Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/errno.h>
   5#include <linux/kernel.h>
   6#include <linux/mm.h>
   7#include <linux/smp.h>
   8#include <linux/cpu.h>
   9#include <linux/prctl.h>
  10#include <linux/slab.h>
  11#include <linux/sched.h>
  12#include <linux/sched/idle.h>
  13#include <linux/sched/debug.h>
  14#include <linux/sched/task.h>
  15#include <linux/sched/task_stack.h>
  16#include <linux/init.h>
  17#include <linux/export.h>
  18#include <linux/pm.h>
  19#include <linux/tick.h>
  20#include <linux/random.h>
  21#include <linux/user-return-notifier.h>
  22#include <linux/dmi.h>
  23#include <linux/utsname.h>
  24#include <linux/stackprotector.h>
 
  25#include <linux/cpuidle.h>
  26#include <linux/acpi.h>
  27#include <linux/elf-randomize.h>
  28#include <linux/static_call.h>
  29#include <trace/events/power.h>
  30#include <linux/hw_breakpoint.h>
  31#include <linux/entry-common.h>
  32#include <asm/cpu.h>
  33#include <asm/apic.h>
  34#include <linux/uaccess.h>
 
 
  35#include <asm/mwait.h>
  36#include <asm/fpu/api.h>
  37#include <asm/fpu/sched.h>
  38#include <asm/fpu/xstate.h>
  39#include <asm/debugreg.h>
  40#include <asm/nmi.h>
  41#include <asm/tlbflush.h>
  42#include <asm/mce.h>
  43#include <asm/vm86.h>
  44#include <asm/switch_to.h>
  45#include <asm/desc.h>
  46#include <asm/prctl.h>
  47#include <asm/spec-ctrl.h>
  48#include <asm/io_bitmap.h>
  49#include <asm/proto.h>
  50#include <asm/frame.h>
  51#include <asm/unwind.h>
  52#include <asm/tdx.h>
  53#include <asm/mmu_context.h>
  54#include <asm/shstk.h>
  55
  56#include "process.h"
  57
  58/*
  59 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  60 * no more per-task TSS's. The TSS size is kept cacheline-aligned
  61 * so they are allowed to end up in the .data..cacheline_aligned
  62 * section. Since TSS's are completely CPU-local, we want them
  63 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  64 */
  65__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
  66	.x86_tss = {
  67		/*
  68		 * .sp0 is only used when entering ring 0 from a lower
  69		 * privilege level.  Since the init task never runs anything
  70		 * but ring 0 code, there is no need for a valid value here.
  71		 * Poison it.
  72		 */
  73		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
  74
  75#ifdef CONFIG_X86_32
  76		.sp1 = TOP_OF_INIT_STACK,
  77
  78		.ss0 = __KERNEL_DS,
  79		.ss1 = __KERNEL_CS,
 
  80#endif
  81		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
  82	 },
 
 
 
 
 
 
 
 
 
 
 
 
  83};
  84EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 
 
 
 
  85
  86DEFINE_PER_CPU(bool, __tss_limit_invalid);
  87EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 
 
 
 
 
 
 
 
 
 
  88
  89/*
  90 * this gets called so that we can store lazy state into memory and copy the
  91 * current task into the new thread.
  92 */
  93int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  94{
  95	memcpy(dst, src, arch_task_struct_size);
  96#ifdef CONFIG_VM86
  97	dst->thread.vm86 = NULL;
  98#endif
  99	/* Drop the copied pointer to current's fpstate */
 100	dst->thread.fpu.fpstate = NULL;
 101
 102	return 0;
 103}
 104
 105#ifdef CONFIG_X86_64
 106void arch_release_task_struct(struct task_struct *tsk)
 107{
 108	if (fpu_state_size_dynamic())
 109		fpstate_free(&tsk->thread.fpu);
 110}
 111#endif
 112
 113/*
 114 * Free thread data structures etc..
 115 */
 116void exit_thread(struct task_struct *tsk)
 117{
 118	struct thread_struct *t = &tsk->thread;
 
