Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Local APIC related interfaces to support IOAPIC, MSI, etc.
4 *
5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6 * Moved from arch/x86/kernel/apic/io_apic.c.
7 * Jiang Liu <jiang.liu@linux.intel.com>
8 * Enable support of hierarchical irqdomains
9 */
10#include <linux/interrupt.h>
11#include <linux/irq.h>
12#include <linux/seq_file.h>
13#include <linux/init.h>
14#include <linux/compiler.h>
15#include <linux/slab.h>
16#include <asm/irqdomain.h>
17#include <asm/hw_irq.h>
18#include <asm/traps.h>
19#include <asm/apic.h>
20#include <asm/i8259.h>
21#include <asm/desc.h>
22#include <asm/irq_remapping.h>
23
24#include <asm/trace/irq_vectors.h>
25
26struct apic_chip_data {
27 struct irq_cfg hw_irq_cfg;
28 unsigned int vector;
29 unsigned int prev_vector;
30 unsigned int cpu;
31 unsigned int prev_cpu;
32 unsigned int irq;
33 struct hlist_node clist;
34 unsigned int move_in_progress : 1,
35 is_managed : 1,
36 can_reserve : 1,
37 has_reserved : 1;
38};
39
40struct irq_domain *x86_vector_domain;
41EXPORT_SYMBOL_GPL(x86_vector_domain);
42static DEFINE_RAW_SPINLOCK(vector_lock);
43static cpumask_var_t vector_searchmask;
44static struct irq_chip lapic_controller;
45static struct irq_matrix *vector_matrix;
46#ifdef CONFIG_SMP
47
48static void vector_cleanup_callback(struct timer_list *tmr);
49
50struct vector_cleanup {
51 struct hlist_head head;
52 struct timer_list timer;
53};
54
55static DEFINE_PER_CPU(struct vector_cleanup, vector_cleanup) = {
56 .head = HLIST_HEAD_INIT,
57 .timer = __TIMER_INITIALIZER(vector_cleanup_callback, TIMER_PINNED),
58};
59#endif
60
61void lock_vector_lock(void)
62{
63 /* Used to the online set of cpus does not change
64 * during assign_irq_vector.
65 */
66 raw_spin_lock(&vector_lock);
67}
68
69void unlock_vector_lock(void)
70{
71 raw_spin_unlock(&vector_lock);
72}
73
74void init_irq_alloc_info(struct irq_alloc_info *info,
75 const struct cpumask *mask)
76{
77 memset(info, 0, sizeof(*info));
78 info->mask = mask;
79}
80
81void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
82{
83 if (src)
84 *dst = *src;
85 else
86 memset(dst, 0, sizeof(*dst));
87}
88
89static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
90{
91 if (!irqd)
92 return NULL;
93
94 while (irqd->parent_data)
95 irqd = irqd->parent_data;
96
97 return irqd->chip_data;
98}
99
100struct irq_cfg *irqd_cfg(struct irq_data *irqd)
101{
102 struct apic_chip_data *apicd = apic_chip_data(irqd);
103
104 return apicd ? &apicd->hw_irq_cfg : NULL;
105}
106EXPORT_SYMBOL_GPL(irqd_cfg);
107
108struct irq_cfg *irq_cfg(unsigned int irq)
109{
110 return irqd_cfg(irq_get_irq_data(irq));
111}
112
113static struct apic_chip_data *alloc_apic_chip_data(int node)
114{
115 struct apic_chip_data *apicd;
116
117 apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
118 if (apicd)
119 INIT_HLIST_NODE(&apicd->clist);
120 return apicd;
121}
122
123static void free_apic_chip_data(struct apic_chip_data *apicd)
124{
125 kfree(apicd);
126}
127
128static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
129 unsigned int cpu)
130{
131 struct apic_chip_data *apicd = apic_chip_data(irqd);
132
133 lockdep_assert_held(&vector_lock);
134
135 apicd->hw_irq_cfg.vector = vector;
136 apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
137 irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
138 trace_vector_config(irqd->irq, vector, cpu,
139 apicd->hw_irq_cfg.dest_apicid);
140}
141
142static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
143 unsigned int newcpu)
144{
145 struct apic_chip_data *apicd = apic_chip_data(irqd);
146 struct irq_desc *desc = irq_data_to_desc(irqd);
147 bool managed = irqd_affinity_is_managed(irqd);
148
149 lockdep_assert_held(&vector_lock);
150
151 trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
152 apicd->cpu);
153
154 /*
155 * If there is no vector associated or if the associated vector is
156 * the shutdown vector, which is associated to make PCI/MSI
157 * shutdown mode work, then there is nothing to release. Clear out
158 * prev_vector for this and the offlined target case.
159 */
160 apicd->prev_vector = 0;
161 if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
162 goto setnew;
163 /*
164 * If the target CPU of the previous vector is online, then mark
165 * the vector as move in progress and store it for cleanup when the
166 * first interrupt on the new vector arrives. If the target CPU is
167 * offline then the regular release mechanism via the cleanup
168 * vector is not possible and the vector can be immediately freed
169 * in the underlying matrix allocator.
170 */
171 if (cpu_online(apicd->cpu)) {
172 apicd->move_in_progress = true;
173 apicd->prev_vector = apicd->vector;
174 apicd->prev_cpu = apicd->cpu;
175 WARN_ON_ONCE(apicd->cpu == newcpu);
176 } else {
177 irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
178 managed);
179 }
180
181setnew:
182 apicd->vector = newvec;
183 apicd->cpu = newcpu;
184 BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
185 per_cpu(vector_irq, newcpu)[newvec] = desc;
186}
187
188static void vector_assign_managed_shutdown(struct irq_data *irqd)
189{
190 unsigned int cpu = cpumask_first(cpu_online_mask);
191
192 apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
193}
194
195static int reserve_managed_vector(struct irq_data *irqd)
196{
197 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
198 struct apic_chip_data *apicd = apic_chip_data(irqd);
199 unsigned long flags;
200 int ret;
201
202 raw_spin_lock_irqsave(&vector_lock, flags);
203 apicd->is_managed = true;
204 ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
205 raw_spin_unlock_irqrestore(&vector_lock, flags);
206 trace_vector_reserve_managed(irqd->irq, ret);
207 return ret;
208}
209
210static void reserve_irq_vector_locked(struct irq_data *irqd)
211{
212 struct apic_chip_data *apicd = apic_chip_data(irqd);
213
214 irq_matrix_reserve(vector_matrix);
215 apicd->can_reserve = true;
216 apicd->has_reserved = true;
217 irqd_set_can_reserve(irqd);
218 trace_vector_reserve(irqd->irq, 0);
219 vector_assign_managed_shutdown(irqd);
220}
221
222static int reserve_irq_vector(struct irq_data *irqd)
223{
224 unsigned long flags;
225
226 raw_spin_lock_irqsave(&vector_lock, flags);
227 reserve_irq_vector_locked(irqd);
228 raw_spin_unlock_irqrestore(&vector_lock, flags);
229 return 0;
230}
231
232static int
233assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
234{
235 struct apic_chip_data *apicd = apic_chip_data(irqd);
236 bool resvd = apicd->has_reserved;
237 unsigned int cpu = apicd->cpu;
238 int vector = apicd->vector;
239
240 lockdep_assert_held(&vector_lock);
241
242 /*
243 * If the current target CPU is online and in the new requested
244 * affinity mask, there is no point in moving the interrupt from
245 * one CPU to another.
246 */
247 if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
248 return 0;
249
250 /*
251 * Careful here. @apicd might either have move_in_progress set or
252 * be enqueued for cleanup. Assigning a new vector would either
253 * leave a stale vector on some CPU around or in case of a pending
254 * cleanup corrupt the hlist.
255 */
256 if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
257 return -EBUSY;
258
259 vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
260 trace_vector_alloc(irqd->irq, vector, resvd, vector);
261 if (vector < 0)
262 return vector;
263 apic_update_vector(irqd, vector, cpu);
264 apic_update_irq_cfg(irqd, vector, cpu);
265
266 return 0;
267}
268
269static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
270{
271 unsigned long flags;
272 int ret;
273
274 raw_spin_lock_irqsave(&vector_lock, flags);
275 cpumask_and(vector_searchmask, dest, cpu_online_mask);
276 ret = assign_vector_locked(irqd, vector_searchmask);
277 raw_spin_unlock_irqrestore(&vector_lock, flags);
278 return ret;
279}
280
281static int assign_irq_vector_any_locked(struct irq_data *irqd)
282{
283 /* Get the affinity mask - either irq_default_affinity or (user) set */
284 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
285 int node = irq_data_get_node(irqd);
286
287 if (node != NUMA_NO_NODE) {
288 /* Try the intersection of @affmsk and node mask */
289 cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
290 if (!assign_vector_locked(irqd, vector_searchmask))
291 return 0;
292 }
293
294 /* Try the full affinity mask */
295 cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
296 if (!assign_vector_locked(irqd, vector_searchmask))
297 return 0;
298
299 if (node != NUMA_NO_NODE) {
300 /* Try the node mask */
301 if (!assign_vector_locked(irqd, cpumask_of_node(node)))
302 return 0;
303 }
304
305 /* Try the full online mask */
306 return assign_vector_locked(irqd, cpu_online_mask);
307}
308
309static int
310assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
311{
312 if (irqd_affinity_is_managed(irqd))
313 return reserve_managed_vector(irqd);
314 if (info->mask)
315 return assign_irq_vector(irqd, info->mask);
316 /*
317 * Make only a global reservation with no guarantee. A real vector
318 * is associated at activation time.
