Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 */
6
7#include <linux/sched.h>
8#include <linux/bio.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/raid/pq.h>
12#include <linux/hash.h>
13#include <linux/list_sort.h>
14#include <linux/raid/xor.h>
15#include <linux/mm.h>
16#include "messages.h"
17#include "ctree.h"
18#include "disk-io.h"
19#include "volumes.h"
20#include "raid56.h"
21#include "async-thread.h"
22#include "file-item.h"
23#include "btrfs_inode.h"
24
25/* set when additional merges to this rbio are not allowed */
26#define RBIO_RMW_LOCKED_BIT 1
27
28/*
29 * set when this rbio is sitting in the hash, but it is just a cache
30 * of past RMW
31 */
32#define RBIO_CACHE_BIT 2
33
34/*
35 * set when it is safe to trust the stripe_pages for caching
36 */
37#define RBIO_CACHE_READY_BIT 3
38
39#define RBIO_CACHE_SIZE 1024
40
41#define BTRFS_STRIPE_HASH_TABLE_BITS 11
42
43static void dump_bioc(const struct btrfs_fs_info *fs_info, const struct btrfs_io_context *bioc)
44{
45 if (unlikely(!bioc)) {
46 btrfs_crit(fs_info, "bioc=NULL");
47 return;
48 }
49 btrfs_crit(fs_info,
50"bioc logical=%llu full_stripe=%llu size=%llu map_type=0x%llx mirror=%u replace_nr_stripes=%u replace_stripe_src=%d num_stripes=%u",
51 bioc->logical, bioc->full_stripe_logical, bioc->size,
52 bioc->map_type, bioc->mirror_num, bioc->replace_nr_stripes,
53 bioc->replace_stripe_src, bioc->num_stripes);
54 for (int i = 0; i < bioc->num_stripes; i++) {
55 btrfs_crit(fs_info, " nr=%d devid=%llu physical=%llu",
56 i, bioc->stripes[i].dev->devid,
57 bioc->stripes[i].physical);
58 }
59}
60
61static void btrfs_dump_rbio(const struct btrfs_fs_info *fs_info,
62 const struct btrfs_raid_bio *rbio)
63{
64 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
65 return;
66
67 dump_bioc(fs_info, rbio->bioc);
68 btrfs_crit(fs_info,
69"rbio flags=0x%lx nr_sectors=%u nr_data=%u real_stripes=%u stripe_nsectors=%u scrubp=%u dbitmap=0x%lx",
70 rbio->flags, rbio->nr_sectors, rbio->nr_data,
71 rbio->real_stripes, rbio->stripe_nsectors,
72 rbio->scrubp, rbio->dbitmap);
73}
74
75#define ASSERT_RBIO(expr, rbio) \
76({ \
77 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \
78 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \
79 (rbio)->bioc->fs_info : NULL; \
80 \
81 btrfs_dump_rbio(__fs_info, (rbio)); \
82 } \
83 ASSERT((expr)); \
84})
85
86#define ASSERT_RBIO_STRIPE(expr, rbio, stripe_nr) \
87({ \
88 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \
89 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \
90 (rbio)->bioc->fs_info : NULL; \
91 \
92 btrfs_dump_rbio(__fs_info, (rbio)); \
93 btrfs_crit(__fs_info, "stripe_nr=%d", (stripe_nr)); \
94 } \
95 ASSERT((expr)); \
96})
97
98#define ASSERT_RBIO_SECTOR(expr, rbio, sector_nr) \
99({ \
100 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \
101 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \
102 (rbio)->bioc->fs_info : NULL; \
103 \
104 btrfs_dump_rbio(__fs_info, (rbio)); \
105 btrfs_crit(__fs_info, "sector_nr=%d", (sector_nr)); \
106 } \
107 ASSERT((expr)); \
108})
109
110#define ASSERT_RBIO_LOGICAL(expr, rbio, logical) \
111({ \
112 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \
113 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \
114 (rbio)->bioc->fs_info : NULL; \
115 \
116 btrfs_dump_rbio(__fs_info, (rbio)); \
117 btrfs_crit(__fs_info, "logical=%llu", (logical)); \
118 } \
119 ASSERT((expr)); \
120})
121
122/* Used by the raid56 code to lock stripes for read/modify/write */
123struct btrfs_stripe_hash {
124 struct list_head hash_list;
125 spinlock_t lock;
126};
127
128/* Used by the raid56 code to lock stripes for read/modify/write */
129struct btrfs_stripe_hash_table {
130 struct list_head stripe_cache;
131 spinlock_t cache_lock;
132 int cache_size;
133 struct btrfs_stripe_hash table[];
134};
135
136/*
137 * A bvec like structure to present a sector inside a page.
138 *
139 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
140 */
141struct sector_ptr {
142 struct page *page;
143 unsigned int pgoff:24;
144 unsigned int uptodate:8;
145};
146
147static void rmw_rbio_work(struct work_struct *work);
148static void rmw_rbio_work_locked(struct work_struct *work);
149static void index_rbio_pages(struct btrfs_raid_bio *rbio);
150static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
151
152static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
153static void scrub_rbio_work_locked(struct work_struct *work);
154
155static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
156{
157 bitmap_free(rbio->error_bitmap);
158 kfree(rbio->stripe_pages);
159 kfree(rbio->bio_sectors);
160 kfree(rbio->stripe_sectors);
161 kfree(rbio->finish_pointers);
162}
163
164static void free_raid_bio(struct btrfs_raid_bio *rbio)
165{
166 int i;
167
168 if (!refcount_dec_and_test(&rbio->refs))
169 return;
170
171 WARN_ON(!list_empty(&rbio->stripe_cache));
172 WARN_ON(!list_empty(&rbio->hash_list));
173 WARN_ON(!bio_list_empty(&rbio->bio_list));
174
175 for (i = 0; i < rbio->nr_pages; i++) {
176 if (rbio->stripe_pages[i]) {
177 __free_page(rbio->stripe_pages[i]);
178 rbio->stripe_pages[i] = NULL;
179 }
180 }
181
182 btrfs_put_bioc(rbio->bioc);
183 free_raid_bio_pointers(rbio);
184 kfree(rbio);
185}
186
187static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
188{
189 INIT_WORK(&rbio->work, work_func);
190 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
191}
192
193/*
194 * the stripe hash table is used for locking, and to collect
195 * bios in hopes of making a full stripe
196 */
197int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
198{
199 struct btrfs_stripe_hash_table *table;
200 struct btrfs_stripe_hash_table *x;
201 struct btrfs_stripe_hash *cur;
202 struct btrfs_stripe_hash *h;
203 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
204 int i;
205
206 if (info->stripe_hash_table)
207 return 0;
208
209 /*
210 * The table is large, starting with order 4 and can go as high as
211 * order 7 in case lock debugging is turned on.
212 *
213 * Try harder to allocate and fallback to vmalloc to lower the chance
214 * of a failing mount.
215 */
216 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
217 if (!table)
218 return -ENOMEM;
219
220 spin_lock_init(&table->cache_lock);
221 INIT_LIST_HEAD(&table->stripe_cache);
222
223 h = table->table;
224
225 for (i = 0; i < num_entries; i++) {
226 cur = h + i;
227 INIT_LIST_HEAD(&cur->hash_list);
228 spin_lock_init(&cur->lock);
229 }
230
231 x = cmpxchg(&info->stripe_hash_table, NULL, table);
232 kvfree(x);
233 return 0;
234}
235
236/*
237 * caching an rbio means to copy anything from the
238 * bio_sectors array into the stripe_pages array. We
239 * use the page uptodate bit in the stripe cache array
240 * to indicate if it has valid data
241 *
242 * once the caching is done, we set the cache ready
243 * bit.
244 */
245static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
246{
247 int i;
248 int ret;
249
250 ret = alloc_rbio_pages(rbio);
251 if (ret)
252 return;
253
254 for (i = 0; i < rbio->nr_sectors; i++) {
255 /* Some range not covered by bio (partial write), skip it */
256 if (!rbio->bio_sectors[i].page) {
257 /*
258 * Even if the sector is not covered by bio, if it is
259 * a data sector it should still be uptodate as it is
260 * read from disk.
261 */
262 if (i < rbio->nr_data * rbio->stripe_nsectors)
263 ASSERT(rbio->stripe_sectors[i].uptodate);
264 continue;
265 }
266
267 ASSERT(rbio->stripe_sectors[i].page);
268 memcpy_page(rbio->stripe_sectors[i].page,
269 rbio->stripe_sectors[i].pgoff,
270 rbio->bio_sectors[i].page,
271 rbio->bio_sectors[i].pgoff,
272 rbio->bioc->fs_info->sectorsize);
273 rbio->stripe_sectors[i].uptodate = 1;
274 }
275 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
276}
277
278/*
279 * we hash on the first logical address of the stripe
280 */
281static int rbio_bucket(struct btrfs_raid_bio *rbio)
282{
283 u64 num = rbio->bioc->full_stripe_logical;
284
285 /*
286 * we shift down quite a bit. We're using byte
287 * addressing, and most of the lower bits are zeros.
288 * This tends to upset hash_64, and it consistently
289 * returns just one or two different values.
290 *
291 * shifting off the lower bits fixes things.
292 */
293 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
294}
295
296static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
297 unsigned int page_nr)
298{
299 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
300 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
301 int i;
302
303 ASSERT(page_nr < rbio->nr_pages);
304
305 for (i = sectors_per_page * page_nr;
306 i < sectors_per_page * page_nr + sectors_per_page;
307 i++) {
308 if (!rbio->stripe_sectors[i].uptodate)
309 return false;
310 }
311 return true;
312}
313
314/*
315 * Update the stripe_sectors[] array to use correct page and pgoff
316 *
317 * Should be called every time any page pointer in stripes_pages[] got modified.
318 */
319static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
320{
321 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
322 u32 offset;
323 int i;
324
325 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
326 int page_index = offset >> PAGE_SHIFT;
327
328 ASSERT(page_index < rbio->nr_pages);
329 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
330 rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
331 }
332}
333
334static void steal_rbio_page(struct btrfs_raid_bio *src,
335 struct btrfs_raid_bio *dest, int page_nr)
336{
337 const u32 sectorsize = src->bioc->fs_info->sectorsize;
338 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
339 int i;
340
341 if (dest->stripe_pages[page_nr])
342 __free_page(dest->stripe_pages[page_nr]);
343 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
344 src->stripe_pages[page_nr] = NULL;
345
346 /* Also update the sector->uptodate bits. */
347 for (i = sectors_per_page * page_nr;
348 i < sectors_per_page * page_nr + sectors_per_page; i++)
349 dest->stripe_sectors[i].uptodate = true;
350}
351
352static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
353{
354 const int sector_nr = (page_nr << PAGE_SHIFT) >>
355 rbio->bioc->fs_info->sectorsize_bits;
356
357 /*
358 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
359 * we won't have a page which is half data half parity.
360 *
361 * Thus if the first sector of the page belongs to data stripes, then
362 * the full page belongs to data stripes.
363 */
364 return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
365}
366
367/*
368 * Stealing an rbio means taking all the uptodate pages from the stripe array
369 * in the source rbio and putting them into the destination rbio.
370 *
371 * This will also update the involved stripe_sectors[] which are referring to
372 * the old pages.
373 */
374static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
375{
376 int i;
377
378 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
379 return;
380
381 for (i = 0; i < dest->nr_pages; i++) {
382 struct page *p = src->stripe_pages[i];
383
384 /*
385 * We don't need to steal P/Q pages as they will always be
386 * regenerated for RMW or full write anyway.
387 */
388 if (!is_data_stripe_page(src, i))
389 continue;
390
391 /*
392 * If @src already has RBIO_CACHE_READY_BIT, it should have
393 * all data stripe pages present and uptodate.
394 */
395 ASSERT(p);
396 ASSERT(full_page_sectors_uptodate(src, i));
397 steal_rbio_page(src, dest, i);
398 }
399 index_stripe_sectors(dest);
400 index_stripe_sectors(src);
401}
402
403/*
404 * merging means we take the bio_list from the victim and
405 * splice it into the destination. The victim should
406 * be discarded afterwards.
407 *
408 * must be called with dest->rbio_list_lock held
409 */
410static void merge_rbio(struct btrfs_raid_bio *dest,
411 struct btrfs_raid_bio *victim)
412{
413 bio_list_merge_init(&dest->bio_list, &victim->bio_list);
414 dest->bio_list_bytes += victim->bio_list_bytes;
415 /* Also inherit the bitmaps from @victim. */
416 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
417 dest->stripe_nsectors);
418}
419
420/*
421 * used to prune items that are in the cache. The caller
422 * must hold the hash table lock.
423 */
424static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
425{
426 int bucket = rbio_bucket(rbio);
427 struct btrfs_stripe_hash_table *table;
428 struct btrfs_stripe_hash *h;
429 int freeit = 0;
430
431 /*
432 * check the bit again under the hash table lock.
433 */
434 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
435 return;
436
437 table = rbio->bioc->fs_info->stripe_hash_table;
438 h = table->table + bucket;
439
440 /* hold the lock for the bucket because we may be
441 * removing it from the hash table
442 */
443 spin_lock(&h->lock);
444
445 /*
446 * hold the lock for the bio list because we need
447 * to make sure the bio list is empty
448 */
449 spin_lock(&rbio->bio_list_lock);
450
451 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
452 list_del_init(&rbio->stripe_cache);
453 table->cache_size -= 1;
454 freeit = 1;
455
456 /* if the bio list isn't empty, this rbio is
457 * still involved in an IO. We take it out
458 * of the cache list, and drop the ref that
459 * was held for the list.
460 *
461 * If the bio_list was empty, we also remove
462 * the rbio from the hash_table, and drop
463 * the corresponding ref
464 */
465 if (bio_list_empty(&rbio->bio_list)) {
466 if (!list_empty(&rbio->hash_list)) {
467 list_del_init(&rbio->hash_list);
468 refcount_dec(&rbio->refs);
469 BUG_ON(!list_empty(&rbio->plug_list));
470 }
471 }
472 }
473
474 spin_unlock(&rbio->bio_list_lock);
475 spin_unlock(&h->lock);
476
477 if (freeit)
478 free_raid_bio(rbio);
479}
480
481/*
482 * prune a given rbio from the cache
483 */
484static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
485{
486 struct btrfs_stripe_hash_table *table;
487
488 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
489 return;
490
491 table = rbio->bioc->fs_info->stripe_hash_table;
492
493 spin_lock(&table->cache_lock);
494 __remove_rbio_from_cache(rbio);
495 spin_unlock(&table->cache_lock);
496}
497
498/*
499 * remove everything in the cache
500 */
501static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
502{
503 struct btrfs_stripe_hash_table *table;
504 struct btrfs_raid_bio *rbio;
505
506 table = info->stripe_hash_table;
507
508 spin_lock(&table->cache_lock);
509 while (!list_empty(&table->stripe_cache)) {
510 rbio = list_entry(table->stripe_cache.next,
511 struct btrfs_raid_bio,
512 stripe_cache);
513 __remove_rbio_from_cache(rbio);
514 }
515 spin_unlock(&table->cache_lock);
516}
517
518/*
519 * remove all cached entries and free the hash table
520 * used by unmount
521 */
522void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
523{
524 if (!info->stripe_hash_table)
525 return;
526 btrfs_clear_rbio_cache(info);
527 kvfree(info->stripe_hash_table);
528 info->stripe_hash_table = NULL;
529}
530
531/*
532 * insert an rbio into the stripe cache. It
533 * must have already been prepared by calling
534 * cache_rbio_pages
535 *
536 * If this rbio was already cached, it gets
537 * moved to the front of the lru.
538 *
539 * If the size of the rbio cache is too big, we
540 * prune an item.
541 */
542static void cache_rbio(struct btrfs_raid_bio *rbio)
543{
544 struct btrfs_stripe_hash_table *table;
545
546 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
547 return;
548
549 table = rbio->bioc->fs_info->stripe_hash_table;
550
551 spin_lock(&table->cache_lock);
552 spin_lock(&rbio->bio_list_lock);
553
554 /* bump our ref if we were not in the list before */
555 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
556 refcount_inc(&rbio->refs);
557
558 if (!list_empty(&rbio->stripe_cache)){
559 list_move(&rbio->stripe_cache, &table->stripe_cache);
560 } else {
561 list_add(&rbio->stripe_cache, &table->stripe_cache);
562 table->cache_size += 1;
563 }
564
565 spin_unlock(&rbio->bio_list_lock);
566
567 if (table->cache_size > RBIO_CACHE_SIZE) {
568 struct btrfs_raid_bio *found;
569
570 found = list_entry(table->stripe_cache.prev,
571 struct btrfs_raid_bio,
572 stripe_cache);
573
574 if (found != rbio)
575 __remove_rbio_from_cache(found);
576 }
577
578 spin_unlock(&table->cache_lock);
579}
580
581/*
582 * helper function to run the xor_blocks api. It is only
583 * able to do MAX_XOR_BLOCKS at a time, so we need to
584 * loop through.
585 */
586static void run_xor(void **pages, int src_cnt, ssize_t len)
587{
588 int src_off = 0;
589 int xor_src_cnt = 0;
590 void *dest = pages[src_cnt];
591
592 while(src_cnt > 0) {
593 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
594 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
595
596 src_cnt -= xor_src_cnt;
597 src_off += xor_src_cnt;
598 }
599}
600
601/*
602 * Returns true if the bio list inside this rbio covers an entire stripe (no
603 * rmw required).
604 */
605static int rbio_is_full(struct btrfs_raid_bio *rbio)
606{
607 unsigned long size = rbio->bio_list_bytes;
608 int ret = 1;
609
610 spin_lock(&rbio->bio_list_lock);
611 if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
612 ret = 0;
613 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
614 spin_unlock(&rbio->bio_list_lock);
615
616 return ret;
617}
618
619/*
620 * returns 1 if it is safe to merge two rbios together.
621 * The merging is safe if the two rbios correspond to
622 * the same stripe and if they are both going in the same
623 * direction (read vs write), and if neither one is
624 * locked for final IO
625 *
626 * The caller is responsible for locking such that
627 * rmw_locked is safe to test
628 */
629static int rbio_can_merge(struct btrfs_raid_bio *last,
630 struct btrfs_raid_bio *cur)
631{
632 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
633 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
634 return 0;
635
636 /*
637 * we can't merge with cached rbios, since the
638 * idea is that when we merge the destination
639 * rbio is going to run our IO for us. We can
640 * steal from cached rbios though, other functions
641 * handle that.
642 */
643 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
644 test_bit(RBIO_CACHE_BIT, &cur->flags))
645 return 0;
646
647 if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
648 return 0;
649
650 /* we can't merge with different operations */
651 if (last->operation != cur->operation)
652 return 0;
653 /*
654 * We've need read the full stripe from the drive.
655 * check and repair the parity and write the new results.
656 *
657 * We're not allowed to add any new bios to the
658 * bio list here, anyone else that wants to
659 * change this stripe needs to do their own rmw.
