Linux Audio

Check our new training course

Loading...
  1/*
  2 * Kernel-based Virtual Machine driver for Linux
  3 *
  4 * This module enables machines with Intel VT-x extensions to run virtual
  5 * machines without emulation or binary translation.
  6 *
  7 * MMU support
  8 *
  9 * Copyright (C) 2006 Qumranet, Inc.
 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 11 *
 12 * Authors:
 13 *   Yaniv Kamay  <yaniv@qumranet.com>
 14 *   Avi Kivity   <avi@qumranet.com>
 15 *
 16 * This work is licensed under the terms of the GNU GPL, version 2.  See
 17 * the COPYING file in the top-level directory.
 18 *
 19 */
 20
 21/*
 22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
 23 * so the code in this file is compiled twice, once per pte size.
 24 */
 25
 26#if PTTYPE == 64
 27	#define pt_element_t u64
 28	#define guest_walker guest_walker64
 29	#define FNAME(name) paging##64_##name
 30	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
 31	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
 32	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
 33	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
 34	#define PT_LEVEL_BITS PT64_LEVEL_BITS
 35	#ifdef CONFIG_X86_64
 36	#define PT_MAX_FULL_LEVELS 4
 37	#define CMPXCHG cmpxchg
 38	#else
 39	#define CMPXCHG cmpxchg64
 40	#define PT_MAX_FULL_LEVELS 2
 41	#endif
 42#elif PTTYPE == 32
 43	#define pt_element_t u32
 44	#define guest_walker guest_walker32
 45	#define FNAME(name) paging##32_##name
 46	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
 47	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
 48	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
 49	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
 50	#define PT_LEVEL_BITS PT32_LEVEL_BITS
 51	#define PT_MAX_FULL_LEVELS 2
 52	#define CMPXCHG cmpxchg
 53#else
 54	#error Invalid PTTYPE value
 55#endif
 56
 57#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
 58#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
 59
 60/*
 61 * The guest_walker structure emulates the behavior of the hardware page
 62 * table walker.
 63 */
 64struct guest_walker {
 65	int level;
 66	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
 67	pt_element_t ptes[PT_MAX_FULL_LEVELS];
 68	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
 69	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
 70	unsigned pt_access;
 71	unsigned pte_access;
 72	gfn_t gfn;
 73	struct x86_exception fault;
 74};
 75
 76static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
 77{
 78	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
 79}
 80
 81static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 82			       pt_element_t __user *ptep_user, unsigned index,
 83			       pt_element_t orig_pte, pt_element_t new_pte)
 84{
 85	int npages;
 86	pt_element_t ret;
 87	pt_element_t *table;
 88	struct page *page;
 89
 90	npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
 91	/* Check if the user is doing something meaningless. */
 92	if (unlikely(npages != 1))
 93		return -EFAULT;
 94
 95	table = kmap_atomic(page);
 96	ret = CMPXCHG(&table[index], orig_pte, new_pte);
 97	kunmap_atomic(table);
 98
 99	kvm_release_page_dirty(page);
100
101	return (ret != orig_pte);
102}
103
104static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte,
105				   bool last)
106{
107	unsigned access;
108
109	access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
110	if (last && !is_dirty_gpte(gpte))
111		access &= ~ACC_WRITE_MASK;
112
113#if PTTYPE == 64
114	if (vcpu->arch.mmu.nx)
115		access &= ~(gpte >> PT64_NX_SHIFT);
116#endif
117	return access;
118}
119
120static bool FNAME(is_last_gpte)(struct guest_walker *walker,
121				struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
122				pt_element_t gpte)
123{
124	if (walker->level == PT_PAGE_TABLE_LEVEL)
125		return true;
126
127	if ((walker->level == PT_DIRECTORY_LEVEL) && is_large_pte(gpte) &&
128	    (PTTYPE == 64 || is_pse(vcpu)))
129		return true;
130
131	if ((walker->level == PT_PDPE_LEVEL) && is_large_pte(gpte) &&
132	    (mmu->root_level == PT64_ROOT_LEVEL))
133		return true;
134
135	return false;
136}
137
138/*
139 * Fetch a guest pte for a guest virtual address
140 */