 
 119	struct fpu *fpu = &t->fpu;
 120
 121	if (test_thread_flag(TIF_IO_BITMAP))
 122		io_bitmap_exit(tsk);
 123
 124	free_vm86(t);
 125
 126	shstk_free(tsk);
 127	fpu__drop(fpu);
 128}
 129
 130static int set_new_tls(struct task_struct *p, unsigned long tls)
 131{
 132	struct user_desc __user *utls = (struct user_desc __user *)tls;
 133
 134	if (in_ia32_syscall())
 135		return do_set_thread_area(p, -1, utls, 0);
 136	else
 137		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
 138}
 139
 140__visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
 141				     int (*fn)(void *), void *fn_arg)
 142{
 143	schedule_tail(prev);
 144
 145	/* Is this a kernel thread? */
 146	if (unlikely(fn)) {
 147		fn(fn_arg);
 148		/*
 149		 * A kernel thread is allowed to return here after successfully
 150		 * calling kernel_execve().  Exit to userspace to complete the
 151		 * execve() syscall.
 152		 */
 153		regs->ax = 0;
 154	}
 155
 156	syscall_exit_to_user_mode(regs);
 157}
 158
 159int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 160{
 161	unsigned long clone_flags = args->flags;
 162	unsigned long sp = args->stack;
 163	unsigned long tls = args->tls;
 164	struct inactive_task_frame *frame;
 165	struct fork_frame *fork_frame;
 166	struct pt_regs *childregs;
 167	unsigned long new_ssp;
 168	int ret = 0;
 169
 170	childregs = task_pt_regs(p);
 171	fork_frame = container_of(childregs, struct fork_frame, regs);
 172	frame = &fork_frame->frame;
 173
 174	frame->bp = encode_frame_pointer(childregs);
 175	frame->ret_addr = (unsigned long) ret_from_fork_asm;
 176	p->thread.sp = (unsigned long) fork_frame;
 177	p->thread.io_bitmap = NULL;
 178	p->thread.iopl_warn = 0;
 179	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
 180
 181#ifdef CONFIG_X86_64
 182	current_save_fsgs();
 183	p->thread.fsindex = current->thread.fsindex;
 184	p->thread.fsbase = current->thread.fsbase;
 185	p->thread.gsindex = current->thread.gsindex;
 186	p->thread.gsbase = current->thread.gsbase;
 187
 188	savesegment(es, p->thread.es);
 189	savesegment(ds, p->thread.ds);
 190
 191	if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
 192		set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
 193#else
 194	p->thread.sp0 = (unsigned long) (childregs + 1);
 195	savesegment(gs, p->thread.gs);
 196	/*
 197	 * Clear all status flags including IF and set fixed bit. 64bit
 198	 * does not have this initialization as the frame does not contain
 199	 * flags. The flags consistency (especially vs. AC) is there
 200	 * ensured via objtool, which lacks 32bit support.
 201	 */
 202	frame->flags = X86_EFLAGS_FIXED;
 203#endif
 204
 205	/*
 206	 * Allocate a new shadow stack for thread if needed. If shadow stack,
 207	 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
 208	 * update it.
 209	 */
 210	new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
 211	if (IS_ERR_VALUE(new_ssp))
 212		return PTR_ERR((void *)new_ssp);
 213
 214	fpu_clone(p, clone_flags, args->fn, new_ssp);
 215
 216	/* Kernel thread ? */
 217	if (unlikely(p->flags & PF_KTHREAD)) {
 218		p->thread.pkru = pkru_get_init_value();
 219		memset(childregs, 0, sizeof(struct pt_regs));
 220		kthread_frame_init(frame, args->fn, args->fn_arg);
 221		return 0;
 222	}
 223
 224	/*
 225	 * Clone current's PKRU value from hardware. tsk->thread.pkru
 226	 * is only valid when scheduled out.
 227	 */
 228	p->thread.pkru = read_pkru();
 229
 230	frame->bx = 0;
 231	*childregs = *current_pt_regs();
 232	childregs->ax = 0;
 233	if (sp)
 234		childregs->sp = sp;
 235
 236	if (unlikely(args->fn)) {
 237		/*
 238		 * A user space thread, but it doesn't return to
 239		 * ret_after_fork().
 240		 *
 241		 * In order to indicate that to tools like gdb,
 242		 * we reset the stack and instruction pointers.
 243		 *
 244		 * It does the same kernel frame setup to return to a kernel
 245		 * function that a kernel thread does.
 246		 */
 247		childregs->sp = 0;
 248		childregs->ip = 0;
 249		kthread_frame_init(frame, args->fn, args->fn_arg);
 250		return 0;
 251	}
 252
 253	/* Set a new TLS for the child thread? */
 254	if (clone_flags & CLONE_SETTLS)
 255		ret = set_new_tls(p, tls);
 256
 257	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
 258		io_bitmap_share(p);
 259
 260	return ret;
 261}
 262
 263static void pkru_flush_thread(void)
 264{
 265	/*
 266	 * If PKRU is enabled the default PKRU value has to be loaded into
 267	 * the hardware right here (similar to context switch).
 268	 */
 269	pkru_write_default();
 270}
 271
 272void flush_thread(void)
 273{
 274	struct task_struct *tsk = current;
 275
 276	flush_ptrace_hw_breakpoint(tsk);
 277	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 278
 279	fpu_flush_thread();
 280	pkru_flush_thread();
 
 
 
 
 281}
 282
 283void disable_TSC(void)
 284{
 285	preempt_disable();
 286	if (!test_and_set_thread_flag(TIF_NOTSC))
 287		/*
 288		 * Must flip the CPU state synchronously with
 289		 * TIF_NOTSC in the current running context.
 290		 */
 291		cr4_set_bits(X86_CR4_TSD);
 292	preempt_enable();
 293}
 294
 
 
 
 
 
 295static void enable_TSC(void)
 296{
 297	preempt_disable();
 298	if (test_and_clear_thread_flag(TIF_NOTSC))
 299		/*
 300		 * Must flip the CPU state synchronously with
 301		 * TIF_NOTSC in the current running context.
 302		 */
 303		cr4_clear_bits(X86_CR4_TSD);
 304	preempt_enable();
 305}
 306
 307int get_tsc_mode(unsigned long adr)
 308{
 309	unsigned int val;
 310
 311	if (test_thread_flag(TIF_NOTSC))
 312		val = PR_TSC_SIGSEGV;
 313	else
 314		val = PR_TSC_ENABLE;
 315
 316	return put_user(val, (unsigned int __user *)adr);
 317}
 318
 319int set_tsc_mode(unsigned int val)
 320{
 321	if (val == PR_TSC_SIGSEGV)
 322		disable_TSC();
 323	else if (val == PR_TSC_ENABLE)
 324		enable_TSC();
 325	else
 326		return -EINVAL;
 327
 328	return 0;
 329}
 330
 331DEFINE_PER_CPU(u64, msr_misc_features_shadow);
 332
 333static void set_cpuid_faulting(bool on)
 334{
 335	u64 msrval;
 336
 337	msrval = this_cpu_read(msr_misc_features_shadow);
 338	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
 339	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
 340	this_cpu_write(msr_misc_features_shadow, msrval);
 341	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
 342}
 343
 344static void disable_cpuid(void)
 345{
 346	preempt_disable();
 347	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
 348		/*
 349		 * Must flip the CPU state synchronously with
 350		 * TIF_NOCPUID in the current running context.
 351		 */
 352		set_cpuid_faulting(true);
 353	}
 354	preempt_enable();
 355}
 356
 357static void enable_cpuid(void)
 358{
 359	preempt_disable();
 360	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
 361		/*
 362		 * Must flip the CPU state synchronously with
 363		 * TIF_NOCPUID in the current running context.
 364		 */
 365		set_cpuid_faulting(false);
 366	}
 367	preempt_enable();
 368}
 369
 370static int get_cpuid_mode(void)
 371{
 372	return !test_thread_flag(TIF_NOCPUID);
 373}
 374
 375static int set_cpuid_mode(unsigned long cpuid_enabled)
 376{
 377	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
 378		return -ENODEV;
 379
 380	if (cpuid_enabled)
 381		enable_cpuid();
 382	else
 383		disable_cpuid();
 384
 385	return 0;
 386}
 