660 */
661 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
662 return 0;
663
664 if (last->operation == BTRFS_RBIO_READ_REBUILD)
665 return 0;
666
667 return 1;
668}
669
670static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
671 unsigned int stripe_nr,
672 unsigned int sector_nr)
673{
674 ASSERT_RBIO_STRIPE(stripe_nr < rbio->real_stripes, rbio, stripe_nr);
675 ASSERT_RBIO_SECTOR(sector_nr < rbio->stripe_nsectors, rbio, sector_nr);
676
677 return stripe_nr * rbio->stripe_nsectors + sector_nr;
678}
679
680/* Return a sector from rbio->stripe_sectors, not from the bio list */
681static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
682 unsigned int stripe_nr,
683 unsigned int sector_nr)
684{
685 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
686 sector_nr)];
687}
688
689/* Grab a sector inside P stripe */
690static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
691 unsigned int sector_nr)
692{
693 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
694}
695
696/* Grab a sector inside Q stripe, return NULL if not RAID6 */
697static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
698 unsigned int sector_nr)
699{
700 if (rbio->nr_data + 1 == rbio->real_stripes)
701 return NULL;
702 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
703}
704
705/*
706 * The first stripe in the table for a logical address
707 * has the lock. rbios are added in one of three ways:
708 *
709 * 1) Nobody has the stripe locked yet. The rbio is given
710 * the lock and 0 is returned. The caller must start the IO
711 * themselves.
712 *
713 * 2) Someone has the stripe locked, but we're able to merge
714 * with the lock owner. The rbio is freed and the IO will
715 * start automatically along with the existing rbio. 1 is returned.
716 *
717 * 3) Someone has the stripe locked, but we're not able to merge.
718 * The rbio is added to the lock owner's plug list, or merged into
719 * an rbio already on the plug list. When the lock owner unlocks,
720 * the next rbio on the list is run and the IO is started automatically.
721 * 1 is returned
722 *
723 * If we return 0, the caller still owns the rbio and must continue with
724 * IO submission. If we return 1, the caller must assume the rbio has
725 * already been freed.
726 */
727static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
728{
729 struct btrfs_stripe_hash *h;
730 struct btrfs_raid_bio *cur;
731 struct btrfs_raid_bio *pending;
732 struct btrfs_raid_bio *freeit = NULL;
733 struct btrfs_raid_bio *cache_drop = NULL;
734 int ret = 0;
735
736 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
737
738 spin_lock(&h->lock);
739 list_for_each_entry(cur, &h->hash_list, hash_list) {
740 if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
741 continue;
742
743 spin_lock(&cur->bio_list_lock);
744
745 /* Can we steal this cached rbio's pages? */
746 if (bio_list_empty(&cur->bio_list) &&
747 list_empty(&cur->plug_list) &&
748 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
749 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
750 list_del_init(&cur->hash_list);
751 refcount_dec(&cur->refs);
752
753 steal_rbio(cur, rbio);
754 cache_drop = cur;
755 spin_unlock(&cur->bio_list_lock);
756
757 goto lockit;
758 }
759
760 /* Can we merge into the lock owner? */
761 if (rbio_can_merge(cur, rbio)) {
762 merge_rbio(cur, rbio);
763 spin_unlock(&cur->bio_list_lock);
764 freeit = rbio;
765 ret = 1;
766 goto out;
767 }
768
769
770 /*
771 * We couldn't merge with the running rbio, see if we can merge
772 * with the pending ones. We don't have to check for rmw_locked
773 * because there is no way they are inside finish_rmw right now
774 */
775 list_for_each_entry(pending, &cur->plug_list, plug_list) {
776 if (rbio_can_merge(pending, rbio)) {
777 merge_rbio(pending, rbio);
778 spin_unlock(&cur->bio_list_lock);
779 freeit = rbio;
780 ret = 1;
781 goto out;
782 }
783 }
784
785 /*
786 * No merging, put us on the tail of the plug list, our rbio
787 * will be started with the currently running rbio unlocks
788 */
789 list_add_tail(&rbio->plug_list, &cur->plug_list);
790 spin_unlock(&cur->bio_list_lock);
791 ret = 1;
792 goto out;
793 }
794lockit:
795 refcount_inc(&rbio->refs);
796 list_add(&rbio->hash_list, &h->hash_list);
797out:
798 spin_unlock(&h->lock);
799 if (cache_drop)
800 remove_rbio_from_cache(cache_drop);
801 if (freeit)
802 free_raid_bio(freeit);
803 return ret;
804}
805
806static void recover_rbio_work_locked(struct work_struct *work);
807
808/*
809 * called as rmw or parity rebuild is completed. If the plug list has more
810 * rbios waiting for this stripe, the next one on the list will be started
811 */
812static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
813{
814 int bucket;
815 struct btrfs_stripe_hash *h;
816 int keep_cache = 0;
817
818 bucket = rbio_bucket(rbio);
819 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
820
821 if (list_empty(&rbio->plug_list))
822 cache_rbio(rbio);
823
824 spin_lock(&h->lock);
825 spin_lock(&rbio->bio_list_lock);
826
827 if (!list_empty(&rbio->hash_list)) {
828 /*
829 * if we're still cached and there is no other IO
830 * to perform, just leave this rbio here for others
831 * to steal from later
832 */
833 if (list_empty(&rbio->plug_list) &&
834 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
835 keep_cache = 1;
836 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
837 BUG_ON(!bio_list_empty(&rbio->bio_list));
838 goto done;
839 }
840
841 list_del_init(&rbio->hash_list);
842 refcount_dec(&rbio->refs);
843
844 /*
845 * we use the plug list to hold all the rbios
846 * waiting for the chance to lock this stripe.
847 * hand the lock over to one of them.
848 */
849 if (!list_empty(&rbio->plug_list)) {
850 struct btrfs_raid_bio *next;
851 struct list_head *head = rbio->plug_list.next;
852
853 next = list_entry(head, struct btrfs_raid_bio,
854 plug_list);
855
856 list_del_init(&rbio->plug_list);
857
858 list_add(&next->hash_list, &h->hash_list);
859 refcount_inc(&next->refs);
860 spin_unlock(&rbio->bio_list_lock);
861 spin_unlock(&h->lock);
862
863 if (next->operation == BTRFS_RBIO_READ_REBUILD) {
864 start_async_work(next, recover_rbio_work_locked);
865 } else if (next->operation == BTRFS_RBIO_WRITE) {
866 steal_rbio(rbio, next);
867 start_async_work(next, rmw_rbio_work_locked);
868 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
869 steal_rbio(rbio, next);
870 start_async_work(next, scrub_rbio_work_locked);
871 }
872
873 goto done_nolock;
874 }
875 }
876done:
877 spin_unlock(&rbio->bio_list_lock);
878 spin_unlock(&h->lock);
879
880done_nolock:
881 if (!keep_cache)
882 remove_rbio_from_cache(rbio);
883}
884
885static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
886{
887 struct bio *next;
888
889 while (cur) {
890 next = cur->bi_next;
891 cur->bi_next = NULL;
892 cur->bi_status = err;
893 bio_endio(cur);
894 cur = next;
895 }
896}
897
898/*
899 * this frees the rbio and runs through all the bios in the
900 * bio_list and calls end_io on them
901 */
902static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
903{
904 struct bio *cur = bio_list_get(&rbio->bio_list);
905 struct bio *extra;
906
907 kfree(rbio->csum_buf);
908 bitmap_free(rbio->csum_bitmap);
909 rbio->csum_buf = NULL;
910 rbio->csum_bitmap = NULL;
911
912 /*
913 * Clear the data bitmap, as the rbio may be cached for later usage.
914 * do this before before unlock_stripe() so there will be no new bio
915 * for this bio.
916 */
917 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
918
919 /*
920 * At this moment, rbio->bio_list is empty, however since rbio does not
921 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
922 * hash list, rbio may be merged with others so that rbio->bio_list
923 * becomes non-empty.
924 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
925 * more and we can call bio_endio() on all queued bios.
926 */
927 unlock_stripe(rbio);
928 extra = bio_list_get(&rbio->bio_list);
929 free_raid_bio(rbio);
930
931 rbio_endio_bio_list(cur, err);
932 if (extra)
933 rbio_endio_bio_list(extra, err);
934}
935
936/*
937 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
938 *
939 * @rbio: The raid bio
940 * @stripe_nr: Stripe number, valid range [0, real_stripe)
941 * @sector_nr: Sector number inside the stripe,
942 * valid range [0, stripe_nsectors)
943 * @bio_list_only: Whether to use sectors inside the bio list only.
944 *
945 * The read/modify/write code wants to reuse the original bio page as much
946 * as possible, and only use stripe_sectors as fallback.
947 */
948static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
949 int stripe_nr, int sector_nr,
950 bool bio_list_only)
951{
952 struct sector_ptr *sector;
953 int index;
954
955 ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->real_stripes,
956 rbio, stripe_nr);
957 ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
958 rbio, sector_nr);
959
960 index = stripe_nr * rbio->stripe_nsectors + sector_nr;
961 ASSERT(index >= 0 && index < rbio->nr_sectors);
962
963 spin_lock(&rbio->bio_list_lock);
964 sector = &rbio->bio_sectors[index];
965 if (sector->page || bio_list_only) {
966 /* Don't return sector without a valid page pointer */
967 if (!sector->page)
968 sector = NULL;
969 spin_unlock(&rbio->bio_list_lock);
970 return sector;
971 }
972 spin_unlock(&rbio->bio_list_lock);
973
974 return &rbio->stripe_sectors[index];
975}
976
977/*
978 * allocation and initial setup for the btrfs_raid_bio. Not
979 * this does not allocate any pages for rbio->pages.
980 */
981static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
982 struct btrfs_io_context *bioc)
983{
984 const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
985 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
986 const unsigned int num_pages = stripe_npages * real_stripes;
987 const unsigned int stripe_nsectors =
988 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
989 const unsigned int num_sectors = stripe_nsectors * real_stripes;
990 struct btrfs_raid_bio *rbio;
991
992 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */
993 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
994 /*
995 * Our current stripe len should be fixed to 64k thus stripe_nsectors
996 * (at most 16) should be no larger than BITS_PER_LONG.
997 */
998 ASSERT(stripe_nsectors <= BITS_PER_LONG);
999
1000 /*
1001 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256
1002 * (limited by u8).
1003 */
1004 ASSERT(real_stripes >= 2);
1005 ASSERT(real_stripes <= U8_MAX);
1006
1007 rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
1008 if (!rbio)
1009 return ERR_PTR(-ENOMEM);
1010 rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
1011 GFP_NOFS);
1012 rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
1013 GFP_NOFS);
1014 rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
1015 GFP_NOFS);
1016 rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
1017 rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
1018
1019 if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
1020 !rbio->finish_pointers || !rbio->error_bitmap) {
1021 free_raid_bio_pointers(rbio);
1022 kfree(rbio);
1023 return ERR_PTR(-ENOMEM);
1024 }
1025
1026 bio_list_init(&rbio->bio_list);
1027 init_waitqueue_head(&rbio->io_wait);
1028 INIT_LIST_HEAD(&rbio->plug_list);
1029 spin_lock_init(&rbio->bio_list_lock);
1030 INIT_LIST_HEAD(&rbio->stripe_cache);
1031 INIT_LIST_HEAD(&rbio->hash_list);
1032 btrfs_get_bioc(bioc);
1033 rbio->bioc = bioc;
1034 rbio->nr_pages = num_pages;
1035 rbio->nr_sectors = num_sectors;
1036 rbio->real_stripes = real_stripes;
1037 rbio->stripe_npages = stripe_npages;
1038 rbio->stripe_nsectors = stripe_nsectors;
1039 refcount_set(&rbio->refs, 1);
1040 atomic_set(&rbio->stripes_pending, 0);
1041
1042 ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
1043 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
1044 ASSERT(rbio->nr_data > 0);
1045
1046 return rbio;
1047}
1048
1049/* allocate pages for all the stripes in the bio, including parity */
1050static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1051{
1052 int ret;
1053
1054 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, false);
1055 if (ret < 0)
1056 return ret;
1057 /* Mapping all sectors */
1058 index_stripe_sectors(rbio);
1059 return 0;
1060}
1061
1062/* only allocate pages for p/q stripes */
1063static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1064{
1065 const int data_pages = rbio->nr_data * rbio->stripe_npages;
1066 int ret;
1067
1068 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
1069 rbio->stripe_pages + data_pages, false);
1070 if (ret < 0)
1071 return ret;
1072
1073 index_stripe_sectors(rbio);
1074 return 0;
1075}
1076
1077/*
1078 * Return the total number of errors found in the vertical stripe of @sector_nr.
1079 *
1080 * @faila and @failb will also be updated to the first and second stripe
1081 * number of the errors.
1082 */
1083static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1084 int *faila, int *failb)
1085{
1086 int stripe_nr;
1087 int found_errors = 0;
1088
1089 if (faila || failb) {
1090 /*
1091 * Both @faila and @failb should be valid pointers if any of
1092 * them is specified.
1093 */
1094 ASSERT(faila && failb);
1095 *faila = -1;
1096 *failb = -1;
1097 }
1098
1099 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1100 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1101
1102 if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1103 found_errors++;
1104 if (faila) {
1105 /* Update faila and failb. */
1106 if (*faila < 0)
1107 *faila = stripe_nr;
1108 else if (*failb < 0)
1109 *failb = stripe_nr;
1110 }
1111 }
1112 }
1113 return found_errors;
1114}
1115
1116/*
1117 * Add a single sector @sector into our list of bios for IO.
1118 *
1119 * Return 0 if everything went well.
1120 * Return <0 for error.
1121 */
1122static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1123 struct bio_list *bio_list,
1124 struct sector_ptr *sector,
1125 unsigned int stripe_nr,
1126 unsigned int sector_nr,
1127 enum req_op op)
1128{
1129 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1130 struct bio *last = bio_list->tail;
1131 int ret;
1132 struct bio *bio;
1133 struct btrfs_io_stripe *stripe;
1134 u64 disk_start;
1135
1136 /*
1137 * Note: here stripe_nr has taken device replace into consideration,
1138 * thus it can be larger than rbio->real_stripe.
1139 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1140 */
1141 ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes,
1142 rbio, stripe_nr);
1143 ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
1144 rbio, sector_nr);
1145 ASSERT(sector->page);
1146
1147 stripe = &rbio->bioc->stripes[stripe_nr];
1148 disk_start = stripe->physical + sector_nr * sectorsize;
1149
1150 /* if the device is missing, just fail this stripe */
1151 if (!stripe->dev->bdev) {
1152 int found_errors;
1153
1154 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1155 rbio->error_bitmap);
1156
1157 /* Check if we have reached tolerance early. */
1158 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1159 NULL, NULL);
1160 if (found_errors > rbio->bioc->max_errors)
1161 return -EIO;
1162 return 0;
1163 }
1164
1165 /* see if we can add this page onto our existing bio */
1166 if (last) {
1167 u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1168 last_end += last->bi_iter.bi_size;
1169
1170 /*
1171 * we can't merge these if they are from different
1172 * devices or if they are not contiguous
1173 */
1174 if (last_end == disk_start && !last->bi_status &&
1175 last->bi_bdev == stripe->dev->bdev) {
1176 ret = bio_add_page(last, sector->page, sectorsize,
1177 sector->pgoff);
1178 if (ret == sectorsize)
1179 return 0;
1180 }
1181 }
1182
1183 /* put a new bio on the list */
1184 bio = bio_alloc(stripe->dev->bdev,
1185 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1186 op, GFP_NOFS);
1187 bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1188 bio->bi_private = rbio;
1189
1190 __bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1191 bio_list_add(bio_list, bio);
1192 return 0;
1193}
1194
1195static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1196{
1197 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1198 struct bio_vec bvec;
1199 struct bvec_iter iter;
1200 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1201 rbio->bioc->full_stripe_logical;
1202
1203 bio_for_each_segment(bvec, bio, iter) {
1204 u32 bvec_offset;
1205
1206 for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1207 bvec_offset += sectorsize, offset += sectorsize) {
1208 int index = offset / sectorsize;
1209 struct sector_ptr *sector = &rbio->bio_sectors[index];
1210
1211 sector->page = bvec.bv_page;
1212 sector->pgoff = bvec.bv_offset + bvec_offset;
1213 ASSERT(sector->pgoff < PAGE_SIZE);
1214 }
1215 }
1216}
1217
1218/*
1219 * helper function to walk our bio list and populate the bio_pages array with
1220 * the result. This seems expensive, but it is faster than constantly
1221 * searching through the bio list as we setup the IO in finish_rmw or stripe
1222 * reconstruction.
1223 *
1224 * This must be called before you trust the answers from page_in_rbio
1225 */
1226static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1227{
1228 struct bio *bio;
1229
1230 spin_lock(&rbio->bio_list_lock);
1231 bio_list_for_each(bio, &rbio->bio_list)
1232 index_one_bio(rbio, bio);
1233
1234 spin_unlock(&rbio->bio_list_lock);
1235}
1236
1237static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1238 struct raid56_bio_trace_info *trace_info)
1239{
1240 const struct btrfs_io_context *bioc = rbio->bioc;
1241 int i;
1242
1243 ASSERT(bioc);
1244
1245 /* We rely on bio->bi_bdev to find the stripe number. */
1246 if (!bio->bi_bdev)
1247 goto not_found;
1248
1249 for (i = 0; i < bioc->num_stripes; i++) {
1250 if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1251 continue;
1252 trace_info->stripe_nr = i;
1253 trace_info->devid = bioc->stripes[i].dev->devid;
1254 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1255 bioc->stripes[i].physical;
1256 return;
1257 }
1258
1259not_found:
1260 trace_info->devid = -1;
1261 trace_info->offset = -1;
1262 trace_info->stripe_nr = -1;
1263}
1264
1265static inline void bio_list_put(struct bio_list *bio_list)
1266{
1267 struct bio *bio;
1268
1269 while ((bio = bio_list_pop(bio_list)))
1270 bio_put(bio);
1271}
1272
1273static void assert_rbio(struct btrfs_raid_bio *rbio)
1274{
1275 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
1276 return;
1277
1278 /*
1279 * At least two stripes (2 disks RAID5), and since real_stripes is U8,
1280 * we won't go beyond 256 disks anyway.
1281 */
1282 ASSERT_RBIO(rbio->real_stripes >= 2, rbio);
1283 ASSERT_RBIO(rbio->nr_data > 0, rbio);
1284
1285 /*
1286 * This is another check to make sure nr data stripes is smaller
1287 * than total stripes.
1288 */
1289 ASSERT_RBIO(rbio->nr_data < rbio->real_stripes, rbio);
1290}
1291
1292/* Generate PQ for one vertical stripe. */
1293static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1294{
1295 void **pointers = rbio->finish_pointers;
1296 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1297 struct sector_ptr *sector;
1298 int stripe;
1299 const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1300
1301 /* First collect one sector from each data stripe */
1302 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1303 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1304 pointers[stripe] = kmap_local_page(sector->page) +
1305 sector->pgoff;
1306 }
1307
1308 /* Then add the parity stripe */
1309 sector = rbio_pstripe_sector(rbio, sectornr);
1310 sector->uptodate = 1;
1311 pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1312
1313 if (has_qstripe) {
1314 /*
1315 * RAID6, add the qstripe and call the library function
1316 * to fill in our p/q
1317 */
1318 sector = rbio_qstripe_sector(rbio, sectornr);
1319 sector->uptodate = 1;
1320 pointers[stripe++] = kmap_local_page(sector->page) +
1321 sector->pgoff;
1322
1323 assert_rbio(rbio);
1324 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1325 pointers);
1326 } else {
1327 /* raid5 */
1328 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1329 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1330 }
1331 for (stripe = stripe - 1; stripe >= 0; stripe--)
1332 kunmap_local(pointers[stripe]);
1333}
1334
1335static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1336 struct bio_list *bio_list)
1337{
1338 /* The total sector number inside the full stripe. */
1339 int total_sector_nr;
1340 int sectornr;
1341 int stripe;
1342 int ret;
1343
1344 ASSERT(bio_list_size(bio_list) == 0);
1345
1346 /* We should have at least one data sector. */
1347 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1348
1349 /*
1350 * Reset errors, as we may have errors inherited from from degraded
1351 * write.
