Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Local APIC related interfaces to support IOAPIC, MSI, etc.
   4 *
   5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
   6 *	Moved from arch/x86/kernel/apic/io_apic.c.
   7 * Jiang Liu <jiang.liu@linux.intel.com>
   8 *	Enable support of hierarchical irqdomains
 
 
 
 
   9 */
  10#include <linux/interrupt.h>
  11#include <linux/irq.h>
  12#include <linux/seq_file.h>
  13#include <linux/init.h>
  14#include <linux/compiler.h>
  15#include <linux/slab.h>
  16#include <asm/irqdomain.h>
  17#include <asm/hw_irq.h>
  18#include <asm/traps.h>
  19#include <asm/apic.h>
  20#include <asm/i8259.h>
  21#include <asm/desc.h>
  22#include <asm/irq_remapping.h>
  23
  24#include <asm/trace/irq_vectors.h>
  25
  26struct apic_chip_data {
  27	struct irq_cfg		hw_irq_cfg;
  28	unsigned int		vector;
  29	unsigned int		prev_vector;
  30	unsigned int		cpu;
  31	unsigned int		prev_cpu;
  32	unsigned int		irq;
  33	struct hlist_node	clist;
  34	unsigned int		move_in_progress	: 1,
  35				is_managed		: 1,
  36				can_reserve		: 1,
  37				has_reserved		: 1;
  38};
  39
  40struct irq_domain *x86_vector_domain;
  41EXPORT_SYMBOL_GPL(x86_vector_domain);
  42static DEFINE_RAW_SPINLOCK(vector_lock);
  43static cpumask_var_t vector_searchmask;
  44static struct irq_chip lapic_controller;
  45static struct irq_matrix *vector_matrix;
  46#ifdef CONFIG_SMP
  47
  48static void vector_cleanup_callback(struct timer_list *tmr);
  49
  50struct vector_cleanup {
  51	struct hlist_head	head;
  52	struct timer_list	timer;
  53};
  54
  55static DEFINE_PER_CPU(struct vector_cleanup, vector_cleanup) = {
  56	.head	= HLIST_HEAD_INIT,
  57	.timer	= __TIMER_INITIALIZER(vector_cleanup_callback, TIMER_PINNED),
  58};
  59#endif
  60
  61void lock_vector_lock(void)
  62{
  63	/* Used to the online set of cpus does not change
  64	 * during assign_irq_vector.
  65	 */
  66	raw_spin_lock(&vector_lock);
  67}
  68
  69void unlock_vector_lock(void)
  70{
  71	raw_spin_unlock(&vector_lock);
  72}
  73
  74void init_irq_alloc_info(struct irq_alloc_info *info,
  75			 const struct cpumask *mask)
  76{
  77	memset(info, 0, sizeof(*info));
  78	info->mask = mask;
  79}
  80
  81void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
  82{
  83	if (src)
  84		*dst = *src;
  85	else
  86		memset(dst, 0, sizeof(*dst));
  87}
  88
  89static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
  90{
  91	if (!irqd)
  92		return NULL;
  93
  94	while (irqd->parent_data)
  95		irqd = irqd->parent_data;
  96
  97	return irqd->chip_data;
  98}
  99
 100struct irq_cfg *irqd_cfg(struct irq_data *irqd)
 101{
 102	struct apic_chip_data *apicd = apic_chip_data(irqd);
 103
 104	return apicd ? &apicd->hw_irq_cfg : NULL;
 105}
 106EXPORT_SYMBOL_GPL(irqd_cfg);
 107
 108struct irq_cfg *irq_cfg(unsigned int irq)
 109{
 110	return irqd_cfg(irq_get_irq_data(irq));
 111}
 112
 113static struct apic_chip_data *alloc_apic_chip_data(int node)
 114{
 115	struct apic_chip_data *apicd;
 116
 117	apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
 118	if (apicd)
 119		INIT_HLIST_NODE(&apicd->clist);
 120	return apicd;
 121}
 122
 123static void free_apic_chip_data(struct apic_chip_data *apicd)
 124{
 125	kfree(apicd);
 126}
 127
 128static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
 129				unsigned int cpu)
 130{
 131	struct apic_chip_data *apicd = apic_chip_data(irqd);
 132
 133	lockdep_assert_held(&vector_lock);
 134
 135	apicd->hw_irq_cfg.vector = vector;
 136	apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
 137	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
 138	trace_vector_config(irqd->irq, vector, cpu,
 139			    apicd->hw_irq_cfg.dest_apicid);
 140}
 141
 142static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
 143			       unsigned int newcpu)
 144{
 145	struct apic_chip_data *apicd = apic_chip_data(irqd);
 146	struct irq_desc *desc = irq_data_to_desc(irqd);
 147	bool managed = irqd_affinity_is_managed(irqd);
 148
 149	lockdep_assert_held(&vector_lock);
 150
 151	trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
 152			    apicd->cpu);
 153
 154	/*
 155	 * If there is no vector associated or if the associated vector is
 156	 * the shutdown vector, which is associated to make PCI/MSI
 157	 * shutdown mode work, then there is nothing to release. Clear out
 158	 * prev_vector for this and the offlined target case.
 159	 */
 160	apicd->prev_vector = 0;
 161	if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
 162		goto setnew;
 163	/*
 164	 * If the target CPU of the previous vector is online, then mark
 165	 * the vector as move in progress and store it for cleanup when the
 166	 * first interrupt on the new vector arrives. If the target CPU is
 167	 * offline then the regular release mechanism via the cleanup
 168	 * vector is not possible and the vector can be immediately freed
 169	 * in the underlying matrix allocator.
 170	 */
 171	if (cpu_online(apicd->cpu)) {
 172		apicd->move_in_progress = true;
 173		apicd->prev_vector = apicd->vector;
 174		apicd->prev_cpu = apicd->cpu;
 175		WARN_ON_ONCE(apicd->cpu == newcpu);
 176	} else {
 177		irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
 178				managed);
 179	}
 180
 181setnew:
 182	apicd->vector = newvec;
 183	apicd->cpu = newcpu;
 184	BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
 185	per_cpu(vector_irq, newcpu)[newvec] = desc;
 186}
 187
 188static void vector_assign_managed_shutdown(struct irq_data *irqd)
 189{
 190	unsigned int cpu = cpumask_first(cpu_online_mask);
 191
 192	apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
 193}
 194
 195static int reserve_managed_vector(struct irq_data *irqd)
 196{
 197	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
 198	struct apic_chip_data *apicd = apic_chip_data(irqd);
 199	unsigned long flags;
 200	int ret;
 201
 202	raw_spin_lock_irqsave(&vector_lock, flags);
 203	apicd->is_managed = true;
 204	ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
 205	raw_spin_unlock_irqrestore(&vector_lock, flags);
 206	trace_vector_reserve_managed(irqd->irq, ret);
 207	return ret;
 208}
 209
 210static void reserve_irq_vector_locked(struct irq_data *irqd)
 211{
 212	struct apic_chip_data *apicd = apic_chip_data(irqd);
 213
 214	irq_matrix_reserve(vector_matrix);
 215	apicd->can_reserve = true;
 216	apicd->has_reserved = true;
 217	irqd_set_can_reserve(irqd);
 218	trace_vector_reserve(irqd->irq, 0);
 219	vector_assign_managed_shutdown(irqd);
 220}
 221
 222static int reserve_irq_vector(struct irq_data *irqd)
 223{
 224	unsigned long flags;
 225
 226	raw_spin_lock_irqsave(&vector_lock, flags);
 227	reserve_irq_vector_locked(irqd);
 228	raw_spin_unlock_irqrestore(&vector_lock, flags);
 229	return 0;
 230}
 231
 232static int
 233assign_vector_locked(struct irq_data *irqd, const struct cpumask *dest)
 234{
 235	struct apic_chip_data *apicd = apic_chip_data(irqd);
 236	bool resvd = apicd->has_reserved;
 237	unsigned int cpu = apicd->cpu;
 238	int vector = apicd->vector;
 239
 240	lockdep_assert_held(&vector_lock);
 241
 242	/*
 243	 * If the current target CPU is online and in the new requested
 244	 * affinity mask, there is no point in moving the interrupt from
 245	 * one CPU to another.
 246	 */
 247	if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
 248		return 0;
 249
 250	/*
 251	 * Careful here. @apicd might either have move_in_progress set or
 252	 * be enqueued for cleanup. Assigning a new vector would either
 253	 * leave a stale vector on some CPU around or in case of a pending
 254	 * cleanup corrupt the hlist.
 255	 */
 256	if (apicd->move_in_progress || !hlist_unhashed(&apicd->clist))
 257		return -EBUSY;
 258
 259	vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
 
 
 260	trace_vector_alloc(irqd->irq, vector, resvd, vector);
 
 
 
 
 
 
 
 
 
 261	if (vector < 0)
 262		return vector;
 263	apic_update_vector(irqd, vector, cpu);
 264	apic_update_irq_cfg(irqd, vector, cpu);
 265
 
 266	return 0;
 267}
 268
 269static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
 270{
 271	unsigned long flags;
 272	int ret;
 273
 274	raw_spin_lock_irqsave(&vector_lock, flags);
 275	cpumask_and(vector_searchmask, dest, cpu_online_mask);
 276	ret = assign_vector_locked(irqd, vector_searchmask);
 277	raw_spin_unlock_irqrestore(&vector_lock, flags);
 278	return ret;
 279}
 280
 281static int assign_irq_vector_any_locked(struct irq_data *irqd)
 282{
 283	/* Get the affinity mask - either irq_default_affinity or (user) set */
 284	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
 285	int node = irq_data_get_node(irqd);
 286
 287	if (node != NUMA_NO_NODE) {
 288		/* Try the intersection of @affmsk and node mask */
 289		cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
 290		if (!assign_vector_locked(irqd, vector_searchmask))
 291			return 0;
 292	}
 293
 
 
 
 294	/* Try the full affinity mask */
 295	cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
 296	if (!assign_vector_locked(irqd, vector_searchmask))
 297		return 0;
 298
 299	if (node != NUMA_NO_NODE) {
 300		/* Try the node mask */
 301		if (!assign_vector_locked(irqd, cpumask_of_node(node)))
 302			return 0;
 303	}
 304
 305	/* Try the full online mask */
 306	return assign_vector_locked(irqd, cpu_online_mask);
 307}
 308
 309static int
 310assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
 311{
 312	if (irqd_affinity_is_managed(irqd))
 313		return reserve_managed_vector(irqd);
 314	if (info->mask)
 315		return assign_irq_vector(irqd, info->mask);
 316	/*
 317	 * Make only a global reservation with no guarantee. A real vector
 318	 * is associated at activation time.
 319	 */
 320	return reserve_irq_vector(irqd);
 321}
 322
 323static int
 324assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
 325{
 326	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
 327	struct apic_chip_data *apicd = apic_chip_data(irqd);
 328	int vector, cpu;
 329
 330	cpumask_and(vector_searchmask, dest, affmsk);
 331
 
