Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/errno.h>
   5#include <linux/kernel.h>
   6#include <linux/mm.h>
   7#include <linux/smp.h>
   8#include <linux/cpu.h>
   9#include <linux/prctl.h>
  10#include <linux/slab.h>
  11#include <linux/sched.h>
  12#include <linux/sched/idle.h>
  13#include <linux/sched/debug.h>
  14#include <linux/sched/task.h>
  15#include <linux/sched/task_stack.h>
  16#include <linux/init.h>
  17#include <linux/export.h>
  18#include <linux/pm.h>
  19#include <linux/tick.h>
  20#include <linux/random.h>
  21#include <linux/user-return-notifier.h>
  22#include <linux/dmi.h>
  23#include <linux/utsname.h>
  24#include <linux/stackprotector.h>
  25#include <linux/cpuidle.h>
  26#include <linux/acpi.h>
  27#include <linux/elf-randomize.h>
  28#include <linux/static_call.h>
  29#include <trace/events/power.h>
  30#include <linux/hw_breakpoint.h>
  31#include <linux/entry-common.h>
  32#include <asm/cpu.h>
  33#include <asm/apic.h>
 
  34#include <linux/uaccess.h>
  35#include <asm/mwait.h>
  36#include <asm/fpu/api.h>
  37#include <asm/fpu/sched.h>
  38#include <asm/fpu/xstate.h>
  39#include <asm/debugreg.h>
  40#include <asm/nmi.h>
  41#include <asm/tlbflush.h>
  42#include <asm/mce.h>
  43#include <asm/vm86.h>
  44#include <asm/switch_to.h>
  45#include <asm/desc.h>
  46#include <asm/prctl.h>
  47#include <asm/spec-ctrl.h>
  48#include <asm/io_bitmap.h>
  49#include <asm/proto.h>
  50#include <asm/frame.h>
  51#include <asm/unwind.h>
  52#include <asm/tdx.h>
  53#include <asm/mmu_context.h>
  54#include <asm/shstk.h>
  55
  56#include "process.h"
  57
  58/*
  59 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  60 * no more per-task TSS's. The TSS size is kept cacheline-aligned
  61 * so they are allowed to end up in the .data..cacheline_aligned
  62 * section. Since TSS's are completely CPU-local, we want them
  63 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  64 */
  65__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
  66	.x86_tss = {
  67		/*
  68		 * .sp0 is only used when entering ring 0 from a lower
  69		 * privilege level.  Since the init task never runs anything
  70		 * but ring 0 code, there is no need for a valid value here.
  71		 * Poison it.
  72		 */
  73		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
  74
  75#ifdef CONFIG_X86_32
 
 
 
 
 
  76		.sp1 = TOP_OF_INIT_STACK,
 
  77
 
  78		.ss0 = __KERNEL_DS,
  79		.ss1 = __KERNEL_CS,
 
  80#endif
  81		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
  82	 },
 
 
 
 
 
 
 
 
 
  83};
  84EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
  85
  86DEFINE_PER_CPU(bool, __tss_limit_invalid);
  87EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
  88
  89/*
  90 * this gets called so that we can store lazy state into memory and copy the
  91 * current task into the new thread.
  92 */
  93int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  94{
  95	memcpy(dst, src, arch_task_struct_size);
  96#ifdef CONFIG_VM86
  97	dst->thread.vm86 = NULL;
  98#endif
  99	/* Drop the copied pointer to current's fpstate */
 100	dst->thread.fpu.fpstate = NULL;
 101
 102	return 0;
 103}
 104
 105#ifdef CONFIG_X86_64
 106void arch_release_task_struct(struct task_struct *tsk)
 107{
 108	if (fpu_state_size_dynamic())
 109		fpstate_free(&tsk->thread.fpu);
 110}
 111#endif
 112
 113/*
 114 * Free thread data structures etc..
 115 */
 116void exit_thread(struct task_struct *tsk)
 117{
 118	struct thread_struct *t = &tsk->thread;
 
 119	struct fpu *fpu = &t->fpu;
 120
 121	if (test_thread_flag(TIF_IO_BITMAP))
 122		io_bitmap_exit(tsk);
 123
 124	free_vm86(t);
 125
 126	shstk_free(tsk);
 127	fpu__drop(fpu);
 128}
 129
 130static int set_new_tls(struct task_struct *p, unsigned long tls)
 131{
 132	struct user_desc __user *utls = (struct user_desc __user *)tls;
 133
 134	if (in_ia32_syscall())
 135		return do_set_thread_area(p, -1, utls, 0);
 136	else
 137		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
 138}
 139
 140__visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
 141				     int (*fn)(void *), void *fn_arg)
 142{
 143	schedule_tail(prev);
 144
 145	/* Is this a kernel thread? */
 146	if (unlikely(fn)) {
 147		fn(fn_arg);
 148		/*
 149		 * A kernel thread is allowed to return here after successfully
 150		 * calling kernel_execve().  Exit to userspace to complete the
 151		 * execve() syscall.
 152		 */
 153		regs->ax = 0;
 154	}
 155
 156	syscall_exit_to_user_mode(regs);
 157}
 158
 159int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 160{
 161	unsigned long clone_flags = args->flags;
 162	unsigned long sp = args->stack;
 163	unsigned long tls = args->tls;
 164	struct inactive_task_frame *frame;
 165	struct fork_frame *fork_frame;
 166	struct pt_regs *childregs;
 167	unsigned long new_ssp;
 168	int ret = 0;
 169
 170	childregs = task_pt_regs(p);
 171	fork_frame = container_of(childregs, struct fork_frame, regs);
 172	frame = &fork_frame->frame;
 173
 174	frame->bp = encode_frame_pointer(childregs);
 175	frame->ret_addr = (unsigned long) ret_from_fork_asm;
 176	p->thread.sp = (unsigned long) fork_frame;
 177	p->thread.io_bitmap = NULL;
 178	p->thread.iopl_warn = 0;
 179	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
 180
 181#ifdef CONFIG_X86_64
 182	current_save_fsgs();
 183	p->thread.fsindex = current->thread.fsindex;
 184	p->thread.fsbase = current->thread.fsbase;
 185	p->thread.gsindex = current->thread.gsindex;
 186	p->thread.gsbase = current->thread.gsbase;
 187
 188	savesegment(es, p->thread.es);
 189	savesegment(ds, p->thread.ds);
 190
 191	if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
 192		set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
 193#else
 194	p->thread.sp0 = (unsigned long) (childregs + 1);
 195	savesegment(gs, p->thread.gs);
 196	/*
 197	 * Clear all status flags including IF and set fixed bit. 64bit
 198	 * does not have this initialization as the frame does not contain
 199	 * flags. The flags consistency (especially vs. AC) is there
 200	 * ensured via objtool, which lacks 32bit support.
 201	 */
 202	frame->flags = X86_EFLAGS_FIXED;
 203#endif
 204
 205	/*
 206	 * Allocate a new shadow stack for thread if needed. If shadow stack,
 207	 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
 208	 * update it.
 209	 */
 210	new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
 211	if (IS_ERR_VALUE(new_ssp))
 212		return PTR_ERR((void *)new_ssp);
 213
 214	fpu_clone(p, clone_flags, args->fn, new_ssp);
 215
 216	/* Kernel thread ? */
 217	if (unlikely(p->flags & PF_KTHREAD)) {
 218		p->thread.pkru = pkru_get_init_value();
 219		memset(childregs, 0, sizeof(struct pt_regs));
 220		kthread_frame_init(frame, args->fn, args->fn_arg);
 221		return 0;
 222	}
 223
 224	/*
 225	 * Clone current's PKRU value from hardware. tsk->thread.pkru
 226	 * is only valid when scheduled out.
 227	 */
 228	p->thread.pkru = read_pkru();
 229
 230	frame->bx = 0;
 231	*childregs = *current_pt_regs();
 232	childregs->ax = 0;
 233	if (sp)
 234		childregs->sp = sp;
 235
 236	if (unlikely(args->fn)) {
 