1352 */
1353 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1354
1355 /*
1356 * Start assembly. Make bios for everything from the higher layers (the
1357 * bio_list in our rbio) and our P/Q. Ignore everything else.
1358 */
1359 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1360 total_sector_nr++) {
1361 struct sector_ptr *sector;
1362
1363 stripe = total_sector_nr / rbio->stripe_nsectors;
1364 sectornr = total_sector_nr % rbio->stripe_nsectors;
1365
1366 /* This vertical stripe has no data, skip it. */
1367 if (!test_bit(sectornr, &rbio->dbitmap))
1368 continue;
1369
1370 if (stripe < rbio->nr_data) {
1371 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1372 if (!sector)
1373 continue;
1374 } else {
1375 sector = rbio_stripe_sector(rbio, stripe, sectornr);
1376 }
1377
1378 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1379 sectornr, REQ_OP_WRITE);
1380 if (ret)
1381 goto error;
1382 }
1383
1384 if (likely(!rbio->bioc->replace_nr_stripes))
1385 return 0;
1386
1387 /*
1388 * Make a copy for the replace target device.
1389 *
1390 * Thus the source stripe number (in replace_stripe_src) should be valid.
1391 */
1392 ASSERT(rbio->bioc->replace_stripe_src >= 0);
1393
1394 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1395 total_sector_nr++) {
1396 struct sector_ptr *sector;
1397
1398 stripe = total_sector_nr / rbio->stripe_nsectors;
1399 sectornr = total_sector_nr % rbio->stripe_nsectors;
1400
1401 /*
1402 * For RAID56, there is only one device that can be replaced,
1403 * and replace_stripe_src[0] indicates the stripe number we
1404 * need to copy from.
1405 */
1406 if (stripe != rbio->bioc->replace_stripe_src) {
1407 /*
1408 * We can skip the whole stripe completely, note
1409 * total_sector_nr will be increased by one anyway.
1410 */
1411 ASSERT(sectornr == 0);
1412 total_sector_nr += rbio->stripe_nsectors - 1;
1413 continue;
1414 }
1415
1416 /* This vertical stripe has no data, skip it. */
1417 if (!test_bit(sectornr, &rbio->dbitmap))
1418 continue;
1419
1420 if (stripe < rbio->nr_data) {
1421 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1422 if (!sector)
1423 continue;
1424 } else {
1425 sector = rbio_stripe_sector(rbio, stripe, sectornr);
1426 }
1427
1428 ret = rbio_add_io_sector(rbio, bio_list, sector,
1429 rbio->real_stripes,
1430 sectornr, REQ_OP_WRITE);
1431 if (ret)
1432 goto error;
1433 }
1434
1435 return 0;
1436error:
1437 bio_list_put(bio_list);
1438 return -EIO;
1439}
1440
1441static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1442{
1443 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1444 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1445 rbio->bioc->full_stripe_logical;
1446 int total_nr_sector = offset >> fs_info->sectorsize_bits;
1447
1448 ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1449
1450 bitmap_set(rbio->error_bitmap, total_nr_sector,
1451 bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1452
1453 /*
1454 * Special handling for raid56_alloc_missing_rbio() used by
1455 * scrub/replace. Unlike call path in raid56_parity_recover(), they
1456 * pass an empty bio here. Thus we have to find out the missing device
1457 * and mark the stripe error instead.
1458 */
1459 if (bio->bi_iter.bi_size == 0) {
1460 bool found_missing = false;
1461 int stripe_nr;
1462
1463 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1464 if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1465 found_missing = true;
1466 bitmap_set(rbio->error_bitmap,
1467 stripe_nr * rbio->stripe_nsectors,
1468 rbio->stripe_nsectors);
1469 }
1470 }
1471 ASSERT(found_missing);
1472 }
1473}
1474
1475/*
1476 * For subpage case, we can no longer set page Up-to-date directly for
1477 * stripe_pages[], thus we need to locate the sector.
1478 */
1479static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1480 struct page *page,
1481 unsigned int pgoff)
1482{
1483 int i;
1484
1485 for (i = 0; i < rbio->nr_sectors; i++) {
1486 struct sector_ptr *sector = &rbio->stripe_sectors[i];
1487
1488 if (sector->page == page && sector->pgoff == pgoff)
1489 return sector;
1490 }
1491 return NULL;
1492}
1493
1494/*
1495 * this sets each page in the bio uptodate. It should only be used on private
1496 * rbio pages, nothing that comes in from the higher layers
1497 */
1498static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1499{
1500 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1501 struct bio_vec *bvec;
1502 struct bvec_iter_all iter_all;
1503
1504 ASSERT(!bio_flagged(bio, BIO_CLONED));
1505
1506 bio_for_each_segment_all(bvec, bio, iter_all) {
1507 struct sector_ptr *sector;
1508 int pgoff;
1509
1510 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1511 pgoff += sectorsize) {
1512 sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1513 ASSERT(sector);
1514 if (sector)
1515 sector->uptodate = 1;
1516 }
1517 }
1518}
1519
1520static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1521{
1522 struct bio_vec *bv = bio_first_bvec_all(bio);
1523 int i;
1524
1525 for (i = 0; i < rbio->nr_sectors; i++) {
1526 struct sector_ptr *sector;
1527
1528 sector = &rbio->stripe_sectors[i];
1529 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1530 break;
1531 sector = &rbio->bio_sectors[i];
1532 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1533 break;
1534 }
1535 ASSERT(i < rbio->nr_sectors);
1536 return i;
1537}
1538
1539static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1540{
1541 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1542 u32 bio_size = 0;
1543 struct bio_vec *bvec;
1544 int i;
1545
1546 bio_for_each_bvec_all(bvec, bio, i)
1547 bio_size += bvec->bv_len;
1548
1549 /*
1550 * Since we can have multiple bios touching the error_bitmap, we cannot
1551 * call bitmap_set() without protection.
1552 *
1553 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1554 */
1555 for (i = total_sector_nr; i < total_sector_nr +
1556 (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1557 set_bit(i, rbio->error_bitmap);
1558}
1559
1560/* Verify the data sectors at read time. */
1561static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1562 struct bio *bio)
1563{
1564 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1565 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1566 struct bio_vec *bvec;
1567 struct bvec_iter_all iter_all;
1568
1569 /* No data csum for the whole stripe, no need to verify. */
1570 if (!rbio->csum_bitmap || !rbio->csum_buf)
1571 return;
1572
1573 /* P/Q stripes, they have no data csum to verify against. */
1574 if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1575 return;
1576
1577 bio_for_each_segment_all(bvec, bio, iter_all) {
1578 int bv_offset;
1579
1580 for (bv_offset = bvec->bv_offset;
1581 bv_offset < bvec->bv_offset + bvec->bv_len;
1582 bv_offset += fs_info->sectorsize, total_sector_nr++) {
1583 u8 csum_buf[BTRFS_CSUM_SIZE];
1584 u8 *expected_csum = rbio->csum_buf +
1585 total_sector_nr * fs_info->csum_size;
1586 int ret;
1587
1588 /* No csum for this sector, skip to the next sector. */
1589 if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1590 continue;
1591
1592 ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1593 bv_offset, csum_buf, expected_csum);
1594 if (ret < 0)
1595 set_bit(total_sector_nr, rbio->error_bitmap);
1596 }
1597 }
1598}
1599
1600static void raid_wait_read_end_io(struct bio *bio)
1601{
1602 struct btrfs_raid_bio *rbio = bio->bi_private;
1603
1604 if (bio->bi_status) {
1605 rbio_update_error_bitmap(rbio, bio);
1606 } else {
1607 set_bio_pages_uptodate(rbio, bio);
1608 verify_bio_data_sectors(rbio, bio);
1609 }
1610
1611 bio_put(bio);
1612 if (atomic_dec_and_test(&rbio->stripes_pending))
1613 wake_up(&rbio->io_wait);
1614}
1615
1616static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1617 struct bio_list *bio_list)
1618{
1619 struct bio *bio;
1620
1621 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1622 while ((bio = bio_list_pop(bio_list))) {
1623 bio->bi_end_io = raid_wait_read_end_io;
1624
1625 if (trace_raid56_read_enabled()) {
1626 struct raid56_bio_trace_info trace_info = { 0 };
1627
1628 bio_get_trace_info(rbio, bio, &trace_info);
1629 trace_raid56_read(rbio, bio, &trace_info);
1630 }
1631 submit_bio(bio);
1632 }
1633
1634 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1635}
1636
1637static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1638{
1639 const int data_pages = rbio->nr_data * rbio->stripe_npages;
1640 int ret;
1641
1642 ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, false);
1643 if (ret < 0)
1644 return ret;
1645
1646 index_stripe_sectors(rbio);
1647 return 0;
1648}
1649
1650/*
1651 * We use plugging call backs to collect full stripes.
1652 * Any time we get a partial stripe write while plugged
1653 * we collect it into a list. When the unplug comes down,
1654 * we sort the list by logical block number and merge
1655 * everything we can into the same rbios
1656 */
1657struct btrfs_plug_cb {
1658 struct blk_plug_cb cb;
1659 struct btrfs_fs_info *info;
1660 struct list_head rbio_list;
1661};
1662
1663/*
1664 * rbios on the plug list are sorted for easier merging.
1665 */
1666static int plug_cmp(void *priv, const struct list_head *a,
1667 const struct list_head *b)
1668{
1669 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1670 plug_list);
1671 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1672 plug_list);
1673 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1674 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1675
1676 if (a_sector < b_sector)
1677 return -1;
1678 if (a_sector > b_sector)
1679 return 1;
1680 return 0;
1681}
1682
1683static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1684{
1685 struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1686 struct btrfs_raid_bio *cur;
1687 struct btrfs_raid_bio *last = NULL;
1688
1689 list_sort(NULL, &plug->rbio_list, plug_cmp);
1690
1691 while (!list_empty(&plug->rbio_list)) {
1692 cur = list_entry(plug->rbio_list.next,
1693 struct btrfs_raid_bio, plug_list);
1694 list_del_init(&cur->plug_list);
1695
1696 if (rbio_is_full(cur)) {
1697 /* We have a full stripe, queue it down. */
1698 start_async_work(cur, rmw_rbio_work);
1699 continue;
1700 }
1701 if (last) {
1702 if (rbio_can_merge(last, cur)) {
1703 merge_rbio(last, cur);
1704 free_raid_bio(cur);
1705 continue;
1706 }
1707 start_async_work(last, rmw_rbio_work);
1708 }
1709 last = cur;
1710 }
1711 if (last)
1712 start_async_work(last, rmw_rbio_work);
1713 kfree(plug);
1714}
1715
1716/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1717static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1718{
1719 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1720 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1721 const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1722 const u32 orig_len = orig_bio->bi_iter.bi_size;
1723 const u32 sectorsize = fs_info->sectorsize;
1724 u64 cur_logical;
1725
1726 ASSERT_RBIO_LOGICAL(orig_logical >= full_stripe_start &&
1727 orig_logical + orig_len <= full_stripe_start +
1728 rbio->nr_data * BTRFS_STRIPE_LEN,
1729 rbio, orig_logical);
1730
1731 bio_list_add(&rbio->bio_list, orig_bio);
1732 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1733
1734 /* Update the dbitmap. */
1735 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1736 cur_logical += sectorsize) {
1737 int bit = ((u32)(cur_logical - full_stripe_start) >>
1738 fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1739
1740 set_bit(bit, &rbio->dbitmap);
1741 }
1742}
1743
1744/*
1745 * our main entry point for writes from the rest of the FS.
1746 */
1747void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
1748{
1749 struct btrfs_fs_info *fs_info = bioc->fs_info;
1750 struct btrfs_raid_bio *rbio;
1751 struct btrfs_plug_cb *plug = NULL;
1752 struct blk_plug_cb *cb;
1753
1754 rbio = alloc_rbio(fs_info, bioc);
1755 if (IS_ERR(rbio)) {
1756 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1757 bio_endio(bio);
1758 return;
1759 }
1760 rbio->operation = BTRFS_RBIO_WRITE;
1761 rbio_add_bio(rbio, bio);
1762
1763 /*
1764 * Don't plug on full rbios, just get them out the door
1765 * as quickly as we can
1766 */
1767 if (!rbio_is_full(rbio)) {
1768 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1769 if (cb) {
1770 plug = container_of(cb, struct btrfs_plug_cb, cb);
1771 if (!plug->info) {
1772 plug->info = fs_info;
1773 INIT_LIST_HEAD(&plug->rbio_list);
1774 }
1775 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1776 return;
1777 }
1778 }
1779
1780 /*
1781 * Either we don't have any existing plug, or we're doing a full stripe,
1782 * queue the rmw work now.
1783 */
1784 start_async_work(rbio, rmw_rbio_work);
1785}
1786
1787static int verify_one_sector(struct btrfs_raid_bio *rbio,
1788 int stripe_nr, int sector_nr)
1789{
1790 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1791 struct sector_ptr *sector;
1792 u8 csum_buf[BTRFS_CSUM_SIZE];
1793 u8 *csum_expected;
1794 int ret;
1795
1796 if (!rbio->csum_bitmap || !rbio->csum_buf)
1797 return 0;
1798
1799 /* No way to verify P/Q as they are not covered by data csum. */
1800 if (stripe_nr >= rbio->nr_data)
1801 return 0;
1802 /*
1803 * If we're rebuilding a read, we have to use pages from the
1804 * bio list if possible.
1805 */
1806 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1807 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1808 } else {
1809 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1810 }
1811
1812 ASSERT(sector->page);
1813
1814 csum_expected = rbio->csum_buf +
1815 (stripe_nr * rbio->stripe_nsectors + sector_nr) *
1816 fs_info->csum_size;
1817 ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1818 csum_buf, csum_expected);
1819 return ret;
1820}
1821
1822/*
1823 * Recover a vertical stripe specified by @sector_nr.
1824 * @*pointers are the pre-allocated pointers by the caller, so we don't
1825 * need to allocate/free the pointers again and again.
1826 */
1827static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1828 void **pointers, void **unmap_array)
1829{
1830 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1831 struct sector_ptr *sector;
1832 const u32 sectorsize = fs_info->sectorsize;
1833 int found_errors;
1834 int faila;
1835 int failb;
1836 int stripe_nr;
1837 int ret = 0;
1838
1839 /*
1840 * Now we just use bitmap to mark the horizontal stripes in
1841 * which we have data when doing parity scrub.
1842 */
1843 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1844 !test_bit(sector_nr, &rbio->dbitmap))
1845 return 0;
1846
1847 found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1848 &failb);
1849 /*
1850 * No errors in the vertical stripe, skip it. Can happen for recovery
1851 * which only part of a stripe failed csum check.
1852 */
1853 if (!found_errors)
1854 return 0;
1855
1856 if (found_errors > rbio->bioc->max_errors)
1857 return -EIO;
1858
1859 /*
1860 * Setup our array of pointers with sectors from each stripe
1861 *
1862 * NOTE: store a duplicate array of pointers to preserve the
1863 * pointer order.
1864 */
1865 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1866 /*
1867 * If we're rebuilding a read, we have to use pages from the
1868 * bio list if possible.
1869 */
1870 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1871 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1872 } else {
1873 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1874 }
1875 ASSERT(sector->page);
1876 pointers[stripe_nr] = kmap_local_page(sector->page) +
1877 sector->pgoff;
1878 unmap_array[stripe_nr] = pointers[stripe_nr];
1879 }
1880
1881 /* All raid6 handling here */
1882 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1883 /* Single failure, rebuild from parity raid5 style */
1884 if (failb < 0) {
1885 if (faila == rbio->nr_data)
1886 /*
1887 * Just the P stripe has failed, without
1888 * a bad data or Q stripe.
1889 * We have nothing to do, just skip the
1890 * recovery for this stripe.
1891 */
1892 goto cleanup;
1893 /*
1894 * a single failure in raid6 is rebuilt
1895 * in the pstripe code below
1896 */
1897 goto pstripe;
1898 }
1899
1900 /*
1901 * If the q stripe is failed, do a pstripe reconstruction from
1902 * the xors.
1903 * If both the q stripe and the P stripe are failed, we're
1904 * here due to a crc mismatch and we can't give them the
1905 * data they want.
1906 */
1907 if (failb == rbio->real_stripes - 1) {
1908 if (faila == rbio->real_stripes - 2)
1909 /*
1910 * Only P and Q are corrupted.
1911 * We only care about data stripes recovery,
1912 * can skip this vertical stripe.
1913 */
1914 goto cleanup;
1915 /*
1916 * Otherwise we have one bad data stripe and
1917 * a good P stripe. raid5!
1918 */
1919 goto pstripe;
1920 }
1921
1922 if (failb == rbio->real_stripes - 2) {
1923 raid6_datap_recov(rbio->real_stripes, sectorsize,
1924 faila, pointers);
1925 } else {
1926 raid6_2data_recov(rbio->real_stripes, sectorsize,
1927 faila, failb, pointers);
1928 }
1929 } else {
1930 void *p;
1931
1932 /* Rebuild from P stripe here (raid5 or raid6). */
1933 ASSERT(failb == -1);
1934pstripe:
1935 /* Copy parity block into failed block to start with */
1936 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1937
1938 /* Rearrange the pointer array */
1939 p = pointers[faila];
1940 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1941 stripe_nr++)
1942 pointers[stripe_nr] = pointers[stripe_nr + 1];
1943 pointers[rbio->nr_data - 1] = p;
1944
1945 /* Xor in the rest */
1946 run_xor(pointers, rbio->nr_data - 1, sectorsize);
1947
1948 }
1949
1950 /*
1951 * No matter if this is a RMW or recovery, we should have all
1952 * failed sectors repaired in the vertical stripe, thus they are now
1953 * uptodate.
1954 * Especially if we determine to cache the rbio, we need to
1955 * have at least all data sectors uptodate.
1956 *
1957 * If possible, also check if the repaired sector matches its data
1958 * checksum.
1959 */
1960 if (faila >= 0) {
1961 ret = verify_one_sector(rbio, faila, sector_nr);
1962 if (ret < 0)
1963 goto cleanup;
1964
1965 sector = rbio_stripe_sector(rbio, faila, sector_nr);
1966 sector->uptodate = 1;
1967 }
1968 if (failb >= 0) {
1969 ret = verify_one_sector(rbio, failb, sector_nr);
1970 if (ret < 0)
1971 goto cleanup;
1972
1973 sector = rbio_stripe_sector(rbio, failb, sector_nr);
1974 sector->uptodate = 1;
1975 }
1976
1977cleanup:
1978 for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1979 kunmap_local(unmap_array[stripe_nr]);
1980 return ret;
1981}
1982
1983static int recover_sectors(struct btrfs_raid_bio *rbio)
1984{
1985 void **pointers = NULL;
1986 void **unmap_array = NULL;
1987 int sectornr;
1988 int ret = 0;
1989
1990 /*
1991 * @pointers array stores the pointer for each sector.
1992 *
1993 * @unmap_array stores copy of pointers that does not get reordered
1994 * during reconstruction so that kunmap_local works.