 387
 388/*
 389 * Called immediately after a successful exec.
 390 */
 391void arch_setup_new_exec(void)
 392{
 393	/* If cpuid was previously disabled for this task, re-enable it. */
 394	if (test_thread_flag(TIF_NOCPUID))
 395		enable_cpuid();
 396
 397	/*
 398	 * Don't inherit TIF_SSBD across exec boundary when
 399	 * PR_SPEC_DISABLE_NOEXEC is used.
 400	 */
 401	if (test_thread_flag(TIF_SSBD) &&
 402	    task_spec_ssb_noexec(current)) {
 403		clear_thread_flag(TIF_SSBD);
 404		task_clear_spec_ssb_disable(current);
 405		task_clear_spec_ssb_noexec(current);
 406		speculation_ctrl_update(read_thread_flags());
 407	}
 408
 409	mm_reset_untag_mask(current->mm);
 410}
 411
 412#ifdef CONFIG_X86_IOPL_IOPERM
 413static inline void switch_to_bitmap(unsigned long tifp)
 414{
 415	/*
 416	 * Invalidate I/O bitmap if the previous task used it. This prevents
 417	 * any possible leakage of an active I/O bitmap.
 418	 *
 419	 * If the next task has an I/O bitmap it will handle it on exit to
 420	 * user mode.
 421	 */
 422	if (tifp & _TIF_IO_BITMAP)
 423		tss_invalidate_io_bitmap();
 424}
 425
 426static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
 427{
 428	/*
 429	 * Copy at least the byte range of the incoming tasks bitmap which
 430	 * covers the permitted I/O ports.
 431	 *
 432	 * If the previous task which used an I/O bitmap had more bits
 433	 * permitted, then the copy needs to cover those as well so they
 434	 * get turned off.
 435	 */
 436	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
 437	       max(tss->io_bitmap.prev_max, iobm->max));
 438
 439	/*
 440	 * Store the new max and the sequence number of this bitmap
 441	 * and a pointer to the bitmap itself.
 442	 */
 443	tss->io_bitmap.prev_max = iobm->max;
 444	tss->io_bitmap.prev_sequence = iobm->sequence;
 445}
 446
 447/**
 448 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
 449 */
 450void native_tss_update_io_bitmap(void)
 451{
 452	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 453	struct thread_struct *t = &current->thread;
 454	u16 *base = &tss->x86_tss.io_bitmap_base;
 455
 456	if (!test_thread_flag(TIF_IO_BITMAP)) {
 457		native_tss_invalidate_io_bitmap();
 458		return;
 459	}
 460
 461	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
 462		*base = IO_BITMAP_OFFSET_VALID_ALL;
 463	} else {
 464		struct io_bitmap *iobm = t->io_bitmap;
 465
 466		/*
 467		 * Only copy bitmap data when the sequence number differs. The
 468		 * update time is accounted to the incoming task.
 469		 */
 470		if (tss->io_bitmap.prev_sequence != iobm->sequence)
 471			tss_copy_io_bitmap(tss, iobm);
 472
 473		/* Enable the bitmap */
 474		*base = IO_BITMAP_OFFSET_VALID_MAP;
 475	}
 476
 477	/*
 478	 * Make sure that the TSS limit is covering the IO bitmap. It might have
 479	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
 480	 * access from user space to trigger a #GP because the bitmap is outside
 481	 * the TSS limit.
 482	 */
 483	refresh_tss_limit();
 484}
 485#else /* CONFIG_X86_IOPL_IOPERM */
 486static inline void switch_to_bitmap(unsigned long tifp) { }
 487#endif
 488
 489#ifdef CONFIG_SMP
 490
 491struct ssb_state {
 492	struct ssb_state	*shared_state;
 493	raw_spinlock_t		lock;
 494	unsigned int		disable_state;
 495	unsigned long		local_state;
 496};
 497
 498#define LSTATE_SSB	0
 499
 500static DEFINE_PER_CPU(struct ssb_state, ssb_state);
 501
 502void speculative_store_bypass_ht_init(void)
 503{
 504	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 505	unsigned int this_cpu = smp_processor_id();
 506	unsigned int cpu;
 507
 508	st->local_state = 0;
 509
 510	/*
 511	 * Shared state setup happens once on the first bringup
 512	 * of the CPU. It's not destroyed on CPU hotunplug.
 513	 */
 514	if (st->shared_state)
 515		return;
 516
 517	raw_spin_lock_init(&st->lock);
 518
 519	/*
 520	 * Go over HT siblings and check whether one of them has set up the
 521	 * shared state pointer already.
 522	 */
 523	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
 524		if (cpu == this_cpu)
 525			continue;
 526
 527		if (!per_cpu(ssb_state, cpu).shared_state)
 528			continue;
 529
 530		/* Link it to the state of the sibling: */
 531		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
 532		return;
 533	}
 534
 535	/*
 536	 * First HT sibling to come up on the core.  Link shared state of
 537	 * the first HT sibling to itself. The siblings on the same core
 538	 * which come up later will see the shared state pointer and link
 539	 * themselves to the state of this CPU.
 540	 */
 541	st->shared_state = st;
 542}
 543
 544/*
 545 * Logic is: First HT sibling enables SSBD for both siblings in the core
 546 * and last sibling to disable it, disables it for the whole core. This how
 547 * MSR_SPEC_CTRL works in "hardware":
 548 *
 549 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 550 */
 551static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 552{
 553	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 554	u64 msr = x86_amd_ls_cfg_base;
 555
 556	if (!static_cpu_has(X86_FEATURE_ZEN)) {
 557		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
 558		wrmsrl(MSR_AMD64_LS_CFG, msr);
 559		return;
 560	}
 561
 562	if (tifn & _TIF_SSBD) {
 563		/*
 564		 * Since this can race with prctl(), block reentry on the
 565		 * same CPU.
 566		 */
 567		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
 568			return;
 569
 570		msr |= x86_amd_ls_cfg_ssbd_mask;
 571
 572		raw_spin_lock(&st->shared_state->lock);
 573		/* First sibling enables SSBD: */
 574		if (!st->shared_state->disable_state)
 575			wrmsrl(MSR_AMD64_LS_CFG, msr);
 576		st->shared_state->disable_state++;
 577		raw_spin_unlock(&st->shared_state->lock);
 578	} else {
 579		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
 580			return;
 581
 582		raw_spin_lock(&st->shared_state->lock);
 583		st->shared_state->disable_state--;
 584		if (!st->shared_state->disable_state)
 585			wrmsrl(MSR_AMD64_LS_CFG, msr);
 586		raw_spin_unlock(&st->shared_state->lock);
 587	}
 588}
 589#else
 590static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 591{
 592	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
 593
 594	wrmsrl(MSR_AMD64_LS_CFG, msr);
 595}
 596#endif
 597
 598static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 
 599{
 600	/*
 601	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
 602	 * so ssbd_tif_to_spec_ctrl() just works.
 603	 */
 604	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
 605}
 606
 607/*
 608 * Update the MSRs managing speculation control, during context switch.
 609 *
 610 * tifp: Previous task's thread flags
 611 * tifn: Next task's thread flags
 612 */
 613static __always_inline void __speculation_ctrl_update(unsigned long tifp,
 614						      unsigned long tifn)
 615{
 616	unsigned long tif_diff = tifp ^ tifn;
 617	u64 msr = x86_spec_ctrl_base;
 618	bool updmsr = false;
 619
 620	lockdep_assert_irqs_disabled();
 621
 622	/* Handle change of TIF_SSBD depending on the mitigation method. */
 623	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
 624		if (tif_diff & _TIF_SSBD)
 625			amd_set_ssb_virt_state(tifn);
 626	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
 627		if (tif_diff & _TIF_SSBD)
 628			amd_set_core_ssb_state(tifn);
 629	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
 630		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
 631		updmsr |= !!(tif_diff & _TIF_SSBD);
 632		msr |= ssbd_tif_to_spec_ctrl(tifn);
 633	}
 634
 635	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
 636	if (IS_ENABLED(CONFIG_SMP) &&
 637	    static_branch_unlikely(&switch_to_cond_stibp)) {
 638		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
 639		msr |= stibp_tif_to_spec_ctrl(tifn);
 640	}
 641
 642	if (updmsr)
 643		update_spec_ctrl_cond(msr);
 644}
 645
 646static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
 647{
 648	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
 649		if (task_spec_ssb_disable(tsk))
 650			set_tsk_thread_flag(tsk, TIF_SSBD);
 651		else
 652			clear_tsk_thread_flag(tsk, TIF_SSBD);
 653
 654		if (task_spec_ib_disable(tsk))
 655			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
 656		else
 657			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
 658	}
 659	/* Return the updated threadinfo flags*/
 660	return read_task_thread_flags(tsk);
 661}
 662
 663void speculation_ctrl_update(unsigned long tif)
 
