Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 */
6
7#include <linux/sched.h>
8#include <linux/bio.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/raid/pq.h>
12#include <linux/hash.h>
13#include <linux/list_sort.h>
14#include <linux/raid/xor.h>
15#include <linux/mm.h>
16#include "messages.h"
17#include "ctree.h"
18#include "disk-io.h"
19#include "volumes.h"
20#include "raid56.h"
21#include "async-thread.h"
22#include "file-item.h"
23#include "btrfs_inode.h"
24
25/* set when additional merges to this rbio are not allowed */
26#define RBIO_RMW_LOCKED_BIT 1
27
28/*
29 * set when this rbio is sitting in the hash, but it is just a cache
30 * of past RMW
31 */
32#define RBIO_CACHE_BIT 2
33
34/*
35 * set when it is safe to trust the stripe_pages for caching
36 */
37#define RBIO_CACHE_READY_BIT 3
38
39#define RBIO_CACHE_SIZE 1024
40
41#define BTRFS_STRIPE_HASH_TABLE_BITS 11
42
43static void dump_bioc(const struct btrfs_fs_info *fs_info, const struct btrfs_io_context *bioc)
44{
45 if (unlikely(!bioc)) {
46 btrfs_crit(fs_info, "bioc=NULL");
47 return;
48 }
49 btrfs_crit(fs_info,
50"bioc logical=%llu full_stripe=%llu size=%llu map_type=0x%llx mirror=%u replace_nr_stripes=%u replace_stripe_src=%d num_stripes=%u",
51 bioc->logical, bioc->full_stripe_logical, bioc->size,
52 bioc->map_type, bioc->mirror_num, bioc->replace_nr_stripes,
53 bioc->replace_stripe_src, bioc->num_stripes);
54 for (int i = 0; i < bioc->num_stripes; i++) {
55 btrfs_crit(fs_info, " nr=%d devid=%llu physical=%llu",
56 i, bioc->stripes[i].dev->devid,
57 bioc->stripes[i].physical);
58 }
59}
60
61static void btrfs_dump_rbio(const struct btrfs_fs_info *fs_info,
62 const struct btrfs_raid_bio *rbio)
63{
64 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
65 return;
66
67 dump_bioc(fs_info, rbio->bioc);
68 btrfs_crit(fs_info,
69"rbio flags=0x%lx nr_sectors=%u nr_data=%u real_stripes=%u stripe_nsectors=%u scrubp=%u dbitmap=0x%lx",
70 rbio->flags, rbio->nr_sectors, rbio->nr_data,
71 rbio->real_stripes, rbio->stripe_nsectors,
72 rbio->scrubp, rbio->dbitmap);
73}
74
75#define ASSERT_RBIO(expr, rbio) \
76({ \
77 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \
78 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \
79 (rbio)->bioc->fs_info : NULL; \
80 \
81 btrfs_dump_rbio(__fs_info, (rbio)); \
82 } \
83 ASSERT((expr)); \
84})
85
86#define ASSERT_RBIO_STRIPE(expr, rbio, stripe_nr) \
87({ \
88 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \
89 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \
90 (rbio)->bioc->fs_info : NULL; \
91 \
92 btrfs_dump_rbio(__fs_info, (rbio)); \
93 btrfs_crit(__fs_info, "stripe_nr=%d", (stripe_nr)); \
94 } \
95 ASSERT((expr)); \
96})
97
98#define ASSERT_RBIO_SECTOR(expr, rbio, sector_nr) \
99({ \
100 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \
101 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \
102 (rbio)->bioc->fs_info : NULL; \
103 \
104 btrfs_dump_rbio(__fs_info, (rbio)); \
105 btrfs_crit(__fs_info, "sector_nr=%d", (sector_nr)); \
106 } \
107 ASSERT((expr)); \
108})
109
110#define ASSERT_RBIO_LOGICAL(expr, rbio, logical) \
111({ \
112 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \
113 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \
114 (rbio)->bioc->fs_info : NULL; \
115 \
116 btrfs_dump_rbio(__fs_info, (rbio)); \
117 btrfs_crit(__fs_info, "logical=%llu", (logical)); \
118 } \
119 ASSERT((expr)); \
120})
121
122/* Used by the raid56 code to lock stripes for read/modify/write */
123struct btrfs_stripe_hash {
124 struct list_head hash_list;
125 spinlock_t lock;
126};
127
128/* Used by the raid56 code to lock stripes for read/modify/write */
129struct btrfs_stripe_hash_table {
130 struct list_head stripe_cache;
131 spinlock_t cache_lock;
132 int cache_size;
133 struct btrfs_stripe_hash table[];
134};
135
136/*
137 * A bvec like structure to present a sector inside a page.
138 *
139 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
140 */
141struct sector_ptr {
142 struct page *page;
143 unsigned int pgoff:24;
144 unsigned int uptodate:8;
145};
146
147static void rmw_rbio_work(struct work_struct *work);
148static void rmw_rbio_work_locked(struct work_struct *work);
149static void index_rbio_pages(struct btrfs_raid_bio *rbio);
150static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
151
152static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
153static void scrub_rbio_work_locked(struct work_struct *work);
154
155static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
156{
157 bitmap_free(rbio->error_bitmap);
158 kfree(rbio->stripe_pages);
159 kfree(rbio->bio_sectors);
160 kfree(rbio->stripe_sectors);
161 kfree(rbio->finish_pointers);
162}
163
164static void free_raid_bio(struct btrfs_raid_bio *rbio)
165{
166 int i;
167
168 if (!refcount_dec_and_test(&rbio->refs))
169 return;
170
171 WARN_ON(!list_empty(&rbio->stripe_cache));
172 WARN_ON(!list_empty(&rbio->hash_list));
173 WARN_ON(!bio_list_empty(&rbio->bio_list));
174
175 for (i = 0; i < rbio->nr_pages; i++) {
176 if (rbio->stripe_pages[i]) {
177 __free_page(rbio->stripe_pages[i]);
178 rbio->stripe_pages[i] = NULL;
179 }
180 }
181
182 btrfs_put_bioc(rbio->bioc);
183 free_raid_bio_pointers(rbio);
184 kfree(rbio);
185}
186
187static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
188{
189 INIT_WORK(&rbio->work, work_func);
190 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
191}
192
193/*
194 * the stripe hash table is used for locking, and to collect
195 * bios in hopes of making a full stripe
196 */
197int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
198{
199 struct btrfs_stripe_hash_table *table;
200 struct btrfs_stripe_hash_table *x;
201 struct btrfs_stripe_hash *cur;
202 struct btrfs_stripe_hash *h;
203 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
204 int i;
205
206 if (info->stripe_hash_table)
207 return 0;
208
209 /*
210 * The table is large, starting with order 4 and can go as high as
211 * order 7 in case lock debugging is turned on.
212 *
213 * Try harder to allocate and fallback to vmalloc to lower the chance
214 * of a failing mount.
215 */
216 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
217 if (!table)
218 return -ENOMEM;
219
220 spin_lock_init(&table->cache_lock);
221 INIT_LIST_HEAD(&table->stripe_cache);
222
223 h = table->table;
224
225 for (i = 0; i < num_entries; i++) {
226 cur = h + i;
227 INIT_LIST_HEAD(&cur->hash_list);
228 spin_lock_init(&cur->lock);
229 }
230
231 x = cmpxchg(&info->stripe_hash_table, NULL, table);
232 kvfree(x);
233 return 0;
234}
235
236/*
237 * caching an rbio means to copy anything from the
238 * bio_sectors array into the stripe_pages array. We
239 * use the page uptodate bit in the stripe cache array
240 * to indicate if it has valid data
241 *
242 * once the caching is done, we set the cache ready
243 * bit.
244 */
245static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
246{
247 int i;
248 int ret;
249
250 ret = alloc_rbio_pages(rbio);
251 if (ret)
252 return;
253
254 for (i = 0; i < rbio->nr_sectors; i++) {
255 /* Some range not covered by bio (partial write), skip it */
256 if (!rbio->bio_sectors[i].page) {
257 /*
258 * Even if the sector is not covered by bio, if it is
259 * a data sector it should still be uptodate as it is
260 * read from disk.
261 */
262 if (i < rbio->nr_data * rbio->stripe_nsectors)
263 ASSERT(rbio->stripe_sectors[i].uptodate);
264 continue;
265 }
266
267 ASSERT(rbio->stripe_sectors[i].page);
268 memcpy_page(rbio->stripe_sectors[i].page,
269 rbio->stripe_sectors[i].pgoff,
270 rbio->bio_sectors[i].page,
271 rbio->bio_sectors[i].pgoff,
272 rbio->bioc->fs_info->sectorsize);
273 rbio->stripe_sectors[i].uptodate = 1;
274 }
275 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
276}
277
278/*
279 * we hash on the first logical address of the stripe
280 */
281static int rbio_bucket(struct btrfs_raid_bio *rbio)
282{
283 u64 num = rbio->bioc->full_stripe_logical;
284
285 /*
286 * we shift down quite a bit. We're using byte
287 * addressing, and most of the lower bits are zeros.
288 * This tends to upset hash_64, and it consistently
289 * returns just one or two different values.
290 *
291 * shifting off the lower bits fixes things.
292 */
293 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
294}
295
296static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
297 unsigned int page_nr)
298{
299 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
300 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
301 int i;
302
303 ASSERT(page_nr < rbio->nr_pages);
304
305 for (i = sectors_per_page * page_nr;
306 i < sectors_per_page * page_nr + sectors_per_page;
307 i++) {
308 if (!rbio->stripe_sectors[i].uptodate)
309 return false;
310 }
311 return true;
312}
313
314/*
315 * Update the stripe_sectors[] array to use correct page and pgoff
316 *
317 * Should be called every time any page pointer in stripes_pages[] got modified.
318 */
319static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
320{
321 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
322 u32 offset;
323 int i;
324
325 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
326 int page_index = offset >> PAGE_SHIFT;
327
328 ASSERT(page_index < rbio->nr_pages);
329 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
330 rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
331 }
332}
333
334static void steal_rbio_page(struct btrfs_raid_bio *src,
335 struct btrfs_raid_bio *dest, int page_nr)
336{
337 const u32 sectorsize = src->bioc->fs_info->sectorsize;
338 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
339 int i;
340
341 if (dest->stripe_pages[page_nr])
342 __free_page(dest->stripe_pages[page_nr]);
343 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
344 src->stripe_pages[page_nr] = NULL;
345
346 /* Also update the sector->uptodate bits. */
347 for (i = sectors_per_page * page_nr;
348 i < sectors_per_page * page_nr + sectors_per_page; i++)
349 dest->stripe_sectors[i].uptodate = true;
350}
351
352static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
353{
354 const int sector_nr = (page_nr << PAGE_SHIFT) >>
355 rbio->bioc->fs_info->sectorsize_bits;
356
357 /*
358 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
359 * we won't have a page which is half data half parity.
360 *
361 * Thus if the first sector of the page belongs to data stripes, then
362 * the full page belongs to data stripes.
363 */
364 return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
365}
366
367/*
368 * Stealing an rbio means taking all the uptodate pages from the stripe array
369 * in the source rbio and putting them into the destination rbio.
370 *
371 * This will also update the involved stripe_sectors[] which are referring to
372 * the old pages.
373 */
374static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
375{
376 int i;
377
378 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
379 return;
380
381 for (i = 0; i < dest->nr_pages; i++) {
382 struct page *p = src->stripe_pages[i];
383
384 /*
385 * We don't need to steal P/Q pages as they will always be
386 * regenerated for RMW or full write anyway.
387 */
388 if (!is_data_stripe_page(src, i))
389 continue;
390
391 /*
392 * If @src already has RBIO_CACHE_READY_BIT, it should have
393 * all data stripe pages present and uptodate.
394 */
395 ASSERT(p);
396 ASSERT(full_page_sectors_uptodate(src, i));
397 steal_rbio_page(src, dest, i);
398 }
399 index_stripe_sectors(dest);
400 index_stripe_sectors(src);
401}
402
403/*
404 * merging means we take the bio_list from the victim and
405 * splice it into the destination. The victim should
406 * be discarded afterwards.
407 *
408 * must be called with dest->rbio_list_lock held
409 */
410static void merge_rbio(struct btrfs_raid_bio *dest,
411 struct btrfs_raid_bio *victim)
412{
413 bio_list_merge_init(&dest->bio_list, &victim->bio_list);
414 dest->bio_list_bytes += victim->bio_list_bytes;
415 /* Also inherit the bitmaps from @victim. */
416 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
417 dest->stripe_nsectors);
418}
419
420/*
421 * used to prune items that are in the cache. The caller
422 * must hold the hash table lock.
423 */
424static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
425{
426 int bucket = rbio_bucket(rbio);
427 struct btrfs_stripe_hash_table *table;
428 struct btrfs_stripe_hash *h;
429 int freeit = 0;
430
431 /*
432 * check the bit again under the hash table lock.
433 */
434 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
435 return;
436
437 table = rbio->bioc->fs_info->stripe_hash_table;
438 h = table->table + bucket;
439
440 /* hold the lock for the bucket because we may be
441 * removing it from the hash table
442 */
443 spin_lock(&h->lock);
444
445 /*
446 * hold the lock for the bio list because we need
447 * to make sure the bio list is empty
448 */
449 spin_lock(&rbio->bio_list_lock);
450
451 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
452 list_del_init(&rbio->stripe_cache);
453 table->cache_size -= 1;
454 freeit = 1;
455
456 /* if the bio list isn't empty, this rbio is
457 * still involved in an IO. We take it out
458 * of the cache list, and drop the ref that
459 * was held for the list.
460 *
461 * If the bio_list was empty, we also remove
462 * the rbio from the hash_table, and drop
463 * the corresponding ref
464 */
465 if (bio_list_empty(&rbio->bio_list)) {
466 if (!list_empty(&rbio->hash_list)) {
467 list_del_init(&rbio->hash_list);
468 refcount_dec(&rbio->refs);
469 BUG_ON(!list_empty(&rbio->plug_list));
470 }
471 }
472 }
473
474 spin_unlock(&rbio->bio_list_lock);
475 spin_unlock(&h->lock);
476
477 if (freeit)
478 free_raid_bio(rbio);
479}
480
481/*
482 * prune a given rbio from the cache
483 */
484static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
485{
486 struct btrfs_stripe_hash_table *table;
487
488 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
489 return;
490
491 table = rbio->bioc->fs_info->stripe_hash_table;
492
493 spin_lock(&table->cache_lock);
494 __remove_rbio_from_cache(rbio);
495 spin_unlock(&table->cache_lock);
496}
497
498/*
499 * remove everything in the cache
500 */
501static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
502{
503 struct btrfs_stripe_hash_table *table;
504 struct btrfs_raid_bio *rbio;
505
506 table = info->stripe_hash_table;
507
508 spin_lock(&table->cache_lock);
509 while (!list_empty(&table->stripe_cache)) {
510 rbio = list_entry(table->stripe_cache.next,
511 struct btrfs_raid_bio,
512 stripe_cache);
513 __remove_rbio_from_cache(rbio);
514 }
515 spin_unlock(&table->cache_lock);
516}
517
518/*
519 * remove all cached entries and free the hash table
520 * used by unmount
521 */
522void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
523{
524 if (!info->stripe_hash_table)
525 return;
526 btrfs_clear_rbio_cache(info);
527 kvfree(info->stripe_hash_table);
528 info->stripe_hash_table = NULL;
529}
530
531/*
532 * insert an rbio into the stripe cache. It
533 * must have already been prepared by calling
534 * cache_rbio_pages
535 *
536 * If this rbio was already cached, it gets
537 * moved to the front of the lru.
538 *
539 * If the size of the rbio cache is too big, we
540 * prune an item.
541 */
542static void cache_rbio(struct btrfs_raid_bio *rbio)
543{
544 struct btrfs_stripe_hash_table *table;
545
546 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
547 return;
548
549 table = rbio->bioc->fs_info->stripe_hash_table;
550
551 spin_lock(&table->cache_lock);
552 spin_lock(&rbio->bio_list_lock);
553
554 /* bump our ref if we were not in the list before */
555 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
556 refcount_inc(&rbio->refs);
557
558 if (!list_empty(&rbio->stripe_cache)){
559 list_move(&rbio->stripe_cache, &table->stripe_cache);
560 } else {
561 list_add(&rbio->stripe_cache, &table->stripe_cache);
562 table->cache_size += 1;
563 }
564
565 spin_unlock(&rbio->bio_list_lock);
566
567 if (table->cache_size > RBIO_CACHE_SIZE) {
568 struct btrfs_raid_bio *found;
569
570 found = list_entry(table->stripe_cache.prev,
571 struct btrfs_raid_bio,
572 stripe_cache);
573
574 if (found != rbio)
575 __remove_rbio_from_cache(found);
576 }
577
578 spin_unlock(&table->cache_lock);
579}
580
581/*
582 * helper function to run the xor_blocks api. It is only
583 * able to do MAX_XOR_BLOCKS at a time, so we need to
584 * loop through.
585 */
586static void run_xor(void **pages, int src_cnt, ssize_t len)
587{
588 int src_off = 0;
589 int xor_src_cnt = 0;
590 void *dest = pages[src_cnt];
591
592 while(src_cnt > 0) {
593 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
594 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
595
596 src_cnt -= xor_src_cnt;
597 src_off += xor_src_cnt;
598 }
599}
600
601/*
602 * Returns true if the bio list inside this rbio covers an entire stripe (no
603 * rmw required).
604 */
605static int rbio_is_full(struct btrfs_raid_bio *rbio)
606{
607 unsigned long size = rbio->bio_list_bytes;
608 int ret = 1;
609
610 spin_lock(&rbio->bio_list_lock);
611 if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
612 ret = 0;
613 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
614 spin_unlock(&rbio->bio_list_lock);
615
616 return ret;
617}
618
619/*
620 * returns 1 if it is safe to merge two rbios together.