 237		/*
 238		 * A user space thread, but it doesn't return to
 239		 * ret_after_fork().
 240		 *
 241		 * In order to indicate that to tools like gdb,
 242		 * we reset the stack and instruction pointers.
 243		 *
 244		 * It does the same kernel frame setup to return to a kernel
 245		 * function that a kernel thread does.
 246		 */
 247		childregs->sp = 0;
 248		childregs->ip = 0;
 249		kthread_frame_init(frame, args->fn, args->fn_arg);
 250		return 0;
 251	}
 252
 253	/* Set a new TLS for the child thread? */
 254	if (clone_flags & CLONE_SETTLS)
 255		ret = set_new_tls(p, tls);
 256
 257	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
 258		io_bitmap_share(p);
 259
 260	return ret;
 261}
 262
 263static void pkru_flush_thread(void)
 264{
 265	/*
 266	 * If PKRU is enabled the default PKRU value has to be loaded into
 267	 * the hardware right here (similar to context switch).
 268	 */
 269	pkru_write_default();
 270}
 271
 272void flush_thread(void)
 273{
 274	struct task_struct *tsk = current;
 275
 276	flush_ptrace_hw_breakpoint(tsk);
 277	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 278
 279	fpu_flush_thread();
 280	pkru_flush_thread();
 281}
 282
 283void disable_TSC(void)
 284{
 285	preempt_disable();
 286	if (!test_and_set_thread_flag(TIF_NOTSC))
 287		/*
 288		 * Must flip the CPU state synchronously with
 289		 * TIF_NOTSC in the current running context.
 290		 */
 291		cr4_set_bits(X86_CR4_TSD);
 292	preempt_enable();
 293}
 294
 295static void enable_TSC(void)
 296{
 297	preempt_disable();
 298	if (test_and_clear_thread_flag(TIF_NOTSC))
 299		/*
 300		 * Must flip the CPU state synchronously with
 301		 * TIF_NOTSC in the current running context.
 302		 */
 303		cr4_clear_bits(X86_CR4_TSD);
 304	preempt_enable();
 305}
 306
 307int get_tsc_mode(unsigned long adr)
 308{
 309	unsigned int val;
 310
 311	if (test_thread_flag(TIF_NOTSC))
 312		val = PR_TSC_SIGSEGV;
 313	else
 314		val = PR_TSC_ENABLE;
 315
 316	return put_user(val, (unsigned int __user *)adr);
 317}
 318
 319int set_tsc_mode(unsigned int val)
 320{
 321	if (val == PR_TSC_SIGSEGV)
 322		disable_TSC();
 323	else if (val == PR_TSC_ENABLE)
 324		enable_TSC();
 325	else
 326		return -EINVAL;
 327
 328	return 0;
 329}
 330
 331DEFINE_PER_CPU(u64, msr_misc_features_shadow);
 332
 333static void set_cpuid_faulting(bool on)
 334{
 335	u64 msrval;
 336
 337	msrval = this_cpu_read(msr_misc_features_shadow);
 338	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
 339	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
 340	this_cpu_write(msr_misc_features_shadow, msrval);
 341	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
 342}
 343
 344static void disable_cpuid(void)
 345{
 346	preempt_disable();
 347	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
 348		/*
 349		 * Must flip the CPU state synchronously with
 350		 * TIF_NOCPUID in the current running context.
 351		 */
 352		set_cpuid_faulting(true);
 353	}
 354	preempt_enable();
 355}
 356
 357static void enable_cpuid(void)
 358{
 359	preempt_disable();
 360	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
 361		/*
 362		 * Must flip the CPU state synchronously with
 363		 * TIF_NOCPUID in the current running context.
 364		 */
 365		set_cpuid_faulting(false);
 366	}
 367	preempt_enable();
 368}
 369
 370static int get_cpuid_mode(void)
 371{
 372	return !test_thread_flag(TIF_NOCPUID);
 373}
 374
 375static int set_cpuid_mode(unsigned long cpuid_enabled)
 376{
 377	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
 378		return -ENODEV;
 379
 380	if (cpuid_enabled)
 381		enable_cpuid();
 382	else
 383		disable_cpuid();
 384
 385	return 0;
 386}
 387
 388/*
 389 * Called immediately after a successful exec.
 390 */
 391void arch_setup_new_exec(void)
 392{
 393	/* If cpuid was previously disabled for this task, re-enable it. */
 394	if (test_thread_flag(TIF_NOCPUID))
 395		enable_cpuid();
 396
 397	/*
 398	 * Don't inherit TIF_SSBD across exec boundary when
 399	 * PR_SPEC_DISABLE_NOEXEC is used.
 400	 */
 401	if (test_thread_flag(TIF_SSBD) &&
 402	    task_spec_ssb_noexec(current)) {
 403		clear_thread_flag(TIF_SSBD);
 404		task_clear_spec_ssb_disable(current);
 405		task_clear_spec_ssb_noexec(current);
 406		speculation_ctrl_update(read_thread_flags());
 407	}
 408
 409	mm_reset_untag_mask(current->mm);
 410}
 411
 412#ifdef CONFIG_X86_IOPL_IOPERM
 413static inline void switch_to_bitmap(unsigned long tifp)
 414{
 415	/*
 416	 * Invalidate I/O bitmap if the previous task used it. This prevents
 417	 * any possible leakage of an active I/O bitmap.
 418	 *
 419	 * If the next task has an I/O bitmap it will handle it on exit to
 420	 * user mode.
 421	 */
 422	if (tifp & _TIF_IO_BITMAP)
 423		tss_invalidate_io_bitmap();
 424}
 425
 426static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
 427{
 428	/*
 429	 * Copy at least the byte range of the incoming tasks bitmap which
 430	 * covers the permitted I/O ports.
 431	 *
 432	 * If the previous task which used an I/O bitmap had more bits
 433	 * permitted, then the copy needs to cover those as well so they
 434	 * get turned off.
 435	 */
 436	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
 437	       max(tss->io_bitmap.prev_max, iobm->max));
 438
 439	/*
 440	 * Store the new max and the sequence number of this bitmap
 441	 * and a pointer to the bitmap itself.
 442	 */
 443	tss->io_bitmap.prev_max = iobm->max;
 444	tss->io_bitmap.prev_sequence = iobm->sequence;
 445}
 446
 447/**
 448 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
 449 */
 450void native_tss_update_io_bitmap(void)
 451{
 452	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
 453	struct thread_struct *t = &current->thread;
 454	u16 *base = &tss->x86_tss.io_bitmap_base;
 455
 456	if (!test_thread_flag(TIF_IO_BITMAP)) {
 457		native_tss_invalidate_io_bitmap();
 458		return;
 459	}
 460
 461	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
 462		*base = IO_BITMAP_OFFSET_VALID_ALL;
 463	} else {
 464		struct io_bitmap *iobm = t->io_bitmap;
 465
 466		/*
 467		 * Only copy bitmap data when the sequence number differs. The
 468		 * update time is accounted to the incoming task.
 469		 */
 470		if (tss->io_bitmap.prev_sequence != iobm->sequence)
 471			tss_copy_io_bitmap(tss, iobm);
 472
 473		/* Enable the bitmap */
 474		*base = IO_BITMAP_OFFSET_VALID_MAP;
 