141static int FNAME(walk_addr_generic)(struct guest_walker *walker,
142				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
143				    gva_t addr, u32 access)
144{
145	pt_element_t pte;
146	pt_element_t __user *uninitialized_var(ptep_user);
147	gfn_t table_gfn;
148	unsigned index, pt_access, uninitialized_var(pte_access);
149	gpa_t pte_gpa;
150	bool eperm, last_gpte;
151	int offset;
152	const int write_fault = access & PFERR_WRITE_MASK;
153	const int user_fault  = access & PFERR_USER_MASK;
154	const int fetch_fault = access & PFERR_FETCH_MASK;
155	u16 errcode = 0;
156
157	trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
158				     fetch_fault);
159retry_walk:
160	eperm = false;
161	walker->level = mmu->root_level;
162	pte           = mmu->get_cr3(vcpu);
163
164#if PTTYPE == 64
165	if (walker->level == PT32E_ROOT_LEVEL) {
166		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
167		trace_kvm_mmu_paging_element(pte, walker->level);
168		if (!is_present_gpte(pte))
169			goto error;
170		--walker->level;
171	}
172#endif
173	ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
174	       (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
175
176	pt_access = ACC_ALL;
177
178	for (;;) {
179		gfn_t real_gfn;
180		unsigned long host_addr;
181
182		index = PT_INDEX(addr, walker->level);
183
184		table_gfn = gpte_to_gfn(pte);
185		offset    = index * sizeof(pt_element_t);
186		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
187		walker->table_gfn[walker->level - 1] = table_gfn;
188		walker->pte_gpa[walker->level - 1] = pte_gpa;
189
190		real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
191					      PFERR_USER_MASK|PFERR_WRITE_MASK);
192		if (unlikely(real_gfn == UNMAPPED_GVA))
193			goto error;
194		real_gfn = gpa_to_gfn(real_gfn);
195
196		host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
197		if (unlikely(kvm_is_error_hva(host_addr)))
198			goto error;
199
200		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
201		if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
202			goto error;
203
204		trace_kvm_mmu_paging_element(pte, walker->level);
205
206		if (unlikely(!is_present_gpte(pte)))
207			goto error;
208
209		if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
210					      walker->level))) {
211			errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
212			goto error;
213		}
214
215		if (!check_write_user_access(vcpu, write_fault, user_fault,
216					  pte))
217			eperm = true;
218
219#if PTTYPE == 64
220		if (unlikely(fetch_fault && (pte & PT64_NX_MASK)))
221			eperm = true;
222#endif
223
224		last_gpte = FNAME(is_last_gpte)(walker, vcpu, mmu, pte);
225		if (last_gpte) {
226			pte_access = pt_access &
227				     FNAME(gpte_access)(vcpu, pte, true);
228			/* check if the kernel is fetching from user page */
229			if (unlikely(pte_access & PT_USER_MASK) &&
230			    kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
231				if (fetch_fault && !user_fault)
232					eperm = true;
233		}
234
235		if (!eperm && unlikely(!(pte & PT_ACCESSED_MASK))) {
236			int ret;
237			trace_kvm_mmu_set_accessed_bit(table_gfn, index,
238						       sizeof(pte));
239			ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
240						  pte, pte|PT_ACCESSED_MASK);
241			if (unlikely(ret < 0))
242				goto error;
243			else if (ret)
244				goto retry_walk;
245
246			mark_page_dirty(vcpu->kvm, table_gfn);
247			pte |= PT_ACCESSED_MASK;
248		}
249
250		walker->ptes[walker->level - 1] = pte;
251
252		if (last_gpte) {
253			int lvl = walker->level;
254			gpa_t real_gpa;
255			gfn_t gfn;
256			u32 ac;
257
258			gfn = gpte_to_gfn_lvl(pte, lvl);
259			gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
260
261			if (PTTYPE == 32 &&
262			    walker->level == PT_DIRECTORY_LEVEL &&
263			    is_cpuid_PSE36())
264				gfn += pse36_gfn_delta(pte);
265
266			ac = write_fault | fetch_fault | user_fault;
267
268			real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
269						      ac);
270			if (real_gpa == UNMAPPED_GVA)
271				return 0;
272
273			walker->gfn = real_gpa >> PAGE_SHIFT;
274
275			break;
276		}
277
278		pt_access &= FNAME(gpte_access)(vcpu, pte, false);
279		--walker->level;
280	}
281
282	if (unlikely(eperm)) {