 
 332	/* set_affinity might call here for nothing */
 333	if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
 334		return 0;
 335	vector = irq_matrix_alloc_managed(vector_matrix, vector_searchmask,
 336					  &cpu);
 337	trace_vector_alloc_managed(irqd->irq, vector, vector);
 338	if (vector < 0)
 339		return vector;
 340	apic_update_vector(irqd, vector, cpu);
 341	apic_update_irq_cfg(irqd, vector, cpu);
 342	return 0;
 343}
 344
 345static void clear_irq_vector(struct irq_data *irqd)
 346{
 347	struct apic_chip_data *apicd = apic_chip_data(irqd);
 348	bool managed = irqd_affinity_is_managed(irqd);
 349	unsigned int vector = apicd->vector;
 350
 351	lockdep_assert_held(&vector_lock);
 352
 353	if (!vector)
 354		return;
 355
 356	trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
 357			   apicd->prev_cpu);
 358
 359	per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_SHUTDOWN;
 360	irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
 361	apicd->vector = 0;
 362
 363	/* Clean up move in progress */
 364	vector = apicd->prev_vector;
 365	if (!vector)
 366		return;
 367
 368	per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_SHUTDOWN;
 369	irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
 370	apicd->prev_vector = 0;
 371	apicd->move_in_progress = 0;
 372	hlist_del_init(&apicd->clist);
 373}
 374
 375static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
 376{
 377	struct apic_chip_data *apicd = apic_chip_data(irqd);
 378	unsigned long flags;
 379
 380	trace_vector_deactivate(irqd->irq, apicd->is_managed,
 381				apicd->can_reserve, false);
 382
 383	/* Regular fixed assigned interrupt */
 384	if (!apicd->is_managed && !apicd->can_reserve)
 385		return;
 386	/* If the interrupt has a global reservation, nothing to do */
 387	if (apicd->has_reserved)
 388		return;
 389
 390	raw_spin_lock_irqsave(&vector_lock, flags);
 391	clear_irq_vector(irqd);
 392	if (apicd->can_reserve)
 393		reserve_irq_vector_locked(irqd);
 394	else
 395		vector_assign_managed_shutdown(irqd);
 396	raw_spin_unlock_irqrestore(&vector_lock, flags);
 397}
 398
 399static int activate_reserved(struct irq_data *irqd)
 400{
 401	struct apic_chip_data *apicd = apic_chip_data(irqd);
 402	int ret;
 403
 404	ret = assign_irq_vector_any_locked(irqd);
 405	if (!ret) {
 406		apicd->has_reserved = false;
 407		/*
 408		 * Core might have disabled reservation mode after
 409		 * allocating the irq descriptor. Ideally this should
 410		 * happen before allocation time, but that would require
 411		 * completely convoluted ways of transporting that
 412		 * information.
 413		 */
 414		if (!irqd_can_reserve(irqd))
 415			apicd->can_reserve = false;
 416	}
 417
 418	/*
 419	 * Check to ensure that the effective affinity mask is a subset
 420	 * the user supplied affinity mask, and warn the user if it is not
 421	 */
 422	if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd),
 423			    irq_data_get_affinity_mask(irqd))) {
 424		pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
 425			irqd->irq);
 426	}
 427
 428	return ret;
 429}
 430
 431static int activate_managed(struct irq_data *irqd)
 432{
 433	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
 434	int ret;
 435
 436	cpumask_and(vector_searchmask, dest, cpu_online_mask);
 437	if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
 438		/* Something in the core code broke! Survive gracefully */
 439		pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
 440		return -EINVAL;
 441	}
 442
 443	ret = assign_managed_vector(irqd, vector_searchmask);
 444	/*
 445	 * This should not happen. The vector reservation got buggered.  Handle
 446	 * it gracefully.
 447	 */
 448	if (WARN_ON_ONCE(ret < 0)) {
 449		pr_err("Managed startup irq %u, no vector available\n",
 450		       irqd->irq);
 451	}
 452	return ret;
 453}
 454
 455static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
 456			       bool reserve)
 457{
 458	struct apic_chip_data *apicd = apic_chip_data(irqd);
 459	unsigned long flags;
 460	int ret = 0;
 461
 462	trace_vector_activate(irqd->irq, apicd->is_managed,
 463			      apicd->can_reserve, reserve);
 464
 465	raw_spin_lock_irqsave(&vector_lock, flags);
 466	if (!apicd->can_reserve && !apicd->is_managed)
 467		assign_irq_vector_any_locked(irqd);
 468	else if (reserve || irqd_is_managed_and_shutdown(irqd))
 
 
 469		vector_assign_managed_shutdown(irqd);
 470	else if (apicd->is_managed)
 471		ret = activate_managed(irqd);
 472	else if (apicd->has_reserved)
 473		ret = activate_reserved(irqd);
 474	raw_spin_unlock_irqrestore(&vector_lock, flags);
 475	return ret;
 476}
 477
 478static void vector_free_reserved_and_managed(struct irq_data *irqd)
 479{
 480	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
 481	struct apic_chip_data *apicd = apic_chip_data(irqd);
 482
 483	trace_vector_teardown(irqd->irq, apicd->is_managed,
 484			      apicd->has_reserved);
 485
 486	if (apicd->has_reserved)
 487		irq_matrix_remove_reserved(vector_matrix);
 488	if (apicd->is_managed)
 489		irq_matrix_remove_managed(vector_matrix, dest);
 490}
 491
 492static void x86_vector_free_irqs(struct irq_domain *domain,
 493				 unsigned int virq, unsigned int nr_irqs)
 494{
 495	struct apic_chip_data *apicd;
 496	struct irq_data *irqd;
 497	unsigned long flags;
 498	int i;
 499
 500	for (i = 0; i < nr_irqs; i++) {
 501		irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
 502		if (irqd && irqd->chip_data) {
 503			raw_spin_lock_irqsave(&vector_lock, flags);
 504			clear_irq_vector(irqd);
 505			vector_free_reserved_and_managed(irqd);
 506			apicd = irqd->chip_data;
 507			irq_domain_reset_irq_data(irqd);
 508			raw_spin_unlock_irqrestore(&vector_lock, flags);
 509			free_apic_chip_data(apicd);
 510		}
 511	}
 512}
 513
 514static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
 515				    struct apic_chip_data *apicd)
 516{
 517	unsigned long flags;
 518	bool realloc = false;
 519
 520	apicd->vector = ISA_IRQ_VECTOR(virq);
 521	apicd->cpu = 0;
 522
 523	raw_spin_lock_irqsave(&vector_lock, flags);
 524	/*
 525	 * If the interrupt is activated, then it must stay at this vector
 526	 * position. That's usually the timer interrupt (0).
 527	 */
 528	if (irqd_is_activated(irqd)) {
 529		trace_vector_setup(virq, true, 0);
 530		apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
 531	} else {
 532		/* Release the vector */
 533		apicd->can_reserve = true;
 534		irqd_set_can_reserve(irqd);
 535		clear_irq_vector(irqd);
 536		realloc = true;
 537	}
 538	raw_spin_unlock_irqrestore(&vector_lock, flags);
 539	return realloc;
 540}
 541
 542static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
 543				 unsigned int nr_irqs, void *arg)
 544{
 545	struct irq_alloc_info *info = arg;
 546	struct apic_chip_data *apicd;
 547	struct irq_data *irqd;
 548	int i, err, node;
 549
 550	if (apic_is_disabled)
 551		return -ENXIO;
 552
 553	/*
 554	 * Catch any attempt to touch the cascade interrupt on a PIC
 555	 * equipped system.
 556	 */
 557	if (WARN_ON_ONCE(info->flags & X86_IRQ_ALLOC_LEGACY &&
 558			 virq == PIC_CASCADE_IR))
 559		return -EINVAL;
 560
 561	for (i = 0; i < nr_irqs; i++) {
 562		irqd = irq_domain_get_irq_data(domain, virq + i);
 563		BUG_ON(!irqd);
 564		node = irq_data_get_node(irqd);
 565		WARN_ON_ONCE(irqd->chip_data);
 566		apicd = alloc_apic_chip_data(node);
 567		if (!apicd) {
 568			err = -ENOMEM;
 569			goto error;
 570		}
 571
 572		apicd->irq = virq + i;
 573		irqd->chip = &lapic_controller;
 574		irqd->chip_data = apicd;
 575		irqd->hwirq = virq + i;
 576		irqd_set_single_target(irqd);
 577		/*
 578		 * Prevent that any of these interrupts is invoked in
 579		 * non interrupt context via e.g. generic_handle_irq()
 580		 * as that can corrupt the affinity move state.
 581		 */
 582		irqd_set_handle_enforce_irqctx(irqd);
 583
 584		/* Don't invoke affinity setter on deactivated interrupts */
 585		irqd_set_affinity_on_activate(irqd);
 586
 587		/*
 588		 * Legacy vectors are already assigned when the IOAPIC
 589		 * takes them over. They stay on the same vector. This is
 590		 * required for check_timer() to work correctly as it might
 591		 * switch back to legacy mode. Only update the hardware
 592		 * config.
 593		 */
 594		if (info->flags & X86_IRQ_ALLOC_LEGACY) {
 595			if (!vector_configure_legacy(virq + i, irqd, apicd))
 596				continue;
 597		}
 598
 599		err = assign_irq_vector_policy(irqd, info);
 600		trace_vector_setup(virq + i, false, err);
 601		if (err) {
 602			irqd->chip_data = NULL;
 603			free_apic_chip_data(apicd);
 604			goto error;
 605		}
 606	}
 607
 608	return 0;
 609
 610error:
 611	x86_vector_free_irqs(domain, virq, i);
 612	return err;
 613}
 614
 615#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
 616static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
 617				  struct irq_data *irqd, int ind)
 618{
 619	struct apic_chip_data apicd;
 
 620	unsigned long flags;
 621	int irq;
 622
 623	if (!irqd) {
 624		irq_matrix_debug_show(m, vector_matrix, ind);
 625		return;
 626	}
 627
 628	irq = irqd->irq;
 629	if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
 630		seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
 631		seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
 632		return;
 633	}
 634
 635	if (!irqd->chip_data) {
 
 636		seq_printf(m, "%*sVector: Not assigned\n", ind, "");
 637		return;
 638	}
 639
 640	raw_spin_lock_irqsave(&vector_lock, flags);
 641	memcpy(&apicd, irqd->chip_data, sizeof(apicd));
 
 
 
 642	raw_spin_unlock_irqrestore(&vector_lock, flags);
 643
 644	seq_printf(m, "%*sVector: %5u\n", ind, "", apicd.vector);
 645	seq_printf(m, "%*sTarget: %5u\n", ind, "", apicd.cpu);
 646	if (apicd.prev_vector) {
 647		seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", apicd.prev_vector);
 648		seq_printf(m, "%*sPrevious target: %5u\n", ind, "", apicd.prev_cpu);
 649	}
 650	seq_printf(m, "%*smove_in_progress: %u\n", ind, "", apicd.move_in_progress ? 1 : 0);
 651	seq_printf(m, "%*sis_managed:       %u\n", ind, "", apicd.is_managed ? 1 : 0);
 652	seq_printf(m, "%*scan_reserve:      %u\n", ind, "", apicd.can_reserve ? 1 : 0);
 653	seq_printf(m, "%*shas_reserved:     %u\n", ind, "", apicd.has_reserved ? 1 : 0);
 654	seq_printf(m, "%*scleanup_pending:  %u\n", ind, "", !hlist_unhashed(&apicd.clist));
 655}
 656#endif
 657
 658int x86_fwspec_is_ioapic(struct irq_fwspec *fwspec)
 659{
 660	if (fwspec->param_count != 1)
 661		return 0;
 662
 663	if (is_fwnode_irqchip(fwspec->fwnode)) {
 664		const char *fwname = fwnode_get_name(fwspec->fwnode);
 665		return fwname && !strncmp(fwname, "IO-APIC-", 8) &&
 666			simple_strtol(fwname+8, NULL, 10) == fwspec->param[0];
 667	}
 668	return to_of_node(fwspec->fwnode) &&
 669		of_device_is_compatible(to_of_node(fwspec->fwnode),
 670					"intel,ce4100-ioapic");
 671}
 672
 673int x86_fwspec_is_hpet(struct irq_fwspec *fwspec)
 674{
 675	if (fwspec->param_count != 1)
 676		return 0;
 677
 678	if (is_fwnode_irqchip(fwspec->fwnode)) {
 679		const char *fwname = fwnode_get_name(fwspec->fwnode);
 680		return fwname && !strncmp(fwname, "HPET-MSI-", 9) &&
 681			simple_strtol(fwname+9, NULL, 10) == fwspec->param[0];
 682	}
 683	return 0;
 684}
 685
 686static int x86_vector_select(struct irq_domain *d, struct irq_fwspec *fwspec,
 687			     enum irq_domain_bus_token bus_token)
 688{
 689	/*
 690	 * HPET and I/OAPIC cannot be parented in the vector domain
 691	 * if IRQ remapping is enabled. APIC IDs above 15 bits are
 692	 * only permitted if IRQ remapping is enabled, so check that.
 693	 */
 694	if (apic_id_valid(32768))
 695		return 0;
 696
 697	return x86_fwspec_is_ioapic(fwspec) || x86_fwspec_is_hpet(fwspec);
 698}
 
