Linux Audio

Check our new training course

Loading...
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * x86_64/AVX2/AES-NI assembler implementation of Camellia
   4 *
   5 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
 
 
 
 
 
 
   6 */
   7
   8#include <linux/linkage.h>
   9#include <asm/frame.h>
  10
  11#define CAMELLIA_TABLE_BYTE_LEN 272
  12
  13/* struct camellia_ctx: */
  14#define key_table 0
  15#define key_length CAMELLIA_TABLE_BYTE_LEN
  16
  17/* register macros */
  18#define CTX %rdi
  19#define RIO %r8
  20
  21/**********************************************************************
  22  helper macros
  23 **********************************************************************/
  24#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
  25	vpand x, mask4bit, tmp0; \
  26	vpandn x, mask4bit, x; \
  27	vpsrld $4, x, x; \
  28	\
  29	vpshufb tmp0, lo_t, tmp0; \
  30	vpshufb x, hi_t, x; \
  31	vpxor tmp0, x, x;
  32
  33#define ymm0_x xmm0
  34#define ymm1_x xmm1
  35#define ymm2_x xmm2
  36#define ymm3_x xmm3
  37#define ymm4_x xmm4
  38#define ymm5_x xmm5
  39#define ymm6_x xmm6
  40#define ymm7_x xmm7
  41#define ymm8_x xmm8
  42#define ymm9_x xmm9
  43#define ymm10_x xmm10
  44#define ymm11_x xmm11
  45#define ymm12_x xmm12
  46#define ymm13_x xmm13
  47#define ymm14_x xmm14
  48#define ymm15_x xmm15
  49
  50/**********************************************************************
  51  32-way camellia
  52 **********************************************************************/
  53
  54/*
  55 * IN:
  56 *   x0..x7: byte-sliced AB state
  57 *   mem_cd: register pointer storing CD state
  58 *   key: index for key material
  59 * OUT:
  60 *   x0..x7: new byte-sliced CD state
  61 */
  62#define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
  63		  t7, mem_cd, key) \
  64	/* \
  65	 * S-function with AES subbytes \
  66	 */ \
  67	vbroadcasti128 .Linv_shift_row(%rip), t4; \
  68	vpbroadcastd .L0f0f0f0f(%rip), t7; \
  69	vbroadcasti128 .Lpre_tf_lo_s1(%rip), t5; \
  70	vbroadcasti128 .Lpre_tf_hi_s1(%rip), t6; \
  71	vbroadcasti128 .Lpre_tf_lo_s4(%rip), t2; \
  72	vbroadcasti128 .Lpre_tf_hi_s4(%rip), t3; \
  73	\
  74	/* AES inverse shift rows */ \
  75	vpshufb t4, x0, x0; \
  76	vpshufb t4, x7, x7; \
  77	vpshufb t4, x3, x3; \
  78	vpshufb t4, x6, x6; \
  79	vpshufb t4, x2, x2; \
  80	vpshufb t4, x5, x5; \
  81	vpshufb t4, x1, x1; \
  82	vpshufb t4, x4, x4; \
  83	\
  84	/* prefilter sboxes 1, 2 and 3 */ \
  85	/* prefilter sbox 4 */ \
  86	filter_8bit(x0, t5, t6, t7, t4); \
  87	filter_8bit(x7, t5, t6, t7, t4); \
  88	vextracti128 $1, x0, t0##_x; \
  89	vextracti128 $1, x7, t1##_x; \
  90	filter_8bit(x3, t2, t3, t7, t4); \
  91	filter_8bit(x6, t2, t3, t7, t4); \
  92	vextracti128 $1, x3, t3##_x; \
  93	vextracti128 $1, x6, t2##_x; \
  94	filter_8bit(x2, t5, t6, t7, t4); \
  95	filter_8bit(x5, t5, t6, t7, t4); \
  96	filter_8bit(x1, t5, t6, t7, t4); \
  97	filter_8bit(x4, t5, t6, t7, t4); \
  98	\
  99	vpxor t4##_x, t4##_x, t4##_x; \
 100	\
 101	/* AES subbytes + AES shift rows */ \
 102	vextracti128 $1, x2, t6##_x; \
 103	vextracti128 $1, x5, t5##_x; \
 104	vaesenclast t4##_x, x0##_x, x0##_x; \
 105	vaesenclast t4##_x, t0##_x, t0##_x; \
 106	vinserti128 $1, t0##_x, x0, x0; \
 107	vaesenclast t4##_x, x7##_x, x7##_x; \
 108	vaesenclast t4##_x, t1##_x, t1##_x; \
 109	vinserti128 $1, t1##_x, x7, x7; \
 110	vaesenclast t4##_x, x3##_x, x3##_x; \
 111	vaesenclast t4##_x, t3##_x, t3##_x; \
 112	vinserti128 $1, t3##_x, x3, x3; \
 113	vaesenclast t4##_x, x6##_x, x6##_x; \
 114	vaesenclast t4##_x, t2##_x, t2##_x; \
 115	vinserti128 $1, t2##_x, x6, x6; \
 116	vextracti128 $1, x1, t3##_x; \
 117	vextracti128 $1, x4, t2##_x; \
 118	vbroadcasti128 .Lpost_tf_lo_s1(%rip), t0; \
 119	vbroadcasti128 .Lpost_tf_hi_s1(%rip), t1; \
 120	vaesenclast t4##_x, x2##_x, x2##_x; \
 121	vaesenclast t4##_x, t6##_x, t6##_x; \
 122	vinserti128 $1, t6##_x, x2, x2; \
 123	vaesenclast t4##_x, x5##_x, x5##_x; \
 124	vaesenclast t4##_x, t5##_x, t5##_x; \
 125	vinserti128 $1, t5##_x, x5, x5; \
 126	vaesenclast t4##_x, x1##_x, x1##_x; \
 127	vaesenclast t4##_x, t3##_x, t3##_x; \
 128	vinserti128 $1, t3##_x, x1, x1; \
 129	vaesenclast t4##_x, x4##_x, x4##_x; \
 130	vaesenclast t4##_x, t2##_x, t2##_x; \
 131	vinserti128 $1, t2##_x, x4, x4; \
 132	\
 133	/* postfilter sboxes 1 and 4 */ \
 134	vbroadcasti128 .Lpost_tf_lo_s3(%rip), t2; \
 135	vbroadcasti128 .Lpost_tf_hi_s3(%rip), t3; \
 136	filter_8bit(x0, t0, t1, t7, t6); \
 137	filter_8bit(x7, t0, t1, t7, t6); \
 138	filter_8bit(x3, t0, t1, t7, t6); \
 139	filter_8bit(x6, t0, t1, t7, t6); \
 140	\
 141	/* postfilter sbox 3 */ \
 142	vbroadcasti128 .Lpost_tf_lo_s2(%rip), t4; \
 143	vbroadcasti128 .Lpost_tf_hi_s2(%rip), t5; \
 144	filter_8bit(x2, t2, t3, t7, t6); \
 145	filter_8bit(x5, t2, t3, t7, t6); \
 146	\
 147	vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
 148	\
 149	/* postfilter sbox 2 */ \
 150	filter_8bit(x1, t4, t5, t7, t2); \
 151	filter_8bit(x4, t4, t5, t7, t2); \
 152	vpxor t7, t7, t7; \
 153	\
 154	vpsrldq $1, t0, t1; \
 155	vpsrldq $2, t0, t2; \
 156	vpshufb t7, t1, t1; \
 157	vpsrldq $3, t0, t3; \
 158	\
 159	/* P-function */ \
 160	vpxor x5, x0, x0; \
 161	vpxor x6, x1, x1; \
 162	vpxor x7, x2, x2; \
 163	vpxor x4, x3, x3; \
 164	\
 165	vpshufb t7, t2, t2; \
 166	vpsrldq $4, t0, t4; \
 167	vpshufb t7, t3, t3; \
 168	vpsrldq $5, t0, t5; \
 169	vpshufb t7, t4, t4; \
 170	\
 171	vpxor x2, x4, x4; \
 172	vpxor x3, x5, x5; \
 173	vpxor x0, x6, x6; \
 174	vpxor x1, x7, x7; \
 175	\
 176	vpsrldq $6, t0, t6; \
 177	vpshufb t7, t5, t5; \
 178	vpshufb t7, t6, t6; \
 179	\
 180	vpxor x7, x0, x0; \
 181	vpxor x4, x1, x1; \
 182	vpxor x5, x2, x2; \
 183	vpxor x6, x3, x3; \
 184	\
 185	vpxor x3, x4, x4; \
 186	vpxor x0, x5, x5; \
 187	vpxor x1, x6, x6; \
 188	vpxor x2, x7, x7; /* note: high and low parts swapped */ \
 189	\
 190	/* Add key material and result to CD (x becomes new CD) */ \
 191	\
 192	vpxor t6, x1, x1; \
 193	vpxor 5 * 32(mem_cd), x1, x1; \
 194	\
 195	vpsrldq $7, t0, t6; \
 196	vpshufb t7, t0, t0; \
 197	vpshufb t7, t6, t7; \
 198	\
 199	vpxor t7, x0, x0; \
 200	vpxor 4 * 32(mem_cd), x0, x0; \
 201	\
 202	vpxor t5, x2, x2; \
 203	vpxor 6 * 32(mem_cd), x2, x2; \
 204	\
 205	vpxor t4, x3, x3; \
 206	vpxor 7 * 32(mem_cd), x3, x3; \
 207	\
 208	vpxor t3, x4, x4; \
 209	vpxor 0 * 32(mem_cd), x4, x4; \
 210	\
 211	vpxor t2, x5, x5; \
 212	vpxor 1 * 32(mem_cd), x5, x5; \
 213	\
 214	vpxor t1, x6, x6; \
 215	vpxor 2 * 32(mem_cd), x6, x6; \
 216	\
 217	vpxor t0, x7, x7; \
 218	vpxor 3 * 32(mem_cd), x7, x7;
 219
 220/*
 221 * Size optimization... with inlined roundsm32 binary would be over 5 times
 222 * larger and would only marginally faster.
 223 */
 224SYM_FUNC_START_LOCAL(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
 