 664{
 665	unsigned long flags;
 666
 667	/* Forced update. Make sure all relevant TIF flags are different */
 668	local_irq_save(flags);
 669	__speculation_ctrl_update(~tif, tif);
 670	local_irq_restore(flags);
 671}
 
 672
 673/* Called from seccomp/prctl update */
 674void speculation_ctrl_update_current(void)
 675{
 676	preempt_disable();
 677	speculation_ctrl_update(speculation_ctrl_update_tif(current));
 678	preempt_enable();
 679}
 680
 681static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 682{
 683	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
 684
 685	newval = cr4 ^ mask;
 686	if (newval != cr4) {
 687		this_cpu_write(cpu_tlbstate.cr4, newval);
 688		__write_cr4(newval);
 689	}
 690}
 691
 692void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
 693{
 694	unsigned long tifp, tifn;
 695
 696	tifn = read_task_thread_flags(next_p);
 697	tifp = read_task_thread_flags(prev_p);
 698
 699	switch_to_bitmap(tifp);
 700
 701	propagate_user_return_notify(prev_p, next_p);
 702
 703	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
 704	    arch_has_block_step()) {
 705		unsigned long debugctl, msk;
 706
 707		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 708		debugctl &= ~DEBUGCTLMSR_BTF;
 709		msk = tifn & _TIF_BLOCKSTEP;
 710		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
 711		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 712	}
 713
 714	if ((tifp ^ tifn) & _TIF_NOTSC)
 715		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
 716
 717	if ((tifp ^ tifn) & _TIF_NOCPUID)
 718		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
 719
 720	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
 721		__speculation_ctrl_update(tifp, tifn);
 722	} else {
 723		speculation_ctrl_update_tif(prev_p);
 724		tifn = speculation_ctrl_update_tif(next_p);
 725
 726		/* Enforce MSR update to ensure consistent state */
 727		__speculation_ctrl_update(~tifn, tifn);
 728	}
 729}
 730
 731/*
 732 * Idle related variables and functions
 733 */
 734unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 735EXPORT_SYMBOL(boot_option_idle_override);
 
 
 736
 737/*
 738 * We use this if we don't have any better idle routine..
 739 */
 740void __cpuidle default_idle(void)
 741{
 742	raw_safe_halt();
 743	raw_local_irq_disable();
 
 744}
 745#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
 746EXPORT_SYMBOL(default_idle);
 747#endif
 748
 749DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
 750
 751static bool x86_idle_set(void)
 752{
 753	return !!static_call_query(x86_idle);
 754}
 755
 756#ifndef CONFIG_SMP
 757static inline void __noreturn play_dead(void)
 758{
 759	BUG();
 760}
 761#endif
 762
 763void arch_cpu_idle_enter(void)
 764{
 765	tsc_verify_tsc_adjust(false);
 766	local_touch_nmi();
 767}
 
 
 
 
 768
 769void __noreturn arch_cpu_idle_dead(void)
 770{
 771	play_dead();
 772}
 773
 774/*
 775 * Called from the generic idle code.
 776 */
 777void __cpuidle arch_cpu_idle(void)
 778{
 779	static_call(x86_idle)();
 780}
 781EXPORT_SYMBOL_GPL(arch_cpu_idle);
 782
 783#ifdef CONFIG_XEN
 784bool xen_set_default_idle(void)
 785{
 786	bool ret = x86_idle_set();
 787
 788	static_call_update(x86_idle, default_idle);
 789
 790	return ret;
 
 
 
 791}
 792#endif
 793
 794struct cpumask cpus_stop_mask;
 795
 796void __noreturn stop_this_cpu(void *dummy)
 