 699
 700static const struct irq_domain_ops x86_vector_domain_ops = {
 701	.select		= x86_vector_select,
 702	.alloc		= x86_vector_alloc_irqs,
 703	.free		= x86_vector_free_irqs,
 704	.activate	= x86_vector_activate,
 705	.deactivate	= x86_vector_deactivate,
 706#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
 707	.debug_show	= x86_vector_debug_show,
 708#endif
 709};
 710
 711int __init arch_probe_nr_irqs(void)
 712{
 713	int nr;
 714
 715	if (irq_get_nr_irqs() > NR_VECTORS * nr_cpu_ids)
 716		irq_set_nr_irqs(NR_VECTORS * nr_cpu_ids);
 717
 718	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
 719#if defined(CONFIG_PCI_MSI)
 720	/*
 721	 * for MSI and HT dyn irq
 722	 */
 723	if (gsi_top <= NR_IRQS_LEGACY)
 724		nr +=  8 * nr_cpu_ids;
 725	else
 726		nr += gsi_top * 16;
 727#endif
 728	if (nr < irq_get_nr_irqs())
 729		irq_set_nr_irqs(nr);
 730
 731	/*
 732	 * We don't know if PIC is present at this point so we need to do
 733	 * probe() to get the right number of legacy IRQs.
 734	 */
 735	return legacy_pic->probe();
 736}
 737
 738void lapic_assign_legacy_vector(unsigned int irq, bool replace)
 739{
 740	/*
 741	 * Use assign system here so it won't get accounted as allocated
 742	 * and movable in the cpu hotplug check and it prevents managed
 743	 * irq reservation from touching it.
 744	 */
 745	irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
 746}
 747
 748void __init lapic_update_legacy_vectors(void)
 749{
 750	unsigned int i;
 751
 752	if (IS_ENABLED(CONFIG_X86_IO_APIC) && nr_ioapics > 0)
 753		return;
 754
 755	/*
 756	 * If the IO/APIC is disabled via config, kernel command line or
 757	 * lack of enumeration then all legacy interrupts are routed
 758	 * through the PIC. Make sure that they are marked as legacy
 759	 * vectors. PIC_CASCADE_IRQ has already been marked in
 760	 * lapic_assign_system_vectors().
 761	 */
 762	for (i = 0; i < nr_legacy_irqs(); i++) {
 763		if (i != PIC_CASCADE_IR)
 764			lapic_assign_legacy_vector(i, true);
 765	}
 766}
 767
 768void __init lapic_assign_system_vectors(void)
 769{
 770	unsigned int i, vector;
 771
 772	for_each_set_bit(vector, system_vectors, NR_VECTORS)
 773		irq_matrix_assign_system(vector_matrix, vector, false);
 774
 775	if (nr_legacy_irqs() > 1)
 776		lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
 777
 778	/* System vectors are reserved, online it */
 779	irq_matrix_online(vector_matrix);
 780
 781	/* Mark the preallocated legacy interrupts */
 782	for (i = 0; i < nr_legacy_irqs(); i++) {
 783		/*
 784		 * Don't touch the cascade interrupt. It's unusable
 785		 * on PIC equipped machines. See the large comment
 786		 * in the IO/APIC code.
 787		 */
 788		if (i != PIC_CASCADE_IR)
 789			irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
 790	}
 791}
 792
 793int __init arch_early_irq_init(void)
 794{
 795	struct fwnode_handle *fn;
 796
 797	fn = irq_domain_alloc_named_fwnode("VECTOR");
 798	BUG_ON(!fn);
 799	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
 800						   NULL);
 801	BUG_ON(x86_vector_domain == NULL);
 
 802	irq_set_default_host(x86_vector_domain);
 803
 
 
 804	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
 805
 806	/*
 807	 * Allocate the vector matrix allocator data structure and limit the
 808	 * search area.
 809	 */
 810	vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
 811					 FIRST_SYSTEM_VECTOR);
 812	BUG_ON(!vector_matrix);
 813
 814	return arch_early_ioapic_init();
 815}
 816
 817#ifdef CONFIG_SMP
 818
 819static struct irq_desc *__setup_vector_irq(int vector)
 820{
 821	int isairq = vector - ISA_IRQ_VECTOR(0);
 822
 823	/* Check whether the irq is in the legacy space */
 824	if (isairq < 0 || isairq >= nr_legacy_irqs())
 825		return VECTOR_UNUSED;
 826	/* Check whether the irq is handled by the IOAPIC */
 827	if (test_bit(isairq, &io_apic_irqs))
 828		return VECTOR_UNUSED;
 829	return irq_to_desc(isairq);
 830}
 831
 832/* Online the local APIC infrastructure and initialize the vectors */
 833void lapic_online(void)
 834{
 835	unsigned int vector;
 836
 837	lockdep_assert_held(&vector_lock);
 838
 839	/* Online the vector matrix array for this CPU */
 840	irq_matrix_online(vector_matrix);
 841
 842	/*
 843	 * The interrupt affinity logic never targets interrupts to offline
 844	 * CPUs. The exception are the legacy PIC interrupts. In general
 845	 * they are only targeted to CPU0, but depending on the platform
 846	 * they can be distributed to any online CPU in hardware. The
 847	 * kernel has no influence on that. So all active legacy vectors
 848	 * must be installed on all CPUs. All non legacy interrupts can be
 849	 * cleared.
 850	 */
 851	for (vector = 0; vector < NR_VECTORS; vector++)
 852		this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
 853}
 854
 855static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr);
 856
 857void lapic_offline(void)
 858{
 859	struct vector_cleanup *cl = this_cpu_ptr(&vector_cleanup);
 860
 861	lock_vector_lock();
 862
 863	/* In case the vector cleanup timer has not expired */
 864	__vector_cleanup(cl, false);
 865
 866	irq_matrix_offline(vector_matrix);
 867	WARN_ON_ONCE(try_to_del_timer_sync(&cl->timer) < 0);
 868	WARN_ON_ONCE(!hlist_empty(&cl->head));
 869
 870	unlock_vector_lock();
 871}
 872
 873static int apic_set_affinity(struct irq_data *irqd,
 874			     const struct cpumask *dest, bool force)
 875{
 
 876	int err;
 877
 878	if (WARN_ON_ONCE(!irqd_is_activated(irqd)))
 879		return -EIO;
 
 
 
 
 
 
 
 
 
 880
 881	raw_spin_lock(&vector_lock);
 882	cpumask_and(vector_searchmask, dest, cpu_online_mask);
 883	if (irqd_affinity_is_managed(irqd))
 884		err = assign_managed_vector(irqd, vector_searchmask);
 885	else
 886		err = assign_vector_locked(irqd, vector_searchmask);
 887	raw_spin_unlock(&vector_lock);
 888	return err ? err : IRQ_SET_MASK_OK;
 889}
 890
 891#else
 892# define apic_set_affinity	NULL
 893#endif
 894
 895static int apic_retrigger_irq(struct irq_data *irqd)
 896{
 897	struct apic_chip_data *apicd = apic_chip_data(irqd);
 898	unsigned long flags;
 899
 900	raw_spin_lock_irqsave(&vector_lock, flags);
 901	__apic_send_IPI(apicd->cpu, apicd->vector);
 902	raw_spin_unlock_irqrestore(&vector_lock, flags);
 903
 904	return 1;
 905}
 906
 907void apic_ack_irq(struct irq_data *irqd)
 908{
 909	irq_move_irq(irqd);
 910	apic_eoi();
 911}
 912
 913void apic_ack_edge(struct irq_data *irqd)
 914{
 915	irq_complete_move(irqd_cfg(irqd));
 916	apic_ack_irq(irqd);
 917}
 918
 919static void x86_vector_msi_compose_msg(struct irq_data *data,
 920				       struct msi_msg *msg)
 921{
 922       __irq_msi_compose_msg(irqd_cfg(data), msg, false);
 923}
 924
 925static struct irq_chip lapic_controller = {
 926	.name			= "APIC",
 927	.irq_ack		= apic_ack_edge,
 928	.irq_set_affinity	= apic_set_affinity,
 929	.irq_compose_msi_msg	= x86_vector_msi_compose_msg,
 930	.irq_retrigger		= apic_retrigger_irq,
 931};
 932
 933#ifdef CONFIG_SMP
 934
 935static void free_moved_vector(struct apic_chip_data *apicd)
 936{
 937	unsigned int vector = apicd->prev_vector;
 938	unsigned int cpu = apicd->prev_cpu;
 939	bool managed = apicd->is_managed;
 940
 941	/*
 942	 * Managed interrupts are usually not migrated away
 943	 * from an online CPU, but CPU isolation 'managed_irq'
 944	 * can make that happen.
 945	 * 1) Activation does not take the isolation into account
 946	 *    to keep the code simple
 947	 * 2) Migration away from an isolated CPU can happen when
 948	 *    a non-isolated CPU which is in the calculated
 949	 *    affinity mask comes online.
 950	 */
 
 
 951	trace_vector_free_moved(apicd->irq, cpu, vector, managed);
 952	irq_matrix_free(vector_matrix, cpu, vector, managed);
 953	per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
 954	hlist_del_init(&apicd->clist);
 955	apicd->prev_vector = 0;
 956	apicd->move_in_progress = 0;
 957}
 958
 959static void __vector_cleanup(struct vector_cleanup *cl, bool check_irr)
 960{
 
 961	struct apic_chip_data *apicd;
 962	struct hlist_node *tmp;
 963	bool rearm = false;
 964
 965	lockdep_assert_held(&vector_lock);
 
 
 966
 967	hlist_for_each_entry_safe(apicd, tmp, &cl->head, clist) {
 968		unsigned int vector = apicd->prev_vector;
 969
 970		/*
 971		 * Paranoia: Check if the vector that needs to be cleaned
 972		 * up is registered at the APICs IRR. That's clearly a
 973		 * hardware issue if the vector arrived on the old target
 974		 * _after_ interrupts were disabled above. Keep @apicd
 975		 * on the list and schedule the timer again to give the CPU
 976		 * a chance to handle the pending interrupt.
 977		 *
 978		 * Do not check IRR when called from lapic_offline(), because
 979		 * fixup_irqs() was just called to scan IRR for set bits and
 980		 * forward them to new destination CPUs via IPIs.
 981		 */
 982		if (check_irr && is_vector_pending(vector)) {
 983			pr_warn_once("Moved interrupt pending in old target APIC %u\n", apicd->irq);
 984			rearm = true;
 985			continue;
 986		}
 987		free_moved_vector(apicd);
 988	}
 989
 990	/*
 991	 * Must happen under vector_lock to make the timer_pending() check
 992	 * in __vector_schedule_cleanup() race free against the rearm here.
 993	 */
 994	if (rearm)
 995		mod_timer(&cl->timer, jiffies + 1);
 996}
 997
 998static void vector_cleanup_callback(struct timer_list *tmr)
 999{
1000	struct vector_cleanup *cl = container_of(tmr, typeof(*cl), timer);
1001
1002	/* Prevent vectors vanishing under us */
1003	raw_spin_lock_irq(&vector_lock);
1004	__vector_cleanup(cl, true);
1005	raw_spin_unlock_irq(&vector_lock);
1006}
1007
1008static void __vector_schedule_cleanup(struct apic_chip_data *apicd)
1009{
1010	unsigned int cpu = apicd->prev_cpu;
1011
1012	raw_spin_lock(&vector_lock);
1013	apicd->move_in_progress = 0;
 