 225	roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 226		  %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
 227		  %rcx, (%r9));
 228	RET;
 229SYM_FUNC_END(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
 230
 231SYM_FUNC_START_LOCAL(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
 
 232	roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
 233		  %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
 234		  %rax, (%r9));
 235	RET;
 236SYM_FUNC_END(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
 237
 238/*
 239 * IN/OUT:
 240 *  x0..x7: byte-sliced AB state preloaded
 241 *  mem_ab: byte-sliced AB state in memory
 242 *  mem_cb: byte-sliced CD state in memory
 243 */
 244#define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 245		      y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
 246	leaq (key_table + (i) * 8)(CTX), %r9; \
 247	call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
 248	\
 249	vmovdqu x0, 4 * 32(mem_cd); \
 250	vmovdqu x1, 5 * 32(mem_cd); \
 251	vmovdqu x2, 6 * 32(mem_cd); \
 252	vmovdqu x3, 7 * 32(mem_cd); \
 253	vmovdqu x4, 0 * 32(mem_cd); \
 254	vmovdqu x5, 1 * 32(mem_cd); \
 255	vmovdqu x6, 2 * 32(mem_cd); \
 256	vmovdqu x7, 3 * 32(mem_cd); \
 257	\
 258	leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
 259	call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
 260	\
 261	store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
 262
 263#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
 264
 265#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
 266	/* Store new AB state */ \
 267	vmovdqu x4, 4 * 32(mem_ab); \
 268	vmovdqu x5, 5 * 32(mem_ab); \
 269	vmovdqu x6, 6 * 32(mem_ab); \
 270	vmovdqu x7, 7 * 32(mem_ab); \
 271	vmovdqu x0, 0 * 32(mem_ab); \
 272	vmovdqu x1, 1 * 32(mem_ab); \
 273	vmovdqu x2, 2 * 32(mem_ab); \
 274	vmovdqu x3, 3 * 32(mem_ab);
 275
 276#define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 277		      y6, y7, mem_ab, mem_cd, i) \
 278	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 279		      y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
 280	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 281		      y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
 282	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 283		      y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
 284
 285#define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 286		      y6, y7, mem_ab, mem_cd, i) \
 287	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 288		      y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
 289	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 290		      y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
 291	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 292		      y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
 293
 294/*
 295 * IN:
 296 *  v0..3: byte-sliced 32-bit integers
 297 * OUT:
 298 *  v0..3: (IN <<< 1)
 299 */
 300#define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
 301	vpcmpgtb v0, zero, t0; \
 302	vpaddb v0, v0, v0; \
 303	vpabsb t0, t0; \
 304	\
 305	vpcmpgtb v1, zero, t1; \
 306	vpaddb v1, v1, v1; \
 307	vpabsb t1, t1; \
 308	\
 309	vpcmpgtb v2, zero, t2; \
 310	vpaddb v2, v2, v2; \
 311	vpabsb t2, t2; \
 312	\
 313	vpor t0, v1, v1; \
 314	\
 315	vpcmpgtb v3, zero, t0; \
 316	vpaddb v3, v3, v3; \
 317	vpabsb t0, t0; \
 318	\
 319	vpor t1, v2, v2; \
 320	vpor t2, v3, v3; \
 321	vpor t0, v0, v0;
 322
 323/*
 324 * IN:
 325 *   r: byte-sliced AB state in memory
 326 *   l: byte-sliced CD state in memory
 327 * OUT:
 328 *   x0..x7: new byte-sliced CD state
 329 */
 330#define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
 331	      tt1, tt2, tt3, kll, klr, krl, krr) \
 332	/* \
 333	 * t0 = kll; \
 334	 * t0 &= ll; \
 335	 * lr ^= rol32(t0, 1); \
 336	 */ \
 337	vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
 338	vpxor tt0, tt0, tt0; \
 339	vpshufb tt0, t0, t3; \
 340	vpsrldq $1, t0, t0; \
 341	vpshufb tt0, t0, t2; \
 342	vpsrldq $1, t0, t0; \
 343	vpshufb tt0, t0, t1; \
 344	vpsrldq $1, t0, t0; \
 345	vpshufb tt0, t0, t0; \
 346	\
 347	vpand l0, t0, t0; \
 348	vpand l1, t1, t1; \
 349	vpand l2, t2, t2; \
 350	vpand l3, t3, t3; \
 351	\
 352	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
 353	\
 354	vpxor l4, t0, l4; \
 355	vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
 356	vmovdqu l4, 4 * 32(l); \
 357	vpxor l5, t1, l5; \
 358	vmovdqu l5, 5 * 32(l); \
 359	vpxor l6, t2, l6; \
 360	vmovdqu l6, 6 * 32(l); \
 361	vpxor l7, t3, l7; \
 362	vmovdqu l7, 7 * 32(l); \
 363	\
 364	/* \
 365	 * t2 = krr; \
 366	 * t2 |= rr; \
 367	 * rl ^= t2; \
 368	 */ \
 369	\
 370	vpshufb tt0, t0, t3; \
 371	vpsrldq $1, t0, t0; \
 372	vpshufb tt0, t0, t2; \
 373	vpsrldq $1, t0, t0; \
 374	vpshufb tt0, t0, t1; \
 375	vpsrldq $1, t0, t0; \
 376	vpshufb tt0, t0, t0; \
 377	\
 378	vpor 4 * 32(r), t0, t0; \
 379	vpor 5 * 32(r), t1, t1; \
 380	vpor 6 * 32(r), t2, t2; \
 381	vpor 7 * 32(r), t3, t3; \
 382	\
 383	vpxor 0 * 32(r), t0, t0; \
 384	vpxor 1 * 32(r), t1, t1; \
 385	vpxor 2 * 32(r), t2, t2; \
 386	vpxor 3 * 32(r), t3, t3; \
 387	vmovdqu t0, 0 * 32(r); \
 388	vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
 389	vmovdqu t1, 1 * 32(r); \
 390	vmovdqu t2, 2 * 32(r); \
 391	vmovdqu t3, 3 * 32(r); \
 392	\
 393	/* \
 394	 * t2 = krl; \
 395	 * t2 &= rl; \
 396	 * rr ^= rol32(t2, 1); \
 397	 */ \
 398	vpshufb tt0, t0, t3; \
 399	vpsrldq $1, t0, t0; \
 400	vpshufb tt0, t0, t2; \
 401	vpsrldq $1, t0, t0; \
 402	vpshufb tt0, t0, t1; \
 403	vpsrldq $1, t0, t0; \
 404	vpshufb tt0, t0, t0; \
 405	\
 406	vpand 0 * 32(r), t0, t0; \
 407	vpand 1 * 32(r), t1, t1; \
 408	vpand 2 * 32(r), t2, t2; \
 409	vpand 3 * 32(r), t3, t3; \
 410	\
 411	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
 412	\
 413	vpxor 4 * 32(r), t0, t0; \
 414	vpxor 5 * 32(r), t1, t1; \
 415	vpxor 6 * 32(r), t2, t2; \
 416	vpxor 7 * 32(r), t3, t3; \
 417	vmovdqu t0, 4 * 32(r); \
 418	vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
 419	vmovdqu t1, 5 * 32(r); \
 420	vmovdqu t2, 6 * 32(r); \
 421	vmovdqu t3, 7 * 32(r); \
 422	\
 423	/* \
 424	 * t0 = klr; \
 425	 * t0 |= lr; \
 426	 * ll ^= t0; \
 427	 */ \
 428	\
 429	vpshufb tt0, t0, t3; \
 430	vpsrldq $1, t0, t0; \
 431	vpshufb tt0, t0, t2; \
 432	vpsrldq $1, t0, t0; \
 433	vpshufb tt0, t0, t1; \
 434	vpsrldq $1, t0, t0; \
 435	vpshufb tt0, t0, t0; \
 436	\
 437	vpor l4, t0, t0; \
 438	vpor l5, t1, t1; \
 439	vpor l6, t2, t2; \
 440	vpor l7, t3, t3; \
 441	\
 442	vpxor l0, t0, l0; \
 443	vmovdqu l0, 0 * 32(l); \
 444	vpxor l1, t1, l1; \
 445	vmovdqu l1, 1 * 32(l); \
 446	vpxor l2, t2, l2; \
 447	vmovdqu l2, 2 * 32(l); \
 448	vpxor l3, t3, l3; \
 449	vmovdqu l3, 3 * 32(l);
 450
 451#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
 452	vpunpckhdq x1, x0, t2; \
 453	vpunpckldq x1, x0, x0; \
 454	\
 455	vpunpckldq x3, x2, t1; \
 456	vpunpckhdq x3, x2, x2; \
 457	\
 458	vpunpckhqdq t1, x0, x1; \
 459	vpunpcklqdq t1, x0, x0; \
 460	\
 461	vpunpckhqdq x2, t2, x3; \
 462	vpunpcklqdq x2, t2, x2;
 463
 464#define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
 465			      a3, b3, c3, d3, st0, st1) \
 466	vmovdqu d2, st0; \
 467	vmovdqu d3, st1; \
 468	transpose_4x4(a0, a1, a2, a3, d2, d3); \
 469	transpose_4x4(b0, b1, b2, b3, d2, d3); \
 470	vmovdqu st0, d2; \
 471	vmovdqu st1, d3; \
 472	\
 473	vmovdqu a0, st0; \
 474	vmovdqu a1, st1; \
 475	transpose_4x4(c0, c1, c2, c3, a0, a1); \
 476	transpose_4x4(d0, d1, d2, d3, a0, a1); \
 477	\
 478	vbroadcasti128 .Lshufb_16x16b(%rip), a0; \
 479	vmovdqu st1, a1; \
 480	vpshufb a0, a2, a2; \
 481	vpshufb a0, a3, a3; \
 482	vpshufb a0, b0, b0; \
 483	vpshufb a0, b1, b1; \
 484	vpshufb a0, b2, b2; \
 485	vpshufb a0, b3, b3; \
 486	vpshufb a0, a1, a1; \
 487	vpshufb a0, c0, c0; \
 488	vpshufb a0, c1, c1; \
 489	vpshufb a0, c2, c2; \
 490	vpshufb a0, c3, c3; \
 491	vpshufb a0, d0, d0; \
 492	vpshufb a0, d1, d1; \
 493	vpshufb a0, d2, d2; \
 494	vpshufb a0, d3, d3; \
 495	vmovdqu d3, st1; \
 496	vmovdqu st0, d3; \
 497	vpshufb a0, d3, a0; \
 498	vmovdqu d2, st0; \
 499	\
 500	transpose_4x4(a0, b0, c0, d0, d2, d3); \
 501	transpose_4x4(a1, b1, c1, d1, d2, d3); \
 502	vmovdqu st0, d2; \
 503	vmovdqu st1, d3; \
 504	\
 505	vmovdqu b0, st0; \
 506	vmovdqu b1, st1; \
 507	transpose_4x4(a2, b2, c2, d2, b0, b1); \
 508	transpose_4x4(a3, b3, c3, d3, b0, b1); \
 509	vmovdqu st0, b0; \
 510	vmovdqu st1, b1; \
 511	/* does not adjust output bytes inside vectors */
 512
 513/* load blocks to registers and apply pre-whitening */
 514#define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 515		     y6, y7, rio, key) \
 516	vpbroadcastq key, x0; \
 517	vpshufb .Lpack_bswap(%rip), x0, x0; \
 518	\
 519	vpxor 0 * 32(rio), x0, y7; \
 520	vpxor 1 * 32(rio), x0, y6; \
 521	vpxor 2 * 32(rio), x0, y5; \
 522	vpxor 3 * 32(rio), x0, y4; \
 523	vpxor 4 * 32(rio), x0, y3; \
 524	vpxor 5 * 32(rio), x0, y2; \
 525	vpxor 6 * 32(rio), x0, y1; \
 526	vpxor 7 * 32(rio), x0, y0; \
 527	vpxor 8 * 32(rio), x0, x7; \
 528	vpxor 9 * 32(rio), x0, x6; \
 529	vpxor 10 * 32(rio), x0, x5; \
 530	vpxor 11 * 32(rio), x0, x4; \
 531	vpxor 12 * 32(rio), x0, x3; \
 532	vpxor 13 * 32(rio), x0, x2; \
 533	vpxor 14 * 32(rio), x0, x1; \
 534	vpxor 15 * 32(rio), x0, x0;
 535
 536/* byteslice pre-whitened blocks and store to temporary memory */
 537#define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 538		      y6, y7, mem_ab, mem_cd) \
 539	byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
 540			      y4, y5, y6, y7, (mem_ab), (mem_cd)); \
 541	\
 542	vmovdqu x0, 0 * 32(mem_ab); \
 543	vmovdqu x1, 1 * 32(mem_ab); \
 544	vmovdqu x2, 2 * 32(mem_ab); \
 545	vmovdqu x3, 3 * 32(mem_ab); \
 546	vmovdqu x4, 4 * 32(mem_ab); \
 547	vmovdqu x5, 5 * 32(mem_ab); \
 548	vmovdqu x6, 6 * 32(mem_ab); \
 549	vmovdqu x7, 7 * 32(mem_ab); \
 550	vmovdqu y0, 0 * 32(mem_cd); \
 551	vmovdqu y1, 1 * 32(mem_cd); \
 552	vmovdqu y2, 2 * 32(mem_cd); \
 553	vmovdqu y3, 3 * 32(mem_cd); \
 554	vmovdqu y4, 4 * 32(mem_cd); \
 555	vmovdqu y5, 5 * 32(mem_cd); \
 556	vmovdqu y6, 6 * 32(mem_cd); \
 557	vmovdqu y7, 7 * 32(mem_cd);
 558
 559/* de-byteslice, apply post-whitening and store blocks */
 560#define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
 561		    y5, y6, y7, key, stack_tmp0, stack_tmp1) \
 562	byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
 563			      y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
 564	\
 565	vmovdqu x0, stack_tmp0; \
 566	\
 567	vpbroadcastq key, x0; \
 568	vpshufb .Lpack_bswap(%rip), x0, x0; \
 569	\
 570	vpxor x0, y7, y7; \
 571	vpxor x0, y6, y6; \
 572	vpxor x0, y5, y5; \
 573	vpxor x0, y4, y4; \
 574	vpxor x0, y3, y3; \
 575	vpxor x0, y2, y2; \
 576	vpxor x0, y1, y1; \
 577	vpxor x0, y0, y0; \
 578	vpxor x0, x7, x7; \
 579	vpxor x0, x6, x6; \
 580	vpxor x0, x5, x5; \
 581	vpxor x0, x4, x4; \
 582	vpxor x0, x3, x3; \
 583	vpxor x0, x2, x2; \
 584	vpxor x0, x1, x1; \
 585	vpxor stack_tmp0, x0, x0;
 586
 587#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 588		     y6, y7, rio) \
 589	vmovdqu x0, 0 * 32(rio); \
 590	vmovdqu x1, 1 * 32(rio); \
 591	vmovdqu x2, 2 * 32(rio); \
 592	vmovdqu x3, 3 * 32(rio); \
 593	vmovdqu x4, 4 * 32(rio); \
 594	vmovdqu x5, 5 * 32(rio); \
 595	vmovdqu x6, 6 * 32(rio); \
 596	vmovdqu x7, 7 * 32(rio); \
 597	vmovdqu y0, 8 * 32(rio); \
 598	vmovdqu y1, 9 * 32(rio); \
 599	vmovdqu y2, 10 * 32(rio); \
 600	vmovdqu y3, 11 * 32(rio); \
 601	vmovdqu y4, 12 * 32(rio); \
 602	vmovdqu y5, 13 * 32(rio); \
 603	vmovdqu y6, 14 * 32(rio); \
 604	vmovdqu y7, 15 * 32(rio);
 605
 606
 607.section	.rodata.cst32.shufb_16x16b, "aM", @progbits, 32
 608.align 32
 