 
 
 
 
 
 
 475	}
 476
 477	/*
 478	 * Make sure that the TSS limit is covering the IO bitmap. It might have
 479	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
 480	 * access from user space to trigger a #GP because the bitmap is outside
 481	 * the TSS limit.
 482	 */
 483	refresh_tss_limit();
 484}
 485#else /* CONFIG_X86_IOPL_IOPERM */
 486static inline void switch_to_bitmap(unsigned long tifp) { }
 487#endif
 488
 489#ifdef CONFIG_SMP
 490
 491struct ssb_state {
 492	struct ssb_state	*shared_state;
 493	raw_spinlock_t		lock;
 494	unsigned int		disable_state;
 495	unsigned long		local_state;
 496};
 497
 498#define LSTATE_SSB	0
 499
 500static DEFINE_PER_CPU(struct ssb_state, ssb_state);
 501
 502void speculative_store_bypass_ht_init(void)
 503{
 504	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 505	unsigned int this_cpu = smp_processor_id();
 506	unsigned int cpu;
 507
 508	st->local_state = 0;
 509
 510	/*
 511	 * Shared state setup happens once on the first bringup
 512	 * of the CPU. It's not destroyed on CPU hotunplug.
 513	 */
 514	if (st->shared_state)
 515		return;
 516
 517	raw_spin_lock_init(&st->lock);
 518
 519	/*
 520	 * Go over HT siblings and check whether one of them has set up the
 521	 * shared state pointer already.
 522	 */
 523	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
 524		if (cpu == this_cpu)
 525			continue;
 526
 527		if (!per_cpu(ssb_state, cpu).shared_state)
 528			continue;
 529
 530		/* Link it to the state of the sibling: */
 531		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
 532		return;
 533	}
 534
 535	/*
 536	 * First HT sibling to come up on the core.  Link shared state of
 537	 * the first HT sibling to itself. The siblings on the same core
 538	 * which come up later will see the shared state pointer and link
 539	 * themselves to the state of this CPU.
 540	 */
 541	st->shared_state = st;
 542}
 543
 544/*
 545 * Logic is: First HT sibling enables SSBD for both siblings in the core
 546 * and last sibling to disable it, disables it for the whole core. This how
 547 * MSR_SPEC_CTRL works in "hardware":
 548 *
 549 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 550 */
 551static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 552{
 553	struct ssb_state *st = this_cpu_ptr(&ssb_state);
 554	u64 msr = x86_amd_ls_cfg_base;
 555
 556	if (!static_cpu_has(X86_FEATURE_ZEN)) {
 557		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
 558		wrmsrl(MSR_AMD64_LS_CFG, msr);
 559		return;
 560	}
 561
 562	if (tifn & _TIF_SSBD) {
 563		/*
 564		 * Since this can race with prctl(), block reentry on the
 565		 * same CPU.
 566		 */
 567		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
 568			return;
 569
 570		msr |= x86_amd_ls_cfg_ssbd_mask;
 571
 572		raw_spin_lock(&st->shared_state->lock);
 573		/* First sibling enables SSBD: */
 574		if (!st->shared_state->disable_state)
 575			wrmsrl(MSR_AMD64_LS_CFG, msr);
 576		st->shared_state->disable_state++;
 577		raw_spin_unlock(&st->shared_state->lock);
 578	} else {
 579		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
 580			return;
 581
 582		raw_spin_lock(&st->shared_state->lock);
 583		st->shared_state->disable_state--;
 584		if (!st->shared_state->disable_state)
 585			wrmsrl(MSR_AMD64_LS_CFG, msr);
 586		raw_spin_unlock(&st->shared_state->lock);
 587	}
 588}
 589#else
 590static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
 591{
 592	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
 593
 594	wrmsrl(MSR_AMD64_LS_CFG, msr);
 595}
 596#endif
 597
 598static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 599{
 600	/*
 601	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
 602	 * so ssbd_tif_to_spec_ctrl() just works.
 603	 */
 604	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
 605}
 606
 607/*
 608 * Update the MSRs managing speculation control, during context switch.
 609 *
 610 * tifp: Previous task's thread flags
 611 * tifn: Next task's thread flags
 612 */
 613static __always_inline void __speculation_ctrl_update(unsigned long tifp,
 614						      unsigned long tifn)
 615{
 616	unsigned long tif_diff = tifp ^ tifn;
 617	u64 msr = x86_spec_ctrl_base;
 618	bool updmsr = false;
 619
 620	lockdep_assert_irqs_disabled();
 621
 622	/* Handle change of TIF_SSBD depending on the mitigation method. */
 623	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
 624		if (tif_diff & _TIF_SSBD)
 625			amd_set_ssb_virt_state(tifn);
 626	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
 627		if (tif_diff & _TIF_SSBD)
 628			amd_set_core_ssb_state(tifn);
 629	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
 630		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
 631		updmsr |= !!(tif_diff & _TIF_SSBD);
 632		msr |= ssbd_tif_to_spec_ctrl(tifn);
 633	}
 634
 635	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
 636	if (IS_ENABLED(CONFIG_SMP) &&
 637	    static_branch_unlikely(&switch_to_cond_stibp)) {
 638		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
 639		msr |= stibp_tif_to_spec_ctrl(tifn);
 640	}
 641
 642	if (updmsr)
 643		update_spec_ctrl_cond(msr);
 644}
 645
 646static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
 647{
 648	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
 649		if (task_spec_ssb_disable(tsk))
 650			set_tsk_thread_flag(tsk, TIF_SSBD);
 651		else
 652			clear_tsk_thread_flag(tsk, TIF_SSBD);
 653
 654		if (task_spec_ib_disable(tsk))
 655			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
 656		else
 657			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
 658	}
 659	/* Return the updated threadinfo flags*/
 660	return read_task_thread_flags(tsk);
 661}
 662
 663void speculation_ctrl_update(unsigned long tif)
 664{
 665	unsigned long flags;
 666
 667	/* Forced update. Make sure all relevant TIF flags are different */
 668	local_irq_save(flags);
 669	__speculation_ctrl_update(~tif, tif);
 670	local_irq_restore(flags);
 671}
 672
 673/* Called from seccomp/prctl update */
 674void speculation_ctrl_update_current(void)
 675{
 676	preempt_disable();
 677	speculation_ctrl_update(speculation_ctrl_update_tif(current));
 678	preempt_enable();
 679}
 680
 681static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 682{
 683	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
 684
 685	newval = cr4 ^ mask;
 686	if (newval != cr4) {
 687		this_cpu_write(cpu_tlbstate.cr4, newval);
 688		__write_cr4(newval);
 689	}
 690}
 691
 692void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
 693{
 