1014	if (cpu_online(cpu)) {
1015		struct vector_cleanup *cl = per_cpu_ptr(&vector_cleanup, cpu);
1016
1017		hlist_add_head(&apicd->clist, &cl->head);
1018
1019		/*
1020		 * The lockless timer_pending() check is safe here. If it
1021		 * returns true, then the callback will observe this new
1022		 * apic data in the hlist as everything is serialized by
1023		 * vector lock.
1024		 *
1025		 * If it returns false then the timer is either not armed
1026		 * or the other CPU executes the callback, which again
1027		 * would be blocked on vector lock. Rearming it in the
1028		 * latter case makes it fire for nothing.
1029		 *
1030		 * This is also safe against the callback rearming the timer
1031		 * because that's serialized via vector lock too.
1032		 */
1033		if (!timer_pending(&cl->timer)) {
1034			cl->timer.expires = jiffies + 1;
1035			add_timer_on(&cl->timer, cpu);
1036		}
1037	} else {
1038		pr_warn("IRQ %u schedule cleanup for offline CPU %u\n", apicd->irq, cpu);
1039		free_moved_vector(apicd);
1040	}
1041	raw_spin_unlock(&vector_lock);
1042}
1043
1044void vector_schedule_cleanup(struct irq_cfg *cfg)
1045{
1046	struct apic_chip_data *apicd;
1047
1048	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
1049	if (apicd->move_in_progress)
1050		__vector_schedule_cleanup(apicd);
1051}
1052
1053void irq_complete_move(struct irq_cfg *cfg)
1054{
1055	struct apic_chip_data *apicd;
1056
1057	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
1058	if (likely(!apicd->move_in_progress))
1059		return;
1060
1061	/*
1062	 * If the interrupt arrived on the new target CPU, cleanup the
1063	 * vector on the old target CPU. A vector check is not required
1064	 * because an interrupt can never move from one vector to another
1065	 * on the same CPU.
1066	 */
1067	if (apicd->cpu == smp_processor_id())
1068		__vector_schedule_cleanup(apicd);
1069}
1070
1071/*
1072 * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
1073 */
1074void irq_force_complete_move(struct irq_desc *desc)
1075{
1076	unsigned int cpu = smp_processor_id();
1077	struct apic_chip_data *apicd;
1078	struct irq_data *irqd;
1079	unsigned int vector;
1080
1081	/*
1082	 * The function is called for all descriptors regardless of which
1083	 * irqdomain they belong to. For example if an IRQ is provided by
1084	 * an irq_chip as part of a GPIO driver, the chip data for that
1085	 * descriptor is specific to the irq_chip in question.
1086	 *
1087	 * Check first that the chip_data is what we expect
1088	 * (apic_chip_data) before touching it any further.
1089	 */
1090	irqd = irq_domain_get_irq_data(x86_vector_domain,
1091				       irq_desc_get_irq(desc));
1092	if (!irqd)
1093		return;
1094
1095	raw_spin_lock(&vector_lock);
1096	apicd = apic_chip_data(irqd);
1097	if (!apicd)
1098		goto unlock;
1099
1100	/*
1101	 * If prev_vector is empty or the descriptor is neither currently
1102	 * nor previously on the outgoing CPU no action required.
1103	 */
1104	vector = apicd->prev_vector;
1105	if (!vector || (apicd->cpu != cpu && apicd->prev_cpu != cpu))
1106		goto unlock;
1107
1108	/*
1109	 * This is tricky. If the cleanup of the old vector has not been
1110	 * done yet, then the following setaffinity call will fail with
1111	 * -EBUSY. This can leave the interrupt in a stale state.
1112	 *
1113	 * All CPUs are stuck in stop machine with interrupts disabled so
1114	 * calling __irq_complete_move() would be completely pointless.
1115	 *
1116	 * 1) The interrupt is in move_in_progress state. That means that we
1117	 *    have not seen an interrupt since the io_apic was reprogrammed to
1118	 *    the new vector.
1119	 *
1120	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
1121	 *    have not been processed yet.
1122	 */
1123	if (apicd->move_in_progress) {
1124		/*
1125		 * In theory there is a race:
1126		 *
1127		 * set_ioapic(new_vector) <-- Interrupt is raised before update
1128		 *			      is effective, i.e. it's raised on
1129		 *			      the old vector.
1130		 *
1131		 * So if the target cpu cannot handle that interrupt before
1132		 * the old vector is cleaned up, we get a spurious interrupt
1133		 * and in the worst case the ioapic irq line becomes stale.
1134		 *
1135		 * But in case of cpu hotplug this should be a non issue
1136		 * because if the affinity update happens right before all
1137		 * cpus rendezvous in stop machine, there is no way that the
1138		 * interrupt can be blocked on the target cpu because all cpus
1139		 * loops first with interrupts enabled in stop machine, so the
1140		 * old vector is not yet cleaned up when the interrupt fires.
1141		 *
1142		 * So the only way to run into this issue is if the delivery
1143		 * of the interrupt on the apic/system bus would be delayed
1144		 * beyond the point where the target cpu disables interrupts
1145		 * in stop machine. I doubt that it can happen, but at least
1146		 * there is a theoretical chance. Virtualization might be
1147		 * able to expose this, but AFAICT the IOAPIC emulation is not
1148		 * as stupid as the real hardware.
1149		 *
1150		 * Anyway, there is nothing we can do about that at this point
1151		 * w/o refactoring the whole fixup_irq() business completely.
1152		 * We print at least the irq number and the old vector number,
1153		 * so we have the necessary information when a problem in that
1154		 * area arises.
1155		 */
1156		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1157			irqd->irq, vector);
1158	}
1159	free_moved_vector(apicd);
1160unlock:
1161	raw_spin_unlock(&vector_lock);
1162}
1163
1164#ifdef CONFIG_HOTPLUG_CPU
1165/*
1166 * Note, this is not accurate accounting, but at least good enough to
1167 * prevent that the actual interrupt move will run out of vectors.
1168 */
1169int lapic_can_unplug_cpu(void)
1170{
1171	unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1172	int ret = 0;
1173
1174	raw_spin_lock(&vector_lock);
1175	tomove = irq_matrix_allocated(vector_matrix);
1176	avl = irq_matrix_available(vector_matrix, true);
1177	if (avl < tomove) {
1178		pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1179			cpu, tomove, avl);
1180		ret = -ENOSPC;
1181		goto out;
1182	}
1183	rsvd = irq_matrix_reserved(vector_matrix);
1184	if (avl < rsvd) {
1185		pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1186			rsvd, avl);
1187	}
1188out:
1189	raw_spin_unlock(&vector_lock);
1190	return ret;
1191}
1192#endif /* HOTPLUG_CPU */
1193#endif /* SMP */
1194
1195static void __init print_APIC_field(int base)
1196{
1197	int i;
1198
1199	printk(KERN_DEBUG);
1200
1201	for (i = 0; i < 8; i++)
1202		pr_cont("%08x", apic_read(base + i*0x10));
1203
1204	pr_cont("\n");
1205}
1206
1207static void __init print_local_APIC(void *dummy)
1208{
1209	unsigned int i, v, ver, maxlvt;
1210	u64 icr;
1211
1212	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1213		 smp_processor_id(), read_apic_id());
1214	v = apic_read(APIC_ID);
1215	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1216	v = apic_read(APIC_LVR);
1217	pr_info("... APIC VERSION: %08x\n", v);
1218	ver = GET_APIC_VERSION(v);
1219	maxlvt = lapic_get_maxlvt();
1220
1221	v = apic_read(APIC_TASKPRI);
1222	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1223
1224	/* !82489DX */
1225	if (APIC_INTEGRATED(ver)) {
1226		if (!APIC_XAPIC(ver)) {
1227			v = apic_read(APIC_ARBPRI);
1228			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1229				 v, v & APIC_ARBPRI_MASK);
1230		}
1231		v = apic_read(APIC_PROCPRI);
1232		pr_debug("... APIC PROCPRI: %08x\n", v);
1233	}
1234
1235	/*
1236	 * Remote read supported only in the 82489DX and local APIC for
1237	 * Pentium processors.
1238	 */
1239	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1240		v = apic_read(APIC_RRR);
1241		pr_debug("... APIC RRR: %08x\n", v);
1242	}
1243
1244	v = apic_read(APIC_LDR);
1245	pr_debug("... APIC LDR: %08x\n", v);
1246	if (!x2apic_enabled()) {
1247		v = apic_read(APIC_DFR);
1248		pr_debug("... APIC DFR: %08x\n", v);
1249	}
1250	v = apic_read(APIC_SPIV);
1251	pr_debug("... APIC SPIV: %08x\n", v);
1252
1253	pr_debug("... APIC ISR field:\n");
1254	print_APIC_field(APIC_ISR);
1255	pr_debug("... APIC TMR field:\n");
1256	print_APIC_field(APIC_TMR);
1257	pr_debug("... APIC IRR field:\n");
1258	print_APIC_field(APIC_IRR);
1259
1260	/* !82489DX */
1261	if (APIC_INTEGRATED(ver)) {
1262		/* Due to the Pentium erratum 3AP. */
1263		if (maxlvt > 3)
1264			apic_write(APIC_ESR, 0);
1265
1266		v = apic_read(APIC_ESR);
1267		pr_debug("... APIC ESR: %08x\n", v);
1268	}
1269
1270	icr = apic_icr_read();
1271	pr_debug("... APIC ICR: %08x\n", (u32)icr);
1272	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1273
1274	v = apic_read(APIC_LVTT);
1275	pr_debug("... APIC LVTT: %08x\n", v);
1276
1277	if (maxlvt > 3) {
1278		/* PC is LVT#4. */
1279		v = apic_read(APIC_LVTPC);
1280		pr_debug("... APIC LVTPC: %08x\n", v);
1281	}
1282	v = apic_read(APIC_LVT0);
1283	pr_debug("... APIC LVT0: %08x\n", v);
1284	v = apic_read(APIC_LVT1);
1285	pr_debug("... APIC LVT1: %08x\n", v);
1286
1287	if (maxlvt > 2) {
1288		/* ERR is LVT#3. */
1289		v = apic_read(APIC_LVTERR);
1290		pr_debug("... APIC LVTERR: %08x\n", v);
1291	}
1292
1293	v = apic_read(APIC_TMICT);
1294	pr_debug("... APIC TMICT: %08x\n", v);
1295	v = apic_read(APIC_TMCCT);
1296	pr_debug("... APIC TMCCT: %08x\n", v);
1297	v = apic_read(APIC_TDCR);
1298	pr_debug("... APIC TDCR: %08x\n", v);
1299
1300	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1301		v = apic_read(APIC_EFEAT);
1302		maxlvt = (v >> 16) & 0xff;
1303		pr_debug("... APIC EFEAT: %08x\n", v);
1304		v = apic_read(APIC_ECTRL);
1305		pr_debug("... APIC ECTRL: %08x\n", v);
1306		for (i = 0; i < maxlvt; i++) {
1307			v = apic_read(APIC_EILVTn(i));
1308			pr_debug("... APIC EILVT%d: %08x\n", i, v);
1309		}
1310	}
1311	pr_cont("\n");
1312}
1313
1314static void __init print_local_APICs(int maxcpu)
1315{
1316	int cpu;
1317
1318	if (!maxcpu)
1319		return;
1320
1321	preempt_disable();
1322	for_each_online_cpu(cpu) {
1323		if (cpu >= maxcpu)
1324			break;
1325		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1326	}
1327	preempt_enable();
1328}
1329
1330static void __init print_PIC(void)
1331{
1332	unsigned int v;
1333	unsigned long flags;
1334
1335	if (!nr_legacy_irqs())
1336		return;
1337
1338	pr_debug("\nprinting PIC contents\n");
1339
1340	raw_spin_lock_irqsave(&i8259A_lock, flags);
1341
1342	v = inb(0xa1) << 8 | inb(0x21);
1343	pr_debug("... PIC  IMR: %04x\n", v);
1344
1345	v = inb(0xa0) << 8 | inb(0x20);
1346	pr_debug("... PIC  IRR: %04x\n", v);
1347
1348	outb(0x0b, 0xa0);
1349	outb(0x0b, 0x20);
1350	v = inb(0xa0) << 8 | inb(0x20);
1351	outb(0x0a, 0xa0);
1352	outb(0x0a, 0x20);
1353
1354	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1355
1356	pr_debug("... PIC  ISR: %04x\n", v);
1357
1358	v = inb(PIC_ELCR2) << 8 | inb(PIC_ELCR1);
1359	pr_debug("... PIC ELCR: %04x\n", v);
1360}
1361
1362static int show_lapic __initdata = 1;
1363static __init int setup_show_lapic(char *arg)
1364{
1365	int num = -1;
1366
1367	if (strcmp(arg, "all") == 0) {
1368		show_lapic = CONFIG_NR_CPUS;
1369	} else {
1370		get_option(&arg, &num);
1371		if (num >= 0)
1372			show_lapic = num;
1373	}
1374
1375	return 1;
1376}
1377__setup("show_lapic=", setup_show_lapic);
1378
1379static int __init print_ICs(void)
1380{
1381	if (apic_verbosity == APIC_QUIET)
1382		return 0;
1383
1384	print_PIC();
1385
1386	/* don't print out if apic is not there */
1387	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1388		return 0;
1389
1390	print_local_APICs(show_lapic);
1391	print_IO_APICs();
1392
1393	return 0;
1394}
1395
1396late_initcall(print_ICs);
v4.17
 