1995 */
1996 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1997 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1998 if (!pointers || !unmap_array) {
1999 ret = -ENOMEM;
2000 goto out;
2001 }
2002
2003 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
2004 spin_lock(&rbio->bio_list_lock);
2005 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2006 spin_unlock(&rbio->bio_list_lock);
2007 }
2008
2009 index_rbio_pages(rbio);
2010
2011 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2012 ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
2013 if (ret < 0)
2014 break;
2015 }
2016
2017out:
2018 kfree(pointers);
2019 kfree(unmap_array);
2020 return ret;
2021}
2022
2023static void recover_rbio(struct btrfs_raid_bio *rbio)
2024{
2025 struct bio_list bio_list = BIO_EMPTY_LIST;
2026 int total_sector_nr;
2027 int ret = 0;
2028
2029 /*
2030 * Either we're doing recover for a read failure or degraded write,
2031 * caller should have set error bitmap correctly.
2032 */
2033 ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
2034
2035 /* For recovery, we need to read all sectors including P/Q. */
2036 ret = alloc_rbio_pages(rbio);
2037 if (ret < 0)
2038 goto out;
2039
2040 index_rbio_pages(rbio);
2041
2042 /*
2043 * Read everything that hasn't failed. However this time we will
2044 * not trust any cached sector.
2045 * As we may read out some stale data but higher layer is not reading
2046 * that stale part.
2047 *
2048 * So here we always re-read everything in recovery path.
2049 */
2050 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2051 total_sector_nr++) {
2052 int stripe = total_sector_nr / rbio->stripe_nsectors;
2053 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2054 struct sector_ptr *sector;
2055
2056 /*
2057 * Skip the range which has error. It can be a range which is
2058 * marked error (for csum mismatch), or it can be a missing
2059 * device.
2060 */
2061 if (!rbio->bioc->stripes[stripe].dev->bdev ||
2062 test_bit(total_sector_nr, rbio->error_bitmap)) {
2063 /*
2064 * Also set the error bit for missing device, which
2065 * may not yet have its error bit set.
2066 */
2067 set_bit(total_sector_nr, rbio->error_bitmap);
2068 continue;
2069 }
2070
2071 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2072 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2073 sectornr, REQ_OP_READ);
2074 if (ret < 0) {
2075 bio_list_put(&bio_list);
2076 goto out;
2077 }
2078 }
2079
2080 submit_read_wait_bio_list(rbio, &bio_list);
2081 ret = recover_sectors(rbio);
2082out:
2083 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2084}
2085
2086static void recover_rbio_work(struct work_struct *work)
2087{
2088 struct btrfs_raid_bio *rbio;
2089
2090 rbio = container_of(work, struct btrfs_raid_bio, work);
2091 if (!lock_stripe_add(rbio))
2092 recover_rbio(rbio);
2093}
2094
2095static void recover_rbio_work_locked(struct work_struct *work)
2096{
2097 recover_rbio(container_of(work, struct btrfs_raid_bio, work));
2098}
2099
2100static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2101{
2102 bool found = false;
2103 int sector_nr;
2104
2105 /*
2106 * This is for RAID6 extra recovery tries, thus mirror number should
2107 * be large than 2.
2108 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2109 * RAID5 methods.
2110 */
2111 ASSERT(mirror_num > 2);
2112 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2113 int found_errors;
2114 int faila;
2115 int failb;
2116
2117 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2118 &faila, &failb);
2119 /* This vertical stripe doesn't have errors. */
2120 if (!found_errors)
2121 continue;
2122
2123 /*
2124 * If we found errors, there should be only one error marked
2125 * by previous set_rbio_range_error().
2126 */
2127 ASSERT(found_errors == 1);
2128 found = true;
2129
2130 /* Now select another stripe to mark as error. */
2131 failb = rbio->real_stripes - (mirror_num - 1);
2132 if (failb <= faila)
2133 failb--;
2134
2135 /* Set the extra bit in error bitmap. */
2136 if (failb >= 0)
2137 set_bit(failb * rbio->stripe_nsectors + sector_nr,
2138 rbio->error_bitmap);
2139 }
2140
2141 /* We should found at least one vertical stripe with error.*/
2142 ASSERT(found);
2143}
2144
2145/*
2146 * the main entry point for reads from the higher layers. This
2147 * is really only called when the normal read path had a failure,
2148 * so we assume the bio they send down corresponds to a failed part
2149 * of the drive.
2150 */
2151void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2152 int mirror_num)
2153{
2154 struct btrfs_fs_info *fs_info = bioc->fs_info;
2155 struct btrfs_raid_bio *rbio;
2156
2157 rbio = alloc_rbio(fs_info, bioc);
2158 if (IS_ERR(rbio)) {
2159 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2160 bio_endio(bio);
2161 return;
2162 }
2163
2164 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2165 rbio_add_bio(rbio, bio);
2166
2167 set_rbio_range_error(rbio, bio);
2168
2169 /*
2170 * Loop retry:
2171 * for 'mirror == 2', reconstruct from all other stripes.
2172 * for 'mirror_num > 2', select a stripe to fail on every retry.
2173 */
2174 if (mirror_num > 2)
2175 set_rbio_raid6_extra_error(rbio, mirror_num);
2176
2177 start_async_work(rbio, recover_rbio_work);
2178}
2179
2180static void fill_data_csums(struct btrfs_raid_bio *rbio)
2181{
2182 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2183 struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2184 rbio->bioc->full_stripe_logical);
2185 const u64 start = rbio->bioc->full_stripe_logical;
2186 const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2187 fs_info->sectorsize_bits;
2188 int ret;
2189
2190 /* The rbio should not have its csum buffer initialized. */
2191 ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2192
2193 /*
2194 * Skip the csum search if:
2195 *
2196 * - The rbio doesn't belong to data block groups
2197 * Then we are doing IO for tree blocks, no need to search csums.
2198 *
2199 * - The rbio belongs to mixed block groups
2200 * This is to avoid deadlock, as we're already holding the full
2201 * stripe lock, if we trigger a metadata read, and it needs to do
2202 * raid56 recovery, we will deadlock.
2203 */
2204 if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2205 rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2206 return;
2207
2208 rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2209 fs_info->csum_size, GFP_NOFS);
2210 rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2211 GFP_NOFS);
2212 if (!rbio->csum_buf || !rbio->csum_bitmap) {
2213 ret = -ENOMEM;
2214 goto error;
2215 }
2216
2217 ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2218 rbio->csum_buf, rbio->csum_bitmap);
2219 if (ret < 0)
2220 goto error;
2221 if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2222 goto no_csum;
2223 return;
2224
2225error:
2226 /*
2227 * We failed to allocate memory or grab the csum, but it's not fatal,
2228 * we can still continue. But better to warn users that RMW is no
2229 * longer safe for this particular sub-stripe write.
2230 */
2231 btrfs_warn_rl(fs_info,
2232"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2233 rbio->bioc->full_stripe_logical, ret);
2234no_csum:
2235 kfree(rbio->csum_buf);
2236 bitmap_free(rbio->csum_bitmap);
2237 rbio->csum_buf = NULL;
2238 rbio->csum_bitmap = NULL;
2239}
2240
2241static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2242{
2243 struct bio_list bio_list = BIO_EMPTY_LIST;
2244 int total_sector_nr;
2245 int ret = 0;
2246
2247 /*
2248 * Fill the data csums we need for data verification. We need to fill
2249 * the csum_bitmap/csum_buf first, as our endio function will try to
2250 * verify the data sectors.
2251 */
2252 fill_data_csums(rbio);
2253
2254 /*
2255 * Build a list of bios to read all sectors (including data and P/Q).
2256 *
2257 * This behavior is to compensate the later csum verification and recovery.
2258 */
2259 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2260 total_sector_nr++) {
2261 struct sector_ptr *sector;
2262 int stripe = total_sector_nr / rbio->stripe_nsectors;
2263 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2264
2265 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2266 ret = rbio_add_io_sector(rbio, &bio_list, sector,
2267 stripe, sectornr, REQ_OP_READ);
2268 if (ret) {
2269 bio_list_put(&bio_list);
2270 return ret;
2271 }
2272 }
2273
2274 /*
2275 * We may or may not have any corrupted sectors (including missing dev
2276 * and csum mismatch), just let recover_sectors() to handle them all.
2277 */
2278 submit_read_wait_bio_list(rbio, &bio_list);
2279 return recover_sectors(rbio);
2280}
2281
2282static void raid_wait_write_end_io(struct bio *bio)
2283{
2284 struct btrfs_raid_bio *rbio = bio->bi_private;
2285 blk_status_t err = bio->bi_status;
2286
2287 if (err)
2288 rbio_update_error_bitmap(rbio, bio);
2289 bio_put(bio);
2290 if (atomic_dec_and_test(&rbio->stripes_pending))
2291 wake_up(&rbio->io_wait);
2292}
2293
2294static void submit_write_bios(struct btrfs_raid_bio *rbio,
2295 struct bio_list *bio_list)
2296{
2297 struct bio *bio;
2298
2299 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2300 while ((bio = bio_list_pop(bio_list))) {
2301 bio->bi_end_io = raid_wait_write_end_io;
2302
2303 if (trace_raid56_write_enabled()) {
2304 struct raid56_bio_trace_info trace_info = { 0 };
2305
2306 bio_get_trace_info(rbio, bio, &trace_info);
2307 trace_raid56_write(rbio, bio, &trace_info);
2308 }
2309 submit_bio(bio);
2310 }
2311}
2312
2313/*
2314 * To determine if we need to read any sector from the disk.
2315 * Should only be utilized in RMW path, to skip cached rbio.
2316 */
2317static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2318{
2319 int i;
2320
2321 for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2322 struct sector_ptr *sector = &rbio->stripe_sectors[i];
2323
2324 /*
2325 * We have a sector which doesn't have page nor uptodate,
2326 * thus this rbio can not be cached one, as cached one must
2327 * have all its data sectors present and uptodate.
2328 */
2329 if (!sector->page || !sector->uptodate)
2330 return true;
2331 }
2332 return false;
2333}
2334
2335static void rmw_rbio(struct btrfs_raid_bio *rbio)
2336{
2337 struct bio_list bio_list;
2338 int sectornr;
2339 int ret = 0;
2340
2341 /*
2342 * Allocate the pages for parity first, as P/Q pages will always be
2343 * needed for both full-stripe and sub-stripe writes.
2344 */
2345 ret = alloc_rbio_parity_pages(rbio);
2346 if (ret < 0)
2347 goto out;
2348
2349 /*
2350 * Either full stripe write, or we have every data sector already
2351 * cached, can go to write path immediately.
2352 */
2353 if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2354 /*
2355 * Now we're doing sub-stripe write, also need all data stripes
2356 * to do the full RMW.
2357 */
2358 ret = alloc_rbio_data_pages(rbio);
2359 if (ret < 0)
2360 goto out;
2361
2362 index_rbio_pages(rbio);
2363
2364 ret = rmw_read_wait_recover(rbio);
2365 if (ret < 0)
2366 goto out;
2367 }
2368
2369 /*
2370 * At this stage we're not allowed to add any new bios to the
2371 * bio list any more, anyone else that wants to change this stripe
2372 * needs to do their own rmw.
2373 */
2374 spin_lock(&rbio->bio_list_lock);
2375 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2376 spin_unlock(&rbio->bio_list_lock);
2377
2378 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2379
2380 index_rbio_pages(rbio);
2381
2382 /*
2383 * We don't cache full rbios because we're assuming
2384 * the higher layers are unlikely to use this area of
2385 * the disk again soon. If they do use it again,
2386 * hopefully they will send another full bio.
2387 */
2388 if (!rbio_is_full(rbio))
2389 cache_rbio_pages(rbio);
2390 else
2391 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2392
2393 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2394 generate_pq_vertical(rbio, sectornr);
2395
2396 bio_list_init(&bio_list);
2397 ret = rmw_assemble_write_bios(rbio, &bio_list);
2398 if (ret < 0)
2399 goto out;
2400
2401 /* We should have at least one bio assembled. */
2402 ASSERT(bio_list_size(&bio_list));
2403 submit_write_bios(rbio, &bio_list);
2404 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2405
2406 /* We may have more errors than our tolerance during the read. */
2407 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2408 int found_errors;
2409
2410 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2411 if (found_errors > rbio->bioc->max_errors) {
2412 ret = -EIO;
2413 break;
2414 }
2415 }
2416out:
2417 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2418}
2419
2420static void rmw_rbio_work(struct work_struct *work)
2421{
2422 struct btrfs_raid_bio *rbio;
2423
2424 rbio = container_of(work, struct btrfs_raid_bio, work);
2425 if (lock_stripe_add(rbio) == 0)
2426 rmw_rbio(rbio);
2427}
2428
2429static void rmw_rbio_work_locked(struct work_struct *work)
2430{
2431 rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
2432}
2433
2434/*
2435 * The following code is used to scrub/replace the parity stripe
2436 *
2437 * Caller must have already increased bio_counter for getting @bioc.
2438 *
2439 * Note: We need make sure all the pages that add into the scrub/replace
2440 * raid bio are correct and not be changed during the scrub/replace. That
2441 * is those pages just hold metadata or file data with checksum.
2442 */
2443
2444struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2445 struct btrfs_io_context *bioc,
2446 struct btrfs_device *scrub_dev,
2447 unsigned long *dbitmap, int stripe_nsectors)
2448{
2449 struct btrfs_fs_info *fs_info = bioc->fs_info;
2450 struct btrfs_raid_bio *rbio;
2451 int i;
2452
2453 rbio = alloc_rbio(fs_info, bioc);
2454 if (IS_ERR(rbio))
2455 return NULL;
2456 bio_list_add(&rbio->bio_list, bio);
2457 /*
2458 * This is a special bio which is used to hold the completion handler
2459 * and make the scrub rbio is similar to the other types
2460 */
2461 ASSERT(!bio->bi_iter.bi_size);
2462 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2463
2464 /*
2465 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2466 * to the end position, so this search can start from the first parity
2467 * stripe.
2468 */
2469 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2470 if (bioc->stripes[i].dev == scrub_dev) {
2471 rbio->scrubp = i;
2472 break;
2473 }
2474 }
2475 ASSERT_RBIO_STRIPE(i < rbio->real_stripes, rbio, i);
2476
2477 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2478 return rbio;
2479}
2480
2481/*
2482 * We just scrub the parity that we have correct data on the same horizontal,
2483 * so we needn't allocate all pages for all the stripes.
2484 */
2485static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2486{
2487 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2488 int total_sector_nr;
2489
2490 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2491 total_sector_nr++) {
2492 struct page *page;
2493 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2494 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2495
2496 if (!test_bit(sectornr, &rbio->dbitmap))
2497 continue;
2498 if (rbio->stripe_pages[index])
2499 continue;
2500 page = alloc_page(GFP_NOFS);
2501 if (!page)
2502 return -ENOMEM;
2503 rbio->stripe_pages[index] = page;
2504 }
2505 index_stripe_sectors(rbio);
2506 return 0;
2507}
2508
2509static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
2510{
2511 struct btrfs_io_context *bioc = rbio->bioc;
2512 const u32 sectorsize = bioc->fs_info->sectorsize;
2513 void **pointers = rbio->finish_pointers;
2514 unsigned long *pbitmap = &rbio->finish_pbitmap;
2515 int nr_data = rbio->nr_data;
2516 int stripe;
2517 int sectornr;
2518 bool has_qstripe;
2519 struct sector_ptr p_sector = { 0 };
2520 struct sector_ptr q_sector = { 0 };
2521 struct bio_list bio_list;
2522 int is_replace = 0;
2523 int ret;
2524
2525 bio_list_init(&bio_list);
2526
2527 if (rbio->real_stripes - rbio->nr_data == 1)
2528 has_qstripe = false;
2529 else if (rbio->real_stripes - rbio->nr_data == 2)
2530 has_qstripe = true;
2531 else
2532 BUG();
2533
2534 /*
2535 * Replace is running and our P/Q stripe is being replaced, then we
2536 * need to duplicate the final write to replace target.
2537 */
2538 if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2539 is_replace = 1;
2540 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2541 }
2542
2543 /*
2544 * Because the higher layers(scrubber) are unlikely to
2545 * use this area of the disk again soon, so don't cache
2546 * it.
2547 */
2548 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2549
2550 p_sector.page = alloc_page(GFP_NOFS);
2551 if (!p_sector.page)
2552 return -ENOMEM;
2553 p_sector.pgoff = 0;
2554 p_sector.uptodate = 1;
2555
2556 if (has_qstripe) {
2557 /* RAID6, allocate and map temp space for the Q stripe */
2558 q_sector.page = alloc_page(GFP_NOFS);
2559 if (!q_sector.page) {
2560 __free_page(p_sector.page);
2561 p_sector.page = NULL;
2562 return -ENOMEM;
2563 }
2564 q_sector.pgoff = 0;
2565 q_sector.uptodate = 1;
2566 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2567 }
2568
2569 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2570
2571 /* Map the parity stripe just once */
2572 pointers[nr_data] = kmap_local_page(p_sector.page);
2573
2574 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2575 struct sector_ptr *sector;
2576 void *parity;
2577
2578 /* first collect one page from each data stripe */
2579 for (stripe = 0; stripe < nr_data; stripe++) {
2580 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2581 pointers[stripe] = kmap_local_page(sector->page) +
2582 sector->pgoff;
2583 }
2584
2585 if (has_qstripe) {
2586 assert_rbio(rbio);
2587 /* RAID6, call the library function to fill in our P/Q */
2588 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2589 pointers);
2590 } else {
2591 /* raid5 */
2592 memcpy(pointers[nr_data], pointers[0], sectorsize);
2593 run_xor(pointers + 1, nr_data - 1, sectorsize);
2594 }
2595
2596 /* Check scrubbing parity and repair it */
2597 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2598 parity = kmap_local_page(sector->page) + sector->pgoff;
2599 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2600 memcpy(parity, pointers[rbio->scrubp], sectorsize);
2601 else
2602 /* Parity is right, needn't writeback */
2603 bitmap_clear(&rbio->dbitmap, sectornr, 1);
2604 kunmap_local(parity);
2605
2606 for (stripe = nr_data - 1; stripe >= 0; stripe--)
2607 kunmap_local(pointers[stripe]);
2608 }
2609
2610 kunmap_local(pointers[nr_data]);
2611 __free_page(p_sector.page);
2612 p_sector.page = NULL;
2613 if (q_sector.page) {
2614 kunmap_local(pointers[rbio->real_stripes - 1]);
2615 __free_page(q_sector.page);
2616 q_sector.page = NULL;
2617 }
2618
2619 /*
2620 * time to start writing. Make bios for everything from the
2621 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2622 * everything else.
2623 */
2624 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2625 struct sector_ptr *sector;
2626
2627 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2628 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2629 sectornr, REQ_OP_WRITE);
2630 if (ret)
2631 goto cleanup;
2632 }
2633
2634 if (!is_replace)
2635 goto submit_write;
2636
2637 /*
2638 * Replace is running and our parity stripe needs to be duplicated to
2639 * the target device. Check we have a valid source stripe number.
2640 */
2641 ASSERT_RBIO(rbio->bioc->replace_stripe_src >= 0, rbio);
2642 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2643 struct sector_ptr *sector;
2644
2645 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2646 ret = rbio_add_io_sector(rbio, &bio_list, sector,
2647 rbio->real_stripes,
2648 sectornr, REQ_OP_WRITE);
2649 if (ret)
2650 goto cleanup;
2651 }
2652
2653submit_write:
2654 submit_write_bios(rbio, &bio_list);
2655 return 0;
2656
2657cleanup:
2658 bio_list_put(&bio_list);
2659 return ret;
2660}
2661
2662static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2663{
2664 if (stripe >= 0 && stripe < rbio->nr_data)
2665 return 1;
2666 return 0;
2667}
2668
2669static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2670{
2671 void **pointers = NULL;
2672 void **unmap_array = NULL;
2673 int sector_nr;
2674 int ret = 0;
2675
2676 /*
2677 * @pointers array stores the pointer for each sector.