319 */
320 return reserve_irq_vector(irqd);
321}
322
323static int
324assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
325{
326 const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
327 struct apic_chip_data *apicd = apic_chip_data(irqd);
328 int vector, cpu;
329
330 cpumask_and(vector_searchmask, dest, affmsk);
331
332 /* set_affinity might call here for nothing */
333 if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
334 return 0;
335 vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
336 &cpu);
337 trace_vector_alloc_managed(irqd->irq, vector, vector);
338 if (vector < 0)
339 return vector;
340 apic_update_vector(irqd, vector, cpu);
341 apic_update_irq_cfg(irqd, vector, cpu);
342 return 0;
343}
344
345static void clear_irq_vector(struct irq_data *irqd)
346{
347 struct apic_chip_data *apicd = apic_chip_data(irqd);
348 bool managed = irqd_affinity_is_managed(irqd);
349 unsigned int vector = apicd->vector;
350
351 lockdep_assert_held(&vector_lock);
352
353 if (!vector)
354 return;
355
356 trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
357 apicd->prev_cpu);
358
359 per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN;
360 irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
361 apicd->vector = 0;
362
363 /* Clean up move in progress */
364 vector = apicd->prev_vector;
365 if (!vector)
366 return;
367
368 per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN;
369 irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
370 apicd->prev_vector = 0;
371 apicd->move_in_progress = 0;
372 hlist_del_init(&apicd->clist);
373}
374
375static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
376{
377 struct apic_chip_data *apicd = apic_chip_data(irqd);
378 unsigned long flags;
379
380 trace_vector_deactivate(irqd->irq, apicd->is_managed,
381 apicd->can_reserve, false);
382
383 /* Regular fixed assigned interrupt */
384 if (!apicd->is_managed && !apicd->can_reserve)
385 return;
386 /* If the interrupt has a global reservation, nothing to do */
387 if (apicd->has_reserved)
388 return;
389
390 raw_spin_lock_irqsave(&vector_lock, flags);
391 clear_irq_vector(irqd);
392 if (apicd->can_reserve)
393 reserve_irq_vector_locked(irqd);
394 else
395 vector_assign_managed_shutdown(irqd);
396 raw_spin_unlock_irqrestore(&vector_lock, flags);
397}
398
399static int activate_reserved(struct irq_data *irqd)
400{
401 struct apic_chip_data *apicd = apic_chip_data(irqd);
402 int ret;
403
404 ret = assign_irq_vector_any_locked(irqd);
405 if (!ret) {
406 apicd->has_reserved = false;
407 /*
408 * Core might have disabled reservation mode after
409 * allocating the irq descriptor. Ideally this should
410 * happen before allocation time, but that would require
411 * completely convoluted ways of transporting that
412 * information.
413 */
414 if (!irqd_can_reserve(irqd))
415 apicd->can_reserve = false;
416 }
417
418 /*
419 * Check to ensure that the effective affinity mask is a subset
420 * the user supplied affinity mask, and warn the user if it is not
421 */
422 if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd),
423 irq_data_get_affinity_mask(irqd))) {
424 pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
425 irqd->irq);
426 }
427
428 return ret;
429}
430
431static int activate_managed(struct irq_data *irqd)
432{
433 const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
434 int ret;
435
436 cpumask_and(vector_searchmask, dest, cpu_online_mask);
437 if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
438 /* Something in the core code broke! Survive gracefully */
439 pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
440 return -EINVAL;
441 }
442
443 ret = assign_managed_vector(irqd, vector_searchmask);
444 /*
445 * This should not happen. The vector reservation got buggered. Handle
446 * it gracefully.
447 */
448 if (WARN_ON_ONCE(ret < 0)) {
449 pr_err("Managed startup irq %u, no vector available\n",
450 irqd->irq);
451 }
452 return ret;
453}
454
455static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
456 bool reserve)
457{
458 struct apic_chip_data *apicd = apic_chip_data(irqd);
459 unsigned long flags;
460 int ret = 0;
461
462 trace_vector_activate(irqd->irq, apicd->is_managed,
463 apicd->can_reserve, reserve);
464
465 raw_spin_lock_irqsave(&vector_lock, flags);
466 if (!apicd->can_reserve && !apicd->is_managed)
467 assign_irq_vector_any_locked(irqd);
468 else if (reserve || irqd_is_managed_and_shutdown(irqd))
469 vector_assign_managed_shutdown(irqd);
470 else if (apicd->is_managed)
471 ret = activate_managed(irqd);
472 else if (apicd->has_reserved)
473 ret = activate_reserved(irqd);
474 raw_spin_unlock_irqrestore(&vector_lock, flags);
475 return ret;
476}
477
478static void vector_free_reserved_and_managed(struct irq_data *irqd)
479{
480 const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
481 struct apic_chip_data *apicd = apic_chip_data(irqd);
482
483 trace_vector_teardown(irqd->irq, apicd->is_managed,
484 apicd->has_reserved);
485
486 if (apicd->has_reserved)
487 irq_matrix_remove_reserved(vector_matrix);
488 if (apicd->is_managed)
489 irq_matrix_remove_managed(vector_matrix, dest);
490}
491
492static void x86_vector_free_irqs(struct irq_domain *domain,
493 unsigned int virq, unsigned int nr_irqs)
494{
495 struct apic_chip_data *apicd;
496 struct irq_data *irqd;
497 unsigned long flags;
498 int i;
499
500 for (i = 0; i < nr_irqs; i++) {
501 irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
502 if (irqd && irqd->chip_data) {
503 raw_spin_lock_irqsave(&vector_lock, flags);
504 clear_irq_vector(irqd);
505 vector_free_reserved_and_managed(irqd);
506 apicd = irqd->chip_data;
507 irq_domain_reset_irq_data(irqd);
508 raw_spin_unlock_irqrestore(&vector_lock, flags);
509 free_apic_chip_data(apicd);
510 }
511 }
512}
513
514static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
515 struct apic_chip_data *apicd)
516{
517 unsigned long flags;
518 bool realloc = false;
519
520 apicd->vector = ISA_IRQ_VECTOR(virq);
521 apicd->cpu = 0;
522
523 raw_spin_lock_irqsave(&vector_lock, flags);
524 /*
525 * If the interrupt is activated, then it must stay at this vector
526 * position. That's usually the timer interrupt (0).
527 */
528 if (irqd_is_activated(irqd)) {
529 trace_vector_setup(virq, true, 0);
530 apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
531 } else {
532 /* Release the vector */
533 apicd->can_reserve = true;
534 irqd_set_can_reserve(irqd);
535 clear_irq_vector(irqd);
536 realloc = true;
537 }
538 raw_spin_unlock_irqrestore(&vector_lock, flags);
539 return realloc;
540}
541
542static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
543 unsigned int nr_irqs, void *arg)
544{
545 struct irq_alloc_info *info = arg;
546 struct apic_chip_data *apicd;
547 struct irq_data *irqd;
548 int i, err, node;
549
550 if (apic_is_disabled)
551 return -ENXIO;
552
553 /*
554 * Catch any attempt to touch the cascade interrupt on a PIC
555 * equipped system.
556 */
557 if (WARN_ON_ONCE(info->flags & X86_IRQ_ALLOC_LEGACY &&
558 virq == PIC_CASCADE_IR))
559 return -EINVAL;
560
561 for (i = 0; i < nr_irqs; i++) {
562 irqd = irq_domain_get_irq_data(domain, virq + i);
563 BUG_ON(!irqd);
564 node = irq_data_get_node(irqd);
565 WARN_ON_ONCE(irqd->chip_data);
566 apicd = alloc_apic_chip_data(node);
567 if (!apicd) {
568 err = -ENOMEM;
569 goto error;
570 }
571
572 apicd->irq = virq + i;
573 irqd->chip = &lapic_controller;
574 irqd->chip_data = apicd;
575 irqd->hwirq = virq + i;
576 irqd_set_single_target(irqd);
577 /*
578 * Prevent that any of these interrupts is invoked in
579 * non interrupt context via e.g. generic_handle_irq()
580 * as that can corrupt the affinity move state.
581 */
582 irqd_set_handle_enforce_irqctx(irqd);
583
584 /* Don't invoke affinity setter on deactivated interrupts */
585 irqd_set_affinity_on_activate(irqd);
586
587 /*
588 * Legacy vectors are already assigned when the IOAPIC
589 * takes them over. They stay on the same vector. This is
590 * required for check_timer() to work correctly as it might
591 * switch back to legacy mode. Only update the hardware
592 * config.