 694	unsigned long tifp, tifn;
 695
 696	tifn = read_task_thread_flags(next_p);
 697	tifp = read_task_thread_flags(prev_p);
 698
 699	switch_to_bitmap(tifp);
 
 
 700
 701	propagate_user_return_notify(prev_p, next_p);
 702
 703	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
 704	    arch_has_block_step()) {
 705		unsigned long debugctl, msk;
 706
 707		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 708		debugctl &= ~DEBUGCTLMSR_BTF;
 709		msk = tifn & _TIF_BLOCKSTEP;
 710		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
 711		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 712	}
 713
 714	if ((tifp ^ tifn) & _TIF_NOTSC)
 715		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
 716
 717	if ((tifp ^ tifn) & _TIF_NOCPUID)
 718		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
 719
 720	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
 721		__speculation_ctrl_update(tifp, tifn);
 722	} else {
 723		speculation_ctrl_update_tif(prev_p);
 724		tifn = speculation_ctrl_update_tif(next_p);
 725
 726		/* Enforce MSR update to ensure consistent state */
 727		__speculation_ctrl_update(~tifn, tifn);
 728	}
 729}
 730
 731/*
 732 * Idle related variables and functions
 733 */
 734unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 735EXPORT_SYMBOL(boot_option_idle_override);
 736
 737/*
 738 * We use this if we don't have any better idle routine..
 739 */
 740void __cpuidle default_idle(void)
 741{
 742	raw_safe_halt();
 743	raw_local_irq_disable();
 744}
 745#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
 746EXPORT_SYMBOL(default_idle);
 747#endif
 748
 749DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
 750
 751static bool x86_idle_set(void)
 752{
 753	return !!static_call_query(x86_idle);
 754}
 755
 756#ifndef CONFIG_SMP
 757static inline void __noreturn play_dead(void)
 758{
 759	BUG();
 760}
 761#endif
 762
 763void arch_cpu_idle_enter(void)
 764{
 765	tsc_verify_tsc_adjust(false);
 766	local_touch_nmi();
 767}
 768
 769void __noreturn arch_cpu_idle_dead(void)
 770{
 771	play_dead();
 772}
 773
 774/*
 775 * Called from the generic idle code.
 776 */
 777void __cpuidle arch_cpu_idle(void)
 778{
 779	static_call(x86_idle)();
 780}
 781EXPORT_SYMBOL_GPL(arch_cpu_idle);
 
 
 
 
 
 
 
 
 
 
 
 
 782
 783#ifdef CONFIG_XEN
 784bool xen_set_default_idle(void)
 785{
 786	bool ret = x86_idle_set();
 787
 788	static_call_update(x86_idle, default_idle);
 789
 790	return ret;
 791}
 792#endif
 793
 794struct cpumask cpus_stop_mask;
 795
 796void __noreturn stop_this_cpu(void *dummy)
 797{
 798	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
 799	unsigned int cpu = smp_processor_id();
 800
 801	local_irq_disable();
 802
 803	/*
 804	 * Remove this CPU from the online mask and disable it
 805	 * unconditionally. This might be redundant in case that the reboot
 806	 * vector was handled late and stop_other_cpus() sent an NMI.
 807	 *
 808	 * According to SDM and APM NMIs can be accepted even after soft
 809	 * disabling the local APIC.
 810	 */
 811	set_cpu_online(cpu, false);
 812	disable_local_APIC();
 813	mcheck_cpu_clear(c);
 814
 815	/*
 816	 * Use wbinvd on processors that support SME. This provides support
 817	 * for performing a successful kexec when going from SME inactive
 818	 * to SME active (or vice-versa). The cache must be cleared so that
 819	 * if there are entries with the same physical address, both with and
 820	 * without the encryption bit, they don't race each other when flushed
 821	 * and potentially end up with the wrong entry being committed to
 822	 * memory.
 823	 *
 824	 * Test the CPUID bit directly because the machine might've cleared
 825	 * X86_FEATURE_SME due to cmdline options.
 826	 */
 827	if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
 828		native_wbinvd();
 829
 830	/*
 831	 * This brings a cache line back and dirties it, but
 832	 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
 833	 * observed that all CPUs reported stop. This write will invalidate
 834	 * the related cache line on this CPU.
 835	 */
 836	cpumask_clear_cpu(cpu, &cpus_stop_mask);
 837
 838#ifdef CONFIG_SMP
 839	if (smp_ops.stop_this_cpu) {
 840		smp_ops.stop_this_cpu();
 841		BUG();
 842	}
 843#endif
 844
 845	for (;;) {
 846		/*
 847		 * Use native_halt() so that memory contents don't change
 848		 * (stack usage and variables) after possibly issuing the
 849		 * native_wbinvd() above.
 850		 */
 851		native_halt();
 852	}
 853}
 854
 855/*
 856 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
 857 * exists and whenever MONITOR/MWAIT extensions are present there is at
 858 * least one C1 substate.
 859 *
 860 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
 861 * is passed to kernel commandline parameter.
 862 */
 863static __init bool prefer_mwait_c1_over_halt(void)
 864{
 865	const struct cpuinfo_x86 *c = &boot_cpu_data;
 866	u32 eax, ebx, ecx, edx;
 867
 868	/* If override is enforced on the command line, fall back to HALT. */
 869	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
 870		return false;
 871
 872	/* MWAIT is not supported on this platform. Fallback to HALT */
 873	if (!cpu_has(c, X86_FEATURE_MWAIT))
 874		return false;
 875
 876	/* Monitor has a bug or APIC stops in C1E. Fallback to HALT */
 877	if (boot_cpu_has_bug(X86_BUG_MONITOR) || boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 878		return false;
 879
 880	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
 881
 882	/*
 883	 * If MWAIT extensions are not available, it is safe to use MWAIT
 884	 * with EAX=0, ECX=0.
 885	 */
 886	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
 887		return true;
 