 609#define SHUFB_BYTES(idx) \
 610	0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
 
 611.Lshufb_16x16b:
 612	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
 613	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
 614
 615.section	.rodata.cst32.pack_bswap, "aM", @progbits, 32
 616.align 32
 617.Lpack_bswap:
 618	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
 619	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
 620
 621/* NB: section is mergeable, all elements must be aligned 16-byte blocks */
 622.section	.rodata.cst16, "aM", @progbits, 16
 623.align 16
 
 
 
 
 
 
 624
 625/*
 626 * pre-SubByte transform
 627 *
 628 * pre-lookup for sbox1, sbox2, sbox3:
 629 *   swap_bitendianness(
 630 *       isom_map_camellia_to_aes(
 631 *           camellia_f(
 632 *               swap_bitendianess(in)
 633 *           )
 634 *       )
 635 *   )
 636 *
 637 * (note: '⊕ 0xc5' inside camellia_f())
 638 */
 639.Lpre_tf_lo_s1:
 640	.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
 641	.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
 642.Lpre_tf_hi_s1:
 643	.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
 644	.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
 645
 646/*
 647 * pre-SubByte transform
 648 *
 649 * pre-lookup for sbox4:
 650 *   swap_bitendianness(
 651 *       isom_map_camellia_to_aes(
 652 *           camellia_f(
 653 *               swap_bitendianess(in <<< 1)
 654 *           )
 655 *       )
 656 *   )
 657 *
 658 * (note: '⊕ 0xc5' inside camellia_f())
 659 */
 660.Lpre_tf_lo_s4:
 661	.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
 662	.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
 663.Lpre_tf_hi_s4:
 664	.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
 665	.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
 666
 667/*
 668 * post-SubByte transform
 669 *
 670 * post-lookup for sbox1, sbox4:
 671 *  swap_bitendianness(
 672 *      camellia_h(
 673 *          isom_map_aes_to_camellia(
 674 *              swap_bitendianness(
 675 *                  aes_inverse_affine_transform(in)
 676 *              )
 677 *          )
 678 *      )
 679 *  )
 680 *
 681 * (note: '⊕ 0x6e' inside camellia_h())
 682 */
 683.Lpost_tf_lo_s1:
 684	.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
 685	.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
 686.Lpost_tf_hi_s1:
 687	.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
 688	.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
 689
 690/*
 691 * post-SubByte transform
 692 *
 693 * post-lookup for sbox2:
 694 *  swap_bitendianness(
 695 *      camellia_h(
 696 *          isom_map_aes_to_camellia(
 697 *              swap_bitendianness(
 698 *                  aes_inverse_affine_transform(in)
 699 *              )
 700 *          )
 701 *      )
 702 *  ) <<< 1
 703 *
 704 * (note: '⊕ 0x6e' inside camellia_h())
 705 */
 706.Lpost_tf_lo_s2:
 707	.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
 708	.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
 709.Lpost_tf_hi_s2:
 710	.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
 711	.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
 712
 713/*
 714 * post-SubByte transform
 715 *
 716 * post-lookup for sbox3:
 717 *  swap_bitendianness(
 718 *      camellia_h(
 719 *          isom_map_aes_to_camellia(
 720 *              swap_bitendianness(
 721 *                  aes_inverse_affine_transform(in)
 722 *              )
 723 *          )
 724 *      )
 725 *  ) >>> 1
 726 *
 727 * (note: '⊕ 0x6e' inside camellia_h())
 728 */
 729.Lpost_tf_lo_s3:
 730	.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
 731	.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
 732.Lpost_tf_hi_s3:
 733	.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
 734	.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
 735
 736/* For isolating SubBytes from AESENCLAST, inverse shift row */
 737.Linv_shift_row:
 738	.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
 739	.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
 740
 741.section	.rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
 742.align 4
 743/* 4-bit mask */
 744.L0f0f0f0f:
 745	.long 0x0f0f0f0f
 746
 747.text
 748
 749SYM_FUNC_START_LOCAL(__camellia_enc_blk32)
 