2678 *
2679 * @unmap_array stores copy of pointers that does not get reordered
2680 * during reconstruction so that kunmap_local works.
2681 */
2682 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2683 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2684 if (!pointers || !unmap_array) {
2685 ret = -ENOMEM;
2686 goto out;
2687 }
2688
2689 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2690 int dfail = 0, failp = -1;
2691 int faila;
2692 int failb;
2693 int found_errors;
2694
2695 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2696 &faila, &failb);
2697 if (found_errors > rbio->bioc->max_errors) {
2698 ret = -EIO;
2699 goto out;
2700 }
2701 if (found_errors == 0)
2702 continue;
2703
2704 /* We should have at least one error here. */
2705 ASSERT(faila >= 0 || failb >= 0);
2706
2707 if (is_data_stripe(rbio, faila))
2708 dfail++;
2709 else if (is_parity_stripe(faila))
2710 failp = faila;
2711
2712 if (is_data_stripe(rbio, failb))
2713 dfail++;
2714 else if (is_parity_stripe(failb))
2715 failp = failb;
2716 /*
2717 * Because we can not use a scrubbing parity to repair the
2718 * data, so the capability of the repair is declined. (In the
2719 * case of RAID5, we can not repair anything.)
2720 */
2721 if (dfail > rbio->bioc->max_errors - 1) {
2722 ret = -EIO;
2723 goto out;
2724 }
2725 /*
2726 * If all data is good, only parity is correctly, just repair
2727 * the parity, no need to recover data stripes.
2728 */
2729 if (dfail == 0)
2730 continue;
2731
2732 /*
2733 * Here means we got one corrupted data stripe and one
2734 * corrupted parity on RAID6, if the corrupted parity is
2735 * scrubbing parity, luckily, use the other one to repair the
2736 * data, or we can not repair the data stripe.
2737 */
2738 if (failp != rbio->scrubp) {
2739 ret = -EIO;
2740 goto out;
2741 }
2742
2743 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2744 if (ret < 0)
2745 goto out;
2746 }
2747out:
2748 kfree(pointers);
2749 kfree(unmap_array);
2750 return ret;
2751}
2752
2753static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2754{
2755 struct bio_list bio_list = BIO_EMPTY_LIST;
2756 int total_sector_nr;
2757 int ret = 0;
2758
2759 /* Build a list of bios to read all the missing parts. */
2760 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2761 total_sector_nr++) {
2762 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2763 int stripe = total_sector_nr / rbio->stripe_nsectors;
2764 struct sector_ptr *sector;
2765
2766 /* No data in the vertical stripe, no need to read. */
2767 if (!test_bit(sectornr, &rbio->dbitmap))
2768 continue;
2769
2770 /*
2771 * We want to find all the sectors missing from the rbio and
2772 * read them from the disk. If sector_in_rbio() finds a sector
2773 * in the bio list we don't need to read it off the stripe.
2774 */
2775 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2776 if (sector)
2777 continue;
2778
2779 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2780 /*
2781 * The bio cache may have handed us an uptodate sector. If so,
2782 * use it.
2783 */
2784 if (sector->uptodate)
2785 continue;
2786
2787 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2788 sectornr, REQ_OP_READ);
2789 if (ret) {
2790 bio_list_put(&bio_list);
2791 return ret;
2792 }
2793 }
2794
2795 submit_read_wait_bio_list(rbio, &bio_list);
2796 return 0;
2797}
2798
2799static void scrub_rbio(struct btrfs_raid_bio *rbio)
2800{
2801 int sector_nr;
2802 int ret;
2803
2804 ret = alloc_rbio_essential_pages(rbio);
2805 if (ret)
2806 goto out;
2807
2808 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2809
2810 ret = scrub_assemble_read_bios(rbio);
2811 if (ret < 0)
2812 goto out;
2813
2814 /* We may have some failures, recover the failed sectors first. */
2815 ret = recover_scrub_rbio(rbio);
2816 if (ret < 0)
2817 goto out;
2818
2819 /*
2820 * We have every sector properly prepared. Can finish the scrub
2821 * and writeback the good content.
2822 */
2823 ret = finish_parity_scrub(rbio);
2824 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2825 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2826 int found_errors;
2827
2828 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2829 if (found_errors > rbio->bioc->max_errors) {
2830 ret = -EIO;
2831 break;
2832 }
2833 }
2834out:
2835 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2836}
2837
2838static void scrub_rbio_work_locked(struct work_struct *work)
2839{
2840 scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2841}
2842
2843void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2844{
2845 if (!lock_stripe_add(rbio))
2846 start_async_work(rbio, scrub_rbio_work_locked);
2847}
2848
2849/*
2850 * This is for scrub call sites where we already have correct data contents.
2851 * This allows us to avoid reading data stripes again.
2852 *
2853 * Unfortunately here we have to do page copy, other than reusing the pages.
2854 * This is due to the fact rbio has its own page management for its cache.
2855 */
2856void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2857 struct page **data_pages, u64 data_logical)
2858{
2859 const u64 offset_in_full_stripe = data_logical -
2860 rbio->bioc->full_stripe_logical;
2861 const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2862 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2863 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2864 int ret;
2865
2866 /*
2867 * If we hit ENOMEM temporarily, but later at
2868 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2869 * the extra read, not a big deal.
2870 *
2871 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2872 * the bio would got proper error number set.
2873 */
2874 ret = alloc_rbio_data_pages(rbio);
2875 if (ret < 0)
2876 return;
2877
2878 /* data_logical must be at stripe boundary and inside the full stripe. */
2879 ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2880 ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2881
2882 for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2883 struct page *dst = rbio->stripe_pages[page_nr + page_index];
2884 struct page *src = data_pages[page_nr];
2885
2886 memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2887 for (int sector_nr = sectors_per_page * page_index;
2888 sector_nr < sectors_per_page * (page_index + 1);
2889 sector_nr++)
2890 rbio->stripe_sectors[sector_nr].uptodate = true;
2891 }
2892}
1/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
34#include <linux/vmalloc.h>
35#include <asm/div64.h>
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
61#define RBIO_CACHE_SIZE 1024
62
63enum btrfs_rbio_ops {
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
68};
69
70struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
73
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
78 */
79 struct list_head hash_list;
80
81 /*
82 * LRU list for the stripe cache
83 */
84 struct list_head stripe_cache;
85
86 /*
87 * for scheduling work in the helper threads
88 */
89 struct btrfs_work work;
90
91 /*
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
95 */
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
98
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
103 * the stripe lock to the next pending IO
104 */
105 struct list_head plug_list;
106
107 /*
108 * flags that tell us if it is safe to
109 * merge with this bio
110 */
111 unsigned long flags;
112
113 /* size of each individual stripe on disk */
114 int stripe_len;
115
116 /* number of data stripes (no p/q) */
117 int nr_data;
118
119 int real_stripes;
120
121 int stripe_npages;
122 /*
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
127 */
128 enum btrfs_rbio_ops operation;
129
130 /* first bad stripe */
131 int faila;
132
133 /* second bad stripe (for raid6 use) */
134 int failb;
135
136 int scrubp;
137 /*
138 * number of pages needed to represent the full
139 * stripe
140 */
141 int nr_pages;
142
143 /*
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
147 */
148 int bio_list_bytes;
149
150 int generic_bio_cnt;
151
152 atomic_t refs;
153
154 atomic_t stripes_pending;
155
156 atomic_t error;
157 /*
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
161 */
162
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
165 */
166 struct page **stripe_pages;
167
168 /*
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
171 */
172 struct page **bio_pages;
173
174 /*
175 * bitmap to record which horizontal stripe has data
176 */
177 unsigned long *dbitmap;
178};
179
180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182static void rmw_work(struct btrfs_work *work);
183static void read_rebuild_work(struct btrfs_work *work);
184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
196/*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201{
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
208 int table_size;
209
210 if (info->stripe_hash_table)
211 return 0;
212
213 /*
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
216 *
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
219 */
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222 if (!table) {
223 table = vzalloc(table_size);
224 if (!table)
225 return -ENOMEM;
226 }
227
228 spin_lock_init(&table->cache_lock);
229 INIT_LIST_HEAD(&table->stripe_cache);
230
231 h = table->table;
232
233 for (i = 0; i < num_entries; i++) {
234 cur = h + i;
235 INIT_LIST_HEAD(&cur->hash_list);
236 spin_lock_init(&cur->lock);
237 init_waitqueue_head(&cur->wait);
238 }
239
240 x = cmpxchg(&info->stripe_hash_table, NULL, table);
241 if (x)
242 kvfree(x);
243 return 0;
244}
245
246/*
247 * caching an rbio means to copy anything from the
248 * bio_pages array into the stripe_pages array. We
249 * use the page uptodate bit in the stripe cache array
250 * to indicate if it has valid data
251 *
252 * once the caching is done, we set the cache ready
253 * bit.
254 */
255static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
256{
257 int i;
258 char *s;
259 char *d;
260 int ret;
261
262 ret = alloc_rbio_pages(rbio);
263 if (ret)
264 return;
265
266 for (i = 0; i < rbio->nr_pages; i++) {
267 if (!rbio->bio_pages[i])
268 continue;
269
270 s = kmap(rbio->bio_pages[i]);
271 d = kmap(rbio->stripe_pages[i]);
272
273 memcpy(d, s, PAGE_SIZE);
274
275 kunmap(rbio->bio_pages[i]);
276 kunmap(rbio->stripe_pages[i]);
277 SetPageUptodate(rbio->stripe_pages[i]);
278 }
279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280}
281
282/*
283 * we hash on the first logical address of the stripe
284 */
285static int rbio_bucket(struct btrfs_raid_bio *rbio)
286{
287 u64 num = rbio->bbio->raid_map[0];
288
289 /*
290 * we shift down quite a bit. We're using byte
291 * addressing, and most of the lower bits are zeros.
292 * This tends to upset hash_64, and it consistently
293 * returns just one or two different values.
294 *
295 * shifting off the lower bits fixes things.
296 */
297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298}
299
300/*
301 * stealing an rbio means taking all the uptodate pages from the stripe
302 * array in the source rbio and putting them into the destination rbio
303 */
304static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
305{
306 int i;
307 struct page *s;
308 struct page *d;
309
310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311 return;
312
313 for (i = 0; i < dest->nr_pages; i++) {
314 s = src->stripe_pages[i];
315 if (!s || !PageUptodate(s)) {
316 continue;
317 }
318
319 d = dest->stripe_pages[i];
320 if (d)
321 __free_page(d);
322
323 dest->stripe_pages[i] = s;
324 src->stripe_pages[i] = NULL;
325 }
326}
327
328/*
329 * merging means we take the bio_list from the victim and
330 * splice it into the destination. The victim should
331 * be discarded afterwards.
332 *
333 * must be called with dest->rbio_list_lock held
334 */
335static void merge_rbio(struct btrfs_raid_bio *dest,
336 struct btrfs_raid_bio *victim)
337{
338 bio_list_merge(&dest->bio_list, &victim->bio_list);
339 dest->bio_list_bytes += victim->bio_list_bytes;
340 dest->generic_bio_cnt += victim->generic_bio_cnt;
341 bio_list_init(&victim->bio_list);
342}
343
344/*
345 * used to prune items that are in the cache. The caller
346 * must hold the hash table lock.
347 */
348static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349{
350 int bucket = rbio_bucket(rbio);
351 struct btrfs_stripe_hash_table *table;
352 struct btrfs_stripe_hash *h;
353 int freeit = 0;
354
355 /*
356 * check the bit again under the hash table lock.
357 */
358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 return;
360
361 table = rbio->fs_info->stripe_hash_table;
362 h = table->table + bucket;
363
364 /* hold the lock for the bucket because we may be
365 * removing it from the hash table
366 */
367 spin_lock(&h->lock);
368
369 /*
370 * hold the lock for the bio list because we need
371 * to make sure the bio list is empty
372 */
373 spin_lock(&rbio->bio_list_lock);
374
375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 list_del_init(&rbio->stripe_cache);
377 table->cache_size -= 1;
378 freeit = 1;
379
380 /* if the bio list isn't empty, this rbio is
381 * still involved in an IO. We take it out
382 * of the cache list, and drop the ref that
383 * was held for the list.
384 *
385 * If the bio_list was empty, we also remove
386 * the rbio from the hash_table, and drop
387 * the corresponding ref
388 */
389 if (bio_list_empty(&rbio->bio_list)) {
390 if (!list_empty(&rbio->hash_list)) {
391 list_del_init(&rbio->hash_list);
392 atomic_dec(&rbio->refs);
393 BUG_ON(!list_empty(&rbio->plug_list));
394 }
395 }
396 }
397
398 spin_unlock(&rbio->bio_list_lock);
399 spin_unlock(&h->lock);
400
401 if (freeit)
402 __free_raid_bio(rbio);
403}
404
405/*
406 * prune a given rbio from the cache
407 */
408static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409{
410 struct btrfs_stripe_hash_table *table;
411 unsigned long flags;
412
413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 return;
415
416 table = rbio->fs_info->stripe_hash_table;
417
418 spin_lock_irqsave(&table->cache_lock, flags);
419 __remove_rbio_from_cache(rbio);
420 spin_unlock_irqrestore(&table->cache_lock, flags);
421}
422
423/*
424 * remove everything in the cache
425 */
426static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
427{
428 struct btrfs_stripe_hash_table *table;
429 unsigned long flags;
430 struct btrfs_raid_bio *rbio;
431
432 table = info->stripe_hash_table;
433
434 spin_lock_irqsave(&table->cache_lock, flags);
435 while (!list_empty(&table->stripe_cache)) {
436 rbio = list_entry(table->stripe_cache.next,
437 struct btrfs_raid_bio,
438 stripe_cache);
439 __remove_rbio_from_cache(rbio);
440 }
441 spin_unlock_irqrestore(&table->cache_lock, flags);
442}
443
444/*
445 * remove all cached entries and free the hash table
446 * used by unmount
447 */
448void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449{
450 if (!info->stripe_hash_table)
451 return;
452 btrfs_clear_rbio_cache(info);
453 kvfree(info->stripe_hash_table);
454 info->stripe_hash_table = NULL;
455}
456
457/*
458 * insert an rbio into the stripe cache. It
459 * must have already been prepared by calling
460 * cache_rbio_pages
461 *
462 * If this rbio was already cached, it gets
463 * moved to the front of the lru.
464 *
465 * If the size of the rbio cache is too big, we
466 * prune an item.
467 */
468static void cache_rbio(struct btrfs_raid_bio *rbio)
469{
470 struct btrfs_stripe_hash_table *table;
471 unsigned long flags;
472
473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 return;
475
476 table = rbio->fs_info->stripe_hash_table;
477
478 spin_lock_irqsave(&table->cache_lock, flags);
479 spin_lock(&rbio->bio_list_lock);
480
481 /* bump our ref if we were not in the list before */
482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 atomic_inc(&rbio->refs);
484
485 if (!list_empty(&rbio->stripe_cache)){
486 list_move(&rbio->stripe_cache, &table->stripe_cache);
487 } else {
488 list_add(&rbio->stripe_cache, &table->stripe_cache);
489 table->cache_size += 1;
490 }
491
492 spin_unlock(&rbio->bio_list_lock);
493
494 if (table->cache_size > RBIO_CACHE_SIZE) {
495 struct btrfs_raid_bio *found;
496
497 found = list_entry(table->stripe_cache.prev,
498 struct btrfs_raid_bio,
499 stripe_cache);
500
501 if (found != rbio)
502 __remove_rbio_from_cache(found);
503 }
504
505 spin_unlock_irqrestore(&table->cache_lock, flags);
506}
507
508/*
509 * helper function to run the xor_blocks api. It is only
510 * able to do MAX_XOR_BLOCKS at a time, so we need to
511 * loop through.
512 */
513static void run_xor(void **pages, int src_cnt, ssize_t len)
514{
515 int src_off = 0;
516 int xor_src_cnt = 0;
517 void *dest = pages[src_cnt];
518
519 while(src_cnt > 0) {
520 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
522
523 src_cnt -= xor_src_cnt;
524 src_off += xor_src_cnt;
525 }
526}
527
528/*
529 * returns true if the bio list inside this rbio
530 * covers an entire stripe (no rmw required).
531 * Must be called with the bio list lock held, or
532 * at a time when you know it is impossible to add
533 * new bios into the list
534 */
535static int __rbio_is_full(struct btrfs_raid_bio *rbio)
536{
537 unsigned long size = rbio->bio_list_bytes;
538 int ret = 1;
539
540 if (size != rbio->nr_data * rbio->stripe_len)
541 ret = 0;
542
543 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
544 return ret;
545}
546
547static int rbio_is_full(struct btrfs_raid_bio *rbio)
548{
549 unsigned long flags;
550 int ret;
551
552 spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 ret = __rbio_is_full(rbio);
554 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
555 return ret;
556}
557
558/*
559 * returns 1 if it is safe to merge two rbios together.
560 * The merging is safe if the two rbios correspond to
561 * the same stripe and if they are both going in the same
562 * direction (read vs write), and if neither one is
563 * locked for final IO
564 *
565 * The caller is responsible for locking such that
566 * rmw_locked is safe to test
567 */
568static int rbio_can_merge(struct btrfs_raid_bio *last,
569 struct btrfs_raid_bio *cur)
570{
571 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
573 return 0;
574
575 /*
576 * we can't merge with cached rbios, since the
577 * idea is that when we merge the destination
578 * rbio is going to run our IO for us. We can
579 * steal from cached rbio's though, other functions
580 * handle that.
581 */
582 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 test_bit(RBIO_CACHE_BIT, &cur->flags))
584 return 0;
585
586 if (last->bbio->raid_map[0] !=
587 cur->bbio->raid_map[0])
588 return 0;
589
590 /* we can't merge with different operations */
591 if (last->operation != cur->operation)
592 return 0;
593 /*
594 * We've need read the full stripe from the drive.
595 * check and repair the parity and write the new results.
596 *
597 * We're not allowed to add any new bios to the
598 * bio list here, anyone else that wants to
599 * change this stripe needs to do their own rmw.
600 */
601 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
603 return 0;
604
605 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
606 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
607 return 0;
608
609 return 1;
610}
611
612static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
613 int index)
614{
615 return stripe * rbio->stripe_npages + index;
616}
617
618/*
619 * these are just the pages from the rbio array, not from anything
620 * the FS sent down to us
621 */
622static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
623 int index)
624{
625 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
626}
627
628/*
629 * helper to index into the pstripe
630 */
631static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
632{
633 return rbio_stripe_page(rbio, rbio->nr_data, index);
634}
635
636/*
637 * helper to index into the qstripe, returns null
638 * if there is no qstripe
639 */
640static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
641{
642 if (rbio->nr_data + 1 == rbio->real_stripes)
643 return NULL;
644 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
645}
646
647/*
648 * The first stripe in the table for a logical address
649 * has the lock. rbios are added in one of three ways:
650 *
651 * 1) Nobody has the stripe locked yet. The rbio is given
652 * the lock and 0 is returned. The caller must start the IO
653 * themselves.
654 *
655 * 2) Someone has the stripe locked, but we're able to merge
656 * with the lock owner. The rbio is freed and the IO will
657 * start automatically along with the existing rbio. 1 is returned.
658 *
659 * 3) Someone has the stripe locked, but we're not able to merge.
660 * The rbio is added to the lock owner's plug list, or merged into
661 * an rbio already on the plug list. When the lock owner unlocks,
662 * the next rbio on the list is run and the IO is started automatically.
