Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * intel_pstate.c: Native P state management for Intel processors
   4 *
   5 * (C) Copyright 2012 Intel Corporation
   6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 
 
 
 
 
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/module.h>
  14#include <linux/ktime.h>
  15#include <linux/hrtimer.h>
  16#include <linux/tick.h>
  17#include <linux/slab.h>
  18#include <linux/sched/cpufreq.h>
  19#include <linux/sched/smt.h>
  20#include <linux/list.h>
  21#include <linux/cpu.h>
  22#include <linux/cpufreq.h>
  23#include <linux/sysfs.h>
  24#include <linux/types.h>
  25#include <linux/fs.h>
 
  26#include <linux/acpi.h>
  27#include <linux/vmalloc.h>
  28#include <linux/pm_qos.h>
  29#include <linux/bitfield.h>
  30#include <trace/events/power.h>
  31
  32#include <asm/cpu.h>
  33#include <asm/div64.h>
  34#include <asm/msr.h>
  35#include <asm/cpu_device_id.h>
  36#include <asm/cpufeature.h>
  37#include <asm/intel-family.h>
  38#include "../drivers/thermal/intel/thermal_interrupt.h"
  39
  40#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
  41
  42#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
  43#define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
  44#define INTEL_CPUFREQ_TRANSITION_DELAY		500
  45
  46#ifdef CONFIG_ACPI
  47#include <acpi/processor.h>
  48#include <acpi/cppc_acpi.h>
  49#endif
  50
  51#define FRAC_BITS 8
  52#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
  53#define fp_toint(X) ((X) >> FRAC_BITS)
  54
  55#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
  56
  57#define EXT_BITS 6
  58#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
  59#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
  60#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
  61
  62static inline int32_t mul_fp(int32_t x, int32_t y)
  63{
  64	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
  65}
  66
  67static inline int32_t div_fp(s64 x, s64 y)
  68{
  69	return div64_s64((int64_t)x << FRAC_BITS, y);
  70}
  71
  72static inline int ceiling_fp(int32_t x)
  73{
  74	int mask, ret;
  75
  76	ret = fp_toint(x);
  77	mask = (1 << FRAC_BITS) - 1;
  78	if (x & mask)
  79		ret += 1;
  80	return ret;
  81}
  82
  83static inline u64 mul_ext_fp(u64 x, u64 y)
  84{
  85	return (x * y) >> EXT_FRAC_BITS;
  86}
  87
  88static inline u64 div_ext_fp(u64 x, u64 y)
  89{
  90	return div64_u64(x << EXT_FRAC_BITS, y);
  91}
  92
  93/**
  94 * struct sample -	Store performance sample
  95 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
  96 *			performance during last sample period
  97 * @busy_scaled:	Scaled busy value which is used to calculate next
  98 *			P state. This can be different than core_avg_perf
  99 *			to account for cpu idle period
 100 * @aperf:		Difference of actual performance frequency clock count
 101 *			read from APERF MSR between last and current sample
 102 * @mperf:		Difference of maximum performance frequency clock count
 103 *			read from MPERF MSR between last and current sample
 104 * @tsc:		Difference of time stamp counter between last and
 105 *			current sample
 
 106 * @time:		Current time from scheduler
 107 *
 108 * This structure is used in the cpudata structure to store performance sample
 109 * data for choosing next P State.
 110 */
 111struct sample {
 112	int32_t core_avg_perf;
 113	int32_t busy_scaled;
 114	u64 aperf;
 115	u64 mperf;
 116	u64 tsc;
 
 117	u64 time;
 118};
 119
 120/**
 121 * struct pstate_data - Store P state data
 122 * @current_pstate:	Current requested P state
 123 * @min_pstate:		Min P state possible for this platform
 124 * @max_pstate:		Max P state possible for this platform
 125 * @max_pstate_physical:This is physical Max P state for a processor
 126 *			This can be higher than the max_pstate which can
 127 *			be limited by platform thermal design power limits
 128 * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
 129 * @scaling:		Scaling factor between performance and frequency
 130 * @turbo_pstate:	Max Turbo P state possible for this platform
 131 * @min_freq:		@min_pstate frequency in cpufreq units
 132 * @max_freq:		@max_pstate frequency in cpufreq units
 133 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
 134 *
 135 * Stores the per cpu model P state limits and current P state.
 136 */
 137struct pstate_data {
 138	int	current_pstate;
 139	int	min_pstate;
 140	int	max_pstate;
 141	int	max_pstate_physical;
 142	int	perf_ctl_scaling;
 143	int	scaling;
 144	int	turbo_pstate;
 145	unsigned int min_freq;
 146	unsigned int max_freq;
 147	unsigned int turbo_freq;
 148};
 149
 150/**
 151 * struct vid_data -	Stores voltage information data
 152 * @min:		VID data for this platform corresponding to
 153 *			the lowest P state
 154 * @max:		VID data corresponding to the highest P State.
 155 * @turbo:		VID data for turbo P state
 156 * @ratio:		Ratio of (vid max - vid min) /
 157 *			(max P state - Min P State)
 158 *
 159 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 160 * This data is used in Atom platforms, where in addition to target P state,
 161 * the voltage data needs to be specified to select next P State.
 162 */
 163struct vid_data {
 164	int min;
 165	int max;
 166	int turbo;
 167	int32_t ratio;
 168};
 169
 170/**
 171 * struct global_params - Global parameters, mostly tunable via sysfs.
 172 * @no_turbo:		Whether or not to use turbo P-states.
 173 * @turbo_disabled:	Whether or not turbo P-states are available at all,
 174 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 175 *			not the maximum reported turbo P-state is different from
 176 *			the maximum reported non-turbo one.
 177 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 178 *			P-state capacity.
 179 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 180 *			P-state capacity.
 181 */
 182struct global_params {
 183	bool no_turbo;
 184	bool turbo_disabled;
 185	int max_perf_pct;
 186	int min_perf_pct;
 
 
 
 187};
 188
 189/**
 190 * struct cpudata -	Per CPU instance data storage
 191 * @cpu:		CPU number for this instance data
 192 * @policy:		CPUFreq policy value
 193 * @update_util:	CPUFreq utility callback information
 194 * @update_util_set:	CPUFreq utility callback is set
 195 * @iowait_boost:	iowait-related boost fraction
 196 * @last_update:	Time of the last update.
 197 * @pstate:		Stores P state limits for this CPU
 198 * @vid:		Stores VID limits for this CPU
 
 199 * @last_sample_time:	Last Sample time
 200 * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
 201 * @prev_aperf:		Last APERF value read from APERF MSR
 202 * @prev_mperf:		Last MPERF value read from MPERF MSR
 203 * @prev_tsc:		Last timestamp counter (TSC) value
 
 
 204 * @sample:		Storage for storing last Sample data
 205 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 206 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
 207 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 208 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
 209 * @epp_powersave:	Last saved HWP energy performance preference
 210 *			(EPP) or energy performance bias (EPB),
 211 *			when policy switched to performance
 212 * @epp_policy:		Last saved policy used to set EPP/EPB
 213 * @epp_default:	Power on default HWP energy performance
 214 *			preference/bias
 215 * @epp_cached:		Cached HWP energy-performance preference value
 216 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 217 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
 218 * @last_io_update:	Last time when IO wake flag was set
 219 * @capacity_perf:	Highest perf used for scale invariance
 220 * @sched_flags:	Store scheduler flags for possible cross CPU update
 221 * @hwp_boost_min:	Last HWP boosted min performance
 222 * @suspended:		Whether or not the driver has been suspended.
 223 * @hwp_notify_work:	workqueue for HWP notifications.
 224 *
 225 * This structure stores per CPU instance data for all CPUs.
 226 */
 227struct cpudata {
 228	int cpu;
 229
 230	unsigned int policy;
 231	struct update_util_data update_util;
 232	bool   update_util_set;
 233
 234	struct pstate_data pstate;
 235	struct vid_data vid;
 
 236
 237	u64	last_update;
 238	u64	last_sample_time;
 239	u64	aperf_mperf_shift;
 240	u64	prev_aperf;
 241	u64	prev_mperf;
 242	u64	prev_tsc;
 
 243	struct sample sample;
 244	int32_t	min_perf_ratio;
 245	int32_t	max_perf_ratio;
 246#ifdef CONFIG_ACPI
 247	struct acpi_processor_performance acpi_perf_data;
 248	bool valid_pss_table;
 249#endif
 250	unsigned int iowait_boost;
 251	s16 epp_powersave;
 252	s16 epp_policy;
 253	s16 epp_default;
 254	s16 epp_cached;
 255	u64 hwp_req_cached;
 256	u64 hwp_cap_cached;
 257	u64 last_io_update;
 258	unsigned int capacity_perf;
 259	unsigned int sched_flags;
 260	u32 hwp_boost_min;
 261	bool suspended;
 262	struct delayed_work hwp_notify_work;
 263};
 264
 265static struct cpudata **all_cpu_data;
 266
 267/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 268 * struct pstate_funcs - Per CPU model specific callbacks
 269 * @get_max:		Callback to get maximum non turbo effective P state
 270 * @get_max_physical:	Callback to get maximum non turbo physical P state
 271 * @get_min:		Callback to get minimum P state
 272 * @get_turbo:		Callback to get turbo P state
 273 * @get_scaling:	Callback to get frequency scaling factor
 274 * @get_cpu_scaling:	Get frequency scaling factor for a given cpu
 275 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
 276 * @get_val:		Callback to convert P state to actual MSR write value
 277 * @get_vid:		Callback to get VID data for Atom platforms
 
 278 *
 279 * Core and Atom CPU models have different way to get P State limits. This
 280 * structure is used to store those callbacks.
 281 */
 282struct pstate_funcs {
 283	int (*get_max)(int cpu);
 284	int (*get_max_physical)(int cpu);
 285	int (*get_min)(int cpu);
 286	int (*get_turbo)(int cpu);
 287	int (*get_scaling)(void);
 288	int (*get_cpu_scaling)(int cpu);
 289	int (*get_aperf_mperf_shift)(void);
 290	u64 (*get_val)(struct cpudata*, int pstate);
 291	void (*get_vid)(struct cpudata *);
 
 292};
 293
 294static struct pstate_funcs pstate_funcs __read_mostly;
 295
 296static bool hwp_active __ro_after_init;
 297static int hwp_mode_bdw __ro_after_init;
 298static bool per_cpu_limits __ro_after_init;
 299static bool hwp_forced __ro_after_init;
 300static bool hwp_boost __read_mostly;
 301static bool hwp_is_hybrid;
 302
 303static struct cpufreq_driver *intel_pstate_driver __read_mostly;
 304
 305#define HYBRID_SCALING_FACTOR		78741
 306#define HYBRID_SCALING_FACTOR_MTL	80000
 307#define HYBRID_SCALING_FACTOR_LNL	86957
 308
 309static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR;
 310
 311static inline int core_get_scaling(void)
 312{
 313	return 100000;
 314}
 315
 316#ifdef CONFIG_ACPI
 317static bool acpi_ppc;
 318#endif
 319
 320static struct global_params global;
 321
 322static DEFINE_MUTEX(intel_pstate_driver_lock);
 323static DEFINE_MUTEX(intel_pstate_limits_lock);
 324
 325#ifdef CONFIG_ACPI
 326
 327static bool intel_pstate_acpi_pm_profile_server(void)
 328{
 329	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
 330	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
 331		return true;
 332
 333	return false;
 334}
 335
 336static bool intel_pstate_get_ppc_enable_status(void)
 337{
 338	if (intel_pstate_acpi_pm_profile_server())
 339		return true;
 340
 341	return acpi_ppc;
 342}
 343
 344#ifdef CONFIG_ACPI_CPPC_LIB
 345
 346/* The work item is needed to avoid CPU hotplug locking issues */
 347static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
 348{
 349	sched_set_itmt_support();
 350}
 351
 352static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
 353
 354#define CPPC_MAX_PERF	U8_MAX
 355
 356static void intel_pstate_set_itmt_prio(int cpu)
 357{
 358	struct cppc_perf_caps cppc_perf;
 359	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
 360	int ret;
 361
 362	ret = cppc_get_perf_caps(cpu, &cppc_perf);
 363	/*
 364	 * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0].
 365	 *
 366	 * Also, on some systems with overclocking enabled, CPPC.highest_perf is
 367	 * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT.
 368	 * Fall back to MSR_HWP_CAPABILITIES then too.
 369	 */
 370	if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF)
 371		cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
 372
 373	/*
 374	 * The priorities can be set regardless of whether or not
 375	 * sched_set_itmt_support(true) has been called and it is valid to
 376	 * update them at any time after it has been called.
 377	 */
 378	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
 379
 380	if (max_highest_perf <= min_highest_perf) {
 381		if (cppc_perf.highest_perf > max_highest_perf)
 382			max_highest_perf = cppc_perf.highest_perf;
 383
 384		if (cppc_perf.highest_perf < min_highest_perf)
 385			min_highest_perf = cppc_perf.highest_perf;
 386
 387		if (max_highest_perf > min_highest_perf) {
 388			/*
 389			 * This code can be run during CPU online under the
 390			 * CPU hotplug locks, so sched_set_itmt_support()
 391			 * cannot be called from here.  Queue up a work item
 392			 * to invoke it.
 393			 */
 394			schedule_work(&sched_itmt_work);
 395		}
 396	}
 397}
 398
 399static int intel_pstate_get_cppc_guaranteed(int cpu)
 400{
 401	struct cppc_perf_caps cppc_perf;
 402	int ret;
 403
 404	ret = cppc_get_perf_caps(cpu, &cppc_perf);
 405	if (ret)
 406		return ret;
 407
 408	if (cppc_perf.guaranteed_perf)
 409		return cppc_perf.guaranteed_perf;
 410
 411	return cppc_perf.nominal_perf;
 412}
 413
 414static int intel_pstate_cppc_get_scaling(int cpu)
 415{
 416	struct cppc_perf_caps cppc_perf;
 417	int ret;
 418
 419	ret = cppc_get_perf_caps(cpu, &cppc_perf);
 420
 421	/*
 422	 * If the nominal frequency and the nominal performance are not
 423	 * zero and the ratio between them is not 100, return the hybrid
 424	 * scaling factor.
 425	 */
 426	if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
 427	    cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
 428		return hybrid_scaling_factor;
 429
 430	return core_get_scaling();
 431}
 432
 433#else /* CONFIG_ACPI_CPPC_LIB */
 434static inline void intel_pstate_set_itmt_prio(int cpu)
 435{
 436}
 437#endif /* CONFIG_ACPI_CPPC_LIB */
 438
 439static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 440{
 441	struct cpudata *cpu;
 442	int ret;
 443	int i;
 444
 445	if (hwp_active) {
 446		intel_pstate_set_itmt_prio(policy->cpu);
 447		return;
 448	}
 449
 450	if (!intel_pstate_get_ppc_enable_status())
 451		return;
 452
 453	cpu = all_cpu_data[policy->cpu];
 454
 455	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
 456						  policy->cpu);
 457	if (ret)
 458		return;
 459
 460	/*
 461	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
 462	 * guarantee that the states returned by it map to the states in our
 463	 * list directly.
 464	 */
 465	if (cpu->acpi_perf_data.control_register.space_id !=
 466						ACPI_ADR_SPACE_FIXED_HARDWARE)
 467		goto err;
 468
 469	/*
 470	 * If there is only one entry _PSS, simply ignore _PSS and continue as
 471	 * usual without taking _PSS into account
 472	 */
 473	if (cpu->acpi_perf_data.state_count < 2)
 474		goto err;
 475
 476	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
 477	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
 478		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
 479			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
 480			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
 481			 (u32) cpu->acpi_perf_data.states[i].power,
 482			 (u32) cpu->acpi_perf_data.states[i].control);
 483	}
 484
 485	cpu->valid_pss_table = true;
 486	pr_debug("_PPC limits will be enforced\n");
 487
 488	return;
 489
 490 err:
 491	cpu->valid_pss_table = false;
 492	acpi_processor_unregister_performance(policy->cpu);
 493}
 494
 495static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 496{
 497	struct cpudata *cpu;
 498
 499	cpu = all_cpu_data[policy->cpu];
 500	if (!cpu->valid_pss_table)
 501		return;
 502
 503	acpi_processor_unregister_performance(policy->cpu);
 504}
 505#else /* CONFIG_ACPI */
 506static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 507{
 508}
 509
 510static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 511{
 512}
 513
 514static inline bool intel_pstate_acpi_pm_profile_server(void)
 515{
 516	return false;
 517}
 518#endif /* CONFIG_ACPI */
 519
 520#ifndef CONFIG_ACPI_CPPC_LIB
 521static inline int intel_pstate_get_cppc_guaranteed(int cpu)
 522{
 523	return -ENOTSUPP;
 524}
 525
 526static int intel_pstate_cppc_get_scaling(int cpu)
 527{
 528	return core_get_scaling();
 529}
 530#endif /* CONFIG_ACPI_CPPC_LIB */
 531
 532static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
 533					unsigned int relation)
 534{
 535	if (freq == cpu->pstate.turbo_freq)
 536		return cpu->pstate.turbo_pstate;
 537
 538	if (freq == cpu->pstate.max_freq)
 539		return cpu->pstate.max_pstate;
 540
 541	switch (relation) {
 542	case CPUFREQ_RELATION_H:
 543		return freq / cpu->pstate.scaling;
 544	case CPUFREQ_RELATION_C:
 545		return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
 546	}
 547
 548	return DIV_ROUND_UP(freq, cpu->pstate.scaling);
 549}
 550
 551static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
 552{
 553	return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
 554}
 555
 556/**
 557 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
 558 * @cpu: Target CPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559 *
 560 * On hybrid processors, HWP may expose more performance levels than there are
 561 * P-states accessible through the PERF_CTL interface.  If that happens, the
 562 * scaling factor between HWP performance levels and CPU frequency will be less
 563 * than the scaling factor between P-state values and CPU frequency.
 564 *
 565 * In that case, adjust the CPU parameters used in computations accordingly.
 566 */
 567static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
 568{
 569	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
 570	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
 571	int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
 572	int scaling = cpu->pstate.scaling;
 573	int freq;
 574
 575	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
 576	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
 577	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
 578	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
 579	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
 580	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
 581
 582	cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
 583					   perf_ctl_scaling);
 584	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
 585					 perf_ctl_scaling);
 586
 587	freq = perf_ctl_max_phys * perf_ctl_scaling;
 588	cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589
 590	freq = cpu->pstate.min_pstate * perf_ctl_scaling;
 591	cpu->pstate.min_freq = freq;
 592	/*
 593	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
 594	 * the effective range of HWP performance levels.
 595	 */
 596	cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
 597}
 598
 599static bool turbo_is_disabled(void)
 600{
 601	u64 misc_en;
 602
 603	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 604
 605	return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
 606}
 607
 608static int min_perf_pct_min(void)
 609{
 610	struct cpudata *cpu = all_cpu_data[0];
 611	int turbo_pstate = cpu->pstate.turbo_pstate;
 612
 613	return turbo_pstate ?
 614		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
 615}
 616
 617static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
 618{
 619	u64 epb;
 620	int ret;
 621
 622	if (!boot_cpu_has(X86_FEATURE_EPB))
 623		return -ENXIO;
 624
 625	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 626	if (ret)
 627		return (s16)ret;
 628
 629	return (s16)(epb & 0x0f);
 630}
 631
 632static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
 633{
 634	s16 epp;
 635
 636	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 637		/*
 638		 * When hwp_req_data is 0, means that caller didn't read
 639		 * MSR_HWP_REQUEST, so need to read and get EPP.
 640		 */
 641		if (!hwp_req_data) {
 642			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
 643					    &hwp_req_data);
 644			if (epp)
 645				return epp;
 646		}
 647		epp = (hwp_req_data >> 24) & 0xff;
 648	} else {
 649		/* When there is no EPP present, HWP uses EPB settings */
 650		epp = intel_pstate_get_epb(cpu_data);
 651	}
 652
 653	return epp;
 654}
 655
 656static int intel_pstate_set_epb(int cpu, s16 pref)
 657{
 658	u64 epb;
 659	int ret;
 660
 661	if (!boot_cpu_has(X86_FEATURE_EPB))
 662		return -ENXIO;
 663
 664	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 665	if (ret)
 666		return ret;
 667
 668	epb = (epb & ~0x0f) | pref;
 669	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
 670
 671	return 0;
 672}
 673
 674/*
 675 * EPP/EPB display strings corresponding to EPP index in the
 676 * energy_perf_strings[]
 677 *	index		String
 678 *-------------------------------------
 679 *	0		default
 680 *	1		performance
 681 *	2		balance_performance
 682 *	3		balance_power
 683 *	4		power
 684 */
 685
 686enum energy_perf_value_index {
 687	EPP_INDEX_DEFAULT = 0,
 688	EPP_INDEX_PERFORMANCE,
 689	EPP_INDEX_BALANCE_PERFORMANCE,
 690	EPP_INDEX_BALANCE_POWERSAVE,
 691	EPP_INDEX_POWERSAVE,
 692};
 693
 694static const char * const energy_perf_strings[] = {
 695	[EPP_INDEX_DEFAULT] = "default",
 696	[EPP_INDEX_PERFORMANCE] = "performance",
 697	[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
 698	[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
 699	[EPP_INDEX_POWERSAVE] = "power",
 700	NULL
 701};
 702static unsigned int epp_values[] = {
 703	[EPP_INDEX_DEFAULT] = 0, /* Unused index */
 704	[EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
 705	[EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
 706	[EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
 707	[EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
 708};
 709
 710static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
 711{
 712	s16 epp;
 713	int index = -EINVAL;
 714
 715	*raw_epp = 0;
 716	epp = intel_pstate_get_epp(cpu_data, 0);
 717	if (epp < 0)
 718		return epp;
 719
 720	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 721		if (epp == epp_values[EPP_INDEX_PERFORMANCE])
 722			return EPP_INDEX_PERFORMANCE;
 723		if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
 724			return EPP_INDEX_BALANCE_PERFORMANCE;
 725		if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
 726			return EPP_INDEX_BALANCE_POWERSAVE;
 727		if (epp == epp_values[EPP_INDEX_POWERSAVE])
 728			return EPP_INDEX_POWERSAVE;
 729		*raw_epp = epp;
 730		return 0;
 731	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
 732		/*
 733		 * Range:
 734		 *	0x00-0x03	:	Performance
 735		 *	0x04-0x07	:	Balance performance
 736		 *	0x08-0x0B	:	Balance power
 737		 *	0x0C-0x0F	:	Power
 738		 * The EPB is a 4 bit value, but our ranges restrict the
 739		 * value which can be set. Here only using top two bits
 740		 * effectively.
 741		 */
 742		index = (epp >> 2) + 1;
 743	}
 744
 745	return index;
 746}
 747
 748static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
 749{
 750	int ret;
 751
 752	/*
 753	 * Use the cached HWP Request MSR value, because in the active mode the
 754	 * register itself may be updated by intel_pstate_hwp_boost_up() or
 755	 * intel_pstate_hwp_boost_down() at any time.
 756	 */
 757	u64 value = READ_ONCE(cpu->hwp_req_cached);
 758
 759	value &= ~GENMASK_ULL(31, 24);
 760	value |= (u64)epp << 24;
 761	/*
 762	 * The only other updater of hwp_req_cached in the active mode,
 763	 * intel_pstate_hwp_set(), is called under the same lock as this
 764	 * function, so it cannot run in parallel with the update below.
 765	 */
 766	WRITE_ONCE(cpu->hwp_req_cached, value);
 767	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
 768	if (!ret)
 769		cpu->epp_cached = epp;
 770
 771	return ret;
 772}
 773
 774static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
 775					      int pref_index, bool use_raw,
 776					      u32 raw_epp)
 777{
 778	int epp = -EINVAL;
 779	int ret;
 780
 781	if (!pref_index)
 782		epp = cpu_data->epp_default;
 783
 784	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 785		if (use_raw)
 786			epp = raw_epp;
 787		else if (epp == -EINVAL)
 788			epp = epp_values[pref_index];
 789
 790		/*
 791		 * To avoid confusion, refuse to set EPP to any values different
 792		 * from 0 (performance) if the current policy is "performance",
 793		 * because those values would be overridden.
 794		 */
 795		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
 796			return -EBUSY;
 797
 798		ret = intel_pstate_set_epp(cpu_data, epp);
 799	} else {
 800		if (epp == -EINVAL)
 801			epp = (pref_index - 1) << 2;
 802		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
 803	}
 804
 805	return ret;
 806}
 807
 808static ssize_t show_energy_performance_available_preferences(
 809				struct cpufreq_policy *policy, char *buf)
 810{
 811	int i = 0;
 812	int ret = 0;
 813
 814	while (energy_perf_strings[i] != NULL)
 815		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
 816
 817	ret += sprintf(&buf[ret], "\n");
 818
 819	return ret;
 820}
 821
 822cpufreq_freq_attr_ro(energy_performance_available_preferences);
 823
 824static struct cpufreq_driver intel_pstate;
 825
 826static ssize_t store_energy_performance_preference(
 827		struct cpufreq_policy *policy, const char *buf, size_t count)
 828{
 829	struct cpudata *cpu = all_cpu_data[policy->cpu];
 830	char str_preference[21];
 831	bool raw = false;
 832	ssize_t ret;
 833	u32 epp = 0;
 834
 835	ret = sscanf(buf, "%20s", str_preference);
 836	if (ret != 1)
 837		return -EINVAL;
 838
 839	ret = match_string(energy_perf_strings, -1, str_preference);
 840	if (ret < 0) {
 841		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
 842			return ret;
 843
 844		ret = kstrtouint(buf, 10, &epp);
 845		if (ret)
 846			return ret;
 847
 848		if (epp > 255)
 849			return -EINVAL;
 850
 851		raw = true;
 852	}
 853
 854	/*
 855	 * This function runs with the policy R/W semaphore held, which
 856	 * guarantees that the driver pointer will not change while it is
 857	 * running.
 858	 */
 859	if (!intel_pstate_driver)
 860		return -EAGAIN;
 861
 862	mutex_lock(&intel_pstate_limits_lock);
 863
 864	if (intel_pstate_driver == &intel_pstate) {
 865		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
 866	} else {
 867		/*
 868		 * In the passive mode the governor needs to be stopped on the
 869		 * target CPU before the EPP update and restarted after it,
 870		 * which is super-heavy-weight, so make sure it is worth doing
 871		 * upfront.
 872		 */
 873		if (!raw)
 874			epp = ret ? epp_values[ret] : cpu->epp_default;
 875
 876		if (cpu->epp_cached != epp) {
 877			int err;
 878
 879			cpufreq_stop_governor(policy);
 880			ret = intel_pstate_set_epp(cpu, epp);
 881			err = cpufreq_start_governor(policy);
 882			if (!ret)
 883				ret = err;
 884		} else {
 885			ret = 0;
 886		}
 887	}
 888
 889	mutex_unlock(&intel_pstate_limits_lock);
 890
 891	return ret ?: count;
 892}
 893
 894static ssize_t show_energy_performance_preference(
 895				struct cpufreq_policy *policy, char *buf)
 896{
 897	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 898	int preference, raw_epp;
 899
 900	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
 901	if (preference < 0)
 902		return preference;
 903
 904	if (raw_epp)
 905		return  sprintf(buf, "%d\n", raw_epp);
 906	else
 907		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
 908}
 909
 910cpufreq_freq_attr_rw(energy_performance_preference);
 
