,
340 * will be DMA_BIT_MASK(11) or DMA_BIT_MASK(12) depending on the device
341 * @alloc_page_lock: spinlock for the page allocator
342 * @alloc_page: allocated page to still use parts of
343 * @alloc_page_used: how much of the allocated page was already used (bytes)
344 * @imr_status: imr dma state machine
345 * @wait_queue_head_t: imr wait queue for dma completion
346 * @rf_name: name/version of the CRF, if any
347 */
348struct iwl_trans_pcie {
349 struct iwl_rxq *rxq;
350 struct iwl_rx_mem_buffer *rx_pool;
351 struct iwl_rx_mem_buffer **global_table;
352 struct iwl_rb_allocator rba;
353 union {
354 struct iwl_context_info *ctxt_info;
355 struct iwl_context_info_gen3 *ctxt_info_gen3;
356 };
357 struct iwl_prph_info *prph_info;
358 struct iwl_prph_scratch *prph_scratch;
359 void *iml;
360 dma_addr_t ctxt_info_dma_addr;
361 dma_addr_t prph_info_dma_addr;
362 dma_addr_t prph_scratch_dma_addr;
363 dma_addr_t iml_dma_addr;
364 struct iwl_trans *trans;
365
366 struct net_device napi_dev;
367
368 /* INT ICT Table */
369 __le32 *ict_tbl;
370 dma_addr_t ict_tbl_dma;
371 int ict_index;
372 bool use_ict;
373 bool is_down, opmode_down;
374 s8 debug_rfkill;
375 struct isr_statistics isr_stats;
376
377 spinlock_t irq_lock;
378 struct mutex mutex;
379 u32 inta_mask;
380 u32 scd_base_addr;
381 struct iwl_dma_ptr kw;
382
383 struct iwl_dram_data pnvm_dram;
384 struct iwl_dram_data reduce_power_dram;
385
386 struct iwl_txq *txq_memory;
387
388 /* PCI bus related data */
389 struct pci_dev *pci_dev;
390 u8 __iomem *hw_base;
391
392 bool ucode_write_complete;
393 bool sx_complete;
394 wait_queue_head_t ucode_write_waitq;
395 wait_queue_head_t sx_waitq;
396
397 u8 def_rx_queue;
398 u8 n_no_reclaim_cmds;
399 u8 no_reclaim_cmds[MAX_NO_RECLAIM_CMDS];
400 u16 num_rx_bufs;
401
402 enum iwl_amsdu_size rx_buf_size;
403 bool scd_set_active;
404 bool pcie_dbg_dumped_once;
405 u32 rx_page_order;
406 u32 rx_buf_bytes;
407 u32 supported_dma_mask;
408
409 /* allocator lock for the two values below */
410 spinlock_t alloc_page_lock;
411 struct page *alloc_page;
412 u32 alloc_page_used;
413
414 /*protect hw register */
415 spinlock_t reg_lock;
416 bool cmd_hold_nic_awake;
417
418#ifdef CONFIG_IWLWIFI_DEBUGFS
419 struct cont_rec fw_mon_data;
420#endif
421
422 struct msix_entry msix_entries[IWL_MAX_RX_HW_QUEUES];
423 bool msix_enabled;
424 u8 shared_vec_mask;
425 u32 alloc_vecs;
426 u32 def_irq;
427 u32 fh_init_mask;
428 u32 hw_init_mask;
429 u32 fh_mask;
430 u32 hw_mask;
431 cpumask_t affinity_mask[IWL_MAX_RX_HW_QUEUES];
432 u16 tx_cmd_queue_size;
433 bool in_rescan;
434
435 void *base_rb_stts;
436 dma_addr_t base_rb_stts_dma;
437
438 bool fw_reset_handshake;
439 enum iwl_pcie_fw_reset_state fw_reset_state;
440 wait_queue_head_t fw_reset_waitq;
441 enum iwl_pcie_imr_status imr_status;
442 wait_queue_head_t imr_waitq;
443 char rf_name[32];
444};
445
446static inline struct iwl_trans_pcie *
447IWL_TRANS_GET_PCIE_TRANS(struct iwl_trans *trans)
448{
449 return (void *)trans->trans_specific;
450}
451
452static inline void iwl_pcie_clear_irq(struct iwl_trans *trans, int queue)
453{
454 /*
455 * Before sending the interrupt the HW disables it to prevent
456 * a nested interrupt. This is done by writing 1 to the corresponding
457 * bit in the mask register. After handling the interrupt, it should be
458 * re-enabled by clearing this bit. This register is defined as
459 * write 1 clear (W1C) register, meaning that it's being clear
460 * by writing 1 to the bit.