663 * 1 is returned
664 *
665 * If we return 0, the caller still owns the rbio and must continue with
666 * IO submission. If we return 1, the caller must assume the rbio has
667 * already been freed.
668 */
669static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
670{
671 int bucket = rbio_bucket(rbio);
672 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
673 struct btrfs_raid_bio *cur;
674 struct btrfs_raid_bio *pending;
675 unsigned long flags;
676 DEFINE_WAIT(wait);
677 struct btrfs_raid_bio *freeit = NULL;
678 struct btrfs_raid_bio *cache_drop = NULL;
679 int ret = 0;
680 int walk = 0;
681
682 spin_lock_irqsave(&h->lock, flags);
683 list_for_each_entry(cur, &h->hash_list, hash_list) {
684 walk++;
685 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
686 spin_lock(&cur->bio_list_lock);
687
688 /* can we steal this cached rbio's pages? */
689 if (bio_list_empty(&cur->bio_list) &&
690 list_empty(&cur->plug_list) &&
691 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
692 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
693 list_del_init(&cur->hash_list);
694 atomic_dec(&cur->refs);
695
696 steal_rbio(cur, rbio);
697 cache_drop = cur;
698 spin_unlock(&cur->bio_list_lock);
699
700 goto lockit;
701 }
702
703 /* can we merge into the lock owner? */
704 if (rbio_can_merge(cur, rbio)) {
705 merge_rbio(cur, rbio);
706 spin_unlock(&cur->bio_list_lock);
707 freeit = rbio;
708 ret = 1;
709 goto out;
710 }
711
712
713 /*
714 * we couldn't merge with the running
715 * rbio, see if we can merge with the
716 * pending ones. We don't have to
717 * check for rmw_locked because there
718 * is no way they are inside finish_rmw
719 * right now
720 */
721 list_for_each_entry(pending, &cur->plug_list,
722 plug_list) {
723 if (rbio_can_merge(pending, rbio)) {
724 merge_rbio(pending, rbio);
725 spin_unlock(&cur->bio_list_lock);
726 freeit = rbio;
727 ret = 1;
728 goto out;
729 }
730 }
731
732 /* no merging, put us on the tail of the plug list,
733 * our rbio will be started with the currently
734 * running rbio unlocks
735 */
736 list_add_tail(&rbio->plug_list, &cur->plug_list);
737 spin_unlock(&cur->bio_list_lock);
738 ret = 1;
739 goto out;
740 }
741 }
742lockit:
743 atomic_inc(&rbio->refs);
744 list_add(&rbio->hash_list, &h->hash_list);
745out:
746 spin_unlock_irqrestore(&h->lock, flags);
747 if (cache_drop)
748 remove_rbio_from_cache(cache_drop);
749 if (freeit)
750 __free_raid_bio(freeit);
751 return ret;
752}
753
754/*
755 * called as rmw or parity rebuild is completed. If the plug list has more
756 * rbios waiting for this stripe, the next one on the list will be started
757 */
758static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
759{
760 int bucket;
761 struct btrfs_stripe_hash *h;
762 unsigned long flags;
763 int keep_cache = 0;
764
765 bucket = rbio_bucket(rbio);
766 h = rbio->fs_info->stripe_hash_table->table + bucket;
767
768 if (list_empty(&rbio->plug_list))
769 cache_rbio(rbio);
770
771 spin_lock_irqsave(&h->lock, flags);
772 spin_lock(&rbio->bio_list_lock);
773
774 if (!list_empty(&rbio->hash_list)) {
775 /*
776 * if we're still cached and there is no other IO
777 * to perform, just leave this rbio here for others
778 * to steal from later
779 */
780 if (list_empty(&rbio->plug_list) &&
781 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
782 keep_cache = 1;
783 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
784 BUG_ON(!bio_list_empty(&rbio->bio_list));
785 goto done;
786 }
787
788 list_del_init(&rbio->hash_list);
789 atomic_dec(&rbio->refs);
790
791 /*
792 * we use the plug list to hold all the rbios
793 * waiting for the chance to lock this stripe.
794 * hand the lock over to one of them.
795 */
796 if (!list_empty(&rbio->plug_list)) {
797 struct btrfs_raid_bio *next;
798 struct list_head *head = rbio->plug_list.next;
799
800 next = list_entry(head, struct btrfs_raid_bio,
801 plug_list);
802
803 list_del_init(&rbio->plug_list);
804
805 list_add(&next->hash_list, &h->hash_list);
806 atomic_inc(&next->refs);
807 spin_unlock(&rbio->bio_list_lock);
808 spin_unlock_irqrestore(&h->lock, flags);
809
810 if (next->operation == BTRFS_RBIO_READ_REBUILD)
811 async_read_rebuild(next);
812 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
813 steal_rbio(rbio, next);
814 async_read_rebuild(next);
815 } else if (next->operation == BTRFS_RBIO_WRITE) {
816 steal_rbio(rbio, next);
817 async_rmw_stripe(next);
818 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
819 steal_rbio(rbio, next);
820 async_scrub_parity(next);
821 }
822
823 goto done_nolock;
824 /*
825 * The barrier for this waitqueue_active is not needed,
826 * we're protected by h->lock and can't miss a wakeup.
827 */
828 } else if (waitqueue_active(&h->wait)) {
829 spin_unlock(&rbio->bio_list_lock);
830 spin_unlock_irqrestore(&h->lock, flags);
831 wake_up(&h->wait);
832 goto done_nolock;
833 }
834 }
835done:
836 spin_unlock(&rbio->bio_list_lock);
837 spin_unlock_irqrestore(&h->lock, flags);
838
839done_nolock:
840 if (!keep_cache)
841 remove_rbio_from_cache(rbio);
842}
843
844static void __free_raid_bio(struct btrfs_raid_bio *rbio)
845{
846 int i;
847
848 WARN_ON(atomic_read(&rbio->refs) < 0);
849 if (!atomic_dec_and_test(&rbio->refs))
850 return;
851
852 WARN_ON(!list_empty(&rbio->stripe_cache));
853 WARN_ON(!list_empty(&rbio->hash_list));
854 WARN_ON(!bio_list_empty(&rbio->bio_list));
855
856 for (i = 0; i < rbio->nr_pages; i++) {
857 if (rbio->stripe_pages[i]) {
858 __free_page(rbio->stripe_pages[i]);
859 rbio->stripe_pages[i] = NULL;
860 }
861 }
862
863 btrfs_put_bbio(rbio->bbio);
864 kfree(rbio);
865}
866
867static void free_raid_bio(struct btrfs_raid_bio *rbio)
868{
869 unlock_stripe(rbio);
870 __free_raid_bio(rbio);
871}
872
873/*
874 * this frees the rbio and runs through all the bios in the
875 * bio_list and calls end_io on them
876 */
877static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
878{
879 struct bio *cur = bio_list_get(&rbio->bio_list);
880 struct bio *next;
881
882 if (rbio->generic_bio_cnt)
883 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
884
885 free_raid_bio(rbio);
886
887 while (cur) {
888 next = cur->bi_next;
889 cur->bi_next = NULL;
890 cur->bi_error = err;
891 bio_endio(cur);
892 cur = next;
893 }
894}
895
896/*
897 * end io function used by finish_rmw. When we finally
898 * get here, we've written a full stripe
899 */
900static void raid_write_end_io(struct bio *bio)
901{
902 struct btrfs_raid_bio *rbio = bio->bi_private;
903 int err = bio->bi_error;
904 int max_errors;
905
906 if (err)
907 fail_bio_stripe(rbio, bio);
908
909 bio_put(bio);
910
911 if (!atomic_dec_and_test(&rbio->stripes_pending))
912 return;
913
914 err = 0;
915
916 /* OK, we have read all the stripes we need to. */
917 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
918 0 : rbio->bbio->max_errors;
919 if (atomic_read(&rbio->error) > max_errors)
920 err = -EIO;
921
922 rbio_orig_end_io(rbio, err);
923}
924
925/*
926 * the read/modify/write code wants to use the original bio for
927 * any pages it included, and then use the rbio for everything
928 * else. This function decides if a given index (stripe number)
929 * and page number in that stripe fall inside the original bio
930 * or the rbio.
931 *
932 * if you set bio_list_only, you'll get a NULL back for any ranges
933 * that are outside the bio_list
934 *
935 * This doesn't take any refs on anything, you get a bare page pointer
936 * and the caller must bump refs as required.
937 *
938 * You must call index_rbio_pages once before you can trust
939 * the answers from this function.
940 */
941static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
942 int index, int pagenr, int bio_list_only)
943{
944 int chunk_page;
945 struct page *p = NULL;
946
947 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
948
949 spin_lock_irq(&rbio->bio_list_lock);
950 p = rbio->bio_pages[chunk_page];
951 spin_unlock_irq(&rbio->bio_list_lock);
952
953 if (p || bio_list_only)
954 return p;
955
956 return rbio->stripe_pages[chunk_page];
957}
958
959/*
960 * number of pages we need for the entire stripe across all the
961 * drives
962 */
963static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
964{
965 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
966}
967
968/*
969 * allocation and initial setup for the btrfs_raid_bio. Not
970 * this does not allocate any pages for rbio->pages.
971 */
972static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
973 struct btrfs_bio *bbio, u64 stripe_len)
974{
975 struct btrfs_raid_bio *rbio;
976 int nr_data = 0;
977 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
978 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
979 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
980 void *p;
981
982 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
983 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
984 sizeof(long), GFP_NOFS);
985 if (!rbio)
986 return ERR_PTR(-ENOMEM);
987
988 bio_list_init(&rbio->bio_list);
989 INIT_LIST_HEAD(&rbio->plug_list);
990 spin_lock_init(&rbio->bio_list_lock);
991 INIT_LIST_HEAD(&rbio->stripe_cache);
992 INIT_LIST_HEAD(&rbio->hash_list);
993 rbio->bbio = bbio;
994 rbio->fs_info = root->fs_info;
995 rbio->stripe_len = stripe_len;
996 rbio->nr_pages = num_pages;
997 rbio->real_stripes = real_stripes;
998 rbio->stripe_npages = stripe_npages;
999 rbio->faila = -1;
1000 rbio->failb = -1;
1001 atomic_set(&rbio->refs, 1);
1002 atomic_set(&rbio->error, 0);
1003 atomic_set(&rbio->stripes_pending, 0);
1004
1005 /*
1006 * the stripe_pages and bio_pages array point to the extra
1007 * memory we allocated past the end of the rbio
1008 */
1009 p = rbio + 1;
1010 rbio->stripe_pages = p;
1011 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1012 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1013
1014 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1015 nr_data = real_stripes - 1;
1016 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1017 nr_data = real_stripes - 2;
1018 else
1019 BUG();
1020
1021 rbio->nr_data = nr_data;
1022 return rbio;
1023}
1024
1025/* allocate pages for all the stripes in the bio, including parity */
1026static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1027{
1028 int i;
1029 struct page *page;
1030
1031 for (i = 0; i < rbio->nr_pages; i++) {
1032 if (rbio->stripe_pages[i])
1033 continue;
1034 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1035 if (!page)
1036 return -ENOMEM;
1037 rbio->stripe_pages[i] = page;
1038 }
1039 return 0;
1040}
1041
1042/* only allocate pages for p/q stripes */
1043static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1044{
1045 int i;
1046 struct page *page;
1047
1048 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1049
1050 for (; i < rbio->nr_pages; i++) {
1051 if (rbio->stripe_pages[i])
1052 continue;
1053 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1054 if (!page)
1055 return -ENOMEM;
1056 rbio->stripe_pages[i] = page;
1057 }
1058 return 0;
1059}
1060
1061/*
1062 * add a single page from a specific stripe into our list of bios for IO
1063 * this will try to merge into existing bios if possible, and returns
1064 * zero if all went well.
1065 */
1066static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1067 struct bio_list *bio_list,
1068 struct page *page,
1069 int stripe_nr,
1070 unsigned long page_index,
1071 unsigned long bio_max_len)
1072{
1073 struct bio *last = bio_list->tail;
1074 u64 last_end = 0;
1075 int ret;
1076 struct bio *bio;
1077 struct btrfs_bio_stripe *stripe;
1078 u64 disk_start;
1079
1080 stripe = &rbio->bbio->stripes[stripe_nr];
1081 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1082
1083 /* if the device is missing, just fail this stripe */
1084 if (!stripe->dev->bdev)
1085 return fail_rbio_index(rbio, stripe_nr);
1086
1087 /* see if we can add this page onto our existing bio */
1088 if (last) {
1089 last_end = (u64)last->bi_iter.bi_sector << 9;
1090 last_end += last->bi_iter.bi_size;
1091
1092 /*
1093 * we can't merge these if they are from different
1094 * devices or if they are not contiguous
1095 */
1096 if (last_end == disk_start && stripe->dev->bdev &&
1097 !last->bi_error &&
1098 last->bi_bdev == stripe->dev->bdev) {
1099 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1100 if (ret == PAGE_SIZE)
1101 return 0;
1102 }
1103 }
1104
1105 /* put a new bio on the list */
1106 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1107 if (!bio)
1108 return -ENOMEM;
1109
1110 bio->bi_iter.bi_size = 0;
1111 bio->bi_bdev = stripe->dev->bdev;
1112 bio->bi_iter.bi_sector = disk_start >> 9;
1113
1114 bio_add_page(bio, page, PAGE_SIZE, 0);
1115 bio_list_add(bio_list, bio);
1116 return 0;
1117}
1118
1119/*
1120 * while we're doing the read/modify/write cycle, we could
1121 * have errors in reading pages off the disk. This checks
1122 * for errors and if we're not able to read the page it'll
1123 * trigger parity reconstruction. The rmw will be finished
1124 * after we've reconstructed the failed stripes
1125 */
1126static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1127{
1128 if (rbio->faila >= 0 || rbio->failb >= 0) {
1129 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1130 __raid56_parity_recover(rbio);
1131 } else {
1132 finish_rmw(rbio);
1133 }
1134}
1135
1136/*
1137 * helper function to walk our bio list and populate the bio_pages array with
1138 * the result. This seems expensive, but it is faster than constantly
1139 * searching through the bio list as we setup the IO in finish_rmw or stripe
1140 * reconstruction.
1141 *
1142 * This must be called before you trust the answers from page_in_rbio
1143 */
1144static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1145{
1146 struct bio *bio;
1147 u64 start;
1148 unsigned long stripe_offset;
1149 unsigned long page_index;
1150 struct page *p;
1151 int i;
1152
1153 spin_lock_irq(&rbio->bio_list_lock);
1154 bio_list_for_each(bio, &rbio->bio_list) {
1155 start = (u64)bio->bi_iter.bi_sector << 9;
1156 stripe_offset = start - rbio->bbio->raid_map[0];
1157 page_index = stripe_offset >> PAGE_SHIFT;
1158
1159 for (i = 0; i < bio->bi_vcnt; i++) {
1160 p = bio->bi_io_vec[i].bv_page;
1161 rbio->bio_pages[page_index + i] = p;
1162 }
1163 }
1164 spin_unlock_irq(&rbio->bio_list_lock);
1165}
1166
1167/*
1168 * this is called from one of two situations. We either
1169 * have a full stripe from the higher layers, or we've read all
1170 * the missing bits off disk.
1171 *
1172 * This will calculate the parity and then send down any
1173 * changed blocks.
1174 */
1175static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1176{
1177 struct btrfs_bio *bbio = rbio->bbio;
1178 void *pointers[rbio->real_stripes];
1179 int nr_data = rbio->nr_data;
1180 int stripe;
1181 int pagenr;
1182 int p_stripe = -1;
1183 int q_stripe = -1;
1184 struct bio_list bio_list;
1185 struct bio *bio;
1186 int ret;
1187
1188 bio_list_init(&bio_list);
1189
1190 if (rbio->real_stripes - rbio->nr_data == 1) {
1191 p_stripe = rbio->real_stripes - 1;
1192 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1193 p_stripe = rbio->real_stripes - 2;
1194 q_stripe = rbio->real_stripes - 1;
1195 } else {
1196 BUG();
1197 }
1198
1199 /* at this point we either have a full stripe,
1200 * or we've read the full stripe from the drive.
1201 * recalculate the parity and write the new results.
1202 *
1203 * We're not allowed to add any new bios to the
1204 * bio list here, anyone else that wants to
1205 * change this stripe needs to do their own rmw.
1206 */
1207 spin_lock_irq(&rbio->bio_list_lock);
1208 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1209 spin_unlock_irq(&rbio->bio_list_lock);
1210
1211 atomic_set(&rbio->error, 0);
1212
1213 /*
1214 * now that we've set rmw_locked, run through the
1215 * bio list one last time and map the page pointers
1216 *
1217 * We don't cache full rbios because we're assuming
1218 * the higher layers are unlikely to use this area of
1219 * the disk again soon. If they do use it again,
1220 * hopefully they will send another full bio.
1221 */
1222 index_rbio_pages(rbio);
1223 if (!rbio_is_full(rbio))
1224 cache_rbio_pages(rbio);
1225 else
1226 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1227
1228 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1229 struct page *p;
1230 /* first collect one page from each data stripe */
1231 for (stripe = 0; stripe < nr_data; stripe++) {
1232 p = page_in_rbio(rbio, stripe, pagenr, 0);
1233 pointers[stripe] = kmap(p);
1234 }
1235
1236 /* then add the parity stripe */
1237 p = rbio_pstripe_page(rbio, pagenr);
1238 SetPageUptodate(p);
1239 pointers[stripe++] = kmap(p);
1240
1241 if (q_stripe != -1) {
1242
1243 /*
1244 * raid6, add the qstripe and call the
1245 * library function to fill in our p/q
1246 */
1247 p = rbio_qstripe_page(rbio, pagenr);
1248 SetPageUptodate(p);
1249 pointers[stripe++] = kmap(p);
1250
1251 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1252 pointers);
1253 } else {
1254 /* raid5 */
1255 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1256 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1257 }
1258
1259
1260 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1261 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1262 }
1263
1264 /*
1265 * time to start writing. Make bios for everything from the
1266 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1267 * everything else.
1268 */
1269 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1270 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1271 struct page *page;
1272 if (stripe < rbio->nr_data) {
1273 page = page_in_rbio(rbio, stripe, pagenr, 1);
1274 if (!page)
1275 continue;
1276 } else {
1277 page = rbio_stripe_page(rbio, stripe, pagenr);
1278 }
1279
1280 ret = rbio_add_io_page(rbio, &bio_list,
1281 page, stripe, pagenr, rbio->stripe_len);
1282 if (ret)
1283 goto cleanup;
1284 }
1285 }
1286
1287 if (likely(!bbio->num_tgtdevs))
1288 goto write_data;
1289
1290 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1291 if (!bbio->tgtdev_map[stripe])
1292 continue;
1293
1294 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1295 struct page *page;
1296 if (stripe < rbio->nr_data) {
1297 page = page_in_rbio(rbio, stripe, pagenr, 1);
1298 if (!page)
1299 continue;
1300 } else {
1301 page = rbio_stripe_page(rbio, stripe, pagenr);
1302 }
1303
1304 ret = rbio_add_io_page(rbio, &bio_list, page,
1305 rbio->bbio->tgtdev_map[stripe],
1306 pagenr, rbio->stripe_len);
1307 if (ret)
1308 goto cleanup;
1309 }
1310 }
1311
1312write_data:
1313 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1314 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1315
1316 while (1) {
1317 bio = bio_list_pop(&bio_list);
1318 if (!bio)
1319 break;
1320
1321 bio->bi_private = rbio;
1322 bio->bi_end_io = raid_write_end_io;
1323 submit_bio(WRITE, bio);
1324 }
1325 return;
1326
1327cleanup:
1328 rbio_orig_end_io(rbio, -EIO);
1329}
1330
1331/*
1332 * helper to find the stripe number for a given bio. Used to figure out which
1333 * stripe has failed. This expects the bio to correspond to a physical disk,
1334 * so it looks up based on physical sector numbers.
