Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Fusion-io  All rights reserved.
   4 * Copyright (C) 2012 Intel Corp. All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/sched.h>
 
   8#include <linux/bio.h>
   9#include <linux/slab.h>
 
  10#include <linux/blkdev.h>
 
 
 
 
 
  11#include <linux/raid/pq.h>
  12#include <linux/hash.h>
  13#include <linux/list_sort.h>
  14#include <linux/raid/xor.h>
  15#include <linux/mm.h>
  16#include "messages.h"
  17#include "ctree.h"
 
  18#include "disk-io.h"
 
 
  19#include "volumes.h"
  20#include "raid56.h"
  21#include "async-thread.h"
  22#include "file-item.h"
  23#include "btrfs_inode.h"
  24
  25/* set when additional merges to this rbio are not allowed */
  26#define RBIO_RMW_LOCKED_BIT	1
  27
  28/*
  29 * set when this rbio is sitting in the hash, but it is just a cache
  30 * of past RMW
  31 */
  32#define RBIO_CACHE_BIT		2
  33
  34/*
  35 * set when it is safe to trust the stripe_pages for caching
  36 */
  37#define RBIO_CACHE_READY_BIT	3
  38
  39#define RBIO_CACHE_SIZE 1024
  40
  41#define BTRFS_STRIPE_HASH_TABLE_BITS				11
 
 
 
 
 
  42
  43static void dump_bioc(const struct btrfs_fs_info *fs_info, const struct btrfs_io_context *bioc)
  44{
  45	if (unlikely(!bioc)) {
  46		btrfs_crit(fs_info, "bioc=NULL");
  47		return;
  48	}
  49	btrfs_crit(fs_info,
  50"bioc logical=%llu full_stripe=%llu size=%llu map_type=0x%llx mirror=%u replace_nr_stripes=%u replace_stripe_src=%d num_stripes=%u",
  51		bioc->logical, bioc->full_stripe_logical, bioc->size,
  52		bioc->map_type, bioc->mirror_num, bioc->replace_nr_stripes,
  53		bioc->replace_stripe_src, bioc->num_stripes);
  54	for (int i = 0; i < bioc->num_stripes; i++) {
  55		btrfs_crit(fs_info, "    nr=%d devid=%llu physical=%llu",
  56			   i, bioc->stripes[i].dev->devid,
  57			   bioc->stripes[i].physical);
  58	}
  59}
  60
  61static void btrfs_dump_rbio(const struct btrfs_fs_info *fs_info,
  62			    const struct btrfs_raid_bio *rbio)
  63{
  64	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
  65		return;
  66
  67	dump_bioc(fs_info, rbio->bioc);
  68	btrfs_crit(fs_info,
  69"rbio flags=0x%lx nr_sectors=%u nr_data=%u real_stripes=%u stripe_nsectors=%u scrubp=%u dbitmap=0x%lx",
  70		rbio->flags, rbio->nr_sectors, rbio->nr_data,
  71		rbio->real_stripes, rbio->stripe_nsectors,
  72		rbio->scrubp, rbio->dbitmap);
  73}
  74
  75#define ASSERT_RBIO(expr, rbio)						\
  76({									\
  77	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
  78		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
  79					(rbio)->bioc->fs_info : NULL;	\
  80									\
  81		btrfs_dump_rbio(__fs_info, (rbio));			\
  82	}								\
  83	ASSERT((expr));							\
  84})
  85
  86#define ASSERT_RBIO_STRIPE(expr, rbio, stripe_nr)			\
  87({									\
  88	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
  89		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
  90					(rbio)->bioc->fs_info : NULL;	\
  91									\
  92		btrfs_dump_rbio(__fs_info, (rbio));			\
  93		btrfs_crit(__fs_info, "stripe_nr=%d", (stripe_nr));	\
  94	}								\
  95	ASSERT((expr));							\
  96})
  97
  98#define ASSERT_RBIO_SECTOR(expr, rbio, sector_nr)			\
  99({									\
 100	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
 101		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
 102					(rbio)->bioc->fs_info : NULL;	\
 103									\
 104		btrfs_dump_rbio(__fs_info, (rbio));			\
 105		btrfs_crit(__fs_info, "sector_nr=%d", (sector_nr));	\
 106	}								\
 107	ASSERT((expr));							\
 108})
 109
 110#define ASSERT_RBIO_LOGICAL(expr, rbio, logical)			\
 111({									\
 112	if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\
 113		const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\
 114					(rbio)->bioc->fs_info : NULL;	\
 115									\
 116		btrfs_dump_rbio(__fs_info, (rbio));			\
 117		btrfs_crit(__fs_info, "logical=%llu", (logical));		\
 118	}								\
 119	ASSERT((expr));							\
 120})
 121
 122/* Used by the raid56 code to lock stripes for read/modify/write */
 123struct btrfs_stripe_hash {
 124	struct list_head hash_list;
 125	spinlock_t lock;
 126};
 
 
 127
 128/* Used by the raid56 code to lock stripes for read/modify/write */
 129struct btrfs_stripe_hash_table {
 130	struct list_head stripe_cache;
 131	spinlock_t cache_lock;
 132	int cache_size;
 133	struct btrfs_stripe_hash table[];
 134};
 135
 136/*
 137 * A bvec like structure to present a sector inside a page.
 138 *
 139 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
 140 */
 141struct sector_ptr {
 142	struct page *page;
 143	unsigned int pgoff:24;
 144	unsigned int uptodate:8;
 145};
 146
 147static void rmw_rbio_work(struct work_struct *work);
 148static void rmw_rbio_work_locked(struct work_struct *work);
 149static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 150static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 151
 152static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
 153static void scrub_rbio_work_locked(struct work_struct *work);
 154
 155static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
 156{
 157	bitmap_free(rbio->error_bitmap);
 158	kfree(rbio->stripe_pages);
 159	kfree(rbio->bio_sectors);
 160	kfree(rbio->stripe_sectors);
 161	kfree(rbio->finish_pointers);
 162}
 163
 164static void free_raid_bio(struct btrfs_raid_bio *rbio)
 165{
 166	int i;
 
 
 
 
 
 167
 168	if (!refcount_dec_and_test(&rbio->refs))
 169		return;
 170
 171	WARN_ON(!list_empty(&rbio->stripe_cache));
 172	WARN_ON(!list_empty(&rbio->hash_list));
 173	WARN_ON(!bio_list_empty(&rbio->bio_list));
 174
 175	for (i = 0; i < rbio->nr_pages; i++) {
 176		if (rbio->stripe_pages[i]) {
 177			__free_page(rbio->stripe_pages[i]);
 178			rbio->stripe_pages[i] = NULL;
 179		}
 180	}
 181
 182	btrfs_put_bioc(rbio->bioc);
 183	free_raid_bio_pointers(rbio);
 184	kfree(rbio);
 185}
 
 
 186
 187static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
 188{
 189	INIT_WORK(&rbio->work, work_func);
 190	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
 191}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 192
 193/*
 194 * the stripe hash table is used for locking, and to collect
 195 * bios in hopes of making a full stripe
 196 */
 197int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 198{
 199	struct btrfs_stripe_hash_table *table;
 200	struct btrfs_stripe_hash_table *x;
 201	struct btrfs_stripe_hash *cur;
 202	struct btrfs_stripe_hash *h;
 203	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 204	int i;
 
 205
 206	if (info->stripe_hash_table)
 207		return 0;
 208
 209	/*
 210	 * The table is large, starting with order 4 and can go as high as
 211	 * order 7 in case lock debugging is turned on.
 212	 *
 213	 * Try harder to allocate and fallback to vmalloc to lower the chance
 214	 * of a failing mount.
 215	 */
 216	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
 217	if (!table)
 218		return -ENOMEM;
 
 
 
 
 219
 220	spin_lock_init(&table->cache_lock);
 221	INIT_LIST_HEAD(&table->stripe_cache);
 222
 223	h = table->table;
 224
 225	for (i = 0; i < num_entries; i++) {
 226		cur = h + i;
 227		INIT_LIST_HEAD(&cur->hash_list);
 228		spin_lock_init(&cur->lock);
 
 229	}
 230
 231	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 232	kvfree(x);
 
 233	return 0;
 234}
 235
 236/*
 237 * caching an rbio means to copy anything from the
 238 * bio_sectors array into the stripe_pages array.  We
 239 * use the page uptodate bit in the stripe cache array
 240 * to indicate if it has valid data
 241 *
 242 * once the caching is done, we set the cache ready
 243 * bit.
 244 */
 245static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 246{
 247	int i;
 
 
 248	int ret;
 249
 250	ret = alloc_rbio_pages(rbio);
 251	if (ret)
 252		return;
 253
 254	for (i = 0; i < rbio->nr_sectors; i++) {
 255		/* Some range not covered by bio (partial write), skip it */
 256		if (!rbio->bio_sectors[i].page) {
 257			/*
 258			 * Even if the sector is not covered by bio, if it is
 259			 * a data sector it should still be uptodate as it is
 260			 * read from disk.
 261			 */
 262			if (i < rbio->nr_data * rbio->stripe_nsectors)
 263				ASSERT(rbio->stripe_sectors[i].uptodate);
 264			continue;
 265		}
 266
 267		ASSERT(rbio->stripe_sectors[i].page);
 268		memcpy_page(rbio->stripe_sectors[i].page,
 269			    rbio->stripe_sectors[i].pgoff,
 270			    rbio->bio_sectors[i].page,
 271			    rbio->bio_sectors[i].pgoff,
 272			    rbio->bioc->fs_info->sectorsize);
 273		rbio->stripe_sectors[i].uptodate = 1;
 
 274	}
 275	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 276}
 277
 278/*
 279 * we hash on the first logical address of the stripe
 280 */
 281static int rbio_bucket(struct btrfs_raid_bio *rbio)
 282{
 283	u64 num = rbio->bioc->full_stripe_logical;
 284
 285	/*
 286	 * we shift down quite a bit.  We're using byte
 287	 * addressing, and most of the lower bits are zeros.
 288	 * This tends to upset hash_64, and it consistently
 289	 * returns just one or two different values.
 290	 *
 291	 * shifting off the lower bits fixes things.
 292	 */
 293	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 294}
 295
 296static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
 297				       unsigned int page_nr)
 298{
 299	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 300	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 301	int i;
 302
 303	ASSERT(page_nr < rbio->nr_pages);
 304
 305	for (i = sectors_per_page * page_nr;
 306	     i < sectors_per_page * page_nr + sectors_per_page;
 307	     i++) {
 308		if (!rbio->stripe_sectors[i].uptodate)
 309			return false;
 310	}
 311	return true;
 312}
 313
 314/*
 315 * Update the stripe_sectors[] array to use correct page and pgoff
 316 *
 317 * Should be called every time any page pointer in stripes_pages[] got modified.
 318 */
 319static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
 320{
 321	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 322	u32 offset;
 323	int i;
 324
 325	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
 326		int page_index = offset >> PAGE_SHIFT;
 327
 328		ASSERT(page_index < rbio->nr_pages);
 329		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
 330		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
 331	}
 332}
 333
 334static void steal_rbio_page(struct btrfs_raid_bio *src,
 335			    struct btrfs_raid_bio *dest, int page_nr)
 336{
 337	const u32 sectorsize = src->bioc->fs_info->sectorsize;
 338	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 339	int i;
 340
 341	if (dest->stripe_pages[page_nr])
 342		__free_page(dest->stripe_pages[page_nr]);
 343	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
 344	src->stripe_pages[page_nr] = NULL;
 345
 346	/* Also update the sector->uptodate bits. */
 347	for (i = sectors_per_page * page_nr;
 348	     i < sectors_per_page * page_nr + sectors_per_page; i++)
 349		dest->stripe_sectors[i].uptodate = true;
 350}
 351
 352static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
 353{
 354	const int sector_nr = (page_nr << PAGE_SHIFT) >>
 355			      rbio->bioc->fs_info->sectorsize_bits;
 356
 357	/*
 358	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
 359	 * we won't have a page which is half data half parity.
 360	 *
 361	 * Thus if the first sector of the page belongs to data stripes, then
 362	 * the full page belongs to data stripes.
 363	 */
 364	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
 365}
 366
 367/*
 368 * Stealing an rbio means taking all the uptodate pages from the stripe array
 369 * in the source rbio and putting them into the destination rbio.
 370 *
 371 * This will also update the involved stripe_sectors[] which are referring to
 372 * the old pages.
 373 */
 374static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 375{
 376	int i;
 
 
 377
 378	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 379		return;
 380
 381	for (i = 0; i < dest->nr_pages; i++) {
 382		struct page *p = src->stripe_pages[i];
 383
 384		/*
 385		 * We don't need to steal P/Q pages as they will always be
 386		 * regenerated for RMW or full write anyway.
 387		 */
 388		if (!is_data_stripe_page(src, i))
 389			continue;
 
 390
 391		/*
 392		 * If @src already has RBIO_CACHE_READY_BIT, it should have
 393		 * all data stripe pages present and uptodate.
 394		 */
 395		ASSERT(p);
 396		ASSERT(full_page_sectors_uptodate(src, i));
 397		steal_rbio_page(src, dest, i);
 398	}
 399	index_stripe_sectors(dest);
 400	index_stripe_sectors(src);
 401}
 402
 403/*
 404 * merging means we take the bio_list from the victim and
 405 * splice it into the destination.  The victim should
 406 * be discarded afterwards.
 407 *
 408 * must be called with dest->rbio_list_lock held
 409 */
 410static void merge_rbio(struct btrfs_raid_bio *dest,
 411		       struct btrfs_raid_bio *victim)
 412{
 413	bio_list_merge_init(&dest->bio_list, &victim->bio_list);
 414	dest->bio_list_bytes += victim->bio_list_bytes;
 415	/* Also inherit the bitmaps from @victim. */
 416	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
 417		  dest->stripe_nsectors);
 418}
 419
 420/*
 421 * used to prune items that are in the cache.  The caller
 422 * must hold the hash table lock.
 423 */
 424static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 425{
 426	int bucket = rbio_bucket(rbio);
 427	struct btrfs_stripe_hash_table *table;
 428	struct btrfs_stripe_hash *h;
 429	int freeit = 0;
 430
 431	/*
 432	 * check the bit again under the hash table lock.
 433	 */
 434	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 435		return;
 436
 437	table = rbio->bioc->fs_info->stripe_hash_table;
 438	h = table->table + bucket;
 439
 440	/* hold the lock for the bucket because we may be
 441	 * removing it from the hash table
 442	 */
 443	spin_lock(&h->lock);
 444
 445	/*
 446	 * hold the lock for the bio list because we need
 447	 * to make sure the bio list is empty
 448	 */
 449	spin_lock(&rbio->bio_list_lock);
 450
 451	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 452		list_del_init(&rbio->stripe_cache);
 453		table->cache_size -= 1;
 454		freeit = 1;
 455
 456		/* if the bio list isn't empty, this rbio is
 457		 * still involved in an IO.  We take it out
 458		 * of the cache list, and drop the ref that
 459		 * was held for the list.
 460		 *
 461		 * If the bio_list was empty, we also remove
 462		 * the rbio from the hash_table, and drop
 463		 * the corresponding ref
 464		 */
 465		if (bio_list_empty(&rbio->bio_list)) {
 466			if (!list_empty(&rbio->hash_list)) {
 467				list_del_init(&rbio->hash_list);
 468				refcount_dec(&rbio->refs);
 469				BUG_ON(!list_empty(&rbio->plug_list));
 470			}
 471		}
 472	}
 473
 474	spin_unlock(&rbio->bio_list_lock);
 475	spin_unlock(&h->lock);
 476
 477	if (freeit)
 478		free_raid_bio(rbio);
 479}
 480
 481/*
 482 * prune a given rbio from the cache
 483 */
 484static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 485{
 486	struct btrfs_stripe_hash_table *table;
 
 487
 488	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 489		return;
 490
 491	table = rbio->bioc->fs_info->stripe_hash_table;
 492
 493	spin_lock(&table->cache_lock);
 494	__remove_rbio_from_cache(rbio);
 495	spin_unlock(&table->cache_lock);
 496}
 497
 498/*
 499 * remove everything in the cache
 500 */
 501static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 502{
 503	struct btrfs_stripe_hash_table *table;
 
 504	struct btrfs_raid_bio *rbio;
 505
 506	table = info->stripe_hash_table;
 507
 508	spin_lock(&table->cache_lock);
 509	while (!list_empty(&table->stripe_cache)) {
 510		rbio = list_entry(table->stripe_cache.next,
 511				  struct btrfs_raid_bio,
 512				  stripe_cache);
 513		__remove_rbio_from_cache(rbio);
 514	}
 515	spin_unlock(&table->cache_lock);
 516}
 517
 518/*
 519 * remove all cached entries and free the hash table
 520 * used by unmount
 521 */
 522void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 523{
 524	if (!info->stripe_hash_table)
 525		return;
 526	btrfs_clear_rbio_cache(info);
 527	kvfree(info->stripe_hash_table);
 528	info->stripe_hash_table = NULL;
 529}
 530
 531/*
 532 * insert an rbio into the stripe cache.  It
 533 * must have already been prepared by calling
 534 * cache_rbio_pages
 535 *
 536 * If this rbio was already cached, it gets
 537 * moved to the front of the lru.
 538 *
 539 * If the size of the rbio cache is too big, we
 540 * prune an item.
 541 */
 542static void cache_rbio(struct btrfs_raid_bio *rbio)
 543{
 544	struct btrfs_stripe_hash_table *table;
 
 545
 546	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 547		return;
 548
 549	table = rbio->bioc->fs_info->stripe_hash_table;
 550
 551	spin_lock(&table->cache_lock);
 552	spin_lock(&rbio->bio_list_lock);
 553
 554	/* bump our ref if we were not in the list before */
 555	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 556		refcount_inc(&rbio->refs);
 557
 558	if (!list_empty(&rbio->stripe_cache)){
 559		list_move(&rbio->stripe_cache, &table->stripe_cache);
 560	} else {
 561		list_add(&rbio->stripe_cache, &table->stripe_cache);
 562		table->cache_size += 1;
 563	}
 564
 565	spin_unlock(&rbio->bio_list_lock);
 566
 567	if (table->cache_size > RBIO_CACHE_SIZE) {
 568		struct btrfs_raid_bio *found;
 569
 570		found = list_entry(table->stripe_cache.prev,
 571				  struct btrfs_raid_bio,
 572				  stripe_cache);
 573
 574		if (found != rbio)
 575			__remove_rbio_from_cache(found);
 576	}
 577
 578	spin_unlock(&table->cache_lock);
 579}
 580
 581/*
 582 * helper function to run the xor_blocks api.  It is only
 583 * able to do MAX_XOR_BLOCKS at a time, so we need to
 584 * loop through.
 585 */
 586static void run_xor(void **pages, int src_cnt, ssize_t len)
 587{
 588	int src_off = 0;
 589	int xor_src_cnt = 0;
 590	void *dest = pages[src_cnt];
 591
 592	while(src_cnt > 0) {
 593		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 594		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 595
 596		src_cnt -= xor_src_cnt;
 597		src_off += xor_src_cnt;
 598	}
 599}
 600
 601/*
 602 * Returns true if the bio list inside this rbio covers an entire stripe (no
 603 * rmw required).
 