 
 
 
 
 797{
 798	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
 799	unsigned int cpu = smp_processor_id();
 800
 801	local_irq_disable();
 802
 803	/*
 804	 * Remove this CPU from the online mask and disable it
 805	 * unconditionally. This might be redundant in case that the reboot
 806	 * vector was handled late and stop_other_cpus() sent an NMI.
 807	 *
 808	 * According to SDM and APM NMIs can be accepted even after soft
 809	 * disabling the local APIC.
 810	 */
 811	set_cpu_online(cpu, false);
 812	disable_local_APIC();
 813	mcheck_cpu_clear(c);
 814
 815	/*
 816	 * Use wbinvd on processors that support SME. This provides support
 817	 * for performing a successful kexec when going from SME inactive
 818	 * to SME active (or vice-versa). The cache must be cleared so that
 819	 * if there are entries with the same physical address, both with and
 820	 * without the encryption bit, they don't race each other when flushed
 821	 * and potentially end up with the wrong entry being committed to
 822	 * memory.
 823	 *
 824	 * Test the CPUID bit directly because the machine might've cleared
 825	 * X86_FEATURE_SME due to cmdline options.
 826	 */
 827	if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
 828		native_wbinvd();
 829
 830	/*
 831	 * This brings a cache line back and dirties it, but
 832	 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
 833	 * observed that all CPUs reported stop. This write will invalidate
 834	 * the related cache line on this CPU.
 835	 */
 836	cpumask_clear_cpu(cpu, &cpus_stop_mask);
 837
 838#ifdef CONFIG_SMP
 839	if (smp_ops.stop_this_cpu) {
 840		smp_ops.stop_this_cpu();
 841		BUG();
 842	}
 843#endif
 844
 845	for (;;) {
 846		/*
 847		 * Use native_halt() so that memory contents don't change
 848		 * (stack usage and variables) after possibly issuing the
 849		 * native_wbinvd() above.
 850		 */
 851		native_halt();
 852	}
 
 
 
 853}
 854
 855/*
 856 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
 857 * exists and whenever MONITOR/MWAIT extensions are present there is at
 858 * least one C1 substate.
 
 
 859 *
 860 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
 861 * is passed to kernel commandline parameter.
 862 */
 863static __init bool prefer_mwait_c1_over_halt(void)
 864{
 865	const struct cpuinfo_x86 *c = &boot_cpu_data;
 866	u32 eax, ebx, ecx, edx;
 867
 868	/* If override is enforced on the command line, fall back to HALT. */
 869	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
 870		return false;
 871
 872	/* MWAIT is not supported on this platform. Fallback to HALT */
 873	if (!cpu_has(c, X86_FEATURE_MWAIT))
 874		return false;
 875
 876	/* Monitor has a bug or APIC stops in C1E. Fallback to HALT */
 877	if (boot_cpu_has_bug(X86_BUG_MONITOR) || boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 878		return false;
 879
 880	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
 881
 882	/*
 883	 * If MWAIT extensions are not available, it is safe to use MWAIT
 884	 * with EAX=0, ECX=0.
 885	 */
 886	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
 887		return true;
 888
 889	/*
 890	 * If MWAIT extensions are available, there should be at least one
 891	 * MWAIT C1 substate present.
 892	 */
 893	return !!(edx & MWAIT_C1_SUBSTATE_MASK);
 894}
 895
 896/*
 897 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 898 * with interrupts enabled and no flags, which is backwards compatible with the
 899 * original MWAIT implementation.
 900 */
 901static __cpuidle void mwait_idle(void)
 902{
 903	if (!current_set_polling_and_test()) {
 
 904		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 905			mb(); /* quirk */
 906			clflush((void *)&current_thread_info()->flags);
 907			mb(); /* quirk */
 908		}
 909
 910		__monitor((void *)&current_thread_info()->flags, 0, 0);
 911		if (!need_resched()) {
 912			__sti_mwait(0, 0);
 913			raw_local_irq_disable();
 914		}
 
 
 
 915	}
 916	__current_clr_polling();
 917}
 918
 919void __init select_idle_routine(void)
 920{
 921	if (boot_option_idle_override == IDLE_POLL) {
 922		if (IS_ENABLED(CONFIG_SMP) && __max_threads_per_core > 1)
 923			pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 924		return;
 925	}
 926
 927	/* Required to guard against xen_set_default_idle() */
 928	if (x86_idle_set())
 929		return;
 930
 931	if (prefer_mwait_c1_over_halt()) {
 
 
 
 
 932		pr_info("using mwait in idle threads\n");
 933		static_call_update(x86_idle, mwait_idle);
 934	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
 935		pr_info("using TDX aware idle routine\n");
 936		static_call_update(x86_idle, tdx_safe_halt);
 937	} else {
 938		static_call_update(x86_idle, default_idle);
 939	}
 940}
 941
 942void amd_e400_c1e_apic_setup(void)
 943{
 944	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 945		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
 946		local_irq_disable();
 947		tick_broadcast_force();
 948		local_irq_enable();
 949	}
 950}
 951
 952void __init arch_post_acpi_subsys_init(void)
 953{
 954	u32 lo, hi;
 955
 956	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
 957		return;
 958
 959	/*
 960	 * AMD E400 detection needs to happen after ACPI has been enabled. If
 961	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
 962	 * MSR_K8_INT_PENDING_MSG.
 963	 */
 964	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 965	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
 966		return;
 967
 968	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
 969
 970	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 971		mark_tsc_unstable("TSC halt in AMD C1E");
 972
 973	if (IS_ENABLED(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE))
 974		static_branch_enable(&arch_needs_tick_broadcast);
 975	pr_info("System has AMD C1E erratum E400. Workaround enabled.\n");
 976}
 977
 978static int __init idle_setup(char *str)
 979{
 980	if (!str)
 981		return -EINVAL;
 982
 983	if (!strcmp(str, "poll")) {
 984		pr_info("using polling idle threads\n");
 985		boot_option_idle_override = IDLE_POLL;
 986		cpu_idle_poll_ctrl(true);
 987	} else if (!strcmp(str, "halt")) {
 988		/* 'idle=halt' HALT for idle. C-states are disabled. */
 
 
 
 
 