 750	/* input:
 751	 *	%rdi: ctx, CTX
 752	 *	%rax: temporary storage, 512 bytes
 753	 *	%ymm0..%ymm15: 32 plaintext blocks
 754	 * output:
 755	 *	%ymm0..%ymm15: 32 encrypted blocks, order swapped:
 756	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
 757	 */
 758	FRAME_BEGIN
 759
 760	leaq 8 * 32(%rax), %rcx;
 761
 762	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 763		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 764		      %ymm15, %rax, %rcx);
 765
 766	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 767		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 768		     %ymm15, %rax, %rcx, 0);
 769
 770	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 771	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 772	      %ymm15,
 773	      ((key_table + (8) * 8) + 0)(CTX),
 774	      ((key_table + (8) * 8) + 4)(CTX),
 775	      ((key_table + (8) * 8) + 8)(CTX),
 776	      ((key_table + (8) * 8) + 12)(CTX));
 777
 778	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 779		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 780		     %ymm15, %rax, %rcx, 8);
 781
 782	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 783	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 784	      %ymm15,
 785	      ((key_table + (16) * 8) + 0)(CTX),
 786	      ((key_table + (16) * 8) + 4)(CTX),
 787	      ((key_table + (16) * 8) + 8)(CTX),
 788	      ((key_table + (16) * 8) + 12)(CTX));
 789
 790	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 791		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 792		     %ymm15, %rax, %rcx, 16);
 793
 794	movl $24, %r8d;
 795	cmpl $16, key_length(CTX);
 796	jne .Lenc_max32;
 797
 798.Lenc_done:
 799	/* load CD for output */
 800	vmovdqu 0 * 32(%rcx), %ymm8;
 801	vmovdqu 1 * 32(%rcx), %ymm9;
 802	vmovdqu 2 * 32(%rcx), %ymm10;
 803	vmovdqu 3 * 32(%rcx), %ymm11;
 804	vmovdqu 4 * 32(%rcx), %ymm12;
 805	vmovdqu 5 * 32(%rcx), %ymm13;
 806	vmovdqu 6 * 32(%rcx), %ymm14;
 807	vmovdqu 7 * 32(%rcx), %ymm15;
 808
 809	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 810		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 811		    %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
 812
 813	FRAME_END
 814	RET;
 815
 816.align 8
 817.Lenc_max32:
 818	movl $32, %r8d;
 819
 820	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 821	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 822	      %ymm15,
 823	      ((key_table + (24) * 8) + 0)(CTX),
 824	      ((key_table + (24) * 8) + 4)(CTX),
 825	      ((key_table + (24) * 8) + 8)(CTX),
 826	      ((key_table + (24) * 8) + 12)(CTX));
 827
 828	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 829		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 830		     %ymm15, %rax, %rcx, 24);
 831
 832	jmp .Lenc_done;
 833SYM_FUNC_END(__camellia_enc_blk32)
 834
 835SYM_FUNC_START_LOCAL(__camellia_dec_blk32)
 
 836	/* input:
 837	 *	%rdi: ctx, CTX
 838	 *	%rax: temporary storage, 512 bytes
 839	 *	%r8d: 24 for 16 byte key, 32 for larger
 840	 *	%ymm0..%ymm15: 16 encrypted blocks
 841	 * output:
 842	 *	%ymm0..%ymm15: 16 plaintext blocks, order swapped:
 843	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
 844	 */
 845	FRAME_BEGIN
 846
 847	leaq 8 * 32(%rax), %rcx;
 848
 849	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 850		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 851		      %ymm15, %rax, %rcx);
 852
 853	cmpl $32, %r8d;
 854	je .Ldec_max32;
 855
 856.Ldec_max24:
 857	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 858		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 859		     %ymm15, %rax, %rcx, 16);
 860
 861	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 862	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 863	      %ymm15,
 864	      ((key_table + (16) * 8) + 8)(CTX),
 865	      ((key_table + (16) * 8) + 12)(CTX),
 866	      ((key_table + (16) * 8) + 0)(CTX),
 867	      ((key_table + (16) * 8) + 4)(CTX));
 868
 869	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 870		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 871		     %ymm15, %rax, %rcx, 8);
 872
 873	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 874	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 875	      %ymm15,
 876	      ((key_table + (8) * 8) + 8)(CTX),
 877	      ((key_table + (8) * 8) + 12)(CTX),
 878	      ((key_table + (8) * 8) + 0)(CTX),
 879	      ((key_table + (8) * 8) + 4)(CTX));
 880
 881	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 882		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 883		     %ymm15, %rax, %rcx, 0);
 884
 885	/* load CD for output */
 886	vmovdqu 0 * 32(%rcx), %ymm8;
 887	vmovdqu 1 * 32(%rcx), %ymm9;
 888	vmovdqu 2 * 32(%rcx), %ymm10;
 889	vmovdqu 3 * 32(%rcx), %ymm11;
 890	vmovdqu 4 * 32(%rcx), %ymm12;
 891	vmovdqu 5 * 32(%rcx), %ymm13;
 892	vmovdqu 6 * 32(%rcx), %ymm14;
 893	vmovdqu 7 * 32(%rcx), %ymm15;
 894
 895	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 896		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 897		    %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
 898
 899	FRAME_END
 900	RET;
 901
 902.align 8
 903.Ldec_max32:
 904	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 905		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 906		     %ymm15, %rax, %rcx, 24);
 907
 908	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 909	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 910	      %ymm15,
 911	      ((key_table + (24) * 8) + 8)(CTX),
 912	      ((key_table + (24) * 8) + 12)(CTX),
 913	      ((key_table + (24) * 8) + 0)(CTX),
 914	      ((key_table + (24) * 8) + 4)(CTX));
 915
 916	jmp .Ldec_max24;
 917SYM_FUNC_END(__camellia_dec_blk32)
 918
 919SYM_FUNC_START(camellia_ecb_enc_32way)
 920	/* input:
 921	 *	%rdi: ctx, CTX
 922	 *	%rsi: dst (32 blocks)
 923	 *	%rdx: src (32 blocks)
 924	 */
 925	FRAME_BEGIN
 926
 927	vzeroupper;
 928
 929	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 930		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 931		     %ymm15, %rdx, (key_table)(CTX));
 932
 933	/* now dst can be used as temporary buffer (even in src == dst case) */
 934	movq	%rsi, %rax;
 935
 936	call __camellia_enc_blk32;
 937
 938	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
 939		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
 940		     %ymm8, %rsi);
 941
 942	vzeroupper;
 943
 944	FRAME_END
 945	RET;
 946SYM_FUNC_END(camellia_ecb_enc_32way)
 947
 948SYM_FUNC_START(camellia_ecb_dec_32way)
 949	/* input:
 950	 *	%rdi: ctx, CTX
 951	 *	%rsi: dst (32 blocks)
 952	 *	%rdx: src (32 blocks)
 953	 */
 954	FRAME_BEGIN
 955
 956	vzeroupper;
 957
 958	cmpl $16, key_length(CTX);
 959	movl $32, %r8d;
 960	movl $24, %eax;
 961	cmovel %eax, %r8d; /* max */
 962
 963	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 964		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 965		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
 966
 967	/* now dst can be used as temporary buffer (even in src == dst case) */
 968	movq	%rsi, %rax;
 969
 970	call __camellia_dec_blk32;
 971
 972	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
 973		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
 974		     %ymm8, %rsi);
 975
 976	vzeroupper;
 977
 978	FRAME_END
 979	RET;
 980SYM_FUNC_END(camellia_ecb_dec_32way)
 981
 982SYM_FUNC_START(camellia_cbc_dec_32way)
 983	/* input:
 984	 *	%rdi: ctx, CTX
 985	 *	%rsi: dst (32 blocks)
 986	 *	%rdx: src (32 blocks)
 987	 */
 988	FRAME_BEGIN
 989	subq $(16 * 32), %rsp;
 990
 991	vzeroupper;
 992
 993	cmpl $16, key_length(CTX);
 994	movl $32, %r8d;
 995	movl $24, %eax;
 996	cmovel %eax, %r8d; /* max */
 997
 998	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 999		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
1000		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
1001
 
1002	cmpq %rsi, %rdx;
1003	je .Lcbc_dec_use_stack;
1004
1005	/* dst can be used as temporary storage, src is not overwritten. */
1006	movq %rsi, %rax;
1007	jmp .Lcbc_dec_continue;
1008
1009.Lcbc_dec_use_stack:
1010	/*
1011	 * dst still in-use (because dst == src), so use stack for temporary
1012	 * storage.
1013	 */
 
1014	movq %rsp, %rax;
1015
1016.Lcbc_dec_continue:
1017	call __camellia_dec_blk32;
1018
1019	vmovdqu %ymm7, (%rax);
1020	vpxor %ymm7, %ymm7, %ymm7;
1021	vinserti128 $1, (%rdx), %ymm7, %ymm7;
1022	vpxor (%rax), %ymm7, %ymm7;
 
1023	vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1024	vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1025	vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1026	vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1027	vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1028	vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1029	vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1030	vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1031	vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1032	vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1033	vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1034	vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1035	vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1036	vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1037	vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1038	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1039		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1040		     %ymm8, %rsi);
1041
1042	vzeroupper;
1043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044	addq $(16 * 32), %rsp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045	FRAME_END
1046	RET;
1047SYM_FUNC_END(camellia_cbc_dec_32way)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v4.6
 