621 * The merging is safe if the two rbios correspond to
622 * the same stripe and if they are both going in the same
623 * direction (read vs write), and if neither one is
624 * locked for final IO
625 *
626 * The caller is responsible for locking such that
627 * rmw_locked is safe to test
628 */
629static int rbio_can_merge(struct btrfs_raid_bio *last,
630 struct btrfs_raid_bio *cur)
631{
632 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
633 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
634 return 0;
635
636 /*
637 * we can't merge with cached rbios, since the
638 * idea is that when we merge the destination
639 * rbio is going to run our IO for us. We can
640 * steal from cached rbios though, other functions
641 * handle that.
642 */
643 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
644 test_bit(RBIO_CACHE_BIT, &cur->flags))
645 return 0;
646
647 if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
648 return 0;
649
650 /* we can't merge with different operations */
651 if (last->operation != cur->operation)
652 return 0;
653 /*
654 * We've need read the full stripe from the drive.
655 * check and repair the parity and write the new results.
656 *
657 * We're not allowed to add any new bios to the
658 * bio list here, anyone else that wants to
659 * change this stripe needs to do their own rmw.
660 */
661 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
662 return 0;
663
664 if (last->operation == BTRFS_RBIO_READ_REBUILD)
665 return 0;
666
667 return 1;
668}
669
670static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
671 unsigned int stripe_nr,
672 unsigned int sector_nr)
673{
674 ASSERT_RBIO_STRIPE(stripe_nr < rbio->real_stripes, rbio, stripe_nr);
675 ASSERT_RBIO_SECTOR(sector_nr < rbio->stripe_nsectors, rbio, sector_nr);
676
677 return stripe_nr * rbio->stripe_nsectors + sector_nr;
678}
679
680/* Return a sector from rbio->stripe_sectors, not from the bio list */
681static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
682 unsigned int stripe_nr,
683 unsigned int sector_nr)
684{
685 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
686 sector_nr)];
687}
688
689/* Grab a sector inside P stripe */
690static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
691 unsigned int sector_nr)
692{
693 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
694}
695
696/* Grab a sector inside Q stripe, return NULL if not RAID6 */
697static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
698 unsigned int sector_nr)
699{
700 if (rbio->nr_data + 1 == rbio->real_stripes)
701 return NULL;
702 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
703}
704
705/*
706 * The first stripe in the table for a logical address
707 * has the lock. rbios are added in one of three ways:
708 *
709 * 1) Nobody has the stripe locked yet. The rbio is given
710 * the lock and 0 is returned. The caller must start the IO
711 * themselves.
712 *
713 * 2) Someone has the stripe locked, but we're able to merge
714 * with the lock owner. The rbio is freed and the IO will
715 * start automatically along with the existing rbio. 1 is returned.
716 *
717 * 3) Someone has the stripe locked, but we're not able to merge.
718 * The rbio is added to the lock owner's plug list, or merged into
719 * an rbio already on the plug list. When the lock owner unlocks,
720 * the next rbio on the list is run and the IO is started automatically.
721 * 1 is returned
722 *
723 * If we return 0, the caller still owns the rbio and must continue with
724 * IO submission. If we return 1, the caller must assume the rbio has
725 * already been freed.
726 */
727static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
728{
729 struct btrfs_stripe_hash *h;
730 struct btrfs_raid_bio *cur;
731 struct btrfs_raid_bio *pending;
732 struct btrfs_raid_bio *freeit = NULL;
733 struct btrfs_raid_bio *cache_drop = NULL;
734 int ret = 0;
735
736 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
737
738 spin_lock(&h->lock);
739 list_for_each_entry(cur, &h->hash_list, hash_list) {
740 if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
741 continue;
742
743 spin_lock(&cur->bio_list_lock);
744
745 /* Can we steal this cached rbio's pages? */
746 if (bio_list_empty(&cur->bio_list) &&
747 list_empty(&cur->plug_list) &&
748 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
749 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
750 list_del_init(&cur->hash_list);
751 refcount_dec(&cur->refs);
752
753 steal_rbio(cur, rbio);
754 cache_drop = cur;
755 spin_unlock(&cur->bio_list_lock);
756
757 goto lockit;
758 }
759
760 /* Can we merge into the lock owner? */
761 if (rbio_can_merge(cur, rbio)) {
762 merge_rbio(cur, rbio);
763 spin_unlock(&cur->bio_list_lock);
764 freeit = rbio;
765 ret = 1;
766 goto out;
767 }
768
769
770 /*
771 * We couldn't merge with the running rbio, see if we can merge
772 * with the pending ones. We don't have to check for rmw_locked
773 * because there is no way they are inside finish_rmw right now
774 */
775 list_for_each_entry(pending, &cur->plug_list, plug_list) {
776 if (rbio_can_merge(pending, rbio)) {
777 merge_rbio(pending, rbio);
778 spin_unlock(&cur->bio_list_lock);
779 freeit = rbio;
780 ret = 1;
781 goto out;
782 }
783 }
784
785 /*
786 * No merging, put us on the tail of the plug list, our rbio
787 * will be started with the currently running rbio unlocks
788 */
789 list_add_tail(&rbio->plug_list, &cur->plug_list);
790 spin_unlock(&cur->bio_list_lock);
791 ret = 1;
792 goto out;
793 }
794lockit:
795 refcount_inc(&rbio->refs);
796 list_add(&rbio->hash_list, &h->hash_list);
797out:
798 spin_unlock(&h->lock);
799 if (cache_drop)
800 remove_rbio_from_cache(cache_drop);
801 if (freeit)
802 free_raid_bio(freeit);
803 return ret;
804}
805
806static void recover_rbio_work_locked(struct work_struct *work);
807
808/*
809 * called as rmw or parity rebuild is completed. If the plug list has more
810 * rbios waiting for this stripe, the next one on the list will be started
811 */
812static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
813{
814 int bucket;
815 struct btrfs_stripe_hash *h;
816 int keep_cache = 0;
817
818 bucket = rbio_bucket(rbio);
819 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
820
821 if (list_empty(&rbio->plug_list))
822 cache_rbio(rbio);
823
824 spin_lock(&h->lock);
825 spin_lock(&rbio->bio_list_lock);
826
827 if (!list_empty(&rbio->hash_list)) {
828 /*
829 * if we're still cached and there is no other IO
830 * to perform, just leave this rbio here for others
831 * to steal from later
832 */
833 if (list_empty(&rbio->plug_list) &&
834 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
835 keep_cache = 1;
836 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
837 BUG_ON(!bio_list_empty(&rbio->bio_list));
838 goto done;
839 }
840
841 list_del_init(&rbio->hash_list);
842 refcount_dec(&rbio->refs);
843
844 /*
845 * we use the plug list to hold all the rbios
846 * waiting for the chance to lock this stripe.
847 * hand the lock over to one of them.
848 */
849 if (!list_empty(&rbio->plug_list)) {
850 struct btrfs_raid_bio *next;
851 struct list_head *head = rbio->plug_list.next;
852
853 next = list_entry(head, struct btrfs_raid_bio,
854 plug_list);
855
856 list_del_init(&rbio->plug_list);
857
858 list_add(&next->hash_list, &h->hash_list);
859 refcount_inc(&next->refs);
860 spin_unlock(&rbio->bio_list_lock);
861 spin_unlock(&h->lock);
862
863 if (next->operation == BTRFS_RBIO_READ_REBUILD) {
864 start_async_work(next, recover_rbio_work_locked);
865 } else if (next->operation == BTRFS_RBIO_WRITE) {
866 steal_rbio(rbio, next);
867 start_async_work(next, rmw_rbio_work_locked);
868 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
869 steal_rbio(rbio, next);
870 start_async_work(next, scrub_rbio_work_locked);
871 }
872
873 goto done_nolock;
874 }
875 }
876done:
877 spin_unlock(&rbio->bio_list_lock);
878 spin_unlock(&h->lock);
879
880done_nolock:
881 if (!keep_cache)
882 remove_rbio_from_cache(rbio);
883}
884
885static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
886{
887 struct bio *next;
888
889 while (cur) {
890 next = cur->bi_next;
891 cur->bi_next = NULL;
892 cur->bi_status = err;
893 bio_endio(cur);
894 cur = next;
895 }
896}
897
898/*
899 * this frees the rbio and runs through all the bios in the
900 * bio_list and calls end_io on them
901 */
902static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
903{
904 struct bio *cur = bio_list_get(&rbio->bio_list);
905 struct bio *extra;
906
907 kfree(rbio->csum_buf);
908 bitmap_free(rbio->csum_bitmap);
909 rbio->csum_buf = NULL;
910 rbio->csum_bitmap = NULL;
911
912 /*
913 * Clear the data bitmap, as the rbio may be cached for later usage.
914 * do this before before unlock_stripe() so there will be no new bio
915 * for this bio.
916 */
917 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
918
919 /*
920 * At this moment, rbio->bio_list is empty, however since rbio does not
921 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
922 * hash list, rbio may be merged with others so that rbio->bio_list
923 * becomes non-empty.
924 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
925 * more and we can call bio_endio() on all queued bios.
926 */
927 unlock_stripe(rbio);
928 extra = bio_list_get(&rbio->bio_list);
929 free_raid_bio(rbio);
930
931 rbio_endio_bio_list(cur, err);
932 if (extra)
933 rbio_endio_bio_list(extra, err);
934}
935
936/*
937 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
938 *
939 * @rbio: The raid bio
940 * @stripe_nr: Stripe number, valid range [0, real_stripe)
941 * @sector_nr: Sector number inside the stripe,
942 * valid range [0, stripe_nsectors)
943 * @bio_list_only: Whether to use sectors inside the bio list only.
944 *
945 * The read/modify/write code wants to reuse the original bio page as much
946 * as possible, and only use stripe_sectors as fallback.
947 */
948static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
949 int stripe_nr, int sector_nr,
950 bool bio_list_only)
951{
952 struct sector_ptr *sector;
953 int index;
954
955 ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->real_stripes,
956 rbio, stripe_nr);
957 ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
958 rbio, sector_nr);
959
960 index = stripe_nr * rbio->stripe_nsectors + sector_nr;
961 ASSERT(index >= 0 && index < rbio->nr_sectors);
962
963 spin_lock(&rbio->bio_list_lock);
964 sector = &rbio->bio_sectors[index];
965 if (sector->page || bio_list_only) {
966 /* Don't return sector without a valid page pointer */
967 if (!sector->page)
968 sector = NULL;
969 spin_unlock(&rbio->bio_list_lock);
970 return sector;
971 }
972 spin_unlock(&rbio->bio_list_lock);
973
974 return &rbio->stripe_sectors[index];
975}
976
977/*
978 * allocation and initial setup for the btrfs_raid_bio. Not
979 * this does not allocate any pages for rbio->pages.
980 */
981static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
982 struct btrfs_io_context *bioc)
983{
984 const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
985 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
986 const unsigned int num_pages = stripe_npages * real_stripes;
987 const unsigned int stripe_nsectors =
988 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
989 const unsigned int num_sectors = stripe_nsectors * real_stripes;
990 struct btrfs_raid_bio *rbio;
991
992 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */
993 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
994 /*
995 * Our current stripe len should be fixed to 64k thus stripe_nsectors
996 * (at most 16) should be no larger than BITS_PER_LONG.
997 */
998 ASSERT(stripe_nsectors <= BITS_PER_LONG);
999
1000 /*
1001 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256
1002 * (limited by u8).
1003 */
1004 ASSERT(real_stripes >= 2);
1005 ASSERT(real_stripes <= U8_MAX);
1006
1007 rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
1008 if (!rbio)
1009 return ERR_PTR(-ENOMEM);
1010 rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
1011 GFP_NOFS);
1012 rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
1013 GFP_NOFS);
1014 rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
1015 GFP_NOFS);
1016 rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
1017 rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
1018
1019 if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
1020 !rbio->finish_pointers || !rbio->error_bitmap) {
1021 free_raid_bio_pointers(rbio);
1022 kfree(rbio);
1023 return ERR_PTR(-ENOMEM);
1024 }
1025
1026 bio_list_init(&rbio->bio_list);
1027 init_waitqueue_head(&rbio->io_wait);
1028 INIT_LIST_HEAD(&rbio->plug_list);
1029 spin_lock_init(&rbio->bio_list_lock);
1030 INIT_LIST_HEAD(&rbio->stripe_cache);
1031 INIT_LIST_HEAD(&rbio->hash_list);
1032 btrfs_get_bioc(bioc);
1033 rbio->bioc = bioc;
1034 rbio->nr_pages = num_pages;
1035 rbio->nr_sectors = num_sectors;
1036 rbio->real_stripes = real_stripes;
1037 rbio->stripe_npages = stripe_npages;
1038 rbio->stripe_nsectors = stripe_nsectors;
1039 refcount_set(&rbio->refs, 1);
1040 atomic_set(&rbio->stripes_pending, 0);
1041
1042 ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
1043 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
1044 ASSERT(rbio->nr_data > 0);
1045
1046 return rbio;
1047}
1048
1049/* allocate pages for all the stripes in the bio, including parity */
1050static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1051{
1052 int ret;
1053
1054 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, false);
1055 if (ret < 0)
1056 return ret;
1057 /* Mapping all sectors */
1058 index_stripe_sectors(rbio);
1059 return 0;
1060}
1061
1062/* only allocate pages for p/q stripes */
1063static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1064{
1065 const int data_pages = rbio->nr_data * rbio->stripe_npages;
1066 int ret;
1067
1068 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
1069 rbio->stripe_pages + data_pages, false);
1070 if (ret < 0)
1071 return ret;
1072
1073 index_stripe_sectors(rbio);
1074 return 0;
1075}
1076
1077/*
1078 * Return the total number of errors found in the vertical stripe of @sector_nr.
1079 *
1080 * @faila and @failb will also be updated to the first and second stripe
1081 * number of the errors.
1082 */
1083static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1084 int *faila, int *failb)
1085{
1086 int stripe_nr;
1087 int found_errors = 0;
1088
1089 if (faila || failb) {
1090 /*
1091 * Both @faila and @failb should be valid pointers if any of
1092 * them is specified.
1093 */
1094 ASSERT(faila && failb);
1095 *faila = -1;
1096 *failb = -1;
1097 }
1098
1099 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1100 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1101
1102 if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1103 found_errors++;
1104 if (faila) {
1105 /* Update faila and failb. */
1106 if (*faila < 0)
1107 *faila = stripe_nr;
1108 else if (*failb < 0)
1109 *failb = stripe_nr;
1110 }
1111 }
1112 }
1113 return found_errors;
1114}
1115
1116/*
1117 * Add a single sector @sector into our list of bios for IO.
1118 *
1119 * Return 0 if everything went well.
1120 * Return <0 for error.
1121 */
1122static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1123 struct bio_list *bio_list,
1124 struct sector_ptr *sector,
1125 unsigned int stripe_nr,
1126 unsigned int sector_nr,
1127 enum req_op op)
1128{
1129 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1130 struct bio *last = bio_list->tail;
1131 int ret;
1132 struct bio *bio;
1133 struct btrfs_io_stripe *stripe;
1134 u64 disk_start;
1135
1136 /*
1137 * Note: here stripe_nr has taken device replace into consideration,
1138 * thus it can be larger than rbio->real_stripe.
1139 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1140 */
1141 ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes,
1142 rbio, stripe_nr);
1143 ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
1144 rbio, sector_nr);
1145 ASSERT(sector->page);
1146
1147 stripe = &rbio->bioc->stripes[stripe_nr];
1148 disk_start = stripe->physical + sector_nr * sectorsize;
1149
1150 /* if the device is missing, just fail this stripe */
1151 if (!stripe->dev->bdev) {
1152 int found_errors;
1153
1154 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1155 rbio->error_bitmap);
1156
1157 /* Check if we have reached tolerance early. */
1158 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1159 NULL, NULL);
1160 if (found_errors > rbio->bioc->max_errors)
1161 return -EIO;
1162 return 0;
1163 }
1164
1165 /* see if we can add this page onto our existing bio */
1166 if (last) {
1167 u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1168 last_end += last->bi_iter.bi_size;
1169
1170 /*
1171 * we can't merge these if they are from different
1172 * devices or if they are not contiguous
1173 */
1174 if (last_end == disk_start && !last->bi_status &&
1175 last->bi_bdev == stripe->dev->bdev) {
1176 ret = bio_add_page(last, sector->page, sectorsize,
1177 sector->pgoff);
1178 if (ret == sectorsize)
1179 return 0;
1180 }
1181 }
1182
1183 /* put a new bio on the list */
1184 bio = bio_alloc(stripe->dev->bdev,
1185 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1186 op, GFP_NOFS);
1187 bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1188 bio->bi_private = rbio;
1189
1190 __bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1191 bio_list_add(bio_list, bio);
1192 return 0;
1193}
1194
1195static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1196{
1197 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1198 struct bio_vec bvec;
1199 struct bvec_iter iter;
1200 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1201 rbio->bioc->full_stripe_logical;
1202
1203 bio_for_each_segment(bvec, bio, iter) {
1204 u32 bvec_offset;
1205
1206 for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1207 bvec_offset += sectorsize, offset += sectorsize) {
1208 int index = offset / sectorsize;
1209 struct sector_ptr *sector = &rbio->bio_sectors[index];
1210
1211 sector->page = bvec.bv_page;
1212 sector->pgoff = bvec.bv_offset + bvec_offset;
1213 ASSERT(sector->pgoff < PAGE_SIZE);
1214 }
1215 }
1216}
1217
1218/*
1219 * helper function to walk our bio list and populate the bio_pages array with
1220 * the result. This seems expensive, but it is faster than constantly
1221 * searching through the bio list as we setup the IO in finish_rmw or stripe
1222 * reconstruction.