 911
 912static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
 913{
 914	struct cpudata *cpu = all_cpu_data[policy->cpu];
 915	int ratio, freq;
 916
 917	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
 918	if (ratio <= 0) {
 919		u64 cap;
 920
 921		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
 922		ratio = HWP_GUARANTEED_PERF(cap);
 923	}
 924
 925	freq = ratio * cpu->pstate.scaling;
 926	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
 927		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
 928
 929	return sprintf(buf, "%d\n", freq);
 930}
 931
 932cpufreq_freq_attr_ro(base_frequency);
 933
 934static struct freq_attr *hwp_cpufreq_attrs[] = {
 935	&energy_performance_preference,
 936	&energy_performance_available_preferences,
 937	&base_frequency,
 938	NULL,
 939};
 940
 941static struct cpudata *hybrid_max_perf_cpu __read_mostly;
 942/*
 943 * Protects hybrid_max_perf_cpu, the capacity_perf fields in struct cpudata,
 944 * and the x86 arch scale-invariance information from concurrent updates.
 945 */
 946static DEFINE_MUTEX(hybrid_capacity_lock);
 947
 948static void hybrid_set_cpu_capacity(struct cpudata *cpu)
 949{
 950	arch_set_cpu_capacity(cpu->cpu, cpu->capacity_perf,
 951			      hybrid_max_perf_cpu->capacity_perf,
 952			      cpu->capacity_perf,
 953			      cpu->pstate.max_pstate_physical);
 954
 955	pr_debug("CPU%d: perf = %u, max. perf = %u, base perf = %d\n", cpu->cpu,
 956		 cpu->capacity_perf, hybrid_max_perf_cpu->capacity_perf,
 957		 cpu->pstate.max_pstate_physical);
 958}
 959
 960static void hybrid_clear_cpu_capacity(unsigned int cpunum)
 961{
 962	arch_set_cpu_capacity(cpunum, 1, 1, 1, 1);
 963}
 964
 965static void hybrid_get_capacity_perf(struct cpudata *cpu)
 966{
 967	if (READ_ONCE(global.no_turbo)) {
 968		cpu->capacity_perf = cpu->pstate.max_pstate_physical;
 969		return;
 970	}
 971
 972	cpu->capacity_perf = HWP_HIGHEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
 973}
 974
 975static void hybrid_set_capacity_of_cpus(void)
 976{
 977	int cpunum;
 978
 979	for_each_online_cpu(cpunum) {
 980		struct cpudata *cpu = all_cpu_data[cpunum];
 981
 982		if (cpu)
 983			hybrid_set_cpu_capacity(cpu);
 
 984	}
 985}
 986
 987static void hybrid_update_cpu_capacity_scaling(void)
 988{
 989	struct cpudata *max_perf_cpu = NULL;
 990	unsigned int max_cap_perf = 0;
 991	int cpunum;
 992
 993	for_each_online_cpu(cpunum) {
 994		struct cpudata *cpu = all_cpu_data[cpunum];
 995
 996		if (!cpu)
 997			continue;
 998
 999		/*
1000		 * During initialization, CPU performance at full capacity needs
1001		 * to be determined.
1002		 */
1003		if (!hybrid_max_perf_cpu)
1004			hybrid_get_capacity_perf(cpu);
1005
1006		/*
1007		 * If hybrid_max_perf_cpu is not NULL at this point, it is
1008		 * being replaced, so don't take it into account when looking
1009		 * for the new one.
1010		 */
1011		if (cpu == hybrid_max_perf_cpu)
1012			continue;
1013
1014		if (cpu->capacity_perf > max_cap_perf) {
1015			max_cap_perf = cpu->capacity_perf;
1016			max_perf_cpu = cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017		}
1018	}
1019
1020	if (max_perf_cpu) {
1021		hybrid_max_perf_cpu = max_perf_cpu;
1022		hybrid_set_capacity_of_cpus();
1023	} else {
1024		pr_info("Found no CPUs with nonzero maximum performance\n");
1025		/* Revert to the flat CPU capacity structure. */
1026		for_each_online_cpu(cpunum)
1027			hybrid_clear_cpu_capacity(cpunum);
1028	}
1029}
1030
1031static void __hybrid_refresh_cpu_capacity_scaling(void)
1032{
1033	hybrid_max_perf_cpu = NULL;
1034	hybrid_update_cpu_capacity_scaling();
1035}
1036
1037static void hybrid_refresh_cpu_capacity_scaling(void)
1038{
1039	guard(mutex)(&hybrid_capacity_lock);
1040
1041	__hybrid_refresh_cpu_capacity_scaling();
1042}
1043
1044static void hybrid_init_cpu_capacity_scaling(bool refresh)
1045{
1046	/*
1047	 * If hybrid_max_perf_cpu is set at this point, the hybrid CPU capacity
1048	 * scaling has been enabled already and the driver is just changing the
1049	 * operation mode.
1050	 */
1051	if (refresh) {
1052		hybrid_refresh_cpu_capacity_scaling();
1053		return;
1054	}
1055
1056	/*
1057	 * On hybrid systems, use asym capacity instead of ITMT, but because
1058	 * the capacity of SMT threads is not deterministic even approximately,
1059	 * do not do that when SMT is in use.
1060	 */
1061	if (hwp_is_hybrid && !sched_smt_active() && arch_enable_hybrid_capacity_scale()) {
1062		hybrid_refresh_cpu_capacity_scaling();
1063		/*
1064		 * Disabling ITMT causes sched domains to be rebuilt to disable asym
1065		 * packing and enable asym capacity.
1066		 */
1067		sched_clear_itmt_support();
1068	}
1069}
1070
1071static bool hybrid_clear_max_perf_cpu(void)
1072{
1073	bool ret;
1074
1075	guard(mutex)(&hybrid_capacity_lock);
1076
1077	ret = !!hybrid_max_perf_cpu;
1078	hybrid_max_perf_cpu = NULL;
1079
1080	return ret;
1081}
1082
1083static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
1084{
1085	u64 cap;
1086
1087	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
1088	WRITE_ONCE(cpu->hwp_cap_cached, cap);
1089	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
1090	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
1091}
1092
1093static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
1094{
1095	int scaling = cpu->pstate.scaling;
1096
1097	__intel_pstate_get_hwp_cap(cpu);
1098
1099	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
1100	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
1101	if (scaling != cpu->pstate.perf_ctl_scaling) {
1102		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
1103
1104		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
1105						 perf_ctl_scaling);
1106		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1107						   perf_ctl_scaling);
1108	}
1109}
1110
1111static void hybrid_update_capacity(struct cpudata *cpu)
1112{
1113	unsigned int max_cap_perf;
1114
1115	mutex_lock(&hybrid_capacity_lock);
1116
1117	if (!hybrid_max_perf_cpu)
1118		goto unlock;
1119
1120	/*
1121	 * The maximum performance of the CPU may have changed, but assume
1122	 * that the performance of the other CPUs has not changed.
1123	 */
1124	max_cap_perf = hybrid_max_perf_cpu->capacity_perf;
1125
1126	intel_pstate_get_hwp_cap(cpu);
1127
1128	hybrid_get_capacity_perf(cpu);
1129	/* Should hybrid_max_perf_cpu be replaced by this CPU? */
1130	if (cpu->capacity_perf > max_cap_perf) {
1131		hybrid_max_perf_cpu = cpu;
1132		hybrid_set_capacity_of_cpus();
1133		goto unlock;
1134	}
1135
1136	/* If this CPU is hybrid_max_perf_cpu, should it be replaced? */
1137	if (cpu == hybrid_max_perf_cpu && cpu->capacity_perf < max_cap_perf) {
1138		hybrid_update_cpu_capacity_scaling();
1139		goto unlock;
1140	}
1141
1142	hybrid_set_cpu_capacity(cpu);
1143
1144unlock:
1145	mutex_unlock(&hybrid_capacity_lock);
1146}
1147
1148static void intel_pstate_hwp_set(unsigned int cpu)
1149{
1150	struct cpudata *cpu_data = all_cpu_data[cpu];
1151	int max, min;
1152	u64 value;
1153	s16 epp;
1154
1155	max = cpu_data->max_perf_ratio;
1156	min = cpu_data->min_perf_ratio;
1157
1158	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1159		min = max;
1160
1161	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1162
1163	value &= ~HWP_MIN_PERF(~0L);
1164	value |= HWP_MIN_PERF(min);
1165
1166	value &= ~HWP_MAX_PERF(~0L);
1167	value |= HWP_MAX_PERF(max);
1168
1169	if (cpu_data->epp_policy == cpu_data->policy)
1170		goto skip_epp;
1171
1172	cpu_data->epp_policy = cpu_data->policy;
1173
1174	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1175		epp = intel_pstate_get_epp(cpu_data, value);
1176		cpu_data->epp_powersave = epp;
1177		/* If EPP read was failed, then don't try to write */
1178		if (epp < 0)
1179			goto skip_epp;
1180
1181		epp = 0;
1182	} else {
1183		/* skip setting EPP, when saved value is invalid */
1184		if (cpu_data->epp_powersave < 0)
1185			goto skip_epp;
1186
1187		/*
1188		 * No need to restore EPP when it is not zero. This
1189		 * means:
1190		 *  - Policy is not changed
1191		 *  - user has manually changed
1192		 *  - Error reading EPB
1193		 */
1194		epp = intel_pstate_get_epp(cpu_data, value);
1195		if (epp)
1196			goto skip_epp;
1197
1198		epp = cpu_data->epp_powersave;
1199	}
1200	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1201		value &= ~GENMASK_ULL(31, 24);
1202		value |= (u64)epp << 24;
1203	} else {
1204		intel_pstate_set_epb(cpu, epp);
1205	}
1206skip_epp:
1207	WRITE_ONCE(cpu_data->hwp_req_cached, value);
1208	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1209}
1210
1211static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1212
1213static void intel_pstate_hwp_offline(struct cpudata *cpu)
1214{
1215	u64 value = READ_ONCE(cpu->hwp_req_cached);
1216	int min_perf;
1217
1218	intel_pstate_disable_hwp_interrupt(cpu);
1219
1220	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1221		/*
1222		 * In case the EPP has been set to "performance" by the
1223		 * active mode "performance" scaling algorithm, replace that
1224		 * temporary value with the cached EPP one.
1225		 */
1226		value &= ~GENMASK_ULL(31, 24);
1227		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1228		/*
1229		 * However, make sure that EPP will be set to "performance" when
1230		 * the CPU is brought back online again and the "performance"
1231		 * scaling algorithm is still in effect.
1232		 */
1233		cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1234	}
1235
1236	/*
1237	 * Clear the desired perf field in the cached HWP request value to
1238	 * prevent nonzero desired values from being leaked into the active
1239	 * mode.
1240	 */
1241	value &= ~HWP_DESIRED_PERF(~0L);
1242	WRITE_ONCE(cpu->hwp_req_cached, value);
1243
1244	value &= ~GENMASK_ULL(31, 0);
1245	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1246
1247	/* Set hwp_max = hwp_min */
1248	value |= HWP_MAX_PERF(min_perf);
1249	value |= HWP_MIN_PERF(min_perf);
1250
1251	/* Set EPP to min */
1252	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1253		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1254
1255	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1256
1257	mutex_lock(&hybrid_capacity_lock);
1258
1259	if (!hybrid_max_perf_cpu) {
1260		mutex_unlock(&hybrid_capacity_lock);
1261
1262		return;
1263	}
1264
1265	if (hybrid_max_perf_cpu == cpu)
1266		hybrid_update_cpu_capacity_scaling();
1267
1268	mutex_unlock(&hybrid_capacity_lock);
1269
1270	/* Reset the capacity of the CPU going offline to the initial value. */
1271	hybrid_clear_cpu_capacity(cpu->cpu);
1272}
1273
1274#define POWER_CTL_EE_ENABLE	1
1275#define POWER_CTL_EE_DISABLE	2
1276
1277static int power_ctl_ee_state;
1278
1279static void set_power_ctl_ee_state(bool input)
1280{
1281	u64 power_ctl;
1282
1283	mutex_lock(&intel_pstate_driver_lock);
1284	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1285	if (input) {
1286		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1287		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1288	} else {
1289		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1290		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1291	}
1292	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1293	mutex_unlock(&intel_pstate_driver_lock);
1294}
1295
1296static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1297
1298static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1299{
1300	intel_pstate_hwp_enable(cpu);
1301	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
 
1302}
1303
1304static int intel_pstate_suspend(struct cpufreq_policy *policy)
 
1305{
1306	struct cpudata *cpu = all_cpu_data[policy->cpu];
1307
1308	pr_debug("CPU %d suspending\n", cpu->cpu);
1309
1310	cpu->suspended = true;
1311
1312	/* disable HWP interrupt and cancel any pending work */
1313	intel_pstate_disable_hwp_interrupt(cpu);
1314
1315	return 0;
1316}
1317
1318static int intel_pstate_resume(struct cpufreq_policy *policy)
1319{
1320	struct cpudata *cpu = all_cpu_data[policy->cpu];
1321
1322	pr_debug("CPU %d resuming\n", cpu->cpu);
1323
1324	/* Only restore if the system default is changed */
1325	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1326		set_power_ctl_ee_state(true);
1327	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1328		set_power_ctl_ee_state(false);
1329
1330	if (cpu->suspended && hwp_active) {
1331		mutex_lock(&intel_pstate_limits_lock);
1332
1333		/* Re-enable HWP, because "online" has not done that. */
1334		intel_pstate_hwp_reenable(cpu);
1335
1336		mutex_unlock(&intel_pstate_limits_lock);
1337	}
1338
1339	cpu->suspended = false;
1340
1341	return 0;
1342}
 
1343
1344static void intel_pstate_update_policies(void)
1345{
1346	int cpu;
1347
1348	for_each_possible_cpu(cpu)
1349		cpufreq_update_policy(cpu);
1350}
1351
1352static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1353					   struct cpufreq_policy *policy)
1354{
1355	if (hwp_active)
1356		intel_pstate_get_hwp_cap(cpudata);
1357
1358	policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
1359			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1360
1361	refresh_frequency_limits(policy);
1362}
 
 
 
 
 
 
 