   1/*
   2 * Local APIC related interfaces to support IOAPIC, MSI, etc.
   3 *
   4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
   5 *	Moved from arch/x86/kernel/apic/io_apic.c.
   6 * Jiang Liu <jiang.liu@linux.intel.com>
   7 *	Enable support of hierarchical irqdomains
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/interrupt.h>
 
  14#include <linux/seq_file.h>
  15#include <linux/init.h>
  16#include <linux/compiler.h>
  17#include <linux/slab.h>
  18#include <asm/irqdomain.h>
  19#include <asm/hw_irq.h>
 
  20#include <asm/apic.h>
  21#include <asm/i8259.h>
  22#include <asm/desc.h>
  23#include <asm/irq_remapping.h>
  24
  25#include <asm/trace/irq_vectors.h>
  26
  27struct apic_chip_data {
  28	struct irq_cfg		hw_irq_cfg;
  29	unsigned int		vector;
  30	unsigned int		prev_vector;
  31	unsigned int		cpu;
  32	unsigned int		prev_cpu;
  33	unsigned int		irq;
  34	struct hlist_node	clist;
  35	unsigned int		move_in_progress	: 1,
  36				is_managed		: 1,
  37				can_reserve		: 1,
  38				has_reserved		: 1;
  39};
  40
  41struct irq_domain *x86_vector_domain;
  42EXPORT_SYMBOL_GPL(x86_vector_domain);
  43static DEFINE_RAW_SPINLOCK(vector_lock);
  44static cpumask_var_t vector_searchmask;
  45static struct irq_chip lapic_controller;
  46static struct irq_matrix *vector_matrix;
  47#ifdef CONFIG_SMP
  48static DEFINE_PER_CPU(struct hlist_head, cleanup_list);
 
 
 
 
 
 
 
 
 
 
 
  49#endif
  50
  51void lock_vector_lock(void)
  52{
  53	/* Used to the online set of cpus does not change
  54	 * during assign_irq_vector.
  55	 */
  56	raw_spin_lock(&vector_lock);
  57}
  58
  59void unlock_vector_lock(void)
  60{
  61	raw_spin_unlock(&vector_lock);
  62}
  63
  64void init_irq_alloc_info(struct irq_alloc_info *info,
  65			 const struct cpumask *mask)
  66{
  67	memset(info, 0, sizeof(*info));
  68	info->mask = mask;
  69}
  70
  71void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
  72{
  73	if (src)
  74		*dst = *src;
  75	else
  76		memset(dst, 0, sizeof(*dst));
  77}
  78
  79static struct apic_chip_data *apic_chip_data(struct irq_data *irqd)
  80{
  81	if (!irqd)
  82		return NULL;
  83
  84	while (irqd->parent_data)
  85		irqd = irqd->parent_data;
  86
  87	return irqd->chip_data;
  88}
  89
  90struct irq_cfg *irqd_cfg(struct irq_data *irqd)
  91{
  92	struct apic_chip_data *apicd = apic_chip_data(irqd);
  93
  94	return apicd ? &apicd->hw_irq_cfg : NULL;
  95}
  96EXPORT_SYMBOL_GPL(irqd_cfg);
  97
  98struct irq_cfg *irq_cfg(unsigned int irq)
  99{
 100	return irqd_cfg(irq_get_irq_data(irq));
 101}
 102
 103static struct apic_chip_data *alloc_apic_chip_data(int node)
 104{
 105	struct apic_chip_data *apicd;
 106
 107	apicd = kzalloc_node(sizeof(*apicd), GFP_KERNEL, node);
 108	if (apicd)
 109		INIT_HLIST_NODE(&apicd->clist);
 110	return apicd;
 111}
 112
 113static void free_apic_chip_data(struct apic_chip_data *apicd)
 114{
 115	kfree(apicd);
 116}
 117
 118static void apic_update_irq_cfg(struct irq_data *irqd, unsigned int vector,
 119				unsigned int cpu)
 120{
 121	struct apic_chip_data *apicd = apic_chip_data(irqd);
 122
 123	lockdep_assert_held(&vector_lock);
 124
 125	apicd->hw_irq_cfg.vector = vector;
 126	apicd->hw_irq_cfg.dest_apicid = apic->calc_dest_apicid(cpu);
 127	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
 128	trace_vector_config(irqd->irq, vector, cpu,
 129			    apicd->hw_irq_cfg.dest_apicid);
 130}
 131
 132static void apic_update_vector(struct irq_data *irqd, unsigned int newvec,
 133			       unsigned int newcpu)
 134{
 135	struct apic_chip_data *apicd = apic_chip_data(irqd);
 136	struct irq_desc *desc = irq_data_to_desc(irqd);
 137	bool managed = irqd_affinity_is_managed(irqd);
 138
 139	lockdep_assert_held(&vector_lock);
 140
 141	trace_vector_update(irqd->irq, newvec, newcpu, apicd->vector,
 142			    apicd->cpu);
 143
 144	/*
 145	 * If there is no vector associated or if the associated vector is
 146	 * the shutdown vector, which is associated to make PCI/MSI
 147	 * shutdown mode work, then there is nothing to release. Clear out
 148	 * prev_vector for this and the offlined target case.
 149	 */
 150	apicd->prev_vector = 0;
 151	if (!apicd->vector || apicd->vector == MANAGED_IRQ_SHUTDOWN_VECTOR)
 152		goto setnew;
 153	/*
 154	 * If the target CPU of the previous vector is online, then mark
 155	 * the vector as move in progress and store it for cleanup when the
 156	 * first interrupt on the new vector arrives. If the target CPU is
 157	 * offline then the regular release mechanism via the cleanup
 158	 * vector is not possible and the vector can be immediately freed
 159	 * in the underlying matrix allocator.
 160	 */
 161	if (cpu_online(apicd->cpu)) {
 162		apicd->move_in_progress = true;
 163		apicd->prev_vector = apicd->vector;
 164		apicd->prev_cpu = apicd->cpu;
 
 165	} else {
 166		irq_matrix_free(vector_matrix, apicd->cpu, apicd->vector,
 167				managed);
 168	}
 169
 170setnew:
 171	apicd->vector = newvec;
 172	apicd->cpu = newcpu;
 173	BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq, newcpu)[newvec]));
 174	per_cpu(vector_irq, newcpu)[newvec] = desc;
 175}
 176
 177static void vector_assign_managed_shutdown(struct irq_data *irqd)
 178{
 179	unsigned int cpu = cpumask_first(cpu_online_mask);
 180
 181	apic_update_irq_cfg(irqd, MANAGED_IRQ_SHUTDOWN_VECTOR, cpu);
 182}
 183
 184static int reserve_managed_vector(struct irq_data *irqd)
 185{
 186	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
 187	struct apic_chip_data *apicd = apic_chip_data(irqd);
 188	unsigned long flags;
 189	int ret;
 190
 191	raw_spin_lock_irqsave(&vector_lock, flags);
 192	apicd->is_managed = true;
 193	ret = irq_matrix_reserve_managed(vector_matrix, affmsk);
 194	raw_spin_unlock_irqrestore(&vector_lock, flags);
 195	trace_vector_reserve_managed(irqd->irq, ret);
 196	return ret;
 197}
 198
 199static void reserve_irq_vector_locked(struct irq_data *irqd)
 200{
 201	struct apic_chip_data *apicd = apic_chip_data(irqd);
 202
 203	irq_matrix_reserve(vector_matrix);
 204	apicd->can_reserve = true;
 205	apicd->has_reserved = true;
 206	irqd_set_can_reserve(irqd);
 207	trace_vector_reserve(irqd->irq, 0);
 208	vector_assign_managed_shutdown(irqd);
 209}
 210
 211static int reserve_irq_vector(struct irq_data *irqd)
 212{
 213	unsigned long flags;
 214
 215	raw_spin_lock_irqsave(&vector_lock, flags);
 216	reserve_irq_vector_locked(irqd);
 217	raw_spin_unlock_irqrestore(&vector_lock, flags);
 218	return 0;
 219}
 220
 221static int allocate_vector(struct irq_data *irqd, const struct cpumask *dest)
 
 222{
 223	struct apic_chip_data *apicd = apic_chip_data(irqd);
 224	bool resvd = apicd->has_reserved;
 225	unsigned int cpu = apicd->cpu;
 226	int vector = apicd->vector;
 227
 228	lockdep_assert_held(&vector_lock);
 229
 230	/*
 231	 * If the current target CPU is online and in the new requested
 232	 * affinity mask, there is no point in moving the interrupt from
 233	 * one CPU to another.
 234	 */
 235	if (vector && cpu_online(cpu) && cpumask_test_cpu(cpu, dest))
 236		return 0;
 237
 
 
 
 
 
 
 
 
 
 238	vector = irq_matrix_alloc(vector_matrix, dest, resvd, &cpu);
 239	if (vector > 0)
 240		apic_update_vector(irqd, vector, cpu);
 241	trace_vector_alloc(irqd->irq, vector, resvd, vector);
 242	return vector;
 243}
 244
 245static int assign_vector_locked(struct irq_data *irqd,
 246				const struct cpumask *dest)
 247{
 248	struct apic_chip_data *apicd = apic_chip_data(irqd);
 249	int vector = allocate_vector(irqd, dest);
 250
 251	if (vector < 0)
 252		return vector;
 
 
 253
 254	apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
 255	return 0;
 256}
 257
 258static int assign_irq_vector(struct irq_data *irqd, const struct cpumask *dest)
 259{
 260	unsigned long flags;
 261	int ret;
 262
 263	raw_spin_lock_irqsave(&vector_lock, flags);
 264	cpumask_and(vector_searchmask, dest, cpu_online_mask);
 265	ret = assign_vector_locked(irqd, vector_searchmask);
 266	raw_spin_unlock_irqrestore(&vector_lock, flags);
 267	return ret;
 268}
 269
 270static int assign_irq_vector_any_locked(struct irq_data *irqd)
 271{
 272	/* Get the affinity mask - either irq_default_affinity or (user) set */
 273	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
 274	int node = irq_data_get_node(irqd);
 275
 276	if (node == NUMA_NO_NODE)
 277		goto all;
 278	/* Try the intersection of @affmsk and node mask */
 279	cpumask_and(vector_searchmask, cpumask_of_node(node), affmsk);
 280	if (!assign_vector_locked(irqd, vector_searchmask))
 281		return 0;
 282	/* Try the node mask */
 283	if (!assign_vector_locked(irqd, cpumask_of_node(node)))
 284		return 0;
 285all:
 286	/* Try the full affinity mask */
 287	cpumask_and(vector_searchmask, affmsk, cpu_online_mask);
 288	if (!assign_vector_locked(irqd, vector_searchmask))
 289		return 0;
 