283		errcode |= PFERR_PRESENT_MASK;
284		goto error;
285	}
286
287	if (write_fault && unlikely(!is_dirty_gpte(pte))) {
288		int ret;
289
290		trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
291		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
292					  pte, pte|PT_DIRTY_MASK);
293		if (unlikely(ret < 0))
294			goto error;
295		else if (ret)
296			goto retry_walk;
297
298		mark_page_dirty(vcpu->kvm, table_gfn);
299		pte |= PT_DIRTY_MASK;
300		walker->ptes[walker->level - 1] = pte;
301	}
302
303	walker->pt_access = pt_access;
304	walker->pte_access = pte_access;
305	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
306		 __func__, (u64)pte, pte_access, pt_access);
307	return 1;
308
309error:
310	errcode |= write_fault | user_fault;
311	if (fetch_fault && (mmu->nx ||
312			    kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
313		errcode |= PFERR_FETCH_MASK;
314
315	walker->fault.vector = PF_VECTOR;
316	walker->fault.error_code_valid = true;
317	walker->fault.error_code = errcode;
318	walker->fault.address = addr;
319	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
320
321	trace_kvm_mmu_walker_error(walker->fault.error_code);
322	return 0;
323}
324
325static int FNAME(walk_addr)(struct guest_walker *walker,
326			    struct kvm_vcpu *vcpu, gva_t addr, u32 access)
327{
328	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
329					access);
330}
331
332static int FNAME(walk_addr_nested)(struct guest_walker *walker,
333				   struct kvm_vcpu *vcpu, gva_t addr,
334				   u32 access)
335{
336	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
337					addr, access);
338}
339
340static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
341				    struct kvm_mmu_page *sp, u64 *spte,
342				    pt_element_t gpte)
343{
344	if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
345		goto no_present;
346
347	if (!is_present_gpte(gpte))
348		goto no_present;
349
350	if (!(gpte & PT_ACCESSED_MASK))
351		goto no_present;
352
353	return false;
354
355no_present:
356	drop_spte(vcpu->kvm, spte);
357	return true;
358}
359
360static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
361			      u64 *spte, const void *pte)
362{
363	pt_element_t gpte;
364	unsigned pte_access;
365	pfn_t pfn;
366
367	gpte = *(const pt_element_t *)pte;
368	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
369		return;
370
371	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
372	pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte, true);
373	pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
374	if (mmu_invalid_pfn(pfn)) {
375		kvm_release_pfn_clean(pfn);
376		return;
377	}
378
379	/*
380	 * we call mmu_set_spte() with host_writable = true because that
381	 * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
382	 */
383	mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
384		     NULL, PT_PAGE_TABLE_LEVEL,
385		     gpte_to_gfn(gpte), pfn, true, true);
386}
387
388static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
389				struct guest_walker *gw, int level)
390{
391	pt_element_t curr_pte;
392	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
393	u64 mask;
394	int r, index;
395
396	if (level == PT_PAGE_TABLE_LEVEL) {
397		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
398		base_gpa = pte_gpa & ~mask;
399		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
400
401		r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
402				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
403		curr_pte = gw->prefetch_ptes[index];
404	} else
405		r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
406				  &curr_pte, sizeof(curr_pte));
407
408	return r || curr_pte != gw->ptes[level - 1];
409}
410
411static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
412				u64 *sptep)
413{
414	struct kvm_mmu_page *sp;
415	pt_element_t *gptep = gw->prefetch_ptes;
416	u64 *spte;
417	int i;
418
419	sp = page_header(__pa(sptep));
420
421	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
422		return;
423
424	if (sp->role.direct)
425		return __direct_pte_prefetch(vcpu, sp, sptep);
426
427	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
428	spte = sp->spt + i;
429
430	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