1363
1364static void intel_pstate_update_limits(unsigned int cpu)
1365{
1366	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1367	struct cpudata *cpudata;
1368
1369	if (!policy)
1370		return;
1371
1372	cpudata = all_cpu_data[cpu];
1373
1374	__intel_pstate_update_max_freq(cpudata, policy);
1375
1376	/* Prevent the driver from being unregistered now. */
1377	mutex_lock(&intel_pstate_driver_lock);
1378
1379	cpufreq_cpu_release(policy);
1380
1381	hybrid_update_capacity(cpudata);
1382
1383	mutex_unlock(&intel_pstate_driver_lock);
1384}
1385
1386static void intel_pstate_update_limits_for_all(void)
1387{
1388	int cpu;
1389
1390	for_each_possible_cpu(cpu) {
1391		struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1392
1393		if (!policy)
1394			continue;
1395
1396		__intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1397
1398		cpufreq_cpu_release(policy);
1399	}
1400
1401	mutex_lock(&hybrid_capacity_lock);
1402
1403	if (hybrid_max_perf_cpu)
1404		__hybrid_refresh_cpu_capacity_scaling();
1405
1406	mutex_unlock(&hybrid_capacity_lock);
1407}
1408
 
 
1409/************************** sysfs begin ************************/
1410#define show_one(file_name, object)					\
1411	static ssize_t show_##file_name					\
1412	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1413	{								\
1414		return sprintf(buf, "%u\n", global.object);		\
1415	}
1416
1417static ssize_t intel_pstate_show_status(char *buf);
1418static int intel_pstate_update_status(const char *buf, size_t size);
1419
1420static ssize_t show_status(struct kobject *kobj,
1421			   struct kobj_attribute *attr, char *buf)
1422{
1423	ssize_t ret;
1424
1425	mutex_lock(&intel_pstate_driver_lock);
1426	ret = intel_pstate_show_status(buf);
1427	mutex_unlock(&intel_pstate_driver_lock);
1428
1429	return ret;
1430}
1431
1432static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1433			    const char *buf, size_t count)
1434{
1435	char *p = memchr(buf, '\n', count);
1436	int ret;
1437
1438	mutex_lock(&intel_pstate_driver_lock);
1439	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1440	mutex_unlock(&intel_pstate_driver_lock);
1441
1442	return ret < 0 ? ret : count;
1443}
1444
1445static ssize_t show_turbo_pct(struct kobject *kobj,
1446				struct kobj_attribute *attr, char *buf)
1447{
1448	struct cpudata *cpu;
1449	int total, no_turbo, turbo_pct;
1450	uint32_t turbo_fp;
1451
1452	mutex_lock(&intel_pstate_driver_lock);
1453
1454	if (!intel_pstate_driver) {
1455		mutex_unlock(&intel_pstate_driver_lock);
1456		return -EAGAIN;
1457	}
1458
1459	cpu = all_cpu_data[0];
1460
1461	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1462	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1463	turbo_fp = div_fp(no_turbo, total);
1464	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1465
1466	mutex_unlock(&intel_pstate_driver_lock);
1467
1468	return sprintf(buf, "%u\n", turbo_pct);
1469}
1470
1471static ssize_t show_num_pstates(struct kobject *kobj,
1472				struct kobj_attribute *attr, char *buf)
1473{
1474	struct cpudata *cpu;
1475	int total;
1476
1477	mutex_lock(&intel_pstate_driver_lock);
1478
1479	if (!intel_pstate_driver) {
1480		mutex_unlock(&intel_pstate_driver_lock);
1481		return -EAGAIN;
1482	}
1483
1484	cpu = all_cpu_data[0];
1485	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1486
1487	mutex_unlock(&intel_pstate_driver_lock);
1488
1489	return sprintf(buf, "%u\n", total);
1490}
1491
1492static ssize_t show_no_turbo(struct kobject *kobj,
1493			     struct kobj_attribute *attr, char *buf)
1494{
1495	ssize_t ret;
1496
1497	mutex_lock(&intel_pstate_driver_lock);
1498
1499	if (!intel_pstate_driver) {
1500		mutex_unlock(&intel_pstate_driver_lock);
1501		return -EAGAIN;
1502	}
1503
1504	ret = sprintf(buf, "%u\n", global.no_turbo);
1505
1506	mutex_unlock(&intel_pstate_driver_lock);
1507
1508	return ret;
1509}
1510
1511static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1512			      const char *buf, size_t count)
1513{
1514	unsigned int input;
1515	bool no_turbo;
1516
1517	if (sscanf(buf, "%u", &input) != 1)
 
1518		return -EINVAL;
1519
1520	mutex_lock(&intel_pstate_driver_lock);
1521
1522	if (!intel_pstate_driver) {
1523		count = -EAGAIN;
1524		goto unlock_driver;
1525	}
1526
1527	no_turbo = !!clamp_t(int, input, 0, 1);
1528
1529	WRITE_ONCE(global.turbo_disabled, turbo_is_disabled());
1530	if (global.turbo_disabled && !no_turbo) {
1531		pr_notice("Turbo disabled by BIOS or unavailable on processor\n");
1532		count = -EPERM;
1533		if (global.no_turbo)
1534			goto unlock_driver;
1535		else
1536			no_turbo = 1;
1537	}
1538
1539	if (no_turbo == global.no_turbo) {
1540		goto unlock_driver;
1541	}
1542
1543	WRITE_ONCE(global.no_turbo, no_turbo);
1544
1545	mutex_lock(&intel_pstate_limits_lock);
1546
1547	if (no_turbo) {
1548		struct cpudata *cpu = all_cpu_data[0];
1549		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1550
1551		/* Squash the global minimum into the permitted range. */
1552		if (global.min_perf_pct > pct)
1553			global.min_perf_pct = pct;
1554	}
1555
1556	mutex_unlock(&intel_pstate_limits_lock);
1557
1558	intel_pstate_update_limits_for_all();
1559	arch_set_max_freq_ratio(no_turbo);
1560
1561unlock_driver:
1562	mutex_unlock(&intel_pstate_driver_lock);
1563
1564	return count;
1565}
1566
1567static void update_qos_request(enum freq_qos_req_type type)
1568{
1569	struct freq_qos_request *req;
1570	struct cpufreq_policy *policy;
1571	int i;
1572
1573	for_each_possible_cpu(i) {
1574		struct cpudata *cpu = all_cpu_data[i];
1575		unsigned int freq, perf_pct;
1576
1577		policy = cpufreq_cpu_get(i);
1578		if (!policy)
1579			continue;
1580
1581		req = policy->driver_data;
1582		cpufreq_cpu_put(policy);
1583
1584		if (!req)
1585			continue;
1586
1587		if (hwp_active)
1588			intel_pstate_get_hwp_cap(cpu);
1589
1590		if (type == FREQ_QOS_MIN) {
1591			perf_pct = global.min_perf_pct;
1592		} else {
1593			req++;
1594			perf_pct = global.max_perf_pct;
1595		}
1596
1597		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1598
1599		if (freq_qos_update_request(req, freq) < 0)
1600			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1601	}
1602}
1603
1604static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1605				  const char *buf, size_t count)
1606{
1607	unsigned int input;
1608	int ret;
1609
1610	ret = sscanf(buf, "%u", &input);
1611	if (ret != 1)
1612		return -EINVAL;
1613
1614	mutex_lock(&intel_pstate_driver_lock);
1615
1616	if (!intel_pstate_driver) {
1617		mutex_unlock(&intel_pstate_driver_lock);
1618		return -EAGAIN;
1619	}
1620
1621	mutex_lock(&intel_pstate_limits_lock);
1622
1623	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1624
1625	mutex_unlock(&intel_pstate_limits_lock);
1626
1627	if (intel_pstate_driver == &intel_pstate)
1628		intel_pstate_update_policies();
1629	else
1630		update_qos_request(FREQ_QOS_MAX);
1631
1632	mutex_unlock(&intel_pstate_driver_lock);
1633
 
 
1634	return count;
1635}
1636
1637static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1638				  const char *buf, size_t count)
1639{
1640	unsigned int input;
1641	int ret;
1642
1643	ret = sscanf(buf, "%u", &input);
1644	if (ret != 1)
1645		return -EINVAL;
1646
1647	mutex_lock(&intel_pstate_driver_lock);
1648
1649	if (!intel_pstate_driver) {
1650		mutex_unlock(&intel_pstate_driver_lock);
1651		return -EAGAIN;
1652	}
1653
1654	mutex_lock(&intel_pstate_limits_lock);
1655
1656	global.min_perf_pct = clamp_t(int, input,
1657				      min_perf_pct_min(), global.max_perf_pct);
1658
1659	mutex_unlock(&intel_pstate_limits_lock);
1660
1661	if (intel_pstate_driver == &intel_pstate)
1662		intel_pstate_update_policies();
1663	else
1664		update_qos_request(FREQ_QOS_MIN);
1665
1666	mutex_unlock(&intel_pstate_driver_lock);
1667
1668	return count;
1669}
1670
1671static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1672				struct kobj_attribute *attr, char *buf)
1673{
1674	return sprintf(buf, "%u\n", hwp_boost);
1675}
1676
1677static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1678				       struct kobj_attribute *b,
1679				       const char *buf, size_t count)
1680{
1681	unsigned int input;
1682	int ret;
1683
1684	ret = kstrtouint(buf, 10, &input);
1685	if (ret)
1686		return ret;
1687
1688	mutex_lock(&intel_pstate_driver_lock);
1689	hwp_boost = !!input;
1690	intel_pstate_update_policies();
1691	mutex_unlock(&intel_pstate_driver_lock);
1692
1693	return count;
1694}
1695
1696static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1697				      char *buf)
1698{
1699	u64 power_ctl;
1700	int enable;
1701
1702	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1703	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1704	return sprintf(buf, "%d\n", !enable);
1705}
1706
1707static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1708				       const char *buf, size_t count)
1709{
1710	bool input;
1711	int ret;
1712
1713	ret = kstrtobool(buf, &input);
1714	if (ret)
1715		return ret;
1716
1717	set_power_ctl_ee_state(input);
1718
 
 
1719	return count;
1720}
1721
1722show_one(max_perf_pct, max_perf_pct);
1723show_one(min_perf_pct, min_perf_pct);
1724
1725define_one_global_rw(status);
1726define_one_global_rw(no_turbo);
1727define_one_global_rw(max_perf_pct);
1728define_one_global_rw(min_perf_pct);
1729define_one_global_ro(turbo_pct);
1730define_one_global_ro(num_pstates);
1731define_one_global_rw(hwp_dynamic_boost);
1732define_one_global_rw(energy_efficiency);
1733
1734static struct attribute *intel_pstate_attributes[] = {
1735	&status.attr,
1736	&no_turbo.attr,
 
 
 
 
1737	NULL
1738};
1739
1740static const struct attribute_group intel_pstate_attr_group = {
1741	.attrs = intel_pstate_attributes,
1742};
1743
1744static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1745
1746static struct kobject *intel_pstate_kobject;
1747
1748static void __init intel_pstate_sysfs_expose_params(void)
1749{
1750	struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1751	int rc;
1752
1753	if (dev_root) {
1754		intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1755		put_device(dev_root);
1756	}
1757	if (WARN_ON(!intel_pstate_kobject))
1758		return;
1759
1760	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1761	if (WARN_ON(rc))
1762		return;
1763
1764	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1765		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1766		WARN_ON(rc);
1767
1768		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1769		WARN_ON(rc);
1770	}
1771
1772	/*
1773	 * If per cpu limits are enforced there are no global limits, so
1774	 * return without creating max/min_perf_pct attributes
1775	 */
1776	if (per_cpu_limits)
1777		return;
1778
1779	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1780	WARN_ON(rc);
1781
1782	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1783	WARN_ON(rc);
1784
1785	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1786		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1787		WARN_ON(rc);
1788	}
1789}
1790
1791static void __init intel_pstate_sysfs_remove(void)
1792{
1793	if (!intel_pstate_kobject)
1794		return;
1795
1796	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1797
1798	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1799		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1800		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1801	}
1802
1803	if (!per_cpu_limits) {
1804		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1805		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1806
1807		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1808			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1809	}
1810
1811	kobject_put(intel_pstate_kobject);
1812}
1813
1814static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1815{
1816	int rc;
1817
1818	if (!hwp_active)
1819		return;
1820
1821	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1822	WARN_ON_ONCE(rc);
1823}
1824
1825static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1826{
1827	if (!hwp_active)
1828		return;
1829
1830	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1831}
1832
1833/************************** sysfs end ************************/
1834
1835static void intel_pstate_notify_work(struct work_struct *work)
1836{
1837	struct cpudata *cpudata =
1838		container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1839	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1840
1841	if (policy) {
1842		__intel_pstate_update_max_freq(cpudata, policy);
1843
1844		cpufreq_cpu_release(policy);
1845
1846		/*
1847		 * The driver will not be unregistered while this function is
1848		 * running, so update the capacity without acquiring the driver
1849		 * lock.
1850		 */
1851		hybrid_update_capacity(cpudata);
1852	}
1853
1854	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1855}
1856
1857static DEFINE_RAW_SPINLOCK(hwp_notify_lock);
1858static cpumask_t hwp_intr_enable_mask;
1859
1860#define HWP_GUARANTEED_PERF_CHANGE_STATUS      BIT(0)
1861#define HWP_HIGHEST_PERF_CHANGE_STATUS         BIT(3)
1862
1863void notify_hwp_interrupt(void)
1864{
1865	unsigned int this_cpu = smp_processor_id();
1866	u64 value, status_mask;
1867	unsigned long flags;
1868
1869	if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1870		return;
1871
1872	status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS;
1873	if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1874		status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS;
1875
1876	rdmsrl_safe(MSR_HWP_STATUS, &value);
1877	if (!(value & status_mask))
1878		return;
1879
1880	raw_spin_lock_irqsave(&hwp_notify_lock, flags);
1881
1882	if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1883		goto ack_intr;
1884
1885	schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work,
1886			      msecs_to_jiffies(10));
1887
1888	raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1889
1890	return;
1891
1892ack_intr:
1893	wrmsrl_safe(MSR_HWP_STATUS, 0);
1894	raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1895}
1896
1897static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1898{
1899	bool cancel_work;
1900
1901	if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1902		return;
1903
1904	/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1905	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1906
1907	raw_spin_lock_irq(&hwp_notify_lock);
1908	cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1909	raw_spin_unlock_irq(&hwp_notify_lock);
1910
1911	if (cancel_work)
1912		cancel_delayed_work_sync(&cpudata->hwp_notify_work);
1913}
1914
1915#define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0)
1916#define HWP_HIGHEST_PERF_CHANGE_REQ    BIT(2)
1917
1918static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1919{
1920	/* Enable HWP notification interrupt for performance change */
1921	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1922		u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ;
1923
1924		raw_spin_lock_irq(&hwp_notify_lock);
1925		INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1926		cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1927		raw_spin_unlock_irq(&hwp_notify_lock);
1928
1929		if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1930			interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ;
1931
1932		/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1933		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask);
1934		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1935	}
1936}
1937
1938static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1939{
1940	cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1941
1942	/*
1943	 * If the EPP is set by firmware, which means that firmware enabled HWP
1944	 * - Is equal or less than 0x80 (default balance_perf EPP)
1945	 * - But less performance oriented than performance EPP
1946	 *   then use this as new balance_perf EPP.
1947	 */
1948	if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1949	    cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1950		epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1951		return;
1952	}
1953
1954	/*
1955	 * If this CPU gen doesn't call for change in balance_perf
1956	 * EPP return.
1957	 */
1958	if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1959		return;
1960
1961	/*
1962	 * Use hard coded value per gen to update the balance_perf
1963	 * and default EPP.
1964	 */
1965	cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1966	intel_pstate_set_epp(cpudata, cpudata->epp_default);
1967}
1968
1969static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1970{
1971	/* First disable HWP notification interrupt till we activate again */
1972	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1973		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1974
1975	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1976
1977	intel_pstate_enable_hwp_interrupt(cpudata);
1978
1979	if (cpudata->epp_default >= 0)
1980		return;
1981
1982	intel_pstate_update_epp_defaults(cpudata);
1983}
1984
1985static int atom_get_min_pstate(int not_used)
1986{
1987	u64 value;
1988
1989	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1990	return (value >> 8) & 0x7F;
1991}
1992
1993static int atom_get_max_pstate(int not_used)
1994{
1995	u64 value;
1996
1997	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1998	return (value >> 16) & 0x7F;
1999}
2000
2001static int atom_get_turbo_pstate(int not_used)
2002{
2003	u64 value;
2004
2005	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
2006	return value & 0x7F;
2007}
2008
2009static u64 atom_get_val(struct cpudata *cpudata, int pstate)
2010{
2011	u64 val;
2012	int32_t vid_fp;
2013	u32 vid;
2014
2015	val = (u64)pstate << 8;
2016	if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2017		val |= (u64)1 << 32;
2018
2019	vid_fp = cpudata->vid.min + mul_fp(
2020		int_tofp(pstate - cpudata->pstate.min_pstate),
2021		cpudata->vid.ratio);
2022
2023	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
2024	vid = ceiling_fp(vid_fp);
2025
2026	if (pstate > cpudata->pstate.max_pstate)
2027		vid = cpudata->vid.turbo;
2028
2029	return val | vid;
2030}
2031
2032static int silvermont_get_scaling(void)
2033{
2034	u64 value;
2035	int i;
2036	/* Defined in Table 35-6 from SDM (Sept 2015) */
2037	static int silvermont_freq_table[] = {
2038		83300, 100000, 133300, 116700, 80000};
2039
2040	rdmsrl(MSR_FSB_FREQ, value);
2041	i = value & 0x7;
2042	WARN_ON(i > 4);
2043
2044	return silvermont_freq_table[i];
2045}
2046
2047static int airmont_get_scaling(void)
2048{
2049	u64 value;
2050	int i;
2051	/* Defined in Table 35-10 from SDM (Sept 2015) */
2052	static int airmont_freq_table[] = {
2053		83300, 100000, 133300, 116700, 80000,
2054		93300, 90000, 88900, 87500};
2055
2056	rdmsrl(MSR_FSB_FREQ, value);
2057	i = value & 0xF;
2058	WARN_ON(i > 8);
2059
2060	return airmont_freq_table[i];
2061}
2062
2063static void atom_get_vid(struct cpudata *cpudata)
2064{
2065	u64 value;
2066
2067	rdmsrl(MSR_ATOM_CORE_VIDS, value);
2068	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
2069	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
2070	cpudata->vid.ratio = div_fp(
2071		cpudata->vid.max - cpudata->vid.min,
2072		int_tofp(cpudata->pstate.max_pstate -
2073			cpudata->pstate.min_pstate));
2074
2075	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
2076	cpudata->vid.turbo = value & 0x7f;
2077}
2078
2079static int core_get_min_pstate(int cpu)
2080{
2081	u64 value;
2082
2083	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2084	return (value >> 40) & 0xFF;
2085}
2086
2087static int core_get_max_pstate_physical(int cpu)
2088{
2089	u64 value;
2090
2091	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2092	return (value >> 8) & 0xFF;
2093}
2094
2095static int core_get_tdp_ratio(int cpu, u64 plat_info)
2096{
2097	/* Check how many TDP levels present */
2098	if (plat_info & 0x600000000) {
2099		u64 tdp_ctrl;
2100		u64 tdp_ratio;
2101		int tdp_msr;
2102		int err;
2103
2104		/* Get the TDP level (0, 1, 2) to get ratios */
2105		err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
2106		if (err)
2107			return err;
2108
2109		/* TDP MSR are continuous starting at 0x648 */
2110		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
2111		err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
2112		if (err)
2113			return err;
2114
2115		/* For level 1 and 2, bits[23:16] contain the ratio */
2116		if (tdp_ctrl & 0x03)
2117			tdp_ratio >>= 16;
2118
2119		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
2120		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
2121
2122		return (int)tdp_ratio;
2123	}
2124
2125	return -ENXIO;
2126}
2127
2128static int core_get_max_pstate(int cpu)
2129{
2130	u64 tar;
2131	u64 plat_info;
2132	int max_pstate;
2133	int tdp_ratio;
2134	int err;
2135
2136	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
2137	max_pstate = (plat_info >> 8) & 0xFF;
2138
2139	tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
2140	if (tdp_ratio <= 0)
2141		return max_pstate;
2142
2143	if (hwp_active) {
2144		/* Turbo activation ratio is not used on HWP platforms */
2145		return tdp_ratio;
2146	}
2147
2148	err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
2149	if (!err) {
2150		int tar_levels;
2151
2152		/* Do some sanity checking for safety */
2153		tar_levels = tar & 0xff;
2154		if (tdp_ratio - 1 == tar_levels) {
2155			max_pstate = tar_levels;
2156			pr_debug("max_pstate=TAC %x\n", max_pstate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157		}
2158	}
2159
 
2160	return max_pstate;
2161}
2162
2163static int core_get_turbo_pstate(int cpu)
2164{
2165	u64 value;
2166	int nont, ret;
2167
2168	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2169	nont = core_get_max_pstate(cpu);
2170	ret = (value) & 255;
2171	if (ret <= nont)
2172		ret = nont;
2173	return ret;
2174}
2175
 
