Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * MMU support
   8 *
   9 * Copyright (C) 2006 Qumranet, Inc.
  10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11 *
  12 * Authors:
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Avi Kivity   <avi@qumranet.com>
  15 *
  16 * This work is licensed under the terms of the GNU GPL, version 2.  See
  17 * the COPYING file in the top-level directory.
  18 *
  19 */
  20
  21/*
  22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  23 * so the code in this file is compiled twice, once per pte size.
  24 */
  25
  26/*
  27 * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro
  28 * uses for EPT without A/D paging type.
  29 */
  30extern u64 __pure __using_nonexistent_pte_bit(void)
  31	       __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT");
  32
  33#if PTTYPE == 64
  34	#define pt_element_t u64
  35	#define guest_walker guest_walker64
  36	#define FNAME(name) paging##64_##name
  37	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  38	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  39	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  40	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  41	#define PT_LEVEL_BITS PT64_LEVEL_BITS
  42	#define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
  43	#define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
  44	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
  45	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
  46	#ifdef CONFIG_X86_64
  47	#define PT_MAX_FULL_LEVELS 4
  48	#define CMPXCHG cmpxchg
  49	#else
  50	#define CMPXCHG cmpxchg64
  51	#define PT_MAX_FULL_LEVELS 2
  52	#endif
  53#elif PTTYPE == 32
  54	#define pt_element_t u32
  55	#define guest_walker guest_walker32
  56	#define FNAME(name) paging##32_##name
  57	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  58	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  59	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  60	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  61	#define PT_LEVEL_BITS PT32_LEVEL_BITS
  62	#define PT_MAX_FULL_LEVELS 2
  63	#define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
  64	#define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
  65	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
  66	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
  67	#define CMPXCHG cmpxchg
  68#elif PTTYPE == PTTYPE_EPT
  69	#define pt_element_t u64
  70	#define guest_walker guest_walkerEPT
  71	#define FNAME(name) ept_##name
  72	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  73	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  74	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  75	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  76	#define PT_LEVEL_BITS PT64_LEVEL_BITS
  77	#define PT_GUEST_ACCESSED_MASK 0
  78	#define PT_GUEST_DIRTY_MASK 0
  79	#define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit()
  80	#define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit()
  81	#define CMPXCHG cmpxchg64
  82	#define PT_MAX_FULL_LEVELS 4
  83#else
  84	#error Invalid PTTYPE value
  85#endif
  86
  87#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  88#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  89
  90/*
  91 * The guest_walker structure emulates the behavior of the hardware page
  92 * table walker.
  93 */
  94struct guest_walker {
  95	int level;
  96	unsigned max_level;
  97	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  98	pt_element_t ptes[PT_MAX_FULL_LEVELS];
  99	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
 100	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
 101	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
 102	bool pte_writable[PT_MAX_FULL_LEVELS];
 103	unsigned pt_access;
 104	unsigned pte_access;
 105	gfn_t gfn;
 106	struct x86_exception fault;
 107};
 108
 109static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
 110{
 111	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
 112}
 113
 114static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte)
 115{
 116	unsigned mask;
 117
 118	/* dirty bit is not supported, so no need to track it */
 119	if (!PT_GUEST_DIRTY_MASK)
 120		return;
 121
 122	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
 123
 124	mask = (unsigned)~ACC_WRITE_MASK;
 125	/* Allow write access to dirty gptes */
 126	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
 127		PT_WRITABLE_MASK;
 128	*access &= mask;
 129}
 130
 131static inline int FNAME(is_present_gpte)(unsigned long pte)
 132{
 133#if PTTYPE != PTTYPE_EPT
 134	return is_present_gpte(pte);
 135#else
 136	return pte & 7;
 137#endif
 138}
 139
 140static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 141			       pt_element_t __user *ptep_user, unsigned index,