 
 
 604 */
 605static int rbio_is_full(struct btrfs_raid_bio *rbio)
 606{
 607	unsigned long size = rbio->bio_list_bytes;
 608	int ret = 1;
 609
 610	spin_lock(&rbio->bio_list_lock);
 611	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
 612		ret = 0;
 613	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
 614	spin_unlock(&rbio->bio_list_lock);
 615
 
 
 
 
 
 
 
 
 
 
 
 
 616	return ret;
 617}
 618
 619/*
 620 * returns 1 if it is safe to merge two rbios together.
 621 * The merging is safe if the two rbios correspond to
 622 * the same stripe and if they are both going in the same
 623 * direction (read vs write), and if neither one is
 624 * locked for final IO
 625 *
 626 * The caller is responsible for locking such that
 627 * rmw_locked is safe to test
 628 */
 629static int rbio_can_merge(struct btrfs_raid_bio *last,
 630			  struct btrfs_raid_bio *cur)
 631{
 632	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 633	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 634		return 0;
 635
 636	/*
 637	 * we can't merge with cached rbios, since the
 638	 * idea is that when we merge the destination
 639	 * rbio is going to run our IO for us.  We can
 640	 * steal from cached rbios though, other functions
 641	 * handle that.
 642	 */
 643	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 644	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 645		return 0;
 646
 647	if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
 
 648		return 0;
 649
 650	/* we can't merge with different operations */
 651	if (last->operation != cur->operation)
 652		return 0;
 653	/*
 654	 * We've need read the full stripe from the drive.
 655	 * check and repair the parity and write the new results.
 656	 *
 657	 * We're not allowed to add any new bios to the
 658	 * bio list here, anyone else that wants to
 659	 * change this stripe needs to do their own rmw.
 660	 */
 661	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 
 662		return 0;
 663
 664	if (last->operation == BTRFS_RBIO_READ_REBUILD)
 
 665		return 0;
 666
 667	return 1;
 668}
 669
 670static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
 671					     unsigned int stripe_nr,
 672					     unsigned int sector_nr)
 673{
 674	ASSERT_RBIO_STRIPE(stripe_nr < rbio->real_stripes, rbio, stripe_nr);
 675	ASSERT_RBIO_SECTOR(sector_nr < rbio->stripe_nsectors, rbio, sector_nr);
 676
 677	return stripe_nr * rbio->stripe_nsectors + sector_nr;
 678}
 679
 680/* Return a sector from rbio->stripe_sectors, not from the bio list */
 681static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
 682					     unsigned int stripe_nr,
 683					     unsigned int sector_nr)
 
 
 684{
 685	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
 686							      sector_nr)];
 687}
 688
 689/* Grab a sector inside P stripe */
 690static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
 691					      unsigned int sector_nr)
 
 692{
 693	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
 694}
 695
 696/* Grab a sector inside Q stripe, return NULL if not RAID6 */
 697static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
 698					      unsigned int sector_nr)
 
 
 699{
 700	if (rbio->nr_data + 1 == rbio->real_stripes)
 701		return NULL;
 702	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
 703}
 704
 705/*
 706 * The first stripe in the table for a logical address
 707 * has the lock.  rbios are added in one of three ways:
 708 *
 709 * 1) Nobody has the stripe locked yet.  The rbio is given
 710 * the lock and 0 is returned.  The caller must start the IO
 711 * themselves.
 712 *
 713 * 2) Someone has the stripe locked, but we're able to merge
 714 * with the lock owner.  The rbio is freed and the IO will
 715 * start automatically along with the existing rbio.  1 is returned.
 716 *
 717 * 3) Someone has the stripe locked, but we're not able to merge.
 718 * The rbio is added to the lock owner's plug list, or merged into
 719 * an rbio already on the plug list.  When the lock owner unlocks,
 720 * the next rbio on the list is run and the IO is started automatically.
 721 * 1 is returned
 722 *
 723 * If we return 0, the caller still owns the rbio and must continue with
 724 * IO submission.  If we return 1, the caller must assume the rbio has
 725 * already been freed.
 726 */
 727static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 728{
 729	struct btrfs_stripe_hash *h;
 
 730	struct btrfs_raid_bio *cur;
 731	struct btrfs_raid_bio *pending;
 
 
 732	struct btrfs_raid_bio *freeit = NULL;
 733	struct btrfs_raid_bio *cache_drop = NULL;
 734	int ret = 0;
 
 735
 736	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
 737
 738	spin_lock(&h->lock);
 739	list_for_each_entry(cur, &h->hash_list, hash_list) {
 740		if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
 741			continue;
 742
 743		spin_lock(&cur->bio_list_lock);
 744
 745		/* Can we steal this cached rbio's pages? */
 746		if (bio_list_empty(&cur->bio_list) &&
 747		    list_empty(&cur->plug_list) &&
 748		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 749		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 750			list_del_init(&cur->hash_list);
 751			refcount_dec(&cur->refs);
 752
 753			steal_rbio(cur, rbio);
 754			cache_drop = cur;
 755			spin_unlock(&cur->bio_list_lock);
 756
 757			goto lockit;
 758		}
 759
 760		/* Can we merge into the lock owner? */
 761		if (rbio_can_merge(cur, rbio)) {
 762			merge_rbio(cur, rbio);
 763			spin_unlock(&cur->bio_list_lock);
 764			freeit = rbio;
 765			ret = 1;
 766			goto out;
 767		}
 768
 
 
 769
 770		/*
 771		 * We couldn't merge with the running rbio, see if we can merge
 772		 * with the pending ones.  We don't have to check for rmw_locked
 773		 * because there is no way they are inside finish_rmw right now
 774		 */
 775		list_for_each_entry(pending, &cur->plug_list, plug_list) {
 776			if (rbio_can_merge(pending, rbio)) {
 777				merge_rbio(pending, rbio);
 778				spin_unlock(&cur->bio_list_lock);
 779				freeit = rbio;
 780				ret = 1;
 781				goto out;
 782			}
 783		}
 784
 785		/*
 786		 * No merging, put us on the tail of the plug list, our rbio
 787		 * will be started with the currently running rbio unlocks
 788		 */
 789		list_add_tail(&rbio->plug_list, &cur->plug_list);
 790		spin_unlock(&cur->bio_list_lock);
 791		ret = 1;
 792		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793	}
 794lockit:
 795	refcount_inc(&rbio->refs);
 796	list_add(&rbio->hash_list, &h->hash_list);
 797out:
 798	spin_unlock(&h->lock);
 799	if (cache_drop)
 800		remove_rbio_from_cache(cache_drop);
 801	if (freeit)
 802		free_raid_bio(freeit);
 803	return ret;
 804}
 805
 806static void recover_rbio_work_locked(struct work_struct *work);
 807
 808/*
 809 * called as rmw or parity rebuild is completed.  If the plug list has more
 810 * rbios waiting for this stripe, the next one on the list will be started
 811 */
 812static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 813{
 814	int bucket;
 815	struct btrfs_stripe_hash *h;
 
 816	int keep_cache = 0;
 817
 818	bucket = rbio_bucket(rbio);
 819	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
 820
 821	if (list_empty(&rbio->plug_list))
 822		cache_rbio(rbio);
 823
 824	spin_lock(&h->lock);
 825	spin_lock(&rbio->bio_list_lock);
 826
 827	if (!list_empty(&rbio->hash_list)) {
 828		/*
 829		 * if we're still cached and there is no other IO
 830		 * to perform, just leave this rbio here for others
 831		 * to steal from later
 832		 */
 833		if (list_empty(&rbio->plug_list) &&
 834		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 835			keep_cache = 1;
 836			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 837			BUG_ON(!bio_list_empty(&rbio->bio_list));
 838			goto done;
 839		}
 840
 841		list_del_init(&rbio->hash_list);
 842		refcount_dec(&rbio->refs);
 843
 844		/*
 845		 * we use the plug list to hold all the rbios
 846		 * waiting for the chance to lock this stripe.
 847		 * hand the lock over to one of them.
 848		 */
 849		if (!list_empty(&rbio->plug_list)) {
 850			struct btrfs_raid_bio *next;
 851			struct list_head *head = rbio->plug_list.next;
 852
 853			next = list_entry(head, struct btrfs_raid_bio,
 854					  plug_list);
 855
 856			list_del_init(&rbio->plug_list);
 857
 858			list_add(&next->hash_list, &h->hash_list);
 859			refcount_inc(&next->refs);
 860			spin_unlock(&rbio->bio_list_lock);
 861			spin_unlock(&h->lock);
 862
 863			if (next->operation == BTRFS_RBIO_READ_REBUILD) {
 864				start_async_work(next, recover_rbio_work_locked);
 
 
 
 865			} else if (next->operation == BTRFS_RBIO_WRITE) {
 866				steal_rbio(rbio, next);
 867				start_async_work(next, rmw_rbio_work_locked);
 868			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 869				steal_rbio(rbio, next);
 870				start_async_work(next, scrub_rbio_work_locked);
 871			}
 872
 873			goto done_nolock;
 
 
 
 
 
 
 
 
 
 874		}
 875	}
 876done:
 877	spin_unlock(&rbio->bio_list_lock);
 878	spin_unlock(&h->lock);
 879
 880done_nolock:
 881	if (!keep_cache)
 882		remove_rbio_from_cache(rbio);
 883}
 884
 885static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 886{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887	struct bio *next;
 888
 
 
 
 
 
 889	while (cur) {
 890		next = cur->bi_next;
 891		cur->bi_next = NULL;
 892		cur->bi_status = err;
 893		bio_endio(cur);
 894		cur = next;
 895	}
 896}
 897
 898/*
 899 * this frees the rbio and runs through all the bios in the
 900 * bio_list and calls end_io on them
 901 */
 902static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 903{
 904	struct bio *cur = bio_list_get(&rbio->bio_list);
 905	struct bio *extra;
 
 906
 907	kfree(rbio->csum_buf);
 908	bitmap_free(rbio->csum_bitmap);
 909	rbio->csum_buf = NULL;
 910	rbio->csum_bitmap = NULL;
 911
 912	/*
 913	 * Clear the data bitmap, as the rbio may be cached for later usage.
 914	 * do this before before unlock_stripe() so there will be no new bio
 915	 * for this bio.
 916	 */
 917	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
 918
 919	/*
 920	 * At this moment, rbio->bio_list is empty, however since rbio does not
 921	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 922	 * hash list, rbio may be merged with others so that rbio->bio_list
 923	 * becomes non-empty.
 924	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 925	 * more and we can call bio_endio() on all queued bios.
 926	 */
 927	unlock_stripe(rbio);
 928	extra = bio_list_get(&rbio->bio_list);
 929	free_raid_bio(rbio);
 930
 931	rbio_endio_bio_list(cur, err);
 932	if (extra)
 933		rbio_endio_bio_list(extra, err);
 934}
 935
 936/*
 937 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
 
 
 
 
 938 *
 939 * @rbio:               The raid bio
 940 * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 941 * @sector_nr:		Sector number inside the stripe,
 942 *			valid range [0, stripe_nsectors)
 943 * @bio_list_only:      Whether to use sectors inside the bio list only.
 944 *
 945 * The read/modify/write code wants to reuse the original bio page as much
 946 * as possible, and only use stripe_sectors as fallback.
 
 
 
 947 */
 948static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
 949					 int stripe_nr, int sector_nr,
 950					 bool bio_list_only)
 951{
 952	struct sector_ptr *sector;
 953	int index;
 954
 955	ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->real_stripes,
 956			   rbio, stripe_nr);
 957	ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
 958			   rbio, sector_nr);
 959
 960	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
 961	ASSERT(index >= 0 && index < rbio->nr_sectors);
 
 962
 963	spin_lock(&rbio->bio_list_lock);
 964	sector = &rbio->bio_sectors[index];
 965	if (sector->page || bio_list_only) {
 966		/* Don't return sector without a valid page pointer */
 967		if (!sector->page)
 968			sector = NULL;
 969		spin_unlock(&rbio->bio_list_lock);
 970		return sector;
 971	}
 972	spin_unlock(&rbio->bio_list_lock);
 973
 974	return &rbio->stripe_sectors[index];
 
 
 
 
 
 
 
 
 
 975}
 976
 977/*
 978 * allocation and initial setup for the btrfs_raid_bio.  Not
 979 * this does not allocate any pages for rbio->pages.
 980 */
 981static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 982					 struct btrfs_io_context *bioc)
 983{
 984	const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
 985	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
 986	const unsigned int num_pages = stripe_npages * real_stripes;
 987	const unsigned int stripe_nsectors =
 988		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 989	const unsigned int num_sectors = stripe_nsectors * real_stripes;
 990	struct btrfs_raid_bio *rbio;
 991
 992	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
 993	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
 994	/*
 995	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
 996	 * (at most 16) should be no larger than BITS_PER_LONG.
 997	 */
 998	ASSERT(stripe_nsectors <= BITS_PER_LONG);
 999
1000	/*
1001	 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256
1002	 * (limited by u8).
1003	 */
1004	ASSERT(real_stripes >= 2);
1005	ASSERT(real_stripes <= U8_MAX);
1006
1007	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
1008	if (!rbio)
1009		return ERR_PTR(-ENOMEM);
1010	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
1011				     GFP_NOFS);
1012	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
1013				    GFP_NOFS);
1014	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
1015				       GFP_NOFS);
1016	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
1017	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
1018
1019	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
1020	    !rbio->finish_pointers || !rbio->error_bitmap) {
1021		free_raid_bio_pointers(rbio);
1022		kfree(rbio);
1023		return ERR_PTR(-ENOMEM);
1024	}
1025
1026	bio_list_init(&rbio->bio_list);
1027	init_waitqueue_head(&rbio->io_wait);
1028	INIT_LIST_HEAD(&rbio->plug_list);
1029	spin_lock_init(&rbio->bio_list_lock);
1030	INIT_LIST_HEAD(&rbio->stripe_cache);
1031	INIT_LIST_HEAD(&rbio->hash_list);
1032	btrfs_get_bioc(bioc);
1033	rbio->bioc = bioc;
 
1034	rbio->nr_pages = num_pages;
1035	rbio->nr_sectors = num_sectors;
1036	rbio->real_stripes = real_stripes;
1037	rbio->stripe_npages = stripe_npages;
1038	rbio->stripe_nsectors = stripe_nsectors;
1039	refcount_set(&rbio->refs, 1);
 
 
1040	atomic_set(&rbio->stripes_pending, 0);
1041
1042	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
1043	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
1044	ASSERT(rbio->nr_data > 0);
 
 
 
 
 
 
 
 
 
 
 
 
1045
 
1046	return rbio;
1047}
1048
1049/* allocate pages for all the stripes in the bio, including parity */
1050static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1051{
1052	int ret;
 
1053
1054	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, false);
1055	if (ret < 0)
1056		return ret;
1057	/* Mapping all sectors */
1058	index_stripe_sectors(rbio);
 
 
 
1059	return 0;
1060}
1061
1062/* only allocate pages for p/q stripes */
1063static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1064{
1065	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1066	int ret;
1067
1068	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
1069				     rbio->stripe_pages + data_pages, false);
1070	if (ret < 0)
1071		return ret;
1072
1073	index_stripe_sectors(rbio);
1074	return 0;
1075}
1076
1077/*
1078 * Return the total number of errors found in the vertical stripe of @sector_nr.
1079 *
1080 * @faila and @failb will also be updated to the first and second stripe
1081 * number of the errors.
1082 */
1083static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1084				     int *faila, int *failb)
1085{
1086	int stripe_nr;
1087	int found_errors = 0;
1088
1089	if (faila || failb) {
1090		/*
1091		 * Both @faila and @failb should be valid pointers if any of
1092		 * them is specified.
1093		 */
1094		ASSERT(faila && failb);
1095		*faila = -1;
1096		*failb = -1;
1097	}
1098
1099	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1100		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1101
1102		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1103			found_errors++;
1104			if (faila) {
1105				/* Update faila and failb. */
1106				if (*faila < 0)
1107					*faila = stripe_nr;
1108				else if (*failb < 0)
1109					*failb = stripe_nr;
1110			}
1111		}
1112	}
1113	return found_errors;
1114}
1115
1116/*
1117 * Add a single sector @sector into our list of bios for IO.
1118 *
1119 * Return 0 if everything went well.
1120 * Return <0 for error.
1121 */
1122static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1123			      struct bio_list *bio_list,
1124			      struct sector_ptr *sector,
1125			      unsigned int stripe_nr,
1126			      unsigned int sector_nr,
1127			      enum req_op op)
1128{
1129	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1130	struct bio *last = bio_list->tail;
 
1131	int ret;
1132	struct bio *bio;
1133	struct btrfs_io_stripe *stripe;
1134	u64 disk_start;
1135
1136	/*
1137	 * Note: here stripe_nr has taken device replace into consideration,
1138	 * thus it can be larger than rbio->real_stripe.
1139	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1140	 */
1141	ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes,
1142			   rbio, stripe_nr);
1143	ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
1144			   rbio, sector_nr);
1145	ASSERT(sector->page);
1146
1147	stripe = &rbio->bioc->stripes[stripe_nr];
1148	disk_start = stripe->physical + sector_nr * sectorsize;
1149
1150	/* if the device is missing, just fail this stripe */
1151	if (!stripe->dev->bdev) {
1152		int found_errors;
1153
1154		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1155			rbio->error_bitmap);
1156
1157		/* Check if we have reached tolerance early. */
1158		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1159							 NULL, NULL);
1160		if (found_errors > rbio->bioc->max_errors)
1161			return -EIO;
1162		return 0;
1163	}
1164
1165	/* see if we can add this page onto our existing bio */
1166	if (last) {
1167		u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1168		last_end += last->bi_iter.bi_size;
1169
1170		/*
1171		 * we can't merge these if they are from different
1172		 * devices or if they are not contiguous
1173		 */
1174		if (last_end == disk_start && !last->bi_status &&
 
1175		    last->bi_bdev == stripe->dev->bdev) {
1176			ret = bio_add_page(last, sector->page, sectorsize,
1177					   sector->pgoff);
1178			if (ret == sectorsize)
1179				return 0;
1180		}
1181	}
1182
1183	/* put a new bio on the list */
1184	bio = bio_alloc(stripe->dev->bdev,
1185			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1186			op, GFP_NOFS);
1187	bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1188	bio->bi_private = rbio;
 
 
1189
1190	__bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1191	bio_list_add(bio_list, bio);
1192	return 0;
1193}
1194
1195static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1196{
1197	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1198	struct bio_vec bvec;
1199	struct bvec_iter iter;
1200	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1201		     rbio->bioc->full_stripe_logical;
1202
1203	bio_for_each_segment(bvec, bio, iter) {
1204		u32 bvec_offset;
1205
1206		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1207		     bvec_offset += sectorsize, offset += sectorsize) {
1208			int index = offset / sectorsize;
1209			struct sector_ptr *sector = &rbio->bio_sectors[index];
1210
1211			sector->page = bvec.bv_page;
1212			sector->pgoff = bvec.bv_offset + bvec_offset;
1213			ASSERT(sector->pgoff < PAGE_SIZE);
1214		}
1215	}
1216}
1217
1218/*
1219 * helper function to walk our bio list and populate the bio_pages array with
1220 * the result.  This seems expensive, but it is faster than constantly
1221 * searching through the bio list as we setup the IO in finish_rmw or stripe
1222 * reconstruction.
1223 *
1224 * This must be called before you trust the answers from page_in_rbio
1225 */
1226static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1227{
1228	struct bio *bio;
1229
1230	spin_lock(&rbio->bio_list_lock);
1231	bio_list_for_each(bio, &rbio->bio_list)
1232		index_one_bio(rbio, bio);
1233
1234	spin_unlock(&rbio->bio_list_lock);
1235}
1236
1237static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1238			       struct raid56_bio_trace_info *trace_info)
1239{
1240	const struct btrfs_io_context *bioc = rbio->bioc;
1241	int i;
1242
1243	ASSERT(bioc);
1244
1245	/* We rely on bio->bi_bdev to find the stripe number. */
1246	if (!bio->bi_bdev)
1247		goto not_found;
1248
1249	for (i = 0; i < bioc->num_stripes; i++) {
1250		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1251			continue;
1252		trace_info->stripe_nr = i;
1253		trace_info->devid = bioc->stripes[i].dev->devid;
1254		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1255				     bioc->stripes[i].physical;
1256		return;
1257	}
1258
1259not_found:
1260	trace_info->devid = -1;
1261	trace_info->offset = -1;
1262	trace_info->stripe_nr = -1;
1263}
1264
1265static inline void bio_list_put(struct bio_list *bio_list)
1266{
1267	struct bio *bio;
1268
1269	while ((bio = bio_list_pop(bio_list)))
1270		bio_put(bio);
1271}
1272
1273static void assert_rbio(struct btrfs_raid_bio *rbio)
1274{
1275	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
1276		return;
1277
1278	/*
1279	 * At least two stripes (2 disks RAID5), and since real_stripes is U8,
1280	 * we won't go beyond 256 disks anyway.
1281	 */
1282	ASSERT_RBIO(rbio->real_stripes >= 2, rbio);
1283	ASSERT_RBIO(rbio->nr_data > 0, rbio);
1284
1285	/*
1286	 * This is another check to make sure nr data stripes is smaller
1287	 * than total stripes.
1288	 */
1289	ASSERT_RBIO(rbio->nr_data < rbio->real_stripes, rbio);
1290}
1291
1292/* Generate PQ for one vertical stripe. */
1293static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
 
 
 
 
 
 
 
1294{
1295	void **pointers = rbio->finish_pointers;
1296	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1297	struct sector_ptr *sector;
1298	int stripe;
1299	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1300
1301	/* First collect one sector from each data stripe */
1302	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1303		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1304		pointers[stripe] = kmap_local_page(sector->page) +
1305				   sector->pgoff;
1306	}
1307
1308	/* Then add the parity stripe */
1309	sector = rbio_pstripe_sector(rbio, sectornr);
1310	sector->uptodate = 1;
1311	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1312
1313	if (has_qstripe) {
1314		/*
1315		 * RAID6, add the qstripe and call the library function
1316		 * to fill in our p/q
1317		 */
1318		sector = rbio_qstripe_sector(rbio, sectornr);
1319		sector->uptodate = 1;
1320		pointers[stripe++] = kmap_local_page(sector->page) +
1321				     sector->pgoff;
1322
1323		assert_rbio(rbio);
1324		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1325					pointers);
1326	} else {
1327		/* raid5 */
1328		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1329		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1330	}
1331	for (stripe = stripe - 1; stripe >= 0; stripe--)
1332		kunmap_local(pointers[stripe]);
1333}
1334
1335static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1336				   struct bio_list *bio_list)
1337{
1338	/* The total sector number inside the full stripe. */
1339	int total_sector_nr;
1340	int sectornr;
1341	int stripe;
1342	int ret;
1343
1344	ASSERT(bio_list_size(bio_list) == 0);
 
1345
1346	/* We should have at least one data sector. */
1347	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1348
1349	/*
1350	 * Reset errors, as we may have errors inherited from from degraded
1351	 * write.
 