   1/*
   2 * x86_64/AVX2/AES-NI assembler implementation of Camellia
   3 *
   4 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 */
  12
  13#include <linux/linkage.h>
  14#include <asm/frame.h>
  15
  16#define CAMELLIA_TABLE_BYTE_LEN 272
  17
  18/* struct camellia_ctx: */
  19#define key_table 0
  20#define key_length CAMELLIA_TABLE_BYTE_LEN
  21
  22/* register macros */
  23#define CTX %rdi
  24#define RIO %r8
  25
  26/**********************************************************************
  27  helper macros
  28 **********************************************************************/
  29#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
  30	vpand x, mask4bit, tmp0; \
  31	vpandn x, mask4bit, x; \
  32	vpsrld $4, x, x; \
  33	\
  34	vpshufb tmp0, lo_t, tmp0; \
  35	vpshufb x, hi_t, x; \
  36	vpxor tmp0, x, x;
  37
  38#define ymm0_x xmm0
  39#define ymm1_x xmm1
  40#define ymm2_x xmm2
  41#define ymm3_x xmm3
  42#define ymm4_x xmm4
  43#define ymm5_x xmm5
  44#define ymm6_x xmm6
  45#define ymm7_x xmm7
  46#define ymm8_x xmm8
  47#define ymm9_x xmm9
  48#define ymm10_x xmm10
  49#define ymm11_x xmm11
  50#define ymm12_x xmm12
  51#define ymm13_x xmm13
  52#define ymm14_x xmm14
  53#define ymm15_x xmm15
  54
  55/**********************************************************************
  56  32-way camellia
  57 **********************************************************************/
  58
  59/*
  60 * IN:
  61 *   x0..x7: byte-sliced AB state
  62 *   mem_cd: register pointer storing CD state
  63 *   key: index for key material
  64 * OUT:
  65 *   x0..x7: new byte-sliced CD state
  66 */
  67#define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
  68		  t7, mem_cd, key) \
  69	/* \
  70	 * S-function with AES subbytes \
  71	 */ \
  72	vbroadcasti128 .Linv_shift_row, t4; \
  73	vpbroadcastd .L0f0f0f0f, t7; \
  74	vbroadcasti128 .Lpre_tf_lo_s1, t5; \
  75	vbroadcasti128 .Lpre_tf_hi_s1, t6; \
  76	vbroadcasti128 .Lpre_tf_lo_s4, t2; \
  77	vbroadcasti128 .Lpre_tf_hi_s4, t3; \
  78	\
  79	/* AES inverse shift rows */ \
  80	vpshufb t4, x0, x0; \
  81	vpshufb t4, x7, x7; \
  82	vpshufb t4, x3, x3; \
  83	vpshufb t4, x6, x6; \
  84	vpshufb t4, x2, x2; \
  85	vpshufb t4, x5, x5; \
  86	vpshufb t4, x1, x1; \
  87	vpshufb t4, x4, x4; \
  88	\
  89	/* prefilter sboxes 1, 2 and 3 */ \
  90	/* prefilter sbox 4 */ \
  91	filter_8bit(x0, t5, t6, t7, t4); \
  92	filter_8bit(x7, t5, t6, t7, t4); \
  93	vextracti128 $1, x0, t0##_x; \
  94	vextracti128 $1, x7, t1##_x; \
  95	filter_8bit(x3, t2, t3, t7, t4); \
  96	filter_8bit(x6, t2, t3, t7, t4); \
  97	vextracti128 $1, x3, t3##_x; \
  98	vextracti128 $1, x6, t2##_x; \
  99	filter_8bit(x2, t5, t6, t7, t4); \
 100	filter_8bit(x5, t5, t6, t7, t4); \
 101	filter_8bit(x1, t5, t6, t7, t4); \
 102	filter_8bit(x4, t5, t6, t7, t4); \
 103	\
 104	vpxor t4##_x, t4##_x, t4##_x; \
 105	\
 106	/* AES subbytes + AES shift rows */ \
 107	vextracti128 $1, x2, t6##_x; \
 108	vextracti128 $1, x5, t5##_x; \
 109	vaesenclast t4##_x, x0##_x, x0##_x; \
 110	vaesenclast t4##_x, t0##_x, t0##_x; \
 111	vinserti128 $1, t0##_x, x0, x0; \
 112	vaesenclast t4##_x, x7##_x, x7##_x; \
 113	vaesenclast t4##_x, t1##_x, t1##_x; \
 114	vinserti128 $1, t1##_x, x7, x7; \
 115	vaesenclast t4##_x, x3##_x, x3##_x; \
 116	vaesenclast t4##_x, t3##_x, t3##_x; \
 117	vinserti128 $1, t3##_x, x3, x3; \
 118	vaesenclast t4##_x, x6##_x, x6##_x; \
 119	vaesenclast t4##_x, t2##_x, t2##_x; \
 120	vinserti128 $1, t2##_x, x6, x6; \
 121	vextracti128 $1, x1, t3##_x; \
 122	vextracti128 $1, x4, t2##_x; \
 123	vbroadcasti128 .Lpost_tf_lo_s1, t0; \
 124	vbroadcasti128 .Lpost_tf_hi_s1, t1; \
 125	vaesenclast t4##_x, x2##_x, x2##_x; \
 126	vaesenclast t4##_x, t6##_x, t6##_x; \
 127	vinserti128 $1, t6##_x, x2, x2; \
 128	vaesenclast t4##_x, x5##_x, x5##_x; \
 129	vaesenclast t4##_x, t5##_x, t5##_x; \
 130	vinserti128 $1, t5##_x, x5, x5; \
 131	vaesenclast t4##_x, x1##_x, x1##_x; \
 132	vaesenclast t4##_x, t3##_x, t3##_x; \
 133	vinserti128 $1, t3##_x, x1, x1; \
 134	vaesenclast t4##_x, x4##_x, x4##_x; \
 135	vaesenclast t4##_x, t2##_x, t2##_x; \
 136	vinserti128 $1, t2##_x, x4, x4; \
 137	\
 138	/* postfilter sboxes 1 and 4 */ \
 139	vbroadcasti128 .Lpost_tf_lo_s3, t2; \
 140	vbroadcasti128 .Lpost_tf_hi_s3, t3; \
 141	filter_8bit(x0, t0, t1, t7, t6); \
 142	filter_8bit(x7, t0, t1, t7, t6); \
 143	filter_8bit(x3, t0, t1, t7, t6); \
 144	filter_8bit(x6, t0, t1, t7, t6); \
 145	\
 146	/* postfilter sbox 3 */ \
 147	vbroadcasti128 .Lpost_tf_lo_s2, t4; \
 148	vbroadcasti128 .Lpost_tf_hi_s2, t5; \
 149	filter_8bit(x2, t2, t3, t7, t6); \
 150	filter_8bit(x5, t2, t3, t7, t6); \
 151	\
 152	vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
 153	\
 154	/* postfilter sbox 2 */ \
 155	filter_8bit(x1, t4, t5, t7, t2); \
 156	filter_8bit(x4, t4, t5, t7, t2); \
 157	vpxor t7, t7, t7; \
 158	\
 159	vpsrldq $1, t0, t1; \
 160	vpsrldq $2, t0, t2; \
 161	vpshufb t7, t1, t1; \
 162	vpsrldq $3, t0, t3; \
 163	\
 164	/* P-function */ \
 165	vpxor x5, x0, x0; \
 166	vpxor x6, x1, x1; \
 167	vpxor x7, x2, x2; \
 168	vpxor x4, x3, x3; \
 169	\
 170	vpshufb t7, t2, t2; \
 171	vpsrldq $4, t0, t4; \
 172	vpshufb t7, t3, t3; \
 173	vpsrldq $5, t0, t5; \
 174	vpshufb t7, t4, t4; \
 175	\
 176	vpxor x2, x4, x4; \
 177	vpxor x3, x5, x5; \
 178	vpxor x0, x6, x6; \
 179	vpxor x1, x7, x7; \
 180	\
 181	vpsrldq $6, t0, t6; \
 182	vpshufb t7, t5, t5; \
 183	vpshufb t7, t6, t6; \
 184	\
 185	vpxor x7, x0, x0; \
 186	vpxor x4, x1, x1; \
 187	vpxor x5, x2, x2; \
 188	vpxor x6, x3, x3; \
 189	\
 190	vpxor x3, x4, x4; \
 191	vpxor x0, x5, x5; \
 192	vpxor x1, x6, x6; \
 193	vpxor x2, x7, x7; /* note: high and low parts swapped */ \
 194	\
 195	/* Add key material and result to CD (x becomes new CD) */ \
 196	\
 197	vpxor t6, x1, x1; \
 198	vpxor 5 * 32(mem_cd), x1, x1; \
 199	\
 200	vpsrldq $7, t0, t6; \
 201	vpshufb t7, t0, t0; \
 202	vpshufb t7, t6, t7; \
 203	\
 204	vpxor t7, x0, x0; \
 205	vpxor 4 * 32(mem_cd), x0, x0; \
 206	\
 207	vpxor t5, x2, x2; \
 208	vpxor 6 * 32(mem_cd), x2, x2; \
 209	\
 210	vpxor t4, x3, x3; \
 211	vpxor 7 * 32(mem_cd), x3, x3; \
 212	\
 213	vpxor t3, x4, x4; \
 214	vpxor 0 * 32(mem_cd), x4, x4; \
 215	\
 216	vpxor t2, x5, x5; \
 217	vpxor 1 * 32(mem_cd), x5, x5; \
 218	\
 219	vpxor t1, x6, x6; \
 220	vpxor 2 * 32(mem_cd), x6, x6; \
 221	\
 222	vpxor t0, x7, x7; \
 223	vpxor 3 * 32(mem_cd), x7, x7;
 224
 225/*
 226 * Size optimization... with inlined roundsm32 binary would be over 5 times
 227 * larger and would only marginally faster.
 228 */
 229.align 8
 230roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
 231	roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 232		  %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
 233		  %rcx, (%r9));
 234	ret;
 235ENDPROC(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
 236
 237.align 8
 238roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
 239	roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
 240		  %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
 241		  %rax, (%r9));
 242	ret;
 243ENDPROC(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
 244
 245/*
 246 * IN/OUT:
 247 *  x0..x7: byte-sliced AB state preloaded
 248 *  mem_ab: byte-sliced AB state in memory
 249 *  mem_cb: byte-sliced CD state in memory
 250 */
 251#define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 252		      y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
 253	leaq (key_table + (i) * 8)(CTX), %r9; \
 254	call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
 255	\
 256	vmovdqu x0, 4 * 32(mem_cd); \
 257	vmovdqu x1, 5 * 32(mem_cd); \
 258	vmovdqu x2, 6 * 32(mem_cd); \
 259	vmovdqu x3, 7 * 32(mem_cd); \
 260	vmovdqu x4, 0 * 32(mem_cd); \
 261	vmovdqu x5, 1 * 32(mem_cd); \
 262	vmovdqu x6, 2 * 32(mem_cd); \
 263	vmovdqu x7, 3 * 32(mem_cd); \
 264	\
 265	leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
 266	call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
 267	\
 268	store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
 269
 270#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
 271
 272#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
 273	/* Store new AB state */ \
 274	vmovdqu x4, 4 * 32(mem_ab); \
 275	vmovdqu x5, 5 * 32(mem_ab); \
 276	vmovdqu x6, 6 * 32(mem_ab); \
 277	vmovdqu x7, 7 * 32(mem_ab); \
 278	vmovdqu x0, 0 * 32(mem_ab); \
 279	vmovdqu x1, 1 * 32(mem_ab); \
 280	vmovdqu x2, 2 * 32(mem_ab); \
 281	vmovdqu x3, 3 * 32(mem_ab);
 282
 283#define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 284		      y6, y7, mem_ab, mem_cd, i) \
 285	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 286		      y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
 287	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 288		      y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
 289	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 290		      y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
 291
 292#define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 293		      y6, y7, mem_ab, mem_cd, i) \