431		pt_element_t gpte;
432		unsigned pte_access;
433		gfn_t gfn;
434		pfn_t pfn;
435
436		if (spte == sptep)
437			continue;
438
439		if (is_shadow_present_pte(*spte))
440			continue;
441
442		gpte = gptep[i];
443
444		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
445			continue;
446
447		pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte,
448								  true);
449		gfn = gpte_to_gfn(gpte);
450		pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
451				      pte_access & ACC_WRITE_MASK);
452		if (mmu_invalid_pfn(pfn)) {
453			kvm_release_pfn_clean(pfn);
454			break;
455		}
456
457		mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
458			     NULL, PT_PAGE_TABLE_LEVEL, gfn,
459			     pfn, true, true);
460	}
461}
462
463/*
464 * Fetch a shadow pte for a specific level in the paging hierarchy.
465 */
466static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
467			 struct guest_walker *gw,
468			 int user_fault, int write_fault, int hlevel,
469			 int *emulate, pfn_t pfn, bool map_writable,
470			 bool prefault)
471{
472	unsigned access = gw->pt_access;
473	struct kvm_mmu_page *sp = NULL;
474	int top_level;
475	unsigned direct_access;
476	struct kvm_shadow_walk_iterator it;
477
478	if (!is_present_gpte(gw->ptes[gw->level - 1]))
479		return NULL;
480
481	direct_access = gw->pte_access;
482
483	top_level = vcpu->arch.mmu.root_level;
484	if (top_level == PT32E_ROOT_LEVEL)
485		top_level = PT32_ROOT_LEVEL;
486	/*
487	 * Verify that the top-level gpte is still there.  Since the page
488	 * is a root page, it is either write protected (and cannot be
489	 * changed from now on) or it is invalid (in which case, we don't
490	 * really care if it changes underneath us after this point).
491	 */
492	if (FNAME(gpte_changed)(vcpu, gw, top_level))
493		goto out_gpte_changed;
494
495	for (shadow_walk_init(&it, vcpu, addr);
496	     shadow_walk_okay(&it) && it.level > gw->level;
497	     shadow_walk_next(&it)) {
498		gfn_t table_gfn;
499
500		clear_sp_write_flooding_count(it.sptep);
501		drop_large_spte(vcpu, it.sptep);
502
503		sp = NULL;
504		if (!is_shadow_present_pte(*it.sptep)) {
505			table_gfn = gw->table_gfn[it.level - 2];
506			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
507					      false, access, it.sptep);
508		}
509
510		/*
511		 * Verify that the gpte in the page we've just write
512		 * protected is still there.
513		 */
514		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
515			goto out_gpte_changed;
516
517		if (sp)
518			link_shadow_page(it.sptep, sp);
519	}
520
521	for (;
522	     shadow_walk_okay(&it) && it.level > hlevel;
523	     shadow_walk_next(&it)) {
524		gfn_t direct_gfn;
525
526		clear_sp_write_flooding_count(it.sptep);
527		validate_direct_spte(vcpu, it.sptep, direct_access);
528
529		drop_large_spte(vcpu, it.sptep);
530
531		if (is_shadow_present_pte(*it.sptep))
532			continue;
533
534		direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
535
536		sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
537				      true, direct_access, it.sptep);
538		link_shadow_page(it.sptep, sp);
539	}
540
541	clear_sp_write_flooding_count(it.sptep);
542	mmu_set_spte(vcpu, it.sptep, access, gw->pte_access,
543		     user_fault, write_fault, emulate, it.level,
544		     gw->gfn, pfn, prefault, map_writable);
545	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
546
547	return it.sptep;
548
549out_gpte_changed:
550	if (sp)
551		kvm_mmu_put_page(sp, it.sptep);
552	kvm_release_pfn_clean(pfn);
553	return NULL;
554}
555
556/*
557 * Page fault handler.  There are several causes for a page fault:
558 *   - there is no shadow pte for the guest pte
559 *   - write access through a shadow pte marked read only so that we can set
560 *     the dirty bit
561 *   - write access to a shadow pte marked read only so we can update the page
562 *     dirty bitmap, when userspace requests it
563 *   - mmio access; in this case we will never install a present shadow pte
564 *   - normal guest page fault due to the guest pte marked not present, not
565 *     writable, or not executable
566 *
567 *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
568 *           a negative value on error.