461 */
462 iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(queue));
463}
464
465static inline struct iwl_trans *
466iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie)
467{
468 return container_of((void *)trans_pcie, struct iwl_trans,
469 trans_specific);
470}
471
472/*
473 * Convention: trans API functions: iwl_trans_pcie_XXX
474 * Other functions: iwl_pcie_XXX
475 */
476struct iwl_trans
477*iwl_trans_pcie_alloc(struct pci_dev *pdev,
478 const struct pci_device_id *ent,
479 const struct iwl_cfg_trans_params *cfg_trans);
480void iwl_trans_pcie_free(struct iwl_trans *trans);
481
482bool __iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans);
483#define _iwl_trans_pcie_grab_nic_access(trans) \
484 __cond_lock(nic_access_nobh, \
485 likely(__iwl_trans_pcie_grab_nic_access(trans)))
486
487/*****************************************************
488* RX
489******************************************************/
490int iwl_pcie_rx_init(struct iwl_trans *trans);
491int iwl_pcie_gen2_rx_init(struct iwl_trans *trans);
492irqreturn_t iwl_pcie_msix_isr(int irq, void *data);
493irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id);
494irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id);
495irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id);
496int iwl_pcie_rx_stop(struct iwl_trans *trans);
497void iwl_pcie_rx_free(struct iwl_trans *trans);
498void iwl_pcie_free_rbs_pool(struct iwl_trans *trans);
499void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq);
500void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
501 struct iwl_rxq *rxq);
502
503/*****************************************************
504* ICT - interrupt handling
505******************************************************/
506irqreturn_t iwl_pcie_isr(int irq, void *data);
507int iwl_pcie_alloc_ict(struct iwl_trans *trans);
508void iwl_pcie_free_ict(struct iwl_trans *trans);
509void iwl_pcie_reset_ict(struct iwl_trans *trans);
510void iwl_pcie_disable_ict(struct iwl_trans *trans);
511
512/*****************************************************
513* TX / HCMD
514******************************************************/
515int iwl_pcie_tx_init(struct iwl_trans *trans);
516void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr);
517int iwl_pcie_tx_stop(struct iwl_trans *trans);
518void iwl_pcie_tx_free(struct iwl_trans *trans);
519bool iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int queue, u16 ssn,
520 const struct iwl_trans_txq_scd_cfg *cfg,
521 unsigned int wdg_timeout);
522void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue,
523 bool configure_scd);
524void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id,
525 bool shared_mode);
526int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb,
527 struct iwl_device_tx_cmd *dev_cmd, int txq_id);
528void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans);
529int iwl_trans_pcie_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
530void iwl_pcie_hcmd_complete(struct iwl_trans *trans,
531 struct iwl_rx_cmd_buffer *rxb);
532void iwl_trans_pcie_tx_reset(struct iwl_trans *trans);
533
534/*****************************************************
535* Error handling
536******************************************************/
537void iwl_pcie_dump_csr(struct iwl_trans *trans);
538
539/*****************************************************
540* Helpers
541******************************************************/
542static inline void _iwl_disable_interrupts(struct iwl_trans *trans)
543{
544 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
545
546 clear_bit(STATUS_INT_ENABLED, &trans->status);
547 if (!trans_pcie->msix_enabled) {
548 /* disable interrupts from uCode/NIC to host */
549 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
550
551 /* acknowledge/clear/reset any interrupts still pending
552 * from uCode or flow handler (Rx/Tx DMA) */
553 iwl_write32(trans, CSR_INT, 0xffffffff);
554 iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff);
555 } else {
556 /* disable all the interrupt we might use */
557 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
558 trans_pcie->fh_init_mask);
559 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
560 trans_pcie->hw_init_mask);
561 }
562 IWL_DEBUG_ISR(trans, "Disabled interrupts\n");
563}
564
565static inline int iwl_pcie_get_num_sections(const struct fw_img *fw,
566 int start)
567{
568 int i = 0;
569
570 while (start < fw->num_sec &&
571 fw->sec[start].offset != CPU1_CPU2_SEPARATOR_SECTION &&
572 fw->sec[start].offset != PAGING_SEPARATOR_SECTION) {
573 start++;
574 i++;
575 }
576
577 return i;
578}
579
580static inline void iwl_pcie_ctxt_info_free_fw_img(struct iwl_trans *trans)
581{
582 struct iwl_self_init_dram *dram = &trans->init_dram;
583 int i;
584
585 if (!dram->fw) {
586 WARN_ON(dram->fw_cnt);
587 return;
588 }
589
590 for (i = 0; i < dram->fw_cnt; i++)
591 dma_free_coherent(trans->dev, dram->fw[i].size,
592 dram->fw[i].block, dram->fw[i].physical);
593
594 kfree(dram->fw);
595 dram->fw_cnt = 0;
596 dram->fw = NULL;
597}
598
599static inline void iwl_disable_interrupts(struct iwl_trans *trans)
600{
601 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
602
603 spin_lock_bh(&trans_pcie->irq_lock);
604 _iwl_disable_interrupts(trans);
605 spin_unlock_bh(&trans_pcie->irq_lock);
606}
607
608static inline void _iwl_enable_interrupts(struct iwl_trans *trans)
609{
610 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
611
612 IWL_DEBUG_ISR(trans, "Enabling interrupts\n");
613 set_bit(STATUS_INT_ENABLED, &trans->status);
614 if (!trans_pcie->msix_enabled) {
615 trans_pcie->inta_mask = CSR_INI_SET_MASK;
616 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
617 } else {
618 /*
619 * fh/hw_mask keeps all the unmasked causes.