593 */
594 if (info->flags & X86_IRQ_ALLOC_LEGACY) {
595 if (!vector_configure_legacy(virq + i, irqd, apicd))
596 continue;
597 }
598
599 err = assign_irq_vector_policy(irqd, info);
600 trace_vector_setup(virq + i, false, err);
601 if (err) {
602 irqd->chip_data = NULL;
603 free_apic_chip_data(apicd);
604 goto error;
605 }
606 }
607
608 return 0;
609
610error:
611 x86_vector_free_irqs(domain, virq, i);
612 return err;
613}
614
615#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
616static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
617 struct irq_data *irqd, int ind)
618{
619 struct apic_chip_data apicd;
620 unsigned long flags;
621 int irq;
622
623 if (!irqd) {
624 irq_matrix_debug_show(m, vector_matrix, ind);
625 return;
626 }
627
628 irq = irqd->irq;
629 if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
630 seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
631 seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
632 return;
633 }
634
635 if (!irqd->chip_data) {
636 seq_printf(m, "%*sVector: Not assigned\n", ind, "");
637 return;
638 }
639
640 raw_spin_lock_irqsave(&vector_lock, flags);
641 memcpy(&apicd, irqd->chip_data, sizeof(apicd));
642 raw_spin_unlock_irqrestore(&vector_lock, flags);
643
644 seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
645 seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
646 if (apicd.prev_vector) {
647 seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
648 seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
649 }
650 seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
651 seq_printf(m, "%*sis_managed: %u\n", ind, "", apicd.is_managed ? 1 : 0);
652 seq_printf(m, "%*scan_reserve: %u\n", ind, "", apicd.can_reserve ? 1 : 0);
653 seq_printf(m, "%*shas_reserved: %u\n", ind, "", apicd.has_reserved ? 1 : 0);
654 seq_printf(m, "%*scleanup_pending: %u\n", ind, "", !hlist_unhashed(&apicd.clist));
655}
656#endif
657
658int x86_fwspec_is_ioapic(struct irq_fwspec *fwspec)
659{
660 if (fwspec->param_count != 1)
661 return 0;
662
663 if (is_fwnode_irqchip(fwspec->fwnode)) {
664 const char *fwname = fwnode_get_name(fwspec->fwnode);
665 return fwname && !strncmp(fwname, "IO-APIC-", 8) &&
666 simple_strtol(fwname+8, NULL, 10) == fwspec->param[0];
667 }
668 return to_of_node(fwspec->fwnode) &&
669 of_device_is_compatible(to_of_node(fwspec->fwnode),
670 "intel,ce4100-ioapic");
671}
672
673int x86_fwspec_is_hpet(struct irq_fwspec *fwspec)
674{
675 if (fwspec->param_count != 1)
676 return 0;
677
678 if (is_fwnode_irqchip(fwspec->fwnode)) {
679 const char *fwname = fwnode_get_name(fwspec->fwnode);
680 return fwname && !strncmp(fwname, "HPET-MSI-", 9) &&
681 simple_strtol(fwname+9, NULL, 10) == fwspec->param[0];
682 }
683 return 0;
684}
685
686static int x86_vector_select(struct irq_domain *d, struct irq_fwspec *fwspec,
687 enum irq_domain_bus_token bus_token)
688{
689 /*
690 * HPET and I/OAPIC cannot be parented in the vector domain
691 * if IRQ remapping is enabled. APIC IDs above 15 bits are
692 * only permitted if IRQ remapping is enabled, so check that.
693 */
694 if (apic_id_valid(32768))
695 return 0;
696
697 return x86_fwspec_is_ioapic(fwspec) || x86_fwspec_is_hpet(fwspec);
698}
699
700static const struct irq_domain_ops x86_vector_domain_ops = {
701 .select = x86_vector_select,
702 .alloc = x86_vector_alloc_irqs,
703 .free = x86_vector_free_irqs,
704 .activate = x86_vector_activate,
705 .deactivate = x86_vector_deactivate,
706#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
707 .debug_show = x86_vector_debug_show,
708#endif
709};
710
711int __init arch_probe_nr_irqs(void)
712{
713 int nr;
714
715 if (irq_get_nr_irqs() > NR_VECTORS * nr_cpu_ids)
716 irq_set_nr_irqs(NR_VECTORS * nr_cpu_ids);
717
718 nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
719#if defined(CONFIG_PCI_MSI)
720 /*
721 * for MSI and HT dyn irq
722 */
723 if (gsi_top <= NR_IRQS_LEGACY)
724 nr += 8 * nr_cpu_ids;
725 else
726 nr += gsi_top * 16;
727#endif
728 if (nr < irq_get_nr_irqs())
729 irq_set_nr_irqs(nr);
730
731 /*
732 * We don't know if PIC is present at this point so we need to do
733 * probe() to get the right number of legacy IRQs.
734 */
735 return legacy_pic->probe();
736}
737
738void lapic_assign_legacy_vector(unsigned int irq, bool replace)
739{
740 /*
741 * Use assign system here so it won't get accounted as allocated
742 * and movable in the cpu hotplug check and it prevents managed
743 * irq reservation from touching it.
744 */
745 irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
746}
747
748void __init lapic_update_legacy_vectors(void)
749{
750 unsigned int i;
751
752 if (IS_ENABLED(CONFIG_X86_IO_APIC) && nr_ioapics > 0)
753 return;
754
755 /*
756 * If the IO/APIC is disabled via config, kernel command line or
757 * lack of enumeration then all legacy interrupts are routed
758 * through the PIC. Make sure that they are marked as legacy
759 * vectors. PIC_CASCADE_IRQ has already been marked in
760 * lapic_assign_system_vectors().
761 */
762 for (i = 0; i < nr_legacy_irqs(); i++) {
763 if (i != PIC_CASCADE_IR)
764 lapic_assign_legacy_vector(i, true);
765 }
766}
767
768void __init lapic_assign_system_vectors(void)
769{
770 unsigned int i, vector;
771
772 for_each_set_bit(vector, system_vectors, NR_VECTORS)
773 irq_matrix_assign_system(vector_matrix, vector, false);
774
775 if (nr_legacy_irqs() > 1)
776 lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
777
778 /* System vectors are reserved, online it */
779 irq_matrix_online(vector_matrix);
780
781 /* Mark the preallocated legacy interrupts */
782 for (i = 0; i < nr_legacy_irqs(); i++) {
783 /*
784 * Don't touch the cascade interrupt. It's unusable
785 * on PIC equipped machines. See the large comment
786 * in the IO/APIC code.
787 */
788 if (i != PIC_CASCADE_IR)
789 irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
790 }
791}
792
793int __init arch_early_irq_init(void)
794{
795 struct fwnode_handle *fn;
796
797 fn = irq_domain_alloc_named_fwnode("VECTOR");
798 BUG_ON(!fn);
799 x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
800 NULL);
801 BUG_ON(x86_vector_domain == NULL);
802 irq_set_default_host(x86_vector_domain);
803
804 BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
805
806 /*
807 * Allocate the vector matrix allocator data structure and limit the
808 * search area.
809 */
810 vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
811 FIRST_SYSTEM_VECTOR);
812 BUG_ON(!vector_matrix);
813
814 return arch_early_ioapic_init();
815}
816
817#ifdef CONFIG_SMP
818
819static struct irq_desc *__setup_vector_irq(int vector)
820{
821 int isairq = vector - ISA_IRQ_VECTOR(0);
822
823 /* Check whether the irq is in the legacy space */
824 if (isairq < 0 || isairq >= nr_legacy_irqs())
825 return VECTOR_UNUSED;
826 /* Check whether the irq is handled by the IOAPIC */
827 if (test_bit(isairq, &io_apic_irqs))
828 return VECTOR_UNUSED;
829 return irq_to_desc(isairq);
830}
831
832/* Online the local APIC infrastructure and initialize the vectors */
833void lapic_online(void)
834{
835 unsigned int vector;
836
837 lockdep_assert_held(&vector_lock);
838
839 /* Online the vector matrix array for this CPU */
840 irq_matrix_online(vector_matrix);
841
842 /*
843 * The interrupt affinity logic never targets interrupts to offline
844 * CPUs. The exception are the legacy PIC interrupts. In general
845 * they are only targeted to CPU0, but depending on the platform
846 * they can be distributed to any online CPU in hardware. The
847 * kernel has no influence on that. So all active legacy vectors
848 * must be installed on all CPUs. All non legacy interrupts can be
849 * cleared.
850 */
851 for (vector = 0; vector < NR_VECTORS; vector++)
852 this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
853}
854
855static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr);
856
857void lapic_offline(void)
858{
859 struct vector_cleanup *cl = this_cpu_ptr(&vector_cleanup);
860
861 lock_vector_lock();
862
863 /* In case the vector cleanup timer has not expired */
864 __vector_cleanup(cl, false);
865
866 irq_matrix_offline(vector_matrix);
867 WARN_ON_ONCE(try_to_del_timer_sync(&cl->timer) < 0);
868 WARN_ON_ONCE(!hlist_empty(&cl->head));
869
870 unlock_vector_lock();
871}
872
873static int apic_set_affinity(struct irq_data *irqd,
874 const struct cpumask *dest, bool force)
875{
876 int err;
877
878 if (WARN_ON_ONCE(!irqd_is_activated(irqd)))
879 return -EIO;
880
881 raw_spin_lock(&vector_lock);
882 cpumask_and(vector_searchmask, dest, cpu_online_mask);
883 if (irqd_affinity_is_managed(irqd))
884 err = assign_managed_vector(irqd, vector_searchmask);
885 else
886 err = assign_vector_locked(irqd, vector_searchmask);
887 raw_spin_unlock(&vector_lock);
888 return err ? err : IRQ_SET_MASK_OK;
889}
890
891#else
892# define apic_set_affinity NULL
893#endif
894
895static int apic_retrigger_irq(struct irq_data *irqd)
896{
897 struct apic_chip_data *apicd = apic_chip_data(irqd);
898 unsigned long flags;
899
900 raw_spin_lock_irqsave(&vector_lock, flags);
901 __apic_send_IPI(apicd->cpu, apicd->vector);
902 raw_spin_unlock_irqrestore(&vector_lock, flags);
903
904 return 1;
905}
906
907void apic_ack_irq(struct irq_data *irqd)
908{
909 irq_move_irq(irqd);
910 apic_eoi();
911}
912
913void apic_ack_edge(struct irq_data *irqd)
914{
915 irq_complete_move(irqd_cfg(irqd));
916 apic_ack_irq(irqd);
917}
918
919static void x86_vector_msi_compose_msg(struct irq_data *data,
920 struct msi_msg *msg)
921{
922 __irq_msi_compose_msg(irqd_cfg(data), msg, false);
923}
924
925static struct irq_chip lapic_controller = {
926 .name = "APIC",
927 .irq_ack = apic_ack_edge,
928 .irq_set_affinity = apic_set_affinity,
929 .irq_compose_msi_msg = x86_vector_msi_compose_msg,
930 .irq_retrigger = apic_retrigger_irq,
931};
932
933#ifdef CONFIG_SMP
934
935static void free_moved_vector(struct apic_chip_data *apicd)
936{
937 unsigned int vector = apicd->prev_vector;
938 unsigned int cpu = apicd->prev_cpu;
939 bool managed = apicd->is_managed;
940
941 /*
942 * Managed interrupts are usually not migrated away
943 * from an online CPU, but CPU isolation 'managed_irq'
944 * can make that happen.