 
 
 
 
2176static u64 core_get_val(struct cpudata *cpudata, int pstate)
2177{
2178	u64 val;
2179
2180	val = (u64)pstate << 8;
2181	if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2182		val |= (u64)1 << 32;
2183
2184	return val;
2185}
2186
2187static int knl_get_aperf_mperf_shift(void)
2188{
2189	return 10;
2190}
2191
2192static int knl_get_turbo_pstate(int cpu)
2193{
2194	u64 value;
2195	int nont, ret;
2196
2197	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2198	nont = core_get_max_pstate(cpu);
2199	ret = (((value) >> 8) & 0xFF);
2200	if (ret <= nont)
2201		ret = nont;
2202	return ret;
2203}
2204
2205static void hybrid_get_type(void *data)
2206{
2207	u8 *cpu_type = data;
2208
2209	*cpu_type = get_this_hybrid_cpu_type();
2210}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2211
2212static int hwp_get_cpu_scaling(int cpu)
2213{
2214	u8 cpu_type = 0;
2215
2216	smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
2217	/* P-cores have a smaller perf level-to-freqency scaling factor. */
2218	if (cpu_type == 0x40)
2219		return hybrid_scaling_factor;
2220
2221	/* Use default core scaling for E-cores */
2222	if (cpu_type == 0x20)
2223		return core_get_scaling();
2224
2225	/*
2226	 * If reached here, this system is either non-hybrid (like Tiger
2227	 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
2228	 * no E cores (in which case CPUID for hybrid support is 0).
2229	 *
2230	 * The CPPC nominal_frequency field is 0 for non-hybrid systems,
2231	 * so the default core scaling will be used for them.
2232	 */
2233	return intel_pstate_cppc_get_scaling(cpu);
 
 
 
 
 
2234}
2235
2236static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2237{
2238	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2239	cpu->pstate.current_pstate = pstate;
 
 
 
 
 
 
 
2240	/*
2241	 * Generally, there is no guarantee that this code will always run on
2242	 * the CPU being updated, so force the register update to run on the
2243	 * right CPU.
2244	 */
2245	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2246		      pstate_funcs.get_val(cpu, pstate));
2247}
2248
2249static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2250{
2251	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2252}
2253
2254static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2255{
2256	int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2257	int perf_ctl_scaling = pstate_funcs.get_scaling();
2258
2259	cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2260	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2261	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2262
2263	if (hwp_active && !hwp_mode_bdw) {
2264		__intel_pstate_get_hwp_cap(cpu);
2265
2266		if (pstate_funcs.get_cpu_scaling) {
2267			cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2268			if (cpu->pstate.scaling != perf_ctl_scaling) {
2269				intel_pstate_hybrid_hwp_adjust(cpu);
2270				hwp_is_hybrid = true;
2271			}
2272		} else {
2273			cpu->pstate.scaling = perf_ctl_scaling;
2274		}
2275		/*
2276		 * If the CPU is going online for the first time and it was
2277		 * offline initially, asym capacity scaling needs to be updated.
2278		 */
2279		hybrid_update_capacity(cpu);
2280	} else {
2281		cpu->pstate.scaling = perf_ctl_scaling;
2282		cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2283		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2284	}
2285
2286	if (cpu->pstate.scaling == perf_ctl_scaling) {
2287		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2288		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2289		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2290	}
2291
2292	if (pstate_funcs.get_aperf_mperf_shift)
2293		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2294
2295	if (pstate_funcs.get_vid)
2296		pstate_funcs.get_vid(cpu);
2297
2298	intel_pstate_set_min_pstate(cpu);
2299}
2300
2301/*
2302 * Long hold time will keep high perf limits for long time,
2303 * which negatively impacts perf/watt for some workloads,
2304 * like specpower. 3ms is based on experiements on some
2305 * workoads.
2306 */
2307static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2308
2309static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2310{
2311	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2312	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2313	u32 max_limit = (hwp_req & 0xff00) >> 8;
2314	u32 min_limit = (hwp_req & 0xff);
2315	u32 boost_level1;
2316
2317	/*
2318	 * Cases to consider (User changes via sysfs or boot time):
2319	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2320	 *	No boost, return.
2321	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2322	 *     Should result in one level boost only for P0.
2323	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2324	 *     Should result in two level boost:
2325	 *         (min + p1)/2 and P1.
2326	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2327	 *     Should result in three level boost:
2328	 *        (min + p1)/2, P1 and P0.
2329	 */
2330
2331	/* If max and min are equal or already at max, nothing to boost */
2332	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2333		return;
2334
2335	if (!cpu->hwp_boost_min)
2336		cpu->hwp_boost_min = min_limit;
2337
2338	/* level at half way mark between min and guranteed */
2339	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2340
2341	if (cpu->hwp_boost_min < boost_level1)
2342		cpu->hwp_boost_min = boost_level1;
2343	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2344		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2345	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2346		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2347		cpu->hwp_boost_min = max_limit;
2348	else
2349		return;
2350
2351	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2352	wrmsrl(MSR_HWP_REQUEST, hwp_req);
2353	cpu->last_update = cpu->sample.time;
2354}
2355
2356static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2357{
2358	if (cpu->hwp_boost_min) {
2359		bool expired;
2360
2361		/* Check if we are idle for hold time to boost down */
2362		expired = time_after64(cpu->sample.time, cpu->last_update +
2363				       hwp_boost_hold_time_ns);
2364		if (expired) {
2365			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2366			cpu->hwp_boost_min = 0;
2367		}
2368	}
2369	cpu->last_update = cpu->sample.time;
2370}
2371
2372static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2373						      u64 time)
2374{
2375	cpu->sample.time = time;
2376
2377	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2378		bool do_io = false;
2379
2380		cpu->sched_flags = 0;
2381		/*
2382		 * Set iowait_boost flag and update time. Since IO WAIT flag
2383		 * is set all the time, we can't just conclude that there is
2384		 * some IO bound activity is scheduled on this CPU with just
2385		 * one occurrence. If we receive at least two in two
2386		 * consecutive ticks, then we treat as boost candidate.
2387		 */
2388		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2389			do_io = true;
2390
2391		cpu->last_io_update = time;
2392
2393		if (do_io)
2394			intel_pstate_hwp_boost_up(cpu);
2395
2396	} else {
2397		intel_pstate_hwp_boost_down(cpu);
2398	}
2399}
2400
2401static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2402						u64 time, unsigned int flags)
2403{
2404	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2405
2406	cpu->sched_flags |= flags;
2407
2408	if (smp_processor_id() == cpu->cpu)
2409		intel_pstate_update_util_hwp_local(cpu, time);
2410}
2411
2412static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2413{
2414	struct sample *sample = &cpu->sample;
 
 
 
 
2415
2416	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2417}
2418
2419static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2420{
2421	u64 aperf, mperf;
2422	unsigned long flags;
2423	u64 tsc;
2424
2425	local_irq_save(flags);
2426	rdmsrl(MSR_IA32_APERF, aperf);
2427	rdmsrl(MSR_IA32_MPERF, mperf);
2428	tsc = rdtsc();
2429	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2430		local_irq_restore(flags);
2431		return false;
2432	}
2433	local_irq_restore(flags);
2434
2435	cpu->last_sample_time = cpu->sample.time;
2436	cpu->sample.time = time;
2437	cpu->sample.aperf = aperf;
2438	cpu->sample.mperf = mperf;
2439	cpu->sample.tsc =  tsc;
2440	cpu->sample.aperf -= cpu->prev_aperf;
2441	cpu->sample.mperf -= cpu->prev_mperf;
2442	cpu->sample.tsc -= cpu->prev_tsc;
2443
2444	cpu->prev_aperf = aperf;
2445	cpu->prev_mperf = mperf;
2446	cpu->prev_tsc = tsc;
2447	/*
2448	 * First time this function is invoked in a given cycle, all of the
2449	 * previous sample data fields are equal to zero or stale and they must
2450	 * be populated with meaningful numbers for things to work, so assume
2451	 * that sample.time will always be reset before setting the utilization
2452	 * update hook and make the caller skip the sample then.
2453	 */
2454	if (cpu->last_sample_time) {
2455		intel_pstate_calc_avg_perf(cpu);
2456		return true;
2457	}
2458	return false;
2459}
2460
2461static inline int32_t get_avg_frequency(struct cpudata *cpu)
2462{
2463	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
 
 
2464}
2465
2466static inline int32_t get_avg_pstate(struct cpudata *cpu)
2467{
2468	return mul_ext_fp(cpu->pstate.max_pstate_physical,
2469			  cpu->sample.core_avg_perf);
2470}
2471
2472static inline int32_t get_target_pstate(struct cpudata *cpu)
2473{
2474	struct sample *sample = &cpu->sample;
2475	int32_t busy_frac;
2476	int target, avg_pstate;
 
 
2477
2478	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2479			   sample->tsc);
2480
2481	if (busy_frac < cpu->iowait_boost)
2482		busy_frac = cpu->iowait_boost;
 
 
 
 
 
 
 
2483
2484	sample->busy_scaled = busy_frac * 100;
2485
2486	target = READ_ONCE(global.no_turbo) ?
2487			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2488	target += target >> 2;
2489	target = mul_fp(target, busy_frac);
2490	if (target < cpu->pstate.min_pstate)
2491		target = cpu->pstate.min_pstate;
2492
2493	/*
2494	 * If the average P-state during the previous cycle was higher than the
2495	 * current target, add 50% of the difference to the target to reduce
2496	 * possible performance oscillations and offset possible performance
2497	 * loss related to moving the workload from one CPU to another within
2498	 * a package/module.
2499	 */
2500	avg_pstate = get_avg_pstate(cpu);
2501	if (avg_pstate > target)
2502		target += (avg_pstate - target) >> 1;
2503
2504	return target;
2505}
2506
2507static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2508{
2509	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2510	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2511
2512	return clamp_t(int, pstate, min_pstate, max_pstate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2513}
2514
2515static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2516{
 
 
 
 
 
 
2517	if (pstate == cpu->pstate.current_pstate)
2518		return;
2519
2520	cpu->pstate.current_pstate = pstate;
2521	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2522}
2523
2524static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2525{
2526	int from = cpu->pstate.current_pstate;
2527	struct sample *sample;
2528	int target_pstate;
2529
2530	target_pstate = get_target_pstate(cpu);
2531	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2532	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
 
2533	intel_pstate_update_pstate(cpu, target_pstate);
2534
2535	sample = &cpu->sample;
2536	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2537		fp_toint(sample->busy_scaled),
2538		from,
2539		cpu->pstate.current_pstate,
2540		sample->mperf,
2541		sample->aperf,
2542		sample->tsc,
2543		get_avg_frequency(cpu),
2544		fp_toint(cpu->iowait_boost * 100));
2545}
2546
2547static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2548				     unsigned int flags)
2549{
2550	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2551	u64 delta_ns;
2552
2553	/* Don't allow remote callbacks */
2554	if (smp_processor_id() != cpu->cpu)
2555		return;
2556
2557	delta_ns = time - cpu->last_update;
2558	if (flags & SCHED_CPUFREQ_IOWAIT) {
2559		/* Start over if the CPU may have been idle. */
2560		if (delta_ns > TICK_NSEC) {
2561			cpu->iowait_boost = ONE_EIGHTH_FP;
2562		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2563			cpu->iowait_boost <<= 1;
2564			if (cpu->iowait_boost > int_tofp(1))
2565				cpu->iowait_boost = int_tofp(1);
2566		} else {
2567			cpu->iowait_boost = ONE_EIGHTH_FP;
2568		}
2569	} else if (cpu->iowait_boost) {
2570		/* Clear iowait_boost if the CPU may have been idle. */
2571		if (delta_ns > TICK_NSEC)
2572			cpu->iowait_boost = 0;
2573		else
2574			cpu->iowait_boost >>= 1;
2575	}
2576	cpu->last_update = time;
2577	delta_ns = time - cpu->sample.time;
2578	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2579		return;
2580
2581	if (intel_pstate_sample(cpu, time))
2582		intel_pstate_adjust_pstate(cpu);
2583}
2584
2585static struct pstate_funcs core_funcs = {
2586	.get_max = core_get_max_pstate,
2587	.get_max_physical = core_get_max_pstate_physical,
2588	.get_min = core_get_min_pstate,
2589	.get_turbo = core_get_turbo_pstate,
2590	.get_scaling = core_get_scaling,
2591	.get_val = core_get_val,
2592};
2593
2594static const struct pstate_funcs silvermont_funcs = {
2595	.get_max = atom_get_max_pstate,
2596	.get_max_physical = atom_get_max_pstate,
2597	.get_min = atom_get_min_pstate,
2598	.get_turbo = atom_get_turbo_pstate,
2599	.get_val = atom_get_val,
2600	.get_scaling = silvermont_get_scaling,
2601	.get_vid = atom_get_vid,
2602};
2603
2604static const struct pstate_funcs airmont_funcs = {
2605	.get_max = atom_get_max_pstate,
2606	.get_max_physical = atom_get_max_pstate,
2607	.get_min = atom_get_min_pstate,
2608	.get_turbo = atom_get_turbo_pstate,
2609	.get_val = atom_get_val,
2610	.get_scaling = airmont_get_scaling,
2611	.get_vid = atom_get_vid,
2612};
2613
2614static const struct pstate_funcs knl_funcs = {
2615	.get_max = core_get_max_pstate,
2616	.get_max_physical = core_get_max_pstate_physical,
2617	.get_min = core_get_min_pstate,
2618	.get_turbo = knl_get_turbo_pstate,
2619	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2620	.get_scaling = core_get_scaling,
2621	.get_val = core_get_val,
2622};
2623
2624#define X86_MATCH(vfm, policy)					 \
2625	X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy)
2626
2627static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2628	X86_MATCH(INTEL_SANDYBRIDGE,		core_funcs),
2629	X86_MATCH(INTEL_SANDYBRIDGE_X,		core_funcs),
2630	X86_MATCH(INTEL_ATOM_SILVERMONT,	silvermont_funcs),
2631	X86_MATCH(INTEL_IVYBRIDGE,		core_funcs),
2632	X86_MATCH(INTEL_HASWELL,		core_funcs),
2633	X86_MATCH(INTEL_BROADWELL,		core_funcs),
2634	X86_MATCH(INTEL_IVYBRIDGE_X,		core_funcs),
2635	X86_MATCH(INTEL_HASWELL_X,		core_funcs),
2636	X86_MATCH(INTEL_HASWELL_L,		core_funcs),
2637	X86_MATCH(INTEL_HASWELL_G,		core_funcs),
2638	X86_MATCH(INTEL_BROADWELL_G,		core_funcs),
2639	X86_MATCH(INTEL_ATOM_AIRMONT,		airmont_funcs),
2640	X86_MATCH(INTEL_SKYLAKE_L,		core_funcs),
2641	X86_MATCH(INTEL_BROADWELL_X,		core_funcs),
2642	X86_MATCH(INTEL_SKYLAKE,		core_funcs),
2643	X86_MATCH(INTEL_BROADWELL_D,		core_funcs),
2644	X86_MATCH(INTEL_XEON_PHI_KNL,		knl_funcs),
2645	X86_MATCH(INTEL_XEON_PHI_KNM,		knl_funcs),
2646	X86_MATCH(INTEL_ATOM_GOLDMONT,		core_funcs),
2647	X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS,	core_funcs),
2648	X86_MATCH(INTEL_SKYLAKE_X,		core_funcs),
2649	X86_MATCH(INTEL_COMETLAKE,		core_funcs),
2650	X86_MATCH(INTEL_ICELAKE_X,		core_funcs),
2651	X86_MATCH(INTEL_TIGERLAKE,		core_funcs),
2652	X86_MATCH(INTEL_SAPPHIRERAPIDS_X,	core_funcs),
2653	X86_MATCH(INTEL_EMERALDRAPIDS_X,	core_funcs),
2654	{}
2655};
2656MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2657
2658#ifdef CONFIG_ACPI
2659static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2660	X86_MATCH(INTEL_BROADWELL_D,		core_funcs),
2661	X86_MATCH(INTEL_BROADWELL_X,		core_funcs),
2662	X86_MATCH(INTEL_SKYLAKE_X,		core_funcs),
2663	X86_MATCH(INTEL_ICELAKE_X,		core_funcs),
2664	X86_MATCH(INTEL_SAPPHIRERAPIDS_X,	core_funcs),
2665	X86_MATCH(INTEL_EMERALDRAPIDS_X,	core_funcs),
2666	X86_MATCH(INTEL_GRANITERAPIDS_D,	core_funcs),
2667	X86_MATCH(INTEL_GRANITERAPIDS_X,	core_funcs),
2668	X86_MATCH(INTEL_ATOM_CRESTMONT,		core_funcs),
2669	X86_MATCH(INTEL_ATOM_CRESTMONT_X,	core_funcs),
2670	{}
2671};
2672#endif
2673
2674static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2675	X86_MATCH(INTEL_KABYLAKE,		core_funcs),
2676	{}
2677};
2678
2679static int intel_pstate_init_cpu(unsigned int cpunum)
2680{
2681	struct cpudata *cpu;
2682
2683	cpu = all_cpu_data[cpunum];
 
 
 
 
2684
2685	if (!cpu) {
2686		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2687		if (!cpu)
2688			return -ENOMEM;
2689
2690		WRITE_ONCE(all_cpu_data[cpunum], cpu);
2691
2692		cpu->cpu = cpunum;
 
 
 
 
2693
2694		cpu->epp_default = -EINVAL;
2695
2696		if (hwp_active) {
2697			intel_pstate_hwp_enable(cpu);
2698
2699			if (intel_pstate_acpi_pm_profile_server())
2700				hwp_boost = true;
2701		}
2702	} else if (hwp_active) {
2703		/*
2704		 * Re-enable HWP in case this happens after a resume from ACPI
2705		 * S3 if the CPU was offline during the whole system/resume
2706		 * cycle.
2707		 */
2708		intel_pstate_hwp_reenable(cpu);
2709	}
2710
2711	cpu->epp_powersave = -EINVAL;
2712	cpu->epp_policy = 0;
2713
2714	intel_pstate_get_cpu_pstates(cpu);
 
2715
2716	pr_debug("controlling: cpu %d\n", cpunum);
 
 
 
2717
2718	return 0;
 
 
 
 
2719}
2720
2721static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2722{
2723	struct cpudata *cpu = all_cpu_data[cpu_num];
2724
2725	if (hwp_active && !hwp_boost)
2726		return;
2727
2728	if (cpu->update_util_set)
2729		return;
2730
2731	/* Prevent intel_pstate_update_util() from using stale data. */
2732	cpu->sample.time = 0;
2733	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2734				     (hwp_active ?
2735				      intel_pstate_update_util_hwp :
2736				      intel_pstate_update_util));
2737	cpu->update_util_set = true;
2738}
2739
2740static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2741{
2742	struct cpudata *cpu_data = all_cpu_data[cpu];
2743
2744	if (!cpu_data->update_util_set)
2745		return;
2746
2747	cpufreq_remove_update_util_hook(cpu);
2748	cpu_data->update_util_set = false;
2749	synchronize_rcu();
2750}
2751
2752static int intel_pstate_get_max_freq(struct cpudata *cpu)
2753{
2754	return READ_ONCE(global.no_turbo) ?
2755			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2756}
2757
2758static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2759					    unsigned int policy_min,
2760					    unsigned int policy_max)
2761{
2762	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2763	int32_t max_policy_perf, min_policy_perf;
2764
2765	max_policy_perf = policy_max / perf_ctl_scaling;
2766	if (policy_max == policy_min) {
2767		min_policy_perf = max_policy_perf;
2768	} else {
2769		min_policy_perf = policy_min / perf_ctl_scaling;
2770		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2771					  0, max_policy_perf);
2772	}
2773
2774	/*
2775	 * HWP needs some special consideration, because HWP_REQUEST uses
2776	 * abstract values to represent performance rather than pure ratios.
2777	 */
2778	if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2779		int freq;
2780
2781		freq = max_policy_perf * perf_ctl_scaling;
2782		max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2783		freq = min_policy_perf * perf_ctl_scaling;
2784		min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2785	}
2786
2787	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2788		 cpu->cpu, min_policy_perf, max_policy_perf);
2789
2790	/* Normalize user input to [min_perf, max_perf] */
2791	if (per_cpu_limits) {
2792		cpu->min_perf_ratio = min_policy_perf;
2793		cpu->max_perf_ratio = max_policy_perf;
2794	} else {
2795		int turbo_max = cpu->pstate.turbo_pstate;
2796		int32_t global_min, global_max;
2797
2798		/* Global limits are in percent of the maximum turbo P-state. */
2799		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2800		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2801		global_min = clamp_t(int32_t, global_min, 0, global_max);
2802
2803		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2804			 global_min, global_max);
2805
2806		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2807		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2808		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2809		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2810
2811		/* Make sure min_perf <= max_perf */
2812		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2813					  cpu->max_perf_ratio);
2814
2815	}
2816	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2817		 cpu->max_perf_ratio,
2818		 cpu->min_perf_ratio);
2819}
2820
2821static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2822{
2823	struct cpudata *cpu;
2824
2825	if (!policy->cpuinfo.max_freq)
2826		return -ENODEV;
2827
2828	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2829		 policy->cpuinfo.max_freq, policy->max);
2830
2831	cpu = all_cpu_data[policy->cpu];
2832	cpu->policy = policy->policy;
2833
2834	mutex_lock(&intel_pstate_limits_lock);
2835
2836	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2837
2838	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2839		int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2840
2841		/*
2842		 * NOHZ_FULL CPUs need this as the governor callback may not
2843		 * be invoked on them.
2844		 */
2845		intel_pstate_clear_update_util_hook(policy->cpu);
2846		intel_pstate_set_pstate(cpu, pstate);
 