1335 */
1336static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1337 struct bio *bio)
1338{
1339 u64 physical = bio->bi_iter.bi_sector;
1340 u64 stripe_start;
1341 int i;
1342 struct btrfs_bio_stripe *stripe;
1343
1344 physical <<= 9;
1345
1346 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1347 stripe = &rbio->bbio->stripes[i];
1348 stripe_start = stripe->physical;
1349 if (physical >= stripe_start &&
1350 physical < stripe_start + rbio->stripe_len &&
1351 bio->bi_bdev == stripe->dev->bdev) {
1352 return i;
1353 }
1354 }
1355 return -1;
1356}
1357
1358/*
1359 * helper to find the stripe number for a given
1360 * bio (before mapping). Used to figure out which stripe has
1361 * failed. This looks up based on logical block numbers.
1362 */
1363static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1364 struct bio *bio)
1365{
1366 u64 logical = bio->bi_iter.bi_sector;
1367 u64 stripe_start;
1368 int i;
1369
1370 logical <<= 9;
1371
1372 for (i = 0; i < rbio->nr_data; i++) {
1373 stripe_start = rbio->bbio->raid_map[i];
1374 if (logical >= stripe_start &&
1375 logical < stripe_start + rbio->stripe_len) {
1376 return i;
1377 }
1378 }
1379 return -1;
1380}
1381
1382/*
1383 * returns -EIO if we had too many failures
1384 */
1385static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1386{
1387 unsigned long flags;
1388 int ret = 0;
1389
1390 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1391
1392 /* we already know this stripe is bad, move on */
1393 if (rbio->faila == failed || rbio->failb == failed)
1394 goto out;
1395
1396 if (rbio->faila == -1) {
1397 /* first failure on this rbio */
1398 rbio->faila = failed;
1399 atomic_inc(&rbio->error);
1400 } else if (rbio->failb == -1) {
1401 /* second failure on this rbio */
1402 rbio->failb = failed;
1403 atomic_inc(&rbio->error);
1404 } else {
1405 ret = -EIO;
1406 }
1407out:
1408 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1409
1410 return ret;
1411}
1412
1413/*
1414 * helper to fail a stripe based on a physical disk
1415 * bio.
1416 */
1417static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1418 struct bio *bio)
1419{
1420 int failed = find_bio_stripe(rbio, bio);
1421
1422 if (failed < 0)
1423 return -EIO;
1424
1425 return fail_rbio_index(rbio, failed);
1426}
1427
1428/*
1429 * this sets each page in the bio uptodate. It should only be used on private
1430 * rbio pages, nothing that comes in from the higher layers
1431 */
1432static void set_bio_pages_uptodate(struct bio *bio)
1433{
1434 int i;
1435 struct page *p;
1436
1437 for (i = 0; i < bio->bi_vcnt; i++) {
1438 p = bio->bi_io_vec[i].bv_page;
1439 SetPageUptodate(p);
1440 }
1441}
1442
1443/*
1444 * end io for the read phase of the rmw cycle. All the bios here are physical
1445 * stripe bios we've read from the disk so we can recalculate the parity of the
1446 * stripe.
1447 *
1448 * This will usually kick off finish_rmw once all the bios are read in, but it
1449 * may trigger parity reconstruction if we had any errors along the way
1450 */
1451static void raid_rmw_end_io(struct bio *bio)
1452{
1453 struct btrfs_raid_bio *rbio = bio->bi_private;
1454
1455 if (bio->bi_error)
1456 fail_bio_stripe(rbio, bio);
1457 else
1458 set_bio_pages_uptodate(bio);
1459
1460 bio_put(bio);
1461
1462 if (!atomic_dec_and_test(&rbio->stripes_pending))
1463 return;
1464
1465 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1466 goto cleanup;
1467
1468 /*
1469 * this will normally call finish_rmw to start our write
1470 * but if there are any failed stripes we'll reconstruct
1471 * from parity first
1472 */
1473 validate_rbio_for_rmw(rbio);
1474 return;
1475
1476cleanup:
1477
1478 rbio_orig_end_io(rbio, -EIO);
1479}
1480
1481static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1482{
1483 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1484 rmw_work, NULL, NULL);
1485
1486 btrfs_queue_work(rbio->fs_info->rmw_workers,
1487 &rbio->work);
1488}
1489
1490static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1491{
1492 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1493 read_rebuild_work, NULL, NULL);
1494
1495 btrfs_queue_work(rbio->fs_info->rmw_workers,
1496 &rbio->work);
1497}
1498
1499/*
1500 * the stripe must be locked by the caller. It will
1501 * unlock after all the writes are done
1502 */
1503static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1504{
1505 int bios_to_read = 0;
1506 struct bio_list bio_list;
1507 int ret;
1508 int pagenr;
1509 int stripe;
1510 struct bio *bio;
1511
1512 bio_list_init(&bio_list);
1513
1514 ret = alloc_rbio_pages(rbio);
1515 if (ret)
1516 goto cleanup;
1517
1518 index_rbio_pages(rbio);
1519
1520 atomic_set(&rbio->error, 0);
1521 /*
1522 * build a list of bios to read all the missing parts of this
1523 * stripe
1524 */
1525 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1526 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1527 struct page *page;
1528 /*
1529 * we want to find all the pages missing from
1530 * the rbio and read them from the disk. If
1531 * page_in_rbio finds a page in the bio list
1532 * we don't need to read it off the stripe.
1533 */
1534 page = page_in_rbio(rbio, stripe, pagenr, 1);
1535 if (page)
1536 continue;
1537
1538 page = rbio_stripe_page(rbio, stripe, pagenr);
1539 /*
1540 * the bio cache may have handed us an uptodate
1541 * page. If so, be happy and use it
1542 */
1543 if (PageUptodate(page))
1544 continue;
1545
1546 ret = rbio_add_io_page(rbio, &bio_list, page,
1547 stripe, pagenr, rbio->stripe_len);
1548 if (ret)
1549 goto cleanup;
1550 }
1551 }
1552
1553 bios_to_read = bio_list_size(&bio_list);
1554 if (!bios_to_read) {
1555 /*
1556 * this can happen if others have merged with
1557 * us, it means there is nothing left to read.
1558 * But if there are missing devices it may not be
1559 * safe to do the full stripe write yet.
1560 */
1561 goto finish;
1562 }
1563
1564 /*
1565 * the bbio may be freed once we submit the last bio. Make sure
1566 * not to touch it after that
1567 */
1568 atomic_set(&rbio->stripes_pending, bios_to_read);
1569 while (1) {
1570 bio = bio_list_pop(&bio_list);
1571 if (!bio)
1572 break;
1573
1574 bio->bi_private = rbio;
1575 bio->bi_end_io = raid_rmw_end_io;
1576
1577 btrfs_bio_wq_end_io(rbio->fs_info, bio,
1578 BTRFS_WQ_ENDIO_RAID56);
1579
1580 submit_bio(READ, bio);
1581 }
1582 /* the actual write will happen once the reads are done */
1583 return 0;
1584
1585cleanup:
1586 rbio_orig_end_io(rbio, -EIO);
1587 return -EIO;
1588
1589finish:
1590 validate_rbio_for_rmw(rbio);
1591 return 0;
1592}
1593
1594/*
1595 * if the upper layers pass in a full stripe, we thank them by only allocating
1596 * enough pages to hold the parity, and sending it all down quickly.
1597 */
1598static int full_stripe_write(struct btrfs_raid_bio *rbio)
1599{
1600 int ret;
1601
1602 ret = alloc_rbio_parity_pages(rbio);
1603 if (ret) {
1604 __free_raid_bio(rbio);
1605 return ret;
1606 }
1607
1608 ret = lock_stripe_add(rbio);
1609 if (ret == 0)
1610 finish_rmw(rbio);
1611 return 0;
1612}
1613
1614/*
1615 * partial stripe writes get handed over to async helpers.
1616 * We're really hoping to merge a few more writes into this
1617 * rbio before calculating new parity
1618 */
1619static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1620{
1621 int ret;
1622
1623 ret = lock_stripe_add(rbio);
1624 if (ret == 0)
1625 async_rmw_stripe(rbio);
1626 return 0;
1627}
1628
1629/*
1630 * sometimes while we were reading from the drive to
1631 * recalculate parity, enough new bios come into create
1632 * a full stripe. So we do a check here to see if we can
1633 * go directly to finish_rmw
1634 */
1635static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1636{
1637 /* head off into rmw land if we don't have a full stripe */
1638 if (!rbio_is_full(rbio))
1639 return partial_stripe_write(rbio);
1640 return full_stripe_write(rbio);
1641}
1642
1643/*
1644 * We use plugging call backs to collect full stripes.
1645 * Any time we get a partial stripe write while plugged
1646 * we collect it into a list. When the unplug comes down,
1647 * we sort the list by logical block number and merge
1648 * everything we can into the same rbios
1649 */
1650struct btrfs_plug_cb {
1651 struct blk_plug_cb cb;
1652 struct btrfs_fs_info *info;
1653 struct list_head rbio_list;
1654 struct btrfs_work work;
1655};
1656
1657/*
1658 * rbios on the plug list are sorted for easier merging.
1659 */
1660static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1661{
1662 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1663 plug_list);
1664 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1665 plug_list);
1666 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1667 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1668
1669 if (a_sector < b_sector)
1670 return -1;
1671 if (a_sector > b_sector)
1672 return 1;
1673 return 0;
1674}
1675
1676static void run_plug(struct btrfs_plug_cb *plug)
1677{
1678 struct btrfs_raid_bio *cur;
1679 struct btrfs_raid_bio *last = NULL;
1680
1681 /*
1682 * sort our plug list then try to merge
1683 * everything we can in hopes of creating full
1684 * stripes.
1685 */
1686 list_sort(NULL, &plug->rbio_list, plug_cmp);
1687 while (!list_empty(&plug->rbio_list)) {
1688 cur = list_entry(plug->rbio_list.next,
1689 struct btrfs_raid_bio, plug_list);
1690 list_del_init(&cur->plug_list);
1691
1692 if (rbio_is_full(cur)) {
1693 /* we have a full stripe, send it down */
1694 full_stripe_write(cur);
1695 continue;
1696 }
1697 if (last) {
1698 if (rbio_can_merge(last, cur)) {
1699 merge_rbio(last, cur);
1700 __free_raid_bio(cur);
1701 continue;
1702
1703 }
1704 __raid56_parity_write(last);
1705 }
1706 last = cur;
1707 }
1708 if (last) {
1709 __raid56_parity_write(last);
1710 }
1711 kfree(plug);
1712}
1713
1714/*
1715 * if the unplug comes from schedule, we have to push the
1716 * work off to a helper thread
1717 */
1718static void unplug_work(struct btrfs_work *work)
1719{
1720 struct btrfs_plug_cb *plug;
1721 plug = container_of(work, struct btrfs_plug_cb, work);
1722 run_plug(plug);
1723}
1724
1725static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1726{
1727 struct btrfs_plug_cb *plug;
1728 plug = container_of(cb, struct btrfs_plug_cb, cb);
1729
1730 if (from_schedule) {
1731 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1732 unplug_work, NULL, NULL);
1733 btrfs_queue_work(plug->info->rmw_workers,
1734 &plug->work);
1735 return;
1736 }
1737 run_plug(plug);
1738}
1739
1740/*
1741 * our main entry point for writes from the rest of the FS.
1742 */
1743int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1744 struct btrfs_bio *bbio, u64 stripe_len)
1745{
1746 struct btrfs_raid_bio *rbio;
1747 struct btrfs_plug_cb *plug = NULL;
1748 struct blk_plug_cb *cb;
1749 int ret;
1750
1751 rbio = alloc_rbio(root, bbio, stripe_len);
1752 if (IS_ERR(rbio)) {
1753 btrfs_put_bbio(bbio);
1754 return PTR_ERR(rbio);
1755 }
1756 bio_list_add(&rbio->bio_list, bio);
1757 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1758 rbio->operation = BTRFS_RBIO_WRITE;
1759
1760 btrfs_bio_counter_inc_noblocked(root->fs_info);
1761 rbio->generic_bio_cnt = 1;
1762
1763 /*
1764 * don't plug on full rbios, just get them out the door
1765 * as quickly as we can
1766 */
1767 if (rbio_is_full(rbio)) {
1768 ret = full_stripe_write(rbio);
1769 if (ret)
1770 btrfs_bio_counter_dec(root->fs_info);
1771 return ret;
1772 }
1773
1774 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1775 sizeof(*plug));
1776 if (cb) {
1777 plug = container_of(cb, struct btrfs_plug_cb, cb);
1778 if (!plug->info) {
1779 plug->info = root->fs_info;
1780 INIT_LIST_HEAD(&plug->rbio_list);
1781 }
1782 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1783 ret = 0;
1784 } else {
1785 ret = __raid56_parity_write(rbio);
1786 if (ret)
1787 btrfs_bio_counter_dec(root->fs_info);
1788 }
1789 return ret;
1790}
1791
1792/*
1793 * all parity reconstruction happens here. We've read in everything
1794 * we can find from the drives and this does the heavy lifting of
1795 * sorting the good from the bad.
1796 */
1797static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1798{
1799 int pagenr, stripe;
1800 void **pointers;
1801 int faila = -1, failb = -1;
1802 struct page *page;
1803 int err;
1804 int i;
1805
1806 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1807 if (!pointers) {
1808 err = -ENOMEM;
1809 goto cleanup_io;
1810 }
1811
1812 faila = rbio->faila;
1813 failb = rbio->failb;
1814
1815 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1816 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1817 spin_lock_irq(&rbio->bio_list_lock);
1818 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1819 spin_unlock_irq(&rbio->bio_list_lock);
1820 }
1821
1822 index_rbio_pages(rbio);
1823
1824 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1825 /*
1826 * Now we just use bitmap to mark the horizontal stripes in
1827 * which we have data when doing parity scrub.
1828 */
1829 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1830 !test_bit(pagenr, rbio->dbitmap))
1831 continue;
1832
1833 /* setup our array of pointers with pages
1834 * from each stripe
1835 */
1836 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1837 /*
1838 * if we're rebuilding a read, we have to use
1839 * pages from the bio list
1840 */
1841 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1842 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1843 (stripe == faila || stripe == failb)) {
1844 page = page_in_rbio(rbio, stripe, pagenr, 0);
1845 } else {
1846 page = rbio_stripe_page(rbio, stripe, pagenr);
1847 }
1848 pointers[stripe] = kmap(page);
1849 }
1850
1851 /* all raid6 handling here */
1852 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1853 /*
1854 * single failure, rebuild from parity raid5
1855 * style
1856 */
1857 if (failb < 0) {
1858 if (faila == rbio->nr_data) {
1859 /*
1860 * Just the P stripe has failed, without
1861 * a bad data or Q stripe.
1862 * TODO, we should redo the xor here.
1863 */
1864 err = -EIO;
1865 goto cleanup;
1866 }
1867 /*
1868 * a single failure in raid6 is rebuilt
1869 * in the pstripe code below
1870 */
1871 goto pstripe;
1872 }
1873
1874 /* make sure our ps and qs are in order */
1875 if (faila > failb) {
1876 int tmp = failb;
1877 failb = faila;
1878 faila = tmp;
1879 }
1880
1881 /* if the q stripe is failed, do a pstripe reconstruction
1882 * from the xors.
1883 * If both the q stripe and the P stripe are failed, we're
1884 * here due to a crc mismatch and we can't give them the
1885 * data they want
1886 */
1887 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1888 if (rbio->bbio->raid_map[faila] ==
1889 RAID5_P_STRIPE) {
1890 err = -EIO;
1891 goto cleanup;
1892 }
1893 /*
1894 * otherwise we have one bad data stripe and
1895 * a good P stripe. raid5!
1896 */
1897 goto pstripe;
1898 }
1899
1900 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1901 raid6_datap_recov(rbio->real_stripes,
1902 PAGE_SIZE, faila, pointers);
1903 } else {
1904 raid6_2data_recov(rbio->real_stripes,
1905 PAGE_SIZE, faila, failb,
1906 pointers);
1907 }
1908 } else {
1909 void *p;
1910
1911 /* rebuild from P stripe here (raid5 or raid6) */
1912 BUG_ON(failb != -1);
1913pstripe:
1914 /* Copy parity block into failed block to start with */
1915 memcpy(pointers[faila],
1916 pointers[rbio->nr_data],
1917 PAGE_SIZE);
1918
1919 /* rearrange the pointer array */
1920 p = pointers[faila];
1921 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1922 pointers[stripe] = pointers[stripe + 1];
1923 pointers[rbio->nr_data - 1] = p;
1924
1925 /* xor in the rest */
1926 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1927 }
1928 /* if we're doing this rebuild as part of an rmw, go through
1929 * and set all of our private rbio pages in the
1930 * failed stripes as uptodate. This way finish_rmw will
1931 * know they can be trusted. If this was a read reconstruction,
1932 * other endio functions will fiddle the uptodate bits
1933 */
1934 if (rbio->operation == BTRFS_RBIO_WRITE) {
1935 for (i = 0; i < rbio->stripe_npages; i++) {
1936 if (faila != -1) {
1937 page = rbio_stripe_page(rbio, faila, i);
1938 SetPageUptodate(page);
1939 }
1940 if (failb != -1) {
1941 page = rbio_stripe_page(rbio, failb, i);
1942 SetPageUptodate(page);
1943 }
1944 }
1945 }
1946 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1947 /*
1948 * if we're rebuilding a read, we have to use
1949 * pages from the bio list
1950 */
1951 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1952 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1953 (stripe == faila || stripe == failb)) {
1954 page = page_in_rbio(rbio, stripe, pagenr, 0);
1955 } else {
1956 page = rbio_stripe_page(rbio, stripe, pagenr);
1957 }
1958 kunmap(page);
1959 }
1960 }
1961
1962 err = 0;
1963cleanup:
1964 kfree(pointers);
1965
1966cleanup_io:
1967 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1968 if (err == 0)
1969 cache_rbio_pages(rbio);
1970 else
1971 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1972
1973 rbio_orig_end_io(rbio, err);
1974 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1975 rbio_orig_end_io(rbio, err);
1976 } else if (err == 0) {
1977 rbio->faila = -1;
1978 rbio->failb = -1;
1979
1980 if (rbio->operation == BTRFS_RBIO_WRITE)
1981 finish_rmw(rbio);
1982 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1983 finish_parity_scrub(rbio, 0);
1984 else
1985 BUG();
1986 } else {
1987 rbio_orig_end_io(rbio, err);
1988 }
1989}
1990
1991/*
1992 * This is called only for stripes we've read from disk to
1993 * reconstruct the parity.
1994 */
1995static void raid_recover_end_io(struct bio *bio)
1996{
1997 struct btrfs_raid_bio *rbio = bio->bi_private;
1998
1999 /*
2000 * we only read stripe pages off the disk, set them
2001 * up to date if there were no errors
2002 */
2003 if (bio->bi_error)
2004 fail_bio_stripe(rbio, bio);
2005 else
2006 set_bio_pages_uptodate(bio);
2007 bio_put(bio);
2008
2009 if (!atomic_dec_and_test(&rbio->stripes_pending))
2010 return;
2011
2012 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2013 rbio_orig_end_io(rbio, -EIO);
2014 else
2015 __raid_recover_end_io(rbio);
2016}
2017
2018/*
2019 * reads everything we need off the disk to reconstruct
2020 * the parity. endio handlers trigger final reconstruction
2021 * when the IO is done.