1223 *
1224 * This must be called before you trust the answers from page_in_rbio
1225 */
1226static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1227{
1228 struct bio *bio;
1229
1230 spin_lock(&rbio->bio_list_lock);
1231 bio_list_for_each(bio, &rbio->bio_list)
1232 index_one_bio(rbio, bio);
1233
1234 spin_unlock(&rbio->bio_list_lock);
1235}
1236
1237static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1238 struct raid56_bio_trace_info *trace_info)
1239{
1240 const struct btrfs_io_context *bioc = rbio->bioc;
1241 int i;
1242
1243 ASSERT(bioc);
1244
1245 /* We rely on bio->bi_bdev to find the stripe number. */
1246 if (!bio->bi_bdev)
1247 goto not_found;
1248
1249 for (i = 0; i < bioc->num_stripes; i++) {
1250 if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1251 continue;
1252 trace_info->stripe_nr = i;
1253 trace_info->devid = bioc->stripes[i].dev->devid;
1254 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1255 bioc->stripes[i].physical;
1256 return;
1257 }
1258
1259not_found:
1260 trace_info->devid = -1;
1261 trace_info->offset = -1;
1262 trace_info->stripe_nr = -1;
1263}
1264
1265static inline void bio_list_put(struct bio_list *bio_list)
1266{
1267 struct bio *bio;
1268
1269 while ((bio = bio_list_pop(bio_list)))
1270 bio_put(bio);
1271}
1272
1273static void assert_rbio(struct btrfs_raid_bio *rbio)
1274{
1275 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
1276 return;
1277
1278 /*
1279 * At least two stripes (2 disks RAID5), and since real_stripes is U8,
1280 * we won't go beyond 256 disks anyway.
1281 */
1282 ASSERT_RBIO(rbio->real_stripes >= 2, rbio);
1283 ASSERT_RBIO(rbio->nr_data > 0, rbio);
1284
1285 /*
1286 * This is another check to make sure nr data stripes is smaller
1287 * than total stripes.
1288 */
1289 ASSERT_RBIO(rbio->nr_data < rbio->real_stripes, rbio);
1290}
1291
1292/* Generate PQ for one vertical stripe. */
1293static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1294{
1295 void **pointers = rbio->finish_pointers;
1296 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1297 struct sector_ptr *sector;
1298 int stripe;
1299 const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1300
1301 /* First collect one sector from each data stripe */
1302 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1303 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1304 pointers[stripe] = kmap_local_page(sector->page) +
1305 sector->pgoff;
1306 }
1307
1308 /* Then add the parity stripe */
1309 sector = rbio_pstripe_sector(rbio, sectornr);
1310 sector->uptodate = 1;
1311 pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1312
1313 if (has_qstripe) {
1314 /*
1315 * RAID6, add the qstripe and call the library function
1316 * to fill in our p/q
1317 */
1318 sector = rbio_qstripe_sector(rbio, sectornr);
1319 sector->uptodate = 1;
1320 pointers[stripe++] = kmap_local_page(sector->page) +
1321 sector->pgoff;
1322
1323 assert_rbio(rbio);
1324 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1325 pointers);
1326 } else {
1327 /* raid5 */
1328 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1329 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1330 }
1331 for (stripe = stripe - 1; stripe >= 0; stripe--)
1332 kunmap_local(pointers[stripe]);
1333}
1334
1335static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1336 struct bio_list *bio_list)
1337{
1338 /* The total sector number inside the full stripe. */
1339 int total_sector_nr;
1340 int sectornr;
1341 int stripe;
1342 int ret;
1343
1344 ASSERT(bio_list_size(bio_list) == 0);
1345
1346 /* We should have at least one data sector. */
1347 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1348
1349 /*
1350 * Reset errors, as we may have errors inherited from from degraded
1351 * write.
1352 */
1353 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1354
1355 /*
1356 * Start assembly. Make bios for everything from the higher layers (the
1357 * bio_list in our rbio) and our P/Q. Ignore everything else.
1358 */
1359 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1360 total_sector_nr++) {
1361 struct sector_ptr *sector;
1362
1363 stripe = total_sector_nr / rbio->stripe_nsectors;
1364 sectornr = total_sector_nr % rbio->stripe_nsectors;
1365
1366 /* This vertical stripe has no data, skip it. */
1367 if (!test_bit(sectornr, &rbio->dbitmap))
1368 continue;
1369
1370 if (stripe < rbio->nr_data) {
1371 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1372 if (!sector)
1373 continue;
1374 } else {
1375 sector = rbio_stripe_sector(rbio, stripe, sectornr);
1376 }
1377
1378 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1379 sectornr, REQ_OP_WRITE);
1380 if (ret)
1381 goto error;
1382 }
1383
1384 if (likely(!rbio->bioc->replace_nr_stripes))
1385 return 0;
1386
1387 /*
1388 * Make a copy for the replace target device.
1389 *
1390 * Thus the source stripe number (in replace_stripe_src) should be valid.
1391 */
1392 ASSERT(rbio->bioc->replace_stripe_src >= 0);
1393
1394 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1395 total_sector_nr++) {
1396 struct sector_ptr *sector;
1397
1398 stripe = total_sector_nr / rbio->stripe_nsectors;
1399 sectornr = total_sector_nr % rbio->stripe_nsectors;
1400
1401 /*
1402 * For RAID56, there is only one device that can be replaced,
1403 * and replace_stripe_src[0] indicates the stripe number we
1404 * need to copy from.
1405 */
1406 if (stripe != rbio->bioc->replace_stripe_src) {
1407 /*
1408 * We can skip the whole stripe completely, note
1409 * total_sector_nr will be increased by one anyway.
1410 */
1411 ASSERT(sectornr == 0);
1412 total_sector_nr += rbio->stripe_nsectors - 1;
1413 continue;
1414 }
1415
1416 /* This vertical stripe has no data, skip it. */
1417 if (!test_bit(sectornr, &rbio->dbitmap))
1418 continue;
1419
1420 if (stripe < rbio->nr_data) {
1421 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1422 if (!sector)
1423 continue;
1424 } else {
1425 sector = rbio_stripe_sector(rbio, stripe, sectornr);
1426 }
1427
1428 ret = rbio_add_io_sector(rbio, bio_list, sector,
1429 rbio->real_stripes,
1430 sectornr, REQ_OP_WRITE);
1431 if (ret)
1432 goto error;
1433 }
1434
1435 return 0;
1436error:
1437 bio_list_put(bio_list);
1438 return -EIO;
1439}
1440
1441static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1442{
1443 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1444 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1445 rbio->bioc->full_stripe_logical;
1446 int total_nr_sector = offset >> fs_info->sectorsize_bits;
1447
1448 ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1449
1450 bitmap_set(rbio->error_bitmap, total_nr_sector,
1451 bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1452
1453 /*
1454 * Special handling for raid56_alloc_missing_rbio() used by
1455 * scrub/replace. Unlike call path in raid56_parity_recover(), they
1456 * pass an empty bio here. Thus we have to find out the missing device
1457 * and mark the stripe error instead.
1458 */
1459 if (bio->bi_iter.bi_size == 0) {
1460 bool found_missing = false;
1461 int stripe_nr;
1462
1463 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1464 if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1465 found_missing = true;
1466 bitmap_set(rbio->error_bitmap,
1467 stripe_nr * rbio->stripe_nsectors,
1468 rbio->stripe_nsectors);
1469 }
1470 }
1471 ASSERT(found_missing);
1472 }
1473}
1474
1475/*
1476 * For subpage case, we can no longer set page Up-to-date directly for
1477 * stripe_pages[], thus we need to locate the sector.
1478 */
1479static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1480 struct page *page,
1481 unsigned int pgoff)
1482{
1483 int i;
1484
1485 for (i = 0; i < rbio->nr_sectors; i++) {
1486 struct sector_ptr *sector = &rbio->stripe_sectors[i];
1487
1488 if (sector->page == page && sector->pgoff == pgoff)
1489 return sector;
1490 }
1491 return NULL;
1492}
1493
1494/*
1495 * this sets each page in the bio uptodate. It should only be used on private
1496 * rbio pages, nothing that comes in from the higher layers
1497 */
1498static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1499{
1500 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1501 struct bio_vec *bvec;
1502 struct bvec_iter_all iter_all;
1503
1504 ASSERT(!bio_flagged(bio, BIO_CLONED));
1505
1506 bio_for_each_segment_all(bvec, bio, iter_all) {
1507 struct sector_ptr *sector;
1508 int pgoff;
1509
1510 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1511 pgoff += sectorsize) {
1512 sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1513 ASSERT(sector);
1514 if (sector)
1515 sector->uptodate = 1;
1516 }
1517 }
1518}
1519
1520static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1521{
1522 struct bio_vec *bv = bio_first_bvec_all(bio);
1523 int i;
1524
1525 for (i = 0; i < rbio->nr_sectors; i++) {
1526 struct sector_ptr *sector;
1527
1528 sector = &rbio->stripe_sectors[i];
1529 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1530 break;
1531 sector = &rbio->bio_sectors[i];
1532 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1533 break;
1534 }
1535 ASSERT(i < rbio->nr_sectors);
1536 return i;
1537}
1538
1539static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1540{
1541 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1542 u32 bio_size = 0;
1543 struct bio_vec *bvec;
1544 int i;
1545
1546 bio_for_each_bvec_all(bvec, bio, i)
1547 bio_size += bvec->bv_len;
1548
1549 /*
1550 * Since we can have multiple bios touching the error_bitmap, we cannot
1551 * call bitmap_set() without protection.
1552 *
1553 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1554 */
1555 for (i = total_sector_nr; i < total_sector_nr +
1556 (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1557 set_bit(i, rbio->error_bitmap);
1558}
1559
1560/* Verify the data sectors at read time. */
1561static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1562 struct bio *bio)
1563{
1564 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1565 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1566 struct bio_vec *bvec;
1567 struct bvec_iter_all iter_all;
1568
1569 /* No data csum for the whole stripe, no need to verify. */
1570 if (!rbio->csum_bitmap || !rbio->csum_buf)
1571 return;
1572
1573 /* P/Q stripes, they have no data csum to verify against. */
1574 if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1575 return;
1576
1577 bio_for_each_segment_all(bvec, bio, iter_all) {
1578 int bv_offset;
1579
1580 for (bv_offset = bvec->bv_offset;
1581 bv_offset < bvec->bv_offset + bvec->bv_len;
1582 bv_offset += fs_info->sectorsize, total_sector_nr++) {
1583 u8 csum_buf[BTRFS_CSUM_SIZE];
1584 u8 *expected_csum = rbio->csum_buf +
1585 total_sector_nr * fs_info->csum_size;
1586 int ret;
1587
1588 /* No csum for this sector, skip to the next sector. */
1589 if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1590 continue;
1591
1592 ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1593 bv_offset, csum_buf, expected_csum);
1594 if (ret < 0)
1595 set_bit(total_sector_nr, rbio->error_bitmap);
1596 }
1597 }
1598}
1599
1600static void raid_wait_read_end_io(struct bio *bio)
1601{
1602 struct btrfs_raid_bio *rbio = bio->bi_private;
1603
1604 if (bio->bi_status) {
1605 rbio_update_error_bitmap(rbio, bio);
1606 } else {
1607 set_bio_pages_uptodate(rbio, bio);
1608 verify_bio_data_sectors(rbio, bio);
1609 }
1610
1611 bio_put(bio);
1612 if (atomic_dec_and_test(&rbio->stripes_pending))
1613 wake_up(&rbio->io_wait);
1614}
1615
1616static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1617 struct bio_list *bio_list)
1618{
1619 struct bio *bio;
1620
1621 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1622 while ((bio = bio_list_pop(bio_list))) {
1623 bio->bi_end_io = raid_wait_read_end_io;
1624
1625 if (trace_raid56_read_enabled()) {
1626 struct raid56_bio_trace_info trace_info = { 0 };
1627
1628 bio_get_trace_info(rbio, bio, &trace_info);
1629 trace_raid56_read(rbio, bio, &trace_info);
1630 }
1631 submit_bio(bio);
1632 }
1633
1634 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1635}
1636
1637static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1638{
1639 const int data_pages = rbio->nr_data * rbio->stripe_npages;
1640 int ret;
1641
1642 ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, false);
1643 if (ret < 0)
1644 return ret;
1645
1646 index_stripe_sectors(rbio);
1647 return 0;
1648}
1649
1650/*
1651 * We use plugging call backs to collect full stripes.
1652 * Any time we get a partial stripe write while plugged
1653 * we collect it into a list. When the unplug comes down,
1654 * we sort the list by logical block number and merge
1655 * everything we can into the same rbios
1656 */
1657struct btrfs_plug_cb {
1658 struct blk_plug_cb cb;
1659 struct btrfs_fs_info *info;
1660 struct list_head rbio_list;
1661};
1662
1663/*
1664 * rbios on the plug list are sorted for easier merging.
1665 */
1666static int plug_cmp(void *priv, const struct list_head *a,
1667 const struct list_head *b)
1668{
1669 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1670 plug_list);
1671 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1672 plug_list);
1673 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1674 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1675
1676 if (a_sector < b_sector)
1677 return -1;
1678 if (a_sector > b_sector)
1679 return 1;
1680 return 0;
1681}
1682
1683static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1684{
1685 struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1686 struct btrfs_raid_bio *cur;
1687 struct btrfs_raid_bio *last = NULL;
1688
1689 list_sort(NULL, &plug->rbio_list, plug_cmp);
1690
1691 while (!list_empty(&plug->rbio_list)) {
1692 cur = list_entry(plug->rbio_list.next,
1693 struct btrfs_raid_bio, plug_list);
1694 list_del_init(&cur->plug_list);
1695
1696 if (rbio_is_full(cur)) {
1697 /* We have a full stripe, queue it down. */
1698 start_async_work(cur, rmw_rbio_work);
1699 continue;
1700 }
1701 if (last) {
1702 if (rbio_can_merge(last, cur)) {
1703 merge_rbio(last, cur);
1704 free_raid_bio(cur);
1705 continue;
1706 }
1707 start_async_work(last, rmw_rbio_work);
1708 }
1709 last = cur;
1710 }
1711 if (last)
1712 start_async_work(last, rmw_rbio_work);
1713 kfree(plug);
1714}
1715
1716/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1717static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1718{
1719 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1720 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1721 const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1722 const u32 orig_len = orig_bio->bi_iter.bi_size;
1723 const u32 sectorsize = fs_info->sectorsize;
1724 u64 cur_logical;
1725
1726 ASSERT_RBIO_LOGICAL(orig_logical >= full_stripe_start &&
1727 orig_logical + orig_len <= full_stripe_start +
1728 rbio->nr_data * BTRFS_STRIPE_LEN,
1729 rbio, orig_logical);
1730
1731 bio_list_add(&rbio->bio_list, orig_bio);
1732 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1733
1734 /* Update the dbitmap. */
1735 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1736 cur_logical += sectorsize) {
1737 int bit = ((u32)(cur_logical - full_stripe_start) >>
1738 fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1739
1740 set_bit(bit, &rbio->dbitmap);
1741 }
1742}
1743
1744/*
1745 * our main entry point for writes from the rest of the FS.
1746 */
1747void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
1748{
1749 struct btrfs_fs_info *fs_info = bioc->fs_info;
1750 struct btrfs_raid_bio *rbio;
1751 struct btrfs_plug_cb *plug = NULL;
1752 struct blk_plug_cb *cb;
1753
1754 rbio = alloc_rbio(fs_info, bioc);
1755 if (IS_ERR(rbio)) {
1756 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1757 bio_endio(bio);
1758 return;
1759 }
1760 rbio->operation = BTRFS_RBIO_WRITE;
1761 rbio_add_bio(rbio, bio);
1762
1763 /*
1764 * Don't plug on full rbios, just get them out the door
1765 * as quickly as we can
1766 */
1767 if (!rbio_is_full(rbio)) {
1768 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1769 if (cb) {
1770 plug = container_of(cb, struct btrfs_plug_cb, cb);
1771 if (!plug->info) {
1772 plug->info = fs_info;
1773 INIT_LIST_HEAD(&plug->rbio_list);
1774 }
1775 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1776 return;
1777 }
1778 }
1779
1780 /*
1781 * Either we don't have any existing plug, or we're doing a full stripe,
1782 * queue the rmw work now.
1783 */
1784 start_async_work(rbio, rmw_rbio_work);
1785}
1786
1787static int verify_one_sector(struct btrfs_raid_bio *rbio,
1788 int stripe_nr, int sector_nr)
1789{
1790 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1791 struct sector_ptr *sector;
1792 u8 csum_buf[BTRFS_CSUM_SIZE];
1793 u8 *csum_expected;
1794 int ret;
1795
1796 if (!rbio->csum_bitmap || !rbio->csum_buf)
1797 return 0;
1798
1799 /* No way to verify P/Q as they are not covered by data csum. */
1800 if (stripe_nr >= rbio->nr_data)
1801 return 0;
1802 /*
1803 * If we're rebuilding a read, we have to use pages from the
1804 * bio list if possible.
1805 */
1806 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1807 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1808 } else {
1809 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1810 }
1811
1812 ASSERT(sector->page);
1813
1814 csum_expected = rbio->csum_buf +
1815 (stripe_nr * rbio->stripe_nsectors + sector_nr) *
1816 fs_info->csum_size;
1817 ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1818 csum_buf, csum_expected);
1819 return ret;
1820}
1821
1822/*
1823 * Recover a vertical stripe specified by @sector_nr.
1824 * @*pointers are the pre-allocated pointers by the caller, so we don't
1825 * need to allocate/free the pointers again and again.
1826 */
1827static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1828 void **pointers, void **unmap_array)
1829{
1830 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1831 struct sector_ptr *sector;
1832 const u32 sectorsize = fs_info->sectorsize;
1833 int found_errors;
1834 int faila;
1835 int failb;
1836 int stripe_nr;
1837 int ret = 0;
1838
1839 /*
1840 * Now we just use bitmap to mark the horizontal stripes in
1841 * which we have data when doing parity scrub.