945 * 1) Activation does not take the isolation into account
946 * to keep the code simple
947 * 2) Migration away from an isolated CPU can happen when
948 * a non-isolated CPU which is in the calculated
949 * affinity mask comes online.
950 */
951 trace_vector_free_moved(apicd->irq, cpu, vector, managed);
952 irq_matrix_free(vector_matrix, cpu, vector, managed);
953 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
954 hlist_del_init(&apicd->clist);
955 apicd->prev_vector = 0;
956 apicd->move_in_progress = 0;
957}
958
959static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr)
960{
961 struct apic_chip_data *apicd;
962 struct hlist_node *tmp;
963 bool rearm = false;
964
965 lockdep_assert_held(&vector_lock);
966
967 hlist_for_each_entry_safe(apicd, tmp, &cl->head, clist) {
968 unsigned int vector = apicd->prev_vector;
969
970 /*
971 * Paranoia: Check if the vector that needs to be cleaned
972 * up is registered at the APICs IRR. That's clearly a
973 * hardware issue if the vector arrived on the old target
974 * _after_ interrupts were disabled above. Keep @apicd
975 * on the list and schedule the timer again to give the CPU
976 * a chance to handle the pending interrupt.
977 *
978 * Do not check IRR when called from lapic_offline(), because
979 * fixup_irqs() was just called to scan IRR for set bits and
980 * forward them to new destination CPUs via IPIs.
981 */
982 if (check_irr && is_vector_pending(vector)) {
983 pr_warn_once("Moved interrupt pending in old target APIC %u\n", apicd->irq);
984 rearm = true;
985 continue;
986 }
987 free_moved_vector(apicd);
988 }
989
990 /*
991 * Must happen under vector_lock to make the timer_pending() check
992 * in __vector_schedule_cleanup() race free against the rearm here.
993 */
994 if (rearm)
995 mod_timer(&cl->timer, jiffies + 1);
996}
997
998static void vector_cleanup_callback(struct timer_list *tmr)
999{
1000 struct vector_cleanup *cl = container_of(tmr, typeof(*cl), timer);
1001
1002 /* Prevent vectors vanishing under us */
1003 raw_spin_lock_irq(&vector_lock);
1004 __vector_cleanup(cl, true);
1005 raw_spin_unlock_irq(&vector_lock);
1006}
1007
1008static void __vector_schedule_cleanup(struct apic_chip_data *apicd)
1009{
1010 unsigned int cpu = apicd->prev_cpu;
1011
1012 raw_spin_lock(&vector_lock);
1013 apicd->move_in_progress = 0;
1014 if (cpu_online(cpu)) {
1015 struct vector_cleanup *cl = per_cpu_ptr(&vector_cleanup, cpu);
1016
1017 hlist_add_head(&apicd->clist, &cl->head);
1018
1019 /*
1020 * The lockless timer_pending() check is safe here. If it
1021 * returns true, then the callback will observe this new
1022 * apic data in the hlist as everything is serialized by
1023 * vector lock.
1024 *
1025 * If it returns false then the timer is either not armed
1026 * or the other CPU executes the callback, which again
1027 * would be blocked on vector lock. Rearming it in the
1028 * latter case makes it fire for nothing.
1029 *
1030 * This is also safe against the callback rearming the timer
1031 * because that's serialized via vector lock too.
1032 */
1033 if (!timer_pending(&cl->timer)) {
1034 cl->timer.expires = jiffies + 1;
1035 add_timer_on(&cl->timer, cpu);
1036 }
1037 } else {
1038 pr_warn("IRQ %u schedule cleanup for offline CPU %u\n", apicd->irq, cpu);
1039 free_moved_vector(apicd);
1040 }
1041 raw_spin_unlock(&vector_lock);
1042}
1043
1044void vector_schedule_cleanup(struct irq_cfg *cfg)
1045{
1046 struct apic_chip_data *apicd;
1047
1048 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
1049 if (apicd->move_in_progress)
1050 __vector_schedule_cleanup(apicd);
1051}
1052
1053void irq_complete_move(struct irq_cfg *cfg)
1054{
1055 struct apic_chip_data *apicd;
1056
1057 apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
1058 if (likely(!apicd->move_in_progress))
1059 return;
1060
1061 /*
1062 * If the interrupt arrived on the new target CPU, cleanup the
1063 * vector on the old target CPU. A vector check is not required
1064 * because an interrupt can never move from one vector to another
1065 * on the same CPU.
1066 */
1067 if (apicd->cpu == smp_processor_id())
1068 __vector_schedule_cleanup(apicd);
1069}
1070
1071/*
1072 * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
1073 */
1074void irq_force_complete_move(struct irq_desc *desc)
1075{
1076 unsigned int cpu = smp_processor_id();
1077 struct apic_chip_data *apicd;
1078 struct irq_data *irqd;
1079 unsigned int vector;
1080
1081 /*
1082 * The function is called for all descriptors regardless of which
1083 * irqdomain they belong to. For example if an IRQ is provided by
1084 * an irq_chip as part of a GPIO driver, the chip data for that
1085 * descriptor is specific to the irq_chip in question.
1086 *
1087 * Check first that the chip_data is what we expect
1088 * (apic_chip_data) before touching it any further.
1089 */
1090 irqd = irq_domain_get_irq_data(x86_vector_domain,
1091 irq_desc_get_irq(desc));
1092 if (!irqd)
1093 return;
1094
1095 raw_spin_lock(&vector_lock);
1096 apicd = apic_chip_data(irqd);
1097 if (!apicd)
1098 goto unlock;
1099
1100 /*
1101 * If prev_vector is empty or the descriptor is neither currently
1102 * nor previously on the outgoing CPU no action required.
1103 */
1104 vector = apicd->prev_vector;
1105 if (!vector || (apicd->cpu != cpu && apicd->prev_cpu != cpu))
1106 goto unlock;
1107
1108 /*
1109 * This is tricky. If the cleanup of the old vector has not been
1110 * done yet, then the following setaffinity call will fail with
1111 * -EBUSY. This can leave the interrupt in a stale state.
1112 *
1113 * All CPUs are stuck in stop machine with interrupts disabled so
1114 * calling __irq_complete_move() would be completely pointless.
1115 *
1116 * 1) The interrupt is in move_in_progress state. That means that we
1117 * have not seen an interrupt since the io_apic was reprogrammed to
1118 * the new vector.
1119 *
1120 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
1121 * have not been processed yet.
1122 */
1123 if (apicd->move_in_progress) {
1124 /*
1125 * In theory there is a race:
1126 *
1127 * set_ioapic(new_vector) <-- Interrupt is raised before update
1128 * is effective, i.e. it's raised on
1129 * the old vector.
1130 *
1131 * So if the target cpu cannot handle that interrupt before
1132 * the old vector is cleaned up, we get a spurious interrupt
1133 * and in the worst case the ioapic irq line becomes stale.
1134 *
1135 * But in case of cpu hotplug this should be a non issue
1136 * because if the affinity update happens right before all
1137 * cpus rendezvous in stop machine, there is no way that the
1138 * interrupt can be blocked on the target cpu because all cpus
1139 * loops first with interrupts enabled in stop machine, so the
1140 * old vector is not yet cleaned up when the interrupt fires.
1141 *
1142 * So the only way to run into this issue is if the delivery
1143 * of the interrupt on the apic/system bus would be delayed
1144 * beyond the point where the target cpu disables interrupts
1145 * in stop machine. I doubt that it can happen, but at least
1146 * there is a theoretical chance. Virtualization might be
1147 * able to expose this, but AFAICT the IOAPIC emulation is not
1148 * as stupid as the real hardware.
1149 *
1150 * Anyway, there is nothing we can do about that at this point
1151 * w/o refactoring the whole fixup_irq() business completely.
1152 * We print at least the irq number and the old vector number,
1153 * so we have the necessary information when a problem in that
1154 * area arises.
1155 */
1156 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1157 irqd->irq, vector);
1158 }
1159 free_moved_vector(apicd);
1160unlock:
1161 raw_spin_unlock(&vector_lock);
1162}
1163
1164#ifdef CONFIG_HOTPLUG_CPU
1165/*
1166 * Note, this is not accurate accounting, but at least good enough to
1167 * prevent that the actual interrupt move will run out of vectors.