 294	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 295		      y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
 296	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 297		      y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
 298	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 299		      y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
 300
 301/*
 302 * IN:
 303 *  v0..3: byte-sliced 32-bit integers
 304 * OUT:
 305 *  v0..3: (IN <<< 1)
 306 */
 307#define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
 308	vpcmpgtb v0, zero, t0; \
 309	vpaddb v0, v0, v0; \
 310	vpabsb t0, t0; \
 311	\
 312	vpcmpgtb v1, zero, t1; \
 313	vpaddb v1, v1, v1; \
 314	vpabsb t1, t1; \
 315	\
 316	vpcmpgtb v2, zero, t2; \
 317	vpaddb v2, v2, v2; \
 318	vpabsb t2, t2; \
 319	\
 320	vpor t0, v1, v1; \
 321	\
 322	vpcmpgtb v3, zero, t0; \
 323	vpaddb v3, v3, v3; \
 324	vpabsb t0, t0; \
 325	\
 326	vpor t1, v2, v2; \
 327	vpor t2, v3, v3; \
 328	vpor t0, v0, v0;
 329
 330/*
 331 * IN:
 332 *   r: byte-sliced AB state in memory
 333 *   l: byte-sliced CD state in memory
 334 * OUT:
 335 *   x0..x7: new byte-sliced CD state
 336 */
 337#define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
 338	      tt1, tt2, tt3, kll, klr, krl, krr) \
 339	/* \
 340	 * t0 = kll; \
 341	 * t0 &= ll; \
 342	 * lr ^= rol32(t0, 1); \
 343	 */ \
 344	vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
 345	vpxor tt0, tt0, tt0; \
 346	vpshufb tt0, t0, t3; \
 347	vpsrldq $1, t0, t0; \
 348	vpshufb tt0, t0, t2; \
 349	vpsrldq $1, t0, t0; \
 350	vpshufb tt0, t0, t1; \
 351	vpsrldq $1, t0, t0; \
 352	vpshufb tt0, t0, t0; \
 353	\
 354	vpand l0, t0, t0; \
 355	vpand l1, t1, t1; \
 356	vpand l2, t2, t2; \
 357	vpand l3, t3, t3; \
 358	\
 359	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
 360	\
 361	vpxor l4, t0, l4; \
 362	vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
 363	vmovdqu l4, 4 * 32(l); \
 364	vpxor l5, t1, l5; \
 365	vmovdqu l5, 5 * 32(l); \
 366	vpxor l6, t2, l6; \
 367	vmovdqu l6, 6 * 32(l); \
 368	vpxor l7, t3, l7; \
 369	vmovdqu l7, 7 * 32(l); \
 370	\
 371	/* \
 372	 * t2 = krr; \
 373	 * t2 |= rr; \
 374	 * rl ^= t2; \
 375	 */ \
 376	\
 377	vpshufb tt0, t0, t3; \
 378	vpsrldq $1, t0, t0; \
 379	vpshufb tt0, t0, t2; \
 380	vpsrldq $1, t0, t0; \
 381	vpshufb tt0, t0, t1; \
 382	vpsrldq $1, t0, t0; \
 383	vpshufb tt0, t0, t0; \
 384	\
 385	vpor 4 * 32(r), t0, t0; \
 386	vpor 5 * 32(r), t1, t1; \
 387	vpor 6 * 32(r), t2, t2; \
 388	vpor 7 * 32(r), t3, t3; \
 389	\
 390	vpxor 0 * 32(r), t0, t0; \
 391	vpxor 1 * 32(r), t1, t1; \
 392	vpxor 2 * 32(r), t2, t2; \
 393	vpxor 3 * 32(r), t3, t3; \
 394	vmovdqu t0, 0 * 32(r); \
 395	vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
 396	vmovdqu t1, 1 * 32(r); \
 397	vmovdqu t2, 2 * 32(r); \
 398	vmovdqu t3, 3 * 32(r); \
 399	\
 400	/* \
 401	 * t2 = krl; \
 402	 * t2 &= rl; \
 403	 * rr ^= rol32(t2, 1); \
 404	 */ \
 405	vpshufb tt0, t0, t3; \
 406	vpsrldq $1, t0, t0; \
 407	vpshufb tt0, t0, t2; \
 408	vpsrldq $1, t0, t0; \
 409	vpshufb tt0, t0, t1; \
 410	vpsrldq $1, t0, t0; \
 411	vpshufb tt0, t0, t0; \
 412	\
 413	vpand 0 * 32(r), t0, t0; \
 414	vpand 1 * 32(r), t1, t1; \
 415	vpand 2 * 32(r), t2, t2; \
 416	vpand 3 * 32(r), t3, t3; \
 417	\
 418	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
 419	\
 420	vpxor 4 * 32(r), t0, t0; \
 421	vpxor 5 * 32(r), t1, t1; \
 422	vpxor 6 * 32(r), t2, t2; \
 423	vpxor 7 * 32(r), t3, t3; \
 424	vmovdqu t0, 4 * 32(r); \
 425	vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
 426	vmovdqu t1, 5 * 32(r); \
 427	vmovdqu t2, 6 * 32(r); \
 428	vmovdqu t3, 7 * 32(r); \
 429	\
 430	/* \
 431	 * t0 = klr; \
 432	 * t0 |= lr; \
 433	 * ll ^= t0; \
 434	 */ \
 435	\
 436	vpshufb tt0, t0, t3; \
 437	vpsrldq $1, t0, t0; \
 438	vpshufb tt0, t0, t2; \
 439	vpsrldq $1, t0, t0; \
 440	vpshufb tt0, t0, t1; \
 441	vpsrldq $1, t0, t0; \
 442	vpshufb tt0, t0, t0; \
 443	\
 444	vpor l4, t0, t0; \
 445	vpor l5, t1, t1; \
 446	vpor l6, t2, t2; \
 447	vpor l7, t3, t3; \
 448	\
 449	vpxor l0, t0, l0; \
 450	vmovdqu l0, 0 * 32(l); \
 451	vpxor l1, t1, l1; \
 452	vmovdqu l1, 1 * 32(l); \
 453	vpxor l2, t2, l2; \
 454	vmovdqu l2, 2 * 32(l); \
 455	vpxor l3, t3, l3; \
 456	vmovdqu l3, 3 * 32(l);
 457
 458#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
 459	vpunpckhdq x1, x0, t2; \
 460	vpunpckldq x1, x0, x0; \
 461	\
 462	vpunpckldq x3, x2, t1; \
 463	vpunpckhdq x3, x2, x2; \
 464	\
 465	vpunpckhqdq t1, x0, x1; \
 466	vpunpcklqdq t1, x0, x0; \
 467	\
 468	vpunpckhqdq x2, t2, x3; \
 469	vpunpcklqdq x2, t2, x2;
 470
 471#define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
 472			      a3, b3, c3, d3, st0, st1) \
 473	vmovdqu d2, st0; \
 474	vmovdqu d3, st1; \
 475	transpose_4x4(a0, a1, a2, a3, d2, d3); \
 476	transpose_4x4(b0, b1, b2, b3, d2, d3); \
 477	vmovdqu st0, d2; \
 478	vmovdqu st1, d3; \
 479	\
 480	vmovdqu a0, st0; \
 481	vmovdqu a1, st1; \
 482	transpose_4x4(c0, c1, c2, c3, a0, a1); \
 483	transpose_4x4(d0, d1, d2, d3, a0, a1); \
 484	\
 485	vbroadcasti128 .Lshufb_16x16b, a0; \
 486	vmovdqu st1, a1; \
 487	vpshufb a0, a2, a2; \
 488	vpshufb a0, a3, a3; \
 489	vpshufb a0, b0, b0; \
 490	vpshufb a0, b1, b1; \
 491	vpshufb a0, b2, b2; \
 492	vpshufb a0, b3, b3; \
 493	vpshufb a0, a1, a1; \
 494	vpshufb a0, c0, c0; \
 495	vpshufb a0, c1, c1; \
 496	vpshufb a0, c2, c2; \
 497	vpshufb a0, c3, c3; \
 498	vpshufb a0, d0, d0; \
 499	vpshufb a0, d1, d1; \
 500	vpshufb a0, d2, d2; \
 501	vpshufb a0, d3, d3; \
 502	vmovdqu d3, st1; \
 503	vmovdqu st0, d3; \
 504	vpshufb a0, d3, a0; \
 505	vmovdqu d2, st0; \
 506	\
 507	transpose_4x4(a0, b0, c0, d0, d2, d3); \
 508	transpose_4x4(a1, b1, c1, d1, d2, d3); \
 509	vmovdqu st0, d2; \
 510	vmovdqu st1, d3; \
 511	\
 512	vmovdqu b0, st0; \
 513	vmovdqu b1, st1; \
 514	transpose_4x4(a2, b2, c2, d2, b0, b1); \
 515	transpose_4x4(a3, b3, c3, d3, b0, b1); \
 516	vmovdqu st0, b0; \
 517	vmovdqu st1, b1; \
 518	/* does not adjust output bytes inside vectors */
 519
 520/* load blocks to registers and apply pre-whitening */
 521#define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 522		     y6, y7, rio, key) \
 523	vpbroadcastq key, x0; \
 524	vpshufb .Lpack_bswap, x0, x0; \
 525	\
 526	vpxor 0 * 32(rio), x0, y7; \
 527	vpxor 1 * 32(rio), x0, y6; \
 528	vpxor 2 * 32(rio), x0, y5; \
 529	vpxor 3 * 32(rio), x0, y4; \
 530	vpxor 4 * 32(rio), x0, y3; \
 531	vpxor 5 * 32(rio), x0, y2; \
 532	vpxor 6 * 32(rio), x0, y1; \
 533	vpxor 7 * 32(rio), x0, y0; \
 534	vpxor 8 * 32(rio), x0, x7; \
 535	vpxor 9 * 32(rio), x0, x6; \
 536	vpxor 10 * 32(rio), x0, x5; \
 537	vpxor 11 * 32(rio), x0, x4; \
 538	vpxor 12 * 32(rio), x0, x3; \
 539	vpxor 13 * 32(rio), x0, x2; \
 540	vpxor 14 * 32(rio), x0, x1; \
 541	vpxor 15 * 32(rio), x0, x0;
 542
 543/* byteslice pre-whitened blocks and store to temporary memory */
 544#define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 545		      y6, y7, mem_ab, mem_cd) \
 546	byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
 547			      y4, y5, y6, y7, (mem_ab), (mem_cd)); \
 548	\
 549	vmovdqu x0, 0 * 32(mem_ab); \
 550	vmovdqu x1, 1 * 32(mem_ab); \
 551	vmovdqu x2, 2 * 32(mem_ab); \
 552	vmovdqu x3, 3 * 32(mem_ab); \
 553	vmovdqu x4, 4 * 32(mem_ab); \
 554	vmovdqu x5, 5 * 32(mem_ab); \
 555	vmovdqu x6, 6 * 32(mem_ab); \
 556	vmovdqu x7, 7 * 32(mem_ab); \
 557	vmovdqu y0, 0 * 32(mem_cd); \
 558	vmovdqu y1, 1 * 32(mem_cd); \
 559	vmovdqu y2, 2 * 32(mem_cd); \
 560	vmovdqu y3, 3 * 32(mem_cd); \
 561	vmovdqu y4, 4 * 32(mem_cd); \
 562	vmovdqu y5, 5 * 32(mem_cd); \
 563	vmovdqu y6, 6 * 32(mem_cd); \
 564	vmovdqu y7, 7 * 32(mem_cd);
 565
 566/* de-byteslice, apply post-whitening and store blocks */
 567#define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
 568		    y5, y6, y7, key, stack_tmp0, stack_tmp1) \
 569	byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
 570			      y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
 571	\
 572	vmovdqu x0, stack_tmp0; \
 573	\
 574	vpbroadcastq key, x0; \
 575	vpshufb .Lpack_bswap, x0, x0; \
 576	\
 577	vpxor x0, y7, y7; \
 578	vpxor x0, y6, y6; \
 579	vpxor x0, y5, y5; \
 580	vpxor x0, y4, y4; \
 581	vpxor x0, y3, y3; \
 582	vpxor x0, y2, y2; \
 583	vpxor x0, y1, y1; \
 584	vpxor x0, y0, y0; \
 585	vpxor x0, x7, x7; \
 586	vpxor x0, x6, x6; \
 587	vpxor x0, x5, x5; \
 588	vpxor x0, x4, x4; \
 589	vpxor x0, x3, x3; \
 590	vpxor x0, x2, x2; \
 591	vpxor x0, x1, x1; \
 592	vpxor stack_tmp0, x0, x0;
 593
 594#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 595		     y6, y7, rio) \
 596	vmovdqu x0, 0 * 32(rio); \
 597	vmovdqu x1, 1 * 32(rio); \
 598	vmovdqu x2, 2 * 32(rio); \
 599	vmovdqu x3, 3 * 32(rio); \
 600	vmovdqu x4, 4 * 32(rio); \
 601	vmovdqu x5, 5 * 32(rio); \
 602	vmovdqu x6, 6 * 32(rio); \
 603	vmovdqu x7, 7 * 32(rio); \
 604	vmovdqu y0, 8 * 32(rio); \
 605	vmovdqu y1, 9 * 32(rio); \
 606	vmovdqu y2, 10 * 32(rio); \
 607	vmovdqu y3, 11 * 32(rio); \
 608	vmovdqu y4, 12 * 32(rio); \
 609	vmovdqu y5, 13 * 32(rio); \
 610	vmovdqu y6, 14 * 32(rio); \
 611	vmovdqu y7, 15 * 32(rio);
 612
 613.data
 