2847	} else {
2848		intel_pstate_set_update_util_hook(policy->cpu);
2849	}
2850
2851	if (hwp_active) {
2852		/*
2853		 * When hwp_boost was active before and dynamically it
2854		 * was turned off, in that case we need to clear the
2855		 * update util hook.
2856		 */
2857		if (!hwp_boost)
2858			intel_pstate_clear_update_util_hook(policy->cpu);
2859		intel_pstate_hwp_set(policy->cpu);
2860	}
2861	/*
2862	 * policy->cur is never updated with the intel_pstate driver, but it
2863	 * is used as a stale frequency value. So, keep it within limits.
2864	 */
2865	policy->cur = policy->min;
2866
2867	mutex_unlock(&intel_pstate_limits_lock);
2868
2869	return 0;
2870}
2871
2872static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2873					   struct cpufreq_policy_data *policy)
2874{
2875	if (!hwp_active &&
2876	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2877	    policy->max < policy->cpuinfo.max_freq &&
2878	    policy->max > cpu->pstate.max_freq) {
2879		pr_debug("policy->max > max non turbo frequency\n");
2880		policy->max = policy->cpuinfo.max_freq;
2881	}
2882}
2883
2884static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2885					   struct cpufreq_policy_data *policy)
2886{
2887	int max_freq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2888
2889	if (hwp_active) {
2890		intel_pstate_get_hwp_cap(cpu);
2891		max_freq = READ_ONCE(global.no_turbo) ?
2892				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2893	} else {
2894		max_freq = intel_pstate_get_max_freq(cpu);
2895	}
2896	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2897
2898	intel_pstate_adjust_policy_max(cpu, policy);
2899}
2900
2901static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2902{
2903	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2904
2905	return 0;
2906}
2907
2908static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2909{
2910	struct cpudata *cpu = all_cpu_data[policy->cpu];
2911
2912	pr_debug("CPU %d going offline\n", cpu->cpu);
2913
2914	if (cpu->suspended)
2915		return 0;
2916
2917	/*
2918	 * If the CPU is an SMT thread and it goes offline with the performance
2919	 * settings different from the minimum, it will prevent its sibling
2920	 * from getting to lower performance levels, so force the minimum
2921	 * performance on CPU offline to prevent that from happening.
2922	 */
2923	if (hwp_active)
2924		intel_pstate_hwp_offline(cpu);
2925	else
2926		intel_pstate_set_min_pstate(cpu);
2927
2928	intel_pstate_exit_perf_limits(policy);
 
 
2929
2930	return 0;
2931}
2932
2933static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2934{
2935	struct cpudata *cpu = all_cpu_data[policy->cpu];
2936
2937	pr_debug("CPU %d going online\n", cpu->cpu);
2938
2939	intel_pstate_init_acpi_perf_limits(policy);
2940
2941	if (hwp_active) {
2942		/*
2943		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2944		 * know that it need not do that.
2945		 */
2946		intel_pstate_hwp_reenable(cpu);
2947		cpu->suspended = false;
2948
2949		hybrid_update_capacity(cpu);
2950	}
2951
2952	return 0;
2953}
2954
2955static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2956{
2957	intel_pstate_clear_update_util_hook(policy->cpu);
2958
2959	return intel_cpufreq_cpu_offline(policy);
2960}
2961
2962static void intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2963{
2964	pr_debug("CPU %d exiting\n", policy->cpu);
2965
2966	policy->fast_switch_possible = false;
2967}
2968
2969static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2970{
2971	struct cpudata *cpu;
2972	int rc;
2973
2974	rc = intel_pstate_init_cpu(policy->cpu);
2975	if (rc)
2976		return rc;
2977
2978	cpu = all_cpu_data[policy->cpu];
2979
2980	cpu->max_perf_ratio = 0xFF;
2981	cpu->min_perf_ratio = 0;
2982
2983	/* cpuinfo and default policy values */
2984	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2985	policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
2986			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2987
2988	policy->min = policy->cpuinfo.min_freq;
2989	policy->max = policy->cpuinfo.max_freq;
2990
2991	intel_pstate_init_acpi_perf_limits(policy);
2992
2993	policy->fast_switch_possible = true;
2994
2995	return 0;
2996}
2997
2998static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2999{
3000	int ret = __intel_pstate_cpu_init(policy);
3001
3002	if (ret)
3003		return ret;
3004
3005	/*
3006	 * Set the policy to powersave to provide a valid fallback value in case
3007	 * the default cpufreq governor is neither powersave nor performance.
3008	 */
3009	policy->policy = CPUFREQ_POLICY_POWERSAVE;
3010
3011	if (hwp_active) {
3012		struct cpudata *cpu = all_cpu_data[policy->cpu];
3013
3014		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
3015	}
 
 
 
 
3016
3017	return 0;
3018}
3019
3020static struct cpufreq_driver intel_pstate = {
3021	.flags		= CPUFREQ_CONST_LOOPS,
3022	.verify		= intel_pstate_verify_policy,
3023	.setpolicy	= intel_pstate_set_policy,
3024	.suspend	= intel_pstate_suspend,
3025	.resume		= intel_pstate_resume,
3026	.init		= intel_pstate_cpu_init,
3027	.exit		= intel_pstate_cpu_exit,
3028	.offline	= intel_pstate_cpu_offline,
3029	.online		= intel_pstate_cpu_online,
3030	.update_limits	= intel_pstate_update_limits,
3031	.name		= "intel_pstate",
3032};
3033
3034static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
3035{
3036	struct cpudata *cpu = all_cpu_data[policy->cpu];
3037
3038	intel_pstate_verify_cpu_policy(cpu, policy);
3039	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
3040
3041	return 0;
3042}
3043
3044/* Use of trace in passive mode:
3045 *
3046 * In passive mode the trace core_busy field (also known as the
3047 * performance field, and lablelled as such on the graphs; also known as
3048 * core_avg_perf) is not needed and so is re-assigned to indicate if the
3049 * driver call was via the normal or fast switch path. Various graphs
3050 * output from the intel_pstate_tracer.py utility that include core_busy
3051 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
3052 * so we use 10 to indicate the normal path through the driver, and
3053 * 90 to indicate the fast switch path through the driver.
3054 * The scaled_busy field is not used, and is set to 0.
3055 */
3056
3057#define	INTEL_PSTATE_TRACE_TARGET 10
3058#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
3059
3060static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
3061{
3062	struct sample *sample;
3063
3064	if (!trace_pstate_sample_enabled())
3065		return;
3066
3067	if (!intel_pstate_sample(cpu, ktime_get()))
3068		return;
3069
3070	sample = &cpu->sample;
3071	trace_pstate_sample(trace_type,
3072		0,
3073		old_pstate,
3074		cpu->pstate.current_pstate,
3075		sample->mperf,
3076		sample->aperf,
3077		sample->tsc,
3078		get_avg_frequency(cpu),
3079		fp_toint(cpu->iowait_boost * 100));
3080}
3081
3082static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
3083				     u32 desired, bool fast_switch)
3084{
3085	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
3086
3087	value &= ~HWP_MIN_PERF(~0L);
3088	value |= HWP_MIN_PERF(min);
3089
3090	value &= ~HWP_MAX_PERF(~0L);
3091	value |= HWP_MAX_PERF(max);
3092
3093	value &= ~HWP_DESIRED_PERF(~0L);
3094	value |= HWP_DESIRED_PERF(desired);
3095
3096	if (value == prev)
3097		return;
3098
3099	WRITE_ONCE(cpu->hwp_req_cached, value);
3100	if (fast_switch)
3101		wrmsrl(MSR_HWP_REQUEST, value);
3102	else
3103		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3104}
3105
3106static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
3107					  u32 target_pstate, bool fast_switch)
3108{
3109	if (fast_switch)
3110		wrmsrl(MSR_IA32_PERF_CTL,
3111		       pstate_funcs.get_val(cpu, target_pstate));
3112	else
3113		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
3114			      pstate_funcs.get_val(cpu, target_pstate));
3115}
3116
3117static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
3118				       int target_pstate, bool fast_switch)
3119{
3120	struct cpudata *cpu = all_cpu_data[policy->cpu];
3121	int old_pstate = cpu->pstate.current_pstate;
3122
3123	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
3124	if (hwp_active) {
3125		int max_pstate = policy->strict_target ?
3126					target_pstate : cpu->max_perf_ratio;
3127
3128		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
3129					 fast_switch);
3130	} else if (target_pstate != old_pstate) {
3131		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
3132	}
3133
3134	cpu->pstate.current_pstate = target_pstate;
3135
3136	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
3137			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
3138
3139	return target_pstate;
3140}
3141
3142static int intel_cpufreq_target(struct cpufreq_policy *policy,
3143				unsigned int target_freq,
3144				unsigned int relation)
3145{
3146	struct cpudata *cpu = all_cpu_data[policy->cpu];
3147	struct cpufreq_freqs freqs;
3148	int target_pstate;
3149
3150	freqs.old = policy->cur;
3151	freqs.new = target_freq;
3152
3153	cpufreq_freq_transition_begin(policy, &freqs);
3154
3155	target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
3156	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
3157
3158	freqs.new = target_pstate * cpu->pstate.scaling;
3159
3160	cpufreq_freq_transition_end(policy, &freqs, false);
3161
3162	return 0;
3163}
3164
3165static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
3166					      unsigned int target_freq)
3167{
3168	struct cpudata *cpu = all_cpu_data[policy->cpu];
3169	int target_pstate;
3170
3171	target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
3172
3173	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
3174
3175	return target_pstate * cpu->pstate.scaling;
3176}
3177
3178static void intel_cpufreq_adjust_perf(unsigned int cpunum,
3179				      unsigned long min_perf,
3180				      unsigned long target_perf,
3181				      unsigned long capacity)
3182{
3183	struct cpudata *cpu = all_cpu_data[cpunum];
3184	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
3185	int old_pstate = cpu->pstate.current_pstate;
3186	int cap_pstate, min_pstate, max_pstate, target_pstate;
3187
3188	cap_pstate = READ_ONCE(global.no_turbo) ?
3189					HWP_GUARANTEED_PERF(hwp_cap) :
3190					HWP_HIGHEST_PERF(hwp_cap);
3191
3192	/* Optimization: Avoid unnecessary divisions. */
3193
3194	target_pstate = cap_pstate;
3195	if (target_perf < capacity)
3196		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
3197
3198	min_pstate = cap_pstate;
3199	if (min_perf < capacity)
3200		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
3201
3202	if (min_pstate < cpu->pstate.min_pstate)
3203		min_pstate = cpu->pstate.min_pstate;
3204
3205	if (min_pstate < cpu->min_perf_ratio)
3206		min_pstate = cpu->min_perf_ratio;
3207
3208	if (min_pstate > cpu->max_perf_ratio)
3209		min_pstate = cpu->max_perf_ratio;
3210
3211	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
3212	if (max_pstate < min_pstate)
3213		max_pstate = min_pstate;
3214
3215	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
3216
3217	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
3218
3219	cpu->pstate.current_pstate = target_pstate;
3220	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
3221}
3222
3223static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3224{
3225	struct freq_qos_request *req;
3226	struct cpudata *cpu;
3227	struct device *dev;
3228	int ret, freq;
3229
3230	dev = get_cpu_device(policy->cpu);
3231	if (!dev)
3232		return -ENODEV;
3233
3234	ret = __intel_pstate_cpu_init(policy);
3235	if (ret)
3236		return ret;
3237
3238	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3239	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
3240	policy->cur = policy->cpuinfo.min_freq;
3241
3242	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3243	if (!req) {
3244		ret = -ENOMEM;
3245		goto pstate_exit;
3246	}
3247
3248	cpu = all_cpu_data[policy->cpu];
3249
3250	if (hwp_active) {
3251		u64 value;
3252
3253		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3254
3255		intel_pstate_get_hwp_cap(cpu);
3256
3257		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3258		WRITE_ONCE(cpu->hwp_req_cached, value);
3259
3260		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3261	} else {
3262		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3263	}
3264
3265	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3266
3267	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3268				   freq);
3269	if (ret < 0) {
3270		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3271		goto free_req;
3272	}
3273
3274	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3275
3276	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3277				   freq);
3278	if (ret < 0) {
3279		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3280		goto remove_min_req;
3281	}
3282
3283	policy->driver_data = req;
3284
3285	return 0;
3286
3287remove_min_req:
3288	freq_qos_remove_request(req);
3289free_req:
3290	kfree(req);
3291pstate_exit:
3292	intel_pstate_exit_perf_limits(policy);
3293
3294	return ret;
3295}
3296
3297static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3298{
3299	struct freq_qos_request *req;
3300
3301	req = policy->driver_data;
3302
3303	freq_qos_remove_request(req + 1);
3304	freq_qos_remove_request(req);
3305	kfree(req);
3306
3307	intel_pstate_cpu_exit(policy);
3308}
3309
3310static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3311{
3312	intel_pstate_suspend(policy);
3313
3314	if (hwp_active) {
3315		struct cpudata *cpu = all_cpu_data[policy->cpu];
3316		u64 value = READ_ONCE(cpu->hwp_req_cached);
3317
3318		/*
3319		 * Clear the desired perf field in MSR_HWP_REQUEST in case
3320		 * intel_cpufreq_adjust_perf() is in use and the last value
3321		 * written by it may not be suitable.
3322		 */
3323		value &= ~HWP_DESIRED_PERF(~0L);
3324		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3325		WRITE_ONCE(cpu->hwp_req_cached, value);
3326	}
3327
3328	return 0;
3329}
3330
3331static struct cpufreq_driver intel_cpufreq = {
3332	.flags		= CPUFREQ_CONST_LOOPS,
3333	.verify		= intel_cpufreq_verify_policy,
3334	.target		= intel_cpufreq_target,
3335	.fast_switch	= intel_cpufreq_fast_switch,
3336	.init		= intel_cpufreq_cpu_init,
3337	.exit		= intel_cpufreq_cpu_exit,
3338	.offline	= intel_cpufreq_cpu_offline,
3339	.online		= intel_pstate_cpu_online,
3340	.suspend	= intel_cpufreq_suspend,
3341	.resume		= intel_pstate_resume,
3342	.update_limits	= intel_pstate_update_limits,
3343	.name		= "intel_cpufreq",
3344};
3345
3346static struct cpufreq_driver *default_driver;
3347
3348static void intel_pstate_driver_cleanup(void)
3349{
3350	unsigned int cpu;
3351
3352	cpus_read_lock();
3353	for_each_online_cpu(cpu) {
3354		if (all_cpu_data[cpu]) {
3355			if (intel_pstate_driver == &intel_pstate)
3356				intel_pstate_clear_update_util_hook(cpu);
3357
3358			kfree(all_cpu_data[cpu]);
3359			WRITE_ONCE(all_cpu_data[cpu], NULL);
3360		}
3361	}
3362	cpus_read_unlock();
3363
3364	intel_pstate_driver = NULL;
3365}
3366
3367static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3368{
3369	bool refresh_cpu_cap_scaling;
3370	int ret;
3371
3372	if (driver == &intel_pstate)
3373		intel_pstate_sysfs_expose_hwp_dynamic_boost();
3374
3375	memset(&global, 0, sizeof(global));
3376	global.max_perf_pct = 100;
3377	global.turbo_disabled = turbo_is_disabled();
3378	global.no_turbo = global.turbo_disabled;
3379
3380	arch_set_max_freq_ratio(global.turbo_disabled);
3381
3382	refresh_cpu_cap_scaling = hybrid_clear_max_perf_cpu();
3383
3384	intel_pstate_driver = driver;
3385	ret = cpufreq_register_driver(intel_pstate_driver);
3386	if (ret) {
3387		intel_pstate_driver_cleanup();
3388		return ret;
3389	}
3390
3391	global.min_perf_pct = min_perf_pct_min();
3392
3393	hybrid_init_cpu_capacity_scaling(refresh_cpu_cap_scaling);
3394
3395	return 0;
3396}
3397
3398static ssize_t intel_pstate_show_status(char *buf)
3399{
3400	if (!intel_pstate_driver)
3401		return sprintf(buf, "off\n");
3402
3403	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3404					"active" : "passive");
3405}
3406
3407static int intel_pstate_update_status(const char *buf, size_t size)
3408{
3409	if (size == 3 && !strncmp(buf, "off", size)) {
3410		if (!intel_pstate_driver)
3411			return -EINVAL;
3412
3413		if (hwp_active)
3414			return -EBUSY;
3415
3416		cpufreq_unregister_driver(intel_pstate_driver);
3417		intel_pstate_driver_cleanup();
3418		return 0;
3419	}
3420
3421	if (size == 6 && !strncmp(buf, "active", size)) {
3422		if (intel_pstate_driver) {
3423			if (intel_pstate_driver == &intel_pstate)
3424				return 0;
3425
3426			cpufreq_unregister_driver(intel_pstate_driver);
3427		}
3428
3429		return intel_pstate_register_driver(&intel_pstate);
3430	}
3431
3432	if (size == 7 && !strncmp(buf, "passive", size)) {
3433		if (intel_pstate_driver) {
3434			if (intel_pstate_driver == &intel_cpufreq)
3435				return 0;
3436
3437			cpufreq_unregister_driver(intel_pstate_driver);
3438			intel_pstate_sysfs_hide_hwp_dynamic_boost();
3439		}
3440
3441		return intel_pstate_register_driver(&intel_cpufreq);
3442	}
3443
3444	return -EINVAL;
3445}
3446
3447static int no_load __initdata;
3448static int no_hwp __initdata;
3449static int hwp_only __initdata;
3450static unsigned int force_load __initdata;
3451
3452static int __init intel_pstate_msrs_not_valid(void)
3453{
3454	if (!pstate_funcs.get_max(0) ||
3455	    !pstate_funcs.get_min(0) ||
3456	    !pstate_funcs.get_turbo(0))
3457		return -ENODEV;
3458
3459	return 0;
3460}
3461
3462static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3463{
3464	pstate_funcs.get_max   = funcs->get_max;
3465	pstate_funcs.get_max_physical = funcs->get_max_physical;
3466	pstate_funcs.get_min   = funcs->get_min;
3467	pstate_funcs.get_turbo = funcs->get_turbo;
3468	pstate_funcs.get_scaling = funcs->get_scaling;
3469	pstate_funcs.get_val   = funcs->get_val;
3470	pstate_funcs.get_vid   = funcs->get_vid;
3471	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
 
3472}
3473
3474#ifdef CONFIG_ACPI
 
3475
3476static bool __init intel_pstate_no_acpi_pss(void)
3477{
3478	int i;
3479
3480	for_each_possible_cpu(i) {
3481		acpi_status status;
3482		union acpi_object *pss;
3483		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3484		struct acpi_processor *pr = per_cpu(processors, i);
3485
3486		if (!pr)
3487			continue;
3488
3489		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3490		if (ACPI_FAILURE(status))
3491			continue;
3492
3493		pss = buffer.pointer;
3494		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3495			kfree(pss);
3496			return false;
3497		}
3498
3499		kfree(pss);
3500	}
3501
3502	pr_debug("ACPI _PSS not found\n");
3503	return true;
3504}
3505
3506static bool __init intel_pstate_no_acpi_pcch(void)
3507{
3508	acpi_status status;
3509	acpi_handle handle;
3510
3511	status = acpi_get_handle(NULL, "\\_SB", &handle);
3512	if (ACPI_FAILURE(status))
3513		goto not_found;
3514
3515	if (acpi_has_method(handle, "PCCH"))
3516		return false;
3517
3518not_found:
3519	pr_debug("ACPI PCCH not found\n");
3520	return true;
3521}
3522
3523static bool __init intel_pstate_has_acpi_ppc(void)
3524{
3525	int i;
3526
3527	for_each_possible_cpu(i) {
3528		struct acpi_processor *pr = per_cpu(processors, i);
3529
3530		if (!pr)
3531			continue;
3532		if (acpi_has_method(pr->handle, "_PPC"))
3533			return true;
3534	}
3535	pr_debug("ACPI _PPC not found\n");
3536	return false;
3537}
3538
3539enum {
3540	PSS,
3541	PPC,
3542};
3543
3544/* Hardware vendor-specific info that has its own power management modes */
3545static struct acpi_platform_list plat_info[] __initdata = {
3546	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3547	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3548	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3549	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3550	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3551	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3552	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3553	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3554	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3555	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3556	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3557	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3558	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3559	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3560	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3561	{ } /* End */
3562};
3563
3564#define BITMASK_OOB	(BIT(8) | BIT(18))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3565
3566static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3567{
 