 
 888
 889	/*
 890	 * If MWAIT extensions are available, there should be at least one
 891	 * MWAIT C1 substate present.
 892	 */
 893	return !!(edx & MWAIT_C1_SUBSTATE_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894}
 895
 896/*
 897 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 898 * with interrupts enabled and no flags, which is backwards compatible with the
 899 * original MWAIT implementation.
 900 */
 901static __cpuidle void mwait_idle(void)
 902{
 903	if (!current_set_polling_and_test()) {
 
 904		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 905			mb(); /* quirk */
 906			clflush((void *)&current_thread_info()->flags);
 907			mb(); /* quirk */
 908		}
 909
 910		__monitor((void *)&current_thread_info()->flags, 0, 0);
 911		if (!need_resched()) {
 912			__sti_mwait(0, 0);
 913			raw_local_irq_disable();
 914		}
 
 
 
 915	}
 916	__current_clr_polling();
 917}
 918
 919void __init select_idle_routine(void)
 920{
 921	if (boot_option_idle_override == IDLE_POLL) {
 922		if (IS_ENABLED(CONFIG_SMP) && __max_threads_per_core > 1)
 923			pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 924		return;
 925	}
 926
 927	/* Required to guard against xen_set_default_idle() */
 928	if (x86_idle_set())
 929		return;
 930
 931	if (prefer_mwait_c1_over_halt()) {
 
 
 
 932		pr_info("using mwait in idle threads\n");
 933		static_call_update(x86_idle, mwait_idle);
 934	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
 935		pr_info("using TDX aware idle routine\n");
 936		static_call_update(x86_idle, tdx_safe_halt);
 937	} else {
 938		static_call_update(x86_idle, default_idle);
 939	}
 940}
 941
 942void amd_e400_c1e_apic_setup(void)
 943{
 944	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
 945		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
 946		local_irq_disable();
 947		tick_broadcast_force();
 948		local_irq_enable();
 949	}
 950}
 951
 952void __init arch_post_acpi_subsys_init(void)
 953{
 954	u32 lo, hi;
 955
 956	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
 957		return;
 958
 959	/*
 960	 * AMD E400 detection needs to happen after ACPI has been enabled. If
 961	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
 962	 * MSR_K8_INT_PENDING_MSG.
 963	 */
 964	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 965	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
 966		return;
 967
 968	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
 969
 970	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 971		mark_tsc_unstable("TSC halt in AMD C1E");
 972
 973	if (IS_ENABLED(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE))
 974		static_branch_enable(&arch_needs_tick_broadcast);
 975	pr_info("System has AMD C1E erratum E400. Workaround enabled.\n");
 976}
 977
 978static int __init idle_setup(char *str)
 979{
 980	if (!str)
 981		return -EINVAL;
 982
 983	if (!strcmp(str, "poll")) {
 984		pr_info("using polling idle threads\n");
 985		boot_option_idle_override = IDLE_POLL;
 986		cpu_idle_poll_ctrl(true);
 987	} else if (!strcmp(str, "halt")) {
 988		/* 'idle=halt' HALT for idle. C-states are disabled. */
 
 
 
 
 
 
 
 989		boot_option_idle_override = IDLE_HALT;
 990	} else if (!strcmp(str, "nomwait")) {
 991		/* 'idle=nomwait' disables MWAIT for idle */
 
 
 
 
 
 992		boot_option_idle_override = IDLE_NOMWAIT;
 993	} else {
 994		return -EINVAL;
 995	}
 996
 997	return 0;
 998}
 999early_param("idle", idle_setup);
1000
1001unsigned long arch_align_stack(unsigned long sp)
1002{
1003	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1004		sp -= get_random_u32_below(8192);
1005	return sp & ~0xf;
1006}
1007
1008unsigned long arch_randomize_brk(struct mm_struct *mm)
1009{
1010	if (mmap_is_ia32())
1011		return randomize_page(mm->brk, SZ_32M);
1012
1013	return randomize_page(mm->brk, SZ_1G);
1014}
1015
1016/*
1017 * Called from fs/proc with a reference on @p to find the function
1018 * which called into schedule(). This needs to be done carefully
1019 * because the task might wake up and we might look at a stack
1020 * changing under us.
1021 */
1022unsigned long __get_wchan(struct task_struct *p)
1023{
1024	struct unwind_state state;
1025	unsigned long addr = 0;
 
 
 
1026
1027	if (!try_get_task_stack(p))
1028		return 0;
1029
1030	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1031	     unwind_next_frame(&state)) {
1032		addr = unwind_get_return_address(&state);
1033		if (!addr)
1034			break;
1035		if (in_sched_functions(addr))
1036			continue;
1037		break;
1038	}
1039
1040	put_task_stack(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041
1042	return addr;
 
 
1043}
1044
1045long do_arch_prctl_common(int option, unsigned long arg2)
 
1046{
1047	switch (option) {
1048	case ARCH_GET_CPUID:
1049		return get_cpuid_mode();
1050	case ARCH_SET_CPUID:
1051		return set_cpuid_mode(arg2);
1052	case ARCH_GET_XCOMP_SUPP:
1053	case ARCH_GET_XCOMP_PERM:
1054	case ARCH_REQ_XCOMP_PERM:
1055	case ARCH_GET_XCOMP_GUEST_PERM:
1056	case ARCH_REQ_XCOMP_GUEST_PERM:
1057		return fpu_xstate_prctl(option, arg2);
1058	}
1059
1060	return -EINVAL;
1061}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3
  4#include <linux/errno.h>
  5#include <linux/kernel.h>
  6#include <linux/mm.h>
  7#include <linux/smp.h>
 
  8#include <linux/prctl.h>
  9#include <linux/slab.h>
 10#include <linux/sched.h>
 11#include <linux/sched/idle.h>
 12#include <linux/sched/debug.h>
 13#include <linux/sched/task.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/init.h>
 16#include <linux/export.h>
 17#include <linux/pm.h>
 18#include <linux/tick.h>
 19#include <linux/random.h>
 20#include <linux/user-return-notifier.h>
 21#include <linux/dmi.h>
 22#include <linux/utsname.h>
 23#include <linux/stackprotector.h>
 24#include <linux/cpuidle.h>
 
 
 
 25#include <trace/events/power.h>
 26#include <linux/hw_breakpoint.h>
 
 27#include <asm/cpu.h>
 28#include <asm/apic.h>
 29#include <asm/syscalls.h>
 30#include <linux/uaccess.h>
 31#include <asm/mwait.h>
 32#include <asm/fpu/internal.h>
 