 142			       pt_element_t orig_pte, pt_element_t new_pte)
 143{
 144	int npages;
 145	pt_element_t ret;
 146	pt_element_t *table;
 147	struct page *page;
 148
 149	npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
 150	/* Check if the user is doing something meaningless. */
 151	if (unlikely(npages != 1))
 152		return -EFAULT;
 153
 154	table = kmap_atomic(page);
 155	ret = CMPXCHG(&table[index], orig_pte, new_pte);
 156	kunmap_atomic(table);
 157
 158	kvm_release_page_dirty(page);
 159
 160	return (ret != orig_pte);
 161}
 162
 163static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
 164				  struct kvm_mmu_page *sp, u64 *spte,
 165				  u64 gpte)
 166{
 167	if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
 168		goto no_present;
 169
 170	if (!FNAME(is_present_gpte)(gpte))
 171		goto no_present;
 172
 173	/* if accessed bit is not supported prefetch non accessed gpte */
 174	if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK))
 175		goto no_present;
 176
 177	return false;
 178
 179no_present:
 180	drop_spte(vcpu->kvm, spte);
 181	return true;
 182}
 183
 184static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
 185{
 186	unsigned access;
 187#if PTTYPE == PTTYPE_EPT
 188	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
 189		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
 190		ACC_USER_MASK;
 191#else
 192	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
 193	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
 194	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
 195	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
 196	access ^= (gpte >> PT64_NX_SHIFT);
 197#endif
 198
 199	return access;
 200}
 201
 202static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
 203					     struct kvm_mmu *mmu,
 204					     struct guest_walker *walker,
 205					     int write_fault)
 206{
 207	unsigned level, index;
 208	pt_element_t pte, orig_pte;
 209	pt_element_t __user *ptep_user;
 210	gfn_t table_gfn;
 211	int ret;
 212
 213	/* dirty/accessed bits are not supported, so no need to update them */
 214	if (!PT_GUEST_DIRTY_MASK)
 215		return 0;
 216
 217	for (level = walker->max_level; level >= walker->level; --level) {
 218		pte = orig_pte = walker->ptes[level - 1];
 219		table_gfn = walker->table_gfn[level - 1];
 220		ptep_user = walker->ptep_user[level - 1];
 221		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
 222		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
 223			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
 224			pte |= PT_GUEST_ACCESSED_MASK;
 225		}
 226		if (level == walker->level && write_fault &&
 227				!(pte & PT_GUEST_DIRTY_MASK)) {
 228			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
 229			pte |= PT_GUEST_DIRTY_MASK;
 230		}
 231		if (pte == orig_pte)
 232			continue;
 233
 234		/*
 235		 * If the slot is read-only, simply do not process the accessed
 236		 * and dirty bits.  This is the correct thing to do if the slot
 237		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
 238		 * are only supported if the accessed and dirty bits are already
 239		 * set in the ROM (so that MMIO writes are never needed).
 240		 *
 241		 * Note that NPT does not allow this at all and faults, since
 242		 * it always wants nested page table entries for the guest
 243		 * page tables to be writable.  And EPT works but will simply
 244		 * overwrite the read-only memory to set the accessed and dirty
 245		 * bits.
 246		 */
 247		if (unlikely(!walker->pte_writable[level - 1]))
 248			continue;
 249
 250		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
 251		if (ret)
 252			return ret;
 253
 254		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
 255		walker->ptes[level - 1] = pte;
 256	}
 257	return 0;
 258}
 259
 260static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
 261{
 262	unsigned pkeys = 0;
 263#if PTTYPE == 64
 264	pte_t pte = {.pte = gpte};
 265
 266	pkeys = pte_flags_pkey(pte_flags(pte));
 267#endif
 268	return pkeys;
 269}
 270
 271/*
 272 * Fetch a guest pte for a guest virtual address
 273 */
 274static int FNAME(walk_addr_generic)(struct guest_walker *walker,
 275				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 276				    gva_t addr, u32 access)
 277{
 278	int ret;
 279	pt_element_t pte;
 280	pt_element_t __user *uninitialized_var(ptep_user);
 281	gfn_t table_gfn;
 282	unsigned index, pt_access, pte_access, accessed_dirty, pte_pkey;
 283	gpa_t pte_gpa;
 284	int offset;
 285	const int write_fault = access & PFERR_WRITE_MASK;
 286	const int user_fault  = access & PFERR_USER_MASK;
 287	const int fetch_fault = access & PFERR_FETCH_MASK;
 288	u16 errcode = 0;
 289	gpa_t real_gpa;
 290	gfn_t gfn;
 291
 292	trace_kvm_mmu_pagetable_walk(addr, access);
 293retry_walk:
 294	walker->level = mmu->root_level;
 295	pte           = mmu->get_cr3(vcpu);
 296
 297#if PTTYPE == 64
 298	if (walker->level == PT32E_ROOT_LEVEL) {
 299		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
 300		trace_kvm_mmu_paging_element(pte, walker->level);
 301		if (!FNAME(is_present_gpte)(pte))
 302			goto error;
 303		--walker->level;
 304	}
 305#endif
 306	walker->max_level = walker->level;
 307	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
 308
 309	accessed_dirty = PT_GUEST_ACCESSED_MASK;
 310	pt_access = pte_access = ACC_ALL;
 311	++walker->level;
 312
 313	do {
 314		gfn_t real_gfn;
 315		unsigned long host_addr;
 316
 317		pt_access &= pte_access;
 318		--walker->level;
 319
 320		index = PT_INDEX(addr, walker->level);
 321
 322		table_gfn = gpte_to_gfn(pte);
 323		offset    = index * sizeof(pt_element_t);
 324		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
 325		walker->table_gfn[walker->level - 1] = table_gfn;
 326		walker->pte_gpa[walker->level - 1] = pte_gpa;
 327
 328		real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
 329					      PFERR_USER_MASK|PFERR_WRITE_MASK,
 330					      &walker->fault);
 331
 332		/*
 333		 * FIXME: This can happen if emulation (for of an INS/OUTS
 334		 * instruction) triggers a nested page fault.  The exit
 335		 * qualification / exit info field will incorrectly have
 336		 * "guest page access" as the nested page fault's cause,
 337		 * instead of "guest page structure access".  To fix this,
 338		 * the x86_exception struct should be augmented with enough
 339		 * information to fix the exit_qualification or exit_info_1
 340		 * fields.
 341		 */
 342		if (unlikely(real_gfn == UNMAPPED_GVA))
 343			return 0;
 344
 345		real_gfn = gpa_to_gfn(real_gfn);
 346
 347		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
 348					    &walker->pte_writable[walker->level - 1]);
 349		if (unlikely(kvm_is_error_hva(host_addr)))
 350			goto error;
 351
 352		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
 353		if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
 354			goto error;
 355		walker->ptep_user[walker->level - 1] = ptep_user;
 356
 357		trace_kvm_mmu_paging_element(pte, walker->level);
 358
 359		if (unlikely(!FNAME(is_present_gpte)(pte)))
 360			goto error;
 361
 362		if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
 363			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
 364			goto error;
 365		}
 366
 367		accessed_dirty &= pte;
 368		pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
 369
 370		walker->ptes[walker->level - 1] = pte;
 371	} while (!is_last_gpte(mmu, walker->level, pte));
 372
 373	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
 374	errcode = permission_fault(vcpu, mmu, pte_access, pte_pkey, access);
 375	if (unlikely(errcode))
 376		goto error;
 377
 378	gfn = gpte_to_gfn_lvl(pte, walker->level);
 379	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
 380
 381	if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
 382		gfn += pse36_gfn_delta(pte);
 383
 384	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
 385	if (real_gpa == UNMAPPED_GVA)
 386		return 0;
 387
 388	walker->gfn = real_gpa >> PAGE_SHIFT;
 389
 390	if (!write_fault)
 391		FNAME(protect_clean_gpte)(&pte_access, pte);
 392	else
 393		/*
 394		 * On a write fault, fold the dirty bit into accessed_dirty.
 395		 * For modes without A/D bits support accessed_dirty will be
 396		 * always clear.
 397		 */
 398		accessed_dirty &= pte >>
 399			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
 400
 401	if (unlikely(!accessed_dirty)) {
 402		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
 403		if (unlikely(ret < 0))
 404			goto error;
 405		else if (ret)
 406			goto retry_walk;
 407	}
 408
 409	walker->pt_access = pt_access;
 410	walker->pte_access = pte_access;
 411	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
 412		 __func__, (u64)pte, pte_access, pt_access);
 413	return 1;
 414
 415error:
 416	errcode |= write_fault | user_fault;
 417	if (fetch_fault && (mmu->nx ||
 418			    kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
 419		errcode |= PFERR_FETCH_MASK;
 420
 421	walker->fault.vector = PF_VECTOR;
 422	walker->fault.error_code_valid = true;
 423	walker->fault.error_code = errcode;
 424
 425#if PTTYPE == PTTYPE_EPT
 426	/*
 427	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
 428	 * misconfiguration requires to be injected. The detection is
 429	 * done by is_rsvd_bits_set() above.
 430	 *
 431	 * We set up the value of exit_qualification to inject:
 432	 * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
 433	 * [5:3] - Calculated by the page walk of the guest EPT page tables
 434	 * [7:8] - Derived from [7:8] of real exit_qualification
 435	 *
 436	 * The other bits are set to 0.