 
3568	const struct x86_cpu_id *id;
3569	u64 misc_pwr;
3570	int idx;
3571
3572	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3573	if (id) {
3574		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3575		if (misc_pwr & BITMASK_OOB) {
3576			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3577			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3578			return true;
3579		}
3580	}
3581
3582	idx = acpi_match_platform_list(plat_info);
3583	if (idx < 0)
3584		return false;
3585
3586	switch (plat_info[idx].data) {
3587	case PSS:
3588		if (!intel_pstate_no_acpi_pss())
3589			return false;
3590
3591		return intel_pstate_no_acpi_pcch();
3592	case PPC:
3593		return intel_pstate_has_acpi_ppc() && !force_load;
 
 
 
3594	}
3595
3596	return false;
3597}
3598
3599static void intel_pstate_request_control_from_smm(void)
3600{
3601	/*
3602	 * It may be unsafe to request P-states control from SMM if _PPC support
3603	 * has not been enabled.
3604	 */
3605	if (acpi_ppc)
3606		acpi_processor_pstate_control();
3607}
3608#else /* CONFIG_ACPI not enabled */
3609static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3610static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3611static inline void intel_pstate_request_control_from_smm(void) {}
3612#endif /* CONFIG_ACPI */
3613
3614#define INTEL_PSTATE_HWP_BROADWELL	0x01
3615
3616#define X86_MATCH_HWP(vfm, hwp_mode)				\
3617	X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode)
3618
3619static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3620	X86_MATCH_HWP(INTEL_BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3621	X86_MATCH_HWP(INTEL_BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3622	X86_MATCH_HWP(INTEL_ANY,		0),
3623	{}
3624};
3625
3626static bool intel_pstate_hwp_is_enabled(void)
3627{
3628	u64 value;
3629
3630	rdmsrl(MSR_PM_ENABLE, value);
3631	return !!(value & 0x1);
3632}
3633
3634#define POWERSAVE_MASK			GENMASK(7, 0)
3635#define BALANCE_POWER_MASK		GENMASK(15, 8)
3636#define BALANCE_PERFORMANCE_MASK	GENMASK(23, 16)
3637#define PERFORMANCE_MASK		GENMASK(31, 24)
3638
3639#define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \
3640	(FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\
3641	 FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\
3642	 FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\
3643	 FIELD_PREP_CONST(PERFORMANCE_MASK, performance))
3644
3645#define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \
3646	(HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\
3647	 balance_perf, HWP_EPP_PERFORMANCE))
3648
3649static const struct x86_cpu_id intel_epp_default[] = {
3650	/*
3651	 * Set EPP value as 102, this is the max suggested EPP
3652	 * which can result in one core turbo frequency for
3653	 * AlderLake Mobile CPUs.
3654	 */
3655	X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)),
3656	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3657	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3658	X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3659	X86_MATCH_VFM(INTEL_GRANITERAPIDS_D, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3660	X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3661		      179, 64, 16)),
3662	X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3663		      179, 64, 16)),
3664	{}
3665};
3666
3667static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3668	X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3669	X86_MATCH_VFM(INTEL_ARROWLAKE, HYBRID_SCALING_FACTOR_MTL),
3670	X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL),
3671	{}
3672};
3673
3674static int __init intel_pstate_init(void)
3675{
3676	static struct cpudata **_all_cpu_data;
3677	const struct x86_cpu_id *id;
3678	int rc;
3679
3680	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3681		return -ENODEV;
3682
3683	id = x86_match_cpu(hwp_support_ids);
3684	if (id) {
3685		hwp_forced = intel_pstate_hwp_is_enabled();
3686
3687		if (hwp_forced)
3688			pr_info("HWP enabled by BIOS\n");
3689		else if (no_load)
3690			return -ENODEV;
3691
3692		copy_cpu_funcs(&core_funcs);
3693		/*
3694		 * Avoid enabling HWP for processors without EPP support,
3695		 * because that means incomplete HWP implementation which is a
3696		 * corner case and supporting it is generally problematic.
3697		 *
3698		 * If HWP is enabled already, though, there is no choice but to
3699		 * deal with it.
3700		 */
3701		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3702			hwp_active = true;
3703			hwp_mode_bdw = id->driver_data;
3704			intel_pstate.attr = hwp_cpufreq_attrs;
3705			intel_cpufreq.attr = hwp_cpufreq_attrs;
3706			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3707			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3708			if (!default_driver)
3709				default_driver = &intel_pstate;
3710
3711			pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3712
3713			goto hwp_cpu_matched;
3714		}
3715		pr_info("HWP not enabled\n");
3716	} else {
3717		if (no_load)
3718			return -ENODEV;
3719
3720		id = x86_match_cpu(intel_pstate_cpu_ids);
3721		if (!id) {
3722			pr_info("CPU model not supported\n");
3723			return -ENODEV;
3724		}
3725
3726		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3727	}
3728
3729	if (intel_pstate_msrs_not_valid()) {
3730		pr_info("Invalid MSRs\n");
3731		return -ENODEV;
3732	}
3733	/* Without HWP start in the passive mode. */
3734	if (!default_driver)
3735		default_driver = &intel_cpufreq;
3736
3737hwp_cpu_matched:
3738	/*
3739	 * The Intel pstate driver will be ignored if the platform
3740	 * firmware has its own power management modes.
3741	 */
3742	if (intel_pstate_platform_pwr_mgmt_exists()) {
3743		pr_info("P-states controlled by the platform\n");
3744		return -ENODEV;
3745	}
3746
3747	if (!hwp_active && hwp_only)
3748		return -ENOTSUPP;
3749
3750	pr_info("Intel P-state driver initializing\n");
3751
3752	_all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3753	if (!_all_cpu_data)
3754		return -ENOMEM;
3755
3756	WRITE_ONCE(all_cpu_data, _all_cpu_data);
 
3757
3758	intel_pstate_request_control_from_smm();
 
 
3759
 
3760	intel_pstate_sysfs_expose_params();
3761
3762	if (hwp_active) {
3763		const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default);
3764		const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3765
3766		if (id) {
3767			epp_values[EPP_INDEX_POWERSAVE] =
3768					FIELD_GET(POWERSAVE_MASK, id->driver_data);
3769			epp_values[EPP_INDEX_BALANCE_POWERSAVE] =
3770					FIELD_GET(BALANCE_POWER_MASK, id->driver_data);
3771			epp_values[EPP_INDEX_BALANCE_PERFORMANCE] =
3772					FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data);
3773			epp_values[EPP_INDEX_PERFORMANCE] =
3774					FIELD_GET(PERFORMANCE_MASK, id->driver_data);
3775			pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n",
3776				 epp_values[EPP_INDEX_POWERSAVE],
3777				 epp_values[EPP_INDEX_BALANCE_POWERSAVE],
3778				 epp_values[EPP_INDEX_BALANCE_PERFORMANCE],
3779				 epp_values[EPP_INDEX_PERFORMANCE]);
3780		}
3781
3782		if (hybrid_id) {
3783			hybrid_scaling_factor = hybrid_id->driver_data;
3784			pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3785		}
3786
3787	}
3788
3789	mutex_lock(&intel_pstate_driver_lock);
3790	rc = intel_pstate_register_driver(default_driver);
3791	mutex_unlock(&intel_pstate_driver_lock);
3792	if (rc) {
3793		intel_pstate_sysfs_remove();
3794		return rc;
3795	}
3796
3797	if (hwp_active) {
3798		const struct x86_cpu_id *id;
3799
3800		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3801		if (id) {
3802			set_power_ctl_ee_state(false);
3803			pr_info("Disabling energy efficiency optimization\n");
 
 
 
3804		}
3805
3806		pr_info("HWP enabled\n");
3807	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3808		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3809	}
3810
3811	return 0;
 
 
3812}
3813device_initcall(intel_pstate_init);
3814
3815static int __init intel_pstate_setup(char *str)
3816{
3817	if (!str)
3818		return -EINVAL;
3819
3820	if (!strcmp(str, "disable"))
3821		no_load = 1;
3822	else if (!strcmp(str, "active"))
3823		default_driver = &intel_pstate;
3824	else if (!strcmp(str, "passive"))
3825		default_driver = &intel_cpufreq;
3826
3827	if (!strcmp(str, "no_hwp"))
3828		no_hwp = 1;
3829
3830	if (!strcmp(str, "force"))
3831		force_load = 1;
3832	if (!strcmp(str, "hwp_only"))
3833		hwp_only = 1;
3834	if (!strcmp(str, "per_cpu_perf_limits"))
3835		per_cpu_limits = true;
3836
3837#ifdef CONFIG_ACPI
3838	if (!strcmp(str, "support_acpi_ppc"))
3839		acpi_ppc = true;
3840#endif
3841
3842	return 0;
3843}
3844early_param("intel_pstate", intel_pstate_setup);
3845
3846MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3847MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
v4.6
 
   1/*
   2 * intel_pstate.c: Native P state management for Intel processors
   3 *
   4 * (C) Copyright 2012 Intel Corporation
   5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; version 2
  10 * of the License.
  11 */
  12
 
 
  13#include <linux/kernel.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/module.h>
  16#include <linux/ktime.h>
  17#include <linux/hrtimer.h>
  18#include <linux/tick.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
 
  21#include <linux/list.h>
  22#include <linux/cpu.h>
  23#include <linux/cpufreq.h>
  24#include <linux/sysfs.h>
  25#include <linux/types.h>
  26#include <linux/fs.h>
  27#include <linux/debugfs.h>
  28#include <linux/acpi.h>
  29#include <linux/vmalloc.h>
 
 
  30#include <trace/events/power.h>
  31
 
  32#include <asm/div64.h>
  33#include <asm/msr.h>
  34#include <asm/cpu_device_id.h>
  35#include <asm/cpufeature.h>
 
 
 
 
  36
  37#define ATOM_RATIOS		0x66a
  38#define ATOM_VIDS		0x66b
  39#define ATOM_TURBO_RATIOS	0x66c
  40#define ATOM_TURBO_VIDS		0x66d
 
 
 
 
  41
  42#define FRAC_BITS 8
  43#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
  44#define fp_toint(X) ((X) >> FRAC_BITS)
  45
 
 
 
 
 
 
 
  46static inline int32_t mul_fp(int32_t x, int32_t y)
  47{
  48	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
  49}
  50
  51static inline int32_t div_fp(s64 x, s64 y)
  52{
  53	return div64_s64((int64_t)x << FRAC_BITS, y);
  54}
  55
  56static inline int ceiling_fp(int32_t x)
  57{
  58	int mask, ret;
  59
  60	ret = fp_toint(x);
  61	mask = (1 << FRAC_BITS) - 1;
  62	if (x & mask)
  63		ret += 1;
  64	return ret;
  65}
  66
 
 
 
 
 
 
 
 
 
 
  67/**
  68 * struct sample -	Store performance sample
  69 * @core_pct_busy:	Ratio of APERF/MPERF in percent, which is actual
  70 *			performance during last sample period
  71 * @busy_scaled:	Scaled busy value which is used to calculate next
  72 *			P state. This can be different than core_pct_busy
  73 *			to account for cpu idle period
  74 * @aperf:		Difference of actual performance frequency clock count
  75 *			read from APERF MSR between last and current sample
  76 * @mperf:		Difference of maximum performance frequency clock count
  77 *			read from MPERF MSR between last and current sample
  78 * @tsc:		Difference of time stamp counter between last and
  79 *			current sample
  80 * @freq:		Effective frequency calculated from APERF/MPERF
  81 * @time:		Current time from scheduler
  82 *
  83 * This structure is used in the cpudata structure to store performance sample
  84 * data for choosing next P State.
  85 */
  86struct sample {
  87	int32_t core_pct_busy;
  88	int32_t busy_scaled;
  89	u64 aperf;
  90	u64 mperf;
  91	u64 tsc;
  92	int freq;
  93	u64 time;
  94};
  95
  96/**
  97 * struct pstate_data - Store P state data
  98 * @current_pstate:	Current requested P state
  99 * @min_pstate:		Min P state possible for this platform
 100 * @max_pstate:		Max P state possible for this platform
 101 * @max_pstate_physical:This is physical Max P state for a processor
 102 *			This can be higher than the max_pstate which can
 103 *			be limited by platform thermal design power limits
 104 * @scaling:		Scaling factor to  convert frequency to cpufreq
 105 *			frequency units
 106 * @turbo_pstate:	Max Turbo P state possible for this platform
 
 
 
 107 *
 108 * Stores the per cpu model P state limits and current P state.
 109 */
 110struct pstate_data {
 111	int	current_pstate;
 112	int	min_pstate;
 113	int	max_pstate;
 114	int	max_pstate_physical;
 
 115	int	scaling;
 116	int	turbo_pstate;
 
 
 
 117};
 118
 119/**
 120 * struct vid_data -	Stores voltage information data
 121 * @min:		VID data for this platform corresponding to
 122 *			the lowest P state
 123 * @max:		VID data corresponding to the highest P State.
 124 * @turbo:		VID data for turbo P state
 125 * @ratio:		Ratio of (vid max - vid min) /
 126 *			(max P state - Min P State)
 127 *
 128 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 129 * This data is used in Atom platforms, where in addition to target P state,
 130 * the voltage data needs to be specified to select next P State.
 131 */
 132struct vid_data {
 133	int min;
 134	int max;
 135	int turbo;
 136	int32_t ratio;
 137};
 138
 139/**
 140 * struct _pid -	Stores PID data
 141 * @setpoint:		Target set point for busyness or performance
 142 * @integral:		Storage for accumulated error values
 143 * @p_gain:		PID proportional gain
 144 * @i_gain:		PID integral gain
 145 * @d_gain:		PID derivative gain
 146 * @deadband:		PID deadband
 147 * @last_err:		Last error storage for integral part of PID calculation
 148 *
 149 * Stores PID coefficients and last error for PID controller.
 150 */
 151struct _pid {
 152	int setpoint;
 153	int32_t integral;
 154	int32_t p_gain;
 155	int32_t i_gain;
 156	int32_t d_gain;
 157	int deadband;
 158	int32_t last_err;
 159};
 160
 161/**
 162 * struct cpudata -	Per CPU instance data storage
 163 * @cpu:		CPU number for this instance data
 
 164 * @update_util:	CPUFreq utility callback information
 
 
 
 165 * @pstate:		Stores P state limits for this CPU
 166 * @vid:		Stores VID limits for this CPU
 167 * @pid:		Stores PID parameters for this CPU
 168 * @last_sample_time:	Last Sample time
 
 169 * @prev_aperf:		Last APERF value read from APERF MSR
 170 * @prev_mperf:		Last MPERF value read from MPERF MSR
 171 * @prev_tsc:		Last timestamp counter (TSC) value
 172 * @prev_cummulative_iowait: IO Wait time difference from last and
 173 *			current sample
 174 * @sample:		Storage for storing last Sample data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175 *
 176 * This structure stores per CPU instance data for all CPUs.
 177 */
 178struct cpudata {
 179	int cpu;
 180
 
 181	struct update_util_data update_util;
 
 182
 183	struct pstate_data pstate;
 184	struct vid_data vid;
 185	struct _pid pid;
 186
 
 187	u64	last_sample_time;
 
 188	u64	prev_aperf;
 189	u64	prev_mperf;
 190	u64	prev_tsc;
 191	u64	prev_cummulative_iowait;
 192	struct sample sample;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193};
 194
 195static struct cpudata **all_cpu_data;
 196
 197/**
 198 * struct pid_adjust_policy - Stores static PID configuration data
 199 * @sample_rate_ms:	PID calculation sample rate in ms
 200 * @sample_rate_ns:	Sample rate calculation in ns
 201 * @deadband:		PID deadband
 202 * @setpoint:		PID Setpoint
 203 * @p_gain_pct:		PID proportional gain
 204 * @i_gain_pct:		PID integral gain
 205 * @d_gain_pct:		PID derivative gain
 206 *
 207 * Stores per CPU model static PID configuration data.
 208 */
 209struct pstate_adjust_policy {
 210	int sample_rate_ms;
 211	s64 sample_rate_ns;
 212	int deadband;
 213	int setpoint;
 214	int p_gain_pct;
 215	int d_gain_pct;
 216	int i_gain_pct;
 217};
 218
 219/**
 220 * struct pstate_funcs - Per CPU model specific callbacks
 221 * @get_max:		Callback to get maximum non turbo effective P state
 222 * @get_max_physical:	Callback to get maximum non turbo physical P state
 223 * @get_min:		Callback to get minimum P state
 224 * @get_turbo:		Callback to get turbo P state
 225 * @get_scaling:	Callback to get frequency scaling factor
 
 
 226 * @get_val:		Callback to convert P state to actual MSR write value
 227 * @get_vid:		Callback to get VID data for Atom platforms
 228 * @get_target_pstate:	Callback to a function to calculate next P state to use
 229 *
 230 * Core and Atom CPU models have different way to get P State limits. This
 231 * structure is used to store those callbacks.
 232 */
 233struct pstate_funcs {
 234	int (*get_max)(void);
 235	int (*get_max_physical)(void);
 236	int (*get_min)(void);
 237	int (*get_turbo)(void);
 238	int (*get_scaling)(void);
 
 
 239	u64 (*get_val)(struct cpudata*, int pstate);
 240	void (*get_vid)(struct cpudata *);
 241	int32_t (*get_target_pstate)(struct cpudata *);
 242};
 243
 244/**
 245 * struct cpu_defaults- Per CPU model default config data
 246 * @pid_policy:	PID config data
 247 * @funcs:		Callback function data
 248 */
 249struct cpu_defaults {
 250	struct pstate_adjust_policy pid_policy;
 251	struct pstate_funcs funcs;
 252};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253
 254static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
 255static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
 256
 257static struct pstate_adjust_policy pid_params;
 258static struct pstate_funcs pstate_funcs;
 259static int hwp_active;
 
 
 
 260
 
 
 
 
 
 
 
 261
 262/**
 263 * struct perf_limits - Store user and policy limits
 264 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 265 * @turbo_disabled:	Platform turbo status either from msr
 266 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 267 *			matches the maximum turbo pstate
 268 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 269 *			is minimum of either limits enforced by cpufreq policy
 270 *			or limits from user set limits via intel_pstate sysfs
 271 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 272 *			is maximum of either limits enforced by cpufreq policy
 273 *			or limits from user set limits via intel_pstate sysfs
 274 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 275 *			This value is used to limit max pstate
 276 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 277 *			This value is used to limit min pstate
 278 * @max_policy_pct:	The maximum performance in percentage enforced by
 279 *			cpufreq setpolicy interface
 280 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 281 *			intel pstate sysfs interface
 282 * @min_policy_pct:	The minimum performance in percentage enforced by
 283 *			cpufreq setpolicy interface
 284 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 285 *			intel pstate sysfs interface
 286 *
 287 * Storage for user and policy defined limits.
 