1842 */
1843 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1844 !test_bit(sector_nr, &rbio->dbitmap))
1845 return 0;
1846
1847 found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1848 &failb);
1849 /*
1850 * No errors in the vertical stripe, skip it. Can happen for recovery
1851 * which only part of a stripe failed csum check.
1852 */
1853 if (!found_errors)
1854 return 0;
1855
1856 if (found_errors > rbio->bioc->max_errors)
1857 return -EIO;
1858
1859 /*
1860 * Setup our array of pointers with sectors from each stripe
1861 *
1862 * NOTE: store a duplicate array of pointers to preserve the
1863 * pointer order.
1864 */
1865 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1866 /*
1867 * If we're rebuilding a read, we have to use pages from the
1868 * bio list if possible.
1869 */
1870 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1871 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1872 } else {
1873 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1874 }
1875 ASSERT(sector->page);
1876 pointers[stripe_nr] = kmap_local_page(sector->page) +
1877 sector->pgoff;
1878 unmap_array[stripe_nr] = pointers[stripe_nr];
1879 }
1880
1881 /* All raid6 handling here */
1882 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1883 /* Single failure, rebuild from parity raid5 style */
1884 if (failb < 0) {
1885 if (faila == rbio->nr_data)
1886 /*
1887 * Just the P stripe has failed, without
1888 * a bad data or Q stripe.
1889 * We have nothing to do, just skip the
1890 * recovery for this stripe.
1891 */
1892 goto cleanup;
1893 /*
1894 * a single failure in raid6 is rebuilt
1895 * in the pstripe code below
1896 */
1897 goto pstripe;
1898 }
1899
1900 /*
1901 * If the q stripe is failed, do a pstripe reconstruction from
1902 * the xors.
1903 * If both the q stripe and the P stripe are failed, we're
1904 * here due to a crc mismatch and we can't give them the
1905 * data they want.
1906 */
1907 if (failb == rbio->real_stripes - 1) {
1908 if (faila == rbio->real_stripes - 2)
1909 /*
1910 * Only P and Q are corrupted.
1911 * We only care about data stripes recovery,
1912 * can skip this vertical stripe.
1913 */
1914 goto cleanup;
1915 /*
1916 * Otherwise we have one bad data stripe and
1917 * a good P stripe. raid5!
1918 */
1919 goto pstripe;
1920 }
1921
1922 if (failb == rbio->real_stripes - 2) {
1923 raid6_datap_recov(rbio->real_stripes, sectorsize,
1924 faila, pointers);
1925 } else {
1926 raid6_2data_recov(rbio->real_stripes, sectorsize,
1927 faila, failb, pointers);
1928 }
1929 } else {
1930 void *p;
1931
1932 /* Rebuild from P stripe here (raid5 or raid6). */
1933 ASSERT(failb == -1);
1934pstripe:
1935 /* Copy parity block into failed block to start with */
1936 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1937
1938 /* Rearrange the pointer array */
1939 p = pointers[faila];
1940 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1941 stripe_nr++)
1942 pointers[stripe_nr] = pointers[stripe_nr + 1];
1943 pointers[rbio->nr_data - 1] = p;
1944
1945 /* Xor in the rest */
1946 run_xor(pointers, rbio->nr_data - 1, sectorsize);
1947
1948 }
1949
1950 /*
1951 * No matter if this is a RMW or recovery, we should have all
1952 * failed sectors repaired in the vertical stripe, thus they are now
1953 * uptodate.
1954 * Especially if we determine to cache the rbio, we need to
1955 * have at least all data sectors uptodate.
1956 *
1957 * If possible, also check if the repaired sector matches its data
1958 * checksum.
1959 */
1960 if (faila >= 0) {
1961 ret = verify_one_sector(rbio, faila, sector_nr);
1962 if (ret < 0)
1963 goto cleanup;
1964
1965 sector = rbio_stripe_sector(rbio, faila, sector_nr);
1966 sector->uptodate = 1;
1967 }
1968 if (failb >= 0) {
1969 ret = verify_one_sector(rbio, failb, sector_nr);
1970 if (ret < 0)
1971 goto cleanup;
1972
1973 sector = rbio_stripe_sector(rbio, failb, sector_nr);
1974 sector->uptodate = 1;
1975 }
1976
1977cleanup:
1978 for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1979 kunmap_local(unmap_array[stripe_nr]);
1980 return ret;
1981}
1982
1983static int recover_sectors(struct btrfs_raid_bio *rbio)
1984{
1985 void **pointers = NULL;
1986 void **unmap_array = NULL;
1987 int sectornr;
1988 int ret = 0;
1989
1990 /*
1991 * @pointers array stores the pointer for each sector.
1992 *
1993 * @unmap_array stores copy of pointers that does not get reordered
1994 * during reconstruction so that kunmap_local works.
1995 */
1996 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1997 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1998 if (!pointers || !unmap_array) {
1999 ret = -ENOMEM;
2000 goto out;
2001 }
2002
2003 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
2004 spin_lock(&rbio->bio_list_lock);
2005 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2006 spin_unlock(&rbio->bio_list_lock);
2007 }
2008
2009 index_rbio_pages(rbio);
2010
2011 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2012 ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
2013 if (ret < 0)
2014 break;
2015 }
2016
2017out:
2018 kfree(pointers);
2019 kfree(unmap_array);
2020 return ret;
2021}
2022
2023static void recover_rbio(struct btrfs_raid_bio *rbio)
2024{
2025 struct bio_list bio_list = BIO_EMPTY_LIST;
2026 int total_sector_nr;
2027 int ret = 0;
2028
2029 /*
2030 * Either we're doing recover for a read failure or degraded write,
2031 * caller should have set error bitmap correctly.
2032 */
2033 ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
2034
2035 /* For recovery, we need to read all sectors including P/Q. */
2036 ret = alloc_rbio_pages(rbio);
2037 if (ret < 0)
2038 goto out;
2039
2040 index_rbio_pages(rbio);
2041
2042 /*
2043 * Read everything that hasn't failed. However this time we will
2044 * not trust any cached sector.
2045 * As we may read out some stale data but higher layer is not reading
2046 * that stale part.
2047 *
2048 * So here we always re-read everything in recovery path.
2049 */
2050 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2051 total_sector_nr++) {
2052 int stripe = total_sector_nr / rbio->stripe_nsectors;
2053 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2054 struct sector_ptr *sector;
2055
2056 /*
2057 * Skip the range which has error. It can be a range which is
2058 * marked error (for csum mismatch), or it can be a missing
2059 * device.
2060 */
2061 if (!rbio->bioc->stripes[stripe].dev->bdev ||
2062 test_bit(total_sector_nr, rbio->error_bitmap)) {
2063 /*
2064 * Also set the error bit for missing device, which
2065 * may not yet have its error bit set.
2066 */
2067 set_bit(total_sector_nr, rbio->error_bitmap);
2068 continue;
2069 }
2070
2071 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2072 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2073 sectornr, REQ_OP_READ);
2074 if (ret < 0) {
2075 bio_list_put(&bio_list);
2076 goto out;
2077 }
2078 }
2079
2080 submit_read_wait_bio_list(rbio, &bio_list);
2081 ret = recover_sectors(rbio);
2082out:
2083 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2084}
2085
2086static void recover_rbio_work(struct work_struct *work)
2087{
2088 struct btrfs_raid_bio *rbio;
2089
2090 rbio = container_of(work, struct btrfs_raid_bio, work);
2091 if (!lock_stripe_add(rbio))
2092 recover_rbio(rbio);
2093}
2094
2095static void recover_rbio_work_locked(struct work_struct *work)
2096{
2097 recover_rbio(container_of(work, struct btrfs_raid_bio, work));
2098}
2099
2100static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2101{
2102 bool found = false;
2103 int sector_nr;
2104
2105 /*
2106 * This is for RAID6 extra recovery tries, thus mirror number should
2107 * be large than 2.
2108 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2109 * RAID5 methods.
2110 */
2111 ASSERT(mirror_num > 2);
2112 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2113 int found_errors;
2114 int faila;
2115 int failb;
2116
2117 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2118 &faila, &failb);
2119 /* This vertical stripe doesn't have errors. */
2120 if (!found_errors)
2121 continue;
2122
2123 /*
2124 * If we found errors, there should be only one error marked
2125 * by previous set_rbio_range_error().
2126 */
2127 ASSERT(found_errors == 1);
2128 found = true;
2129
2130 /* Now select another stripe to mark as error. */
2131 failb = rbio->real_stripes - (mirror_num - 1);
2132 if (failb <= faila)
2133 failb--;
2134
2135 /* Set the extra bit in error bitmap. */
2136 if (failb >= 0)
2137 set_bit(failb * rbio->stripe_nsectors + sector_nr,
2138 rbio->error_bitmap);
2139 }
2140
2141 /* We should found at least one vertical stripe with error.*/
2142 ASSERT(found);
2143}
2144
2145/*
2146 * the main entry point for reads from the higher layers. This
2147 * is really only called when the normal read path had a failure,
2148 * so we assume the bio they send down corresponds to a failed part
2149 * of the drive.
2150 */
2151void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2152 int mirror_num)
2153{
2154 struct btrfs_fs_info *fs_info = bioc->fs_info;
2155 struct btrfs_raid_bio *rbio;
2156
2157 rbio = alloc_rbio(fs_info, bioc);
2158 if (IS_ERR(rbio)) {
2159 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2160 bio_endio(bio);
2161 return;
2162 }
2163
2164 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2165 rbio_add_bio(rbio, bio);
2166
2167 set_rbio_range_error(rbio, bio);
2168
2169 /*
2170 * Loop retry:
2171 * for 'mirror == 2', reconstruct from all other stripes.
2172 * for 'mirror_num > 2', select a stripe to fail on every retry.
2173 */
2174 if (mirror_num > 2)
2175 set_rbio_raid6_extra_error(rbio, mirror_num);
2176
2177 start_async_work(rbio, recover_rbio_work);
2178}
2179
2180static void fill_data_csums(struct btrfs_raid_bio *rbio)
2181{
2182 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2183 struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2184 rbio->bioc->full_stripe_logical);
2185 const u64 start = rbio->bioc->full_stripe_logical;
2186 const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2187 fs_info->sectorsize_bits;
2188 int ret;
2189
2190 /* The rbio should not have its csum buffer initialized. */
2191 ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2192
2193 /*
2194 * Skip the csum search if:
2195 *
2196 * - The rbio doesn't belong to data block groups
2197 * Then we are doing IO for tree blocks, no need to search csums.
2198 *
2199 * - The rbio belongs to mixed block groups
2200 * This is to avoid deadlock, as we're already holding the full
2201 * stripe lock, if we trigger a metadata read, and it needs to do
2202 * raid56 recovery, we will deadlock.
2203 */
2204 if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2205 rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2206 return;
2207
2208 rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2209 fs_info->csum_size, GFP_NOFS);
2210 rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2211 GFP_NOFS);
2212 if (!rbio->csum_buf || !rbio->csum_bitmap) {
2213 ret = -ENOMEM;
2214 goto error;
2215 }
2216
2217 ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2218 rbio->csum_buf, rbio->csum_bitmap);
2219 if (ret < 0)
2220 goto error;
2221 if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2222 goto no_csum;
2223 return;
2224
2225error:
2226 /*
2227 * We failed to allocate memory or grab the csum, but it's not fatal,
2228 * we can still continue. But better to warn users that RMW is no
2229 * longer safe for this particular sub-stripe write.
2230 */
2231 btrfs_warn_rl(fs_info,
2232"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2233 rbio->bioc->full_stripe_logical, ret);
2234no_csum:
2235 kfree(rbio->csum_buf);
2236 bitmap_free(rbio->csum_bitmap);
2237 rbio->csum_buf = NULL;
2238 rbio->csum_bitmap = NULL;
2239}
2240
2241static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2242{
2243 struct bio_list bio_list = BIO_EMPTY_LIST;
2244 int total_sector_nr;
2245 int ret = 0;
2246
2247 /*
2248 * Fill the data csums we need for data verification. We need to fill
2249 * the csum_bitmap/csum_buf first, as our endio function will try to
2250 * verify the data sectors.
2251 */
2252 fill_data_csums(rbio);
2253
2254 /*
2255 * Build a list of bios to read all sectors (including data and P/Q).
2256 *
2257 * This behavior is to compensate the later csum verification and recovery.
2258 */
2259 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2260 total_sector_nr++) {
2261 struct sector_ptr *sector;
2262 int stripe = total_sector_nr / rbio->stripe_nsectors;
2263 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2264
2265 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2266 ret = rbio_add_io_sector(rbio, &bio_list, sector,
2267 stripe, sectornr, REQ_OP_READ);
2268 if (ret) {
2269 bio_list_put(&bio_list);
2270 return ret;
2271 }
2272 }
2273
2274 /*
2275 * We may or may not have any corrupted sectors (including missing dev
2276 * and csum mismatch), just let recover_sectors() to handle them all.
2277 */
2278 submit_read_wait_bio_list(rbio, &bio_list);
2279 return recover_sectors(rbio);
2280}
2281
2282static void raid_wait_write_end_io(struct bio *bio)
2283{
2284 struct btrfs_raid_bio *rbio = bio->bi_private;
2285 blk_status_t err = bio->bi_status;
2286
2287 if (err)
2288 rbio_update_error_bitmap(rbio, bio);
2289 bio_put(bio);
2290 if (atomic_dec_and_test(&rbio->stripes_pending))
2291 wake_up(&rbio->io_wait);
2292}
2293
2294static void submit_write_bios(struct btrfs_raid_bio *rbio,
2295 struct bio_list *bio_list)
2296{
2297 struct bio *bio;
2298
2299 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2300 while ((bio = bio_list_pop(bio_list))) {
2301 bio->bi_end_io = raid_wait_write_end_io;
2302
2303 if (trace_raid56_write_enabled()) {
2304 struct raid56_bio_trace_info trace_info = { 0 };
2305
2306 bio_get_trace_info(rbio, bio, &trace_info);
2307 trace_raid56_write(rbio, bio, &trace_info);
2308 }
2309 submit_bio(bio);
2310 }
2311}
2312
2313/*
2314 * To determine if we need to read any sector from the disk.
2315 * Should only be utilized in RMW path, to skip cached rbio.
2316 */
2317static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2318{
2319 int i;
2320
2321 for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2322 struct sector_ptr *sector = &rbio->stripe_sectors[i];
2323
2324 /*
2325 * We have a sector which doesn't have page nor uptodate,
2326 * thus this rbio can not be cached one, as cached one must
2327 * have all its data sectors present and uptodate.
2328 */
2329 if (!sector->page || !sector->uptodate)
2330 return true;
2331 }
2332 return false;
2333}
2334
2335static void rmw_rbio(struct btrfs_raid_bio *rbio)
2336{
2337 struct bio_list bio_list;
2338 int sectornr;
2339 int ret = 0;
2340
2341 /*
2342 * Allocate the pages for parity first, as P/Q pages will always be
2343 * needed for both full-stripe and sub-stripe writes.
2344 */
2345 ret = alloc_rbio_parity_pages(rbio);
2346 if (ret < 0)
2347 goto out;
2348
2349 /*
2350 * Either full stripe write, or we have every data sector already
2351 * cached, can go to write path immediately.
2352 */
2353 if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2354 /*
2355 * Now we're doing sub-stripe write, also need all data stripes
2356 * to do the full RMW.
2357 */
2358 ret = alloc_rbio_data_pages(rbio);
2359 if (ret < 0)
2360 goto out;
2361
2362 index_rbio_pages(rbio);
2363
2364 ret = rmw_read_wait_recover(rbio);
2365 if (ret < 0)
2366 goto out;
2367 }
2368
2369 /*
2370 * At this stage we're not allowed to add any new bios to the
2371 * bio list any more, anyone else that wants to change this stripe
2372 * needs to do their own rmw.
2373 */
2374 spin_lock(&rbio->bio_list_lock);
2375 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2376 spin_unlock(&rbio->bio_list_lock);
2377
2378 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2379
2380 index_rbio_pages(rbio);
2381
2382 /*
2383 * We don't cache full rbios because we're assuming
2384 * the higher layers are unlikely to use this area of
2385 * the disk again soon. If they do use it again,
2386 * hopefully they will send another full bio.
2387 */
2388 if (!rbio_is_full(rbio))
2389 cache_rbio_pages(rbio);
2390 else
2391 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2392
2393 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2394 generate_pq_vertical(rbio, sectornr);
2395
2396 bio_list_init(&bio_list);
2397 ret = rmw_assemble_write_bios(rbio, &bio_list);
2398 if (ret < 0)
2399 goto out;
2400
2401 /* We should have at least one bio assembled. */
2402 ASSERT(bio_list_size(&bio_list));
2403 submit_write_bios(rbio, &bio_list);
2404 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2405
2406 /* We may have more errors than our tolerance during the read. */
2407 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2408 int found_errors;
2409
2410 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2411 if (found_errors > rbio->bioc->max_errors) {
2412 ret = -EIO;
2413 break;
2414 }
2415 }
2416out:
2417 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2418}
2419
2420static void rmw_rbio_work(struct work_struct *work)
2421{
2422 struct btrfs_raid_bio *rbio;
2423
2424 rbio = container_of(work, struct btrfs_raid_bio, work);
2425 if (lock_stripe_add(rbio) == 0)
2426 rmw_rbio(rbio);
2427}
2428
2429static void rmw_rbio_work_locked(struct work_struct *work)
2430{
2431 rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
2432}
2433
2434/*
2435 * The following code is used to scrub/replace the parity stripe
2436 *
2437 * Caller must have already increased bio_counter for getting @bioc.
2438 *
2439 * Note: We need make sure all the pages that add into the scrub/replace
2440 * raid bio are correct and not be changed during the scrub/replace. That
2441 * is those pages just hold metadata or file data with checksum.