 
 
 989		boot_option_idle_override = IDLE_HALT;
 990	} else if (!strcmp(str, "nomwait")) {
 991		/* 'idle=nomwait' disables MWAIT for idle */
 
 
 
 
 
 992		boot_option_idle_override = IDLE_NOMWAIT;
 993	} else {
 994		return -EINVAL;
 995	}
 996
 997	return 0;
 998}
 999early_param("idle", idle_setup);
1000
1001unsigned long arch_align_stack(unsigned long sp)
1002{
1003	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1004		sp -= get_random_u32_below(8192);
1005	return sp & ~0xf;
1006}
1007
1008unsigned long arch_randomize_brk(struct mm_struct *mm)
1009{
1010	if (mmap_is_ia32())
1011		return randomize_page(mm->brk, SZ_32M);
1012
1013	return randomize_page(mm->brk, SZ_1G);
1014}
1015
1016/*
1017 * Called from fs/proc with a reference on @p to find the function
1018 * which called into schedule(). This needs to be done carefully
1019 * because the task might wake up and we might look at a stack
1020 * changing under us.
1021 */
1022unsigned long __get_wchan(struct task_struct *p)
1023{
1024	struct unwind_state state;
1025	unsigned long addr = 0;
1026
1027	if (!try_get_task_stack(p))
1028		return 0;
1029
1030	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1031	     unwind_next_frame(&state)) {
1032		addr = unwind_get_return_address(&state);
1033		if (!addr)
1034			break;
1035		if (in_sched_functions(addr))
1036			continue;
1037		break;
1038	}
1039
1040	put_task_stack(p);
1041
1042	return addr;
1043}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044
1045long do_arch_prctl_common(int option, unsigned long arg2)
1046{
1047	switch (option) {
1048	case ARCH_GET_CPUID:
1049		return get_cpuid_mode();
1050	case ARCH_SET_CPUID:
1051		return set_cpuid_mode(arg2);
1052	case ARCH_GET_XCOMP_SUPP:
1053	case ARCH_GET_XCOMP_PERM:
1054	case ARCH_REQ_XCOMP_PERM:
1055	case ARCH_GET_XCOMP_GUEST_PERM:
1056	case ARCH_REQ_XCOMP_GUEST_PERM:
1057		return fpu_xstate_prctl(option, arg2);
1058	}
1059
1060	return -EINVAL;
 
 
 
 
 
 
 
 
 
1061}
v4.6
 
  1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2
  3#include <linux/errno.h>
  4#include <linux/kernel.h>
  5#include <linux/mm.h>
  6#include <linux/smp.h>
 
  7#include <linux/prctl.h>
  8#include <linux/slab.h>
  9#include <linux/sched.h>
 10#include <linux/module.h>
 
 
 
 
 
 11#include <linux/pm.h>
 12#include <linux/tick.h>
 13#include <linux/random.h>
 14#include <linux/user-return-notifier.h>
 15#include <linux/dmi.h>
 16#include <linux/utsname.h>
 17#include <linux/stackprotector.h>
 18#include <linux/tick.h>
 19#include <linux/cpuidle.h>
 
 
 
 20#include <trace/events/power.h>
 21#include <linux/hw_breakpoint.h>
 
 22#include <asm/cpu.h>
 23#include <asm/apic.h>
 24#include <asm/syscalls.h>
 25#include <asm/idle.h>
 26#include <asm/uaccess.h>
 27#include <asm/mwait.h>
 28#include <asm/fpu/internal.h>
 
 
 29#include <asm/debugreg.h>
 30#include <asm/nmi.h>
 31#include <asm/tlbflush.h>
 32#include <asm/mce.h>
 33#include <asm/vm86.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 34
 35/*
 36 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 37 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 38 * so they are allowed to end up in the .data..cacheline_aligned
 39 * section. Since TSS's are completely CPU-local, we want them
 40 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 41 */
 42__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
 43	.x86_tss = {
 44		.sp0 = TOP_OF_INIT_STACK,
 
 
 
 
 
 
 
 45#ifdef CONFIG_X86_32
 
 
 46		.ss0 = __KERNEL_DS,
 47		.ss1 = __KERNEL_CS,
 48		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 49#endif
 
 50	 },
 51#ifdef CONFIG_X86_32
 52	 /*
 53	  * Note that the .io_bitmap member must be extra-big. This is because
 54	  * the CPU will access an additional byte beyond the end of the IO
 55	  * permission bitmap. The extra byte must be all 1 bits, and must
 56	  * be within the limit.
 57	  */
 58	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 59#endif
 60#ifdef CONFIG_X86_32
 61	.SYSENTER_stack_canary	= STACK_END_MAGIC,
 62#endif
 63};
 64EXPORT_PER_CPU_SYMBOL(cpu_tss);
 65
 66#ifdef CONFIG_X86_64
 67static DEFINE_PER_CPU(unsigned char, is_idle);
 68static ATOMIC_NOTIFIER_HEAD(idle_notifier);
 69
 70void idle_notifier_register(struct notifier_block *n)
 71{
 72	atomic_notifier_chain_register(&idle_notifier, n);
 73}
 74EXPORT_SYMBOL_GPL(idle_notifier_register);
 75
 76void idle_notifier_unregister(struct notifier_block *n)
 77{
 78	atomic_notifier_chain_unregister(&idle_notifier, n);
 79}
 80EXPORT_SYMBOL_GPL(idle_notifier_unregister);
 81#endif
 82
 83/*
 84 * this gets called so that we can store lazy state into memory and copy the
 85 * current task into the new thread.
 86 */
 87int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 88{
 89	memcpy(dst, src, arch_task_struct_size);
 90#ifdef CONFIG_VM86
 91	dst->thread.vm86 = NULL;
 92#endif
 
 
 93
 94	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
 95}
 96
 
 
 
 
 
 
 
 
 97/*
 98 * Free current thread data structures etc..
 99 */
100void exit_thread(void)
101{
102	struct task_struct *me = current;
103	struct thread_struct *t = &me->thread;
104	unsigned long *bp = t->io_bitmap_ptr;
105	struct fpu *fpu = &t->fpu;
106
107	if (bp) {
108		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
110		t->io_bitmap_ptr = NULL;
111		clear_thread_flag(TIF_IO_BITMAP);
 