 437	 */
 438	if (!(errcode & PFERR_RSVD_MASK)) {
 439		vcpu->arch.exit_qualification &= 0x187;
 440		vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
 441	}
 442#endif
 443	walker->fault.address = addr;
 444	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
 445
 446	trace_kvm_mmu_walker_error(walker->fault.error_code);
 447	return 0;
 448}
 449
 450static int FNAME(walk_addr)(struct guest_walker *walker,
 451			    struct kvm_vcpu *vcpu, gva_t addr, u32 access)
 452{
 453	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
 454					access);
 455}
 456
 457#if PTTYPE != PTTYPE_EPT
 458static int FNAME(walk_addr_nested)(struct guest_walker *walker,
 459				   struct kvm_vcpu *vcpu, gva_t addr,
 460				   u32 access)
 461{
 462	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
 463					addr, access);
 464}
 465#endif
 466
 467static bool
 468FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 469		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
 470{
 471	unsigned pte_access;
 472	gfn_t gfn;
 473	kvm_pfn_t pfn;
 474
 475	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
 476		return false;
 477
 478	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
 479
 480	gfn = gpte_to_gfn(gpte);
 481	pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
 482	FNAME(protect_clean_gpte)(&pte_access, gpte);
 483	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
 484			no_dirty_log && (pte_access & ACC_WRITE_MASK));
 485	if (is_error_pfn(pfn))
 486		return false;
 487
 488	/*
 489	 * we call mmu_set_spte() with host_writable = true because
 490	 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
 491	 */
 492	mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
 493		     true, true);
 494
 495	return true;
 496}
 497
 498static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 499			      u64 *spte, const void *pte)
 500{
 501	pt_element_t gpte = *(const pt_element_t *)pte;
 502
 503	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
 504}
 505
 506static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
 507				struct guest_walker *gw, int level)
 508{
 509	pt_element_t curr_pte;
 510	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
 511	u64 mask;
 512	int r, index;
 513
 514	if (level == PT_PAGE_TABLE_LEVEL) {
 515		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
 516		base_gpa = pte_gpa & ~mask;
 517		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
 518
 519		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
 520				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
 521		curr_pte = gw->prefetch_ptes[index];
 522	} else
 523		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
 524				  &curr_pte, sizeof(curr_pte));
 525
 526	return r || curr_pte != gw->ptes[level - 1];
 527}
 528
 529static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
 530				u64 *sptep)
 531{
 532	struct kvm_mmu_page *sp;
 533	pt_element_t *gptep = gw->prefetch_ptes;
 534	u64 *spte;
 535	int i;
 536
 537	sp = page_header(__pa(sptep));
 538
 539	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
 540		return;
 541
 542	if (sp->role.direct)
 543		return __direct_pte_prefetch(vcpu, sp, sptep);
 544
 545	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
 546	spte = sp->spt + i;
 547
 548	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
 549		if (spte == sptep)
 550			continue;
 551
 552		if (is_shadow_present_pte(*spte))
 553			continue;
 554
 555		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
 556			break;
 557	}
 558}
 559
 560/*
 561 * Fetch a shadow pte for a specific level in the paging hierarchy.
 562 * If the guest tries to write a write-protected page, we need to
 563 * emulate this operation, return 1 to indicate this case.
 564 */
 565static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
 566			 struct guest_walker *gw,
 567			 int write_fault, int hlevel,
 568			 kvm_pfn_t pfn, bool map_writable, bool prefault)
 569{
 570	struct kvm_mmu_page *sp = NULL;
 571	struct kvm_shadow_walk_iterator it;
 572	unsigned direct_access, access = gw->pt_access;
 573	int top_level, emulate;
 574
 575	direct_access = gw->pte_access;
 576
 577	top_level = vcpu->arch.mmu.root_level;
 578	if (top_level == PT32E_ROOT_LEVEL)
 579		top_level = PT32_ROOT_LEVEL;
 580	/*
 581	 * Verify that the top-level gpte is still there.  Since the page
 582	 * is a root page, it is either write protected (and cannot be
 583	 * changed from now on) or it is invalid (in which case, we don't
 584	 * really care if it changes underneath us after this point).