 
 
 
 
 
 
 290	/* Try the full online mask */
 291	return assign_vector_locked(irqd, cpu_online_mask);
 292}
 293
 294static int
 295assign_irq_vector_policy(struct irq_data *irqd, struct irq_alloc_info *info)
 296{
 297	if (irqd_affinity_is_managed(irqd))
 298		return reserve_managed_vector(irqd);
 299	if (info->mask)
 300		return assign_irq_vector(irqd, info->mask);
 301	/*
 302	 * Make only a global reservation with no guarantee. A real vector
 303	 * is associated at activation time.
 304	 */
 305	return reserve_irq_vector(irqd);
 306}
 307
 308static int
 309assign_managed_vector(struct irq_data *irqd, const struct cpumask *dest)
 310{
 311	const struct cpumask *affmsk = irq_data_get_affinity_mask(irqd);
 312	struct apic_chip_data *apicd = apic_chip_data(irqd);
 313	int vector, cpu;
 314
 315	cpumask_and(vector_searchmask, vector_searchmask, affmsk);
 316	cpu = cpumask_first(vector_searchmask);
 317	if (cpu >= nr_cpu_ids)
 318		return -EINVAL;
 319	/* set_affinity might call here for nothing */
 320	if (apicd->vector && cpumask_test_cpu(apicd->cpu, vector_searchmask))
 321		return 0;
 322	vector = irq_matrix_alloc_managed(vector_matrix, cpu);
 
 323	trace_vector_alloc_managed(irqd->irq, vector, vector);
 324	if (vector < 0)
 325		return vector;
 326	apic_update_vector(irqd, vector, cpu);
 327	apic_update_irq_cfg(irqd, vector, cpu);
 328	return 0;
 329}
 330
 331static void clear_irq_vector(struct irq_data *irqd)
 332{
 333	struct apic_chip_data *apicd = apic_chip_data(irqd);
 334	bool managed = irqd_affinity_is_managed(irqd);
 335	unsigned int vector = apicd->vector;
 336
 337	lockdep_assert_held(&vector_lock);
 338
 339	if (!vector)
 340		return;
 341
 342	trace_vector_clear(irqd->irq, vector, apicd->cpu, apicd->prev_vector,
 343			   apicd->prev_cpu);
 344
 345	per_cpu(vector_irq, apicd->cpu)[vector] = VECTOR_UNUSED;
 346	irq_matrix_free(vector_matrix, apicd->cpu, vector, managed);
 347	apicd->vector = 0;
 348
 349	/* Clean up move in progress */
 350	vector = apicd->prev_vector;
 351	if (!vector)
 352		return;
 353
 354	per_cpu(vector_irq, apicd->prev_cpu)[vector] = VECTOR_UNUSED;
 355	irq_matrix_free(vector_matrix, apicd->prev_cpu, vector, managed);
 356	apicd->prev_vector = 0;
 357	apicd->move_in_progress = 0;
 358	hlist_del_init(&apicd->clist);
 359}
 360
 361static void x86_vector_deactivate(struct irq_domain *dom, struct irq_data *irqd)
 362{
 363	struct apic_chip_data *apicd = apic_chip_data(irqd);
 364	unsigned long flags;
 365
 366	trace_vector_deactivate(irqd->irq, apicd->is_managed,
 367				apicd->can_reserve, false);
 368
 369	/* Regular fixed assigned interrupt */
 370	if (!apicd->is_managed && !apicd->can_reserve)
 371		return;
 372	/* If the interrupt has a global reservation, nothing to do */
 373	if (apicd->has_reserved)
 374		return;
 375
 376	raw_spin_lock_irqsave(&vector_lock, flags);
 377	clear_irq_vector(irqd);
 378	if (apicd->can_reserve)
 379		reserve_irq_vector_locked(irqd);
 380	else
 381		vector_assign_managed_shutdown(irqd);
 382	raw_spin_unlock_irqrestore(&vector_lock, flags);
 383}
 384
 385static int activate_reserved(struct irq_data *irqd)
 386{
 387	struct apic_chip_data *apicd = apic_chip_data(irqd);
 388	int ret;
 389
 390	ret = assign_irq_vector_any_locked(irqd);
 391	if (!ret) {
 392		apicd->has_reserved = false;
 393		/*
 394		 * Core might have disabled reservation mode after
 395		 * allocating the irq descriptor. Ideally this should
 396		 * happen before allocation time, but that would require
 397		 * completely convoluted ways of transporting that
 398		 * information.
 399		 */
 400		if (!irqd_can_reserve(irqd))
 401			apicd->can_reserve = false;
 402	}
 
 
 
 
 
 
 
 
 
 
 
 403	return ret;
 404}
 405
 406static int activate_managed(struct irq_data *irqd)
 407{
 408	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
 409	int ret;
 410
 411	cpumask_and(vector_searchmask, dest, cpu_online_mask);
 412	if (WARN_ON_ONCE(cpumask_empty(vector_searchmask))) {
 413		/* Something in the core code broke! Survive gracefully */
 414		pr_err("Managed startup for irq %u, but no CPU\n", irqd->irq);
 415		return EINVAL;
 416	}
 417
 418	ret = assign_managed_vector(irqd, vector_searchmask);
 419	/*
 420	 * This should not happen. The vector reservation got buggered.  Handle
 421	 * it gracefully.
 422	 */
 423	if (WARN_ON_ONCE(ret < 0)) {
 424		pr_err("Managed startup irq %u, no vector available\n",
 425		       irqd->irq);
 426	}
 427       return ret;
 428}
 429
 430static int x86_vector_activate(struct irq_domain *dom, struct irq_data *irqd,
 431			       bool reserve)
 432{
 433	struct apic_chip_data *apicd = apic_chip_data(irqd);
 434	unsigned long flags;
 435	int ret = 0;
 436
 437	trace_vector_activate(irqd->irq, apicd->is_managed,
 438			      apicd->can_reserve, reserve);
 439
 440	/* Nothing to do for fixed assigned vectors */
 441	if (!apicd->can_reserve && !apicd->is_managed)
 442		return 0;
 443
 444	raw_spin_lock_irqsave(&vector_lock, flags);
 445	if (reserve || irqd_is_managed_and_shutdown(irqd))
 446		vector_assign_managed_shutdown(irqd);
 447	else if (apicd->is_managed)
 448		ret = activate_managed(irqd);
 449	else if (apicd->has_reserved)
 450		ret = activate_reserved(irqd);
 451	raw_spin_unlock_irqrestore(&vector_lock, flags);
 452	return ret;
 453}
 454
 455static void vector_free_reserved_and_managed(struct irq_data *irqd)
 456{
 457	const struct cpumask *dest = irq_data_get_affinity_mask(irqd);
 458	struct apic_chip_data *apicd = apic_chip_data(irqd);
 459
 460	trace_vector_teardown(irqd->irq, apicd->is_managed,
 461			      apicd->has_reserved);
 462
 463	if (apicd->has_reserved)
 464		irq_matrix_remove_reserved(vector_matrix);
 465	if (apicd->is_managed)
 466		irq_matrix_remove_managed(vector_matrix, dest);
 467}
 468
 469static void x86_vector_free_irqs(struct irq_domain *domain,
 470				 unsigned int virq, unsigned int nr_irqs)
 471{
 472	struct apic_chip_data *apicd;
 473	struct irq_data *irqd;
 474	unsigned long flags;
 475	int i;
 476
 477	for (i = 0; i < nr_irqs; i++) {
 478		irqd = irq_domain_get_irq_data(x86_vector_domain, virq + i);
 479		if (irqd && irqd->chip_data) {
 480			raw_spin_lock_irqsave(&vector_lock, flags);
 481			clear_irq_vector(irqd);
 482			vector_free_reserved_and_managed(irqd);
 483			apicd = irqd->chip_data;
 484			irq_domain_reset_irq_data(irqd);
 485			raw_spin_unlock_irqrestore(&vector_lock, flags);
 486			free_apic_chip_data(apicd);
 487		}
 488	}
 489}
 490
 491static bool vector_configure_legacy(unsigned int virq, struct irq_data *irqd,
 492				    struct apic_chip_data *apicd)
 493{
 494	unsigned long flags;
 495	bool realloc = false;
 496
 497	apicd->vector = ISA_IRQ_VECTOR(virq);
 498	apicd->cpu = 0;
 499
 500	raw_spin_lock_irqsave(&vector_lock, flags);
 501	/*
 502	 * If the interrupt is activated, then it must stay at this vector
 503	 * position. That's usually the timer interrupt (0).
 504	 */
 505	if (irqd_is_activated(irqd)) {
 506		trace_vector_setup(virq, true, 0);
 507		apic_update_irq_cfg(irqd, apicd->vector, apicd->cpu);
 508	} else {
 509		/* Release the vector */
 510		apicd->can_reserve = true;
 511		irqd_set_can_reserve(irqd);
 512		clear_irq_vector(irqd);
 513		realloc = true;
 514	}
 515	raw_spin_unlock_irqrestore(&vector_lock, flags);
 516	return realloc;
 517}
 518
 519static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
 520				 unsigned int nr_irqs, void *arg)
 521{
 522	struct irq_alloc_info *info = arg;
 523	struct apic_chip_data *apicd;
 524	struct irq_data *irqd;
 525	int i, err, node;
 526
 527	if (disable_apic)
 528		return -ENXIO;
 529
 530	/* Currently vector allocator can't guarantee contiguous allocations */
 531	if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
 532		return -ENOSYS;
 
 
 
 
 533
 534	for (i = 0; i < nr_irqs; i++) {
 535		irqd = irq_domain_get_irq_data(domain, virq + i);
 536		BUG_ON(!irqd);
 537		node = irq_data_get_node(irqd);
 538		WARN_ON_ONCE(irqd->chip_data);
 539		apicd = alloc_apic_chip_data(node);
 540		if (!apicd) {
 541			err = -ENOMEM;
 542			goto error;
 543		}
 544
 545		apicd->irq = virq + i;
 546		irqd->chip = &lapic_controller;
 547		irqd->chip_data = apicd;
 548		irqd->hwirq = virq + i;
 549		irqd_set_single_target(irqd);
 550		/*
 
 
 
 
 
 
 
 
 