 
 
 
 
1352	 */
1353	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
 
 
 
 
1354
1355	/*
1356	 * Start assembly.  Make bios for everything from the higher layers (the
1357	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
1358	 */
1359	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1360	     total_sector_nr++) {
1361		struct sector_ptr *sector;
1362
1363		stripe = total_sector_nr / rbio->stripe_nsectors;
1364		sectornr = total_sector_nr % rbio->stripe_nsectors;
 
 
1365
1366		/* This vertical stripe has no data, skip it. */
1367		if (!test_bit(sectornr, &rbio->dbitmap))
1368			continue;
1369
1370		if (stripe < rbio->nr_data) {
1371			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1372			if (!sector)
1373				continue;
 
 
 
 
 
 
1374		} else {
1375			sector = rbio_stripe_sector(rbio, stripe, sectornr);
 
 
1376		}
1377
1378		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1379					 sectornr, REQ_OP_WRITE);
1380		if (ret)
1381			goto error;
1382	}
1383
1384	if (likely(!rbio->bioc->replace_nr_stripes))
1385		return 0;
 
1386
1387	/*
1388	 * Make a copy for the replace target device.
1389	 *
1390	 * Thus the source stripe number (in replace_stripe_src) should be valid.
1391	 */
1392	ASSERT(rbio->bioc->replace_stripe_src >= 0);
 
 
 
 
 
 
 
 
 
1393
1394	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1395	     total_sector_nr++) {
1396		struct sector_ptr *sector;
 
 
 
1397
1398		stripe = total_sector_nr / rbio->stripe_nsectors;
1399		sectornr = total_sector_nr % rbio->stripe_nsectors;
1400
1401		/*
1402		 * For RAID56, there is only one device that can be replaced,
1403		 * and replace_stripe_src[0] indicates the stripe number we
1404		 * need to copy from.
1405		 */
1406		if (stripe != rbio->bioc->replace_stripe_src) {
1407			/*
1408			 * We can skip the whole stripe completely, note
1409			 * total_sector_nr will be increased by one anyway.
1410			 */
1411			ASSERT(sectornr == 0);
1412			total_sector_nr += rbio->stripe_nsectors - 1;
1413			continue;
1414		}
1415
1416		/* This vertical stripe has no data, skip it. */
1417		if (!test_bit(sectornr, &rbio->dbitmap))
1418			continue;
 
 
 
 
 
 
1419
1420		if (stripe < rbio->nr_data) {
1421			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1422			if (!sector)
1423				continue;
1424		} else {
1425			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1426		}
 
1427
1428		ret = rbio_add_io_sector(rbio, bio_list, sector,
1429					 rbio->real_stripes,
1430					 sectornr, REQ_OP_WRITE);
1431		if (ret)
1432			goto error;
 
 
 
 
 
 
 
1433	}
 
1434
1435	return 0;
1436error:
1437	bio_list_put(bio_list);
1438	return -EIO;
1439}
1440
1441static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
 
 
1442{
1443	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1444	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1445		     rbio->bioc->full_stripe_logical;
1446	int total_nr_sector = offset >> fs_info->sectorsize_bits;
1447
1448	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1449
1450	bitmap_set(rbio->error_bitmap, total_nr_sector,
1451		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1452
1453	/*
1454	 * Special handling for raid56_alloc_missing_rbio() used by
1455	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1456	 * pass an empty bio here.  Thus we have to find out the missing device
1457	 * and mark the stripe error instead.
1458	 */
1459	if (bio->bi_iter.bi_size == 0) {
1460		bool found_missing = false;
1461		int stripe_nr;
1462
1463		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1464			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1465				found_missing = true;
1466				bitmap_set(rbio->error_bitmap,
1467					   stripe_nr * rbio->stripe_nsectors,
1468					   rbio->stripe_nsectors);
1469			}
1470		}
1471		ASSERT(found_missing);
1472	}
 
1473}
1474
1475/*
1476 * For subpage case, we can no longer set page Up-to-date directly for
1477 * stripe_pages[], thus we need to locate the sector.
 
1478 */
1479static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1480					     struct page *page,
1481					     unsigned int pgoff)
1482{
 
 
1483	int i;
1484
1485	for (i = 0; i < rbio->nr_sectors; i++) {
1486		struct sector_ptr *sector = &rbio->stripe_sectors[i];
1487
1488		if (sector->page == page && sector->pgoff == pgoff)
1489			return sector;
 
 
 
 
1490	}
1491	return NULL;
1492}
1493
1494/*
1495 * this sets each page in the bio uptodate.  It should only be used on private
1496 * rbio pages, nothing that comes in from the higher layers
1497 */
1498static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1499{
1500	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1501	struct bio_vec *bvec;
1502	struct bvec_iter_all iter_all;
1503
1504	ASSERT(!bio_flagged(bio, BIO_CLONED));
1505
1506	bio_for_each_segment_all(bvec, bio, iter_all) {
1507		struct sector_ptr *sector;
1508		int pgoff;
1509
1510		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1511		     pgoff += sectorsize) {
1512			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1513			ASSERT(sector);
1514			if (sector)
1515				sector->uptodate = 1;
1516		}
 
 
 
1517	}
 
 
 
 
1518}
1519
1520static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
 
1521{
1522	struct bio_vec *bv = bio_first_bvec_all(bio);
1523	int i;
1524
1525	for (i = 0; i < rbio->nr_sectors; i++) {
1526		struct sector_ptr *sector;
1527
1528		sector = &rbio->stripe_sectors[i];
1529		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1530			break;
1531		sector = &rbio->bio_sectors[i];
1532		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1533			break;
1534	}
1535	ASSERT(i < rbio->nr_sectors);
1536	return i;
1537}
1538
1539static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
1540{
1541	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1542	u32 bio_size = 0;
1543	struct bio_vec *bvec;
1544	int i;
 
1545
1546	bio_for_each_bvec_all(bvec, bio, i)
1547		bio_size += bvec->bv_len;
1548
1549	/*
1550	 * Since we can have multiple bios touching the error_bitmap, we cannot
1551	 * call bitmap_set() without protection.
1552	 *
1553	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1554	 */
1555	for (i = total_sector_nr; i < total_sector_nr +
1556	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1557		set_bit(i, rbio->error_bitmap);
1558}
1559
1560/* Verify the data sectors at read time. */
1561static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1562				    struct bio *bio)
 
 
 
 
 
 
1563{
1564	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1565	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1566	struct bio_vec *bvec;
1567	struct bvec_iter_all iter_all;
1568
1569	/* No data csum for the whole stripe, no need to verify. */
1570	if (!rbio->csum_bitmap || !rbio->csum_buf)
1571		return;
 
 
 
1572
1573	/* P/Q stripes, they have no data csum to verify against. */
1574	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1575		return;
1576
1577	bio_for_each_segment_all(bvec, bio, iter_all) {
1578		int bv_offset;
1579
1580		for (bv_offset = bvec->bv_offset;
1581		     bv_offset < bvec->bv_offset + bvec->bv_len;
1582		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
1583			u8 csum_buf[BTRFS_CSUM_SIZE];
1584			u8 *expected_csum = rbio->csum_buf +
1585					    total_sector_nr * fs_info->csum_size;
1586			int ret;
1587
1588			/* No csum for this sector, skip to the next sector. */
1589			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1590				continue;
1591
1592			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1593				bv_offset, csum_buf, expected_csum);
1594			if (ret < 0)
1595				set_bit(total_sector_nr, rbio->error_bitmap);
1596		}
1597	}
1598}
1599
1600static void raid_wait_read_end_io(struct bio *bio)
1601{
1602	struct btrfs_raid_bio *rbio = bio->bi_private;
 
1603
1604	if (bio->bi_status) {
1605		rbio_update_error_bitmap(rbio, bio);
1606	} else {
1607		set_bio_pages_uptodate(rbio, bio);
1608		verify_bio_data_sectors(rbio, bio);
1609	}
1610
1611	bio_put(bio);
1612	if (atomic_dec_and_test(&rbio->stripes_pending))
1613		wake_up(&rbio->io_wait);
 
 
 
 
1614}
1615
1616static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1617			     struct bio_list *bio_list)
 
 
 
1618{
 
 
 
 
 
1619	struct bio *bio;
1620
1621	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1622	while ((bio = bio_list_pop(bio_list))) {
1623		bio->bi_end_io = raid_wait_read_end_io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1624
1625		if (trace_raid56_read_enabled()) {
1626			struct raid56_bio_trace_info trace_info = { 0 };
 
 
 
 
 
1627
1628			bio_get_trace_info(rbio, bio, &trace_info);
1629			trace_raid56_read(rbio, bio, &trace_info);
 
 
1630		}
1631		submit_bio(bio);
1632	}
1633
1634	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1635}
1636
1637static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
 
 
 
 
1638{
1639	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1640	int ret;
1641
1642	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, false);
1643	if (ret < 0)
 
1644		return ret;
 
 
 
 
 
 
 
1645
1646	index_stripe_sectors(rbio);
 
 
 
 
 
 
 
 
 
 
 
1647	return 0;
1648}
1649
1650/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1651 * We use plugging call backs to collect full stripes.
1652 * Any time we get a partial stripe write while plugged
1653 * we collect it into a list.  When the unplug comes down,
1654 * we sort the list by logical block number and merge
1655 * everything we can into the same rbios
1656 */
1657struct btrfs_plug_cb {
1658	struct blk_plug_cb cb;
1659	struct btrfs_fs_info *info;
1660	struct list_head rbio_list;
 
1661};
1662
1663/*
1664 * rbios on the plug list are sorted for easier merging.
1665 */
1666static int plug_cmp(void *priv, const struct list_head *a,
1667		    const struct list_head *b)
1668{
1669	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1670						       plug_list);
1671	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1672						       plug_list);
1673	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1674	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1675
1676	if (a_sector < b_sector)
1677		return -1;
1678	if (a_sector > b_sector)
1679		return 1;
1680	return 0;
1681}
1682
1683static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1684{
1685	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1686	struct btrfs_raid_bio *cur;
1687	struct btrfs_raid_bio *last = NULL;
1688
 
 
 
 
 
1689	list_sort(NULL, &plug->rbio_list, plug_cmp);
1690
1691	while (!list_empty(&plug->rbio_list)) {
1692		cur = list_entry(plug->rbio_list.next,
1693				 struct btrfs_raid_bio, plug_list);
1694		list_del_init(&cur->plug_list);
1695
1696		if (rbio_is_full(cur)) {
1697			/* We have a full stripe, queue it down. */
1698			start_async_work(cur, rmw_rbio_work);
1699			continue;
1700		}
1701		if (last) {
1702			if (rbio_can_merge(last, cur)) {
1703				merge_rbio(last, cur);
1704				free_raid_bio(cur);
1705				continue;
 
1706			}
1707			start_async_work(last, rmw_rbio_work);
1708		}
1709		last = cur;
1710	}
1711	if (last)
1712		start_async_work(last, rmw_rbio_work);
 
1713	kfree(plug);
1714}
1715
1716/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1717static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
 
 
 
 
 
 
 
 
 
 
1718{
1719	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1720	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1721	const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1722	const u32 orig_len = orig_bio->bi_iter.bi_size;
1723	const u32 sectorsize = fs_info->sectorsize;
1724	u64 cur_logical;
1725
1726	ASSERT_RBIO_LOGICAL(orig_logical >= full_stripe_start &&
1727			    orig_logical + orig_len <= full_stripe_start +
1728			    rbio->nr_data * BTRFS_STRIPE_LEN,
1729			    rbio, orig_logical);
1730
1731	bio_list_add(&rbio->bio_list, orig_bio);
1732	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1733
1734	/* Update the dbitmap. */
1735	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1736	     cur_logical += sectorsize) {
1737		int bit = ((u32)(cur_logical - full_stripe_start) >>
1738			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1739
1740		set_bit(bit, &rbio->dbitmap);
 
 
 
 
 
1741	}
 
1742}
1743
1744/*
1745 * our main entry point for writes from the rest of the FS.
1746 */
1747void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
 
1748{
1749	struct btrfs_fs_info *fs_info = bioc->fs_info;
1750	struct btrfs_raid_bio *rbio;
1751	struct btrfs_plug_cb *plug = NULL;
1752	struct blk_plug_cb *cb;
 
1753
1754	rbio = alloc_rbio(fs_info, bioc);
1755	if (IS_ERR(rbio)) {
1756		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1757		bio_endio(bio);
1758		return;
1759	}
 
 
1760	rbio->operation = BTRFS_RBIO_WRITE;
1761	rbio_add_bio(rbio, bio);
 
 
1762
1763	/*
1764	 * Don't plug on full rbios, just get them out the door
1765	 * as quickly as we can
1766	 */
1767	if (!rbio_is_full(rbio)) {
1768		cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1769		if (cb) {
1770			plug = container_of(cb, struct btrfs_plug_cb, cb);
1771			if (!plug->info) {
1772				plug->info = fs_info;
1773				INIT_LIST_HEAD(&plug->rbio_list);
1774			}
1775			list_add_tail(&rbio->plug_list, &plug->rbio_list);
1776			return;
1777		}
1778	}
1779
1780	/*
1781	 * Either we don't have any existing plug, or we're doing a full stripe,
1782	 * queue the rmw work now.
1783	 */
1784	start_async_work(rbio, rmw_rbio_work);
1785}
1786
1787static int verify_one_sector(struct btrfs_raid_bio *rbio,
1788			     int stripe_nr, int sector_nr)
1789{
1790	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1791	struct sector_ptr *sector;
1792	u8 csum_buf[BTRFS_CSUM_SIZE];
1793	u8 *csum_expected;
1794	int ret;
1795
1796	if (!rbio->csum_bitmap || !rbio->csum_buf)
1797		return 0;
1798
1799	/* No way to verify P/Q as they are not covered by data csum. */
1800	if (stripe_nr >= rbio->nr_data)
1801		return 0;
1802	/*
1803	 * If we're rebuilding a read, we have to use pages from the
1804	 * bio list if possible.
1805	 */
1806	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1807		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1808	} else {
1809		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
 
 
1810	}
1811
1812	ASSERT(sector->page);
1813
1814	csum_expected = rbio->csum_buf +
1815			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
1816			fs_info->csum_size;
1817	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1818				      csum_buf, csum_expected);
1819	return ret;
1820}
1821
1822/*
1823 * Recover a vertical stripe specified by @sector_nr.
1824 * @*pointers are the pre-allocated pointers by the caller, so we don't
1825 * need to allocate/free the pointers again and again.
1826 */
1827static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1828			    void **pointers, void **unmap_array)
1829{
1830	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1831	struct sector_ptr *sector;
1832	const u32 sectorsize = fs_info->sectorsize;
1833	int found_errors;
1834	int faila;
1835	int failb;
1836	int stripe_nr;
1837	int ret = 0;
1838
1839	/*
1840	 * Now we just use bitmap to mark the horizontal stripes in
1841	 * which we have data when doing parity scrub.
1842	 */
1843	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1844	    !test_bit(sector_nr, &rbio->dbitmap))
1845		return 0;
1846
1847	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1848						 &failb);
1849	/*
1850	 * No errors in the vertical stripe, skip it.  Can happen for recovery
1851	 * which only part of a stripe failed csum check.
1852	 */
1853	if (!found_errors)
1854		return 0;
1855
1856	if (found_errors > rbio->bioc->max_errors)
1857		return -EIO;
 
 
 
 
1858
1859	/*
1860	 * Setup our array of pointers with sectors from each stripe
1861	 *
1862	 * NOTE: store a duplicate array of pointers to preserve the
1863	 * pointer order.
1864	 */
1865	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1866		/*
1867		 * If we're rebuilding a read, we have to use pages from the
1868		 * bio list if possible.
1869		 */
1870		if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1871			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1872		} else {
1873			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1874		}
1875		ASSERT(sector->page);
1876		pointers[stripe_nr] = kmap_local_page(sector->page) +
1877				   sector->pgoff;
1878		unmap_array[stripe_nr] = pointers[stripe_nr];
1879	}
1880
1881	/* All raid6 handling here */
1882	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1883		/* Single failure, rebuild from parity raid5 style */
1884		if (failb < 0) {
1885			if (faila == rbio->nr_data)
1886				/*
1887				 * Just the P stripe has failed, without
1888				 * a bad data or Q stripe.
1889				 * We have nothing to do, just skip the
1890				 * recovery for this stripe.
1891				 */
1892				goto cleanup;
1893			/*
1894			 * a single failure in raid6 is rebuilt
1895			 * in the pstripe code below
1896			 */
1897			goto pstripe;
 
 
 
 
 
 
 
1898		}
1899
1900		/*
1901		 * If the q stripe is failed, do a pstripe reconstruction from
1902		 * the xors.
1903		 * If both the q stripe and the P stripe are failed, we're
1904		 * here due to a crc mismatch and we can't give them the
1905		 * data they want.
1906		 */
1907		if (failb == rbio->real_stripes - 1) {
1908			if (faila == rbio->real_stripes - 2)
 
 
 
 
 
 
 
1909				/*
1910				 * Only P and Q are corrupted.
1911				 * We only care about data stripes recovery,
1912				 * can skip this vertical stripe.
1913				 */
1914				goto cleanup;
1915			/*
1916			 * Otherwise we have one bad data stripe and
1917			 * a good P stripe.  raid5!
 
 
 
 
 
 
 
 
 
 
 
1918			 */
1919			goto pstripe;
1920		}
 
 
 
 
 
 
 
 
 
 
1921
1922		if (failb == rbio->real_stripes - 2) {
1923			raid6_datap_recov(rbio->real_stripes, sectorsize,
1924					  faila, pointers);
 
 
 
 
 
1925		} else {
1926			raid6_2data_recov(rbio->real_stripes, sectorsize,
1927					  faila, failb, pointers);
1928		}
1929	} else {
1930		void *p;
1931
1932		/* Rebuild from P stripe here (raid5 or raid6). */
1933		ASSERT(failb == -1);
1934pstripe:
1935		/* Copy parity block into failed block to start with */
1936		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1937
1938		/* Rearrange the pointer array */
1939		p = pointers[faila];
1940		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1941		     stripe_nr++)
1942			pointers[stripe_nr] = pointers[stripe_nr + 1];
1943		pointers[rbio->nr_data - 1] = p;
1944
1945		/* Xor in the rest */
1946		run_xor(pointers, rbio->nr_data - 1, sectorsize);
1947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1948	}
1949
1950	/*
1951	 * No matter if this is a RMW or recovery, we should have all
1952	 * failed sectors repaired in the vertical stripe, thus they are now
1953	 * uptodate.
1954	 * Especially if we determine to cache the rbio, we need to
1955	 * have at least all data sectors uptodate.
1956	 *
1957	 * If possible, also check if the repaired sector matches its data
1958	 * checksum.
1959	 */
1960	if (faila >= 0) {
1961		ret = verify_one_sector(rbio, faila, sector_nr);
1962		if (ret < 0)
1963			goto cleanup;
1964
1965		sector = rbio_stripe_sector(rbio, faila, sector_nr);
1966		sector->uptodate = 1;
1967	}
1968	if (failb >= 0) {
1969		ret = verify_one_sector(rbio, failb, sector_nr);
1970		if (ret < 0)
1971			goto cleanup;
1972
1973		sector = rbio_stripe_sector(rbio, failb, sector_nr);
1974		sector->uptodate = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
1975	}
1976
1977cleanup:
1978	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1979		kunmap_local(unmap_array[stripe_nr]);
1980	return ret;
1981}
1982
1983static int recover_sectors(struct btrfs_raid_bio *rbio)
 
 
 
 
1984{
1985	void **pointers = NULL;
1986	void **unmap_array = NULL;
1987	int sectornr;
1988	int ret = 0;
1989
1990	/*
1991	 * @pointers array stores the pointer for each sector.
1992	 *
1993	 * @unmap_array stores copy of pointers that does not get reordered
1994	 * during reconstruction so that kunmap_local works.
1995	 */
1996	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1997	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1998	if (!pointers || !unmap_array) {
1999		ret = -ENOMEM;
2000		goto out;
2001	}
2002
2003	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
2004		spin_lock(&rbio->bio_list_lock);
2005		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2006		spin_unlock(&rbio->bio_list_lock);
2007	}
2008
2009	index_rbio_pages(rbio);
2010
2011	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2012		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
2013		if (ret < 0)
2014			break;
2015	}
2016
2017out:
2018	kfree(pointers);
2019	kfree(unmap_array);
2020	return ret;
2021}
2022
2023static void recover_rbio(struct btrfs_raid_bio *rbio)
 
 
 
 
 
 
 
 
2024{
2025	struct bio_list bio_list = BIO_EMPTY_LIST;
2026	int total_sector_nr;
2027	int ret = 0;
 
 
 
2028
2029	/*
2030	 * Either we're doing recover for a read failure or degraded write,
2031	 * caller should have set error bitmap correctly.
2032	 */
2033	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
2034
2035	/* For recovery, we need to read all sectors including P/Q. */
2036	ret = alloc_rbio_pages(rbio);
2037	if (ret < 0)
2038		goto out;
2039
2040	index_rbio_pages(rbio);
2041
2042	/*
2043	 * Read everything that hasn't failed. However this time we will
2044	 * not trust any cached sector.
2045	 * As we may read out some stale data but higher layer is not reading
2046	 * that stale part.
2047	 *
2048	 * So here we always re-read everything in recovery path.
2049	 */
2050	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2051	     total_sector_nr++) {
2052		int stripe = total_sector_nr / rbio->stripe_nsectors;
2053		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2054		struct sector_ptr *sector;
 