 585	 */
 586	if (FNAME(gpte_changed)(vcpu, gw, top_level))
 587		goto out_gpte_changed;
 588
 589	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
 590		goto out_gpte_changed;
 591
 592	for (shadow_walk_init(&it, vcpu, addr);
 593	     shadow_walk_okay(&it) && it.level > gw->level;
 594	     shadow_walk_next(&it)) {
 595		gfn_t table_gfn;
 596
 597		clear_sp_write_flooding_count(it.sptep);
 598		drop_large_spte(vcpu, it.sptep);
 599
 600		sp = NULL;
 601		if (!is_shadow_present_pte(*it.sptep)) {
 602			table_gfn = gw->table_gfn[it.level - 2];
 603			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
 604					      false, access);
 605		}
 606
 607		/*
 608		 * Verify that the gpte in the page we've just write
 609		 * protected is still there.
 610		 */
 611		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
 612			goto out_gpte_changed;
 613
 614		if (sp)
 615			link_shadow_page(vcpu, it.sptep, sp);
 616	}
 617
 618	for (;
 619	     shadow_walk_okay(&it) && it.level > hlevel;
 620	     shadow_walk_next(&it)) {
 621		gfn_t direct_gfn;
 622
 623		clear_sp_write_flooding_count(it.sptep);
 624		validate_direct_spte(vcpu, it.sptep, direct_access);
 625
 626		drop_large_spte(vcpu, it.sptep);
 627
 628		if (is_shadow_present_pte(*it.sptep))
 629			continue;
 630
 631		direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
 632
 633		sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
 634				      true, direct_access);
 635		link_shadow_page(vcpu, it.sptep, sp);
 636	}
 637
 638	clear_sp_write_flooding_count(it.sptep);
 639	emulate = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
 640			       it.level, gw->gfn, pfn, prefault, map_writable);
 641	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
 642
 643	return emulate;
 644
 645out_gpte_changed:
 646	kvm_release_pfn_clean(pfn);
 647	return 0;
 648}
 649
 650 /*
 651 * To see whether the mapped gfn can write its page table in the current
 652 * mapping.
 653 *
 654 * It is the helper function of FNAME(page_fault). When guest uses large page
 655 * size to map the writable gfn which is used as current page table, we should
 656 * force kvm to use small page size to map it because new shadow page will be
 657 * created when kvm establishes shadow page table that stop kvm using large
 658 * page size. Do it early can avoid unnecessary #PF and emulation.
 659 *
 660 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
 661 * currently used as its page table.
 662 *
 663 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
 664 * since the PDPT is always shadowed, that means, we can not use large page
 665 * size to map the gfn which is used as PDPT.
 666 */
 667static bool
 668FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
 669			      struct guest_walker *walker, int user_fault,
 670			      bool *write_fault_to_shadow_pgtable)
 671{
 672	int level;
 673	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
 674	bool self_changed = false;
 675
 676	if (!(walker->pte_access & ACC_WRITE_MASK ||
 677	      (!is_write_protection(vcpu) && !user_fault)))
 678		return false;
 679
 680	for (level = walker->level; level <= walker->max_level; level++) {
 681		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
 682
 683		self_changed |= !(gfn & mask);
 684		*write_fault_to_shadow_pgtable |= !gfn;
 685	}
 686
 687	return self_changed;
 688}
 689
 690/*
 691 * Page fault handler.  There are several causes for a page fault:
 692 *   - there is no shadow pte for the guest pte
 693 *   - write access through a shadow pte marked read only so that we can set
 694 *     the dirty bit
 695 *   - write access to a shadow pte marked read only so we can update the page
 696 *     dirty bitmap, when userspace requests it
 697 *   - mmio access; in this case we will never install a present shadow pte
 698 *   - normal guest page fault due to the guest pte marked not present, not
 699 *     writable, or not executable
 700 *
 701 *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
 702 *           a negative value on error.
 703 */
 704static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
 705			     bool prefault)
 706{
 707	int write_fault = error_code & PFERR_WRITE_MASK;
 708	int user_fault = error_code & PFERR_USER_MASK;
 709	struct guest_walker walker;
 710	int r;
 711	kvm_pfn_t pfn;
 712	int level = PT_PAGE_TABLE_LEVEL;
 713	bool force_pt_level = false;
 714	unsigned long mmu_seq;
 715	bool map_writable, is_self_change_mapping;
 716
 717	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
 718
 719	r = mmu_topup_memory_caches(vcpu);
 720	if (r)
 721		return r;
 722
 723	/*
 724	 * If PFEC.RSVD is set, this is a shadow page fault.