1168 */
1169int lapic_can_unplug_cpu(void)
1170{
1171 unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1172 int ret = 0;
1173
1174 raw_spin_lock(&vector_lock);
1175 tomove = irq_matrix_allocated(vector_matrix);
1176 avl = irq_matrix_available(vector_matrix, true);
1177 if (avl < tomove) {
1178 pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1179 cpu, tomove, avl);
1180 ret = -ENOSPC;
1181 goto out;
1182 }
1183 rsvd = irq_matrix_reserved(vector_matrix);
1184 if (avl < rsvd) {
1185 pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1186 rsvd, avl);
1187 }
1188out:
1189 raw_spin_unlock(&vector_lock);
1190 return ret;
1191}
1192#endif /* HOTPLUG_CPU */
1193#endif /* SMP */
1194
1195static void __init print_APIC_field(int base)
1196{
1197 int i;
1198
1199 printk(KERN_DEBUG);
1200
1201 for (i = 0; i < 8; i++)
1202 pr_cont("%08x", apic_read(base + i*0x10));
1203
1204 pr_cont("\n");
1205}
1206
1207static void __init print_local_APIC(void *dummy)
1208{
1209 unsigned int i, v, ver, maxlvt;
1210 u64 icr;
1211
1212 pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1213 smp_processor_id(), read_apic_id());
1214 v = apic_read(APIC_ID);
1215 pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id());
1216 v = apic_read(APIC_LVR);
1217 pr_info("... APIC VERSION: %08x\n", v);
1218 ver = GET_APIC_VERSION(v);
1219 maxlvt = lapic_get_maxlvt();
1220
1221 v = apic_read(APIC_TASKPRI);
1222 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1223
1224 /* !82489DX */
1225 if (APIC_INTEGRATED(ver)) {
1226 if (!APIC_XAPIC(ver)) {
1227 v = apic_read(APIC_ARBPRI);
1228 pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1229 v, v & APIC_ARBPRI_MASK);
1230 }
1231 v = apic_read(APIC_PROCPRI);
1232 pr_debug("... APIC PROCPRI: %08x\n", v);
1233 }
1234
1235 /*
1236 * Remote read supported only in the 82489DX and local APIC for
1237 * Pentium processors.
1238 */
1239 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1240 v = apic_read(APIC_RRR);
1241 pr_debug("... APIC RRR: %08x\n", v);
1242 }
1243
1244 v = apic_read(APIC_LDR);
1245 pr_debug("... APIC LDR: %08x\n", v);
1246 if (!x2apic_enabled()) {
1247 v = apic_read(APIC_DFR);
1248 pr_debug("... APIC DFR: %08x\n", v);
1249 }
1250 v = apic_read(APIC_SPIV);
1251 pr_debug("... APIC SPIV: %08x\n", v);
1252
1253 pr_debug("... APIC ISR field:\n");
1254 print_APIC_field(APIC_ISR);
1255 pr_debug("... APIC TMR field:\n");
1256 print_APIC_field(APIC_TMR);
1257 pr_debug("... APIC IRR field:\n");
1258 print_APIC_field(APIC_IRR);
1259
1260 /* !82489DX */
1261 if (APIC_INTEGRATED(ver)) {
1262 /* Due to the Pentium erratum 3AP. */
1263 if (maxlvt > 3)
1264 apic_write(APIC_ESR, 0);
1265
1266 v = apic_read(APIC_ESR);
1267 pr_debug("... APIC ESR: %08x\n", v);
1268 }
1269
1270 icr = apic_icr_read();
1271 pr_debug("... APIC ICR: %08x\n", (u32)icr);
1272 pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1273
1274 v = apic_read(APIC_LVTT);
1275 pr_debug("... APIC LVTT: %08x\n", v);
1276
1277 if (maxlvt > 3) {
1278 /* PC is LVT#4. */
1279 v = apic_read(APIC_LVTPC);
1280 pr_debug("... APIC LVTPC: %08x\n", v);
1281 }
1282 v = apic_read(APIC_LVT0);
1283 pr_debug("... APIC LVT0: %08x\n", v);
1284 v = apic_read(APIC_LVT1);
1285 pr_debug("... APIC LVT1: %08x\n", v);
1286
1287 if (maxlvt > 2) {
1288 /* ERR is LVT#3. */
1289 v = apic_read(APIC_LVTERR);
1290 pr_debug("... APIC LVTERR: %08x\n", v);
1291 }
1292
1293 v = apic_read(APIC_TMICT);
1294 pr_debug("... APIC TMICT: %08x\n", v);
1295 v = apic_read(APIC_TMCCT);
1296 pr_debug("... APIC TMCCT: %08x\n", v);
1297 v = apic_read(APIC_TDCR);
1298 pr_debug("... APIC TDCR: %08x\n", v);
1299
1300 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1301 v = apic_read(APIC_EFEAT);
1302 maxlvt = (v >> 16) & 0xff;
1303 pr_debug("... APIC EFEAT: %08x\n", v);
1304 v = apic_read(APIC_ECTRL);
1305 pr_debug("... APIC ECTRL: %08x\n", v);
1306 for (i = 0; i < maxlvt; i++) {
1307 v = apic_read(APIC_EILVTn(i));
1308 pr_debug("... APIC EILVT%d: %08x\n", i, v);
1309 }
1310 }
1311 pr_cont("\n");
1312}
1313
1314static void __init print_local_APICs(int maxcpu)
1315{
1316 int cpu;
1317
1318 if (!maxcpu)
1319 return;
1320
1321 preempt_disable();
1322 for_each_online_cpu(cpu) {
1323 if (cpu >= maxcpu)
1324 break;
1325 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1326 }
1327 preempt_enable();
1328}
1329
1330static void __init print_PIC(void)
1331{
1332 unsigned int v;
1333 unsigned long flags;
1334
1335 if (!nr_legacy_irqs())
1336 return;
1337
1338 pr_debug("\nprinting PIC contents\n");
1339
1340 raw_spin_lock_irqsave(&i8259A_lock, flags);
1341
1342 v = inb(0xa1) << 8 | inb(0x21);
1343 pr_debug("... PIC IMR: %04x\n", v);
1344
1345 v = inb(0xa0) << 8 | inb(0x20);
1346 pr_debug("... PIC IRR: %04x\n", v);
1347
1348 outb(0x0b, 0xa0);
1349 outb(0x0b, 0x20);
1350 v = inb(0xa0) << 8 | inb(0x20);
1351 outb(0x0a, 0xa0);
1352 outb(0x0a, 0x20);
1353
1354 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1355
1356 pr_debug("... PIC ISR: %04x\n", v);
1357
1358 v = inb(PIC_ELCR2) << 8 | inb(PIC_ELCR1);
1359 pr_debug("... PIC ELCR: %04x\n", v);
1360}
1361
1362static int show_lapic __initdata = 1;
1363static __init int setup_show_lapic(char *arg)
1364{
1365 int num = -1;
1366
1367 if (strcmp(arg, "all") == 0) {
1368 show_lapic = CONFIG_NR_CPUS;
1369 } else {
1370 get_option(&arg, &num);
1371 if (num >= 0)
1372 show_lapic = num;
1373 }
1374
1375 return 1;
1376}
1377__setup("show_lapic=", setup_show_lapic);
1378
1379static int __init print_ICs(void)
1380{
1381 if (apic_verbosity == APIC_QUIET)
1382 return 0;
1383
1384 print_PIC();
1385
1386 /* don't print out if apic is not there */
1387 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1388 return 0;
1389
1390 print_local_APICs(show_lapic);
1391 print_IO_APICs();
1392
1393 return 0;
1394}
1395
1396late_initcall(print_ICs);
1/*
2 * Local APIC related interfaces to support IOAPIC, MSI, HT_IRQ etc.
3 *
4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5 * Moved from arch/x86/kernel/apic/io_apic.c.
6 * Jiang Liu <jiang.liu@linux.intel.com>
7 * Enable support of hierarchical irqdomains
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/interrupt.h>
14#include <linux/init.h>
15#include <linux/compiler.h>
16#include <linux/slab.h>
17#include <asm/irqdomain.h>
18#include <asm/hw_irq.h>
19#include <asm/apic.h>
20#include <asm/i8259.h>
21#include <asm/desc.h>
22#include <asm/irq_remapping.h>
23
24struct apic_chip_data {
25 struct irq_cfg cfg;
26 cpumask_var_t domain;
27 cpumask_var_t old_domain;
28 u8 move_in_progress : 1;
29};
30
31struct irq_domain *x86_vector_domain;
32EXPORT_SYMBOL_GPL(x86_vector_domain);
33static DEFINE_RAW_SPINLOCK(vector_lock);
34static cpumask_var_t vector_cpumask, vector_searchmask, searched_cpumask;
35static struct irq_chip lapic_controller;
36#ifdef CONFIG_X86_IO_APIC
37static struct apic_chip_data *legacy_irq_data[NR_IRQS_LEGACY];
38#endif
39
40void lock_vector_lock(void)
41{
42 /* Used to the online set of cpus does not change
43 * during assign_irq_vector.
44 */
45 raw_spin_lock(&vector_lock);
46}
47
48void unlock_vector_lock(void)
49{
50 raw_spin_unlock(&vector_lock);
51}
52
53static struct apic_chip_data *apic_chip_data(struct irq_data *irq_data)
54{
55 if (!irq_data)
56 return NULL;
57
58 while (irq_data->parent_data)
59 irq_data = irq_data->parent_data;
60
61 return irq_data->chip_data;
62}
63
64struct irq_cfg *irqd_cfg(struct irq_data *irq_data)
65{
66 struct apic_chip_data *data = apic_chip_data(irq_data);
67
68 return data ? &data->cfg : NULL;
69}
70EXPORT_SYMBOL_GPL(irqd_cfg);
71
72struct irq_cfg *irq_cfg(unsigned int irq)
73{
74 return irqd_cfg(irq_get_irq_data(irq));
75}
76
77static struct apic_chip_data *alloc_apic_chip_data(int node)
78{
79 struct apic_chip_data *data;
80
81 data = kzalloc_node(sizeof(*data), GFP_KERNEL, node);
82 if (!data)
83 return NULL;
84 if (!zalloc_cpumask_var_node(&data->domain, GFP_KERNEL, node))
85 goto out_data;
86 if (!zalloc_cpumask_var_node(&data->old_domain, GFP_KERNEL, node))
87 goto out_domain;
88 return data;
89out_domain:
90 free_cpumask_var(data->domain);
91out_data:
92 kfree(data);
93 return NULL;
94}
95
96static void free_apic_chip_data(struct apic_chip_data *data)
97{
98 if (data) {
99 free_cpumask_var(data->domain);
100 free_cpumask_var(data->old_domain);
101 kfree(data);
102 }
103}
104
105static int __assign_irq_vector(int irq, struct apic_chip_data *d,
106 const struct cpumask *mask)
107{
108 /*
109 * NOTE! The local APIC isn't very good at handling
110 * multiple interrupts at the same interrupt level.