 
 
2055
2056		/*
2057		 * Skip the range which has error.  It can be a range which is
2058		 * marked error (for csum mismatch), or it can be a missing
2059		 * device.
2060		 */
2061		if (!rbio->bioc->stripes[stripe].dev->bdev ||
2062		    test_bit(total_sector_nr, rbio->error_bitmap)) {
2063			/*
2064			 * Also set the error bit for missing device, which
2065			 * may not yet have its error bit set.
2066			 */
2067			set_bit(total_sector_nr, rbio->error_bitmap);
2068			continue;
 
 
 
 
 
 
 
2069		}
 
2070
2071		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2072		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2073					 sectornr, REQ_OP_READ);
2074		if (ret < 0) {
2075			bio_list_put(&bio_list);
 
 
 
 
2076			goto out;
 
 
2077		}
2078	}
2079
2080	submit_read_wait_bio_list(rbio, &bio_list);
2081	ret = recover_sectors(rbio);
2082out:
2083	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2084}
2085
2086static void recover_rbio_work(struct work_struct *work)
2087{
2088	struct btrfs_raid_bio *rbio;
2089
2090	rbio = container_of(work, struct btrfs_raid_bio, work);
2091	if (!lock_stripe_add(rbio))
2092		recover_rbio(rbio);
2093}
2094
2095static void recover_rbio_work_locked(struct work_struct *work)
2096{
2097	recover_rbio(container_of(work, struct btrfs_raid_bio, work));
2098}
2099
2100static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2101{
2102	bool found = false;
2103	int sector_nr;
2104
2105	/*
2106	 * This is for RAID6 extra recovery tries, thus mirror number should
2107	 * be large than 2.
2108	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2109	 * RAID5 methods.
2110	 */
2111	ASSERT(mirror_num > 2);
2112	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2113		int found_errors;
2114		int faila;
2115		int failb;
2116
2117		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2118							 &faila, &failb);
2119		/* This vertical stripe doesn't have errors. */
2120		if (!found_errors)
2121			continue;
2122
2123		/*
2124		 * If we found errors, there should be only one error marked
2125		 * by previous set_rbio_range_error().
2126		 */
2127		ASSERT(found_errors == 1);
2128		found = true;
2129
2130		/* Now select another stripe to mark as error. */
2131		failb = rbio->real_stripes - (mirror_num - 1);
2132		if (failb <= faila)
2133			failb--;
2134
2135		/* Set the extra bit in error bitmap. */
2136		if (failb >= 0)
2137			set_bit(failb * rbio->stripe_nsectors + sector_nr,
2138				rbio->error_bitmap);
2139	}
 
 
2140
2141	/* We should found at least one vertical stripe with error.*/
2142	ASSERT(found);
 
 
 
2143}
2144
2145/*
2146 * the main entry point for reads from the higher layers.  This
2147 * is really only called when the normal read path had a failure,
2148 * so we assume the bio they send down corresponds to a failed part
2149 * of the drive.
2150 */
2151void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2152			   int mirror_num)
 
2153{
2154	struct btrfs_fs_info *fs_info = bioc->fs_info;
2155	struct btrfs_raid_bio *rbio;
 
2156
2157	rbio = alloc_rbio(fs_info, bioc);
2158	if (IS_ERR(rbio)) {
2159		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2160		bio_endio(bio);
2161		return;
2162	}
2163
2164	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2165	rbio_add_bio(rbio, bio);
2166
2167	set_rbio_range_error(rbio, bio);
2168
2169	/*
2170	 * Loop retry:
2171	 * for 'mirror == 2', reconstruct from all other stripes.
2172	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2173	 */
2174	if (mirror_num > 2)
2175		set_rbio_raid6_extra_error(rbio, mirror_num);
2176
2177	start_async_work(rbio, recover_rbio_work);
2178}
2179
2180static void fill_data_csums(struct btrfs_raid_bio *rbio)
2181{
2182	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2183	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2184						       rbio->bioc->full_stripe_logical);
2185	const u64 start = rbio->bioc->full_stripe_logical;
2186	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2187			fs_info->sectorsize_bits;
2188	int ret;
2189
2190	/* The rbio should not have its csum buffer initialized. */
2191	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2192
2193	/*
2194	 * Skip the csum search if:
2195	 *
2196	 * - The rbio doesn't belong to data block groups
2197	 *   Then we are doing IO for tree blocks, no need to search csums.
2198	 *
2199	 * - The rbio belongs to mixed block groups
2200	 *   This is to avoid deadlock, as we're already holding the full
2201	 *   stripe lock, if we trigger a metadata read, and it needs to do
2202	 *   raid56 recovery, we will deadlock.
2203	 */
2204	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2205	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2206		return;
2207
2208	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2209				 fs_info->csum_size, GFP_NOFS);
2210	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2211					  GFP_NOFS);
2212	if (!rbio->csum_buf || !rbio->csum_bitmap) {
2213		ret = -ENOMEM;
2214		goto error;
2215	}
2216
2217	ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2218					rbio->csum_buf, rbio->csum_bitmap);
2219	if (ret < 0)
2220		goto error;
2221	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2222		goto no_csum;
2223	return;
2224
2225error:
2226	/*
2227	 * We failed to allocate memory or grab the csum, but it's not fatal,
2228	 * we can still continue.  But better to warn users that RMW is no
2229	 * longer safe for this particular sub-stripe write.
2230	 */
2231	btrfs_warn_rl(fs_info,
2232"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2233			rbio->bioc->full_stripe_logical, ret);
2234no_csum:
2235	kfree(rbio->csum_buf);
2236	bitmap_free(rbio->csum_bitmap);
2237	rbio->csum_buf = NULL;
2238	rbio->csum_bitmap = NULL;
2239}
2240
2241static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2242{
2243	struct bio_list bio_list = BIO_EMPTY_LIST;
2244	int total_sector_nr;
2245	int ret = 0;
2246
2247	/*
2248	 * Fill the data csums we need for data verification.  We need to fill
2249	 * the csum_bitmap/csum_buf first, as our endio function will try to
2250	 * verify the data sectors.
2251	 */
2252	fill_data_csums(rbio);
2253
2254	/*
2255	 * Build a list of bios to read all sectors (including data and P/Q).
2256	 *
2257	 * This behavior is to compensate the later csum verification and recovery.
2258	 */
2259	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2260	     total_sector_nr++) {
2261		struct sector_ptr *sector;
2262		int stripe = total_sector_nr / rbio->stripe_nsectors;
2263		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2264
2265		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2266		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2267			       stripe, sectornr, REQ_OP_READ);
2268		if (ret) {
2269			bio_list_put(&bio_list);
2270			return ret;
2271		}
2272	}
2273
2274	/*
2275	 * We may or may not have any corrupted sectors (including missing dev
2276	 * and csum mismatch), just let recover_sectors() to handle them all.
2277	 */
2278	submit_read_wait_bio_list(rbio, &bio_list);
2279	return recover_sectors(rbio);
2280}
2281
2282static void raid_wait_write_end_io(struct bio *bio)
2283{
2284	struct btrfs_raid_bio *rbio = bio->bi_private;
2285	blk_status_t err = bio->bi_status;
2286
2287	if (err)
2288		rbio_update_error_bitmap(rbio, bio);
2289	bio_put(bio);
2290	if (atomic_dec_and_test(&rbio->stripes_pending))
2291		wake_up(&rbio->io_wait);
2292}
2293
2294static void submit_write_bios(struct btrfs_raid_bio *rbio,
2295			      struct bio_list *bio_list)
2296{
2297	struct bio *bio;
2298
2299	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2300	while ((bio = bio_list_pop(bio_list))) {
2301		bio->bi_end_io = raid_wait_write_end_io;
2302
2303		if (trace_raid56_write_enabled()) {
2304			struct raid56_bio_trace_info trace_info = { 0 };
2305
2306			bio_get_trace_info(rbio, bio, &trace_info);
2307			trace_raid56_write(rbio, bio, &trace_info);
2308		}
2309		submit_bio(bio);
 
 
 
2310	}
2311}
2312
2313/*
2314 * To determine if we need to read any sector from the disk.
2315 * Should only be utilized in RMW path, to skip cached rbio.
2316 */
2317static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2318{
2319	int i;
2320
2321	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2322		struct sector_ptr *sector = &rbio->stripe_sectors[i];
2323
2324		/*
2325		 * We have a sector which doesn't have page nor uptodate,
2326		 * thus this rbio can not be cached one, as cached one must
2327		 * have all its data sectors present and uptodate.
2328		 */
2329		if (!sector->page || !sector->uptodate)
2330			return true;
2331	}
2332	return false;
2333}
2334
2335static void rmw_rbio(struct btrfs_raid_bio *rbio)
2336{
2337	struct bio_list bio_list;
2338	int sectornr;
2339	int ret = 0;
2340
2341	/*
2342	 * Allocate the pages for parity first, as P/Q pages will always be
2343	 * needed for both full-stripe and sub-stripe writes.
2344	 */
2345	ret = alloc_rbio_parity_pages(rbio);
2346	if (ret < 0)
2347		goto out;
2348
2349	/*
2350	 * Either full stripe write, or we have every data sector already
2351	 * cached, can go to write path immediately.
2352	 */
2353	if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2354		/*
2355		 * Now we're doing sub-stripe write, also need all data stripes
2356		 * to do the full RMW.
2357		 */
2358		ret = alloc_rbio_data_pages(rbio);
2359		if (ret < 0)
2360			goto out;
2361
2362		index_rbio_pages(rbio);
2363
2364		ret = rmw_read_wait_recover(rbio);
2365		if (ret < 0)
2366			goto out;
2367	}
2368
2369	/*
2370	 * At this stage we're not allowed to add any new bios to the
2371	 * bio list any more, anyone else that wants to change this stripe
2372	 * needs to do their own rmw.
 
 
2373	 */
2374	spin_lock(&rbio->bio_list_lock);
2375	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2376	spin_unlock(&rbio->bio_list_lock);
2377
2378	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2379
2380	index_rbio_pages(rbio);
2381
2382	/*
2383	 * We don't cache full rbios because we're assuming
2384	 * the higher layers are unlikely to use this area of
2385	 * the disk again soon.  If they do use it again,
2386	 * hopefully they will send another full bio.
2387	 */
2388	if (!rbio_is_full(rbio))
2389		cache_rbio_pages(rbio);
2390	else
2391		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2392
2393	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2394		generate_pq_vertical(rbio, sectornr);
2395
2396	bio_list_init(&bio_list);
2397	ret = rmw_assemble_write_bios(rbio, &bio_list);
2398	if (ret < 0)
2399		goto out;
2400
2401	/* We should have at least one bio assembled. */
2402	ASSERT(bio_list_size(&bio_list));
2403	submit_write_bios(rbio, &bio_list);
2404	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2405
2406	/* We may have more errors than our tolerance during the read. */
2407	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2408		int found_errors;
2409
2410		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2411		if (found_errors > rbio->bioc->max_errors) {
2412			ret = -EIO;
2413			break;
2414		}
2415	}
2416out:
2417	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2418}
2419
2420static void rmw_rbio_work(struct work_struct *work)
2421{
2422	struct btrfs_raid_bio *rbio;
2423
2424	rbio = container_of(work, struct btrfs_raid_bio, work);
2425	if (lock_stripe_add(rbio) == 0)
2426		rmw_rbio(rbio);
2427}
2428
2429static void rmw_rbio_work_locked(struct work_struct *work)
2430{
2431	rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
 
 
 
2432}
2433
2434/*
2435 * The following code is used to scrub/replace the parity stripe
2436 *
2437 * Caller must have already increased bio_counter for getting @bioc.
2438 *
2439 * Note: We need make sure all the pages that add into the scrub/replace
2440 * raid bio are correct and not be changed during the scrub/replace. That
2441 * is those pages just hold metadata or file data with checksum.
2442 */
2443
2444struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2445				struct btrfs_io_context *bioc,
2446				struct btrfs_device *scrub_dev,
2447				unsigned long *dbitmap, int stripe_nsectors)
 
2448{
2449	struct btrfs_fs_info *fs_info = bioc->fs_info;
2450	struct btrfs_raid_bio *rbio;
2451	int i;
2452
2453	rbio = alloc_rbio(fs_info, bioc);
2454	if (IS_ERR(rbio))
2455		return NULL;
2456	bio_list_add(&rbio->bio_list, bio);
2457	/*
2458	 * This is a special bio which is used to hold the completion handler
2459	 * and make the scrub rbio is similar to the other types
2460	 */
2461	ASSERT(!bio->bi_iter.bi_size);
2462	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2463
2464	/*
2465	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2466	 * to the end position, so this search can start from the first parity
2467	 * stripe.
2468	 */
2469	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2470		if (bioc->stripes[i].dev == scrub_dev) {
2471			rbio->scrubp = i;
2472			break;
2473		}
2474	}
2475	ASSERT_RBIO_STRIPE(i < rbio->real_stripes, rbio, i);
2476
2477	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
 
 
 
 
2478	return rbio;
2479}
2480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2481/*
2482 * We just scrub the parity that we have correct data on the same horizontal,
2483 * so we needn't allocate all pages for all the stripes.
2484 */
2485static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2486{
2487	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2488	int total_sector_nr;
 
 
2489
2490	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2491	     total_sector_nr++) {
2492		struct page *page;
2493		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2494		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2495
2496		if (!test_bit(sectornr, &rbio->dbitmap))
2497			continue;
2498		if (rbio->stripe_pages[index])
2499			continue;
2500		page = alloc_page(GFP_NOFS);
2501		if (!page)
2502			return -ENOMEM;
2503		rbio->stripe_pages[index] = page;
2504	}
2505	index_stripe_sectors(rbio);
2506	return 0;
2507}
2508
2509static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
 
2510{
2511	struct btrfs_io_context *bioc = rbio->bioc;
2512	const u32 sectorsize = bioc->fs_info->sectorsize;
2513	void **pointers = rbio->finish_pointers;
2514	unsigned long *pbitmap = &rbio->finish_pbitmap;
2515	int nr_data = rbio->nr_data;
2516	int stripe;
2517	int sectornr;
2518	bool has_qstripe;
2519	struct sector_ptr p_sector = { 0 };
2520	struct sector_ptr q_sector = { 0 };
 
2521	struct bio_list bio_list;
 
2522	int is_replace = 0;
2523	int ret;
2524
2525	bio_list_init(&bio_list);
2526
2527	if (rbio->real_stripes - rbio->nr_data == 1)
2528		has_qstripe = false;
2529	else if (rbio->real_stripes - rbio->nr_data == 2)
2530		has_qstripe = true;
2531	else
 
2532		BUG();
 
2533
2534	/*
2535	 * Replace is running and our P/Q stripe is being replaced, then we
2536	 * need to duplicate the final write to replace target.
2537	 */
2538	if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2539		is_replace = 1;
2540		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2541	}
2542
2543	/*
2544	 * Because the higher layers(scrubber) are unlikely to
2545	 * use this area of the disk again soon, so don't cache
2546	 * it.
2547	 */
2548	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2549
2550	p_sector.page = alloc_page(GFP_NOFS);
2551	if (!p_sector.page)
2552		return -ENOMEM;
2553	p_sector.pgoff = 0;
2554	p_sector.uptodate = 1;
2555
2556	if (has_qstripe) {
2557		/* RAID6, allocate and map temp space for the Q stripe */
2558		q_sector.page = alloc_page(GFP_NOFS);
2559		if (!q_sector.page) {
2560			__free_page(p_sector.page);
2561			p_sector.page = NULL;
2562			return -ENOMEM;
 
 
 
2563		}
2564		q_sector.pgoff = 0;
2565		q_sector.uptodate = 1;
2566		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2567	}
2568
2569	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2570
2571	/* Map the parity stripe just once */
2572	pointers[nr_data] = kmap_local_page(p_sector.page);
2573
2574	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2575		struct sector_ptr *sector;
2576		void *parity;
2577
2578		/* first collect one page from each data stripe */
2579		for (stripe = 0; stripe < nr_data; stripe++) {
2580			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2581			pointers[stripe] = kmap_local_page(sector->page) +
2582					   sector->pgoff;
2583		}
2584
2585		if (has_qstripe) {
2586			assert_rbio(rbio);
2587			/* RAID6, call the library function to fill in our P/Q */
2588			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
 
 
 
 
 
 
 
 
2589						pointers);
2590		} else {
2591			/* raid5 */
2592			memcpy(pointers[nr_data], pointers[0], sectorsize);
2593			run_xor(pointers + 1, nr_data - 1, sectorsize);
2594		}
2595
2596		/* Check scrubbing parity and repair it */
2597		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2598		parity = kmap_local_page(sector->page) + sector->pgoff;
2599		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2600			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2601		else
2602			/* Parity is right, needn't writeback */
2603			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2604		kunmap_local(parity);
2605
2606		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2607			kunmap_local(pointers[stripe]);
2608	}
2609
2610	kunmap_local(pointers[nr_data]);
2611	__free_page(p_sector.page);
2612	p_sector.page = NULL;
2613	if (q_sector.page) {
2614		kunmap_local(pointers[rbio->real_stripes - 1]);
2615		__free_page(q_sector.page);
2616		q_sector.page = NULL;
2617	}
2618
 
2619	/*
2620	 * time to start writing.  Make bios for everything from the
2621	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2622	 * everything else.
2623	 */
2624	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2625		struct sector_ptr *sector;
2626
2627		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2628		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2629					 sectornr, REQ_OP_WRITE);
2630		if (ret)
2631			goto cleanup;
2632	}
2633
2634	if (!is_replace)
2635		goto submit_write;
2636
2637	/*
2638	 * Replace is running and our parity stripe needs to be duplicated to
2639	 * the target device.  Check we have a valid source stripe number.
2640	 */
2641	ASSERT_RBIO(rbio->bioc->replace_stripe_src >= 0, rbio);
2642	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2643		struct sector_ptr *sector;
2644
2645		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2646		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2647					 rbio->real_stripes,
2648					 sectornr, REQ_OP_WRITE);
2649		if (ret)
2650			goto cleanup;
2651	}
2652
2653submit_write:
2654	submit_write_bios(rbio, &bio_list);
2655	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2656
2657cleanup:
2658	bio_list_put(&bio_list);
2659	return ret;
2660}
2661
2662static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2663{
2664	if (stripe >= 0 && stripe < rbio->nr_data)
2665		return 1;
2666	return 0;
2667}
2668
2669static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
 
 
 
 
 
 
 
2670{
2671	void **pointers = NULL;
2672	void **unmap_array = NULL;
2673	int sector_nr;
2674	int ret = 0;
2675
2676	/*
2677	 * @pointers array stores the pointer for each sector.
2678	 *
2679	 * @unmap_array stores copy of pointers that does not get reordered
2680	 * during reconstruction so that kunmap_local works.
2681	 */
2682	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2683	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2684	if (!pointers || !unmap_array) {
2685		ret = -ENOMEM;
2686		goto out;
2687	}
2688
2689	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2690		int dfail = 0, failp = -1;
2691		int faila;
2692		int failb;
2693		int found_errors;
2694
2695		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2696							 &faila, &failb);
2697		if (found_errors > rbio->bioc->max_errors) {
2698			ret = -EIO;
2699			goto out;
2700		}
2701		if (found_errors == 0)
2702			continue;
2703
2704		/* We should have at least one error here. */
2705		ASSERT(faila >= 0 || failb >= 0);
2706
2707		if (is_data_stripe(rbio, faila))
2708			dfail++;
2709		else if (is_parity_stripe(faila))
2710			failp = faila;
2711
2712		if (is_data_stripe(rbio, failb))
2713			dfail++;
2714		else if (is_parity_stripe(failb))
2715			failp = failb;
 
2716		/*
2717		 * Because we can not use a scrubbing parity to repair the
2718		 * data, so the capability of the repair is declined.  (In the
2719		 * case of RAID5, we can not repair anything.)
2720		 */
2721		if (dfail > rbio->bioc->max_errors - 1) {
2722			ret = -EIO;
2723			goto out;
2724		}
2725		/*
2726		 * If all data is good, only parity is correctly, just repair
2727		 * the parity, no need to recover data stripes.
2728		 */
2729		if (dfail == 0)
2730			continue;
 
 
2731
2732		/*
2733		 * Here means we got one corrupted data stripe and one
2734		 * corrupted parity on RAID6, if the corrupted parity is
2735		 * scrubbing parity, luckily, use the other one to repair the
2736		 * data, or we can not repair the data stripe.
2737		 */
2738		if (failp != rbio->scrubp) {
2739			ret = -EIO;
2740			goto out;
2741		}
2742
2743		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2744		if (ret < 0)
2745			goto out;
2746	}
2747out:
2748	kfree(pointers);
2749	kfree(unmap_array);
2750	return ret;
2751}
2752
2753static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
 
 
 
 
 
 
 