620 * Unlike msi, in msix cause is enabled when it is unset.
621 */
622 trans_pcie->hw_mask = trans_pcie->hw_init_mask;
623 trans_pcie->fh_mask = trans_pcie->fh_init_mask;
624 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
625 ~trans_pcie->fh_mask);
626 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
627 ~trans_pcie->hw_mask);
628 }
629}
630
631static inline void iwl_enable_interrupts(struct iwl_trans *trans)
632{
633 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
634
635 spin_lock_bh(&trans_pcie->irq_lock);
636 _iwl_enable_interrupts(trans);
637 spin_unlock_bh(&trans_pcie->irq_lock);
638}
639static inline void iwl_enable_hw_int_msk_msix(struct iwl_trans *trans, u32 msk)
640{
641 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
642
643 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~msk);
644 trans_pcie->hw_mask = msk;
645}
646
647static inline void iwl_enable_fh_int_msk_msix(struct iwl_trans *trans, u32 msk)
648{
649 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
650
651 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~msk);
652 trans_pcie->fh_mask = msk;
653}
654
655static inline void iwl_enable_fw_load_int(struct iwl_trans *trans)
656{
657 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
658
659 IWL_DEBUG_ISR(trans, "Enabling FW load interrupt\n");
660 if (!trans_pcie->msix_enabled) {
661 trans_pcie->inta_mask = CSR_INT_BIT_FH_TX;
662 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
663 } else {
664 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD,
665 trans_pcie->hw_init_mask);
666 iwl_enable_fh_int_msk_msix(trans,
667 MSIX_FH_INT_CAUSES_D2S_CH0_NUM);
668 }
669}
670
671static inline void iwl_enable_fw_load_int_ctx_info(struct iwl_trans *trans)
672{
673 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
674
675 IWL_DEBUG_ISR(trans, "Enabling ALIVE interrupt only\n");
676
677 if (!trans_pcie->msix_enabled) {
678 /*
679 * When we'll receive the ALIVE interrupt, the ISR will call
680 * iwl_enable_fw_load_int_ctx_info again to set the ALIVE
681 * interrupt (which is not really needed anymore) but also the
682 * RX interrupt which will allow us to receive the ALIVE
683 * notification (which is Rx) and continue the flow.
684 */
685 trans_pcie->inta_mask = CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX;
686 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
687 } else {
688 iwl_enable_hw_int_msk_msix(trans,
689 MSIX_HW_INT_CAUSES_REG_ALIVE);
690 /*
691 * Leave all the FH causes enabled to get the ALIVE
692 * notification.
693 */
694 iwl_enable_fh_int_msk_msix(trans, trans_pcie->fh_init_mask);
695 }
696}
697
698static inline const char *queue_name(struct device *dev,
699 struct iwl_trans_pcie *trans_p, int i)
700{
701 if (trans_p->shared_vec_mask) {
702 int vec = trans_p->shared_vec_mask &
703 IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0;
704
705 if (i == 0)
706 return DRV_NAME ":shared_IRQ";
707
708 return devm_kasprintf(dev, GFP_KERNEL,
709 DRV_NAME ":queue_%d", i + vec);
710 }
711 if (i == 0)
712 return DRV_NAME ":default_queue";
713
714 if (i == trans_p->alloc_vecs - 1)
715 return DRV_NAME ":exception";
716
717 return devm_kasprintf(dev, GFP_KERNEL,
718 DRV_NAME ":queue_%d", i);
719}
720
721static inline void iwl_enable_rfkill_int(struct iwl_trans *trans)
722{
723 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
724
725 IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n");
726 if (!trans_pcie->msix_enabled) {
727 trans_pcie->inta_mask = CSR_INT_BIT_RF_KILL;
728 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
729 } else {
730 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD,
731 trans_pcie->fh_init_mask);
732 iwl_enable_hw_int_msk_msix(trans,
733 MSIX_HW_INT_CAUSES_REG_RF_KILL);
734 }
735
736 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_9000) {
737 /*
738 * On 9000-series devices this bit isn't enabled by default, so
739 * when we power down the device we need set the bit to allow it
740 * to wake up the PCI-E bus for RF-kill interrupts.