 725	 * The bit needs to be cleared before walking guest page tables.
 726	 */
 727	error_code &= ~PFERR_RSVD_MASK;
 728
 729	/*
 730	 * Look up the guest pte for the faulting address.
 731	 */
 732	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
 733
 734	/*
 735	 * The page is not mapped by the guest.  Let the guest handle it.
 736	 */
 737	if (!r) {
 738		pgprintk("%s: guest page fault\n", __func__);
 739		if (!prefault)
 740			inject_page_fault(vcpu, &walker.fault);
 741
 742		return 0;
 743	}
 744
 745	if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
 746		shadow_page_table_clear_flood(vcpu, addr);
 747		return 1;
 748	}
 749
 750	vcpu->arch.write_fault_to_shadow_pgtable = false;
 751
 752	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
 753	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
 754
 755	if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
 756		level = mapping_level(vcpu, walker.gfn, &force_pt_level);
 757		if (likely(!force_pt_level)) {
 758			level = min(walker.level, level);
 759			walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
 760		}
 761	} else
 762		force_pt_level = true;
 763
 764	mmu_seq = vcpu->kvm->mmu_notifier_seq;
 765	smp_rmb();
 766
 767	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
 768			 &map_writable))
 769		return 0;
 770
 771	if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
 772				walker.gfn, pfn, walker.pte_access, &r))
 773		return r;
 774
 775	/*
 776	 * Do not change pte_access if the pfn is a mmio page, otherwise
 777	 * we will cache the incorrect access into mmio spte.
 778	 */
 779	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
 780	     !is_write_protection(vcpu) && !user_fault &&
 781	      !is_noslot_pfn(pfn)) {
 782		walker.pte_access |= ACC_WRITE_MASK;
 783		walker.pte_access &= ~ACC_USER_MASK;
 784
 785		/*
 786		 * If we converted a user page to a kernel page,
 787		 * so that the kernel can write to it when cr0.wp=0,
 788		 * then we should prevent the kernel from executing it
 789		 * if SMEP is enabled.
 790		 */
 791		if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
 792			walker.pte_access &= ~ACC_EXEC_MASK;
 793	}
 794
 795	spin_lock(&vcpu->kvm->mmu_lock);
 796	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
 797		goto out_unlock;
 798
 799	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
 800	make_mmu_pages_available(vcpu);
 801	if (!force_pt_level)
 802		transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
 803	r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
 804			 level, pfn, map_writable, prefault);
 805	++vcpu->stat.pf_fixed;
 806	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
 807	spin_unlock(&vcpu->kvm->mmu_lock);
 808
 809	return r;
 810
 811out_unlock:
 812	spin_unlock(&vcpu->kvm->mmu_lock);
 813	kvm_release_pfn_clean(pfn);
 814	return 0;
 815}
 816
 817static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
 818{
 819	int offset = 0;
 820
 821	WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
 822
 823	if (PTTYPE == 32)
 824		offset = sp->role.quadrant << PT64_LEVEL_BITS;
 825
 826	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
 827}
 828
 829static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
 830{
 831	struct kvm_shadow_walk_iterator iterator;
 832	struct kvm_mmu_page *sp;
 833	int level;
 834	u64 *sptep;
 835
 836	vcpu_clear_mmio_info(vcpu, gva);
 837
 838	/*
 839	 * No need to check return value here, rmap_can_add() can
 840	 * help us to skip pte prefetch later.