 
2754{
2755	struct bio_list bio_list = BIO_EMPTY_LIST;
2756	int total_sector_nr;
2757	int ret = 0;
2758
2759	/* Build a list of bios to read all the missing parts. */
2760	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2761	     total_sector_nr++) {
2762		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2763		int stripe = total_sector_nr / rbio->stripe_nsectors;
2764		struct sector_ptr *sector;
2765
2766		/* No data in the vertical stripe, no need to read. */
2767		if (!test_bit(sectornr, &rbio->dbitmap))
2768			continue;
2769
2770		/*
2771		 * We want to find all the sectors missing from the rbio and
2772		 * read them from the disk. If sector_in_rbio() finds a sector
2773		 * in the bio list we don't need to read it off the stripe.
2774		 */
2775		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2776		if (sector)
2777			continue;
2778
2779		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2780		/*
2781		 * The bio cache may have handed us an uptodate sector.  If so,
2782		 * use it.
2783		 */
2784		if (sector->uptodate)
2785			continue;
2786
2787		ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2788					 sectornr, REQ_OP_READ);
2789		if (ret) {
2790			bio_list_put(&bio_list);
2791			return ret;
2792		}
2793	}
2794
2795	submit_read_wait_bio_list(rbio, &bio_list);
2796	return 0;
 
 
 
 
2797}
2798
2799static void scrub_rbio(struct btrfs_raid_bio *rbio)
2800{
2801	int sector_nr;
 
2802	int ret;
 
 
 
2803
2804	ret = alloc_rbio_essential_pages(rbio);
2805	if (ret)
2806		goto out;
2807
2808	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2809
2810	ret = scrub_assemble_read_bios(rbio);
2811	if (ret < 0)
2812		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2813
2814	/* We may have some failures, recover the failed sectors first. */
2815	ret = recover_scrub_rbio(rbio);
2816	if (ret < 0)
2817		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2818
2819	/*
2820	 * We have every sector properly prepared. Can finish the scrub
2821	 * and writeback the good content.
2822	 */
2823	ret = finish_parity_scrub(rbio);
2824	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2825	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2826		int found_errors;
2827
2828		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2829		if (found_errors > rbio->bioc->max_errors) {
2830			ret = -EIO;
2831			break;
2832		}
 
 
 
 
 
 
 
2833	}
2834out:
2835	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
 
 
 
 
 
 
 
2836}
2837
2838static void scrub_rbio_work_locked(struct work_struct *work)
2839{
2840	scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
 
 
 
 
 
 
 
 
 
 
 
 
2841}
2842
2843void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2844{
2845	if (!lock_stripe_add(rbio))
2846		start_async_work(rbio, scrub_rbio_work_locked);
2847}
2848
2849/*
2850 * This is for scrub call sites where we already have correct data contents.
2851 * This allows us to avoid reading data stripes again.
2852 *
2853 * Unfortunately here we have to do page copy, other than reusing the pages.
2854 * This is due to the fact rbio has its own page management for its cache.
2855 */
2856void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2857				    struct page **data_pages, u64 data_logical)
2858{
2859	const u64 offset_in_full_stripe = data_logical -
2860					  rbio->bioc->full_stripe_logical;
2861	const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2862	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2863	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2864	int ret;
2865
 
 
2866	/*
2867	 * If we hit ENOMEM temporarily, but later at
2868	 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2869	 * the extra read, not a big deal.
2870	 *
2871	 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2872	 * the bio would got proper error number set.
2873	 */
2874	ret = alloc_rbio_data_pages(rbio);
2875	if (ret < 0)
2876		return;
2877
2878	/* data_logical must be at stripe boundary and inside the full stripe. */
2879	ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2880	ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2881
2882	for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2883		struct page *dst = rbio->stripe_pages[page_nr + page_index];
2884		struct page *src = data_pages[page_nr];
2885
2886		memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2887		for (int sector_nr = sectors_per_page * page_index;
2888		     sector_nr < sectors_per_page * (page_index + 1);
2889		     sector_nr++)
2890			rbio->stripe_sectors[sector_nr].uptodate = true;
2891	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2892}
v4.6
 
   1/*
   2 * Copyright (C) 2012 Fusion-io  All rights reserved.
   3 * Copyright (C) 2012 Intel Corp. All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
 
  19#include <linux/sched.h>
  20#include <linux/wait.h>
  21#include <linux/bio.h>
  22#include <linux/slab.h>
  23#include <linux/buffer_head.h>
  24#include <linux/blkdev.h>
  25#include <linux/random.h>
  26#include <linux/iocontext.h>
  27#include <linux/capability.h>
  28#include <linux/ratelimit.h>
  29#include <linux/kthread.h>
  30#include <linux/raid/pq.h>
  31#include <linux/hash.h>
  32#include <linux/list_sort.h>
  33#include <linux/raid/xor.h>
  34#include <linux/vmalloc.h>
  35#include <asm/div64.h>
  36#include "ctree.h"
  37#include "extent_map.h"
  38#include "disk-io.h"
  39#include "transaction.h"
  40#include "print-tree.h"
  41#include "volumes.h"
  42#include "raid56.h"
  43#include "async-thread.h"
  44#include "check-integrity.h"
  45#include "rcu-string.h"
  46
  47/* set when additional merges to this rbio are not allowed */
  48#define RBIO_RMW_LOCKED_BIT	1
  49
  50/*
  51 * set when this rbio is sitting in the hash, but it is just a cache
  52 * of past RMW
  53 */
  54#define RBIO_CACHE_BIT		2
  55
  56/*
  57 * set when it is safe to trust the stripe_pages for caching
  58 */
  59#define RBIO_CACHE_READY_BIT	3
  60
  61#define RBIO_CACHE_SIZE 1024
  62
  63enum btrfs_rbio_ops {
  64	BTRFS_RBIO_WRITE,
  65	BTRFS_RBIO_READ_REBUILD,
  66	BTRFS_RBIO_PARITY_SCRUB,
  67	BTRFS_RBIO_REBUILD_MISSING,
  68};
  69
  70struct btrfs_raid_bio {
  71	struct btrfs_fs_info *fs_info;
  72	struct btrfs_bio *bbio;
  73
  74	/* while we're doing rmw on a stripe
  75	 * we put it into a hash table so we can
  76	 * lock the stripe and merge more rbios
  77	 * into it.
  78	 */
  79	struct list_head hash_list;
 
 
 
 
 
 
 
  80
  81	/*
  82	 * LRU list for the stripe cache
  83	 */
  84	struct list_head stripe_cache;
 
  85
  86	/*
  87	 * for scheduling work in the helper threads
  88	 */
  89	struct btrfs_work work;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90
  91	/*
  92	 * bio list and bio_list_lock are used
  93	 * to add more bios into the stripe
  94	 * in hopes of avoiding the full rmw
  95	 */
  96	struct bio_list bio_list;
  97	spinlock_t bio_list_lock;
  98
  99	/* also protected by the bio_list_lock, the
 100	 * plug list is used by the plugging code
 101	 * to collect partial bios while plugged.  The
 102	 * stripe locking code also uses it to hand off
 103	 * the stripe lock to the next pending IO
 104	 */
 105	struct list_head plug_list;
 106
 107	/*
 108	 * flags that tell us if it is safe to
 109	 * merge with this bio
 110	 */
 111	unsigned long flags;
 
 
 
 
 
 112
 113	/* size of each individual stripe on disk */
 114	int stripe_len;
 
 
 115
 116	/* number of data stripes (no p/q) */
 117	int nr_data;
 118
 119	int real_stripes;
 
 
 
 
 
 
 
 120
 121	int stripe_npages;
 122	/*
 123	 * set if we're doing a parity rebuild
 124	 * for a read from higher up, which is handled
 125	 * differently from a parity rebuild as part of
 126	 * rmw
 127	 */
 128	enum btrfs_rbio_ops operation;
 129
 130	/* first bad stripe */
 131	int faila;
 132
 133	/* second bad stripe (for raid6 use) */
 134	int failb;
 
 135
 136	int scrubp;
 137	/*
 138	 * number of pages needed to represent the full
 139	 * stripe
 140	 */
 141	int nr_pages;
 142
 143	/*
 144	 * size of all the bios in the bio_list.  This
 145	 * helps us decide if the rbio maps to a full
 146	 * stripe or not
 147	 */
 148	int bio_list_bytes;
 149
 150	int generic_bio_cnt;
 151
 152	atomic_t refs;
 153
 154	atomic_t stripes_pending;
 155
 156	atomic_t error;
 157	/*
 158	 * these are two arrays of pointers.  We allocate the
 159	 * rbio big enough to hold them both and setup their
 160	 * locations when the rbio is allocated
 161	 */
 162
 163	/* pointers to pages that we allocated for
 164	 * reading/writing stripes directly from the disk (including P/Q)
 165	 */
 166	struct page **stripe_pages;
 167
 168	/*
 169	 * pointers to the pages in the bio_list.  Stored
 170	 * here for faster lookup
 171	 */
 172	struct page **bio_pages;
 173
 174	/*
 175	 * bitmap to record which horizontal stripe has data
 176	 */
 177	unsigned long *dbitmap;
 178};
 179
 180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 182static void rmw_work(struct btrfs_work *work);
 183static void read_rebuild_work(struct btrfs_work *work);
 184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
 185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
 186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 191
 192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 193					 int need_check);
 194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
 195
 196/*
 197 * the stripe hash table is used for locking, and to collect
 198 * bios in hopes of making a full stripe
 199 */
 200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 201{
 202	struct btrfs_stripe_hash_table *table;
 203	struct btrfs_stripe_hash_table *x;
 204	struct btrfs_stripe_hash *cur;
 205	struct btrfs_stripe_hash *h;
 206	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 207	int i;
 208	int table_size;
 209
 210	if (info->stripe_hash_table)
 211		return 0;
 212
 213	/*
 214	 * The table is large, starting with order 4 and can go as high as
 215	 * order 7 in case lock debugging is turned on.
 216	 *
 217	 * Try harder to allocate and fallback to vmalloc to lower the chance
 218	 * of a failing mount.
 219	 */
 220	table_size = sizeof(*table) + sizeof(*h) * num_entries;
 221	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
 222	if (!table) {
 223		table = vzalloc(table_size);
 224		if (!table)
 225			return -ENOMEM;
 226	}
 227
 228	spin_lock_init(&table->cache_lock);
 229	INIT_LIST_HEAD(&table->stripe_cache);
 230
 231	h = table->table;
 232
 233	for (i = 0; i < num_entries; i++) {
 234		cur = h + i;
 235		INIT_LIST_HEAD(&cur->hash_list);
 236		spin_lock_init(&cur->lock);
 237		init_waitqueue_head(&cur->wait);
 238	}
 239
 240	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 241	if (x)
 242		kvfree(x);
 243	return 0;
 244}
 245
 246/*
 247 * caching an rbio means to copy anything from the
 248 * bio_pages array into the stripe_pages array.  We
 249 * use the page uptodate bit in the stripe cache array
 250 * to indicate if it has valid data
 251 *
 252 * once the caching is done, we set the cache ready
 253 * bit.
 254 */
 255static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 256{
 257	int i;
 258	char *s;
 259	char *d;
 260	int ret;
 261
 262	ret = alloc_rbio_pages(rbio);
 263	if (ret)
 264		return;
 265
 266	for (i = 0; i < rbio->nr_pages; i++) {
 267		if (!rbio->bio_pages[i])
 
 
 
 
 
 
 
 
 268			continue;
 
 269
 270		s = kmap(rbio->bio_pages[i]);
 271		d = kmap(rbio->stripe_pages[i]);
 272
 273		memcpy(d, s, PAGE_SIZE);
 274
 275		kunmap(rbio->bio_pages[i]);
 276		kunmap(rbio->stripe_pages[i]);
 277		SetPageUptodate(rbio->stripe_pages[i]);
 278	}
 279	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 280}
 281
 282/*
 283 * we hash on the first logical address of the stripe
 284 */
 285static int rbio_bucket(struct btrfs_raid_bio *rbio)
 286{
 287	u64 num = rbio->bbio->raid_map[0];
 288
 289	/*
 290	 * we shift down quite a bit.  We're using byte
 291	 * addressing, and most of the lower bits are zeros.
 292	 * This tends to upset hash_64, and it consistently
 293	 * returns just one or two different values.
 294	 *
 295	 * shifting off the lower bits fixes things.
 296	 */
 297	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 298}
 299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300/*
 301 * stealing an rbio means taking all the uptodate pages from the stripe
 302 * array in the source rbio and putting them into the destination rbio
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 303 */
 304static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 305{
 306	int i;
 307	struct page *s;
 308	struct page *d;
 309
 310	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 311		return;
 312
 313	for (i = 0; i < dest->nr_pages; i++) {
 314		s = src->stripe_pages[i];
 315		if (!s || !PageUptodate(s)) {
 
 
 
 
 
 316			continue;
 317		}
 318
 319		d = dest->stripe_pages[i];
 320		if (d)
 321			__free_page(d);
 322
 323		dest->stripe_pages[i] = s;
 324		src->stripe_pages[i] = NULL;
 
 325	}
 
 
 326}
 327
 328/*
 329 * merging means we take the bio_list from the victim and
 330 * splice it into the destination.  The victim should
 331 * be discarded afterwards.
 332 *
 333 * must be called with dest->rbio_list_lock held
 334 */
 335static void merge_rbio(struct btrfs_raid_bio *dest,
 336		       struct btrfs_raid_bio *victim)
 337{
 338	bio_list_merge(&dest->bio_list, &victim->bio_list);
 339	dest->bio_list_bytes += victim->bio_list_bytes;
 340	dest->generic_bio_cnt += victim->generic_bio_cnt;
 341	bio_list_init(&victim->bio_list);
 
 342}
 343
 344/*
 345 * used to prune items that are in the cache.  The caller
 346 * must hold the hash table lock.
 347 */
 348static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 349{
 350	int bucket = rbio_bucket(rbio);
 351	struct btrfs_stripe_hash_table *table;
 352	struct btrfs_stripe_hash *h;
 353	int freeit = 0;
 354
 355	/*
 356	 * check the bit again under the hash table lock.
 357	 */
 358	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 359		return;
 360
 361	table = rbio->fs_info->stripe_hash_table;
 362	h = table->table + bucket;
 363
 364	/* hold the lock for the bucket because we may be
 365	 * removing it from the hash table
 366	 */
 367	spin_lock(&h->lock);
 368
 369	/*
 370	 * hold the lock for the bio list because we need
 371	 * to make sure the bio list is empty
 372	 */
 373	spin_lock(&rbio->bio_list_lock);
 374
 375	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 376		list_del_init(&rbio->stripe_cache);
 377		table->cache_size -= 1;
 378		freeit = 1;
 379
 380		/* if the bio list isn't empty, this rbio is
 381		 * still involved in an IO.  We take it out
 382		 * of the cache list, and drop the ref that
 383		 * was held for the list.
 384		 *
 385		 * If the bio_list was empty, we also remove
 386		 * the rbio from the hash_table, and drop
 387		 * the corresponding ref
 388		 */
 389		if (bio_list_empty(&rbio->bio_list)) {
 390			if (!list_empty(&rbio->hash_list)) {
 391				list_del_init(&rbio->hash_list);
 392				atomic_dec(&rbio->refs);
 393				BUG_ON(!list_empty(&rbio->plug_list));
 394			}
 395		}
 396	}
 397
 398	spin_unlock(&rbio->bio_list_lock);
 399	spin_unlock(&h->lock);
 400
 401	if (freeit)
 402		__free_raid_bio(rbio);
 403}
 404
 405/*
 406 * prune a given rbio from the cache
 407 */
 408static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 409{
 410	struct btrfs_stripe_hash_table *table;
 411	unsigned long flags;
 412
 413	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 414		return;
 415
 416	table = rbio->fs_info->stripe_hash_table;
 417
 418	spin_lock_irqsave(&table->cache_lock, flags);
 419	__remove_rbio_from_cache(rbio);
 420	spin_unlock_irqrestore(&table->cache_lock, flags);
 421}
 422
 423/*
 424 * remove everything in the cache
 425 */
 426static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 427{
 428	struct btrfs_stripe_hash_table *table;
 429	unsigned long flags;
 430	struct btrfs_raid_bio *rbio;
 431
 432	table = info->stripe_hash_table;
 433
 434	spin_lock_irqsave(&table->cache_lock, flags);
 435	while (!list_empty(&table->stripe_cache)) {
 436		rbio = list_entry(table->stripe_cache.next,
 437				  struct btrfs_raid_bio,
 438				  stripe_cache);
 439		__remove_rbio_from_cache(rbio);
 440	}
 441	spin_unlock_irqrestore(&table->cache_lock, flags);
 442}
 443
 444/*
 445 * remove all cached entries and free the hash table
 446 * used by unmount
 447 */
 448void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 449{
 450	if (!info->stripe_hash_table)
 451		return;
 452	btrfs_clear_rbio_cache(info);
 453	kvfree(info->stripe_hash_table);
 454	info->stripe_hash_table = NULL;
 455}
 456
 457/*
 458 * insert an rbio into the stripe cache.  It
 459 * must have already been prepared by calling
 460 * cache_rbio_pages
 461 *
 462 * If this rbio was already cached, it gets
 463 * moved to the front of the lru.
 464 *
 465 * If the size of the rbio cache is too big, we
 466 * prune an item.
 467 */
 468static void cache_rbio(struct btrfs_raid_bio *rbio)
 469{
 470	struct btrfs_stripe_hash_table *table;
 471	unsigned long flags;
 472
 473	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 474		return;
 475
 476	table = rbio->fs_info->stripe_hash_table;
 477
 478	spin_lock_irqsave(&table->cache_lock, flags);
 479	spin_lock(&rbio->bio_list_lock);
 480
 481	/* bump our ref if we were not in the list before */
 482	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 483		atomic_inc(&rbio->refs);
 484
 485	if (!list_empty(&rbio->stripe_cache)){
 486		list_move(&rbio->stripe_cache, &table->stripe_cache);
 487	} else {
 488		list_add(&rbio->stripe_cache, &table->stripe_cache);
 489		table->cache_size += 1;
 490	}
 491
 492	spin_unlock(&rbio->bio_list_lock);
 493
 494	if (table->cache_size > RBIO_CACHE_SIZE) {
 495		struct btrfs_raid_bio *found;
 496
 497		found = list_entry(table->stripe_cache.prev,
 498				  struct btrfs_raid_bio,
 499				  stripe_cache);
 500
 501		if (found != rbio)
 502			__remove_rbio_from_cache(found);
 503	}
 504
 505	spin_unlock_irqrestore(&table->cache_lock, flags);
 506}
 507
 508/*
 509 * helper function to run the xor_blocks api.  It is only
 510 * able to do MAX_XOR_BLOCKS at a time, so we need to
 511 * loop through.
 512 */
 513static void run_xor(void **pages, int src_cnt, ssize_t len)
 514{
 515	int src_off = 0;
 516	int xor_src_cnt = 0;
 517	void *dest = pages[src_cnt];
 518
 519	while(src_cnt > 0) {
 520		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 521		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 522
 523		src_cnt -= xor_src_cnt;
 524		src_off += xor_src_cnt;
 525	}
 526}
 527
 528/*
 529 * returns true if the bio list inside this rbio
 530 * covers an entire stripe (no rmw required).
 531 * Must be called with the bio list lock held, or
 532 * at a time when you know it is impossible to add
 533 * new bios into the list
 534 */
 535static int __rbio_is_full(struct btrfs_raid_bio *rbio)
 536{
 537	unsigned long size = rbio->bio_list_bytes;
 538	int ret = 1;
 539
 540	if (size != rbio->nr_data * rbio->stripe_len)
 
 541		ret = 0;
 
 
 542
 543	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 544	return ret;
 545}
 546
 547static int rbio_is_full(struct btrfs_raid_bio *rbio)
 548{
 549	unsigned long flags;
 550	int ret;
 551
 552	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 553	ret = __rbio_is_full(rbio);
 554	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 555	return ret;
 556}
 557
 558/*
 559 * returns 1 if it is safe to merge two rbios together.
 560 * The merging is safe if the two rbios correspond to
 561 * the same stripe and if they are both going in the same
 562 * direction (read vs write), and if neither one is
 563 * locked for final IO
 564 *
 565 * The caller is responsible for locking such that
 566 * rmw_locked is safe to test
 567 */
 568static int rbio_can_merge(struct btrfs_raid_bio *last,
 569			  struct btrfs_raid_bio *cur)
 570{
 571	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 572	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 573		return 0;
 574
 575	/*
 576	 * we can't merge with cached rbios, since the
 577	 * idea is that when we merge the destination
 578	 * rbio is going to run our IO for us.  We can
 579	 * steal from cached rbio's though, other functions
 580	 * handle that.
 581	 */
 582	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 583	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 584		return 0;
 585
 586	if (last->bbio->raid_map[0] !=
 587	    cur->bbio->raid_map[0])
 588		return 0;
 589
 590	/* we can't merge with different operations */
 591	if (last->operation != cur->operation)
 592		return 0;
 593	/*
 594	 * We've need read the full stripe from the drive.
 595	 * check and repair the parity and write the new results.
 596	 *
 597	 * We're not allowed to add any new bios to the
 598	 * bio list here, anyone else that wants to
 599	 * change this stripe needs to do their own rmw.
 600	 */
 601	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
 602	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
 603		return 0;
 604
 605	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
 606	    cur->operation == BTRFS_RBIO_REBUILD_MISSING)
 607		return 0;
 608
 609	return 1;
 610}
 611
 612static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
 613				  int index)
 