741 */
742 iwl_set_bit(trans, CSR_GP_CNTRL,
743 CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN);
744 }
745}
746
747void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans);
748
749static inline bool iwl_is_rfkill_set(struct iwl_trans *trans)
750{
751 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
752
753 lockdep_assert_held(&trans_pcie->mutex);
754
755 if (trans_pcie->debug_rfkill == 1)
756 return true;
757
758 return !(iwl_read32(trans, CSR_GP_CNTRL) &
759 CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW);
760}
761
762static inline void __iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans,
763 u32 reg, u32 mask, u32 value)
764{
765 u32 v;
766
767#ifdef CONFIG_IWLWIFI_DEBUG
768 WARN_ON_ONCE(value & ~mask);
769#endif
770
771 v = iwl_read32(trans, reg);
772 v &= ~mask;
773 v |= value;
774 iwl_write32(trans, reg, v);
775}
776
777static inline void __iwl_trans_pcie_clear_bit(struct iwl_trans *trans,
778 u32 reg, u32 mask)
779{
780 __iwl_trans_pcie_set_bits_mask(trans, reg, mask, 0);
781}
782
783static inline void __iwl_trans_pcie_set_bit(struct iwl_trans *trans,
784 u32 reg, u32 mask)
785{
786 __iwl_trans_pcie_set_bits_mask(trans, reg, mask, mask);
787}
788
789static inline bool iwl_pcie_dbg_on(struct iwl_trans *trans)
790{
791 return (trans->dbg.dest_tlv || iwl_trans_dbg_ini_valid(trans));
792}
793
794void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state);
795void iwl_trans_pcie_dump_regs(struct iwl_trans *trans);
796
797#ifdef CONFIG_IWLWIFI_DEBUGFS
798void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans);
799#else
800static inline void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans) { }
801#endif
802
803void iwl_pcie_rx_allocator_work(struct work_struct *data);
804
805/* common functions that are used by gen2 transport */
806int iwl_pcie_gen2_apm_init(struct iwl_trans *trans);
807void iwl_pcie_apm_config(struct iwl_trans *trans);
808int iwl_pcie_prepare_card_hw(struct iwl_trans *trans);
809void iwl_pcie_synchronize_irqs(struct iwl_trans *trans);
810bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans);
811void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans,
812 bool was_in_rfkill);
813void iwl_pcie_apm_stop_master(struct iwl_trans *trans);
814void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie);
815int iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans,
816 struct iwl_dma_ptr *ptr, size_t size);
817void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr);
818void iwl_pcie_apply_destination(struct iwl_trans *trans);
819
820/* common functions that are used by gen3 transport */
821void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power);
822
823/* transport gen 2 exported functions */
824int iwl_trans_pcie_gen2_start_fw(struct iwl_trans *trans,
825 const struct fw_img *fw, bool run_in_rfkill);
826void iwl_trans_pcie_gen2_fw_alive(struct iwl_trans *trans, u32 scd_addr);
827int iwl_trans_pcie_gen2_send_hcmd(struct iwl_trans *trans,
828 struct iwl_host_cmd *cmd);
829void iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans);
830void _iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans);
831void iwl_pcie_d3_complete_suspend(struct iwl_trans *trans,
832 bool test, bool reset);
833int iwl_pcie_gen2_enqueue_hcmd(struct iwl_trans *trans,
834 struct iwl_host_cmd *cmd);
835int iwl_pcie_enqueue_hcmd(struct iwl_trans *trans,
836 struct iwl_host_cmd *cmd);
837void iwl_trans_pcie_copy_imr_fh(struct iwl_trans *trans,
838 u32 dst_addr, u64 src_addr, u32 byte_cnt);
839int iwl_trans_pcie_copy_imr(struct iwl_trans *trans,
840 u32 dst_addr, u64 src_addr, u32 byte_cnt);
841
842#endif /* __iwl_trans_int_pcie_h__ */