 
 551		 * Legacy vectors are already assigned when the IOAPIC
 552		 * takes them over. They stay on the same vector. This is
 553		 * required for check_timer() to work correctly as it might
 554		 * switch back to legacy mode. Only update the hardware
 555		 * config.
 556		 */
 557		if (info->flags & X86_IRQ_ALLOC_LEGACY) {
 558			if (!vector_configure_legacy(virq + i, irqd, apicd))
 559				continue;
 560		}
 561
 562		err = assign_irq_vector_policy(irqd, info);
 563		trace_vector_setup(virq + i, false, err);
 564		if (err) {
 565			irqd->chip_data = NULL;
 566			free_apic_chip_data(apicd);
 567			goto error;
 568		}
 569	}
 570
 571	return 0;
 572
 573error:
 574	x86_vector_free_irqs(domain, virq, i);
 575	return err;
 576}
 577
 578#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
 579static void x86_vector_debug_show(struct seq_file *m, struct irq_domain *d,
 580				  struct irq_data *irqd, int ind)
 581{
 582	unsigned int cpu, vector, prev_cpu, prev_vector;
 583	struct apic_chip_data *apicd;
 584	unsigned long flags;
 585	int irq;
 586
 587	if (!irqd) {
 588		irq_matrix_debug_show(m, vector_matrix, ind);
 589		return;
 590	}
 591
 592	irq = irqd->irq;
 593	if (irq < nr_legacy_irqs() && !test_bit(irq, &io_apic_irqs)) {
 594		seq_printf(m, "%*sVector: %5d\n", ind, "", ISA_IRQ_VECTOR(irq));
 595		seq_printf(m, "%*sTarget: Legacy PIC all CPUs\n", ind, "");
 596		return;
 597	}
 598
 599	apicd = irqd->chip_data;
 600	if (!apicd) {
 601		seq_printf(m, "%*sVector: Not assigned\n", ind, "");
 602		return;
 603	}
 604
 605	raw_spin_lock_irqsave(&vector_lock, flags);
 606	cpu = apicd->cpu;
 607	vector = apicd->vector;
 608	prev_cpu = apicd->prev_cpu;
 609	prev_vector = apicd->prev_vector;
 610	raw_spin_unlock_irqrestore(&vector_lock, flags);
 611	seq_printf(m, "%*sVector: %5u\n", ind, "", vector);
 612	seq_printf(m, "%*sTarget: %5u\n", ind, "", cpu);
 613	if (prev_vector) {
 614		seq_printf(m, "%*sPrevious vector: %5u\n", ind, "", prev_vector);
 615		seq_printf(m, "%*sPrevious target: %5u\n", ind, "", prev_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617}
 618#endif
 619
 620static const struct irq_domain_ops x86_vector_domain_ops = {
 
 621	.alloc		= x86_vector_alloc_irqs,
 622	.free		= x86_vector_free_irqs,
 623	.activate	= x86_vector_activate,
 624	.deactivate	= x86_vector_deactivate,
 625#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
 626	.debug_show	= x86_vector_debug_show,
 627#endif
 628};
 629
 630int __init arch_probe_nr_irqs(void)
 631{
 632	int nr;
 633
 634	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
 635		nr_irqs = NR_VECTORS * nr_cpu_ids;
 636
 637	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
 638#if defined(CONFIG_PCI_MSI)
 639	/*
 640	 * for MSI and HT dyn irq
 641	 */
 642	if (gsi_top <= NR_IRQS_LEGACY)
 643		nr +=  8 * nr_cpu_ids;
 644	else
 645		nr += gsi_top * 16;
 646#endif
 647	if (nr < nr_irqs)
 648		nr_irqs = nr;
 649
 650	/*
 651	 * We don't know if PIC is present at this point so we need to do
 652	 * probe() to get the right number of legacy IRQs.
 653	 */
 654	return legacy_pic->probe();
 655}
 656
 657void lapic_assign_legacy_vector(unsigned int irq, bool replace)
 658{
 659	/*
 660	 * Use assign system here so it wont get accounted as allocated
 661	 * and moveable in the cpu hotplug check and it prevents managed
 662	 * irq reservation from touching it.
 663	 */
 664	irq_matrix_assign_system(vector_matrix, ISA_IRQ_VECTOR(irq), replace);
 665}
 666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667void __init lapic_assign_system_vectors(void)
 668{
 669	unsigned int i, vector = 0;
 670
 671	for_each_set_bit_from(vector, system_vectors, NR_VECTORS)
 672		irq_matrix_assign_system(vector_matrix, vector, false);
 673
 674	if (nr_legacy_irqs() > 1)
 675		lapic_assign_legacy_vector(PIC_CASCADE_IR, false);
 676
 677	/* System vectors are reserved, online it */
 678	irq_matrix_online(vector_matrix);
 679
 680	/* Mark the preallocated legacy interrupts */
 681	for (i = 0; i < nr_legacy_irqs(); i++) {
 
 
 
 
 
 682		if (i != PIC_CASCADE_IR)
 683			irq_matrix_assign(vector_matrix, ISA_IRQ_VECTOR(i));
 684	}
 685}
 686
 687int __init arch_early_irq_init(void)
 688{
 689	struct fwnode_handle *fn;
 690
 691	fn = irq_domain_alloc_named_fwnode("VECTOR");
 692	BUG_ON(!fn);
 693	x86_vector_domain = irq_domain_create_tree(fn, &x86_vector_domain_ops,
 694						   NULL);
 695	BUG_ON(x86_vector_domain == NULL);
 696	irq_domain_free_fwnode(fn);
 697	irq_set_default_host(x86_vector_domain);
 698
 699	arch_init_msi_domain(x86_vector_domain);
 700
 701	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
 702
 703	/*
 704	 * Allocate the vector matrix allocator data structure and limit the
 705	 * search area.
 706	 */
 707	vector_matrix = irq_alloc_matrix(NR_VECTORS, FIRST_EXTERNAL_VECTOR,
 708					 FIRST_SYSTEM_VECTOR);
 709	BUG_ON(!vector_matrix);
 710
 711	return arch_early_ioapic_init();
 712}
 713
 714#ifdef CONFIG_SMP
 715
 716static struct irq_desc *__setup_vector_irq(int vector)
 717{
 718	int isairq = vector - ISA_IRQ_VECTOR(0);
 719
 720	/* Check whether the irq is in the legacy space */
 721	if (isairq < 0 || isairq >= nr_legacy_irqs())
 722		return VECTOR_UNUSED;
 723	/* Check whether the irq is handled by the IOAPIC */
 724	if (test_bit(isairq, &io_apic_irqs))
 725		return VECTOR_UNUSED;
 726	return irq_to_desc(isairq);
 727}
 728
 729/* Online the local APIC infrastructure and initialize the vectors */
 730void lapic_online(void)
 731{
 732	unsigned int vector;
 733
 734	lockdep_assert_held(&vector_lock);
 735
 736	/* Online the vector matrix array for this CPU */
 737	irq_matrix_online(vector_matrix);
 738
 739	/*
 740	 * The interrupt affinity logic never targets interrupts to offline
 741	 * CPUs. The exception are the legacy PIC interrupts. In general
 742	 * they are only targeted to CPU0, but depending on the platform
 743	 * they can be distributed to any online CPU in hardware. The
 744	 * kernel has no influence on that. So all active legacy vectors
 745	 * must be installed on all CPUs. All non legacy interrupts can be
 746	 * cleared.
 747	 */
 748	for (vector = 0; vector < NR_VECTORS; vector++)
 749		this_cpu_write(vector_irq[vector], __setup_vector_irq(vector));
 750}
 751
 
 
 752void lapic_offline(void)
 753{
 
 
 754	lock_vector_lock();
 
 
 
 
 755	irq_matrix_offline(vector_matrix);
 
 
 
 756	unlock_vector_lock();
 757}
 758
 759static int apic_set_affinity(struct irq_data *irqd,
 760			     const struct cpumask *dest, bool force)
 761{
 762	struct apic_chip_data *apicd = apic_chip_data(irqd);
 763	int err;
 764
 765	/*
 766	 * Core code can call here for inactive interrupts. For inactive
 767	 * interrupts which use managed or reservation mode there is no
 768	 * point in going through the vector assignment right now as the
 769	 * activation will assign a vector which fits the destination
 770	 * cpumask. Let the core code store the destination mask and be
 771	 * done with it.
 772	 */
 773	if (!irqd_is_activated(irqd) &&
 774	    (apicd->is_managed || apicd->can_reserve))
 775		return IRQ_SET_MASK_OK;
 776
 777	raw_spin_lock(&vector_lock);
 778	cpumask_and(vector_searchmask, dest, cpu_online_mask);
 779	if (irqd_affinity_is_managed(irqd))
 780		err = assign_managed_vector(irqd, vector_searchmask);
 781	else
 782		err = assign_vector_locked(irqd, vector_searchmask);
 783	raw_spin_unlock(&vector_lock);
 784	return err ? err : IRQ_SET_MASK_OK;
 785}
 786
 787#else
 788# define apic_set_affinity	NULL
 789#endif
 790
 791static int apic_retrigger_irq(struct irq_data *irqd)
 792{
 793	struct apic_chip_data *apicd = apic_chip_data(irqd);
 794	unsigned long flags;
 795
 796	raw_spin_lock_irqsave(&vector_lock, flags);
 797	apic->send_IPI(apicd->cpu, apicd->vector);
 798	raw_spin_unlock_irqrestore(&vector_lock, flags);
 799
 800	return 1;
 801}
 802
 
 
 
 
 
 
 803void apic_ack_edge(struct irq_data *irqd)
 804{
 805	irq_complete_move(irqd_cfg(irqd));
 806	irq_move_irq(irqd);
 807	ack_APIC_irq();
 
 
 
 
 
 808}
 809
 810static struct irq_chip lapic_controller = {
 811	.name			= "APIC",
 812	.irq_ack		= apic_ack_edge,
 813	.irq_set_affinity	= apic_set_affinity,
 
 814	.irq_retrigger		= apic_retrigger_irq,
 815};
 816
 817#ifdef CONFIG_SMP
 818
 819static void free_moved_vector(struct apic_chip_data *apicd)
 820{
 821	unsigned int vector = apicd->prev_vector;
 822	unsigned int cpu = apicd->prev_cpu;
 823	bool managed = apicd->is_managed;
 824
 825	/*
 826	 * This should never happen. Managed interrupts are not
 827	 * migrated except on CPU down, which does not involve the
 828	 * cleanup vector. But try to keep the accounting correct
 829	 * nevertheless.
 
 
 
 
 830	 */
 831	WARN_ON_ONCE(managed);
 832
 833	trace_vector_free_moved(apicd->irq, cpu, vector, managed);
 834	irq_matrix_free(vector_matrix, cpu, vector, managed);
 835	per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
 836	hlist_del_init(&apicd->clist);
 837	apicd->prev_vector = 0;
 838	apicd->move_in_progress = 0;
 839}
 840
 841asmlinkage __visible void __irq_entry smp_irq_move_cleanup_interrupt(void)
 842{
 843	struct hlist_head *clhead = this_cpu_ptr(&cleanup_list);
 844	struct apic_chip_data *apicd;
 845	struct hlist_node *tmp;
 
 846
 847	entering_ack_irq();
 848	/* Prevent vectors vanishing under us */
 849	raw_spin_lock(&vector_lock);
 850
 851	hlist_for_each_entry_safe(apicd, tmp, clhead, clist) {
 852		unsigned int irr, vector = apicd->prev_vector;
 853
 854		/*
 855		 * Paranoia: Check if the vector that needs to be cleaned
 856		 * up is registered at the APICs IRR. If so, then this is
 857		 * not the best time to clean it up. Clean it up in the
 858		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
 859		 * to this CPU. IRQ_MOVE_CLEANUP_VECTOR is the lowest
 860		 * priority external vector, so on return from this
 861		 * interrupt the device interrupt will happen first.
 