 614{
 615	return stripe * rbio->stripe_npages + index;
 
 
 
 616}
 617
 618/*
 619 * these are just the pages from the rbio array, not from anything
 620 * the FS sent down to us
 621 */
 622static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
 623				     int index)
 624{
 625	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
 
 626}
 627
 628/*
 629 * helper to index into the pstripe
 630 */
 631static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 632{
 633	return rbio_stripe_page(rbio, rbio->nr_data, index);
 634}
 635
 636/*
 637 * helper to index into the qstripe, returns null
 638 * if there is no qstripe
 639 */
 640static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 641{
 642	if (rbio->nr_data + 1 == rbio->real_stripes)
 643		return NULL;
 644	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
 645}
 646
 647/*
 648 * The first stripe in the table for a logical address
 649 * has the lock.  rbios are added in one of three ways:
 650 *
 651 * 1) Nobody has the stripe locked yet.  The rbio is given
 652 * the lock and 0 is returned.  The caller must start the IO
 653 * themselves.
 654 *
 655 * 2) Someone has the stripe locked, but we're able to merge
 656 * with the lock owner.  The rbio is freed and the IO will
 657 * start automatically along with the existing rbio.  1 is returned.
 658 *
 659 * 3) Someone has the stripe locked, but we're not able to merge.
 660 * The rbio is added to the lock owner's plug list, or merged into
 661 * an rbio already on the plug list.  When the lock owner unlocks,
 662 * the next rbio on the list is run and the IO is started automatically.
 663 * 1 is returned
 664 *
 665 * If we return 0, the caller still owns the rbio and must continue with
 666 * IO submission.  If we return 1, the caller must assume the rbio has
 667 * already been freed.
 668 */
 669static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 670{
 671	int bucket = rbio_bucket(rbio);
 672	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
 673	struct btrfs_raid_bio *cur;
 674	struct btrfs_raid_bio *pending;
 675	unsigned long flags;
 676	DEFINE_WAIT(wait);
 677	struct btrfs_raid_bio *freeit = NULL;
 678	struct btrfs_raid_bio *cache_drop = NULL;
 679	int ret = 0;
 680	int walk = 0;
 681
 682	spin_lock_irqsave(&h->lock, flags);
 
 
 683	list_for_each_entry(cur, &h->hash_list, hash_list) {
 684		walk++;
 685		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
 686			spin_lock(&cur->bio_list_lock);
 687
 688			/* can we steal this cached rbio's pages? */
 689			if (bio_list_empty(&cur->bio_list) &&
 690			    list_empty(&cur->plug_list) &&
 691			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 692			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 693				list_del_init(&cur->hash_list);
 694				atomic_dec(&cur->refs);
 
 
 
 
 
 
 
 
 695
 696				steal_rbio(cur, rbio);
 697				cache_drop = cur;
 698				spin_unlock(&cur->bio_list_lock);
 
 
 
 
 
 699
 700				goto lockit;
 701			}
 702
 703			/* can we merge into the lock owner? */
 704			if (rbio_can_merge(cur, rbio)) {
 705				merge_rbio(cur, rbio);
 
 
 
 
 
 706				spin_unlock(&cur->bio_list_lock);
 707				freeit = rbio;
 708				ret = 1;
 709				goto out;
 710			}
 
 711
 712
 713			/*
 714			 * we couldn't merge with the running
 715			 * rbio, see if we can merge with the
 716			 * pending ones.  We don't have to
 717			 * check for rmw_locked because there
 718			 * is no way they are inside finish_rmw
 719			 * right now
 720			 */
 721			list_for_each_entry(pending, &cur->plug_list,
 722					    plug_list) {
 723				if (rbio_can_merge(pending, rbio)) {
 724					merge_rbio(pending, rbio);
 725					spin_unlock(&cur->bio_list_lock);
 726					freeit = rbio;
 727					ret = 1;
 728					goto out;
 729				}
 730			}
 731
 732			/* no merging, put us on the tail of the plug list,
 733			 * our rbio will be started with the currently
 734			 * running rbio unlocks
 735			 */
 736			list_add_tail(&rbio->plug_list, &cur->plug_list);
 737			spin_unlock(&cur->bio_list_lock);
 738			ret = 1;
 739			goto out;
 740		}
 741	}
 742lockit:
 743	atomic_inc(&rbio->refs);
 744	list_add(&rbio->hash_list, &h->hash_list);
 745out:
 746	spin_unlock_irqrestore(&h->lock, flags);
 747	if (cache_drop)
 748		remove_rbio_from_cache(cache_drop);
 749	if (freeit)
 750		__free_raid_bio(freeit);
 751	return ret;
 752}
 753
 
 
 754/*
 755 * called as rmw or parity rebuild is completed.  If the plug list has more
 756 * rbios waiting for this stripe, the next one on the list will be started
 757 */
 758static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 759{
 760	int bucket;
 761	struct btrfs_stripe_hash *h;
 762	unsigned long flags;
 763	int keep_cache = 0;
 764
 765	bucket = rbio_bucket(rbio);
 766	h = rbio->fs_info->stripe_hash_table->table + bucket;
 767
 768	if (list_empty(&rbio->plug_list))
 769		cache_rbio(rbio);
 770
 771	spin_lock_irqsave(&h->lock, flags);
 772	spin_lock(&rbio->bio_list_lock);
 773
 774	if (!list_empty(&rbio->hash_list)) {
 775		/*
 776		 * if we're still cached and there is no other IO
 777		 * to perform, just leave this rbio here for others
 778		 * to steal from later
 779		 */
 780		if (list_empty(&rbio->plug_list) &&
 781		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 782			keep_cache = 1;
 783			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 784			BUG_ON(!bio_list_empty(&rbio->bio_list));
 785			goto done;
 786		}
 787
 788		list_del_init(&rbio->hash_list);
 789		atomic_dec(&rbio->refs);
 790
 791		/*
 792		 * we use the plug list to hold all the rbios
 793		 * waiting for the chance to lock this stripe.
 794		 * hand the lock over to one of them.
 795		 */
 796		if (!list_empty(&rbio->plug_list)) {
 797			struct btrfs_raid_bio *next;
 798			struct list_head *head = rbio->plug_list.next;
 799
 800			next = list_entry(head, struct btrfs_raid_bio,
 801					  plug_list);
 802
 803			list_del_init(&rbio->plug_list);
 804
 805			list_add(&next->hash_list, &h->hash_list);
 806			atomic_inc(&next->refs);
 807			spin_unlock(&rbio->bio_list_lock);
 808			spin_unlock_irqrestore(&h->lock, flags);
 809
 810			if (next->operation == BTRFS_RBIO_READ_REBUILD)
 811				async_read_rebuild(next);
 812			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 813				steal_rbio(rbio, next);
 814				async_read_rebuild(next);
 815			} else if (next->operation == BTRFS_RBIO_WRITE) {
 816				steal_rbio(rbio, next);
 817				async_rmw_stripe(next);
 818			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 819				steal_rbio(rbio, next);
 820				async_scrub_parity(next);
 821			}
 822
 823			goto done_nolock;
 824			/*
 825			 * The barrier for this waitqueue_active is not needed,
 826			 * we're protected by h->lock and can't miss a wakeup.
 827			 */
 828		} else if (waitqueue_active(&h->wait)) {
 829			spin_unlock(&rbio->bio_list_lock);
 830			spin_unlock_irqrestore(&h->lock, flags);
 831			wake_up(&h->wait);
 832			goto done_nolock;
 833		}
 834	}
 835done:
 836	spin_unlock(&rbio->bio_list_lock);
 837	spin_unlock_irqrestore(&h->lock, flags);
 838
 839done_nolock:
 840	if (!keep_cache)
 841		remove_rbio_from_cache(rbio);
 842}
 843
 844static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 845{
 846	int i;
 847
 848	WARN_ON(atomic_read(&rbio->refs) < 0);
 849	if (!atomic_dec_and_test(&rbio->refs))
 850		return;
 851
 852	WARN_ON(!list_empty(&rbio->stripe_cache));
 853	WARN_ON(!list_empty(&rbio->hash_list));
 854	WARN_ON(!bio_list_empty(&rbio->bio_list));
 855
 856	for (i = 0; i < rbio->nr_pages; i++) {
 857		if (rbio->stripe_pages[i]) {
 858			__free_page(rbio->stripe_pages[i]);
 859			rbio->stripe_pages[i] = NULL;
 860		}
 861	}
 862
 863	btrfs_put_bbio(rbio->bbio);
 864	kfree(rbio);
 865}
 866
 867static void free_raid_bio(struct btrfs_raid_bio *rbio)
 868{
 869	unlock_stripe(rbio);
 870	__free_raid_bio(rbio);
 871}
 872
 873/*
 874 * this frees the rbio and runs through all the bios in the
 875 * bio_list and calls end_io on them
 876 */
 877static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
 878{
 879	struct bio *cur = bio_list_get(&rbio->bio_list);
 880	struct bio *next;
 881
 882	if (rbio->generic_bio_cnt)
 883		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
 884
 885	free_raid_bio(rbio);
 886
 887	while (cur) {
 888		next = cur->bi_next;
 889		cur->bi_next = NULL;
 890		cur->bi_error = err;
 891		bio_endio(cur);
 892		cur = next;
 893	}
 894}
 895
 896/*
 897 * end io function used by finish_rmw.  When we finally
 898 * get here, we've written a full stripe
 899 */
 900static void raid_write_end_io(struct bio *bio)
 901{
 902	struct btrfs_raid_bio *rbio = bio->bi_private;
 903	int err = bio->bi_error;
 904	int max_errors;
 905
 906	if (err)
 907		fail_bio_stripe(rbio, bio);
 
 
 908
 909	bio_put(bio);
 
 
 
 
 
 910
 911	if (!atomic_dec_and_test(&rbio->stripes_pending))
 912		return;
 913
 914	err = 0;
 915
 916	/* OK, we have read all the stripes we need to. */
 917	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
 918		     0 : rbio->bbio->max_errors;
 919	if (atomic_read(&rbio->error) > max_errors)
 920		err = -EIO;
 
 921
 922	rbio_orig_end_io(rbio, err);
 
 
 923}
 924
 925/*
 926 * the read/modify/write code wants to use the original bio for
 927 * any pages it included, and then use the rbio for everything
 928 * else.  This function decides if a given index (stripe number)
 929 * and page number in that stripe fall inside the original bio
 930 * or the rbio.
 931 *
 932 * if you set bio_list_only, you'll get a NULL back for any ranges
 933 * that are outside the bio_list
 
 
 
 934 *
 935 * This doesn't take any refs on anything, you get a bare page pointer
 936 * and the caller must bump refs as required.
 937 *
 938 * You must call index_rbio_pages once before you can trust
 939 * the answers from this function.
 940 */
 941static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 942				 int index, int pagenr, int bio_list_only)
 
 943{
 944	int chunk_page;
 945	struct page *p = NULL;
 946
 947	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 
 
 
 948
 949	spin_lock_irq(&rbio->bio_list_lock);
 950	p = rbio->bio_pages[chunk_page];
 951	spin_unlock_irq(&rbio->bio_list_lock);
 952
 953	if (p || bio_list_only)
 954		return p;
 
 
 
 
 
 
 
 
 955
 956	return rbio->stripe_pages[chunk_page];
 957}
 958
 959/*
 960 * number of pages we need for the entire stripe across all the
 961 * drives
 962 */
 963static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 964{
 965	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
 966}
 967
 968/*
 969 * allocation and initial setup for the btrfs_raid_bio.  Not
 970 * this does not allocate any pages for rbio->pages.
 971 */
 972static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
 973			  struct btrfs_bio *bbio, u64 stripe_len)
 974{
 
 
 
 
 
 
 975	struct btrfs_raid_bio *rbio;
 976	int nr_data = 0;
 977	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 978	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
 979	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
 980	void *p;
 981
 982	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
 983		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
 984		       sizeof(long), GFP_NOFS);
 
 
 
 
 
 
 
 
 985	if (!rbio)
 986		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987
 988	bio_list_init(&rbio->bio_list);
 
 989	INIT_LIST_HEAD(&rbio->plug_list);
 990	spin_lock_init(&rbio->bio_list_lock);
 991	INIT_LIST_HEAD(&rbio->stripe_cache);
 992	INIT_LIST_HEAD(&rbio->hash_list);
 993	rbio->bbio = bbio;
 994	rbio->fs_info = root->fs_info;
 995	rbio->stripe_len = stripe_len;
 996	rbio->nr_pages = num_pages;
 
 997	rbio->real_stripes = real_stripes;
 998	rbio->stripe_npages = stripe_npages;
 999	rbio->faila = -1;
1000	rbio->failb = -1;
1001	atomic_set(&rbio->refs, 1);
1002	atomic_set(&rbio->error, 0);
1003	atomic_set(&rbio->stripes_pending, 0);
1004
1005	/*
1006	 * the stripe_pages and bio_pages array point to the extra
1007	 * memory we allocated past the end of the rbio
1008	 */
1009	p = rbio + 1;
1010	rbio->stripe_pages = p;
1011	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1012	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1013
1014	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1015		nr_data = real_stripes - 1;
1016	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1017		nr_data = real_stripes - 2;
1018	else
1019		BUG();
1020
1021	rbio->nr_data = nr_data;
1022	return rbio;
1023}
1024
1025/* allocate pages for all the stripes in the bio, including parity */
1026static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1027{
1028	int i;
1029	struct page *page;
1030
1031	for (i = 0; i < rbio->nr_pages; i++) {
1032		if (rbio->stripe_pages[i])
1033			continue;
1034		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1035		if (!page)
1036			return -ENOMEM;
1037		rbio->stripe_pages[i] = page;
1038	}
1039	return 0;
1040}
1041
1042/* only allocate pages for p/q stripes */
1043static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1044{
1045	int i;
1046	struct page *page;
 
 
 
 
 
 
 
 
 
1047
1048	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
 
 
 
 
 
 
 
 
 
 
1049
1050	for (; i < rbio->nr_pages; i++) {
1051		if (rbio->stripe_pages[i])
1052			continue;
1053		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1054		if (!page)
1055			return -ENOMEM;
1056		rbio->stripe_pages[i] = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057	}
1058	return 0;
1059}
1060
1061/*
1062 * add a single page from a specific stripe into our list of bios for IO
1063 * this will try to merge into existing bios if possible, and returns
1064 * zero if all went well.
1065 */
1066static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1067			    struct bio_list *bio_list,
1068			    struct page *page,
1069			    int stripe_nr,
1070			    unsigned long page_index,
1071			    unsigned long bio_max_len)
 
1072{
 
1073	struct bio *last = bio_list->tail;
1074	u64 last_end = 0;
1075	int ret;
1076	struct bio *bio;
1077	struct btrfs_bio_stripe *stripe;
1078	u64 disk_start;
1079
1080	stripe = &rbio->bbio->stripes[stripe_nr];
1081	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
1082
1083	/* if the device is missing, just fail this stripe */
1084	if (!stripe->dev->bdev)
1085		return fail_rbio_index(rbio, stripe_nr);
 
 
 
 
 
 
 
 
 
 
 
1086
1087	/* see if we can add this page onto our existing bio */
1088	if (last) {
1089		last_end = (u64)last->bi_iter.bi_sector << 9;
1090		last_end += last->bi_iter.bi_size;
1091
1092		/*
1093		 * we can't merge these if they are from different
1094		 * devices or if they are not contiguous
1095		 */
1096		if (last_end == disk_start && stripe->dev->bdev &&
1097		    !last->bi_error &&
1098		    last->bi_bdev == stripe->dev->bdev) {
1099			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1100			if (ret == PAGE_SIZE)
 
1101				return 0;
1102		}
1103	}
1104
1105	/* put a new bio on the list */
1106	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1107	if (!bio)
1108		return -ENOMEM;
1109
1110	bio->bi_iter.bi_size = 0;
1111	bio->bi_bdev = stripe->dev->bdev;
1112	bio->bi_iter.bi_sector = disk_start >> 9;
1113
1114	bio_add_page(bio, page, PAGE_SIZE, 0);
1115	bio_list_add(bio_list, bio);
1116	return 0;
1117}
1118
1119/*
1120 * while we're doing the read/modify/write cycle, we could
1121 * have errors in reading pages off the disk.  This checks
1122 * for errors and if we're not able to read the page it'll
1123 * trigger parity reconstruction.  The rmw will be finished
1124 * after we've reconstructed the failed stripes
1125 */
1126static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1127{
1128	if (rbio->faila >= 0 || rbio->failb >= 0) {
1129		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1130		__raid56_parity_recover(rbio);
1131	} else {
1132		finish_rmw(rbio);
 
 
 
 
 
 
1133	}
1134}
1135
1136/*
1137 * helper function to walk our bio list and populate the bio_pages array with
1138 * the result.  This seems expensive, but it is faster than constantly
1139 * searching through the bio list as we setup the IO in finish_rmw or stripe
1140 * reconstruction.
1141 *
1142 * This must be called before you trust the answers from page_in_rbio
1143 */
1144static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1145{
1146	struct bio *bio;
1147	u64 start;
1148	unsigned long stripe_offset;
1149	unsigned long page_index;
1150	struct page *p;
 
 
 
 
 
 
 
 
1151	int i;
1152
1153	spin_lock_irq(&rbio->bio_list_lock);
1154	bio_list_for_each(bio, &rbio->bio_list) {
1155		start = (u64)bio->bi_iter.bi_sector << 9;
1156		stripe_offset = start - rbio->bbio->raid_map[0];
1157		page_index = stripe_offset >> PAGE_SHIFT;
1158
1159		for (i = 0; i < bio->bi_vcnt; i++) {
1160			p = bio->bi_io_vec[i].bv_page;
1161			rbio->bio_pages[page_index + i] = p;
1162		}
 
 
 
 
1163	}
1164	spin_unlock_irq(&rbio->bio_list_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165}
1166
1167/*
1168 * this is called from one of two situations.  We either
1169 * have a full stripe from the higher layers, or we've read all
1170 * the missing bits off disk.
1171 *
1172 * This will calculate the parity and then send down any
1173 * changed blocks.
1174 */
1175static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1176{
1177	struct btrfs_bio *bbio = rbio->bbio;
1178	void *pointers[rbio->real_stripes];
1179	int nr_data = rbio->nr_data;
1180	int stripe;
1181	int pagenr;
1182	int p_stripe = -1;
1183	int q_stripe = -1;
1184	struct bio_list bio_list;
1185	struct bio *bio;
1186	int ret;
 
 
1187
1188	bio_list_init(&bio_list);
 
 
 
1189
1190	if (rbio->real_stripes - rbio->nr_data == 1) {
1191		p_stripe = rbio->real_stripes - 1;
1192	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1193		p_stripe = rbio->real_stripes - 2;
1194		q_stripe = rbio->real_stripes - 1;
 
 
 
 
 
 
 
 
1195	} else {
1196		BUG();
 
 
1197	}
 
 
 
1198
1199	/* at this point we either have a full stripe,
1200	 * or we've read the full stripe from the drive.
1201	 * recalculate the parity and write the new results.
1202	 *
1203	 * We're not allowed to add any new bios to the
1204	 * bio list here, anyone else that wants to
1205	 * change this stripe needs to do their own rmw.
1206	 */
1207	spin_lock_irq(&rbio->bio_list_lock);
1208	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1209	spin_unlock_irq(&rbio->bio_list_lock);
1210
1211	atomic_set(&rbio->error, 0);
 
1212
1213	/*
1214	 * now that we've set rmw_locked, run through the
1215	 * bio list one last time and map the page pointers
1216	 *
1217	 * We don't cache full rbios because we're assuming
1218	 * the higher layers are unlikely to use this area of
1219	 * the disk again soon.  If they do use it again,
1220	 * hopefully they will send another full bio.
1221	 */
1222	index_rbio_pages(rbio);
1223	if (!rbio_is_full(rbio))
1224		cache_rbio_pages(rbio);
1225	else
1226		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1227
1228	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1229		struct page *p;
1230		/* first collect one page from each data stripe */
1231		for (stripe = 0; stripe < nr_data; stripe++) {
1232			p = page_in_rbio(rbio, stripe, pagenr, 0);
1233			pointers[stripe] = kmap(p);
1234		}
1235
1236		/* then add the parity stripe */
1237		p = rbio_pstripe_page(rbio, pagenr);
1238		SetPageUptodate(p);
1239		pointers[stripe++] = kmap(p);
1240
1241		if (q_stripe != -1) {
 
 
1242
1243			/*
1244			 * raid6, add the qstripe and call the
1245			 * library function to fill in our p/q
1246			 */
1247			p = rbio_qstripe_page(rbio, pagenr);
1248			SetPageUptodate(p);
1249			pointers[stripe++] = kmap(p);
1250
1251			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1252						pointers);
1253		} else {
1254			/* raid5 */
1255			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1256			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1257		}
1258
 
 
 
 
 