111 * As the interrupt level is determined by taking the
112 * vector number and shifting that right by 4, we
113 * want to spread these out a bit so that they don't
114 * all fall in the same interrupt level.
115 *
116 * Also, we've got to be careful not to trash gate
117 * 0x80, because int 0x80 is hm, kind of importantish. ;)
118 */
119 static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
120 static int current_offset = VECTOR_OFFSET_START % 16;
121 int cpu, vector;
122
123 /*
124 * If there is still a move in progress or the previous move has not
125 * been cleaned up completely, tell the caller to come back later.
126 */
127 if (d->move_in_progress ||
128 cpumask_intersects(d->old_domain, cpu_online_mask))
129 return -EBUSY;
130
131 /* Only try and allocate irqs on cpus that are present */
132 cpumask_clear(d->old_domain);
133 cpumask_clear(searched_cpumask);
134 cpu = cpumask_first_and(mask, cpu_online_mask);
135 while (cpu < nr_cpu_ids) {
136 int new_cpu, offset;
137
138 /* Get the possible target cpus for @mask/@cpu from the apic */
139 apic->vector_allocation_domain(cpu, vector_cpumask, mask);
140
141 /*
142 * Clear the offline cpus from @vector_cpumask for searching
143 * and verify whether the result overlaps with @mask. If true,
144 * then the call to apic->cpu_mask_to_apicid_and() will
145 * succeed as well. If not, no point in trying to find a
146 * vector in this mask.
147 */
148 cpumask_and(vector_searchmask, vector_cpumask, cpu_online_mask);
149 if (!cpumask_intersects(vector_searchmask, mask))
150 goto next_cpu;
151
152 if (cpumask_subset(vector_cpumask, d->domain)) {
153 if (cpumask_equal(vector_cpumask, d->domain))
154 goto success;
155 /*
156 * Mark the cpus which are not longer in the mask for
157 * cleanup.
158 */
159 cpumask_andnot(d->old_domain, d->domain, vector_cpumask);
160 vector = d->cfg.vector;
161 goto update;
162 }
163
164 vector = current_vector;
165 offset = current_offset;
166next:
167 vector += 16;
168 if (vector >= first_system_vector) {
169 offset = (offset + 1) % 16;
170 vector = FIRST_EXTERNAL_VECTOR + offset;
171 }
172
173 /* If the search wrapped around, try the next cpu */
174 if (unlikely(current_vector == vector))
175 goto next_cpu;
176
177 if (test_bit(vector, used_vectors))
178 goto next;
179
180 for_each_cpu(new_cpu, vector_searchmask) {
181 if (!IS_ERR_OR_NULL(per_cpu(vector_irq, new_cpu)[vector]))
182 goto next;
183 }
184 /* Found one! */
185 current_vector = vector;
186 current_offset = offset;
187 /* Schedule the old vector for cleanup on all cpus */
188 if (d->cfg.vector)
189 cpumask_copy(d->old_domain, d->domain);
190 for_each_cpu(new_cpu, vector_searchmask)
191 per_cpu(vector_irq, new_cpu)[vector] = irq_to_desc(irq);
192 goto update;
193
194next_cpu:
195 /*
196 * We exclude the current @vector_cpumask from the requested
197 * @mask and try again with the next online cpu in the
198 * result. We cannot modify @mask, so we use @vector_cpumask
199 * as a temporary buffer here as it will be reassigned when
200 * calling apic->vector_allocation_domain() above.
201 */
202 cpumask_or(searched_cpumask, searched_cpumask, vector_cpumask);
203 cpumask_andnot(vector_cpumask, mask, searched_cpumask);
204 cpu = cpumask_first_and(vector_cpumask, cpu_online_mask);
205 continue;
206 }
207 return -ENOSPC;
208
209update:
210 /*
211 * Exclude offline cpus from the cleanup mask and set the
212 * move_in_progress flag when the result is not empty.
213 */
214 cpumask_and(d->old_domain, d->old_domain, cpu_online_mask);
215 d->move_in_progress = !cpumask_empty(d->old_domain);
216 d->cfg.old_vector = d->move_in_progress ? d->cfg.vector : 0;
217 d->cfg.vector = vector;
218 cpumask_copy(d->domain, vector_cpumask);
219success:
220 /*
221 * Cache destination APIC IDs into cfg->dest_apicid. This cannot fail
222 * as we already established, that mask & d->domain & cpu_online_mask
223 * is not empty.
224 */
225 BUG_ON(apic->cpu_mask_to_apicid_and(mask, d->domain,
226 &d->cfg.dest_apicid));
227 return 0;
228}
229
230static int assign_irq_vector(int irq, struct apic_chip_data *data,
231 const struct cpumask *mask)
232{
233 int err;
234 unsigned long flags;
235
236 raw_spin_lock_irqsave(&vector_lock, flags);
237 err = __assign_irq_vector(irq, data, mask);
238 raw_spin_unlock_irqrestore(&vector_lock, flags);
239 return err;
240}
241
242static int assign_irq_vector_policy(int irq, int node,
243 struct apic_chip_data *data,
244 struct irq_alloc_info *info)
245{
246 if (info && info->mask)
247 return assign_irq_vector(irq, data, info->mask);
248 if (node != NUMA_NO_NODE &&
249 assign_irq_vector(irq, data, cpumask_of_node(node)) == 0)
250 return 0;
251 return assign_irq_vector(irq, data, apic->target_cpus());
252}
253
254static void clear_irq_vector(int irq, struct apic_chip_data *data)
255{
256 struct irq_desc *desc;
257 int cpu, vector;
258
259 if (!data->cfg.vector)
260 return;
261
262 vector = data->cfg.vector;
263 for_each_cpu_and(cpu, data->domain, cpu_online_mask)
264 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
265
266 data->cfg.vector = 0;
267 cpumask_clear(data->domain);
268
269 /*
270 * If move is in progress or the old_domain mask is not empty,
271 * i.e. the cleanup IPI has not been processed yet, we need to remove
272 * the old references to desc from all cpus vector tables.
273 */
274 if (!data->move_in_progress && cpumask_empty(data->old_domain))
275 return;
276
277 desc = irq_to_desc(irq);
278 for_each_cpu_and(cpu, data->old_domain, cpu_online_mask) {
279 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
280 vector++) {
281 if (per_cpu(vector_irq, cpu)[vector] != desc)
282 continue;
283 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
284 break;
285 }
286 }
287 data->move_in_progress = 0;
288}
289
290void init_irq_alloc_info(struct irq_alloc_info *info,
291 const struct cpumask *mask)
292{
293 memset(info, 0, sizeof(*info));
294 info->mask = mask;
295}
296
297void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
298{
299 if (src)
300 *dst = *src;
301 else
302 memset(dst, 0, sizeof(*dst));
303}
304
305static void x86_vector_free_irqs(struct irq_domain *domain,
306 unsigned int virq, unsigned int nr_irqs)
307{
308 struct apic_chip_data *apic_data;
309 struct irq_data *irq_data;
310 unsigned long flags;
311 int i;
312
313 for (i = 0; i < nr_irqs; i++) {
314 irq_data = irq_domain_get_irq_data(x86_vector_domain, virq + i);
315 if (irq_data && irq_data->chip_data) {
316 raw_spin_lock_irqsave(&vector_lock, flags);
317 clear_irq_vector(virq + i, irq_data->chip_data);
318 apic_data = irq_data->chip_data;
319 irq_domain_reset_irq_data(irq_data);
320 raw_spin_unlock_irqrestore(&vector_lock, flags);
321 free_apic_chip_data(apic_data);
322#ifdef CONFIG_X86_IO_APIC
323 if (virq + i < nr_legacy_irqs())
324 legacy_irq_data[virq + i] = NULL;
325#endif
326 }
327 }
328}
329
330static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
331 unsigned int nr_irqs, void *arg)
332{
333 struct irq_alloc_info *info = arg;
334 struct apic_chip_data *data;
335 struct irq_data *irq_data;
336 int i, err, node;
337
338 if (disable_apic)
339 return -ENXIO;
340
341 /* Currently vector allocator can't guarantee contiguous allocations */
342 if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
343 return -ENOSYS;
344
345 for (i = 0; i < nr_irqs; i++) {
346 irq_data = irq_domain_get_irq_data(domain, virq + i);
347 BUG_ON(!irq_data);
348 node = irq_data_get_node(irq_data);
349#ifdef CONFIG_X86_IO_APIC
350 if (virq + i < nr_legacy_irqs() && legacy_irq_data[virq + i])
351 data = legacy_irq_data[virq + i];
352 else
353#endif
354 data = alloc_apic_chip_data(node);
355 if (!data) {
356 err = -ENOMEM;
357 goto error;
358 }
359
360 irq_data->chip = &lapic_controller;
361 irq_data->chip_data = data;
362 irq_data->hwirq = virq + i;
363 err = assign_irq_vector_policy(virq + i, node, data, info);
364 if (err)
365 goto error;
366 }
367
368 return 0;
369
370error:
371 x86_vector_free_irqs(domain, virq, i + 1);
372 return err;
373}
374
375static const struct irq_domain_ops x86_vector_domain_ops = {
376 .alloc = x86_vector_alloc_irqs,
377 .free = x86_vector_free_irqs,
378};
379
380int __init arch_probe_nr_irqs(void)
381{
382 int nr;
383
384 if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
385 nr_irqs = NR_VECTORS * nr_cpu_ids;
386
387 nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
388#if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
389 /*
390 * for MSI and HT dyn irq
391 */
392 if (gsi_top <= NR_IRQS_LEGACY)
393 nr += 8 * nr_cpu_ids;
394 else
395 nr += gsi_top * 16;
396#endif
397 if (nr < nr_irqs)
398 nr_irqs = nr;
399
400 /*
401 * We don't know if PIC is present at this point so we need to do
402 * probe() to get the right number of legacy IRQs.