 
 
 862		 */
 863		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
 864		if (irr & (1U << (vector % 32))) {
 865			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
 866			continue;
 867		}
 868		free_moved_vector(apicd);
 869	}
 870
 871	raw_spin_unlock(&vector_lock);
 872	exiting_irq();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873}
 874
 875static void __send_cleanup_vector(struct apic_chip_data *apicd)
 876{
 877	unsigned int cpu;
 878
 879	raw_spin_lock(&vector_lock);
 880	apicd->move_in_progress = 0;
 881	cpu = apicd->prev_cpu;
 882	if (cpu_online(cpu)) {
 883		hlist_add_head(&apicd->clist, per_cpu_ptr(&cleanup_list, cpu));
 884		apic->send_IPI(cpu, IRQ_MOVE_CLEANUP_VECTOR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885	} else {
 886		apicd->prev_vector = 0;
 
 887	}
 888	raw_spin_unlock(&vector_lock);
 889}
 890
 891void send_cleanup_vector(struct irq_cfg *cfg)
 892{
 893	struct apic_chip_data *apicd;
 894
 895	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
 896	if (apicd->move_in_progress)
 897		__send_cleanup_vector(apicd);
 898}
 899
 900static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
 901{
 902	struct apic_chip_data *apicd;
 903
 904	apicd = container_of(cfg, struct apic_chip_data, hw_irq_cfg);
 905	if (likely(!apicd->move_in_progress))
 906		return;
 907
 908	if (vector == apicd->vector && apicd->cpu == smp_processor_id())
 909		__send_cleanup_vector(apicd);
 910}
 911
 912void irq_complete_move(struct irq_cfg *cfg)
 913{
 914	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
 
 915}
 916
 917/*
 918 * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
 919 */
 920void irq_force_complete_move(struct irq_desc *desc)
 921{
 
 922	struct apic_chip_data *apicd;
 923	struct irq_data *irqd;
 924	unsigned int vector;
 925
 926	/*
 927	 * The function is called for all descriptors regardless of which
 928	 * irqdomain they belong to. For example if an IRQ is provided by
 929	 * an irq_chip as part of a GPIO driver, the chip data for that
 930	 * descriptor is specific to the irq_chip in question.
 931	 *
 932	 * Check first that the chip_data is what we expect
 933	 * (apic_chip_data) before touching it any further.
 934	 */
 935	irqd = irq_domain_get_irq_data(x86_vector_domain,
 936				       irq_desc_get_irq(desc));
 937	if (!irqd)
 938		return;
 939
 940	raw_spin_lock(&vector_lock);
 941	apicd = apic_chip_data(irqd);
 942	if (!apicd)
 943		goto unlock;
 944
 945	/*
 946	 * If prev_vector is empty, no action required.
 
 947	 */
 948	vector = apicd->prev_vector;
 949	if (!vector)
 950		goto unlock;
 951
 952	/*
 953	 * This is tricky. If the cleanup of the old vector has not been
 954	 * done yet, then the following setaffinity call will fail with
 955	 * -EBUSY. This can leave the interrupt in a stale state.
 956	 *
 957	 * All CPUs are stuck in stop machine with interrupts disabled so
 958	 * calling __irq_complete_move() would be completely pointless.
 959	 *
 960	 * 1) The interrupt is in move_in_progress state. That means that we
 961	 *    have not seen an interrupt since the io_apic was reprogrammed to
 962	 *    the new vector.
 963	 *
 964	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
 965	 *    have not been processed yet.
 966	 */
 967	if (apicd->move_in_progress) {
 968		/*
 969		 * In theory there is a race:
 970		 *
 971		 * set_ioapic(new_vector) <-- Interrupt is raised before update
 972		 *			      is effective, i.e. it's raised on
 973		 *			      the old vector.
 974		 *
 975		 * So if the target cpu cannot handle that interrupt before
 976		 * the old vector is cleaned up, we get a spurious interrupt
 977		 * and in the worst case the ioapic irq line becomes stale.
 978		 *
 979		 * But in case of cpu hotplug this should be a non issue
 980		 * because if the affinity update happens right before all
 981		 * cpus rendevouz in stop machine, there is no way that the
 982		 * interrupt can be blocked on the target cpu because all cpus
 983		 * loops first with interrupts enabled in stop machine, so the
 984		 * old vector is not yet cleaned up when the interrupt fires.
 985		 *
 986		 * So the only way to run into this issue is if the delivery
 987		 * of the interrupt on the apic/system bus would be delayed
 988		 * beyond the point where the target cpu disables interrupts
 989		 * in stop machine. I doubt that it can happen, but at least
 990		 * there is a theroretical chance. Virtualization might be
 991		 * able to expose this, but AFAICT the IOAPIC emulation is not
 992		 * as stupid as the real hardware.
 993		 *
 994		 * Anyway, there is nothing we can do about that at this point
 995		 * w/o refactoring the whole fixup_irq() business completely.
 996		 * We print at least the irq number and the old vector number,
 997		 * so we have the necessary information when a problem in that
 998		 * area arises.
 999		 */
1000		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1001			irqd->irq, vector);
1002	}
1003	free_moved_vector(apicd);
1004unlock:
1005	raw_spin_unlock(&vector_lock);
1006}
1007
1008#ifdef CONFIG_HOTPLUG_CPU
1009/*
1010 * Note, this is not accurate accounting, but at least good enough to
1011 * prevent that the actual interrupt move will run out of vectors.
1012 */
1013int lapic_can_unplug_cpu(void)
1014{
1015	unsigned int rsvd, avl, tomove, cpu = smp_processor_id();
1016	int ret = 0;
1017
1018	raw_spin_lock(&vector_lock);
1019	tomove = irq_matrix_allocated(vector_matrix);
1020	avl = irq_matrix_available(vector_matrix, true);
1021	if (avl < tomove) {
1022		pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1023			cpu, tomove, avl);
1024		ret = -ENOSPC;
1025		goto out;
1026	}
1027	rsvd = irq_matrix_reserved(vector_matrix);
1028	if (avl < rsvd) {
1029		pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1030			rsvd, avl);
1031	}
1032out:
1033	raw_spin_unlock(&vector_lock);
1034	return ret;
1035}
1036#endif /* HOTPLUG_CPU */
1037#endif /* SMP */
1038
1039static void __init print_APIC_field(int base)
1040{
1041	int i;
1042
1043	printk(KERN_DEBUG);
1044
1045	for (i = 0; i < 8; i++)
1046		pr_cont("%08x", apic_read(base + i*0x10));
1047
1048	pr_cont("\n");
1049}
1050
1051static void __init print_local_APIC(void *dummy)
1052{
1053	unsigned int i, v, ver, maxlvt;
1054	u64 icr;
1055
1056	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1057		 smp_processor_id(), hard_smp_processor_id());
1058	v = apic_read(APIC_ID);
1059	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
1060	v = apic_read(APIC_LVR);
1061	pr_info("... APIC VERSION: %08x\n", v);
1062	ver = GET_APIC_VERSION(v);
1063	maxlvt = lapic_get_maxlvt();
1064
1065	v = apic_read(APIC_TASKPRI);
1066	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1067
1068	/* !82489DX */
1069	if (APIC_INTEGRATED(ver)) {
1070		if (!APIC_XAPIC(ver)) {
1071			v = apic_read(APIC_ARBPRI);
1072			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1073				 v, v & APIC_ARBPRI_MASK);
1074		}
1075		v = apic_read(APIC_PROCPRI);
1076		pr_debug("... APIC PROCPRI: %08x\n", v);
1077	}
1078
1079	/*
1080	 * Remote read supported only in the 82489DX and local APIC for
1081	 * Pentium processors.
1082	 */
1083	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1084		v = apic_read(APIC_RRR);
1085		pr_debug("... APIC RRR: %08x\n", v);
1086	}
1087
1088	v = apic_read(APIC_LDR);
1089	pr_debug("... APIC LDR: %08x\n", v);
1090	if (!x2apic_enabled()) {
1091		v = apic_read(APIC_DFR);
1092		pr_debug("... APIC DFR: %08x\n", v);
1093	}
1094	v = apic_read(APIC_SPIV);
1095	pr_debug("... APIC SPIV: %08x\n", v);
1096
1097	pr_debug("... APIC ISR field:\n");
1098	print_APIC_field(APIC_ISR);
1099	pr_debug("... APIC TMR field:\n");
1100	print_APIC_field(APIC_TMR);
1101	pr_debug("... APIC IRR field:\n");
1102	print_APIC_field(APIC_IRR);
1103
1104	/* !82489DX */
1105	if (APIC_INTEGRATED(ver)) {
1106		/* Due to the Pentium erratum 3AP. */
1107		if (maxlvt > 3)
1108			apic_write(APIC_ESR, 0);
1109
1110		v = apic_read(APIC_ESR);
1111		pr_debug("... APIC ESR: %08x\n", v);
1112	}
1113
1114	icr = apic_icr_read();
1115	pr_debug("... APIC ICR: %08x\n", (u32)icr);
1116	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
1117
1118	v = apic_read(APIC_LVTT);
1119	pr_debug("... APIC LVTT: %08x\n", v);
1120
1121	if (maxlvt > 3) {
1122		/* PC is LVT#4. */
1123		v = apic_read(APIC_LVTPC);
1124		pr_debug("... APIC LVTPC: %08x\n", v);
1125	}
1126	v = apic_read(APIC_LVT0);
1127	pr_debug("... APIC LVT0: %08x\n", v);
1128	v = apic_read(APIC_LVT1);
1129	pr_debug("... APIC LVT1: %08x\n", v);
1130
1131	if (maxlvt > 2) {
1132		/* ERR is LVT#3. */
1133		v = apic_read(APIC_LVTERR);
1134		pr_debug("... APIC LVTERR: %08x\n", v);
1135	}
1136
1137	v = apic_read(APIC_TMICT);
1138	pr_debug("... APIC TMICT: %08x\n", v);
1139	v = apic_read(APIC_TMCCT);
1140	pr_debug("... APIC TMCCT: %08x\n", v);
1141	v = apic_read(APIC_TDCR);
1142	pr_debug("... APIC TDCR: %08x\n", v);
1143
1144	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1145		v = apic_read(APIC_EFEAT);
1146		maxlvt = (v >> 16) & 0xff;
1147		pr_debug("... APIC EFEAT: %08x\n", v);
1148		v = apic_read(APIC_ECTRL);
1149		pr_debug("... APIC ECTRL: %08x\n", v);
1150		for (i = 0; i < maxlvt; i++) {
1151			v = apic_read(APIC_EILVTn(i));
1152			pr_debug("... APIC EILVT%d: %08x\n", i, v);
1153		}
1154	}
1155	pr_cont("\n");
1156}
1157
1158static void __init print_local_APICs(int maxcpu)
1159{
1160	int cpu;
1161
1162	if (!maxcpu)
1163		return;
1164
1165	preempt_disable();
1166	for_each_online_cpu(cpu) {
1167		if (cpu >= maxcpu)
1168			break;
1169		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1170	}
1171	preempt_enable();
1172}
1173
1174static void __init print_PIC(void)
1175{
1176	unsigned int v;
1177	unsigned long flags;
1178
1179	if (!nr_legacy_irqs())
1180		return;
1181
1182	pr_debug("\nprinting PIC contents\n");
1183
1184	raw_spin_lock_irqsave(&i8259A_lock, flags);
1185
1186	v = inb(0xa1) << 8 | inb(0x21);
1187	pr_debug("... PIC  IMR: %04x\n", v);
1188
1189	v = inb(0xa0) << 8 | inb(0x20);
1190	pr_debug("... PIC  IRR: %04x\n", v);
1191
1192	outb(0x0b, 0xa0);
1193	outb(0x0b, 0x20);
1194	v = inb(0xa0) << 8 | inb(0x20);
1195	outb(0x0a, 0xa0);
1196	outb(0x0a, 0x20);
1197
1198	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1199
1200	pr_debug("... PIC  ISR: %04x\n", v);
1201
1202	v = inb(0x4d1) << 8 | inb(0x4d0);
1203	pr_debug("... PIC ELCR: %04x\n", v);
1204}
1205
1206static int show_lapic __initdata = 1;
1207static __init int setup_show_lapic(char *arg)
1208{
1209	int num = -1;
1210
1211	if (strcmp(arg, "all") == 0) {
1212		show_lapic = CONFIG_NR_CPUS;
1213	} else {
1214		get_option(&arg, &num);
1215		if (num >= 0)
1216			show_lapic = num;
1217	}
1218
1219	return 1;
1220}
1221__setup("show_lapic=", setup_show_lapic);
1222
1223static int __init print_ICs(void)
1224{
1225	if (apic_verbosity == APIC_QUIET)
1226		return 0;
1227
1228	print_PIC();
1229
1230	/* don't print out if apic is not there */
1231	if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1232		return 0;
1233
1234	print_local_APICs(show_lapic);
1235	print_IO_APICs();
1236
1237	return 0;
1238}
1239
1240late_initcall(print_ICs);