2442 */
2443
2444struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2445 struct btrfs_io_context *bioc,
2446 struct btrfs_device *scrub_dev,
2447 unsigned long *dbitmap, int stripe_nsectors)
2448{
2449 struct btrfs_fs_info *fs_info = bioc->fs_info;
2450 struct btrfs_raid_bio *rbio;
2451 int i;
2452
2453 rbio = alloc_rbio(fs_info, bioc);
2454 if (IS_ERR(rbio))
2455 return NULL;
2456 bio_list_add(&rbio->bio_list, bio);
2457 /*
2458 * This is a special bio which is used to hold the completion handler
2459 * and make the scrub rbio is similar to the other types
2460 */
2461 ASSERT(!bio->bi_iter.bi_size);
2462 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2463
2464 /*
2465 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2466 * to the end position, so this search can start from the first parity
2467 * stripe.
2468 */
2469 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2470 if (bioc->stripes[i].dev == scrub_dev) {
2471 rbio->scrubp = i;
2472 break;
2473 }
2474 }
2475 ASSERT_RBIO_STRIPE(i < rbio->real_stripes, rbio, i);
2476
2477 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2478 return rbio;
2479}
2480
2481/*
2482 * We just scrub the parity that we have correct data on the same horizontal,
2483 * so we needn't allocate all pages for all the stripes.
2484 */
2485static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2486{
2487 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2488 int total_sector_nr;
2489
2490 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2491 total_sector_nr++) {
2492 struct page *page;
2493 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2494 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2495
2496 if (!test_bit(sectornr, &rbio->dbitmap))
2497 continue;
2498 if (rbio->stripe_pages[index])
2499 continue;
2500 page = alloc_page(GFP_NOFS);
2501 if (!page)
2502 return -ENOMEM;
2503 rbio->stripe_pages[index] = page;
2504 }
2505 index_stripe_sectors(rbio);
2506 return 0;
2507}
2508
2509static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
2510{
2511 struct btrfs_io_context *bioc = rbio->bioc;
2512 const u32 sectorsize = bioc->fs_info->sectorsize;
2513 void **pointers = rbio->finish_pointers;
2514 unsigned long *pbitmap = &rbio->finish_pbitmap;
2515 int nr_data = rbio->nr_data;
2516 int stripe;
2517 int sectornr;
2518 bool has_qstripe;
2519 struct sector_ptr p_sector = { 0 };
2520 struct sector_ptr q_sector = { 0 };
2521 struct bio_list bio_list;
2522 int is_replace = 0;
2523 int ret;
2524
2525 bio_list_init(&bio_list);
2526
2527 if (rbio->real_stripes - rbio->nr_data == 1)
2528 has_qstripe = false;
2529 else if (rbio->real_stripes - rbio->nr_data == 2)
2530 has_qstripe = true;
2531 else
2532 BUG();
2533
2534 /*
2535 * Replace is running and our P/Q stripe is being replaced, then we
2536 * need to duplicate the final write to replace target.
2537 */
2538 if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2539 is_replace = 1;
2540 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2541 }
2542
2543 /*
2544 * Because the higher layers(scrubber) are unlikely to
2545 * use this area of the disk again soon, so don't cache
2546 * it.
2547 */
2548 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2549
2550 p_sector.page = alloc_page(GFP_NOFS);
2551 if (!p_sector.page)
2552 return -ENOMEM;
2553 p_sector.pgoff = 0;
2554 p_sector.uptodate = 1;
2555
2556 if (has_qstripe) {
2557 /* RAID6, allocate and map temp space for the Q stripe */
2558 q_sector.page = alloc_page(GFP_NOFS);
2559 if (!q_sector.page) {
2560 __free_page(p_sector.page);
2561 p_sector.page = NULL;
2562 return -ENOMEM;
2563 }
2564 q_sector.pgoff = 0;
2565 q_sector.uptodate = 1;
2566 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2567 }
2568
2569 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2570
2571 /* Map the parity stripe just once */
2572 pointers[nr_data] = kmap_local_page(p_sector.page);
2573
2574 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2575 struct sector_ptr *sector;
2576 void *parity;
2577
2578 /* first collect one page from each data stripe */
2579 for (stripe = 0; stripe < nr_data; stripe++) {
2580 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2581 pointers[stripe] = kmap_local_page(sector->page) +
2582 sector->pgoff;
2583 }
2584
2585 if (has_qstripe) {
2586 assert_rbio(rbio);
2587 /* RAID6, call the library function to fill in our P/Q */
2588 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2589 pointers);
2590 } else {
2591 /* raid5 */
2592 memcpy(pointers[nr_data], pointers[0], sectorsize);
2593 run_xor(pointers + 1, nr_data - 1, sectorsize);
2594 }
2595
2596 /* Check scrubbing parity and repair it */
2597 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2598 parity = kmap_local_page(sector->page) + sector->pgoff;
2599 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2600 memcpy(parity, pointers[rbio->scrubp], sectorsize);
2601 else
2602 /* Parity is right, needn't writeback */
2603 bitmap_clear(&rbio->dbitmap, sectornr, 1);
2604 kunmap_local(parity);
2605
2606 for (stripe = nr_data - 1; stripe >= 0; stripe--)
2607 kunmap_local(pointers[stripe]);
2608 }
2609
2610 kunmap_local(pointers[nr_data]);
2611 __free_page(p_sector.page);
2612 p_sector.page = NULL;
2613 if (q_sector.page) {
2614 kunmap_local(pointers[rbio->real_stripes - 1]);
2615 __free_page(q_sector.page);
2616 q_sector.page = NULL;
2617 }
2618
2619 /*
2620 * time to start writing. Make bios for everything from the
2621 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2622 * everything else.
2623 */
2624 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2625 struct sector_ptr *sector;
2626
2627 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2628 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2629 sectornr, REQ_OP_WRITE);
2630 if (ret)
2631 goto cleanup;
2632 }
2633
2634 if (!is_replace)
2635 goto submit_write;
2636
2637 /*
2638 * Replace is running and our parity stripe needs to be duplicated to
2639 * the target device. Check we have a valid source stripe number.
2640 */
2641 ASSERT_RBIO(rbio->bioc->replace_stripe_src >= 0, rbio);
2642 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2643 struct sector_ptr *sector;
2644
2645 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2646 ret = rbio_add_io_sector(rbio, &bio_list, sector,
2647 rbio->real_stripes,
2648 sectornr, REQ_OP_WRITE);
2649 if (ret)
2650 goto cleanup;
2651 }
2652
2653submit_write:
2654 submit_write_bios(rbio, &bio_list);
2655 return 0;
2656
2657cleanup:
2658 bio_list_put(&bio_list);
2659 return ret;
2660}
2661
2662static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2663{
2664 if (stripe >= 0 && stripe < rbio->nr_data)
2665 return 1;
2666 return 0;
2667}
2668
2669static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2670{
2671 void **pointers = NULL;
2672 void **unmap_array = NULL;
2673 int sector_nr;
2674 int ret = 0;
2675
2676 /*
2677 * @pointers array stores the pointer for each sector.
2678 *
2679 * @unmap_array stores copy of pointers that does not get reordered
2680 * during reconstruction so that kunmap_local works.
2681 */
2682 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2683 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2684 if (!pointers || !unmap_array) {
2685 ret = -ENOMEM;
2686 goto out;
2687 }
2688
2689 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2690 int dfail = 0, failp = -1;
2691 int faila;
2692 int failb;
2693 int found_errors;
2694
2695 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2696 &faila, &failb);
2697 if (found_errors > rbio->bioc->max_errors) {
2698 ret = -EIO;
2699 goto out;
2700 }
2701 if (found_errors == 0)
2702 continue;
2703
2704 /* We should have at least one error here. */
2705 ASSERT(faila >= 0 || failb >= 0);
2706
2707 if (is_data_stripe(rbio, faila))
2708 dfail++;
2709 else if (is_parity_stripe(faila))
2710 failp = faila;
2711
2712 if (is_data_stripe(rbio, failb))
2713 dfail++;
2714 else if (is_parity_stripe(failb))
2715 failp = failb;
2716 /*
2717 * Because we can not use a scrubbing parity to repair the
2718 * data, so the capability of the repair is declined. (In the
2719 * case of RAID5, we can not repair anything.)
2720 */
2721 if (dfail > rbio->bioc->max_errors - 1) {
2722 ret = -EIO;
2723 goto out;
2724 }
2725 /*
2726 * If all data is good, only parity is correctly, just repair
2727 * the parity, no need to recover data stripes.
2728 */
2729 if (dfail == 0)
2730 continue;
2731
2732 /*
2733 * Here means we got one corrupted data stripe and one
2734 * corrupted parity on RAID6, if the corrupted parity is
2735 * scrubbing parity, luckily, use the other one to repair the
2736 * data, or we can not repair the data stripe.
2737 */
2738 if (failp != rbio->scrubp) {
2739 ret = -EIO;
2740 goto out;
2741 }
2742
2743 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2744 if (ret < 0)
2745 goto out;
2746 }
2747out:
2748 kfree(pointers);
2749 kfree(unmap_array);
2750 return ret;
2751}
2752
2753static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2754{
2755 struct bio_list bio_list = BIO_EMPTY_LIST;
2756 int total_sector_nr;
2757 int ret = 0;
2758
2759 /* Build a list of bios to read all the missing parts. */
2760 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2761 total_sector_nr++) {
2762 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2763 int stripe = total_sector_nr / rbio->stripe_nsectors;
2764 struct sector_ptr *sector;
2765
2766 /* No data in the vertical stripe, no need to read. */
2767 if (!test_bit(sectornr, &rbio->dbitmap))
2768 continue;
2769
2770 /*
2771 * We want to find all the sectors missing from the rbio and
2772 * read them from the disk. If sector_in_rbio() finds a sector
2773 * in the bio list we don't need to read it off the stripe.
2774 */
2775 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2776 if (sector)
2777 continue;
2778
2779 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2780 /*
2781 * The bio cache may have handed us an uptodate sector. If so,
2782 * use it.
2783 */
2784 if (sector->uptodate)
2785 continue;
2786
2787 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2788 sectornr, REQ_OP_READ);
2789 if (ret) {
2790 bio_list_put(&bio_list);
2791 return ret;
2792 }
2793 }
2794
2795 submit_read_wait_bio_list(rbio, &bio_list);
2796 return 0;
2797}
2798
2799static void scrub_rbio(struct btrfs_raid_bio *rbio)
2800{
2801 int sector_nr;
2802 int ret;
2803
2804 ret = alloc_rbio_essential_pages(rbio);
2805 if (ret)
2806 goto out;
2807
2808 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2809
2810 ret = scrub_assemble_read_bios(rbio);
2811 if (ret < 0)
2812 goto out;
2813
2814 /* We may have some failures, recover the failed sectors first. */
2815 ret = recover_scrub_rbio(rbio);
2816 if (ret < 0)
2817 goto out;
2818
2819 /*
2820 * We have every sector properly prepared. Can finish the scrub
2821 * and writeback the good content.
2822 */
2823 ret = finish_parity_scrub(rbio);
2824 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2825 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2826 int found_errors;
2827
2828 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2829 if (found_errors > rbio->bioc->max_errors) {
2830 ret = -EIO;
2831 break;
2832 }
2833 }
2834out:
2835 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2836}
2837
2838static void scrub_rbio_work_locked(struct work_struct *work)
2839{
2840 scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2841}
2842
2843void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2844{
2845 if (!lock_stripe_add(rbio))
2846 start_async_work(rbio, scrub_rbio_work_locked);
2847}
2848
2849/*
2850 * This is for scrub call sites where we already have correct data contents.
2851 * This allows us to avoid reading data stripes again.
2852 *
2853 * Unfortunately here we have to do page copy, other than reusing the pages.
2854 * This is due to the fact rbio has its own page management for its cache.
2855 */
2856void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2857 struct page **data_pages, u64 data_logical)
2858{
2859 const u64 offset_in_full_stripe = data_logical -
2860 rbio->bioc->full_stripe_logical;
2861 const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2862 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2863 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2864 int ret;
2865
2866 /*
2867 * If we hit ENOMEM temporarily, but later at
2868 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2869 * the extra read, not a big deal.
2870 *
2871 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2872 * the bio would got proper error number set.
2873 */
2874 ret = alloc_rbio_data_pages(rbio);
2875 if (ret < 0)
2876 return;
2877
2878 /* data_logical must be at stripe boundary and inside the full stripe. */
2879 ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2880 ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2881
2882 for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2883 struct page *dst = rbio->stripe_pages[page_nr + page_index];
2884 struct page *src = data_pages[page_nr];
2885
2886 memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2887 for (int sector_nr = sectors_per_page * page_index;
2888 sector_nr < sectors_per_page * (page_index + 1);
2889 sector_nr++)
2890 rbio->stripe_sectors[sector_nr].uptodate = true;
2891 }
2892}
1/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
34#include <linux/vmalloc.h>
35#include <asm/div64.h>
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
61
62#define RBIO_CACHE_SIZE 1024
63
64struct btrfs_raid_bio {
65 struct btrfs_fs_info *fs_info;
66 struct btrfs_bio *bbio;
67
68 /*
69 * logical block numbers for the start of each stripe
70 * The last one or two are p/q. These are sorted,
71 * so raid_map[0] is the start of our full stripe
72 */
73 u64 *raid_map;
74
75 /* while we're doing rmw on a stripe
76 * we put it into a hash table so we can
77 * lock the stripe and merge more rbios
78 * into it.
79 */
80 struct list_head hash_list;
81
82 /*
83 * LRU list for the stripe cache
84 */
85 struct list_head stripe_cache;
86
87 /*
88 * for scheduling work in the helper threads
89 */
90 struct btrfs_work work;
91
92 /*
93 * bio list and bio_list_lock are used
94 * to add more bios into the stripe
95 * in hopes of avoiding the full rmw
96 */
97 struct bio_list bio_list;
98 spinlock_t bio_list_lock;
99
100 /* also protected by the bio_list_lock, the
101 * plug list is used by the plugging code
102 * to collect partial bios while plugged. The
103 * stripe locking code also uses it to hand off
104 * the stripe lock to the next pending IO
105 */
106 struct list_head plug_list;
107
108 /*
109 * flags that tell us if it is safe to
110 * merge with this bio
111 */
112 unsigned long flags;
113
114 /* size of each individual stripe on disk */
115 int stripe_len;
116
117 /* number of data stripes (no p/q) */
118 int nr_data;
119
120 /*
121 * set if we're doing a parity rebuild
122 * for a read from higher up, which is handled
123 * differently from a parity rebuild as part of
124 * rmw
125 */
126 int read_rebuild;
127
128 /* first bad stripe */
129 int faila;
130
131 /* second bad stripe (for raid6 use) */
132 int failb;
133
134 /*
135 * number of pages needed to represent the full
136 * stripe
137 */
138 int nr_pages;
139
140 /*
141 * size of all the bios in the bio_list. This
142 * helps us decide if the rbio maps to a full
143 * stripe or not
144 */
145 int bio_list_bytes;
146
147 atomic_t refs;
148
149 /*
150 * these are two arrays of pointers. We allocate the
151 * rbio big enough to hold them both and setup their
152 * locations when the rbio is allocated
153 */
154
155 /* pointers to pages that we allocated for
156 * reading/writing stripes directly from the disk (including P/Q)
157 */
158 struct page **stripe_pages;
159
160 /*
161 * pointers to the pages in the bio_list. Stored
162 * here for faster lookup
163 */
164 struct page **bio_pages;
165};
166
167static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
168static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
169static void rmw_work(struct btrfs_work *work);
170static void read_rebuild_work(struct btrfs_work *work);
171static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
172static void async_read_rebuild(struct btrfs_raid_bio *rbio);
173static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
174static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
175static void __free_raid_bio(struct btrfs_raid_bio *rbio);
176static void index_rbio_pages(struct btrfs_raid_bio *rbio);
177static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
178
179/*
180 * the stripe hash table is used for locking, and to collect
181 * bios in hopes of making a full stripe
182 */
183int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
184{
185 struct btrfs_stripe_hash_table *table;
186 struct btrfs_stripe_hash_table *x;
187 struct btrfs_stripe_hash *cur;
188 struct btrfs_stripe_hash *h;
189 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
190 int i;
191 int table_size;
192
193 if (info->stripe_hash_table)
194 return 0;
195
196 /*
197 * The table is large, starting with order 4 and can go as high as
198 * order 7 in case lock debugging is turned on.
199 *
200 * Try harder to allocate and fallback to vmalloc to lower the chance
201 * of a failing mount.
202 */
203 table_size = sizeof(*table) + sizeof(*h) * num_entries;
204 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
205 if (!table) {
206 table = vzalloc(table_size);
207 if (!table)
208 return -ENOMEM;
209 }
210
211 spin_lock_init(&table->cache_lock);
212 INIT_LIST_HEAD(&table->stripe_cache);
213
214 h = table->table;
215
216 for (i = 0; i < num_entries; i++) {
217 cur = h + i;
218 INIT_LIST_HEAD(&cur->hash_list);
219 spin_lock_init(&cur->lock);
220 init_waitqueue_head(&cur->wait);
221 }
222
223 x = cmpxchg(&info->stripe_hash_table, NULL, table);
224 if (x) {
225 if (is_vmalloc_addr(x))
226 vfree(x);
227 else
228 kfree(x);
229 }
230 return 0;
231}
232
233/*
234 * caching an rbio means to copy anything from the
235 * bio_pages array into the stripe_pages array. We
236 * use the page uptodate bit in the stripe cache array
237 * to indicate if it has valid data
238 *
239 * once the caching is done, we set the cache ready
240 * bit.