1259
1260		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1261			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1262	}
1263
1264	/*
1265	 * time to start writing.  Make bios for everything from the
1266	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1267	 * everything else.
1268	 */
1269	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1270		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1271			struct page *page;
1272			if (stripe < rbio->nr_data) {
1273				page = page_in_rbio(rbio, stripe, pagenr, 1);
1274				if (!page)
1275					continue;
1276			} else {
1277			       page = rbio_stripe_page(rbio, stripe, pagenr);
1278			}
1279
1280			ret = rbio_add_io_page(rbio, &bio_list,
1281				       page, stripe, pagenr, rbio->stripe_len);
1282			if (ret)
1283				goto cleanup;
1284		}
1285	}
1286
1287	if (likely(!bbio->num_tgtdevs))
1288		goto write_data;
1289
1290	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1291		if (!bbio->tgtdev_map[stripe])
 
 
 
 
 
 
 
 
 
 
1292			continue;
 
1293
1294		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1295			struct page *page;
1296			if (stripe < rbio->nr_data) {
1297				page = page_in_rbio(rbio, stripe, pagenr, 1);
1298				if (!page)
1299					continue;
1300			} else {
1301			       page = rbio_stripe_page(rbio, stripe, pagenr);
1302			}
1303
1304			ret = rbio_add_io_page(rbio, &bio_list, page,
1305					       rbio->bbio->tgtdev_map[stripe],
1306					       pagenr, rbio->stripe_len);
1307			if (ret)
1308				goto cleanup;
 
1309		}
1310	}
1311
1312write_data:
1313	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1314	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1315
1316	while (1) {
1317		bio = bio_list_pop(&bio_list);
1318		if (!bio)
1319			break;
1320
1321		bio->bi_private = rbio;
1322		bio->bi_end_io = raid_write_end_io;
1323		submit_bio(WRITE, bio);
1324	}
1325	return;
1326
1327cleanup:
1328	rbio_orig_end_io(rbio, -EIO);
 
 
1329}
1330
1331/*
1332 * helper to find the stripe number for a given bio.  Used to figure out which
1333 * stripe has failed.  This expects the bio to correspond to a physical disk,
1334 * so it looks up based on physical sector numbers.
1335 */
1336static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1337			   struct bio *bio)
1338{
1339	u64 physical = bio->bi_iter.bi_sector;
1340	u64 stripe_start;
1341	int i;
1342	struct btrfs_bio_stripe *stripe;
1343
1344	physical <<= 9;
1345
1346	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1347		stripe = &rbio->bbio->stripes[i];
1348		stripe_start = stripe->physical;
1349		if (physical >= stripe_start &&
1350		    physical < stripe_start + rbio->stripe_len &&
1351		    bio->bi_bdev == stripe->dev->bdev) {
1352			return i;
 
 
 
 
 
 
 
 
 
 
 
 
 
1353		}
 
1354	}
1355	return -1;
1356}
1357
1358/*
1359 * helper to find the stripe number for a given
1360 * bio (before mapping).  Used to figure out which stripe has
1361 * failed.  This looks up based on logical block numbers.
1362 */
1363static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1364				   struct bio *bio)
 
1365{
1366	u64 logical = bio->bi_iter.bi_sector;
1367	u64 stripe_start;
1368	int i;
1369
1370	logical <<= 9;
 
1371
1372	for (i = 0; i < rbio->nr_data; i++) {
1373		stripe_start = rbio->bbio->raid_map[i];
1374		if (logical >= stripe_start &&
1375		    logical < stripe_start + rbio->stripe_len) {
1376			return i;
1377		}
1378	}
1379	return -1;
1380}
1381
1382/*
1383 * returns -EIO if we had too many failures
 
1384 */
1385static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1386{
1387	unsigned long flags;
1388	int ret = 0;
 
1389
1390	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1391
1392	/* we already know this stripe is bad, move on */
1393	if (rbio->faila == failed || rbio->failb == failed)
1394		goto out;
1395
1396	if (rbio->faila == -1) {
1397		/* first failure on this rbio */
1398		rbio->faila = failed;
1399		atomic_inc(&rbio->error);
1400	} else if (rbio->failb == -1) {
1401		/* second failure on this rbio */
1402		rbio->failb = failed;
1403		atomic_inc(&rbio->error);
1404	} else {
1405		ret = -EIO;
1406	}
1407out:
1408	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1409
1410	return ret;
1411}
1412
1413/*
1414 * helper to fail a stripe based on a physical disk
1415 * bio.
1416 */
1417static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1418			   struct bio *bio)
1419{
1420	int failed = find_bio_stripe(rbio, bio);
 
1421
1422	if (failed < 0)
1423		return -EIO;
1424
1425	return fail_rbio_index(rbio, failed);
 
 
 
 
 
 
 
 
1426}
1427
1428/*
1429 * this sets each page in the bio uptodate.  It should only be used on private
1430 * rbio pages, nothing that comes in from the higher layers
1431 */
1432static void set_bio_pages_uptodate(struct bio *bio)
1433{
 
 
 
1434	int i;
1435	struct page *p;
1436
1437	for (i = 0; i < bio->bi_vcnt; i++) {
1438		p = bio->bi_io_vec[i].bv_page;
1439		SetPageUptodate(p);
1440	}
 
 
 
 
 
 
 
 
1441}
1442
1443/*
1444 * end io for the read phase of the rmw cycle.  All the bios here are physical
1445 * stripe bios we've read from the disk so we can recalculate the parity of the
1446 * stripe.
1447 *
1448 * This will usually kick off finish_rmw once all the bios are read in, but it
1449 * may trigger parity reconstruction if we had any errors along the way
1450 */
1451static void raid_rmw_end_io(struct bio *bio)
1452{
1453	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
1454
1455	if (bio->bi_error)
1456		fail_bio_stripe(rbio, bio);
1457	else
1458		set_bio_pages_uptodate(bio);
1459
1460	bio_put(bio);
1461
1462	if (!atomic_dec_and_test(&rbio->stripes_pending))
 
1463		return;
1464
1465	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1466		goto cleanup;
1467
1468	/*
1469	 * this will normally call finish_rmw to start our write
1470	 * but if there are any failed stripes we'll reconstruct
1471	 * from parity first
1472	 */
1473	validate_rbio_for_rmw(rbio);
1474	return;
1475
1476cleanup:
 
 
1477
1478	rbio_orig_end_io(rbio, -EIO);
 
 
 
 
 
1479}
1480
1481static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1482{
1483	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1484			rmw_work, NULL, NULL);
1485
1486	btrfs_queue_work(rbio->fs_info->rmw_workers,
1487			 &rbio->work);
1488}
 
 
 
1489
1490static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1491{
1492	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1493			read_rebuild_work, NULL, NULL);
1494
1495	btrfs_queue_work(rbio->fs_info->rmw_workers,
1496			 &rbio->work);
1497}
1498
1499/*
1500 * the stripe must be locked by the caller.  It will
1501 * unlock after all the writes are done
1502 */
1503static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1504{
1505	int bios_to_read = 0;
1506	struct bio_list bio_list;
1507	int ret;
1508	int pagenr;
1509	int stripe;
1510	struct bio *bio;
1511
1512	bio_list_init(&bio_list);
1513
1514	ret = alloc_rbio_pages(rbio);
1515	if (ret)
1516		goto cleanup;
1517
1518	index_rbio_pages(rbio);
1519
1520	atomic_set(&rbio->error, 0);
1521	/*
1522	 * build a list of bios to read all the missing parts of this
1523	 * stripe
1524	 */
1525	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1526		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1527			struct page *page;
1528			/*
1529			 * we want to find all the pages missing from
1530			 * the rbio and read them from the disk.  If
1531			 * page_in_rbio finds a page in the bio list
1532			 * we don't need to read it off the stripe.
1533			 */
1534			page = page_in_rbio(rbio, stripe, pagenr, 1);
1535			if (page)
1536				continue;
1537
1538			page = rbio_stripe_page(rbio, stripe, pagenr);
1539			/*
1540			 * the bio cache may have handed us an uptodate
1541			 * page.  If so, be happy and use it
1542			 */
1543			if (PageUptodate(page))
1544				continue;
1545
1546			ret = rbio_add_io_page(rbio, &bio_list, page,
1547				       stripe, pagenr, rbio->stripe_len);
1548			if (ret)
1549				goto cleanup;
1550		}
 
1551	}
1552
1553	bios_to_read = bio_list_size(&bio_list);
1554	if (!bios_to_read) {
1555		/*
1556		 * this can happen if others have merged with
1557		 * us, it means there is nothing left to read.
1558		 * But if there are missing devices it may not be
1559		 * safe to do the full stripe write yet.
1560		 */
1561		goto finish;
1562	}
1563
1564	/*
1565	 * the bbio may be freed once we submit the last bio.  Make sure
1566	 * not to touch it after that
1567	 */
1568	atomic_set(&rbio->stripes_pending, bios_to_read);
1569	while (1) {
1570		bio = bio_list_pop(&bio_list);
1571		if (!bio)
1572			break;
1573
1574		bio->bi_private = rbio;
1575		bio->bi_end_io = raid_rmw_end_io;
1576
1577		btrfs_bio_wq_end_io(rbio->fs_info, bio,
1578				    BTRFS_WQ_ENDIO_RAID56);
1579
1580		submit_bio(READ, bio);
1581	}
1582	/* the actual write will happen once the reads are done */
1583	return 0;
1584
1585cleanup:
1586	rbio_orig_end_io(rbio, -EIO);
1587	return -EIO;
1588
1589finish:
1590	validate_rbio_for_rmw(rbio);
1591	return 0;
1592}
1593
1594/*
1595 * if the upper layers pass in a full stripe, we thank them by only allocating
1596 * enough pages to hold the parity, and sending it all down quickly.
1597 */
1598static int full_stripe_write(struct btrfs_raid_bio *rbio)
1599{
 
1600	int ret;
1601
1602	ret = alloc_rbio_parity_pages(rbio);
1603	if (ret) {
1604		__free_raid_bio(rbio);
1605		return ret;
1606	}
1607
1608	ret = lock_stripe_add(rbio);
1609	if (ret == 0)
1610		finish_rmw(rbio);
1611	return 0;
1612}
1613
1614/*
1615 * partial stripe writes get handed over to async helpers.
1616 * We're really hoping to merge a few more writes into this
1617 * rbio before calculating new parity
1618 */
1619static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1620{
1621	int ret;
1622
1623	ret = lock_stripe_add(rbio);
1624	if (ret == 0)
1625		async_rmw_stripe(rbio);
1626	return 0;
1627}
1628
1629/*
1630 * sometimes while we were reading from the drive to
1631 * recalculate parity, enough new bios come into create
1632 * a full stripe.  So we do a check here to see if we can
1633 * go directly to finish_rmw
1634 */
1635static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1636{
1637	/* head off into rmw land if we don't have a full stripe */
1638	if (!rbio_is_full(rbio))
1639		return partial_stripe_write(rbio);
1640	return full_stripe_write(rbio);
1641}
1642
1643/*
1644 * We use plugging call backs to collect full stripes.
1645 * Any time we get a partial stripe write while plugged
1646 * we collect it into a list.  When the unplug comes down,
1647 * we sort the list by logical block number and merge
1648 * everything we can into the same rbios
1649 */
1650struct btrfs_plug_cb {
1651	struct blk_plug_cb cb;
1652	struct btrfs_fs_info *info;
1653	struct list_head rbio_list;
1654	struct btrfs_work work;
1655};
1656
1657/*
1658 * rbios on the plug list are sorted for easier merging.
1659 */
1660static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
 
1661{
1662	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1663						 plug_list);
1664	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1665						 plug_list);
1666	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1667	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1668
1669	if (a_sector < b_sector)
1670		return -1;
1671	if (a_sector > b_sector)
1672		return 1;
1673	return 0;
1674}
1675
1676static void run_plug(struct btrfs_plug_cb *plug)
1677{
 
1678	struct btrfs_raid_bio *cur;
1679	struct btrfs_raid_bio *last = NULL;
1680
1681	/*
1682	 * sort our plug list then try to merge
1683	 * everything we can in hopes of creating full
1684	 * stripes.
1685	 */
1686	list_sort(NULL, &plug->rbio_list, plug_cmp);
 
1687	while (!list_empty(&plug->rbio_list)) {
1688		cur = list_entry(plug->rbio_list.next,
1689				 struct btrfs_raid_bio, plug_list);
1690		list_del_init(&cur->plug_list);
1691
1692		if (rbio_is_full(cur)) {
1693			/* we have a full stripe, send it down */
1694			full_stripe_write(cur);
1695			continue;
1696		}
1697		if (last) {
1698			if (rbio_can_merge(last, cur)) {
1699				merge_rbio(last, cur);
1700				__free_raid_bio(cur);
1701				continue;
1702
1703			}
1704			__raid56_parity_write(last);
1705		}
1706		last = cur;
1707	}
1708	if (last) {
1709		__raid56_parity_write(last);
1710	}
1711	kfree(plug);
1712}
1713
1714/*
1715 * if the unplug comes from schedule, we have to push the
1716 * work off to a helper thread
1717 */
1718static void unplug_work(struct btrfs_work *work)
1719{
1720	struct btrfs_plug_cb *plug;
1721	plug = container_of(work, struct btrfs_plug_cb, work);
1722	run_plug(plug);
1723}
1724
1725static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1726{
1727	struct btrfs_plug_cb *plug;
1728	plug = container_of(cb, struct btrfs_plug_cb, cb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729
1730	if (from_schedule) {
1731		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1732				unplug_work, NULL, NULL);
1733		btrfs_queue_work(plug->info->rmw_workers,
1734				 &plug->work);
1735		return;
1736	}
1737	run_plug(plug);
1738}
1739
1740/*
1741 * our main entry point for writes from the rest of the FS.
1742 */
1743int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1744			struct btrfs_bio *bbio, u64 stripe_len)
1745{
 
1746	struct btrfs_raid_bio *rbio;
1747	struct btrfs_plug_cb *plug = NULL;
1748	struct blk_plug_cb *cb;
1749	int ret;
1750
1751	rbio = alloc_rbio(root, bbio, stripe_len);
1752	if (IS_ERR(rbio)) {
1753		btrfs_put_bbio(bbio);
1754		return PTR_ERR(rbio);
 
1755	}
1756	bio_list_add(&rbio->bio_list, bio);
1757	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1758	rbio->operation = BTRFS_RBIO_WRITE;
1759
1760	btrfs_bio_counter_inc_noblocked(root->fs_info);
1761	rbio->generic_bio_cnt = 1;
1762
1763	/*
1764	 * don't plug on full rbios, just get them out the door
1765	 * as quickly as we can
1766	 */
1767	if (rbio_is_full(rbio)) {
1768		ret = full_stripe_write(rbio);
1769		if (ret)
1770			btrfs_bio_counter_dec(root->fs_info);
1771		return ret;
 
 
 
 
 
 
1772	}
1773
1774	cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1775			       sizeof(*plug));
1776	if (cb) {
1777		plug = container_of(cb, struct btrfs_plug_cb, cb);
1778		if (!plug->info) {
1779			plug->info = root->fs_info;
1780			INIT_LIST_HEAD(&plug->rbio_list);
1781		}
1782		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1783		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784	} else {
1785		ret = __raid56_parity_write(rbio);
1786		if (ret)
1787			btrfs_bio_counter_dec(root->fs_info);
1788	}
 
 
 
 
 
 
 
 
1789	return ret;
1790}
1791
1792/*
1793 * all parity reconstruction happens here.  We've read in everything
1794 * we can find from the drives and this does the heavy lifting of
1795 * sorting the good from the bad.
1796 */
1797static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1798{
1799	int pagenr, stripe;
1800	void **pointers;
1801	int faila = -1, failb = -1;
1802	struct page *page;
1803	int err;
1804	int i;
 
 
 
1805
1806	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1807	if (!pointers) {
1808		err = -ENOMEM;
1809		goto cleanup_io;
1810	}
 
 
1811
1812	faila = rbio->faila;
1813	failb = rbio->failb;
 
 
 
 
 
 
1814
1815	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1816	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1817		spin_lock_irq(&rbio->bio_list_lock);
1818		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1819		spin_unlock_irq(&rbio->bio_list_lock);
1820	}
1821
1822	index_rbio_pages(rbio);
1823
1824	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
 
 
 
 
1825		/*
1826		 * Now we just use bitmap to mark the horizontal stripes in
1827		 * which we have data when doing parity scrub.
1828		 */
1829		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1830		    !test_bit(pagenr, rbio->dbitmap))
1831			continue;
 
 
 
 
 
 
 
1832
1833		/* setup our array of pointers with pages
1834		 * from each stripe
1835		 */
1836		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 
 
 
 
 
 
 
 
1837			/*
1838			 * if we're rebuilding a read, we have to use
1839			 * pages from the bio list
1840			 */
1841			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1842			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1843			    (stripe == faila || stripe == failb)) {
1844				page = page_in_rbio(rbio, stripe, pagenr, 0);
1845			} else {
1846				page = rbio_stripe_page(rbio, stripe, pagenr);
1847			}
1848			pointers[stripe] = kmap(page);
1849		}
1850
1851		/* all raid6 handling here */
1852		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1853			/*
1854			 * single failure, rebuild from parity raid5
1855			 * style
1856			 */
1857			if (failb < 0) {
1858				if (faila == rbio->nr_data) {
1859					/*
1860					 * Just the P stripe has failed, without
1861					 * a bad data or Q stripe.
1862					 * TODO, we should redo the xor here.
1863					 */
1864					err = -EIO;
1865					goto cleanup;
1866				}
1867				/*
1868				 * a single failure in raid6 is rebuilt
1869				 * in the pstripe code below
 
1870				 */
1871				goto pstripe;
1872			}
1873
1874			/* make sure our ps and qs are in order */
1875			if (faila > failb) {
1876				int tmp = failb;
1877				failb = faila;
1878				faila = tmp;
1879			}
1880
1881			/* if the q stripe is failed, do a pstripe reconstruction
1882			 * from the xors.
1883			 * If both the q stripe and the P stripe are failed, we're
1884			 * here due to a crc mismatch and we can't give them the
1885			 * data they want
1886			 */
1887			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1888				if (rbio->bbio->raid_map[faila] ==
1889				    RAID5_P_STRIPE) {
1890					err = -EIO;
1891					goto cleanup;
1892				}
1893				/*
1894				 * otherwise we have one bad data stripe and
1895				 * a good P stripe.  raid5!
1896				 */
1897				goto pstripe;
1898			}
1899
1900			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1901				raid6_datap_recov(rbio->real_stripes,
1902						  PAGE_SIZE, faila, pointers);
1903			} else {
1904				raid6_2data_recov(rbio->real_stripes,
1905						  PAGE_SIZE, faila, failb,
1906						  pointers);
1907			}
1908		} else {
1909			void *p;
 
 
 
 
1910
1911			/* rebuild from P stripe here (raid5 or raid6) */
1912			BUG_ON(failb != -1);
1913pstripe:
1914			/* Copy parity block into failed block to start with */
1915			memcpy(pointers[faila],
1916			       pointers[rbio->nr_data],
1917			       PAGE_SIZE);
1918
1919			/* rearrange the pointer array */
1920			p = pointers[faila];
1921			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1922				pointers[stripe] = pointers[stripe + 1];
1923			pointers[rbio->nr_data - 1] = p;
1924
1925			/* xor in the rest */
1926			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1927		}
1928		/* if we're doing this rebuild as part of an rmw, go through
1929		 * and set all of our private rbio pages in the
1930		 * failed stripes as uptodate.  This way finish_rmw will
1931		 * know they can be trusted.  If this was a read reconstruction,
1932		 * other endio functions will fiddle the uptodate bits
1933		 */
1934		if (rbio->operation == BTRFS_RBIO_WRITE) {
1935			for (i = 0;  i < rbio->stripe_npages; i++) {
1936				if (faila != -1) {
1937					page = rbio_stripe_page(rbio, faila, i);
1938					SetPageUptodate(page);
1939				}
1940				if (failb != -1) {
1941					page = rbio_stripe_page(rbio, failb, i);
1942					SetPageUptodate(page);
1943				}
1944			}
1945		}
1946		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1947			/*
1948			 * if we're rebuilding a read, we have to use
1949			 * pages from the bio list
1950			 */
1951			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1952			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1953			    (stripe == faila || stripe == failb)) {
1954				page = page_in_rbio(rbio, stripe, pagenr, 0);
1955			} else {
1956				page = rbio_stripe_page(rbio, stripe, pagenr);
1957			}
1958			kunmap(page);
1959		}
1960	}
1961
1962	err = 0;
1963cleanup:
1964	kfree(pointers);
 
 
 
 
 
 
 
 
 
 
 
1965
1966cleanup_io:
1967	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1968		if (err == 0)
1969			cache_rbio_pages(rbio);
1970		else
1971			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 
1972
1973		rbio_orig_end_io(rbio, err);
1974	} else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1975		rbio_orig_end_io(rbio, err);
1976	} else if (err == 0) {
1977		rbio->faila = -1;
1978		rbio->failb = -1;
1979
1980		if (rbio->operation == BTRFS_RBIO_WRITE)
1981			finish_rmw(rbio);
1982		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1983			finish_parity_scrub(rbio, 0);
1984		else
1985			BUG();
1986	} else {
1987		rbio_orig_end_io(rbio, err);
1988	}
 
 
 
 
 
1989}
1990
1991/*
1992 * This is called only for stripes we've read from disk to
1993 * reconstruct the parity.
1994 */
1995static void raid_recover_end_io(struct bio *bio)
1996{
1997	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
1998
1999	/*
2000	 * we only read stripe pages off the disk, set them
2001	 * up to date if there were no errors
 
 
2002	 */
2003	if (bio->bi_error)
2004		fail_bio_stripe(rbio, bio);
2005	else
2006		set_bio_pages_uptodate(bio);
2007	bio_put(bio);
 
 
 
 
 
 
 
 
 
2008
2009	if (!atomic_dec_and_test(&rbio->stripes_pending))
2010		return;
 
 
 
2011
2012	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2013		rbio_orig_end_io(rbio, -EIO);
2014	else
2015		__raid_recover_end_io(rbio);
2016}
2017
2018/*
2019 * reads everything we need off the disk to reconstruct
2020 * the parity. endio handlers trigger final reconstruction
2021 * when the IO is done.
2022 *
2023 * This is used both for reads from the higher layers and for
2024 * parity construction required to finish a rmw cycle.
2025 */
2026static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2027{
2028	int bios_to_read = 0;
2029	struct bio_list bio_list;
2030	int ret;
2031	int pagenr;
2032	int stripe;
2033	struct bio *bio;
2034
2035	bio_list_init(&bio_list);
 
 
 
 
2036
 
2037	ret = alloc_rbio_pages(rbio);
2038	if (ret)
2039		goto cleanup;
2040
2041	atomic_set(&rbio->error, 0);
2042
2043	/*
2044	 * read everything that hasn't failed.  Thanks to the
2045	 * stripe cache, it is possible that some or all of these
2046	 * pages are going to be uptodate.
 