 841	 */
 842	mmu_topup_memory_caches(vcpu);
 843
 844	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
 845		WARN_ON(1);
 846		return;
 847	}
 848
 849	spin_lock(&vcpu->kvm->mmu_lock);
 850	for_each_shadow_entry(vcpu, gva, iterator) {
 851		level = iterator.level;
 852		sptep = iterator.sptep;
 853
 854		sp = page_header(__pa(sptep));
 855		if (is_last_spte(*sptep, level)) {
 856			pt_element_t gpte;
 857			gpa_t pte_gpa;
 858
 859			if (!sp->unsync)
 860				break;
 861
 862			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
 863			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
 864
 865			if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
 866				kvm_flush_remote_tlbs(vcpu->kvm);
 867
 868			if (!rmap_can_add(vcpu))
 869				break;
 870
 871			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
 872						       sizeof(pt_element_t)))
 873				break;
 874
 875			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
 876		}
 877
 878		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
 879			break;
 880	}
 881	spin_unlock(&vcpu->kvm->mmu_lock);
 882}
 883
 884static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
 885			       struct x86_exception *exception)
 886{
 887	struct guest_walker walker;
 888	gpa_t gpa = UNMAPPED_GVA;
 889	int r;
 890
 891	r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
 892
 893	if (r) {
 894		gpa = gfn_to_gpa(walker.gfn);
 895		gpa |= vaddr & ~PAGE_MASK;
 896	} else if (exception)
 897		*exception = walker.fault;
 898
 899	return gpa;
 900}
 901
 902#if PTTYPE != PTTYPE_EPT
 903static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
 904				      u32 access,
 905				      struct x86_exception *exception)
 906{
 907	struct guest_walker walker;
 908	gpa_t gpa = UNMAPPED_GVA;
 909	int r;
 910
 911	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
 912
 913	if (r) {
 914		gpa = gfn_to_gpa(walker.gfn);
 915		gpa |= vaddr & ~PAGE_MASK;
 916	} else if (exception)
 917		*exception = walker.fault;
 918
 919	return gpa;
 920}
 921#endif
 922
 923/*
 924 * Using the cached information from sp->gfns is safe because:
 925 * - The spte has a reference to the struct page, so the pfn for a given gfn
 926 *   can't change unless all sptes pointing to it are nuked first.
 927 *
 928 * Note:
 929 *   We should flush all tlbs if spte is dropped even though guest is
 930 *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
 931 *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
 932 *   used by guest then tlbs are not flushed, so guest is allowed to access the
 933 *   freed pages.
 934 *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
 935 */
 936static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
 937{
 938	int i, nr_present = 0;
 939	bool host_writable;
 940	gpa_t first_pte_gpa;
 941
 942	/* direct kvm_mmu_page can not be unsync. */
 943	BUG_ON(sp->role.direct);
 944
 945	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
 946
 947	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
 948		unsigned pte_access;
 949		pt_element_t gpte;
 950		gpa_t pte_gpa;
 951		gfn_t gfn;
 952
 953		if (!sp->spt[i])
 954			continue;
 955
 956		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
 957
 958		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
 959					       sizeof(pt_element_t)))
 960			return 0;
 961
 962		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
 963			/*
 964			 * Update spte before increasing tlbs_dirty to make
 965			 * sure no tlb flush is lost after spte is zapped; see
 966			 * the comments in kvm_flush_remote_tlbs().
 967			 */
 968			smp_wmb();
 969			vcpu->kvm->tlbs_dirty++;
 970			continue;
 971		}
 972
 973		gfn = gpte_to_gfn(gpte);
 974		pte_access = sp->role.access;
 975		pte_access &= FNAME(gpte_access)(vcpu, gpte);
 976		FNAME(protect_clean_gpte)(&pte_access, gpte);
 977
 978		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
 979		      &nr_present))
 980			continue;
 981
 982		if (gfn != sp->gfns[i]) {
 983			drop_spte(vcpu->kvm, &sp->spt[i]);
 984			/*
 985			 * The same as above where we are doing
 986			 * prefetch_invalid_gpte().
 987			 */
 988			smp_wmb();
 989			vcpu->kvm->tlbs_dirty++;
 990			continue;
 991		}
 992
 993		nr_present++;
 994
 995		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
 996
 997		set_spte(vcpu, &sp->spt[i], pte_access,
 998			 PT_PAGE_TABLE_LEVEL, gfn,
 999			 spte_to_pfn(sp->spt[i]), true, false,
1000			 host_writable);
1001	}
1002
1003	return nr_present;
1004}
1005
1006#undef pt_element_t
1007#undef guest_walker
1008#undef FNAME
1009#undef PT_BASE_ADDR_MASK
1010#undef PT_INDEX
1011#undef PT_LVL_ADDR_MASK
1012#undef PT_LVL_OFFSET_MASK
1013#undef PT_LEVEL_BITS
1014#undef PT_MAX_FULL_LEVELS
1015#undef gpte_to_gfn
1016#undef gpte_to_gfn_lvl
1017#undef CMPXCHG
1018#undef PT_GUEST_ACCESSED_MASK
1019#undef PT_GUEST_DIRTY_MASK
1020#undef PT_GUEST_DIRTY_SHIFT
1021#undef PT_GUEST_ACCESSED_SHIFT