 
 33#include <asm/debugreg.h>
 34#include <asm/nmi.h>
 35#include <asm/tlbflush.h>
 36#include <asm/mce.h>
 37#include <asm/vm86.h>
 38#include <asm/switch_to.h>
 39#include <asm/desc.h>
 40#include <asm/prctl.h>
 41#include <asm/spec-ctrl.h>
 
 
 
 
 
 
 
 
 
 42
 43/*
 44 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 45 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 46 * so they are allowed to end up in the .data..cacheline_aligned
 47 * section. Since TSS's are completely CPU-local, we want them
 48 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 49 */
 50__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
 51	.x86_tss = {
 52		/*
 53		 * .sp0 is only used when entering ring 0 from a lower
 54		 * privilege level.  Since the init task never runs anything
 55		 * but ring 0 code, there is no need for a valid value here.
 56		 * Poison it.
 57		 */
 58		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
 59
 60#ifdef CONFIG_X86_64
 61		/*
 62		 * .sp1 is cpu_current_top_of_stack.  The init task never
 63		 * runs user code, but cpu_current_top_of_stack should still
 64		 * be well defined before the first context switch.
 65		 */
 66		.sp1 = TOP_OF_INIT_STACK,
 67#endif
 68
 69#ifdef CONFIG_X86_32
 70		.ss0 = __KERNEL_DS,
 71		.ss1 = __KERNEL_CS,
 72		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 73#endif
 
 74	 },
 75#ifdef CONFIG_X86_32
 76	 /*
 77	  * Note that the .io_bitmap member must be extra-big. This is because
 78	  * the CPU will access an additional byte beyond the end of the IO
 79	  * permission bitmap. The extra byte must be all 1 bits, and must
 80	  * be within the limit.
 81	  */
 82	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 83#endif
 84};
 85EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 86
 87DEFINE_PER_CPU(bool, __tss_limit_invalid);
 88EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 89
 90/*
 91 * this gets called so that we can store lazy state into memory and copy the
 92 * current task into the new thread.
 93 */
 94int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 95{
 96	memcpy(dst, src, arch_task_struct_size);
 97#ifdef CONFIG_VM86
 98	dst->thread.vm86 = NULL;
 99#endif
 
 
 
 
 
100
101	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
 
 
 
 
102}
 
103
104/*
105 * Free current thread data structures etc..
106 */
107void exit_thread(struct task_struct *tsk)
108{
109	struct thread_struct *t = &tsk->thread;
110	unsigned long *bp = t->io_bitmap_ptr;
111	struct fpu *fpu = &t->fpu;
112
113	if (bp) {
114		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
116		t->io_bitmap_ptr = NULL;
117		clear_thread_flag(TIF_IO_BITMAP);
118		/*
119		 * Careful, clear this in the TSS too:
 
 
 
 
 
 
 
120		 */
121		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
122		t->io_bitmap_max = 0;
123		put_cpu();
124		kfree(bp);
125	}
126
127	free_vm86(t);
 
 
 
 
 
 
 
 
128
129	fpu__drop(fpu);
 
 
 
 
 
 
130}
131
132void flush_thread(void)
133{
134	struct task_struct *tsk = current;
135
136	flush_ptrace_hw_breakpoint(tsk);
137	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
138
139	fpu__clear(&tsk->thread.fpu);
 
140}
141
142void disable_TSC(void)
143{
144	preempt_disable();
145	if (!test_and_set_thread_flag(TIF_NOTSC))
146		/*
147		 * Must flip the CPU state synchronously with
148		 * TIF_NOTSC in the current running context.
149		 */
150		cr4_set_bits(X86_CR4_TSD);
151	preempt_enable();
152}
153
154static void enable_TSC(void)
155{
156	preempt_disable();
157	if (test_and_clear_thread_flag(TIF_NOTSC))
158		/*
159		 * Must flip the CPU state synchronously with
160		 * TIF_NOTSC in the current running context.
161		 */
162		cr4_clear_bits(X86_CR4_TSD);
163	preempt_enable();
164}
165
166int get_tsc_mode(unsigned long adr)
167{
168	unsigned int val;
169
170	if (test_thread_flag(TIF_NOTSC))
171		val = PR_TSC_SIGSEGV;
172	else
173		val = PR_TSC_ENABLE;
174
175	return put_user(val, (unsigned int __user *)adr);
176}
177
178int set_tsc_mode(unsigned int val)
179{
180	if (val == PR_TSC_SIGSEGV)
181		disable_TSC();
182	else if (val == PR_TSC_ENABLE)
183		enable_TSC();
184	else
185		return -EINVAL;
186
187	return 0;
188}
189
190DEFINE_PER_CPU(u64, msr_misc_features_shadow);
191
192static void set_cpuid_faulting(bool on)
193{
194	u64 msrval;
195
196	msrval = this_cpu_read(msr_misc_features_shadow);
197	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
198	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
199	this_cpu_write(msr_misc_features_shadow, msrval);
200	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
201}
202
203static void disable_cpuid(void)
204{
205	preempt_disable();
206	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
207		/*
208		 * Must flip the CPU state synchronously with
209		 * TIF_NOCPUID in the current running context.
210		 */
211		set_cpuid_faulting(true);
212	}
213	preempt_enable();
214}
215
216static void enable_cpuid(void)
217{
218	preempt_disable();
219	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
220		/*
221		 * Must flip the CPU state synchronously with
222		 * TIF_NOCPUID in the current running context.
223		 */
224		set_cpuid_faulting(false);
225	}
226	preempt_enable();
227}
228
229static int get_cpuid_mode(void)
230{
231	return !test_thread_flag(TIF_NOCPUID);
232}
233
234static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
235{
236	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
237		return -ENODEV;
238
239	if (cpuid_enabled)
240		enable_cpuid();
241	else
242		disable_cpuid();
243
244	return 0;
245}
246
247/*
248 * Called immediately after a successful exec.
249 */
250void arch_setup_new_exec(void)
251{
252	/* If cpuid was previously disabled for this task, re-enable it. */
253	if (test_thread_flag(TIF_NOCPUID))
254		enable_cpuid();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255}
256
257static inline void switch_to_bitmap(struct tss_struct *tss,
258				    struct thread_struct *prev,
259				    struct thread_struct *next,
260				    unsigned long tifp, unsigned long tifn)
261{
262	if (tifn & _TIF_IO_BITMAP) {
 
 
 
 
 
 
 
 
 
 
 
 
 
263		/*
264		 * Copy the relevant range of the IO bitmap.
265		 * Normally this is 128 bytes or less:
266		 */
267		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
268		       max(prev->io_bitmap_max, next->io_bitmap_max));
269		/*
270		 * Make sure that the TSS limit is correct for the CPU
271		 * to notice the IO bitmap.
272		 */
273		refresh_tss_limit();
274	} else if (tifp & _TIF_IO_BITMAP) {
275		/*
276		 * Clear any possible leftover bits:
277		 */
278		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
279	}
 
 
 
 
 
 
 
 
280}
 
 
 