569 */
570static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
571			     bool prefault)
572{
573	int write_fault = error_code & PFERR_WRITE_MASK;
574	int user_fault = error_code & PFERR_USER_MASK;
575	struct guest_walker walker;
576	u64 *sptep;
577	int emulate = 0;
578	int r;
579	pfn_t pfn;
580	int level = PT_PAGE_TABLE_LEVEL;
581	int force_pt_level;
582	unsigned long mmu_seq;
583	bool map_writable;
584
585	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
586
587	if (unlikely(error_code & PFERR_RSVD_MASK))
588		return handle_mmio_page_fault(vcpu, addr, error_code,
589					      mmu_is_nested(vcpu));
590
591	r = mmu_topup_memory_caches(vcpu);
592	if (r)
593		return r;
594
595	/*
596	 * Look up the guest pte for the faulting address.
597	 */
598	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
599
600	/*
601	 * The page is not mapped by the guest.  Let the guest handle it.
602	 */
603	if (!r) {
604		pgprintk("%s: guest page fault\n", __func__);
605		if (!prefault)
606			inject_page_fault(vcpu, &walker.fault);
607
608		return 0;
609	}
610
611	if (walker.level >= PT_DIRECTORY_LEVEL)
612		force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
613	else
614		force_pt_level = 1;
615	if (!force_pt_level) {
616		level = min(walker.level, mapping_level(vcpu, walker.gfn));
617		walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
618	}
619
620	mmu_seq = vcpu->kvm->mmu_notifier_seq;
621	smp_rmb();
622
623	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
624			 &map_writable))
625		return 0;
626
627	if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
628				walker.gfn, pfn, walker.pte_access, &r))
629		return r;
630
631	spin_lock(&vcpu->kvm->mmu_lock);
632	if (mmu_notifier_retry(vcpu, mmu_seq))
633		goto out_unlock;
634
635	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
636	kvm_mmu_free_some_pages(vcpu);
637	if (!force_pt_level)
638		transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
639	sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
640			     level, &emulate, pfn, map_writable, prefault);
641	(void)sptep;
642	pgprintk("%s: shadow pte %p %llx emulate %d\n", __func__,
643		 sptep, *sptep, emulate);
644
645	++vcpu->stat.pf_fixed;
646	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
647	spin_unlock(&vcpu->kvm->mmu_lock);
648
649	return emulate;
650
651out_unlock:
652	spin_unlock(&vcpu->kvm->mmu_lock);
653	kvm_release_pfn_clean(pfn);
654	return 0;
655}
656
657static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
658{
659	int offset = 0;
660
661	WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
662
663	if (PTTYPE == 32)
664		offset = sp->role.quadrant << PT64_LEVEL_BITS;
665
666	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
667}
668
669static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
670{
671	struct kvm_shadow_walk_iterator iterator;
672	struct kvm_mmu_page *sp;
673	int level;
674	u64 *sptep;
675
676	vcpu_clear_mmio_info(vcpu, gva);
677
678	/*
679	 * No need to check return value here, rmap_can_add() can
680	 * help us to skip pte prefetch later.