241 */
242static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
243{
244 int i;
245 char *s;
246 char *d;
247 int ret;
248
249 ret = alloc_rbio_pages(rbio);
250 if (ret)
251 return;
252
253 for (i = 0; i < rbio->nr_pages; i++) {
254 if (!rbio->bio_pages[i])
255 continue;
256
257 s = kmap(rbio->bio_pages[i]);
258 d = kmap(rbio->stripe_pages[i]);
259
260 memcpy(d, s, PAGE_CACHE_SIZE);
261
262 kunmap(rbio->bio_pages[i]);
263 kunmap(rbio->stripe_pages[i]);
264 SetPageUptodate(rbio->stripe_pages[i]);
265 }
266 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
267}
268
269/*
270 * we hash on the first logical address of the stripe
271 */
272static int rbio_bucket(struct btrfs_raid_bio *rbio)
273{
274 u64 num = rbio->raid_map[0];
275
276 /*
277 * we shift down quite a bit. We're using byte
278 * addressing, and most of the lower bits are zeros.
279 * This tends to upset hash_64, and it consistently
280 * returns just one or two different values.
281 *
282 * shifting off the lower bits fixes things.
283 */
284 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
285}
286
287/*
288 * stealing an rbio means taking all the uptodate pages from the stripe
289 * array in the source rbio and putting them into the destination rbio
290 */
291static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
292{
293 int i;
294 struct page *s;
295 struct page *d;
296
297 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
298 return;
299
300 for (i = 0; i < dest->nr_pages; i++) {
301 s = src->stripe_pages[i];
302 if (!s || !PageUptodate(s)) {
303 continue;
304 }
305
306 d = dest->stripe_pages[i];
307 if (d)
308 __free_page(d);
309
310 dest->stripe_pages[i] = s;
311 src->stripe_pages[i] = NULL;
312 }
313}
314
315/*
316 * merging means we take the bio_list from the victim and
317 * splice it into the destination. The victim should
318 * be discarded afterwards.
319 *
320 * must be called with dest->rbio_list_lock held
321 */
322static void merge_rbio(struct btrfs_raid_bio *dest,
323 struct btrfs_raid_bio *victim)
324{
325 bio_list_merge(&dest->bio_list, &victim->bio_list);
326 dest->bio_list_bytes += victim->bio_list_bytes;
327 bio_list_init(&victim->bio_list);
328}
329
330/*
331 * used to prune items that are in the cache. The caller
332 * must hold the hash table lock.
333 */
334static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
335{
336 int bucket = rbio_bucket(rbio);
337 struct btrfs_stripe_hash_table *table;
338 struct btrfs_stripe_hash *h;
339 int freeit = 0;
340
341 /*
342 * check the bit again under the hash table lock.
343 */
344 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
345 return;
346
347 table = rbio->fs_info->stripe_hash_table;
348 h = table->table + bucket;
349
350 /* hold the lock for the bucket because we may be
351 * removing it from the hash table
352 */
353 spin_lock(&h->lock);
354
355 /*
356 * hold the lock for the bio list because we need
357 * to make sure the bio list is empty
358 */
359 spin_lock(&rbio->bio_list_lock);
360
361 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
362 list_del_init(&rbio->stripe_cache);
363 table->cache_size -= 1;
364 freeit = 1;
365
366 /* if the bio list isn't empty, this rbio is
367 * still involved in an IO. We take it out
368 * of the cache list, and drop the ref that
369 * was held for the list.
370 *
371 * If the bio_list was empty, we also remove
372 * the rbio from the hash_table, and drop
373 * the corresponding ref
374 */
375 if (bio_list_empty(&rbio->bio_list)) {
376 if (!list_empty(&rbio->hash_list)) {
377 list_del_init(&rbio->hash_list);
378 atomic_dec(&rbio->refs);
379 BUG_ON(!list_empty(&rbio->plug_list));
380 }
381 }
382 }
383
384 spin_unlock(&rbio->bio_list_lock);
385 spin_unlock(&h->lock);
386
387 if (freeit)
388 __free_raid_bio(rbio);
389}
390
391/*
392 * prune a given rbio from the cache
393 */
394static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
395{
396 struct btrfs_stripe_hash_table *table;
397 unsigned long flags;
398
399 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
400 return;
401
402 table = rbio->fs_info->stripe_hash_table;
403
404 spin_lock_irqsave(&table->cache_lock, flags);
405 __remove_rbio_from_cache(rbio);
406 spin_unlock_irqrestore(&table->cache_lock, flags);
407}
408
409/*
410 * remove everything in the cache
411 */
412static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
413{
414 struct btrfs_stripe_hash_table *table;
415 unsigned long flags;
416 struct btrfs_raid_bio *rbio;
417
418 table = info->stripe_hash_table;
419
420 spin_lock_irqsave(&table->cache_lock, flags);
421 while (!list_empty(&table->stripe_cache)) {
422 rbio = list_entry(table->stripe_cache.next,
423 struct btrfs_raid_bio,
424 stripe_cache);
425 __remove_rbio_from_cache(rbio);
426 }
427 spin_unlock_irqrestore(&table->cache_lock, flags);
428}
429
430/*
431 * remove all cached entries and free the hash table
432 * used by unmount
433 */
434void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
435{
436 if (!info->stripe_hash_table)
437 return;
438 btrfs_clear_rbio_cache(info);
439 if (is_vmalloc_addr(info->stripe_hash_table))
440 vfree(info->stripe_hash_table);
441 else
442 kfree(info->stripe_hash_table);
443 info->stripe_hash_table = NULL;
444}
445
446/*
447 * insert an rbio into the stripe cache. It
448 * must have already been prepared by calling
449 * cache_rbio_pages
450 *
451 * If this rbio was already cached, it gets
452 * moved to the front of the lru.
453 *
454 * If the size of the rbio cache is too big, we
455 * prune an item.
456 */
457static void cache_rbio(struct btrfs_raid_bio *rbio)
458{
459 struct btrfs_stripe_hash_table *table;
460 unsigned long flags;
461
462 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
463 return;
464
465 table = rbio->fs_info->stripe_hash_table;
466
467 spin_lock_irqsave(&table->cache_lock, flags);
468 spin_lock(&rbio->bio_list_lock);
469
470 /* bump our ref if we were not in the list before */
471 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
472 atomic_inc(&rbio->refs);
473
474 if (!list_empty(&rbio->stripe_cache)){
475 list_move(&rbio->stripe_cache, &table->stripe_cache);
476 } else {
477 list_add(&rbio->stripe_cache, &table->stripe_cache);
478 table->cache_size += 1;
479 }
480
481 spin_unlock(&rbio->bio_list_lock);
482
483 if (table->cache_size > RBIO_CACHE_SIZE) {
484 struct btrfs_raid_bio *found;
485
486 found = list_entry(table->stripe_cache.prev,
487 struct btrfs_raid_bio,
488 stripe_cache);
489
490 if (found != rbio)
491 __remove_rbio_from_cache(found);
492 }
493
494 spin_unlock_irqrestore(&table->cache_lock, flags);
495 return;
496}
497
498/*
499 * helper function to run the xor_blocks api. It is only
500 * able to do MAX_XOR_BLOCKS at a time, so we need to
501 * loop through.
502 */
503static void run_xor(void **pages, int src_cnt, ssize_t len)
504{
505 int src_off = 0;
506 int xor_src_cnt = 0;
507 void *dest = pages[src_cnt];
508
509 while(src_cnt > 0) {
510 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
511 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
512
513 src_cnt -= xor_src_cnt;
514 src_off += xor_src_cnt;
515 }
516}
517
518/*
519 * returns true if the bio list inside this rbio
520 * covers an entire stripe (no rmw required).
521 * Must be called with the bio list lock held, or
522 * at a time when you know it is impossible to add
523 * new bios into the list
524 */
525static int __rbio_is_full(struct btrfs_raid_bio *rbio)
526{
527 unsigned long size = rbio->bio_list_bytes;
528 int ret = 1;
529
530 if (size != rbio->nr_data * rbio->stripe_len)
531 ret = 0;
532
533 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
534 return ret;
535}
536
537static int rbio_is_full(struct btrfs_raid_bio *rbio)
538{
539 unsigned long flags;
540 int ret;
541
542 spin_lock_irqsave(&rbio->bio_list_lock, flags);
543 ret = __rbio_is_full(rbio);
544 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
545 return ret;
546}
547
548/*
549 * returns 1 if it is safe to merge two rbios together.
550 * The merging is safe if the two rbios correspond to
551 * the same stripe and if they are both going in the same
552 * direction (read vs write), and if neither one is
553 * locked for final IO
554 *
555 * The caller is responsible for locking such that
556 * rmw_locked is safe to test
557 */
558static int rbio_can_merge(struct btrfs_raid_bio *last,
559 struct btrfs_raid_bio *cur)
560{
561 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
562 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
563 return 0;
564
565 /*
566 * we can't merge with cached rbios, since the
567 * idea is that when we merge the destination
568 * rbio is going to run our IO for us. We can
569 * steal from cached rbio's though, other functions
570 * handle that.
571 */
572 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
573 test_bit(RBIO_CACHE_BIT, &cur->flags))
574 return 0;
575
576 if (last->raid_map[0] !=
577 cur->raid_map[0])
578 return 0;
579
580 /* reads can't merge with writes */
581 if (last->read_rebuild !=
582 cur->read_rebuild) {
583 return 0;
584 }
585
586 return 1;
587}
588
589/*
590 * helper to index into the pstripe
591 */
592static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
593{
594 index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
595 return rbio->stripe_pages[index];
596}
597
598/*
599 * helper to index into the qstripe, returns null
600 * if there is no qstripe
601 */
602static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
603{
604 if (rbio->nr_data + 1 == rbio->bbio->num_stripes)
605 return NULL;
606
607 index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
608 PAGE_CACHE_SHIFT;
609 return rbio->stripe_pages[index];
610}
611
612/*
613 * The first stripe in the table for a logical address
614 * has the lock. rbios are added in one of three ways:
615 *
616 * 1) Nobody has the stripe locked yet. The rbio is given
617 * the lock and 0 is returned. The caller must start the IO
618 * themselves.
619 *
620 * 2) Someone has the stripe locked, but we're able to merge
621 * with the lock owner. The rbio is freed and the IO will
622 * start automatically along with the existing rbio. 1 is returned.
623 *
624 * 3) Someone has the stripe locked, but we're not able to merge.
625 * The rbio is added to the lock owner's plug list, or merged into
626 * an rbio already on the plug list. When the lock owner unlocks,
627 * the next rbio on the list is run and the IO is started automatically.
628 * 1 is returned
629 *
630 * If we return 0, the caller still owns the rbio and must continue with
631 * IO submission. If we return 1, the caller must assume the rbio has
632 * already been freed.
633 */
634static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
635{
636 int bucket = rbio_bucket(rbio);
637 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
638 struct btrfs_raid_bio *cur;
639 struct btrfs_raid_bio *pending;
640 unsigned long flags;
641 DEFINE_WAIT(wait);
642 struct btrfs_raid_bio *freeit = NULL;
643 struct btrfs_raid_bio *cache_drop = NULL;
644 int ret = 0;
645 int walk = 0;
646
647 spin_lock_irqsave(&h->lock, flags);
648 list_for_each_entry(cur, &h->hash_list, hash_list) {
649 walk++;
650 if (cur->raid_map[0] == rbio->raid_map[0]) {
651 spin_lock(&cur->bio_list_lock);
652
653 /* can we steal this cached rbio's pages? */
654 if (bio_list_empty(&cur->bio_list) &&
655 list_empty(&cur->plug_list) &&
656 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
657 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
658 list_del_init(&cur->hash_list);
659 atomic_dec(&cur->refs);
660
661 steal_rbio(cur, rbio);
662 cache_drop = cur;
663 spin_unlock(&cur->bio_list_lock);
664
665 goto lockit;
666 }
667
668 /* can we merge into the lock owner? */
669 if (rbio_can_merge(cur, rbio)) {
670 merge_rbio(cur, rbio);
671 spin_unlock(&cur->bio_list_lock);
672 freeit = rbio;
673 ret = 1;
674 goto out;
675 }
676
677
678 /*
679 * we couldn't merge with the running
680 * rbio, see if we can merge with the
681 * pending ones. We don't have to
682 * check for rmw_locked because there
683 * is no way they are inside finish_rmw
684 * right now
685 */
686 list_for_each_entry(pending, &cur->plug_list,
687 plug_list) {
688 if (rbio_can_merge(pending, rbio)) {
689 merge_rbio(pending, rbio);
690 spin_unlock(&cur->bio_list_lock);
691 freeit = rbio;
692 ret = 1;
693 goto out;
694 }
695 }
696
697 /* no merging, put us on the tail of the plug list,
698 * our rbio will be started with the currently
699 * running rbio unlocks
700 */
701 list_add_tail(&rbio->plug_list, &cur->plug_list);
702 spin_unlock(&cur->bio_list_lock);
703 ret = 1;
704 goto out;
705 }
706 }
707lockit:
708 atomic_inc(&rbio->refs);
709 list_add(&rbio->hash_list, &h->hash_list);
710out:
711 spin_unlock_irqrestore(&h->lock, flags);
712 if (cache_drop)
713 remove_rbio_from_cache(cache_drop);
714 if (freeit)
715 __free_raid_bio(freeit);
716 return ret;
717}
718
719/*
720 * called as rmw or parity rebuild is completed. If the plug list has more
721 * rbios waiting for this stripe, the next one on the list will be started
722 */
723static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
724{
725 int bucket;
726 struct btrfs_stripe_hash *h;
727 unsigned long flags;
728 int keep_cache = 0;
729
730 bucket = rbio_bucket(rbio);
731 h = rbio->fs_info->stripe_hash_table->table + bucket;
732
733 if (list_empty(&rbio->plug_list))
734 cache_rbio(rbio);
735
736 spin_lock_irqsave(&h->lock, flags);
737 spin_lock(&rbio->bio_list_lock);
738
739 if (!list_empty(&rbio->hash_list)) {
740 /*
741 * if we're still cached and there is no other IO
742 * to perform, just leave this rbio here for others
743 * to steal from later
744 */
745 if (list_empty(&rbio->plug_list) &&
746 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
747 keep_cache = 1;
748 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
749 BUG_ON(!bio_list_empty(&rbio->bio_list));
750 goto done;
751 }
752
753 list_del_init(&rbio->hash_list);
754 atomic_dec(&rbio->refs);
755
756 /*
757 * we use the plug list to hold all the rbios
758 * waiting for the chance to lock this stripe.
759 * hand the lock over to one of them.
760 */
761 if (!list_empty(&rbio->plug_list)) {
762 struct btrfs_raid_bio *next;
763 struct list_head *head = rbio->plug_list.next;
764
765 next = list_entry(head, struct btrfs_raid_bio,
766 plug_list);
767
768 list_del_init(&rbio->plug_list);
769
770 list_add(&next->hash_list, &h->hash_list);
771 atomic_inc(&next->refs);
772 spin_unlock(&rbio->bio_list_lock);
773 spin_unlock_irqrestore(&h->lock, flags);
774
775 if (next->read_rebuild)
776 async_read_rebuild(next);
777 else {
778 steal_rbio(rbio, next);
779 async_rmw_stripe(next);
780 }
781
782 goto done_nolock;
783 } else if (waitqueue_active(&h->wait)) {
784 spin_unlock(&rbio->bio_list_lock);
785 spin_unlock_irqrestore(&h->lock, flags);
786 wake_up(&h->wait);
787 goto done_nolock;
788 }
789 }
790done:
791 spin_unlock(&rbio->bio_list_lock);
792 spin_unlock_irqrestore(&h->lock, flags);
793
794done_nolock:
795 if (!keep_cache)
796 remove_rbio_from_cache(rbio);
797}
798
799static void __free_raid_bio(struct btrfs_raid_bio *rbio)
800{
801 int i;
802
803 WARN_ON(atomic_read(&rbio->refs) < 0);
804 if (!atomic_dec_and_test(&rbio->refs))
805 return;
806
807 WARN_ON(!list_empty(&rbio->stripe_cache));
808 WARN_ON(!list_empty(&rbio->hash_list));
809 WARN_ON(!bio_list_empty(&rbio->bio_list));
810
811 for (i = 0; i < rbio->nr_pages; i++) {
812 if (rbio->stripe_pages[i]) {
813 __free_page(rbio->stripe_pages[i]);
814 rbio->stripe_pages[i] = NULL;
815 }
816 }
817 kfree(rbio->raid_map);
818 kfree(rbio->bbio);
819 kfree(rbio);
820}
821
822static void free_raid_bio(struct btrfs_raid_bio *rbio)
823{
824 unlock_stripe(rbio);
825 __free_raid_bio(rbio);
826}
827
828/*
829 * this frees the rbio and runs through all the bios in the
830 * bio_list and calls end_io on them
831 */
832static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate)
833{
834 struct bio *cur = bio_list_get(&rbio->bio_list);
835 struct bio *next;
836 free_raid_bio(rbio);
837
838 while (cur) {
839 next = cur->bi_next;
840 cur->bi_next = NULL;
841 if (uptodate)
842 set_bit(BIO_UPTODATE, &cur->bi_flags);
843 bio_endio(cur, err);
844 cur = next;
845 }
846}
847
848/*
849 * end io function used by finish_rmw. When we finally
850 * get here, we've written a full stripe
851 */
852static void raid_write_end_io(struct bio *bio, int err)
853{
854 struct btrfs_raid_bio *rbio = bio->bi_private;
855
856 if (err)
857 fail_bio_stripe(rbio, bio);
858
859 bio_put(bio);
860
861 if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
862 return;
863
864 err = 0;
865
866 /* OK, we have read all the stripes we need to. */
867 if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
868 err = -EIO;
869
870 rbio_orig_end_io(rbio, err, 0);
871 return;
872}
873
874/*
875 * the read/modify/write code wants to use the original bio for
876 * any pages it included, and then use the rbio for everything
877 * else. This function decides if a given index (stripe number)
878 * and page number in that stripe fall inside the original bio
879 * or the rbio.