 
 
2047	 */
2048	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2049		if (rbio->faila == stripe || rbio->failb == stripe) {
2050			atomic_inc(&rbio->error);
2051			continue;
2052		}
2053
2054		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2055			struct page *p;
2056
 
 
 
 
 
 
 
2057			/*
2058			 * the rmw code may have already read this
2059			 * page in
2060			 */
2061			p = rbio_stripe_page(rbio, stripe, pagenr);
2062			if (PageUptodate(p))
2063				continue;
2064
2065			ret = rbio_add_io_page(rbio, &bio_list,
2066				       rbio_stripe_page(rbio, stripe, pagenr),
2067				       stripe, pagenr, rbio->stripe_len);
2068			if (ret < 0)
2069				goto cleanup;
2070		}
2071	}
2072
2073	bios_to_read = bio_list_size(&bio_list);
2074	if (!bios_to_read) {
2075		/*
2076		 * we might have no bios to read just because the pages
2077		 * were up to date, or we might have no bios to read because
2078		 * the devices were gone.
2079		 */
2080		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2081			__raid_recover_end_io(rbio);
2082			goto out;
2083		} else {
2084			goto cleanup;
2085		}
2086	}
2087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2088	/*
2089	 * the bbio may be freed once we submit the last bio.  Make sure
2090	 * not to touch it after that
 
 
2091	 */
2092	atomic_set(&rbio->stripes_pending, bios_to_read);
2093	while (1) {
2094		bio = bio_list_pop(&bio_list);
2095		if (!bio)
2096			break;
2097
2098		bio->bi_private = rbio;
2099		bio->bi_end_io = raid_recover_end_io;
 
 
 
2100
2101		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2102				    BTRFS_WQ_ENDIO_RAID56);
 
 
 
 
2103
2104		submit_bio(READ, bio);
 
 
 
 
 
 
 
 
2105	}
2106out:
2107	return 0;
2108
2109cleanup:
2110	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2111	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2112		rbio_orig_end_io(rbio, -EIO);
2113	return -EIO;
2114}
2115
2116/*
2117 * the main entry point for reads from the higher layers.  This
2118 * is really only called when the normal read path had a failure,
2119 * so we assume the bio they send down corresponds to a failed part
2120 * of the drive.
2121 */
2122int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2123			  struct btrfs_bio *bbio, u64 stripe_len,
2124			  int mirror_num, int generic_io)
2125{
 
2126	struct btrfs_raid_bio *rbio;
2127	int ret;
2128
2129	rbio = alloc_rbio(root, bbio, stripe_len);
2130	if (IS_ERR(rbio)) {
2131		if (generic_io)
2132			btrfs_put_bbio(bbio);
2133		return PTR_ERR(rbio);
2134	}
2135
2136	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2137	bio_list_add(&rbio->bio_list, bio);
2138	rbio->bio_list_bytes = bio->bi_iter.bi_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139
2140	rbio->faila = find_logical_bio_stripe(rbio, bio);
2141	if (rbio->faila == -1) {
2142		BUG();
2143		if (generic_io)
2144			btrfs_put_bbio(bbio);
2145		kfree(rbio);
2146		return -EIO;
2147	}
 
2148
2149	if (generic_io) {
2150		btrfs_bio_counter_inc_noblocked(root->fs_info);
2151		rbio->generic_bio_cnt = 1;
2152	} else {
2153		btrfs_get_bbio(bbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
2154	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155
2156	/*
2157	 * reconstruct from the q stripe if they are
2158	 * asking for mirror 3
2159	 */
2160	if (mirror_num == 3)
2161		rbio->failb = rbio->real_stripes - 2;
 
 
 
 
 
 
 
 
2162
2163	ret = lock_stripe_add(rbio);
 
 
 
2164
2165	/*
2166	 * __raid56_parity_recover will end the bio with
2167	 * any errors it hits.  We don't want to return
2168	 * its error value up the stack because our caller
2169	 * will end up calling bio_endio with any nonzero
2170	 * return
2171	 */
2172	if (ret == 0)
2173		__raid56_parity_recover(rbio);
 
 
 
 
 
 
2174	/*
2175	 * our rbio has been added to the list of
2176	 * rbios that will be handled after the
2177	 * currently lock owner is done
 
2178	 */
2179	return 0;
 
 
 
 
 
 
 
 
 
 
 
2180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2181}
2182
2183static void rmw_work(struct btrfs_work *work)
2184{
2185	struct btrfs_raid_bio *rbio;
2186
2187	rbio = container_of(work, struct btrfs_raid_bio, work);
2188	raid56_rmw_stripe(rbio);
 
2189}
2190
2191static void read_rebuild_work(struct btrfs_work *work)
2192{
2193	struct btrfs_raid_bio *rbio;
2194
2195	rbio = container_of(work, struct btrfs_raid_bio, work);
2196	__raid56_parity_recover(rbio);
2197}
2198
2199/*
2200 * The following code is used to scrub/replace the parity stripe
2201 *
 
 
2202 * Note: We need make sure all the pages that add into the scrub/replace
2203 * raid bio are correct and not be changed during the scrub/replace. That
2204 * is those pages just hold metadata or file data with checksum.
2205 */
2206
2207struct btrfs_raid_bio *
2208raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2209			       struct btrfs_bio *bbio, u64 stripe_len,
2210			       struct btrfs_device *scrub_dev,
2211			       unsigned long *dbitmap, int stripe_nsectors)
2212{
 
2213	struct btrfs_raid_bio *rbio;
2214	int i;
2215
2216	rbio = alloc_rbio(root, bbio, stripe_len);
2217	if (IS_ERR(rbio))
2218		return NULL;
2219	bio_list_add(&rbio->bio_list, bio);
2220	/*
2221	 * This is a special bio which is used to hold the completion handler
2222	 * and make the scrub rbio is similar to the other types
2223	 */
2224	ASSERT(!bio->bi_iter.bi_size);
2225	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2226
2227	for (i = 0; i < rbio->real_stripes; i++) {
2228		if (bbio->stripes[i].dev == scrub_dev) {
 
 
 
 
 
2229			rbio->scrubp = i;
2230			break;
2231		}
2232	}
 
2233
2234	/* Now we just support the sectorsize equals to page size */
2235	ASSERT(root->sectorsize == PAGE_SIZE);
2236	ASSERT(rbio->stripe_npages == stripe_nsectors);
2237	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2238
2239	return rbio;
2240}
2241
2242/* Used for both parity scrub and missing. */
2243void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2244			    u64 logical)
2245{
2246	int stripe_offset;
2247	int index;
2248
2249	ASSERT(logical >= rbio->bbio->raid_map[0]);
2250	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2251				rbio->stripe_len * rbio->nr_data);
2252	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2253	index = stripe_offset >> PAGE_SHIFT;
2254	rbio->bio_pages[index] = page;
2255}
2256
2257/*
2258 * We just scrub the parity that we have correct data on the same horizontal,
2259 * so we needn't allocate all pages for all the stripes.
2260 */
2261static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2262{
2263	int i;
2264	int bit;
2265	int index;
2266	struct page *page;
2267
2268	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2269		for (i = 0; i < rbio->real_stripes; i++) {
2270			index = i * rbio->stripe_npages + bit;
2271			if (rbio->stripe_pages[index])
2272				continue;
2273
2274			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2275			if (!page)
2276				return -ENOMEM;
2277			rbio->stripe_pages[index] = page;
2278		}
 
 
 
2279	}
 
2280	return 0;
2281}
2282
2283static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2284					 int need_check)
2285{
2286	struct btrfs_bio *bbio = rbio->bbio;
2287	void *pointers[rbio->real_stripes];
2288	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
 
2289	int nr_data = rbio->nr_data;
2290	int stripe;
2291	int pagenr;
2292	int p_stripe = -1;
2293	int q_stripe = -1;
2294	struct page *p_page = NULL;
2295	struct page *q_page = NULL;
2296	struct bio_list bio_list;
2297	struct bio *bio;
2298	int is_replace = 0;
2299	int ret;
2300
2301	bio_list_init(&bio_list);
2302
2303	if (rbio->real_stripes - rbio->nr_data == 1) {
2304		p_stripe = rbio->real_stripes - 1;
2305	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2306		p_stripe = rbio->real_stripes - 2;
2307		q_stripe = rbio->real_stripes - 1;
2308	} else {
2309		BUG();
2310	}
2311
2312	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
 
 
 
 
2313		is_replace = 1;
2314		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2315	}
2316
2317	/*
2318	 * Because the higher layers(scrubber) are unlikely to
2319	 * use this area of the disk again soon, so don't cache
2320	 * it.
2321	 */
2322	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2323
2324	if (!need_check)
2325		goto writeback;
 
 
 
2326
2327	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2328	if (!p_page)
2329		goto cleanup;
2330	SetPageUptodate(p_page);
2331
2332	if (q_stripe != -1) {
2333		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2334		if (!q_page) {
2335			__free_page(p_page);
2336			goto cleanup;
2337		}
2338		SetPageUptodate(q_page);
 
 
2339	}
2340
2341	atomic_set(&rbio->error, 0);
 
 
 
2342
2343	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2344		struct page *p;
2345		void *parity;
 
2346		/* first collect one page from each data stripe */
2347		for (stripe = 0; stripe < nr_data; stripe++) {
2348			p = page_in_rbio(rbio, stripe, pagenr, 0);
2349			pointers[stripe] = kmap(p);
 
2350		}
2351
2352		/* then add the parity stripe */
2353		pointers[stripe++] = kmap(p_page);
2354
2355		if (q_stripe != -1) {
2356
2357			/*
2358			 * raid6, add the qstripe and call the
2359			 * library function to fill in our p/q
2360			 */
2361			pointers[stripe++] = kmap(q_page);
2362
2363			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2364						pointers);
2365		} else {
2366			/* raid5 */
2367			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2368			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2369		}
2370
2371		/* Check scrubbing pairty and repair it */
2372		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2373		parity = kmap(p);
2374		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2375			memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2376		else
2377			/* Parity is right, needn't writeback */
2378			bitmap_clear(rbio->dbitmap, pagenr, 1);
2379		kunmap(p);
2380
2381		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2382			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2383	}
2384
2385	__free_page(p_page);
2386	if (q_page)
2387		__free_page(q_page);
 
 
 
 
 
2388
2389writeback:
2390	/*
2391	 * time to start writing.  Make bios for everything from the
2392	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2393	 * everything else.
2394	 */
2395	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2396		struct page *page;
2397
2398		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2399		ret = rbio_add_io_page(rbio, &bio_list,
2400			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2401		if (ret)
2402			goto cleanup;
2403	}
2404
2405	if (!is_replace)
2406		goto submit_write;
2407
2408	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2409		struct page *page;
2410
2411		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2412		ret = rbio_add_io_page(rbio, &bio_list, page,
2413				       bbio->tgtdev_map[rbio->scrubp],
2414				       pagenr, rbio->stripe_len);
 
 
 
 
 
2415		if (ret)
2416			goto cleanup;
2417	}
2418
2419submit_write:
2420	nr_data = bio_list_size(&bio_list);
2421	if (!nr_data) {
2422		/* Every parity is right */
2423		rbio_orig_end_io(rbio, 0);
2424		return;
2425	}
2426
2427	atomic_set(&rbio->stripes_pending, nr_data);
2428
2429	while (1) {
2430		bio = bio_list_pop(&bio_list);
2431		if (!bio)
2432			break;
2433
2434		bio->bi_private = rbio;
2435		bio->bi_end_io = raid_write_end_io;
2436		submit_bio(WRITE, bio);
2437	}
2438	return;
2439
2440cleanup:
2441	rbio_orig_end_io(rbio, -EIO);
 
2442}
2443
2444static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2445{
2446	if (stripe >= 0 && stripe < rbio->nr_data)
2447		return 1;
2448	return 0;
2449}
2450
2451/*
2452 * While we're doing the parity check and repair, we could have errors
2453 * in reading pages off the disk.  This checks for errors and if we're
2454 * not able to read the page it'll trigger parity reconstruction.  The
2455 * parity scrub will be finished after we've reconstructed the failed
2456 * stripes
2457 */
2458static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2459{
2460	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2461		goto cleanup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2462
2463	if (rbio->faila >= 0 || rbio->failb >= 0) {
2464		int dfail = 0, failp = -1;
 
 
 
 
 
 
 
 
 
 
 
 
2465
2466		if (is_data_stripe(rbio, rbio->faila))
 
 
 
2467			dfail++;
2468		else if (is_parity_stripe(rbio->faila))
2469			failp = rbio->faila;
2470
2471		if (is_data_stripe(rbio, rbio->failb))
2472			dfail++;
2473		else if (is_parity_stripe(rbio->failb))
2474			failp = rbio->failb;
2475
2476		/*
2477		 * Because we can not use a scrubbing parity to repair
2478		 * the data, so the capability of the repair is declined.
2479		 * (In the case of RAID5, we can not repair anything)
2480		 */
2481		if (dfail > rbio->bbio->max_errors - 1)
2482			goto cleanup;
2483
 
2484		/*
2485		 * If all data is good, only parity is correctly, just
2486		 * repair the parity.
2487		 */
2488		if (dfail == 0) {
2489			finish_parity_scrub(rbio, 0);
2490			return;
2491		}
2492
2493		/*
2494		 * Here means we got one corrupted data stripe and one
2495		 * corrupted parity on RAID6, if the corrupted parity
2496		 * is scrubbing parity, luckly, use the other one to repair
2497		 * the data, or we can not repair the data stripe.
2498		 */
2499		if (failp != rbio->scrubp)
2500			goto cleanup;
 
 
2501
2502		__raid_recover_end_io(rbio);
2503	} else {
2504		finish_parity_scrub(rbio, 1);
2505	}
2506	return;
2507
2508cleanup:
2509	rbio_orig_end_io(rbio, -EIO);
2510}
2511
2512/*
2513 * end io for the read phase of the rmw cycle.  All the bios here are physical
2514 * stripe bios we've read from the disk so we can recalculate the parity of the
2515 * stripe.
2516 *
2517 * This will usually kick off finish_rmw once all the bios are read in, but it
2518 * may trigger parity reconstruction if we had any errors along the way
2519 */
2520static void raid56_parity_scrub_end_io(struct bio *bio)
2521{
2522	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
2523
2524	if (bio->bi_error)
2525		fail_bio_stripe(rbio, bio);
2526	else
2527		set_bio_pages_uptodate(bio);
 
 
 
 
2528
2529	bio_put(bio);
 
 
 
 
 
 
2530
2531	if (!atomic_dec_and_test(&rbio->stripes_pending))
2532		return;
 
 
 
 
 
2533
2534	/*
2535	 * this will normally call finish_rmw to start our write
2536	 * but if there are any failed stripes we'll reconstruct
2537	 * from parity first
2538	 */
2539	validate_rbio_for_parity_scrub(rbio);
2540}
2541
2542static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2543{
2544	int bios_to_read = 0;
2545	struct bio_list bio_list;
2546	int ret;
2547	int pagenr;
2548	int stripe;
2549	struct bio *bio;
2550
2551	ret = alloc_rbio_essential_pages(rbio);
2552	if (ret)
2553		goto cleanup;
2554
2555	bio_list_init(&bio_list);
2556
2557	atomic_set(&rbio->error, 0);
2558	/*
2559	 * build a list of bios to read all the missing parts of this
2560	 * stripe
2561	 */
2562	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2563		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2564			struct page *page;
2565			/*
2566			 * we want to find all the pages missing from
2567			 * the rbio and read them from the disk.  If
2568			 * page_in_rbio finds a page in the bio list
2569			 * we don't need to read it off the stripe.
2570			 */
2571			page = page_in_rbio(rbio, stripe, pagenr, 1);
2572			if (page)
2573				continue;
2574
2575			page = rbio_stripe_page(rbio, stripe, pagenr);
2576			/*
2577			 * the bio cache may have handed us an uptodate
2578			 * page.  If so, be happy and use it
2579			 */
2580			if (PageUptodate(page))
2581				continue;
2582
2583			ret = rbio_add_io_page(rbio, &bio_list, page,
2584				       stripe, pagenr, rbio->stripe_len);
2585			if (ret)
2586				goto cleanup;
2587		}
2588	}
2589
2590	bios_to_read = bio_list_size(&bio_list);
2591	if (!bios_to_read) {
2592		/*
2593		 * this can happen if others have merged with
2594		 * us, it means there is nothing left to read.
2595		 * But if there are missing devices it may not be
2596		 * safe to do the full stripe write yet.
2597		 */
2598		goto finish;
2599	}
2600
2601	/*
2602	 * the bbio may be freed once we submit the last bio.  Make sure
2603	 * not to touch it after that
2604	 */
2605	atomic_set(&rbio->stripes_pending, bios_to_read);
2606	while (1) {
2607		bio = bio_list_pop(&bio_list);
2608		if (!bio)
 
 
 
 
2609			break;
2610
2611		bio->bi_private = rbio;
2612		bio->bi_end_io = raid56_parity_scrub_end_io;
2613
2614		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2615				    BTRFS_WQ_ENDIO_RAID56);
2616
2617		submit_bio(READ, bio);
2618	}
2619	/* the actual write will happen once the reads are done */
2620	return;
2621
2622cleanup:
2623	rbio_orig_end_io(rbio, -EIO);
2624	return;
2625
2626finish:
2627	validate_rbio_for_parity_scrub(rbio);
2628}
2629
2630static void scrub_parity_work(struct btrfs_work *work)
2631{
2632	struct btrfs_raid_bio *rbio;
2633
2634	rbio = container_of(work, struct btrfs_raid_bio, work);
2635	raid56_parity_scrub_stripe(rbio);
2636}
2637
2638static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2639{
2640	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2641			scrub_parity_work, NULL, NULL);
2642
2643	btrfs_queue_work(rbio->fs_info->rmw_workers,
2644			 &rbio->work);
2645}
2646
2647void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2648{
2649	if (!lock_stripe_add(rbio))
2650		async_scrub_parity(rbio);
2651}
2652
2653/* The following code is used for dev replace of a missing RAID 5/6 device. */
2654
2655struct btrfs_raid_bio *
2656raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio,
2657			  struct btrfs_bio *bbio, u64 length)
 
 
 
 
2658{
2659	struct btrfs_raid_bio *rbio;
2660
2661	rbio = alloc_rbio(root, bbio, length);
2662	if (IS_ERR(rbio))
2663		return NULL;
 
2664
2665	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2666	bio_list_add(&rbio->bio_list, bio);
2667	/*
2668	 * This is a special bio which is used to hold the completion handler
2669	 * and make the scrub rbio is similar to the other types
 
 
 
 
2670	 */
2671	ASSERT(!bio->bi_iter.bi_size);
 
 
2672
2673	rbio->faila = find_logical_bio_stripe(rbio, bio);
2674	if (rbio->faila == -1) {
2675		BUG();
2676		kfree(rbio);
2677		return NULL;
 
 
 
 
 
 
 
 
2678	}
2679
2680	return rbio;
2681}
2682
2683static void missing_raid56_work(struct btrfs_work *work)
2684{
2685	struct btrfs_raid_bio *rbio;
2686
2687	rbio = container_of(work, struct btrfs_raid_bio, work);
2688	__raid56_parity_recover(rbio);
2689}
2690
2691static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2692{
2693	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2694			missing_raid56_work, NULL, NULL);
2695
2696	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2697}
2698
2699void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2700{
2701	if (!lock_stripe_add(rbio))
2702		async_missing_raid56(rbio);
2703}