 614.align 32
 615
 616#define SHUFB_BYTES(idx) \
 617	0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
 618
 619.Lshufb_16x16b:
 620	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
 621	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
 622
 
 
 623.Lpack_bswap:
 624	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
 625	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
 626
 627/* For CTR-mode IV byteswap */
 628.Lbswap128_mask:
 629	.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
 630
 631/* For XTS mode */
 632.Lxts_gf128mul_and_shl1_mask_0:
 633	.byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
 634.Lxts_gf128mul_and_shl1_mask_1:
 635	.byte 0x0e, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
 636
 637/*
 638 * pre-SubByte transform
 639 *
 640 * pre-lookup for sbox1, sbox2, sbox3:
 641 *   swap_bitendianness(
 642 *       isom_map_camellia_to_aes(
 643 *           camellia_f(
 644 *               swap_bitendianess(in)
 645 *           )
 646 *       )
 647 *   )
 648 *
 649 * (note: '⊕ 0xc5' inside camellia_f())
 650 */
 651.Lpre_tf_lo_s1:
 652	.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
 653	.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
 654.Lpre_tf_hi_s1:
 655	.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
 656	.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
 657
 658/*
 659 * pre-SubByte transform
 660 *
 661 * pre-lookup for sbox4:
 662 *   swap_bitendianness(
 663 *       isom_map_camellia_to_aes(
 664 *           camellia_f(
 665 *               swap_bitendianess(in <<< 1)
 666 *           )
 667 *       )
 668 *   )
 669 *
 670 * (note: '⊕ 0xc5' inside camellia_f())
 671 */
 672.Lpre_tf_lo_s4:
 673	.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
 674	.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
 675.Lpre_tf_hi_s4:
 676	.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
 677	.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
 678
 679/*
 680 * post-SubByte transform
 681 *
 682 * post-lookup for sbox1, sbox4:
 683 *  swap_bitendianness(
 684 *      camellia_h(
 685 *          isom_map_aes_to_camellia(
 686 *              swap_bitendianness(
 687 *                  aes_inverse_affine_transform(in)
 688 *              )
 689 *          )
 690 *      )
 691 *  )
 692 *
 693 * (note: '⊕ 0x6e' inside camellia_h())
 694 */
 695.Lpost_tf_lo_s1:
 696	.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
 697	.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
 698.Lpost_tf_hi_s1:
 699	.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
 700	.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
 701
 702/*
 703 * post-SubByte transform
 704 *
 705 * post-lookup for sbox2:
 706 *  swap_bitendianness(
 707 *      camellia_h(
 708 *          isom_map_aes_to_camellia(
 709 *              swap_bitendianness(
 710 *                  aes_inverse_affine_transform(in)
 711 *              )
 712 *          )
 713 *      )
 714 *  ) <<< 1
 715 *
 716 * (note: '⊕ 0x6e' inside camellia_h())
 717 */
 718.Lpost_tf_lo_s2:
 719	.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
 720	.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
 721.Lpost_tf_hi_s2:
 722	.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
 723	.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
 724
 725/*
 726 * post-SubByte transform
 727 *
 728 * post-lookup for sbox3:
 729 *  swap_bitendianness(
 730 *      camellia_h(
 731 *          isom_map_aes_to_camellia(
 732 *              swap_bitendianness(
 733 *                  aes_inverse_affine_transform(in)
 734 *              )
 735 *          )
 736 *      )
 737 *  ) >>> 1
 738 *
 739 * (note: '⊕ 0x6e' inside camellia_h())
 740 */
 741.Lpost_tf_lo_s3:
 742	.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
 743	.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
 744.Lpost_tf_hi_s3:
 745	.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
 746	.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
 747
 748/* For isolating SubBytes from AESENCLAST, inverse shift row */
 749.Linv_shift_row:
 750	.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
 751	.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
 752
 