880 *
881 * if you set bio_list_only, you'll get a NULL back for any ranges
882 * that are outside the bio_list
883 *
884 * This doesn't take any refs on anything, you get a bare page pointer
885 * and the caller must bump refs as required.
886 *
887 * You must call index_rbio_pages once before you can trust
888 * the answers from this function.
889 */
890static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
891 int index, int pagenr, int bio_list_only)
892{
893 int chunk_page;
894 struct page *p = NULL;
895
896 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
897
898 spin_lock_irq(&rbio->bio_list_lock);
899 p = rbio->bio_pages[chunk_page];
900 spin_unlock_irq(&rbio->bio_list_lock);
901
902 if (p || bio_list_only)
903 return p;
904
905 return rbio->stripe_pages[chunk_page];
906}
907
908/*
909 * number of pages we need for the entire stripe across all the
910 * drives
911 */
912static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
913{
914 unsigned long nr = stripe_len * nr_stripes;
915 return (nr + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
916}
917
918/*
919 * allocation and initial setup for the btrfs_raid_bio. Not
920 * this does not allocate any pages for rbio->pages.
921 */
922static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
923 struct btrfs_bio *bbio, u64 *raid_map,
924 u64 stripe_len)
925{
926 struct btrfs_raid_bio *rbio;
927 int nr_data = 0;
928 int num_pages = rbio_nr_pages(stripe_len, bbio->num_stripes);
929 void *p;
930
931 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2,
932 GFP_NOFS);
933 if (!rbio) {
934 kfree(raid_map);
935 kfree(bbio);
936 return ERR_PTR(-ENOMEM);
937 }
938
939 bio_list_init(&rbio->bio_list);
940 INIT_LIST_HEAD(&rbio->plug_list);
941 spin_lock_init(&rbio->bio_list_lock);
942 INIT_LIST_HEAD(&rbio->stripe_cache);
943 INIT_LIST_HEAD(&rbio->hash_list);
944 rbio->bbio = bbio;
945 rbio->raid_map = raid_map;
946 rbio->fs_info = root->fs_info;
947 rbio->stripe_len = stripe_len;
948 rbio->nr_pages = num_pages;
949 rbio->faila = -1;
950 rbio->failb = -1;
951 atomic_set(&rbio->refs, 1);
952
953 /*
954 * the stripe_pages and bio_pages array point to the extra
955 * memory we allocated past the end of the rbio
956 */
957 p = rbio + 1;
958 rbio->stripe_pages = p;
959 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
960
961 if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE)
962 nr_data = bbio->num_stripes - 2;
963 else
964 nr_data = bbio->num_stripes - 1;
965
966 rbio->nr_data = nr_data;
967 return rbio;
968}
969
970/* allocate pages for all the stripes in the bio, including parity */
971static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
972{
973 int i;
974 struct page *page;
975
976 for (i = 0; i < rbio->nr_pages; i++) {
977 if (rbio->stripe_pages[i])
978 continue;
979 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
980 if (!page)
981 return -ENOMEM;
982 rbio->stripe_pages[i] = page;
983 ClearPageUptodate(page);
984 }
985 return 0;
986}
987
988/* allocate pages for just the p/q stripes */
989static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
990{
991 int i;
992 struct page *page;
993
994 i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
995
996 for (; i < rbio->nr_pages; i++) {
997 if (rbio->stripe_pages[i])
998 continue;
999 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1000 if (!page)
1001 return -ENOMEM;
1002 rbio->stripe_pages[i] = page;
1003 }
1004 return 0;
1005}
1006
1007/*
1008 * add a single page from a specific stripe into our list of bios for IO
1009 * this will try to merge into existing bios if possible, and returns
1010 * zero if all went well.
1011 */
1012static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1013 struct bio_list *bio_list,
1014 struct page *page,
1015 int stripe_nr,
1016 unsigned long page_index,
1017 unsigned long bio_max_len)
1018{
1019 struct bio *last = bio_list->tail;
1020 u64 last_end = 0;
1021 int ret;
1022 struct bio *bio;
1023 struct btrfs_bio_stripe *stripe;
1024 u64 disk_start;
1025
1026 stripe = &rbio->bbio->stripes[stripe_nr];
1027 disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1028
1029 /* if the device is missing, just fail this stripe */
1030 if (!stripe->dev->bdev)
1031 return fail_rbio_index(rbio, stripe_nr);
1032
1033 /* see if we can add this page onto our existing bio */
1034 if (last) {
1035 last_end = (u64)last->bi_iter.bi_sector << 9;
1036 last_end += last->bi_iter.bi_size;
1037
1038 /*
1039 * we can't merge these if they are from different
1040 * devices or if they are not contiguous
1041 */
1042 if (last_end == disk_start && stripe->dev->bdev &&
1043 test_bit(BIO_UPTODATE, &last->bi_flags) &&
1044 last->bi_bdev == stripe->dev->bdev) {
1045 ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1046 if (ret == PAGE_CACHE_SIZE)
1047 return 0;
1048 }
1049 }
1050
1051 /* put a new bio on the list */
1052 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1053 if (!bio)
1054 return -ENOMEM;
1055
1056 bio->bi_iter.bi_size = 0;
1057 bio->bi_bdev = stripe->dev->bdev;
1058 bio->bi_iter.bi_sector = disk_start >> 9;
1059 set_bit(BIO_UPTODATE, &bio->bi_flags);
1060
1061 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1062 bio_list_add(bio_list, bio);
1063 return 0;
1064}
1065
1066/*
1067 * while we're doing the read/modify/write cycle, we could
1068 * have errors in reading pages off the disk. This checks
1069 * for errors and if we're not able to read the page it'll
1070 * trigger parity reconstruction. The rmw will be finished
1071 * after we've reconstructed the failed stripes
1072 */
1073static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1074{
1075 if (rbio->faila >= 0 || rbio->failb >= 0) {
1076 BUG_ON(rbio->faila == rbio->bbio->num_stripes - 1);
1077 __raid56_parity_recover(rbio);
1078 } else {
1079 finish_rmw(rbio);
1080 }
1081}
1082
1083/*
1084 * these are just the pages from the rbio array, not from anything
1085 * the FS sent down to us
1086 */
1087static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1088{
1089 int index;
1090 index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1091 index += page;
1092 return rbio->stripe_pages[index];
1093}
1094
1095/*
1096 * helper function to walk our bio list and populate the bio_pages array with
1097 * the result. This seems expensive, but it is faster than constantly
1098 * searching through the bio list as we setup the IO in finish_rmw or stripe
1099 * reconstruction.
1100 *
1101 * This must be called before you trust the answers from page_in_rbio
1102 */
1103static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1104{
1105 struct bio *bio;
1106 u64 start;
1107 unsigned long stripe_offset;
1108 unsigned long page_index;
1109 struct page *p;
1110 int i;
1111
1112 spin_lock_irq(&rbio->bio_list_lock);
1113 bio_list_for_each(bio, &rbio->bio_list) {
1114 start = (u64)bio->bi_iter.bi_sector << 9;
1115 stripe_offset = start - rbio->raid_map[0];
1116 page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1117
1118 for (i = 0; i < bio->bi_vcnt; i++) {
1119 p = bio->bi_io_vec[i].bv_page;
1120 rbio->bio_pages[page_index + i] = p;
1121 }
1122 }
1123 spin_unlock_irq(&rbio->bio_list_lock);
1124}
1125
1126/*
1127 * this is called from one of two situations. We either
1128 * have a full stripe from the higher layers, or we've read all
1129 * the missing bits off disk.
1130 *
1131 * This will calculate the parity and then send down any
1132 * changed blocks.
1133 */
1134static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1135{
1136 struct btrfs_bio *bbio = rbio->bbio;
1137 void *pointers[bbio->num_stripes];
1138 int stripe_len = rbio->stripe_len;
1139 int nr_data = rbio->nr_data;
1140 int stripe;
1141 int pagenr;
1142 int p_stripe = -1;
1143 int q_stripe = -1;
1144 struct bio_list bio_list;
1145 struct bio *bio;
1146 int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1147 int ret;
1148
1149 bio_list_init(&bio_list);
1150
1151 if (bbio->num_stripes - rbio->nr_data == 1) {
1152 p_stripe = bbio->num_stripes - 1;
1153 } else if (bbio->num_stripes - rbio->nr_data == 2) {
1154 p_stripe = bbio->num_stripes - 2;
1155 q_stripe = bbio->num_stripes - 1;
1156 } else {
1157 BUG();
1158 }
1159
1160 /* at this point we either have a full stripe,
1161 * or we've read the full stripe from the drive.
1162 * recalculate the parity and write the new results.
1163 *
1164 * We're not allowed to add any new bios to the
1165 * bio list here, anyone else that wants to
1166 * change this stripe needs to do their own rmw.
1167 */
1168 spin_lock_irq(&rbio->bio_list_lock);
1169 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1170 spin_unlock_irq(&rbio->bio_list_lock);
1171
1172 atomic_set(&rbio->bbio->error, 0);
1173
1174 /*
1175 * now that we've set rmw_locked, run through the
1176 * bio list one last time and map the page pointers
1177 *
1178 * We don't cache full rbios because we're assuming
1179 * the higher layers are unlikely to use this area of
1180 * the disk again soon. If they do use it again,
1181 * hopefully they will send another full bio.
1182 */
1183 index_rbio_pages(rbio);
1184 if (!rbio_is_full(rbio))
1185 cache_rbio_pages(rbio);
1186 else
1187 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1188
1189 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1190 struct page *p;
1191 /* first collect one page from each data stripe */
1192 for (stripe = 0; stripe < nr_data; stripe++) {
1193 p = page_in_rbio(rbio, stripe, pagenr, 0);
1194 pointers[stripe] = kmap(p);
1195 }
1196
1197 /* then add the parity stripe */
1198 p = rbio_pstripe_page(rbio, pagenr);
1199 SetPageUptodate(p);
1200 pointers[stripe++] = kmap(p);
1201
1202 if (q_stripe != -1) {
1203
1204 /*
1205 * raid6, add the qstripe and call the
1206 * library function to fill in our p/q
1207 */
1208 p = rbio_qstripe_page(rbio, pagenr);
1209 SetPageUptodate(p);
1210 pointers[stripe++] = kmap(p);
1211
1212 raid6_call.gen_syndrome(bbio->num_stripes, PAGE_SIZE,
1213 pointers);
1214 } else {
1215 /* raid5 */
1216 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1217 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1218 }
1219
1220
1221 for (stripe = 0; stripe < bbio->num_stripes; stripe++)
1222 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1223 }
1224
1225 /*
1226 * time to start writing. Make bios for everything from the
1227 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1228 * everything else.
1229 */
1230 for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
1231 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1232 struct page *page;
1233 if (stripe < rbio->nr_data) {
1234 page = page_in_rbio(rbio, stripe, pagenr, 1);
1235 if (!page)
1236 continue;
1237 } else {
1238 page = rbio_stripe_page(rbio, stripe, pagenr);
1239 }
1240
1241 ret = rbio_add_io_page(rbio, &bio_list,
1242 page, stripe, pagenr, rbio->stripe_len);
1243 if (ret)
1244 goto cleanup;
1245 }
1246 }
1247
1248 atomic_set(&bbio->stripes_pending, bio_list_size(&bio_list));
1249 BUG_ON(atomic_read(&bbio->stripes_pending) == 0);
1250
1251 while (1) {
1252 bio = bio_list_pop(&bio_list);
1253 if (!bio)
1254 break;
1255
1256 bio->bi_private = rbio;
1257 bio->bi_end_io = raid_write_end_io;
1258 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1259 submit_bio(WRITE, bio);
1260 }
1261 return;
1262
1263cleanup:
1264 rbio_orig_end_io(rbio, -EIO, 0);
1265}
1266
1267/*
1268 * helper to find the stripe number for a given bio. Used to figure out which
1269 * stripe has failed. This expects the bio to correspond to a physical disk,
1270 * so it looks up based on physical sector numbers.
1271 */
1272static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1273 struct bio *bio)
1274{
1275 u64 physical = bio->bi_iter.bi_sector;
1276 u64 stripe_start;
1277 int i;
1278 struct btrfs_bio_stripe *stripe;
1279
1280 physical <<= 9;
1281
1282 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1283 stripe = &rbio->bbio->stripes[i];
1284 stripe_start = stripe->physical;
1285 if (physical >= stripe_start &&
1286 physical < stripe_start + rbio->stripe_len) {
1287 return i;
1288 }
1289 }
1290 return -1;
1291}
1292
1293/*
1294 * helper to find the stripe number for a given
1295 * bio (before mapping). Used to figure out which stripe has
1296 * failed. This looks up based on logical block numbers.
1297 */
1298static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1299 struct bio *bio)
1300{
1301 u64 logical = bio->bi_iter.bi_sector;
1302 u64 stripe_start;
1303 int i;
1304
1305 logical <<= 9;
1306
1307 for (i = 0; i < rbio->nr_data; i++) {
1308 stripe_start = rbio->raid_map[i];
1309 if (logical >= stripe_start &&
1310 logical < stripe_start + rbio->stripe_len) {
1311 return i;
1312 }
1313 }
1314 return -1;
1315}
1316
1317/*
1318 * returns -EIO if we had too many failures
1319 */
1320static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1321{
1322 unsigned long flags;
1323 int ret = 0;
1324
1325 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1326
1327 /* we already know this stripe is bad, move on */
1328 if (rbio->faila == failed || rbio->failb == failed)
1329 goto out;
1330
1331 if (rbio->faila == -1) {
1332 /* first failure on this rbio */
1333 rbio->faila = failed;
1334 atomic_inc(&rbio->bbio->error);
1335 } else if (rbio->failb == -1) {
1336 /* second failure on this rbio */
1337 rbio->failb = failed;
1338 atomic_inc(&rbio->bbio->error);
1339 } else {
1340 ret = -EIO;
1341 }
1342out:
1343 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1344
1345 return ret;
1346}
1347
1348/*
1349 * helper to fail a stripe based on a physical disk
1350 * bio.
1351 */
1352static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1353 struct bio *bio)
1354{
1355 int failed = find_bio_stripe(rbio, bio);
1356
1357 if (failed < 0)
1358 return -EIO;
1359
1360 return fail_rbio_index(rbio, failed);
1361}
1362
1363/*
1364 * this sets each page in the bio uptodate. It should only be used on private
1365 * rbio pages, nothing that comes in from the higher layers
1366 */
1367static void set_bio_pages_uptodate(struct bio *bio)
1368{
1369 int i;
1370 struct page *p;
1371
1372 for (i = 0; i < bio->bi_vcnt; i++) {
1373 p = bio->bi_io_vec[i].bv_page;
1374 SetPageUptodate(p);
1375 }
1376}
1377
1378/*
1379 * end io for the read phase of the rmw cycle. All the bios here are physical
1380 * stripe bios we've read from the disk so we can recalculate the parity of the
1381 * stripe.
1382 *
1383 * This will usually kick off finish_rmw once all the bios are read in, but it
1384 * may trigger parity reconstruction if we had any errors along the way
1385 */
1386static void raid_rmw_end_io(struct bio *bio, int err)
1387{
1388 struct btrfs_raid_bio *rbio = bio->bi_private;
1389
1390 if (err)
1391 fail_bio_stripe(rbio, bio);
1392 else
1393 set_bio_pages_uptodate(bio);
1394
1395 bio_put(bio);
1396
1397 if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
1398 return;
1399
1400 err = 0;
1401 if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
1402 goto cleanup;
1403
1404 /*
1405 * this will normally call finish_rmw to start our write
1406 * but if there are any failed stripes we'll reconstruct
1407 * from parity first
1408 */
1409 validate_rbio_for_rmw(rbio);
1410 return;
1411
1412cleanup:
1413
1414 rbio_orig_end_io(rbio, -EIO, 0);
1415}
1416
1417static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1418{
1419 btrfs_init_work(&rbio->work, rmw_work, NULL, NULL);
1420
1421 btrfs_queue_work(rbio->fs_info->rmw_workers,
1422 &rbio->work);
1423}
1424
1425static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1426{
1427 btrfs_init_work(&rbio->work, read_rebuild_work, NULL, NULL);
1428
1429 btrfs_queue_work(rbio->fs_info->rmw_workers,
1430 &rbio->work);
1431}
1432
1433/*
1434 * the stripe must be locked by the caller. It will
1435 * unlock after all the writes are done
1436 */
1437static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1438{
1439 int bios_to_read = 0;
1440 struct btrfs_bio *bbio = rbio->bbio;
1441 struct bio_list bio_list;
1442 int ret;
1443 int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1444 int pagenr;
1445 int stripe;
1446 struct bio *bio;
1447
1448 bio_list_init(&bio_list);
1449
1450 ret = alloc_rbio_pages(rbio);
1451 if (ret)
1452 goto cleanup;
1453
1454 index_rbio_pages(rbio);
1455
1456 atomic_set(&rbio->bbio->error, 0);
1457 /*
1458 * build a list of bios to read all the missing parts of this
1459 * stripe
1460 */
1461 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1462 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1463 struct page *page;
1464 /*
1465 * we want to find all the pages missing from
1466 * the rbio and read them from the disk. If
1467 * page_in_rbio finds a page in the bio list
1468 * we don't need to read it off the stripe.
1469 */
1470 page = page_in_rbio(rbio, stripe, pagenr, 1);
1471 if (page)
1472 continue;
1473
1474 page = rbio_stripe_page(rbio, stripe, pagenr);
1475 /*
1476 * the bio cache may have handed us an uptodate
1477 * page. If so, be happy and use it
1478 */
1479 if (PageUptodate(page))
1480 continue;
1481
1482 ret = rbio_add_io_page(rbio, &bio_list, page,
1483 stripe, pagenr, rbio->stripe_len);
1484 if (ret)
1485 goto cleanup;
1486 }
1487 }
1488
1489 bios_to_read = bio_list_size(&bio_list);
1490 if (!bios_to_read) {
1491 /*
1492 * this can happen if others have merged with
1493 * us, it means there is nothing left to read.