2022 *
2023 * This is used both for reads from the higher layers and for
2024 * parity construction required to finish a rmw cycle.
2025 */
2026static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2027{
2028 int bios_to_read = 0;
2029 struct bio_list bio_list;
2030 int ret;
2031 int pagenr;
2032 int stripe;
2033 struct bio *bio;
2034
2035 bio_list_init(&bio_list);
2036
2037 ret = alloc_rbio_pages(rbio);
2038 if (ret)
2039 goto cleanup;
2040
2041 atomic_set(&rbio->error, 0);
2042
2043 /*
2044 * read everything that hasn't failed. Thanks to the
2045 * stripe cache, it is possible that some or all of these
2046 * pages are going to be uptodate.
2047 */
2048 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2049 if (rbio->faila == stripe || rbio->failb == stripe) {
2050 atomic_inc(&rbio->error);
2051 continue;
2052 }
2053
2054 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2055 struct page *p;
2056
2057 /*
2058 * the rmw code may have already read this
2059 * page in
2060 */
2061 p = rbio_stripe_page(rbio, stripe, pagenr);
2062 if (PageUptodate(p))
2063 continue;
2064
2065 ret = rbio_add_io_page(rbio, &bio_list,
2066 rbio_stripe_page(rbio, stripe, pagenr),
2067 stripe, pagenr, rbio->stripe_len);
2068 if (ret < 0)
2069 goto cleanup;
2070 }
2071 }
2072
2073 bios_to_read = bio_list_size(&bio_list);
2074 if (!bios_to_read) {
2075 /*
2076 * we might have no bios to read just because the pages
2077 * were up to date, or we might have no bios to read because
2078 * the devices were gone.
2079 */
2080 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2081 __raid_recover_end_io(rbio);
2082 goto out;
2083 } else {
2084 goto cleanup;
2085 }
2086 }
2087
2088 /*
2089 * the bbio may be freed once we submit the last bio. Make sure
2090 * not to touch it after that
2091 */
2092 atomic_set(&rbio->stripes_pending, bios_to_read);
2093 while (1) {
2094 bio = bio_list_pop(&bio_list);
2095 if (!bio)
2096 break;
2097
2098 bio->bi_private = rbio;
2099 bio->bi_end_io = raid_recover_end_io;
2100
2101 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2102 BTRFS_WQ_ENDIO_RAID56);
2103
2104 submit_bio(READ, bio);
2105 }
2106out:
2107 return 0;
2108
2109cleanup:
2110 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2111 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2112 rbio_orig_end_io(rbio, -EIO);
2113 return -EIO;
2114}
2115
2116/*
2117 * the main entry point for reads from the higher layers. This
2118 * is really only called when the normal read path had a failure,
2119 * so we assume the bio they send down corresponds to a failed part
2120 * of the drive.
2121 */
2122int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2123 struct btrfs_bio *bbio, u64 stripe_len,
2124 int mirror_num, int generic_io)
2125{
2126 struct btrfs_raid_bio *rbio;
2127 int ret;
2128
2129 rbio = alloc_rbio(root, bbio, stripe_len);
2130 if (IS_ERR(rbio)) {
2131 if (generic_io)
2132 btrfs_put_bbio(bbio);
2133 return PTR_ERR(rbio);
2134 }
2135
2136 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2137 bio_list_add(&rbio->bio_list, bio);
2138 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2139
2140 rbio->faila = find_logical_bio_stripe(rbio, bio);
2141 if (rbio->faila == -1) {
2142 BUG();
2143 if (generic_io)
2144 btrfs_put_bbio(bbio);
2145 kfree(rbio);
2146 return -EIO;
2147 }
2148
2149 if (generic_io) {
2150 btrfs_bio_counter_inc_noblocked(root->fs_info);
2151 rbio->generic_bio_cnt = 1;
2152 } else {
2153 btrfs_get_bbio(bbio);
2154 }
2155
2156 /*
2157 * reconstruct from the q stripe if they are
2158 * asking for mirror 3
2159 */
2160 if (mirror_num == 3)
2161 rbio->failb = rbio->real_stripes - 2;
2162
2163 ret = lock_stripe_add(rbio);
2164
2165 /*
2166 * __raid56_parity_recover will end the bio with
2167 * any errors it hits. We don't want to return
2168 * its error value up the stack because our caller
2169 * will end up calling bio_endio with any nonzero
2170 * return
2171 */
2172 if (ret == 0)
2173 __raid56_parity_recover(rbio);
2174 /*
2175 * our rbio has been added to the list of
2176 * rbios that will be handled after the
2177 * currently lock owner is done
2178 */
2179 return 0;
2180
2181}
2182
2183static void rmw_work(struct btrfs_work *work)
2184{
2185 struct btrfs_raid_bio *rbio;
2186
2187 rbio = container_of(work, struct btrfs_raid_bio, work);
2188 raid56_rmw_stripe(rbio);
2189}
2190
2191static void read_rebuild_work(struct btrfs_work *work)
2192{
2193 struct btrfs_raid_bio *rbio;
2194
2195 rbio = container_of(work, struct btrfs_raid_bio, work);
2196 __raid56_parity_recover(rbio);
2197}
2198
2199/*
2200 * The following code is used to scrub/replace the parity stripe
2201 *
2202 * Note: We need make sure all the pages that add into the scrub/replace
2203 * raid bio are correct and not be changed during the scrub/replace. That
2204 * is those pages just hold metadata or file data with checksum.
2205 */
2206
2207struct btrfs_raid_bio *
2208raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2209 struct btrfs_bio *bbio, u64 stripe_len,
2210 struct btrfs_device *scrub_dev,
2211 unsigned long *dbitmap, int stripe_nsectors)
2212{
2213 struct btrfs_raid_bio *rbio;
2214 int i;
2215
2216 rbio = alloc_rbio(root, bbio, stripe_len);
2217 if (IS_ERR(rbio))
2218 return NULL;
2219 bio_list_add(&rbio->bio_list, bio);
2220 /*
2221 * This is a special bio which is used to hold the completion handler
2222 * and make the scrub rbio is similar to the other types
2223 */
2224 ASSERT(!bio->bi_iter.bi_size);
2225 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2226
2227 for (i = 0; i < rbio->real_stripes; i++) {
2228 if (bbio->stripes[i].dev == scrub_dev) {
2229 rbio->scrubp = i;
2230 break;
2231 }
2232 }
2233
2234 /* Now we just support the sectorsize equals to page size */
2235 ASSERT(root->sectorsize == PAGE_SIZE);
2236 ASSERT(rbio->stripe_npages == stripe_nsectors);
2237 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2238
2239 return rbio;
2240}
2241
2242/* Used for both parity scrub and missing. */
2243void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2244 u64 logical)
2245{
2246 int stripe_offset;
2247 int index;
2248
2249 ASSERT(logical >= rbio->bbio->raid_map[0]);
2250 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2251 rbio->stripe_len * rbio->nr_data);
2252 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2253 index = stripe_offset >> PAGE_SHIFT;
2254 rbio->bio_pages[index] = page;
2255}
2256
2257/*
2258 * We just scrub the parity that we have correct data on the same horizontal,
2259 * so we needn't allocate all pages for all the stripes.
2260 */
2261static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2262{
2263 int i;
2264 int bit;
2265 int index;
2266 struct page *page;
2267
2268 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2269 for (i = 0; i < rbio->real_stripes; i++) {
2270 index = i * rbio->stripe_npages + bit;
2271 if (rbio->stripe_pages[index])
2272 continue;
2273
2274 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2275 if (!page)
2276 return -ENOMEM;
2277 rbio->stripe_pages[index] = page;
2278 }
2279 }
2280 return 0;
2281}
2282
2283static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2284 int need_check)
2285{
2286 struct btrfs_bio *bbio = rbio->bbio;
2287 void *pointers[rbio->real_stripes];
2288 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2289 int nr_data = rbio->nr_data;
2290 int stripe;
2291 int pagenr;
2292 int p_stripe = -1;
2293 int q_stripe = -1;
2294 struct page *p_page = NULL;
2295 struct page *q_page = NULL;
2296 struct bio_list bio_list;
2297 struct bio *bio;
2298 int is_replace = 0;
2299 int ret;
2300
2301 bio_list_init(&bio_list);
2302
2303 if (rbio->real_stripes - rbio->nr_data == 1) {
2304 p_stripe = rbio->real_stripes - 1;
2305 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2306 p_stripe = rbio->real_stripes - 2;
2307 q_stripe = rbio->real_stripes - 1;
2308 } else {
2309 BUG();
2310 }
2311
2312 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2313 is_replace = 1;
2314 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2315 }
2316
2317 /*
2318 * Because the higher layers(scrubber) are unlikely to
2319 * use this area of the disk again soon, so don't cache
2320 * it.
2321 */
2322 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2323
2324 if (!need_check)
2325 goto writeback;
2326
2327 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2328 if (!p_page)
2329 goto cleanup;
2330 SetPageUptodate(p_page);
2331
2332 if (q_stripe != -1) {
2333 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2334 if (!q_page) {
2335 __free_page(p_page);
2336 goto cleanup;
2337 }
2338 SetPageUptodate(q_page);
2339 }
2340
2341 atomic_set(&rbio->error, 0);
2342
2343 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2344 struct page *p;
2345 void *parity;
2346 /* first collect one page from each data stripe */
2347 for (stripe = 0; stripe < nr_data; stripe++) {
2348 p = page_in_rbio(rbio, stripe, pagenr, 0);
2349 pointers[stripe] = kmap(p);
2350 }
2351
2352 /* then add the parity stripe */
2353 pointers[stripe++] = kmap(p_page);
2354
2355 if (q_stripe != -1) {
2356
2357 /*
2358 * raid6, add the qstripe and call the
2359 * library function to fill in our p/q
2360 */
2361 pointers[stripe++] = kmap(q_page);
2362
2363 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2364 pointers);
2365 } else {
2366 /* raid5 */
2367 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2368 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2369 }
2370
2371 /* Check scrubbing pairty and repair it */
2372 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2373 parity = kmap(p);
2374 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2375 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2376 else
2377 /* Parity is right, needn't writeback */
2378 bitmap_clear(rbio->dbitmap, pagenr, 1);
2379 kunmap(p);
2380
2381 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2382 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2383 }
2384
2385 __free_page(p_page);
2386 if (q_page)
2387 __free_page(q_page);
2388
2389writeback:
2390 /*
2391 * time to start writing. Make bios for everything from the
2392 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2393 * everything else.
2394 */
2395 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2396 struct page *page;
2397
2398 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2399 ret = rbio_add_io_page(rbio, &bio_list,
2400 page, rbio->scrubp, pagenr, rbio->stripe_len);
2401 if (ret)
2402 goto cleanup;
2403 }
2404
2405 if (!is_replace)
2406 goto submit_write;
2407
2408 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2409 struct page *page;
2410
2411 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2412 ret = rbio_add_io_page(rbio, &bio_list, page,
2413 bbio->tgtdev_map[rbio->scrubp],
2414 pagenr, rbio->stripe_len);
2415 if (ret)
2416 goto cleanup;
2417 }
2418
2419submit_write:
2420 nr_data = bio_list_size(&bio_list);
2421 if (!nr_data) {
2422 /* Every parity is right */
2423 rbio_orig_end_io(rbio, 0);
2424 return;
2425 }
2426
2427 atomic_set(&rbio->stripes_pending, nr_data);
2428
2429 while (1) {
2430 bio = bio_list_pop(&bio_list);
2431 if (!bio)
2432 break;
2433
2434 bio->bi_private = rbio;
2435 bio->bi_end_io = raid_write_end_io;
2436 submit_bio(WRITE, bio);
2437 }
2438 return;
2439
2440cleanup:
2441 rbio_orig_end_io(rbio, -EIO);
2442}
2443
2444static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2445{
2446 if (stripe >= 0 && stripe < rbio->nr_data)
2447 return 1;
2448 return 0;
2449}
2450
2451/*
2452 * While we're doing the parity check and repair, we could have errors
2453 * in reading pages off the disk. This checks for errors and if we're
2454 * not able to read the page it'll trigger parity reconstruction. The
2455 * parity scrub will be finished after we've reconstructed the failed
2456 * stripes
2457 */
2458static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2459{
2460 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2461 goto cleanup;
2462
2463 if (rbio->faila >= 0 || rbio->failb >= 0) {
2464 int dfail = 0, failp = -1;
2465
2466 if (is_data_stripe(rbio, rbio->faila))
2467 dfail++;
2468 else if (is_parity_stripe(rbio->faila))
2469 failp = rbio->faila;
2470
2471 if (is_data_stripe(rbio, rbio->failb))
2472 dfail++;
2473 else if (is_parity_stripe(rbio->failb))
2474 failp = rbio->failb;
2475
2476 /*
2477 * Because we can not use a scrubbing parity to repair
2478 * the data, so the capability of the repair is declined.
2479 * (In the case of RAID5, we can not repair anything)
2480 */
2481 if (dfail > rbio->bbio->max_errors - 1)
2482 goto cleanup;
2483
2484 /*
2485 * If all data is good, only parity is correctly, just
2486 * repair the parity.
2487 */
2488 if (dfail == 0) {
2489 finish_parity_scrub(rbio, 0);
2490 return;
2491 }
2492
2493 /*
2494 * Here means we got one corrupted data stripe and one
2495 * corrupted parity on RAID6, if the corrupted parity
2496 * is scrubbing parity, luckly, use the other one to repair
2497 * the data, or we can not repair the data stripe.
2498 */
2499 if (failp != rbio->scrubp)
2500 goto cleanup;
2501
2502 __raid_recover_end_io(rbio);
2503 } else {
2504 finish_parity_scrub(rbio, 1);
2505 }
2506 return;
2507
2508cleanup:
2509 rbio_orig_end_io(rbio, -EIO);
2510}
2511
2512/*
2513 * end io for the read phase of the rmw cycle. All the bios here are physical
2514 * stripe bios we've read from the disk so we can recalculate the parity of the
2515 * stripe.
2516 *
2517 * This will usually kick off finish_rmw once all the bios are read in, but it
2518 * may trigger parity reconstruction if we had any errors along the way
2519 */
2520static void raid56_parity_scrub_end_io(struct bio *bio)
2521{
2522 struct btrfs_raid_bio *rbio = bio->bi_private;
2523
2524 if (bio->bi_error)
2525 fail_bio_stripe(rbio, bio);
2526 else
2527 set_bio_pages_uptodate(bio);
2528
2529 bio_put(bio);
2530
2531 if (!atomic_dec_and_test(&rbio->stripes_pending))
2532 return;
2533
2534 /*
2535 * this will normally call finish_rmw to start our write
2536 * but if there are any failed stripes we'll reconstruct
2537 * from parity first
2538 */
2539 validate_rbio_for_parity_scrub(rbio);
2540}
2541
2542static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2543{
2544 int bios_to_read = 0;
2545 struct bio_list bio_list;
2546 int ret;
2547 int pagenr;
2548 int stripe;
2549 struct bio *bio;
2550
2551 ret = alloc_rbio_essential_pages(rbio);
2552 if (ret)
2553 goto cleanup;
2554
2555 bio_list_init(&bio_list);
2556
2557 atomic_set(&rbio->error, 0);
2558 /*
2559 * build a list of bios to read all the missing parts of this
2560 * stripe
2561 */
2562 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2563 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2564 struct page *page;
2565 /*
2566 * we want to find all the pages missing from
2567 * the rbio and read them from the disk. If
2568 * page_in_rbio finds a page in the bio list
2569 * we don't need to read it off the stripe.
2570 */
2571 page = page_in_rbio(rbio, stripe, pagenr, 1);
2572 if (page)
2573 continue;
2574
2575 page = rbio_stripe_page(rbio, stripe, pagenr);
2576 /*
2577 * the bio cache may have handed us an uptodate
2578 * page. If so, be happy and use it
2579 */
2580 if (PageUptodate(page))
2581 continue;
2582
2583 ret = rbio_add_io_page(rbio, &bio_list, page,
2584 stripe, pagenr, rbio->stripe_len);
2585 if (ret)
2586 goto cleanup;
2587 }
2588 }
2589
2590 bios_to_read = bio_list_size(&bio_list);
2591 if (!bios_to_read) {
2592 /*
2593 * this can happen if others have merged with
2594 * us, it means there is nothing left to read.
2595 * But if there are missing devices it may not be
2596 * safe to do the full stripe write yet.
2597 */
2598 goto finish;
2599 }
2600
2601 /*
2602 * the bbio may be freed once we submit the last bio. Make sure
2603 * not to touch it after that
2604 */
2605 atomic_set(&rbio->stripes_pending, bios_to_read);
2606 while (1) {
2607 bio = bio_list_pop(&bio_list);
2608 if (!bio)
2609 break;
2610
2611 bio->bi_private = rbio;
2612 bio->bi_end_io = raid56_parity_scrub_end_io;
2613
2614 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2615 BTRFS_WQ_ENDIO_RAID56);
2616
2617 submit_bio(READ, bio);
2618 }
2619 /* the actual write will happen once the reads are done */
2620 return;
2621
2622cleanup:
2623 rbio_orig_end_io(rbio, -EIO);
2624 return;
2625
2626finish:
2627 validate_rbio_for_parity_scrub(rbio);
2628}
2629
2630static void scrub_parity_work(struct btrfs_work *work)
2631{
2632 struct btrfs_raid_bio *rbio;
2633
2634 rbio = container_of(work, struct btrfs_raid_bio, work);
2635 raid56_parity_scrub_stripe(rbio);
2636}
2637
2638static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2639{
2640 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2641 scrub_parity_work, NULL, NULL);
2642
2643 btrfs_queue_work(rbio->fs_info->rmw_workers,
2644 &rbio->work);
2645}
2646
2647void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2648{
2649 if (!lock_stripe_add(rbio))
2650 async_scrub_parity(rbio);
2651}
2652
2653/* The following code is used for dev replace of a missing RAID 5/6 device. */
2654
2655struct btrfs_raid_bio *
2656raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio,
2657 struct btrfs_bio *bbio, u64 length)
2658{
2659 struct btrfs_raid_bio *rbio;
2660
2661 rbio = alloc_rbio(root, bbio, length);
2662 if (IS_ERR(rbio))
2663 return NULL;
2664
2665 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2666 bio_list_add(&rbio->bio_list, bio);
2667 /*
2668 * This is a special bio which is used to hold the completion handler
2669 * and make the scrub rbio is similar to the other types
2670 */
2671 ASSERT(!bio->bi_iter.bi_size);
2672
2673 rbio->faila = find_logical_bio_stripe(rbio, bio);
2674 if (rbio->faila == -1) {
2675 BUG();
2676 kfree(rbio);
2677 return NULL;
2678 }
2679
2680 return rbio;
2681}
2682
2683static void missing_raid56_work(struct btrfs_work *work)
2684{
2685 struct btrfs_raid_bio *rbio;
2686
2687 rbio = container_of(work, struct btrfs_raid_bio, work);
2688 __raid56_parity_recover(rbio);
2689}
2690
2691static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2692{
2693 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2694 missing_raid56_work, NULL, NULL);
2695
2696 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2697}
2698
2699void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2700{
2701 if (!lock_stripe_add(rbio))
2702 async_missing_raid56(rbio);
2703}