403 */
404 return legacy_pic->probe();
405}
406
407#ifdef CONFIG_X86_IO_APIC
408static void init_legacy_irqs(void)
409{
410 int i, node = cpu_to_node(0);
411 struct apic_chip_data *data;
412
413 /*
414 * For legacy IRQ's, start with assigning irq0 to irq15 to
415 * ISA_IRQ_VECTOR(i) for all cpu's.
416 */
417 for (i = 0; i < nr_legacy_irqs(); i++) {
418 data = legacy_irq_data[i] = alloc_apic_chip_data(node);
419 BUG_ON(!data);
420
421 data->cfg.vector = ISA_IRQ_VECTOR(i);
422 cpumask_setall(data->domain);
423 irq_set_chip_data(i, data);
424 }
425}
426#else
427static void init_legacy_irqs(void) { }
428#endif
429
430int __init arch_early_irq_init(void)
431{
432 init_legacy_irqs();
433
434 x86_vector_domain = irq_domain_add_tree(NULL, &x86_vector_domain_ops,
435 NULL);
436 BUG_ON(x86_vector_domain == NULL);
437 irq_set_default_host(x86_vector_domain);
438
439 arch_init_msi_domain(x86_vector_domain);
440 arch_init_htirq_domain(x86_vector_domain);
441
442 BUG_ON(!alloc_cpumask_var(&vector_cpumask, GFP_KERNEL));
443 BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
444 BUG_ON(!alloc_cpumask_var(&searched_cpumask, GFP_KERNEL));
445
446 return arch_early_ioapic_init();
447}
448
449/* Initialize vector_irq on a new cpu */
450static void __setup_vector_irq(int cpu)
451{
452 struct apic_chip_data *data;
453 struct irq_desc *desc;
454 int irq, vector;
455
456 /* Mark the inuse vectors */
457 for_each_irq_desc(irq, desc) {
458 struct irq_data *idata = irq_desc_get_irq_data(desc);
459
460 data = apic_chip_data(idata);
461 if (!data || !cpumask_test_cpu(cpu, data->domain))
462 continue;
463 vector = data->cfg.vector;
464 per_cpu(vector_irq, cpu)[vector] = desc;
465 }
466 /* Mark the free vectors */
467 for (vector = 0; vector < NR_VECTORS; ++vector) {
468 desc = per_cpu(vector_irq, cpu)[vector];
469 if (IS_ERR_OR_NULL(desc))
470 continue;
471
472 data = apic_chip_data(irq_desc_get_irq_data(desc));
473 if (!cpumask_test_cpu(cpu, data->domain))
474 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
475 }
476}
477
478/*
479 * Setup the vector to irq mappings. Must be called with vector_lock held.
480 */
481void setup_vector_irq(int cpu)
482{
483 int irq;
484
485 lockdep_assert_held(&vector_lock);
486 /*
487 * On most of the platforms, legacy PIC delivers the interrupts on the
488 * boot cpu. But there are certain platforms where PIC interrupts are
489 * delivered to multiple cpu's. If the legacy IRQ is handled by the
490 * legacy PIC, for the new cpu that is coming online, setup the static
491 * legacy vector to irq mapping:
492 */
493 for (irq = 0; irq < nr_legacy_irqs(); irq++)
494 per_cpu(vector_irq, cpu)[ISA_IRQ_VECTOR(irq)] = irq_to_desc(irq);
495
496 __setup_vector_irq(cpu);
497}
498
499static int apic_retrigger_irq(struct irq_data *irq_data)
500{
501 struct apic_chip_data *data = apic_chip_data(irq_data);
502 unsigned long flags;
503 int cpu;
504
505 raw_spin_lock_irqsave(&vector_lock, flags);
506 cpu = cpumask_first_and(data->domain, cpu_online_mask);
507 apic->send_IPI_mask(cpumask_of(cpu), data->cfg.vector);
508 raw_spin_unlock_irqrestore(&vector_lock, flags);
509
510 return 1;
511}
512
513void apic_ack_edge(struct irq_data *data)
514{
515 irq_complete_move(irqd_cfg(data));
516 irq_move_irq(data);
517 ack_APIC_irq();
518}
519
520static int apic_set_affinity(struct irq_data *irq_data,
521 const struct cpumask *dest, bool force)
522{
523 struct apic_chip_data *data = irq_data->chip_data;
524 int err, irq = irq_data->irq;
525
526 if (!config_enabled(CONFIG_SMP))
527 return -EPERM;
528
529 if (!cpumask_intersects(dest, cpu_online_mask))
530 return -EINVAL;
531
532 err = assign_irq_vector(irq, data, dest);
533 return err ? err : IRQ_SET_MASK_OK;
534}
535
536static struct irq_chip lapic_controller = {
537 .irq_ack = apic_ack_edge,
538 .irq_set_affinity = apic_set_affinity,
539 .irq_retrigger = apic_retrigger_irq,
540};
541
542#ifdef CONFIG_SMP
543static void __send_cleanup_vector(struct apic_chip_data *data)
544{
545 raw_spin_lock(&vector_lock);
546 cpumask_and(data->old_domain, data->old_domain, cpu_online_mask);
547 data->move_in_progress = 0;
548 if (!cpumask_empty(data->old_domain))
549 apic->send_IPI_mask(data->old_domain, IRQ_MOVE_CLEANUP_VECTOR);
550 raw_spin_unlock(&vector_lock);
551}
552
553void send_cleanup_vector(struct irq_cfg *cfg)
554{
555 struct apic_chip_data *data;
556
557 data = container_of(cfg, struct apic_chip_data, cfg);
558 if (data->move_in_progress)
559 __send_cleanup_vector(data);
560}
561
562asmlinkage __visible void smp_irq_move_cleanup_interrupt(void)
563{
564 unsigned vector, me;
565
566 entering_ack_irq();
567
568 /* Prevent vectors vanishing under us */
569 raw_spin_lock(&vector_lock);
570
571 me = smp_processor_id();
572 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
573 struct apic_chip_data *data;
574 struct irq_desc *desc;
575 unsigned int irr;
576
577 retry:
578 desc = __this_cpu_read(vector_irq[vector]);
579 if (IS_ERR_OR_NULL(desc))
580 continue;
581
582 if (!raw_spin_trylock(&desc->lock)) {
583 raw_spin_unlock(&vector_lock);
584 cpu_relax();
585 raw_spin_lock(&vector_lock);
586 goto retry;
587 }
588
589 data = apic_chip_data(irq_desc_get_irq_data(desc));
590 if (!data)
591 goto unlock;
592
593 /*
594 * Nothing to cleanup if irq migration is in progress
595 * or this cpu is not set in the cleanup mask.
596 */
597 if (data->move_in_progress ||
598 !cpumask_test_cpu(me, data->old_domain))
599 goto unlock;
600
601 /*
602 * We have two cases to handle here:
603 * 1) vector is unchanged but the target mask got reduced
604 * 2) vector and the target mask has changed
605 *
606 * #1 is obvious, but in #2 we have two vectors with the same
607 * irq descriptor: the old and the new vector. So we need to
608 * make sure that we only cleanup the old vector. The new
609 * vector has the current @vector number in the config and
610 * this cpu is part of the target mask. We better leave that
611 * one alone.
612 */
613 if (vector == data->cfg.vector &&
614 cpumask_test_cpu(me, data->domain))
615 goto unlock;
616
617 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
618 /*
619 * Check if the vector that needs to be cleanedup is
620 * registered at the cpu's IRR. If so, then this is not
621 * the best time to clean it up. Lets clean it up in the
622 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
623 * to myself.
624 */
625 if (irr & (1 << (vector % 32))) {
626 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
627 goto unlock;
628 }
629 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
630 cpumask_clear_cpu(me, data->old_domain);
631unlock:
632 raw_spin_unlock(&desc->lock);
633 }
634
635 raw_spin_unlock(&vector_lock);
636
637 exiting_irq();
638}
639
640static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
641{
642 unsigned me;
643 struct apic_chip_data *data;
644
645 data = container_of(cfg, struct apic_chip_data, cfg);
646 if (likely(!data->move_in_progress))
647 return;
648
649 me = smp_processor_id();
650 if (vector == data->cfg.vector && cpumask_test_cpu(me, data->domain))
651 __send_cleanup_vector(data);
652}
653
654void irq_complete_move(struct irq_cfg *cfg)
655{
656 __irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
657}
658
659/*
660 * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
661 */
662void irq_force_complete_move(struct irq_desc *desc)
663{
664 struct irq_data *irqdata = irq_desc_get_irq_data(desc);
665 struct apic_chip_data *data = apic_chip_data(irqdata);
666 struct irq_cfg *cfg = data ? &data->cfg : NULL;
667 unsigned int cpu;
668
669 if (!cfg)
670 return;
671
672 /*
673 * This is tricky. If the cleanup of @data->old_domain has not been
674 * done yet, then the following setaffinity call will fail with
675 * -EBUSY. This can leave the interrupt in a stale state.