1494 * But if there are missing devices it may not be
1495 * safe to do the full stripe write yet.
1496 */
1497 goto finish;
1498 }
1499
1500 /*
1501 * the bbio may be freed once we submit the last bio. Make sure
1502 * not to touch it after that
1503 */
1504 atomic_set(&bbio->stripes_pending, bios_to_read);
1505 while (1) {
1506 bio = bio_list_pop(&bio_list);
1507 if (!bio)
1508 break;
1509
1510 bio->bi_private = rbio;
1511 bio->bi_end_io = raid_rmw_end_io;
1512
1513 btrfs_bio_wq_end_io(rbio->fs_info, bio,
1514 BTRFS_WQ_ENDIO_RAID56);
1515
1516 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1517 submit_bio(READ, bio);
1518 }
1519 /* the actual write will happen once the reads are done */
1520 return 0;
1521
1522cleanup:
1523 rbio_orig_end_io(rbio, -EIO, 0);
1524 return -EIO;
1525
1526finish:
1527 validate_rbio_for_rmw(rbio);
1528 return 0;
1529}
1530
1531/*
1532 * if the upper layers pass in a full stripe, we thank them by only allocating
1533 * enough pages to hold the parity, and sending it all down quickly.
1534 */
1535static int full_stripe_write(struct btrfs_raid_bio *rbio)
1536{
1537 int ret;
1538
1539 ret = alloc_rbio_parity_pages(rbio);
1540 if (ret) {
1541 __free_raid_bio(rbio);
1542 return ret;
1543 }
1544
1545 ret = lock_stripe_add(rbio);
1546 if (ret == 0)
1547 finish_rmw(rbio);
1548 return 0;
1549}
1550
1551/*
1552 * partial stripe writes get handed over to async helpers.
1553 * We're really hoping to merge a few more writes into this
1554 * rbio before calculating new parity
1555 */
1556static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1557{
1558 int ret;
1559
1560 ret = lock_stripe_add(rbio);
1561 if (ret == 0)
1562 async_rmw_stripe(rbio);
1563 return 0;
1564}
1565
1566/*
1567 * sometimes while we were reading from the drive to
1568 * recalculate parity, enough new bios come into create
1569 * a full stripe. So we do a check here to see if we can
1570 * go directly to finish_rmw
1571 */
1572static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1573{
1574 /* head off into rmw land if we don't have a full stripe */
1575 if (!rbio_is_full(rbio))
1576 return partial_stripe_write(rbio);
1577 return full_stripe_write(rbio);
1578}
1579
1580/*
1581 * We use plugging call backs to collect full stripes.
1582 * Any time we get a partial stripe write while plugged
1583 * we collect it into a list. When the unplug comes down,
1584 * we sort the list by logical block number and merge
1585 * everything we can into the same rbios
1586 */
1587struct btrfs_plug_cb {
1588 struct blk_plug_cb cb;
1589 struct btrfs_fs_info *info;
1590 struct list_head rbio_list;
1591 struct btrfs_work work;
1592};
1593
1594/*
1595 * rbios on the plug list are sorted for easier merging.
1596 */
1597static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1598{
1599 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1600 plug_list);
1601 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1602 plug_list);
1603 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1604 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1605
1606 if (a_sector < b_sector)
1607 return -1;
1608 if (a_sector > b_sector)
1609 return 1;
1610 return 0;
1611}
1612
1613static void run_plug(struct btrfs_plug_cb *plug)
1614{
1615 struct btrfs_raid_bio *cur;
1616 struct btrfs_raid_bio *last = NULL;
1617
1618 /*
1619 * sort our plug list then try to merge
1620 * everything we can in hopes of creating full
1621 * stripes.
1622 */
1623 list_sort(NULL, &plug->rbio_list, plug_cmp);
1624 while (!list_empty(&plug->rbio_list)) {
1625 cur = list_entry(plug->rbio_list.next,
1626 struct btrfs_raid_bio, plug_list);
1627 list_del_init(&cur->plug_list);
1628
1629 if (rbio_is_full(cur)) {
1630 /* we have a full stripe, send it down */
1631 full_stripe_write(cur);
1632 continue;
1633 }
1634 if (last) {
1635 if (rbio_can_merge(last, cur)) {
1636 merge_rbio(last, cur);
1637 __free_raid_bio(cur);
1638 continue;
1639
1640 }
1641 __raid56_parity_write(last);
1642 }
1643 last = cur;
1644 }
1645 if (last) {
1646 __raid56_parity_write(last);
1647 }
1648 kfree(plug);
1649}
1650
1651/*
1652 * if the unplug comes from schedule, we have to push the
1653 * work off to a helper thread
1654 */
1655static void unplug_work(struct btrfs_work *work)
1656{
1657 struct btrfs_plug_cb *plug;
1658 plug = container_of(work, struct btrfs_plug_cb, work);
1659 run_plug(plug);
1660}
1661
1662static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1663{
1664 struct btrfs_plug_cb *plug;
1665 plug = container_of(cb, struct btrfs_plug_cb, cb);
1666
1667 if (from_schedule) {
1668 btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1669 btrfs_queue_work(plug->info->rmw_workers,
1670 &plug->work);
1671 return;
1672 }
1673 run_plug(plug);
1674}
1675
1676/*
1677 * our main entry point for writes from the rest of the FS.
1678 */
1679int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1680 struct btrfs_bio *bbio, u64 *raid_map,
1681 u64 stripe_len)
1682{
1683 struct btrfs_raid_bio *rbio;
1684 struct btrfs_plug_cb *plug = NULL;
1685 struct blk_plug_cb *cb;
1686
1687 rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
1688 if (IS_ERR(rbio))
1689 return PTR_ERR(rbio);
1690 bio_list_add(&rbio->bio_list, bio);
1691 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1692
1693 /*
1694 * don't plug on full rbios, just get them out the door
1695 * as quickly as we can
1696 */
1697 if (rbio_is_full(rbio))
1698 return full_stripe_write(rbio);
1699
1700 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1701 sizeof(*plug));
1702 if (cb) {
1703 plug = container_of(cb, struct btrfs_plug_cb, cb);
1704 if (!plug->info) {
1705 plug->info = root->fs_info;
1706 INIT_LIST_HEAD(&plug->rbio_list);
1707 }
1708 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1709 } else {
1710 return __raid56_parity_write(rbio);
1711 }
1712 return 0;
1713}
1714
1715/*
1716 * all parity reconstruction happens here. We've read in everything
1717 * we can find from the drives and this does the heavy lifting of
1718 * sorting the good from the bad.
1719 */
1720static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1721{
1722 int pagenr, stripe;
1723 void **pointers;
1724 int faila = -1, failb = -1;
1725 int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1726 struct page *page;
1727 int err;
1728 int i;
1729
1730 pointers = kzalloc(rbio->bbio->num_stripes * sizeof(void *),
1731 GFP_NOFS);
1732 if (!pointers) {
1733 err = -ENOMEM;
1734 goto cleanup_io;
1735 }
1736
1737 faila = rbio->faila;
1738 failb = rbio->failb;
1739
1740 if (rbio->read_rebuild) {
1741 spin_lock_irq(&rbio->bio_list_lock);
1742 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1743 spin_unlock_irq(&rbio->bio_list_lock);
1744 }
1745
1746 index_rbio_pages(rbio);
1747
1748 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1749 /* setup our array of pointers with pages
1750 * from each stripe
1751 */
1752 for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
1753 /*
1754 * if we're rebuilding a read, we have to use
1755 * pages from the bio list
1756 */
1757 if (rbio->read_rebuild &&
1758 (stripe == faila || stripe == failb)) {
1759 page = page_in_rbio(rbio, stripe, pagenr, 0);
1760 } else {
1761 page = rbio_stripe_page(rbio, stripe, pagenr);
1762 }
1763 pointers[stripe] = kmap(page);
1764 }
1765
1766 /* all raid6 handling here */
1767 if (rbio->raid_map[rbio->bbio->num_stripes - 1] ==
1768 RAID6_Q_STRIPE) {
1769
1770 /*
1771 * single failure, rebuild from parity raid5
1772 * style
1773 */
1774 if (failb < 0) {
1775 if (faila == rbio->nr_data) {
1776 /*
1777 * Just the P stripe has failed, without
1778 * a bad data or Q stripe.
1779 * TODO, we should redo the xor here.
1780 */
1781 err = -EIO;
1782 goto cleanup;
1783 }
1784 /*
1785 * a single failure in raid6 is rebuilt
1786 * in the pstripe code below
1787 */
1788 goto pstripe;
1789 }
1790
1791 /* make sure our ps and qs are in order */
1792 if (faila > failb) {
1793 int tmp = failb;
1794 failb = faila;
1795 faila = tmp;
1796 }
1797
1798 /* if the q stripe is failed, do a pstripe reconstruction
1799 * from the xors.
1800 * If both the q stripe and the P stripe are failed, we're
1801 * here due to a crc mismatch and we can't give them the
1802 * data they want
1803 */
1804 if (rbio->raid_map[failb] == RAID6_Q_STRIPE) {
1805 if (rbio->raid_map[faila] == RAID5_P_STRIPE) {
1806 err = -EIO;
1807 goto cleanup;
1808 }
1809 /*
1810 * otherwise we have one bad data stripe and
1811 * a good P stripe. raid5!
1812 */
1813 goto pstripe;
1814 }
1815
1816 if (rbio->raid_map[failb] == RAID5_P_STRIPE) {
1817 raid6_datap_recov(rbio->bbio->num_stripes,
1818 PAGE_SIZE, faila, pointers);
1819 } else {
1820 raid6_2data_recov(rbio->bbio->num_stripes,
1821 PAGE_SIZE, faila, failb,
1822 pointers);
1823 }
1824 } else {
1825 void *p;
1826
1827 /* rebuild from P stripe here (raid5 or raid6) */
1828 BUG_ON(failb != -1);
1829pstripe:
1830 /* Copy parity block into failed block to start with */
1831 memcpy(pointers[faila],
1832 pointers[rbio->nr_data],
1833 PAGE_CACHE_SIZE);
1834
1835 /* rearrange the pointer array */
1836 p = pointers[faila];
1837 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1838 pointers[stripe] = pointers[stripe + 1];
1839 pointers[rbio->nr_data - 1] = p;
1840
1841 /* xor in the rest */
1842 run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1843 }
1844 /* if we're doing this rebuild as part of an rmw, go through
1845 * and set all of our private rbio pages in the
1846 * failed stripes as uptodate. This way finish_rmw will
1847 * know they can be trusted. If this was a read reconstruction,
1848 * other endio functions will fiddle the uptodate bits
1849 */
1850 if (!rbio->read_rebuild) {
1851 for (i = 0; i < nr_pages; i++) {
1852 if (faila != -1) {
1853 page = rbio_stripe_page(rbio, faila, i);
1854 SetPageUptodate(page);
1855 }
1856 if (failb != -1) {
1857 page = rbio_stripe_page(rbio, failb, i);
1858 SetPageUptodate(page);
1859 }
1860 }
1861 }
1862 for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
1863 /*
1864 * if we're rebuilding a read, we have to use
1865 * pages from the bio list
1866 */
1867 if (rbio->read_rebuild &&
1868 (stripe == faila || stripe == failb)) {
1869 page = page_in_rbio(rbio, stripe, pagenr, 0);
1870 } else {
1871 page = rbio_stripe_page(rbio, stripe, pagenr);
1872 }
1873 kunmap(page);
1874 }
1875 }
1876
1877 err = 0;
1878cleanup:
1879 kfree(pointers);
1880
1881cleanup_io:
1882
1883 if (rbio->read_rebuild) {
1884 if (err == 0)
1885 cache_rbio_pages(rbio);
1886 else
1887 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1888
1889 rbio_orig_end_io(rbio, err, err == 0);
1890 } else if (err == 0) {
1891 rbio->faila = -1;
1892 rbio->failb = -1;
1893 finish_rmw(rbio);
1894 } else {
1895 rbio_orig_end_io(rbio, err, 0);
1896 }
1897}
1898
1899/*
1900 * This is called only for stripes we've read from disk to
1901 * reconstruct the parity.
1902 */
1903static void raid_recover_end_io(struct bio *bio, int err)
1904{
1905 struct btrfs_raid_bio *rbio = bio->bi_private;
1906
1907 /*
1908 * we only read stripe pages off the disk, set them
1909 * up to date if there were no errors
1910 */
1911 if (err)
1912 fail_bio_stripe(rbio, bio);
1913 else
1914 set_bio_pages_uptodate(bio);
1915 bio_put(bio);
1916
1917 if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
1918 return;
1919
1920 if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
1921 rbio_orig_end_io(rbio, -EIO, 0);
1922 else
1923 __raid_recover_end_io(rbio);
1924}
1925
1926/*
1927 * reads everything we need off the disk to reconstruct
1928 * the parity. endio handlers trigger final reconstruction
1929 * when the IO is done.
1930 *
1931 * This is used both for reads from the higher layers and for
1932 * parity construction required to finish a rmw cycle.
1933 */
1934static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
1935{
1936 int bios_to_read = 0;
1937 struct btrfs_bio *bbio = rbio->bbio;
1938 struct bio_list bio_list;
1939 int ret;
1940 int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1941 int pagenr;
1942 int stripe;
1943 struct bio *bio;
1944
1945 bio_list_init(&bio_list);
1946
1947 ret = alloc_rbio_pages(rbio);
1948 if (ret)
1949 goto cleanup;
1950
1951 atomic_set(&rbio->bbio->error, 0);
1952
1953 /*
1954 * read everything that hasn't failed. Thanks to the
1955 * stripe cache, it is possible that some or all of these
1956 * pages are going to be uptodate.
1957 */
1958 for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
1959 if (rbio->faila == stripe ||
1960 rbio->failb == stripe)
1961 continue;
1962
1963 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1964 struct page *p;
1965
1966 /*
1967 * the rmw code may have already read this
1968 * page in
1969 */
1970 p = rbio_stripe_page(rbio, stripe, pagenr);
1971 if (PageUptodate(p))
1972 continue;
1973
1974 ret = rbio_add_io_page(rbio, &bio_list,
1975 rbio_stripe_page(rbio, stripe, pagenr),
1976 stripe, pagenr, rbio->stripe_len);
1977 if (ret < 0)
1978 goto cleanup;
1979 }
1980 }
1981
1982 bios_to_read = bio_list_size(&bio_list);
1983 if (!bios_to_read) {
1984 /*
1985 * we might have no bios to read just because the pages
1986 * were up to date, or we might have no bios to read because
1987 * the devices were gone.
1988 */
1989 if (atomic_read(&rbio->bbio->error) <= rbio->bbio->max_errors) {
1990 __raid_recover_end_io(rbio);
1991 goto out;
1992 } else {
1993 goto cleanup;
1994 }
1995 }
1996
1997 /*
1998 * the bbio may be freed once we submit the last bio. Make sure
1999 * not to touch it after that
2000 */
2001 atomic_set(&bbio->stripes_pending, bios_to_read);
2002 while (1) {
2003 bio = bio_list_pop(&bio_list);
2004 if (!bio)
2005 break;
2006
2007 bio->bi_private = rbio;
2008 bio->bi_end_io = raid_recover_end_io;
2009
2010 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2011 BTRFS_WQ_ENDIO_RAID56);
2012
2013 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2014 submit_bio(READ, bio);
2015 }
2016out:
2017 return 0;
2018
2019cleanup:
2020 if (rbio->read_rebuild)
2021 rbio_orig_end_io(rbio, -EIO, 0);
2022 return -EIO;
2023}
2024
2025/*
2026 * the main entry point for reads from the higher layers. This
2027 * is really only called when the normal read path had a failure,
2028 * so we assume the bio they send down corresponds to a failed part
2029 * of the drive.
2030 */
2031int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2032 struct btrfs_bio *bbio, u64 *raid_map,
2033 u64 stripe_len, int mirror_num)
2034{
2035 struct btrfs_raid_bio *rbio;
2036 int ret;
2037
2038 rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
2039 if (IS_ERR(rbio))
2040 return PTR_ERR(rbio);
2041
2042 rbio->read_rebuild = 1;
2043 bio_list_add(&rbio->bio_list, bio);
2044 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2045
2046 rbio->faila = find_logical_bio_stripe(rbio, bio);
2047 if (rbio->faila == -1) {
2048 BUG();
2049 kfree(raid_map);
2050 kfree(bbio);
2051 kfree(rbio);
2052 return -EIO;
2053 }
2054
2055 /*
2056 * reconstruct from the q stripe if they are
2057 * asking for mirror 3
2058 */
2059 if (mirror_num == 3)
2060 rbio->failb = bbio->num_stripes - 2;
2061
2062 ret = lock_stripe_add(rbio);
2063
2064 /*
2065 * __raid56_parity_recover will end the bio with
2066 * any errors it hits. We don't want to return
2067 * its error value up the stack because our caller
2068 * will end up calling bio_endio with any nonzero
2069 * return
2070 */
2071 if (ret == 0)
2072 __raid56_parity_recover(rbio);
2073 /*
2074 * our rbio has been added to the list of
2075 * rbios that will be handled after the
2076 * currently lock owner is done
2077 */
2078 return 0;
2079
2080}
2081
2082static void rmw_work(struct btrfs_work *work)
2083{
2084 struct btrfs_raid_bio *rbio;
2085
2086 rbio = container_of(work, struct btrfs_raid_bio, work);
2087 raid56_rmw_stripe(rbio);
2088}
2089
2090static void read_rebuild_work(struct btrfs_work *work)
2091{
2092 struct btrfs_raid_bio *rbio;
2093
2094 rbio = container_of(work, struct btrfs_raid_bio, work);
2095 __raid56_parity_recover(rbio);
2096}