 
 
 
 
 
 
 
 
 
 
112		/*
113		 * Careful, clear this in the TSS too:
 
 
 
 
 
 
 
114		 */
115		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116		t->io_bitmap_max = 0;
117		put_cpu();
118		kfree(bp);
119	}
120
121	free_vm86(t);
 
 
 
 
 
 
 
 
122
123	fpu__drop(fpu);
 
 
 
 
 
 
124}
125
126void flush_thread(void)
127{
128	struct task_struct *tsk = current;
129
130	flush_ptrace_hw_breakpoint(tsk);
131	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
132
133	fpu__clear(&tsk->thread.fpu);
134}
135
136static void hard_disable_TSC(void)
137{
138	cr4_set_bits(X86_CR4_TSD);
139}
140
141void disable_TSC(void)
142{
143	preempt_disable();
144	if (!test_and_set_thread_flag(TIF_NOTSC))
145		/*
146		 * Must flip the CPU state synchronously with
147		 * TIF_NOTSC in the current running context.
148		 */
149		hard_disable_TSC();
150	preempt_enable();
151}
152
153static void hard_enable_TSC(void)
154{
155	cr4_clear_bits(X86_CR4_TSD);
156}
157
158static void enable_TSC(void)
159{
160	preempt_disable();
161	if (test_and_clear_thread_flag(TIF_NOTSC))
162		/*
163		 * Must flip the CPU state synchronously with
164		 * TIF_NOTSC in the current running context.
165		 */
166		hard_enable_TSC();
167	preempt_enable();
168}
169
170int get_tsc_mode(unsigned long adr)
171{
172	unsigned int val;
173
174	if (test_thread_flag(TIF_NOTSC))
175		val = PR_TSC_SIGSEGV;
176	else
177		val = PR_TSC_ENABLE;
178
179	return put_user(val, (unsigned int __user *)adr);
180}
181
182int set_tsc_mode(unsigned int val)
183{
184	if (val == PR_TSC_SIGSEGV)
185		disable_TSC();
186	else if (val == PR_TSC_ENABLE)
187		enable_TSC();
188	else
189		return -EINVAL;
190
191	return 0;
192}
193
194void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
195		      struct tss_struct *tss)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196{
197	struct thread_struct *prev, *next;
 
 
 
 
 
 
198
199	prev = &prev_p->thread;
200	next = &next_p->thread;
 
 
201
202	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
203	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
204		unsigned long debugctl = get_debugctlmsr();
205
206		debugctl &= ~DEBUGCTLMSR_BTF;
207		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
208			debugctl |= DEBUGCTLMSR_BTF;
 
 
 
 
 
209
210		update_debugctlmsr(debugctl);
 
 
 
 
 
 
 
 
 
211	}
212
213	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
214	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
215		/* prev and next are different */
216		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
217			hard_disable_TSC();
218		else
219			hard_enable_TSC();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220	}
221
222	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 
 
 
 
223		/*
224		 * Copy the relevant range of the IO bitmap.
225		 * Normally this is 128 bytes or less:
226		 */
227		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
228		       max(prev->io_bitmap_max, next->io_bitmap_max));
229	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
230		/*
231		 * Clear any possible leftover bits:
232		 */
233		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234	}
235	propagate_user_return_notify(prev_p, next_p);
 
 
 
 
 
 
 
236}
237
238/*
239 * Idle related variables and functions
 
 
 
 
240 */
241unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
242EXPORT_SYMBOL(boot_option_idle_override);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243
244static void (*x86_idle)(void);
245
246#ifndef CONFIG_SMP
247static inline void play_dead(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248{
249	BUG();
 
 
250}
251#endif
252
253#ifdef CONFIG_X86_64
254void enter_idle(void)
255{
256	this_cpu_write(is_idle, 1);
257	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
 
 
 
258}
259
260static void __exit_idle(void)
 
 
 
 
 
 
 
261{
262	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
263		return;
264	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265}
266
267/* Called from interrupts to signify idle end */
268void exit_idle(void)
269{
270	/* idle loop has pid 0 */
271	if (current->pid)
272		return;
273	__exit_idle();
 
 
274}
275#endif
276
277void arch_cpu_idle_enter(void)
 
278{
279	local_touch_nmi();
280	enter_idle();
 
281}
282
283void arch_cpu_idle_exit(void)
284{
285	__exit_idle();
 
 
 
 
 
 
286}
287
288void arch_cpu_idle_dead(void)
289{
290	play_dead();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291}
292
293/*
294 * Called from the generic idle code.
295 */
296void arch_cpu_idle(void)
297{
298	x86_idle();
299}
300
301/*
302 * We use this if we don't have any better idle routine..
303 */
304void default_idle(void)
305{
306	trace_cpu_idle_rcuidle(1, smp_processor_id());
307	safe_halt();
308	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
309}
310#ifdef CONFIG_APM_MODULE
311EXPORT_SYMBOL(default_idle);
312#endif
313
314#ifdef CONFIG_XEN
315bool xen_set_default_idle(void)
 
316{
317	bool ret = !!x86_idle;
 
318
319	x86_idle = default_idle;
320
321	return ret;
 
322}
323#endif
324void stop_this_cpu(void *dummy)
 
325{
326	local_irq_disable();
327	/*
328	 * Remove this CPU:
329	 */
330	set_cpu_online(smp_processor_id(), false);
331	disable_local_APIC();
332	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
333
334	for (;;)
335		halt();
 
336}
337
338bool amd_e400_c1e_detected;
339EXPORT_SYMBOL(amd_e400_c1e_detected);
 
 
 
 
 
 
340
341static cpumask_var_t amd_e400_c1e_mask;
 
 
 
 
 
342
343void amd_e400_remove_cpu(int cpu)
344{
345	if (amd_e400_c1e_mask != NULL)
346		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
347}
 
 
 
348
349/*
350 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
351 * pending message MSR. If we detect C1E, then we handle it the same
352 * way as C3 power states (local apic timer and TSC stop)
353 */
354static void amd_e400_idle(void)
355{
356	if (!amd_e400_c1e_detected) {
357		u32 lo, hi;
358
359		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
360
361		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
362			amd_e400_c1e_detected = true;
363			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
364				mark_tsc_unstable("TSC halt in AMD C1E");
365			pr_info("System has AMD C1E enabled\n");
366		}
367	}
 
 
 
 
368
369	if (amd_e400_c1e_detected) {
370		int cpu = smp_processor_id();
 
 
 
 
 
 
 
 
 
 
 
 
371
372		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
373			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
374			/* Force broadcast so ACPI can not interfere. */
375			tick_broadcast_force();
376			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
377		}
378		tick_broadcast_enter();
379
380		default_idle();
 
 
 
 
 
381
 
382		/*
383		 * The switch back from broadcast mode needs to be
384		 * called with interrupts disabled.
 