676 *
677 * All CPUs are stuck in stop machine with interrupts disabled so
678 * calling __irq_complete_move() would be completely pointless.
679 */
680 raw_spin_lock(&vector_lock);
681 /*
682 * Clean out all offline cpus (including the outgoing one) from the
683 * old_domain mask.
684 */
685 cpumask_and(data->old_domain, data->old_domain, cpu_online_mask);
686
687 /*
688 * If move_in_progress is cleared and the old_domain mask is empty,
689 * then there is nothing to cleanup. fixup_irqs() will take care of
690 * the stale vectors on the outgoing cpu.
691 */
692 if (!data->move_in_progress && cpumask_empty(data->old_domain)) {
693 raw_spin_unlock(&vector_lock);
694 return;
695 }
696
697 /*
698 * 1) The interrupt is in move_in_progress state. That means that we
699 * have not seen an interrupt since the io_apic was reprogrammed to
700 * the new vector.
701 *
702 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
703 * have not been processed yet.
704 */
705 if (data->move_in_progress) {
706 /*
707 * In theory there is a race:
708 *
709 * set_ioapic(new_vector) <-- Interrupt is raised before update
710 * is effective, i.e. it's raised on
711 * the old vector.
712 *
713 * So if the target cpu cannot handle that interrupt before
714 * the old vector is cleaned up, we get a spurious interrupt
715 * and in the worst case the ioapic irq line becomes stale.
716 *
717 * But in case of cpu hotplug this should be a non issue
718 * because if the affinity update happens right before all
719 * cpus rendevouz in stop machine, there is no way that the
720 * interrupt can be blocked on the target cpu because all cpus
721 * loops first with interrupts enabled in stop machine, so the
722 * old vector is not yet cleaned up when the interrupt fires.
723 *
724 * So the only way to run into this issue is if the delivery
725 * of the interrupt on the apic/system bus would be delayed
726 * beyond the point where the target cpu disables interrupts
727 * in stop machine. I doubt that it can happen, but at least
728 * there is a theroretical chance. Virtualization might be
729 * able to expose this, but AFAICT the IOAPIC emulation is not
730 * as stupid as the real hardware.
731 *
732 * Anyway, there is nothing we can do about that at this point
733 * w/o refactoring the whole fixup_irq() business completely.
734 * We print at least the irq number and the old vector number,
735 * so we have the necessary information when a problem in that
736 * area arises.
737 */
738 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
739 irqdata->irq, cfg->old_vector);
740 }
741 /*
742 * If old_domain is not empty, then other cpus still have the irq
743 * descriptor set in their vector array. Clean it up.
744 */
745 for_each_cpu(cpu, data->old_domain)
746 per_cpu(vector_irq, cpu)[cfg->old_vector] = VECTOR_UNUSED;
747
748 /* Cleanup the left overs of the (half finished) move */
749 cpumask_clear(data->old_domain);
750 data->move_in_progress = 0;
751 raw_spin_unlock(&vector_lock);
752}
753#endif
754
755static void __init print_APIC_field(int base)
756{
757 int i;
758
759 printk(KERN_DEBUG);
760
761 for (i = 0; i < 8; i++)
762 pr_cont("%08x", apic_read(base + i*0x10));
763
764 pr_cont("\n");
765}
766
767static void __init print_local_APIC(void *dummy)
768{
769 unsigned int i, v, ver, maxlvt;
770 u64 icr;
771
772 pr_debug("printing local APIC contents on CPU#%d/%d:\n",
773 smp_processor_id(), hard_smp_processor_id());
774 v = apic_read(APIC_ID);
775 pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id());
776 v = apic_read(APIC_LVR);
777 pr_info("... APIC VERSION: %08x\n", v);
778 ver = GET_APIC_VERSION(v);
779 maxlvt = lapic_get_maxlvt();
780
781 v = apic_read(APIC_TASKPRI);
782 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
783
784 /* !82489DX */
785 if (APIC_INTEGRATED(ver)) {
786 if (!APIC_XAPIC(ver)) {
787 v = apic_read(APIC_ARBPRI);
788 pr_debug("... APIC ARBPRI: %08x (%02x)\n",
789 v, v & APIC_ARBPRI_MASK);
790 }
791 v = apic_read(APIC_PROCPRI);
792 pr_debug("... APIC PROCPRI: %08x\n", v);
793 }
794
795 /*
796 * Remote read supported only in the 82489DX and local APIC for
797 * Pentium processors.
798 */
799 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
800 v = apic_read(APIC_RRR);
801 pr_debug("... APIC RRR: %08x\n", v);
802 }
803
804 v = apic_read(APIC_LDR);
805 pr_debug("... APIC LDR: %08x\n", v);
806 if (!x2apic_enabled()) {
807 v = apic_read(APIC_DFR);
808 pr_debug("... APIC DFR: %08x\n", v);
809 }
810 v = apic_read(APIC_SPIV);
811 pr_debug("... APIC SPIV: %08x\n", v);
812
813 pr_debug("... APIC ISR field:\n");
814 print_APIC_field(APIC_ISR);
815 pr_debug("... APIC TMR field:\n");
816 print_APIC_field(APIC_TMR);
817 pr_debug("... APIC IRR field:\n");
818 print_APIC_field(APIC_IRR);
819
820 /* !82489DX */
821 if (APIC_INTEGRATED(ver)) {
822 /* Due to the Pentium erratum 3AP. */
823 if (maxlvt > 3)
824 apic_write(APIC_ESR, 0);
825
826 v = apic_read(APIC_ESR);
827 pr_debug("... APIC ESR: %08x\n", v);
828 }
829
830 icr = apic_icr_read();
831 pr_debug("... APIC ICR: %08x\n", (u32)icr);
832 pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
833
834 v = apic_read(APIC_LVTT);
835 pr_debug("... APIC LVTT: %08x\n", v);
836
837 if (maxlvt > 3) {
838 /* PC is LVT#4. */
839 v = apic_read(APIC_LVTPC);
840 pr_debug("... APIC LVTPC: %08x\n", v);
841 }
842 v = apic_read(APIC_LVT0);
843 pr_debug("... APIC LVT0: %08x\n", v);
844 v = apic_read(APIC_LVT1);
845 pr_debug("... APIC LVT1: %08x\n", v);
846
847 if (maxlvt > 2) {
848 /* ERR is LVT#3. */
849 v = apic_read(APIC_LVTERR);
850 pr_debug("... APIC LVTERR: %08x\n", v);
851 }
852
853 v = apic_read(APIC_TMICT);
854 pr_debug("... APIC TMICT: %08x\n", v);
855 v = apic_read(APIC_TMCCT);
856 pr_debug("... APIC TMCCT: %08x\n", v);
857 v = apic_read(APIC_TDCR);
858 pr_debug("... APIC TDCR: %08x\n", v);
859
860 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
861 v = apic_read(APIC_EFEAT);
862 maxlvt = (v >> 16) & 0xff;
863 pr_debug("... APIC EFEAT: %08x\n", v);
864 v = apic_read(APIC_ECTRL);
865 pr_debug("... APIC ECTRL: %08x\n", v);
866 for (i = 0; i < maxlvt; i++) {
867 v = apic_read(APIC_EILVTn(i));
868 pr_debug("... APIC EILVT%d: %08x\n", i, v);
869 }
870 }
871 pr_cont("\n");
872}
873
874static void __init print_local_APICs(int maxcpu)
875{
876 int cpu;
877
878 if (!maxcpu)
879 return;
880
881 preempt_disable();
882 for_each_online_cpu(cpu) {
883 if (cpu >= maxcpu)
884 break;
885 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
886 }
887 preempt_enable();
888}
889
890static void __init print_PIC(void)
891{
892 unsigned int v;
893 unsigned long flags;
894
895 if (!nr_legacy_irqs())
896 return;
897
898 pr_debug("\nprinting PIC contents\n");
899
900 raw_spin_lock_irqsave(&i8259A_lock, flags);
901
902 v = inb(0xa1) << 8 | inb(0x21);
903 pr_debug("... PIC IMR: %04x\n", v);
904
905 v = inb(0xa0) << 8 | inb(0x20);
906 pr_debug("... PIC IRR: %04x\n", v);
907
908 outb(0x0b, 0xa0);
909 outb(0x0b, 0x20);
910 v = inb(0xa0) << 8 | inb(0x20);
911 outb(0x0a, 0xa0);
912 outb(0x0a, 0x20);
913
914 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
915
916 pr_debug("... PIC ISR: %04x\n", v);
917
918 v = inb(0x4d1) << 8 | inb(0x4d0);
919 pr_debug("... PIC ELCR: %04x\n", v);
920}
921
922static int show_lapic __initdata = 1;
923static __init int setup_show_lapic(char *arg)
924{
925 int num = -1;
926
927 if (strcmp(arg, "all") == 0) {
928 show_lapic = CONFIG_NR_CPUS;
929 } else {
930 get_option(&arg, &num);
931 if (num >= 0)
932 show_lapic = num;
933 }
934
935 return 1;
936}
937__setup("show_lapic=", setup_show_lapic);
938
939static int __init print_ICs(void)
940{
941 if (apic_verbosity == APIC_QUIET)
942 return 0;
943
944 print_PIC();
945
946 /* don't print out if apic is not there */
947 if (!cpu_has_apic && !apic_from_smp_config())
948 return 0;
949
950 print_local_APICs(show_lapic);
951 print_IO_APICs();
952
953 return 0;
954}
955
956late_initcall(print_ICs);