 
 
 
 
 288 */
 289struct perf_limits {
 290	int no_turbo;
 291	int turbo_disabled;
 292	int max_perf_pct;
 293	int min_perf_pct;
 294	int32_t max_perf;
 295	int32_t min_perf;
 296	int max_policy_pct;
 297	int max_sysfs_pct;
 298	int min_policy_pct;
 299	int min_sysfs_pct;
 300};
 301
 302static struct perf_limits performance_limits = {
 303	.no_turbo = 0,
 304	.turbo_disabled = 0,
 305	.max_perf_pct = 100,
 306	.max_perf = int_tofp(1),
 307	.min_perf_pct = 100,
 308	.min_perf = int_tofp(1),
 309	.max_policy_pct = 100,
 310	.max_sysfs_pct = 100,
 311	.min_policy_pct = 0,
 312	.min_sysfs_pct = 0,
 313};
 314
 315static struct perf_limits powersave_limits = {
 316	.no_turbo = 0,
 317	.turbo_disabled = 0,
 318	.max_perf_pct = 100,
 319	.max_perf = int_tofp(1),
 320	.min_perf_pct = 0,
 321	.min_perf = 0,
 322	.max_policy_pct = 100,
 323	.max_sysfs_pct = 100,
 324	.min_policy_pct = 0,
 325	.min_sysfs_pct = 0,
 326};
 327
 328#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
 329static struct perf_limits *limits = &performance_limits;
 330#else
 331static struct perf_limits *limits = &powersave_limits;
 332#endif
 333
 334static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
 335			     int deadband, int integral) {
 336	pid->setpoint = int_tofp(setpoint);
 337	pid->deadband  = int_tofp(deadband);
 338	pid->integral  = int_tofp(integral);
 339	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
 
 340}
 341
 342static inline void pid_p_gain_set(struct _pid *pid, int percent)
 343{
 344	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
 
 
 
 
 345}
 346
 347static inline void pid_i_gain_set(struct _pid *pid, int percent)
 348{
 349	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
 
 
 
 
 350}
 351
 352static inline void pid_d_gain_set(struct _pid *pid, int percent)
 353{
 354	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355}
 356
 357static signed int pid_calc(struct _pid *pid, int32_t busy)
 358{
 359	signed int result;
 360	int32_t pterm, dterm, fp_error;
 361	int32_t integral_limit;
 
 
 362
 363	fp_error = pid->setpoint - busy;
 
 
 364
 365	if (abs(fp_error) <= pid->deadband)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367
 368	pterm = mul_fp(pid->p_gain, fp_error);
 
 
 369
 370	pid->integral += fp_error;
 
 
 
 
 
 371
 
 
 372	/*
 373	 * We limit the integral here so that it will never
 374	 * get higher than 30.  This prevents it from becoming
 375	 * too large an input over long periods of time and allows
 376	 * it to get factored out sooner.
 377	 *
 378	 * The value of 30 was chosen through experimentation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379	 */
 380	integral_limit = int_tofp(30);
 381	if (pid->integral > integral_limit)
 382		pid->integral = integral_limit;
 383	if (pid->integral < -integral_limit)
 384		pid->integral = -integral_limit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385
 386	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
 387	pid->last_err = fp_error;
 388
 389	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
 390	result = result + (1 << (FRAC_BITS-1));
 391	return (signed int)fp_toint(result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392}
 393
 394static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
 395{
 396	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
 397	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
 398	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
 
 399
 400	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
 401}
 402
 403static inline void intel_pstate_reset_all_pid(void)
 404{
 405	unsigned int cpu;
 
 
 
 406
 407	for_each_online_cpu(cpu) {
 408		if (all_cpu_data[cpu])
 409			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
 410	}
 411}
 412
 413static inline void update_turbo_state(void)
 414{
 415	u64 misc_en;
 416	struct cpudata *cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417
 418	cpu = all_cpu_data[0];
 419	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 420	limits->turbo_disabled =
 421		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
 422		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
 423}
 424
 425static void intel_pstate_hwp_set(const struct cpumask *cpumask)
 426{
 427	int min, hw_min, max, hw_max, cpu, range, adj_range;
 428	u64 value, cap;
 429
 430	rdmsrl(MSR_HWP_CAPABILITIES, cap);
 431	hw_min = HWP_LOWEST_PERF(cap);
 432	hw_max = HWP_HIGHEST_PERF(cap);
 433	range = hw_max - hw_min;
 434
 435	for_each_cpu(cpu, cpumask) {
 436		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
 437		adj_range = limits->min_perf_pct * range / 100;
 438		min = hw_min + adj_range;
 439		value &= ~HWP_MIN_PERF(~0L);
 440		value |= HWP_MIN_PERF(min);
 441
 442		adj_range = limits->max_perf_pct * range / 100;
 443		max = hw_min + adj_range;
 444		if (limits->no_turbo) {
 445			hw_max = HWP_GUARANTEED_PERF(cap);
 446			if (hw_max < max)
 447				max = hw_max;
 448		}
 
 449
 450		value &= ~HWP_MAX_PERF(~0L);
 451		value |= HWP_MAX_PERF(max);
 452		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 
 
 
 
 
 453	}
 454}
 455
 456static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
 457{
 458	if (hwp_active)
 459		intel_pstate_hwp_set(policy->cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460
 461	return 0;
 
 
 
 
 
 
 
 
 
 
 462}
 463
 464static void intel_pstate_hwp_set_online_cpus(void)
 
 
 465{
 466	get_online_cpus();
 467	intel_pstate_hwp_set(cpu_online_mask);
 468	put_online_cpus();
 469}
 470
 471/************************** debugfs begin ************************/
 472static int pid_param_set(void *data, u64 val)
 473{
 474	*(u32 *)data = val;
 475	intel_pstate_reset_all_pid();
 
 
 
 
 
 
 
 476	return 0;
 477}
 478
 479static int pid_param_get(void *data, u64 *val)
 480{
 481	*val = *(u32 *)data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482	return 0;
 483}
 484DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
 485
 486struct pid_param {
 487	char *name;
 488	void *value;
 489};
 
 
 
 
 
 
 
 
 
 
 
 
 490
 491static struct pid_param pid_files[] = {
 492	{"sample_rate_ms", &pid_params.sample_rate_ms},
 493	{"d_gain_pct", &pid_params.d_gain_pct},
 494	{"i_gain_pct", &pid_params.i_gain_pct},
 495	{"deadband", &pid_params.deadband},
 496	{"setpoint", &pid_params.setpoint},
 497	{"p_gain_pct", &pid_params.p_gain_pct},
 498	{NULL, NULL}
 499};
 500
 501static void __init intel_pstate_debug_expose_params(void)
 502{
 503	struct dentry *debugfs_parent;
 504	int i = 0;
 505
 506	if (hwp_active)
 507		return;
 508	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
 509	if (IS_ERR_OR_NULL(debugfs_parent))
 510		return;
 511	while (pid_files[i].name) {
 512		debugfs_create_file(pid_files[i].name, 0660,
 513				    debugfs_parent, pid_files[i].value,
 514				    &fops_pid_param);
 515		i++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516	}
 
 
 
 
 
 
 
 517}
 518
 519/************************** debugfs end ************************/
 520
 521/************************** sysfs begin ************************/
 522#define show_one(file_name, object)					\
 523	static ssize_t show_##file_name					\
 524	(struct kobject *kobj, struct attribute *attr, char *buf)	\
 525	{								\
 526		return sprintf(buf, "%u\n", limits->object);		\
 527	}
 528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529static ssize_t show_turbo_pct(struct kobject *kobj,
 530				struct attribute *attr, char *buf)
 531{
 532	struct cpudata *cpu;
 533	int total, no_turbo, turbo_pct;
 534	uint32_t turbo_fp;
 535
 
 
 
 
 
 
 
 536	cpu = all_cpu_data[0];
 537
 538	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 539	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
 540	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
 541	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
 
 
 
 542	return sprintf(buf, "%u\n", turbo_pct);
 543}
 544
 545static ssize_t show_num_pstates(struct kobject *kobj,
 546				struct attribute *attr, char *buf)
 547{
 548	struct cpudata *cpu;
 549	int total;
 550
 
 
 
 
 
 
 
 551	cpu = all_cpu_data[0];
 552	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 
 
 
 553	return sprintf(buf, "%u\n", total);
 554}
 555
 556static ssize_t show_no_turbo(struct kobject *kobj,
 557			     struct attribute *attr, char *buf)
 558{
 559	ssize_t ret;
 560
 561	update_turbo_state();
 562	if (limits->turbo_disabled)
 563		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
 564	else
 565		ret = sprintf(buf, "%u\n", limits->no_turbo);
 
 
 
 
 
 566
 567	return ret;
 568}
 569
 570static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
 571			      const char *buf, size_t count)
 572{
 573	unsigned int input;
 574	int ret;
 575
 576	ret = sscanf(buf, "%u", &input);
 577	if (ret != 1)
 578		return -EINVAL;
 579
 580	update_turbo_state();
 581	if (limits->turbo_disabled) {
 582		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
 583		return -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 584	}
 585
 586	limits->no_turbo = clamp_t(int, input, 0, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587
 588	if (hwp_active)
 589		intel_pstate_hwp_set_online_cpus();
 590
 591	return count;
 592}
 593
 594static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595				  const char *buf, size_t count)
 596{
 597	unsigned int input;
 598	int ret;
 599
 600	ret = sscanf(buf, "%u", &input);
 601	if (ret != 1)
 602		return -EINVAL;
 603
 604	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
 605	limits->max_perf_pct = min(limits->max_policy_pct,
 606				   limits->max_sysfs_pct);
 607	limits->max_perf_pct = max(limits->min_policy_pct,
 608				   limits->max_perf_pct);
 609	limits->max_perf_pct = max(limits->min_perf_pct,
 610				   limits->max_perf_pct);
 611	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
 612				  int_tofp(100));
 
 
 
 
 
 
 
 
 
 
 613
 614	if (hwp_active)
 615		intel_pstate_hwp_set_online_cpus();
 616	return count;
 617}
 618
 619static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
 620				  const char *buf, size_t count)
 621{
 622	unsigned int input;
 623	int ret;
 624
 625	ret = sscanf(buf, "%u", &input);
 626	if (ret != 1)
 627		return -EINVAL;
 628
 629	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
 630	limits->min_perf_pct = max(limits->min_policy_pct,
 631				   limits->min_sysfs_pct);
 632	limits->min_perf_pct = min(limits->max_policy_pct,
 633				   limits->min_perf_pct);
 634	limits->min_perf_pct = min(limits->max_perf_pct,
 635				   limits->min_perf_pct);
 636	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
 637				  int_tofp(100));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638
 639	if (hwp_active)
 640		intel_pstate_hwp_set_online_cpus();
 641	return count;
 642}
 643
 644show_one(max_perf_pct, max_perf_pct);
 645show_one(min_perf_pct, min_perf_pct);
 646
 
 647define_one_global_rw(no_turbo);
 648define_one_global_rw(max_perf_pct);
 649define_one_global_rw(min_perf_pct);
 650define_one_global_ro(turbo_pct);
 651define_one_global_ro(num_pstates);
 
 
 652
 653static struct attribute *intel_pstate_attributes[] = {
 
 654	&no_turbo.attr,
 655	&max_perf_pct.attr,
 656	&min_perf_pct.attr,
 657	&turbo_pct.attr,
 658	&num_pstates.attr,
 659	NULL
 660};
 661
 662static struct attribute_group intel_pstate_attr_group = {
 663	.attrs = intel_pstate_attributes,
 664};
 665
 
 
 
 
 666static void __init intel_pstate_sysfs_expose_params(void)
 667{
 668	struct kobject *intel_pstate_kobject;
 669	int rc;
 670
 671	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
 672						&cpu_subsys.dev_root->kobj);
 673	BUG_ON(!intel_pstate_kobject);
 
 
 
 
 674	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
 675	BUG_ON(rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676}
 
 
 
 
 
 
 
 
 
 677/************************** sysfs end ************************/
 678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 679static void intel_pstate_hwp_enable(struct cpudata *cpudata)
 680{
 681	/* First disable HWP notification interrupt as we don't process them */
 682	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
 
 683
 684	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
 
 
 
 
 
 
 
 685}
 686
 687static int atom_get_min_pstate(void)
 688{
 689	u64 value;
 690
 691	rdmsrl(ATOM_RATIOS, value);
 692	return (value >> 8) & 0x7F;
 693}
 694
 695static int atom_get_max_pstate(void)
 696{
 697	u64 value;
 698
 699	rdmsrl(ATOM_RATIOS, value);
 700	return (value >> 16) & 0x7F;
 701}
 702
 703static int atom_get_turbo_pstate(void)
 704{
 705	u64 value;
 706
 707	rdmsrl(ATOM_TURBO_RATIOS, value);
 708	return value & 0x7F;
 709}
 710
 711static u64 atom_get_val(struct cpudata *cpudata, int pstate)
 712{
 713	u64 val;
 714	int32_t vid_fp;
 715	u32 vid;
 716
 717	val = (u64)pstate << 8;
 718	if (limits->no_turbo && !limits->turbo_disabled)
 719		val |= (u64)1 << 32;
 720
 721	vid_fp = cpudata->vid.min + mul_fp(
 722		int_tofp(pstate - cpudata->pstate.min_pstate),
 723		cpudata->vid.ratio);
 724
 725	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
 726	vid = ceiling_fp(vid_fp);
 727
 728	if (pstate > cpudata->pstate.max_pstate)
 729		vid = cpudata->vid.turbo;
 730
 731	return val | vid;
 732}
 733
 734static int silvermont_get_scaling(void)
 735{
 736	u64 value;
 737	int i;
 738	/* Defined in Table 35-6 from SDM (Sept 2015) */
 739	static int silvermont_freq_table[] = {
 740		83300, 100000, 133300, 116700, 80000};
 741
 742	rdmsrl(MSR_FSB_FREQ, value);
 743	i = value & 0x7;
 744	WARN_ON(i > 4);
 745
 746	return silvermont_freq_table[i];
 747}
 748
 749static int airmont_get_scaling(void)
 750{
 751	u64 value;
 752	int i;
 753	/* Defined in Table 35-10 from SDM (Sept 2015) */
 754	static int airmont_freq_table[] = {
 755		83300, 100000, 133300, 116700, 80000,
 756		93300, 90000, 88900, 87500};
 757
 758	rdmsrl(MSR_FSB_FREQ, value);
 759	i = value & 0xF;
 760	WARN_ON(i > 8);
 761
 762	return airmont_freq_table[i];
 763}
 764
 765static void atom_get_vid(struct cpudata *cpudata)
 766{
 767	u64 value;
 768
 769	rdmsrl(ATOM_VIDS, value);
 770	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
 771	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
 772	cpudata->vid.ratio = div_fp(
 773		cpudata->vid.max - cpudata->vid.min,
 774		int_tofp(cpudata->pstate.max_pstate -
 775			cpudata->pstate.min_pstate));
 776
 777	rdmsrl(ATOM_TURBO_VIDS, value);
 778	cpudata->vid.turbo = value & 0x7f;
 779}
 780
 781static int core_get_min_pstate(void)
 782{
 783	u64 value;
 784
 785	rdmsrl(MSR_PLATFORM_INFO, value);
 786	return (value >> 40) & 0xFF;
 787}
 788
 789static int core_get_max_pstate_physical(void)
 790{
 791	u64 value;
 792
 793	rdmsrl(MSR_PLATFORM_INFO, value);
 794	return (value >> 8) & 0xFF;
 795}
 796
 797static int core_get_max_pstate(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798{
 799	u64 tar;
 800	u64 plat_info;
 801	int max_pstate;
 
 802	int err;
 803
 804	rdmsrl(MSR_PLATFORM_INFO, plat_info);
 805	max_pstate = (plat_info >> 8) & 0xFF;
 806
 807	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
 
 
 
 
 
 
 
 
 
 808	if (!err) {
 
 
 809		/* Do some sanity checking for safety */
 810		if (plat_info & 0x600000000) {
 811			u64 tdp_ctrl;
 812			u64 tdp_ratio;
 813			int tdp_msr;
 814
 815			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
 816			if (err)
 817				goto skip_tar;
 818
 819			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
 820			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
 821			if (err)
 822				goto skip_tar;
 823
 824			/* For level 1 and 2, bits[23:16] contain the ratio */
 825			if (tdp_ctrl)
 826				tdp_ratio >>= 16;
 827
 828			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
 829			if (tdp_ratio - 1 == tar) {
 830				max_pstate = tar;
 831				pr_debug("max_pstate=TAC %x\n", max_pstate);
 832			} else {
 833				goto skip_tar;
 834			}
 835		}
 836	}
 837
 838skip_tar:
 839	return max_pstate;
 840}
 841
 842static int core_get_turbo_pstate(void)
 843{
 844	u64 value;
 845	int nont, ret;
 846
 847	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
 848	nont = core_get_max_pstate();
 849	ret = (value) & 255;
 850	if (ret <= nont)
 851		ret = nont;
 852	return ret;
 853}
 854
 855static inline int core_get_scaling(void)
 856{
 857	return 100000;
 858}
 859
 860static u64 core_get_val(struct cpudata *cpudata, int pstate)
 861{
 862	u64 val;
 863
 864	val = (u64)pstate << 8;
 865	if (limits->no_turbo && !limits->turbo_disabled)
 866		val |= (u64)1 << 32;
 867
 868	return val;
 869}
 870
 871static int knl_get_turbo_pstate(void)
 
 
 
 
 
 872{
 873	u64 value;
 874	int nont, ret;
 875
 876	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
 877	nont = core_get_max_pstate();
 878	ret = (((value) >> 8) & 0xFF);
 879	if (ret <= nont)
 880		ret = nont;
 881	return ret;
 882}
 883
 884static struct cpu_defaults core_params = {
 885	.pid_policy = {
 886		.sample_rate_ms = 10,
 887		.deadband = 0,
 888		.setpoint = 97,
 889		.p_gain_pct = 20,
 890		.d_gain_pct = 0,
 891		.i_gain_pct = 0,
 892	},
 893	.funcs = {
 894		.get_max = core_get_max_pstate,
 895		.get_max_physical = core_get_max_pstate_physical,
 896		.get_min = core_get_min_pstate,
 897		.get_turbo = core_get_turbo_pstate,
 898		.get_scaling = core_get_scaling,
 899		.get_val = core_get_val,
 900		.get_target_pstate = get_target_pstate_use_performance,
 901	},
 902};
 903
 904static struct cpu_defaults silvermont_params = {
 905	.pid_policy = {
 906		.sample_rate_ms = 10,
 907		.deadband = 0,
 908		.setpoint = 60,
 909		.p_gain_pct = 14,
 910		.d_gain_pct = 0,
 911		.i_gain_pct = 4,
 912	},
 913	.funcs = {
 914		.get_max = atom_get_max_pstate,
 915		.get_max_physical = atom_get_max_pstate,
 916		.get_min = atom_get_min_pstate,
 917		.get_turbo = atom_get_turbo_pstate,
 918		.get_val = atom_get_val,
 919		.get_scaling = silvermont_get_scaling,
 920		.get_vid = atom_get_vid,
 921		.get_target_pstate = get_target_pstate_use_cpu_load,
 922	},
 923};
 924
 925static struct cpu_defaults airmont_params = {
 926	.pid_policy = {
 927		.sample_rate_ms = 10,
 928		.deadband = 0,
 929		.setpoint = 60,
 930		.p_gain_pct = 14,
 931		.d_gain_pct = 0,
 932		.i_gain_pct = 4,
 933	},
 934	.funcs = {
 935		.get_max = atom_get_max_pstate,
 936		.get_max_physical = atom_get_max_pstate,
 937		.get_min = atom_get_min_pstate,
 938		.get_turbo = atom_get_turbo_pstate,
 939		.get_val = atom_get_val,
 940		.get_scaling = airmont_get_scaling,
 941		.get_vid = atom_get_vid,
 942		.get_target_pstate = get_target_pstate_use_cpu_load,
 943	},
 944};
 945
 946static struct cpu_defaults knl_params = {
 947	.pid_policy = {
 948		.sample_rate_ms = 10,
 949		.deadband = 0,
 950		.setpoint = 97,
 951		.p_gain_pct = 20,
 952		.d_gain_pct = 0,
 953		.i_gain_pct = 0,
 954	},
 955	.funcs = {
 956		.get_max = core_get_max_pstate,
 957		.get_max_physical = core_get_max_pstate_physical,
 958		.get_min = core_get_min_pstate,
 959		.get_turbo = knl_get_turbo_pstate,
 960		.get_scaling = core_get_scaling,
 961		.get_val = core_get_val,
 962		.get_target_pstate = get_target_pstate_use_performance,
 963	},
 964};
 965
 966static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
 967{
 968	int max_perf = cpu->pstate.turbo_pstate;
 969	int max_perf_adj;
 970	int min_perf;
 
 
 
 971
 972	if (limits->no_turbo || limits->turbo_disabled)
 973		max_perf = cpu->pstate.max_pstate;
 
 974
 975	/*
 976	 * performance can be limited by user through sysfs, by cpufreq
 977	 * policy, or by cpu specific default values determined through
 978	 * experimentation.
 