281
282#ifdef CONFIG_SMP
283
284struct ssb_state {
285	struct ssb_state	*shared_state;
286	raw_spinlock_t		lock;
287	unsigned int		disable_state;
288	unsigned long		local_state;
289};
290
291#define LSTATE_SSB	0
292
293static DEFINE_PER_CPU(struct ssb_state, ssb_state);
294
295void speculative_store_bypass_ht_init(void)
296{
297	struct ssb_state *st = this_cpu_ptr(&ssb_state);
298	unsigned int this_cpu = smp_processor_id();
299	unsigned int cpu;
300
301	st->local_state = 0;
302
303	/*
304	 * Shared state setup happens once on the first bringup
305	 * of the CPU. It's not destroyed on CPU hotunplug.
306	 */
307	if (st->shared_state)
308		return;
309
310	raw_spin_lock_init(&st->lock);
311
312	/*
313	 * Go over HT siblings and check whether one of them has set up the
314	 * shared state pointer already.
315	 */
316	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
317		if (cpu == this_cpu)
318			continue;
319
320		if (!per_cpu(ssb_state, cpu).shared_state)
321			continue;
322
323		/* Link it to the state of the sibling: */
324		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
325		return;
326	}
327
328	/*
329	 * First HT sibling to come up on the core.  Link shared state of
330	 * the first HT sibling to itself. The siblings on the same core
331	 * which come up later will see the shared state pointer and link
332	 * themself to the state of this CPU.
333	 */
334	st->shared_state = st;
335}
336
337/*
338 * Logic is: First HT sibling enables SSBD for both siblings in the core
339 * and last sibling to disable it, disables it for the whole core. This how
340 * MSR_SPEC_CTRL works in "hardware":
341 *
342 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
343 */
344static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
345{
346	struct ssb_state *st = this_cpu_ptr(&ssb_state);
347	u64 msr = x86_amd_ls_cfg_base;
348
349	if (!static_cpu_has(X86_FEATURE_ZEN)) {
350		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
351		wrmsrl(MSR_AMD64_LS_CFG, msr);
352		return;
353	}
354
355	if (tifn & _TIF_SSBD) {
356		/*
357		 * Since this can race with prctl(), block reentry on the
358		 * same CPU.
359		 */
360		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
361			return;
362
363		msr |= x86_amd_ls_cfg_ssbd_mask;
364
365		raw_spin_lock(&st->shared_state->lock);
366		/* First sibling enables SSBD: */
367		if (!st->shared_state->disable_state)
368			wrmsrl(MSR_AMD64_LS_CFG, msr);
369		st->shared_state->disable_state++;
370		raw_spin_unlock(&st->shared_state->lock);
371	} else {
372		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
373			return;
374
375		raw_spin_lock(&st->shared_state->lock);
376		st->shared_state->disable_state--;
377		if (!st->shared_state->disable_state)
378			wrmsrl(MSR_AMD64_LS_CFG, msr);
379		raw_spin_unlock(&st->shared_state->lock);
380	}
381}
382#else
383static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
384{
385	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
386
387	wrmsrl(MSR_AMD64_LS_CFG, msr);
388}
389#endif
390
391static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
392{
393	/*
394	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
395	 * so ssbd_tif_to_spec_ctrl() just works.
396	 */
397	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
398}
399
400static __always_inline void intel_set_ssb_state(unsigned long tifn)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401{
402	u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
 
 
 
 
403
404	wrmsrl(MSR_IA32_SPEC_CTRL, msr);
 
 
 
 
 
 
405}
406
407static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
408{
409	if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
410		amd_set_ssb_virt_state(tifn);
411	else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
412		amd_set_core_ssb_state(tifn);
413	else
414		intel_set_ssb_state(tifn);
415}
416
417void speculative_store_bypass_update(unsigned long tif)
 
418{
419	preempt_disable();
420	__speculative_store_bypass_update(tif);
421	preempt_enable();
422}
423
424void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
425		      struct tss_struct *tss)
 
 
 
 
 
 
 
 
 
 
426{
427	struct thread_struct *prev, *next;
428	unsigned long tifp, tifn;
429
430	prev = &prev_p->thread;
431	next = &next_p->thread;
432
433	tifn = READ_ONCE(task_thread_info(next_p)->flags);
434	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
435	switch_to_bitmap(tss, prev, next, tifp, tifn);
436
437	propagate_user_return_notify(prev_p, next_p);
438
439	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
440	    arch_has_block_step()) {
441		unsigned long debugctl, msk;
442
443		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
444		debugctl &= ~DEBUGCTLMSR_BTF;
445		msk = tifn & _TIF_BLOCKSTEP;
446		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
447		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
448	}
449
450	if ((tifp ^ tifn) & _TIF_NOTSC)
451		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
452
453	if ((tifp ^ tifn) & _TIF_NOCPUID)
454		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
455
456	if ((tifp ^ tifn) & _TIF_SSBD)
457		__speculative_store_bypass_update(tifn);
 
 
 
 
 
 
 
458}
459
460/*
461 * Idle related variables and functions
462 */
463unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
464EXPORT_SYMBOL(boot_option_idle_override);
465
466static void (*x86_idle)(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467
468#ifndef CONFIG_SMP
469static inline void play_dead(void)
470{
471	BUG();
472}
473#endif
474
475void arch_cpu_idle_enter(void)
476{
477	tsc_verify_tsc_adjust(false);
478	local_touch_nmi();
479}
480
481void arch_cpu_idle_dead(void)
482{
483	play_dead();
484}
485
486/*
487 * Called from the generic idle code.
488 */
489void arch_cpu_idle(void)
490{
491	x86_idle();
492}
493
494/*
495 * We use this if we don't have any better idle routine..
496 */
497void __cpuidle default_idle(void)
498{
499	trace_cpu_idle_rcuidle(1, smp_processor_id());
500	safe_halt();
501	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
502}
503#ifdef CONFIG_APM_MODULE
504EXPORT_SYMBOL(default_idle);
505#endif
506
507#ifdef CONFIG_XEN
508bool xen_set_default_idle(void)
509{
510	bool ret = !!x86_idle;
511
512	x86_idle = default_idle;
513
514	return ret;
515}
516#endif
517
518void stop_this_cpu(void *dummy)
 
 
519{
 
 
 
520	local_irq_disable();
 
521	/*
522	 * Remove this CPU:
 
 
 
 
 
523	 */
524	set_cpu_online(smp_processor_id(), false);
525	disable_local_APIC();
526	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
527
528	/*
529	 * Use wbinvd on processors that support SME. This provides support
530	 * for performing a successful kexec when going from SME inactive
531	 * to SME active (or vice-versa). The cache must be cleared so that
532	 * if there are entries with the same physical address, both with and
533	 * without the encryption bit, they don't race each other when flushed
534	 * and potentially end up with the wrong entry being committed to
535	 * memory.
 