385		 */
386		local_irq_disable();
387		tick_broadcast_exit();
388		local_irq_enable();
389	} else
390		default_idle();
391}
392
393/*
394 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
395 * We can't rely on cpuidle installing MWAIT, because it will not load
396 * on systems that support only C1 -- so the boot default must be MWAIT.
397 *
398 * Some AMD machines are the opposite, they depend on using HALT.
399 *
400 * So for default C1, which is used during boot until cpuidle loads,
401 * use MWAIT-C1 on Intel HW that has it, else use HALT.
402 */
403static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
404{
405	if (c->x86_vendor != X86_VENDOR_INTEL)
406		return 0;
 
 
 
 
407
 
408	if (!cpu_has(c, X86_FEATURE_MWAIT))
409		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
410
411	return 1;
 
 
 
 
412}
413
414/*
415 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
416 * with interrupts enabled and no flags, which is backwards compatible with the
417 * original MWAIT implementation.
418 */
419static void mwait_idle(void)
420{
421	if (!current_set_polling_and_test()) {
422		trace_cpu_idle_rcuidle(1, smp_processor_id());
423		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
424			mb(); /* quirk */
425			clflush((void *)&current_thread_info()->flags);
426			mb(); /* quirk */
427		}
428
429		__monitor((void *)&current_thread_info()->flags, 0, 0);
430		if (!need_resched())
431			__sti_mwait(0, 0);
432		else
433			local_irq_enable();
434		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
435	} else {
436		local_irq_enable();
437	}
438	__current_clr_polling();
439}
440
441void select_idle_routine(const struct cpuinfo_x86 *c)
442{
443#ifdef CONFIG_SMP
444	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
445		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
446#endif
447	if (x86_idle || boot_option_idle_override == IDLE_POLL)
 
 
 
448		return;
449
450	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
451		/* E400: APIC timer interrupt does not wake up CPU from C1e */
452		pr_info("using AMD E400 aware idle routine\n");
453		x86_idle = amd_e400_idle;
454	} else if (prefer_mwait_c1_over_halt(c)) {
455		pr_info("using mwait in idle threads\n");
456		x86_idle = mwait_idle;
457	} else
458		x86_idle = default_idle;
 
 
 
 
459}
460
461void __init init_amd_e400_c1e_mask(void)
462{
463	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
464	if (x86_idle == amd_e400_idle)
465		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466}
467
468static int __init idle_setup(char *str)
469{
470	if (!str)
471		return -EINVAL;
472
473	if (!strcmp(str, "poll")) {
474		pr_info("using polling idle threads\n");
475		boot_option_idle_override = IDLE_POLL;
476		cpu_idle_poll_ctrl(true);
477	} else if (!strcmp(str, "halt")) {
478		/*
479		 * When the boot option of idle=halt is added, halt is
480		 * forced to be used for CPU idle. In such case CPU C2/C3
481		 * won't be used again.
482		 * To continue to load the CPU idle driver, don't touch
483		 * the boot_option_idle_override.
484		 */
485		x86_idle = default_idle;
486		boot_option_idle_override = IDLE_HALT;
487	} else if (!strcmp(str, "nomwait")) {
488		/*
489		 * If the boot option of "idle=nomwait" is added,
490		 * it means that mwait will be disabled for CPU C2/C3
491		 * states. In such case it won't touch the variable
492		 * of boot_option_idle_override.
493		 */
494		boot_option_idle_override = IDLE_NOMWAIT;
495	} else
496		return -1;
 
497
498	return 0;
499}
500early_param("idle", idle_setup);
501
502unsigned long arch_align_stack(unsigned long sp)
503{
504	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
505		sp -= get_random_int() % 8192;
506	return sp & ~0xf;
507}
508
509unsigned long arch_randomize_brk(struct mm_struct *mm)
510{
511	unsigned long range_end = mm->brk + 0x02000000;
512	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 
 
513}
514
515/*
516 * Called from fs/proc with a reference on @p to find the function
517 * which called into schedule(). This needs to be done carefully
518 * because the task might wake up and we might look at a stack
519 * changing under us.
520 */
521unsigned long get_wchan(struct task_struct *p)
522{
523	unsigned long start, bottom, top, sp, fp, ip;
524	int count = 0;
525
526	if (!p || p == current || p->state == TASK_RUNNING)
527		return 0;
528
529	start = (unsigned long)task_stack_page(p);
530	if (!start)
531		return 0;
 
 
 
 
 
 
 
 
532
533	/*
534	 * Layout of the stack page:
535	 *
536	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
537	 * PADDING
538	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
539	 * stack
540	 * ----------- bottom = start + sizeof(thread_info)
541	 * thread_info
542	 * ----------- start
543	 *
544	 * The tasks stack pointer points at the location where the
545	 * framepointer is stored. The data on the stack is:
546	 * ... IP FP ... IP FP
547	 *
548	 * We need to read FP and IP, so we need to adjust the upper
549	 * bound by another unsigned long.
550	 */
551	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
552	top -= 2 * sizeof(unsigned long);
553	bottom = start + sizeof(struct thread_info);
554
555	sp = READ_ONCE(p->thread.sp);
556	if (sp < bottom || sp > top)
557		return 0;
 
 
 
 
 
 
 
 
 
 
 
558
559	fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
560	do {
561		if (fp < bottom || fp > top)
562			return 0;
563		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
564		if (!in_sched_functions(ip))
565			return ip;
566		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
567	} while (count++ < 16 && p->state != TASK_RUNNING);
568	return 0;
569}