 
 
 979	 */
 980	max_perf_adj = fp_toint(max_perf * limits->max_perf);
 981	*max = clamp_t(int, max_perf_adj,
 982			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
 983
 984	min_perf = fp_toint(max_perf * limits->min_perf);
 985	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
 986}
 987
 988static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
 989{
 990	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
 991	cpu->pstate.current_pstate = pstate;
 992}
 993
 994static void intel_pstate_set_min_pstate(struct cpudata *cpu)
 995{
 996	int pstate = cpu->pstate.min_pstate;
 997
 998	intel_pstate_record_pstate(cpu, pstate);
 999	/*
1000	 * Generally, there is no guarantee that this code will always run on
1001	 * the CPU being updated, so force the register update to run on the
1002	 * right CPU.
1003	 */
1004	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1005		      pstate_funcs.get_val(cpu, pstate));
1006}
1007
 
 
 
 
 
1008static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1009{
1010	cpu->pstate.min_pstate = pstate_funcs.get_min();
1011	cpu->pstate.max_pstate = pstate_funcs.get_max();
1012	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1013	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1014	cpu->pstate.scaling = pstate_funcs.get_scaling();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016	if (pstate_funcs.get_vid)
1017		pstate_funcs.get_vid(cpu);
1018
1019	intel_pstate_set_min_pstate(cpu);
1020}
1021
1022static inline void intel_pstate_calc_busy(struct cpudata *cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023{
1024	struct sample *sample = &cpu->sample;
1025	int64_t core_pct;
1026
1027	core_pct = int_tofp(sample->aperf) * int_tofp(100);
1028	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
1029
1030	sample->core_pct_busy = (int32_t)core_pct;
1031}
1032
1033static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1034{
1035	u64 aperf, mperf;
1036	unsigned long flags;
1037	u64 tsc;
1038
1039	local_irq_save(flags);
1040	rdmsrl(MSR_IA32_APERF, aperf);
1041	rdmsrl(MSR_IA32_MPERF, mperf);
1042	tsc = rdtsc();
1043	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1044		local_irq_restore(flags);
1045		return false;
1046	}
1047	local_irq_restore(flags);
1048
1049	cpu->last_sample_time = cpu->sample.time;
1050	cpu->sample.time = time;
1051	cpu->sample.aperf = aperf;
1052	cpu->sample.mperf = mperf;
1053	cpu->sample.tsc =  tsc;
1054	cpu->sample.aperf -= cpu->prev_aperf;
1055	cpu->sample.mperf -= cpu->prev_mperf;
1056	cpu->sample.tsc -= cpu->prev_tsc;
1057
1058	cpu->prev_aperf = aperf;
1059	cpu->prev_mperf = mperf;
1060	cpu->prev_tsc = tsc;
1061	/*
1062	 * First time this function is invoked in a given cycle, all of the
1063	 * previous sample data fields are equal to zero or stale and they must
1064	 * be populated with meaningful numbers for things to work, so assume
1065	 * that sample.time will always be reset before setting the utilization
1066	 * update hook and make the caller skip the sample then.
1067	 */
1068	return !!cpu->last_sample_time;
 
 
 
 
1069}
1070
1071static inline int32_t get_avg_frequency(struct cpudata *cpu)
1072{
1073	return fp_toint(mul_fp(cpu->sample.core_pct_busy,
1074			       int_tofp(cpu->pstate.max_pstate_physical *
1075						cpu->pstate.scaling / 100)));
1076}
1077
1078static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
 
 
 
 
 
 
1079{
1080	struct sample *sample = &cpu->sample;
1081	u64 cummulative_iowait, delta_iowait_us;
1082	u64 delta_iowait_mperf;
1083	u64 mperf, now;
1084	int32_t cpu_load;
1085
1086	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
 
1087
1088	/*
1089	 * Convert iowait time into number of IO cycles spent at max_freq.
1090	 * IO is considered as busy only for the cpu_load algorithm. For
1091	 * performance this is not needed since we always try to reach the
1092	 * maximum P-State, so we are already boosting the IOs.
1093	 */
1094	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1095	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1096		cpu->pstate.max_pstate, MSEC_PER_SEC);
1097
1098	mperf = cpu->sample.mperf + delta_iowait_mperf;
1099	cpu->prev_cummulative_iowait = cummulative_iowait;
 
 
 
 
 
 
1100
1101	/*
1102	 * The load can be estimated as the ratio of the mperf counter
1103	 * running at a constant frequency during active periods
1104	 * (C0) and the time stamp counter running at the same frequency
1105	 * also during C-states.
 
1106	 */
1107	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1108	cpu->sample.busy_scaled = cpu_load;
 
1109
1110	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
1111}
1112
1113static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1114{
1115	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1116	u64 duration_ns;
1117
1118	/*
1119	 * core_busy is the ratio of actual performance to max
1120	 * max_pstate is the max non turbo pstate available
1121	 * current_pstate was the pstate that was requested during
1122	 * 	the last sample period.
1123	 *
1124	 * We normalize core_busy, which was our actual percent
1125	 * performance to what we requested during the last sample
1126	 * period. The result will be a percentage of busy at a
1127	 * specified pstate.
1128	 */
1129	core_busy = cpu->sample.core_pct_busy;
1130	max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
1131	current_pstate = int_tofp(cpu->pstate.current_pstate);
1132	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1133
1134	/*
1135	 * Since our utilization update callback will not run unless we are
1136	 * in C0, check if the actual elapsed time is significantly greater (3x)
1137	 * than our sample interval.  If it is, then we were idle for a long
1138	 * enough period of time to adjust our busyness.
1139	 */
1140	duration_ns = cpu->sample.time - cpu->last_sample_time;
1141	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1142		sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
1143				      int_tofp(duration_ns));
1144		core_busy = mul_fp(core_busy, sample_ratio);
1145	} else {
1146		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1147		if (sample_ratio < int_tofp(1))
1148			core_busy = 0;
1149	}
1150
1151	cpu->sample.busy_scaled = core_busy;
1152	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1153}
1154
1155static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1156{
1157	int max_perf, min_perf;
1158
1159	update_turbo_state();
1160
1161	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1162	pstate = clamp_t(int, pstate, min_perf, max_perf);
1163	if (pstate == cpu->pstate.current_pstate)
1164		return;
1165
1166	intel_pstate_record_pstate(cpu, pstate);
1167	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1168}
1169
1170static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1171{
1172	int from, target_pstate;
1173	struct sample *sample;
 
1174
1175	from = cpu->pstate.current_pstate;
1176
1177	target_pstate = pstate_funcs.get_target_pstate(cpu);
1178
1179	intel_pstate_update_pstate(cpu, target_pstate);
1180
1181	sample = &cpu->sample;
1182	trace_pstate_sample(fp_toint(sample->core_pct_busy),
1183		fp_toint(sample->busy_scaled),
1184		from,
1185		cpu->pstate.current_pstate,
1186		sample->mperf,
1187		sample->aperf,
1188		sample->tsc,
1189		get_avg_frequency(cpu));
 
1190}
1191
1192static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1193				     unsigned long util, unsigned long max)
1194{
1195	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1196	u64 delta_ns = time - cpu->sample.time;
1197
1198	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1199		bool sample_taken = intel_pstate_sample(cpu, time);
 
1200
1201		if (sample_taken) {
1202			intel_pstate_calc_busy(cpu);
1203			if (!hwp_active)
1204				intel_pstate_adjust_busy_pstate(cpu);
 
 
 
 
 
 
 
1205		}
 
 
 
 
 
 
1206	}
 
 
 
 
 
 
 
1207}
1208
1209#define ICPU(model, policy) \
1210	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1211			(unsigned long)&policy }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212
1213static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1214	ICPU(0x2a, core_params),
1215	ICPU(0x2d, core_params),
1216	ICPU(0x37, silvermont_params),
1217	ICPU(0x3a, core_params),
1218	ICPU(0x3c, core_params),
1219	ICPU(0x3d, core_params),
1220	ICPU(0x3e, core_params),
1221	ICPU(0x3f, core_params),
1222	ICPU(0x45, core_params),
1223	ICPU(0x46, core_params),
1224	ICPU(0x47, core_params),
1225	ICPU(0x4c, airmont_params),
1226	ICPU(0x4e, core_params),
1227	ICPU(0x4f, core_params),
1228	ICPU(0x5e, core_params),
1229	ICPU(0x56, core_params),
1230	ICPU(0x57, knl_params),
 
 
 
 
 
 
 
 
 
1231	{}
1232};
1233MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1234
1235static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1236	ICPU(0x56, core_params),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237	{}
1238};
1239
1240static int intel_pstate_init_cpu(unsigned int cpunum)
1241{
1242	struct cpudata *cpu;
1243
1244	if (!all_cpu_data[cpunum])
1245		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1246					       GFP_KERNEL);
1247	if (!all_cpu_data[cpunum])
1248		return -ENOMEM;
1249
1250	cpu = all_cpu_data[cpunum];
 
 
 
1251
1252	cpu->cpu = cpunum;
1253
1254	if (hwp_active) {
1255		intel_pstate_hwp_enable(cpu);
1256		pid_params.sample_rate_ms = 50;
1257		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1258	}
1259
1260	intel_pstate_get_cpu_pstates(cpu);
1261
1262	intel_pstate_busy_pid_reset(cpu);
 
1263
1264	cpu->update_util.func = intel_pstate_update_util;
 
 
 
 
 
 
 
 
 
 
1265
1266	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
 
1267
1268	return 0;
1269}
1270
1271static unsigned int intel_pstate_get(unsigned int cpu_num)
1272{
1273	struct sample *sample;
1274	struct cpudata *cpu;
1275
1276	cpu = all_cpu_data[cpu_num];
1277	if (!cpu)
1278		return 0;
1279	sample = &cpu->sample;
1280	return get_avg_frequency(cpu);
1281}
1282
1283static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1284{
1285	struct cpudata *cpu = all_cpu_data[cpu_num];
1286
 
 
 
 
 
 
1287	/* Prevent intel_pstate_update_util() from using stale data. */
1288	cpu->sample.time = 0;
1289	cpufreq_set_update_util_data(cpu_num, &cpu->update_util);
 
 
 
 
1290}
1291
1292static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1293{
1294	cpufreq_set_update_util_data(cpu, NULL);
1295	synchronize_sched();
 
 
 
 
 
 
1296}
1297
1298static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1299{
1300	limits->no_turbo = 0;
1301	limits->turbo_disabled = 0;
1302	limits->max_perf_pct = 100;
1303	limits->max_perf = int_tofp(1);
1304	limits->min_perf_pct = 100;
1305	limits->min_perf = int_tofp(1);
1306	limits->max_policy_pct = 100;
1307	limits->max_sysfs_pct = 100;
1308	limits->min_policy_pct = 0;
1309	limits->min_sysfs_pct = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310}
1311
1312static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1313{
 
 
1314	if (!policy->cpuinfo.max_freq)
1315		return -ENODEV;
1316
1317	intel_pstate_clear_update_util_hook(policy->cpu);
 
 
 
 
 
 
 
 
 
 
 
1318
1319	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1320		limits = &performance_limits;
1321		if (policy->max >= policy->cpuinfo.max_freq) {
1322			pr_debug("intel_pstate: set performance\n");
1323			intel_pstate_set_performance_limits(limits);
1324			goto out;
1325		}
1326	} else {
1327		pr_debug("intel_pstate: set powersave\n");
1328		limits = &powersave_limits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329	}
 
1330
1331	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1332	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1333	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1334					      policy->cpuinfo.max_freq);
1335	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1336
1337	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1338	limits->min_perf_pct = max(limits->min_policy_pct,
1339				   limits->min_sysfs_pct);
1340	limits->min_perf_pct = min(limits->max_policy_pct,
1341				   limits->min_perf_pct);
1342	limits->max_perf_pct = min(limits->max_policy_pct,
1343				   limits->max_sysfs_pct);
1344	limits->max_perf_pct = max(limits->min_policy_pct,
1345				   limits->max_perf_pct);
1346	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1347
1348	/* Make sure min_perf_pct <= max_perf_pct */
1349	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1350
1351	limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1352				  int_tofp(100));
1353	limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1354				  int_tofp(100));
1355
1356 out:
1357	intel_pstate_set_update_util_hook(policy->cpu);
 
 
 
 
 
 
 
 
 
1358
1359	intel_pstate_hwp_set_policy(policy);
 
 
1360
1361	return 0;
1362}
1363
1364static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1365{
1366	cpufreq_verify_within_cpu_limits(policy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367
1368	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1369	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1370		return -EINVAL;
1371
1372	return 0;
1373}
1374
1375static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1376{
1377	int cpu_num = policy->cpu;
1378	struct cpudata *cpu = all_cpu_data[cpu_num];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379
1380	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
 
 
1381
1382	intel_pstate_clear_update_util_hook(cpu_num);
 
1383
1384	if (hwp_active)
1385		return;
 
1386
1387	intel_pstate_set_min_pstate(cpu);
1388}
1389
1390static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1391{
1392	struct cpudata *cpu;
1393	int rc;
1394
1395	rc = intel_pstate_init_cpu(policy->cpu);
1396	if (rc)
1397		return rc;
1398
1399	cpu = all_cpu_data[policy->cpu];
1400
1401	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1402		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1403	else
1404		policy->policy = CPUFREQ_POLICY_POWERSAVE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1405
1406	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1407	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1408
1409	/* cpuinfo and default policy values */
1410	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1411	policy->cpuinfo.max_freq =
1412		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1413	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1414	cpumask_set_cpu(policy->cpu, policy->cpus);
1415
1416	return 0;
1417}
1418
1419static struct cpufreq_driver intel_pstate_driver = {
1420	.flags		= CPUFREQ_CONST_LOOPS,
1421	.verify		= intel_pstate_verify_policy,
1422	.setpolicy	= intel_pstate_set_policy,
1423	.resume		= intel_pstate_hwp_set_policy,
1424	.get		= intel_pstate_get,
1425	.init		= intel_pstate_cpu_init,
1426	.stop_cpu	= intel_pstate_stop_cpu,
 
 
 
1427	.name		= "intel_pstate",
1428};
1429
1430static int __initdata no_load;
1431static int __initdata no_hwp;
1432static int __initdata hwp_only;
1433static unsigned int force_load;
1434
1435static int intel_pstate_msrs_not_valid(void)
1436{
1437	if (!pstate_funcs.get_max() ||
1438	    !pstate_funcs.get_min() ||
1439	    !pstate_funcs.get_turbo())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440		return -ENODEV;
1441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442	return 0;
1443}
1444
1445static void copy_pid_params(struct pstate_adjust_policy *policy)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446{
1447	pid_params.sample_rate_ms = policy->sample_rate_ms;
1448	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1449	pid_params.p_gain_pct = policy->p_gain_pct;
1450	pid_params.i_gain_pct = policy->i_gain_pct;
1451	pid_params.d_gain_pct = policy->d_gain_pct;
1452	pid_params.deadband = policy->deadband;
1453	pid_params.setpoint = policy->setpoint;
 
 
 
 
 
 
 
 
1454}
1455
1456static void copy_cpu_funcs(struct pstate_funcs *funcs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457{
1458	pstate_funcs.get_max   = funcs->get_max;
1459	pstate_funcs.get_max_physical = funcs->get_max_physical;
1460	pstate_funcs.get_min   = funcs->get_min;
1461	pstate_funcs.get_turbo = funcs->get_turbo;
1462	pstate_funcs.get_scaling = funcs->get_scaling;
1463	pstate_funcs.get_val   = funcs->get_val;
1464	pstate_funcs.get_vid   = funcs->get_vid;
1465	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1466
1467}
1468
1469#if IS_ENABLED(CONFIG_ACPI)
1470#include <acpi/processor.h>
1471
1472static bool intel_pstate_no_acpi_pss(void)
1473{
1474	int i;
1475
1476	for_each_possible_cpu(i) {
1477		acpi_status status;
1478		union acpi_object *pss;
1479		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1480		struct acpi_processor *pr = per_cpu(processors, i);
1481
1482		if (!pr)
1483			continue;
1484
1485		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1486		if (ACPI_FAILURE(status))
1487			continue;
1488
1489		pss = buffer.pointer;
1490		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1491			kfree(pss);
1492			return false;
1493		}
1494
1495		kfree(pss);
1496	}
1497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1498	return true;
1499}
1500
1501static bool intel_pstate_has_acpi_ppc(void)
1502{
1503	int i;
1504
1505	for_each_possible_cpu(i) {
1506		struct acpi_processor *pr = per_cpu(processors, i);
1507
1508		if (!pr)
1509			continue;
1510		if (acpi_has_method(pr->handle, "_PPC"))
1511			return true;
1512	}
 
1513	return false;
1514}
1515
1516enum {
1517	PSS,
1518	PPC,
1519};
1520
1521struct hw_vendor_info {
1522	u16  valid;
1523	char oem_id[ACPI_OEM_ID_SIZE];
1524	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1525	int  oem_pwr_table;
 
 
 
 
 
 
 
 
 
 
 
 
 
1526};
1527
1528/* Hardware vendor-specific info that has its own power management modes */
1529static struct hw_vendor_info vendor_info[] = {
1530	{1, "HP    ", "ProLiant", PSS},
1531	{1, "ORACLE", "X4-2    ", PPC},
1532	{1, "ORACLE", "X4-2L   ", PPC},
1533	{1, "ORACLE", "X4-2B   ", PPC},
1534	{1, "ORACLE", "X3-2    ", PPC},
1535	{1, "ORACLE", "X3-2L   ", PPC},
1536	{1, "ORACLE", "X3-2B   ", PPC},
1537	{1, "ORACLE", "X4470M2 ", PPC},
1538	{1, "ORACLE", "X4270M3 ", PPC},
1539	{1, "ORACLE", "X4270M2 ", PPC},
1540	{1, "ORACLE", "X4170M2 ", PPC},
1541	{1, "ORACLE", "X4170 M3", PPC},
1542	{1, "ORACLE", "X4275 M3", PPC},
1543	{1, "ORACLE", "X6-2    ", PPC},
1544	{1, "ORACLE", "Sudbury ", PPC},
1545	{0, "", ""},
1546};
1547
1548static bool intel_pstate_platform_pwr_mgmt_exists(void)
1549{
1550	struct acpi_table_header hdr;
1551	struct hw_vendor_info *v_info;
1552	const struct x86_cpu_id *id;
1553	u64 misc_pwr;
 
1554
1555	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1556	if (id) {
1557		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1558		if ( misc_pwr & (1 << 8))
 
 
1559			return true;
 
1560	}
1561
1562	if (acpi_disabled ||
1563	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1564		return false;
1565
1566	for (v_info = vendor_info; v_info->valid; v_info++) {
1567		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1568			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1569						ACPI_OEM_TABLE_ID_SIZE))
1570			switch (v_info->oem_pwr_table) {
1571			case PSS:
1572				return intel_pstate_no_acpi_pss();
1573			case PPC:
1574				return intel_pstate_has_acpi_ppc() &&
1575					(!force_load);
1576			}
1577	}
1578
1579	return false;
1580}
 
 
 
 
 
 
 
 
 
 
1581#else /* CONFIG_ACPI not enabled */
1582static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1583static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
 
1584#endif /* CONFIG_ACPI */
1585
 
 
 
 
 
1586static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1587	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1588	{}
1589};
1590
1591static int __init intel_pstate_init(void)
1592{
1593	int cpu, rc = 0;
1594	const struct x86_cpu_id *id;
1595	struct cpu_defaults *cpu_def;
1596
1597	if (no_load)
1598		return -ENODEV;
1599
1600	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1601		copy_cpu_funcs(&core_params.funcs);
1602		hwp_active++;
1603		goto hwp_cpu_matched;
1604	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605
1606	id = x86_match_cpu(intel_pstate_cpu_ids);
1607	if (!id)
1608		return -ENODEV;
 
 
 
1609
1610	cpu_def = (struct cpu_defaults *)id->driver_data;
 
 
 
 
1611
1612	copy_pid_params(&cpu_def->pid_policy);
1613	copy_cpu_funcs(&cpu_def->funcs);
1614
1615	if (intel_pstate_msrs_not_valid())
 
1616		return -ENODEV;
 
 
 
 
1617
1618hwp_cpu_matched:
1619	/*
1620	 * The Intel pstate driver will be ignored if the platform
1621	 * firmware has its own power management modes.
1622	 */
1623	if (intel_pstate_platform_pwr_mgmt_exists())
 
1624		return -ENODEV;
 
 
 
 
1625
1626	pr_info("Intel P-state driver initializing.\n");
1627
1628	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1629	if (!all_cpu_data)
1630		return -ENOMEM;
1631
1632	if (!hwp_active && hwp_only)
1633		goto out;
1634
1635	rc = cpufreq_register_driver(&intel_pstate_driver);
1636	if (rc)
1637		goto out;
1638
1639	intel_pstate_debug_expose_params();
1640	intel_pstate_sysfs_expose_params();
1641
1642	if (hwp_active)
1643		pr_info("intel_pstate: HWP enabled\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644
1645	return rc;
1646out:
1647	get_online_cpus();
1648	for_each_online_cpu(cpu) {
1649		if (all_cpu_data[cpu]) {
1650			intel_pstate_clear_update_util_hook(cpu);
1651			kfree(all_cpu_data[cpu]);
1652		}
 
 
 
 
1653	}
1654
1655	put_online_cpus();
1656	vfree(all_cpu_data);
1657	return -ENODEV;
1658}
1659device_initcall(intel_pstate_init);
1660
1661static int __init intel_pstate_setup(char *str)
1662{
1663	if (!str)
1664		return -EINVAL;
1665
1666	if (!strcmp(str, "disable"))
1667		no_load = 1;
1668	if (!strcmp(str, "no_hwp")) {
1669		pr_info("intel_pstate: HWP disabled\n");
 
 
 
 
1670		no_hwp = 1;
1671	}
1672	if (!strcmp(str, "force"))
1673		force_load = 1;
1674	if (!strcmp(str, "hwp_only"))
1675		hwp_only = 1;
 
 
 
 
 
 
 
 
1676	return 0;
1677}
1678early_param("intel_pstate", intel_pstate_setup);
1679
1680MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1681MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1682MODULE_LICENSE("GPL");