 
 
536	 */
537	if (boot_cpu_has(X86_FEATURE_SME))
538		native_wbinvd();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
539	for (;;) {
540		/*
541		 * Use native_halt() so that memory contents don't change
542		 * (stack usage and variables) after possibly issuing the
543		 * native_wbinvd() above.
544		 */
545		native_halt();
546	}
547}
548
549/*
550 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
551 * states (local apic timer and TSC stop).
 
 
 
 
552 */
553static void amd_e400_idle(void)
554{
555	/*
556	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
557	 * gets set after static_cpu_has() places have been converted via
558	 * alternatives.
559	 */
560	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
561		default_idle();
562		return;
563	}
 
564
565	tick_broadcast_enter();
 
 
566
567	default_idle();
568
569	/*
570	 * The switch back from broadcast mode needs to be called with
571	 * interrupts disabled.
572	 */
573	local_irq_disable();
574	tick_broadcast_exit();
575	local_irq_enable();
576}
577
578/*
579 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
580 * We can't rely on cpuidle installing MWAIT, because it will not load
581 * on systems that support only C1 -- so the boot default must be MWAIT.
582 *
583 * Some AMD machines are the opposite, they depend on using HALT.
584 *
585 * So for default C1, which is used during boot until cpuidle loads,
586 * use MWAIT-C1 on Intel HW that has it, else use HALT.
587 */
588static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
589{
590	if (c->x86_vendor != X86_VENDOR_INTEL)
591		return 0;
592
593	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
594		return 0;
595
596	return 1;
597}
598
599/*
600 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
601 * with interrupts enabled and no flags, which is backwards compatible with the
602 * original MWAIT implementation.
603 */
604static __cpuidle void mwait_idle(void)
605{
606	if (!current_set_polling_and_test()) {
607		trace_cpu_idle_rcuidle(1, smp_processor_id());
608		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
609			mb(); /* quirk */
610			clflush((void *)&current_thread_info()->flags);
611			mb(); /* quirk */
612		}
613
614		__monitor((void *)&current_thread_info()->flags, 0, 0);
615		if (!need_resched())
616			__sti_mwait(0, 0);
617		else
618			local_irq_enable();
619		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
620	} else {
621		local_irq_enable();
622	}
623	__current_clr_polling();
624}
625
626void select_idle_routine(const struct cpuinfo_x86 *c)
627{
628#ifdef CONFIG_SMP
629	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
630		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
631#endif
632	if (x86_idle || boot_option_idle_override == IDLE_POLL)
 
 
 
633		return;
634
635	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
636		pr_info("using AMD E400 aware idle routine\n");
637		x86_idle = amd_e400_idle;
638	} else if (prefer_mwait_c1_over_halt(c)) {
639		pr_info("using mwait in idle threads\n");
640		x86_idle = mwait_idle;
641	} else
642		x86_idle = default_idle;
 
 
 
 
643}
644
645void amd_e400_c1e_apic_setup(void)
646{
647	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
648		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
649		local_irq_disable();
650		tick_broadcast_force();
651		local_irq_enable();
652	}
653}
654
655void __init arch_post_acpi_subsys_init(void)
656{
657	u32 lo, hi;
658
659	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
660		return;
661
662	/*
663	 * AMD E400 detection needs to happen after ACPI has been enabled. If
664	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
665	 * MSR_K8_INT_PENDING_MSG.
666	 */
667	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
668	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
669		return;
670
671	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
672
673	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
674		mark_tsc_unstable("TSC halt in AMD C1E");
675	pr_info("System has AMD C1E enabled\n");
 
 
 
676}
677
678static int __init idle_setup(char *str)
679{
680	if (!str)
681		return -EINVAL;
682
683	if (!strcmp(str, "poll")) {
684		pr_info("using polling idle threads\n");
685		boot_option_idle_override = IDLE_POLL;
686		cpu_idle_poll_ctrl(true);
687	} else if (!strcmp(str, "halt")) {
688		/*
689		 * When the boot option of idle=halt is added, halt is
690		 * forced to be used for CPU idle. In such case CPU C2/C3
691		 * won't be used again.
692		 * To continue to load the CPU idle driver, don't touch
693		 * the boot_option_idle_override.
694		 */
695		x86_idle = default_idle;
696		boot_option_idle_override = IDLE_HALT;
697	} else if (!strcmp(str, "nomwait")) {
698		/*
699		 * If the boot option of "idle=nomwait" is added,
700		 * it means that mwait will be disabled for CPU C2/C3
701		 * states. In such case it won't touch the variable
702		 * of boot_option_idle_override.
703		 */
704		boot_option_idle_override = IDLE_NOMWAIT;
705	} else
706		return -1;
 
707
708	return 0;
709}
710early_param("idle", idle_setup);
711
712unsigned long arch_align_stack(unsigned long sp)
713{
714	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
715		sp -= get_random_int() % 8192;
716	return sp & ~0xf;
717}
718
719unsigned long arch_randomize_brk(struct mm_struct *mm)
720{
721	return randomize_page(mm->brk, 0x02000000);
 
 
 
722}
723
724/*
725 * Called from fs/proc with a reference on @p to find the function
726 * which called into schedule(). This needs to be done carefully
727 * because the task might wake up and we might look at a stack
728 * changing under us.
729 */
730unsigned long get_wchan(struct task_struct *p)
731{
732	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
733	int count = 0;
734
735	if (!p || p == current || p->state == TASK_RUNNING)
736		return 0;
737
738	if (!try_get_task_stack(p))
739		return 0;
740
741	start = (unsigned long)task_stack_page(p);
742	if (!start)
743		goto out;
 
 
 
 
 
 
744
745	/*
746	 * Layout of the stack page:
747	 *
748	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
749	 * PADDING
750	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
751	 * stack
752	 * ----------- bottom = start
753	 *
754	 * The tasks stack pointer points at the location where the
755	 * framepointer is stored. The data on the stack is:
756	 * ... IP FP ... IP FP
757	 *
758	 * We need to read FP and IP, so we need to adjust the upper
759	 * bound by another unsigned long.
760	 */
761	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
762	top -= 2 * sizeof(unsigned long);
763	bottom = start;
764
765	sp = READ_ONCE(p->thread.sp);
766	if (sp < bottom || sp > top)
767		goto out;
768
769	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
770	do {
771		if (fp < bottom || fp > top)
772			goto out;
773		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
774		if (!in_sched_functions(ip)) {
775			ret = ip;
776			goto out;
777		}
778		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
779	} while (count++ < 16 && p->state != TASK_RUNNING);
780
781out:
782	put_task_stack(p);
783	return ret;
784}
785
786long do_arch_prctl_common(struct task_struct *task, int option,
787			  unsigned long cpuid_enabled)
788{
789	switch (option) {
790	case ARCH_GET_CPUID:
791		return get_cpuid_mode();
792	case ARCH_SET_CPUID:
793		return set_cpuid_mode(task, cpuid_enabled);
 
 
 
 
 
 
794	}
795
796	return -EINVAL;
797}