681	 */
682	mmu_topup_memory_caches(vcpu);
683
684	spin_lock(&vcpu->kvm->mmu_lock);
685	for_each_shadow_entry(vcpu, gva, iterator) {
686		level = iterator.level;
687		sptep = iterator.sptep;
688
689		sp = page_header(__pa(sptep));
690		if (is_last_spte(*sptep, level)) {
691			pt_element_t gpte;
692			gpa_t pte_gpa;
693
694			if (!sp->unsync)
695				break;
696
697			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
698			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
699
700			if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
701				kvm_flush_remote_tlbs(vcpu->kvm);
702
703			if (!rmap_can_add(vcpu))
704				break;
705
706			if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
707						  sizeof(pt_element_t)))
708				break;
709
710			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
711		}
712
713		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
714			break;
715	}
716	spin_unlock(&vcpu->kvm->mmu_lock);
717}
718
719static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
720			       struct x86_exception *exception)
721{
722	struct guest_walker walker;
723	gpa_t gpa = UNMAPPED_GVA;
724	int r;
725
726	r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
727
728	if (r) {
729		gpa = gfn_to_gpa(walker.gfn);
730		gpa |= vaddr & ~PAGE_MASK;
731	} else if (exception)
732		*exception = walker.fault;
733
734	return gpa;
735}
736
737static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
738				      u32 access,
739				      struct x86_exception *exception)
740{
741	struct guest_walker walker;
742	gpa_t gpa = UNMAPPED_GVA;
743	int r;
744
745	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
746
747	if (r) {
748		gpa = gfn_to_gpa(walker.gfn);
749		gpa |= vaddr & ~PAGE_MASK;
750	} else if (exception)
751		*exception = walker.fault;
752
753	return gpa;
754}
755
756/*
757 * Using the cached information from sp->gfns is safe because:
758 * - The spte has a reference to the struct page, so the pfn for a given gfn
759 *   can't change unless all sptes pointing to it are nuked first.
760 *
761 * Note:
762 *   We should flush all tlbs if spte is dropped even though guest is
763 *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
764 *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
765 *   used by guest then tlbs are not flushed, so guest is allowed to access the
766 *   freed pages.
767 *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
768 */
769static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
770{
771	int i, nr_present = 0;
772	bool host_writable;
773	gpa_t first_pte_gpa;
774
775	/* direct kvm_mmu_page can not be unsync. */
776	BUG_ON(sp->role.direct);
777
778	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
779
780	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
781		unsigned pte_access;
782		pt_element_t gpte;
783		gpa_t pte_gpa;
784		gfn_t gfn;
785
786		if (!sp->spt[i])
787			continue;
788
789		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
790
791		if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
792					  sizeof(pt_element_t)))
793			return -EINVAL;
794
795		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
796			vcpu->kvm->tlbs_dirty++;
797			continue;
798		}
799
800		gfn = gpte_to_gfn(gpte);
801		pte_access = sp->role.access;
802		pte_access &= FNAME(gpte_access)(vcpu, gpte, true);
803
804		if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
805			continue;
806
807		if (gfn != sp->gfns[i]) {
808			drop_spte(vcpu->kvm, &sp->spt[i]);
809			vcpu->kvm->tlbs_dirty++;
810			continue;
811		}
812
813		nr_present++;
814
815		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
816
817		set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
818			 PT_PAGE_TABLE_LEVEL, gfn,
819			 spte_to_pfn(sp->spt[i]), true, false,
820			 host_writable);
821	}
822
823	return !nr_present;
824}
825
826#undef pt_element_t
827#undef guest_walker
828#undef FNAME
829#undef PT_BASE_ADDR_MASK
830#undef PT_INDEX
831#undef PT_LVL_ADDR_MASK
832#undef PT_LVL_OFFSET_MASK
833#undef PT_LEVEL_BITS
834#undef PT_MAX_FULL_LEVELS
835#undef gpte_to_gfn
836#undef gpte_to_gfn_lvl
837#undef CMPXCHG