 753.align 4
 754/* 4-bit mask */
 755.L0f0f0f0f:
 756	.long 0x0f0f0f0f
 757
 758.text
 759
 760.align 8
 761__camellia_enc_blk32:
 762	/* input:
 763	 *	%rdi: ctx, CTX
 764	 *	%rax: temporary storage, 512 bytes
 765	 *	%ymm0..%ymm15: 32 plaintext blocks
 766	 * output:
 767	 *	%ymm0..%ymm15: 32 encrypted blocks, order swapped:
 768	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
 769	 */
 770	FRAME_BEGIN
 771
 772	leaq 8 * 32(%rax), %rcx;
 773
 774	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 775		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 776		      %ymm15, %rax, %rcx);
 777
 778	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 779		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 780		     %ymm15, %rax, %rcx, 0);
 781
 782	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 783	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 784	      %ymm15,
 785	      ((key_table + (8) * 8) + 0)(CTX),
 786	      ((key_table + (8) * 8) + 4)(CTX),
 787	      ((key_table + (8) * 8) + 8)(CTX),
 788	      ((key_table + (8) * 8) + 12)(CTX));
 789
 790	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 791		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 792		     %ymm15, %rax, %rcx, 8);
 793
 794	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 795	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 796	      %ymm15,
 797	      ((key_table + (16) * 8) + 0)(CTX),
 798	      ((key_table + (16) * 8) + 4)(CTX),
 799	      ((key_table + (16) * 8) + 8)(CTX),
 800	      ((key_table + (16) * 8) + 12)(CTX));
 801
 802	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 803		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 804		     %ymm15, %rax, %rcx, 16);
 805
 806	movl $24, %r8d;
 807	cmpl $16, key_length(CTX);
 808	jne .Lenc_max32;
 809
 810.Lenc_done:
 811	/* load CD for output */
 812	vmovdqu 0 * 32(%rcx), %ymm8;
 813	vmovdqu 1 * 32(%rcx), %ymm9;
 814	vmovdqu 2 * 32(%rcx), %ymm10;
 815	vmovdqu 3 * 32(%rcx), %ymm11;
 816	vmovdqu 4 * 32(%rcx), %ymm12;
 817	vmovdqu 5 * 32(%rcx), %ymm13;
 818	vmovdqu 6 * 32(%rcx), %ymm14;
 819	vmovdqu 7 * 32(%rcx), %ymm15;
 820
 821	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 822		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 823		    %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
 824
 825	FRAME_END
 826	ret;
 827
 828.align 8
 829.Lenc_max32:
 830	movl $32, %r8d;
 831
 832	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 833	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 834	      %ymm15,
 835	      ((key_table + (24) * 8) + 0)(CTX),
 836	      ((key_table + (24) * 8) + 4)(CTX),
 837	      ((key_table + (24) * 8) + 8)(CTX),
 838	      ((key_table + (24) * 8) + 12)(CTX));
 839
 840	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 841		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 842		     %ymm15, %rax, %rcx, 24);
 843
 844	jmp .Lenc_done;
 845ENDPROC(__camellia_enc_blk32)
 846
 847.align 8
 848__camellia_dec_blk32:
 849	/* input:
 850	 *	%rdi: ctx, CTX
 851	 *	%rax: temporary storage, 512 bytes
 852	 *	%r8d: 24 for 16 byte key, 32 for larger
 853	 *	%ymm0..%ymm15: 16 encrypted blocks
 854	 * output:
 855	 *	%ymm0..%ymm15: 16 plaintext blocks, order swapped:
 856	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
 857	 */
 858	FRAME_BEGIN
 859
 860	leaq 8 * 32(%rax), %rcx;
 861
 862	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 863		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 864		      %ymm15, %rax, %rcx);
 865
 866	cmpl $32, %r8d;
 867	je .Ldec_max32;
 868
 869.Ldec_max24:
 870	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 871		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 872		     %ymm15, %rax, %rcx, 16);
 873
 874	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 875	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 876	      %ymm15,
 877	      ((key_table + (16) * 8) + 8)(CTX),
 878	      ((key_table + (16) * 8) + 12)(CTX),
 879	      ((key_table + (16) * 8) + 0)(CTX),
 880	      ((key_table + (16) * 8) + 4)(CTX));
 881
 882	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 883		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 884		     %ymm15, %rax, %rcx, 8);
 885
 886	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 887	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 888	      %ymm15,
 889	      ((key_table + (8) * 8) + 8)(CTX),
 890	      ((key_table + (8) * 8) + 12)(CTX),
 891	      ((key_table + (8) * 8) + 0)(CTX),
 892	      ((key_table + (8) * 8) + 4)(CTX));
 893
 894	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 895		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 896		     %ymm15, %rax, %rcx, 0);
 897
 898	/* load CD for output */
 899	vmovdqu 0 * 32(%rcx), %ymm8;
 900	vmovdqu 1 * 32(%rcx), %ymm9;
 901	vmovdqu 2 * 32(%rcx), %ymm10;
 902	vmovdqu 3 * 32(%rcx), %ymm11;
 903	vmovdqu 4 * 32(%rcx), %ymm12;
 904	vmovdqu 5 * 32(%rcx), %ymm13;
 905	vmovdqu 6 * 32(%rcx), %ymm14;
 906	vmovdqu 7 * 32(%rcx), %ymm15;
 907
 908	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 909		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 910		    %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
 911
 912	FRAME_END
 913	ret;
 914
 915.align 8
 916.Ldec_max32:
 917	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 918		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 919		     %ymm15, %rax, %rcx, 24);
 920
 921	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 922	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 923	      %ymm15,
 924	      ((key_table + (24) * 8) + 8)(CTX),
 925	      ((key_table + (24) * 8) + 12)(CTX),
 926	      ((key_table + (24) * 8) + 0)(CTX),
 927	      ((key_table + (24) * 8) + 4)(CTX));
 928
 929	jmp .Ldec_max24;
 930ENDPROC(__camellia_dec_blk32)
 931
 932ENTRY(camellia_ecb_enc_32way)
 933	/* input:
 934	 *	%rdi: ctx, CTX
 935	 *	%rsi: dst (32 blocks)
 936	 *	%rdx: src (32 blocks)
 937	 */
 938	FRAME_BEGIN
 939
 940	vzeroupper;
 941
 942	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 943		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 944		     %ymm15, %rdx, (key_table)(CTX));
 945
 946	/* now dst can be used as temporary buffer (even in src == dst case) */
 947	movq	%rsi, %rax;
 948
 949	call __camellia_enc_blk32;
 950
 951	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
 952		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
 953		     %ymm8, %rsi);
 954
 955	vzeroupper;
 956
 957	FRAME_END
 958	ret;
 959ENDPROC(camellia_ecb_enc_32way)
 960
 961ENTRY(camellia_ecb_dec_32way)
 962	/* input:
 963	 *	%rdi: ctx, CTX
 964	 *	%rsi: dst (32 blocks)
 965	 *	%rdx: src (32 blocks)
 966	 */
 967	FRAME_BEGIN
 968
 969	vzeroupper;
 970
 971	cmpl $16, key_length(CTX);
 972	movl $32, %r8d;
 973	movl $24, %eax;
 974	cmovel %eax, %r8d; /* max */
 975
 976	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 977		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 978		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
 979
 980	/* now dst can be used as temporary buffer (even in src == dst case) */
 981	movq	%rsi, %rax;
 982
 983	call __camellia_dec_blk32;
 984
 985	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
 986		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
 987		     %ymm8, %rsi);
 988
 989	vzeroupper;
 990
 991	FRAME_END
 992	ret;
 993ENDPROC(camellia_ecb_dec_32way)
 994
 995ENTRY(camellia_cbc_dec_32way)
 996	/* input:
 997	 *	%rdi: ctx, CTX
 998	 *	%rsi: dst (32 blocks)
 999	 *	%rdx: src (32 blocks)
1000	 */
1001	FRAME_BEGIN
 
1002
1003	vzeroupper;
1004
1005	cmpl $16, key_length(CTX);
1006	movl $32, %r8d;
1007	movl $24, %eax;
1008	cmovel %eax, %r8d; /* max */
1009
1010	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
1011		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
1012		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
1013
1014	movq %rsp, %r10;
1015	cmpq %rsi, %rdx;
1016	je .Lcbc_dec_use_stack;
1017
1018	/* dst can be used as temporary storage, src is not overwritten. */
1019	movq %rsi, %rax;
1020	jmp .Lcbc_dec_continue;
1021
1022.Lcbc_dec_use_stack:
1023	/*
1024	 * dst still in-use (because dst == src), so use stack for temporary
1025	 * storage.
1026	 */
1027	subq $(16 * 32), %rsp;
1028	movq %rsp, %rax;
1029
1030.Lcbc_dec_continue:
1031	call __camellia_dec_blk32;
1032
1033	vmovdqu %ymm7, (%rax);
1034	vpxor %ymm7, %ymm7, %ymm7;
1035	vinserti128 $1, (%rdx), %ymm7, %ymm7;
1036	vpxor (%rax), %ymm7, %ymm7;
1037	movq %r10, %rsp;
1038	vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1039	vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1040	vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1041	vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1042	vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1043	vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1044	vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1045	vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1046	vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1047	vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1048	vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1049	vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1050	vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1051	vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1052	vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1053	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1054		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1055		     %ymm8, %rsi);
1056
1057	vzeroupper;
1058
1059	FRAME_END
1060	ret;
1061ENDPROC(camellia_cbc_dec_32way)
1062
1063#define inc_le128(x, minus_one, tmp) \
1064	vpcmpeqq minus_one, x, tmp; \
1065	vpsubq minus_one, x, x; \
1066	vpslldq $8, tmp, tmp; \
1067	vpsubq tmp, x, x;
1068
1069#define add2_le128(x, minus_one, minus_two, tmp1, tmp2) \
1070	vpcmpeqq minus_one, x, tmp1; \
1071	vpcmpeqq minus_two, x, tmp2; \
1072	vpsubq minus_two, x, x; \
1073	vpor tmp2, tmp1, tmp1; \
1074	vpslldq $8, tmp1, tmp1; \
1075	vpsubq tmp1, x, x;
1076
1077ENTRY(camellia_ctr_32way)
1078	/* input:
1079	 *	%rdi: ctx, CTX
1080	 *	%rsi: dst (32 blocks)
1081	 *	%rdx: src (32 blocks)
1082	 *	%rcx: iv (little endian, 128bit)
1083	 */
1084	FRAME_BEGIN
1085
1086	vzeroupper;
1087
1088	movq %rsp, %r10;
1089	cmpq %rsi, %rdx;
1090	je .Lctr_use_stack;
1091
1092	/* dst can be used as temporary storage, src is not overwritten. */
1093	movq %rsi, %rax;
1094	jmp .Lctr_continue;
1095
1096.Lctr_use_stack:
1097	subq $(16 * 32), %rsp;
1098	movq %rsp, %rax;
1099
1100.Lctr_continue:
1101	vpcmpeqd %ymm15, %ymm15, %ymm15;
1102	vpsrldq $8, %ymm15, %ymm15; /* ab: -1:0 ; cd: -1:0 */
1103	vpaddq %ymm15, %ymm15, %ymm12; /* ab: -2:0 ; cd: -2:0 */
1104
1105	/* load IV and byteswap */
1106	vmovdqu (%rcx), %xmm0;
1107	vmovdqa %xmm0, %xmm1;
1108	inc_le128(%xmm0, %xmm15, %xmm14);
1109	vbroadcasti128 .Lbswap128_mask, %ymm14;
1110	vinserti128 $1, %xmm0, %ymm1, %ymm0;
1111	vpshufb %ymm14, %ymm0, %ymm13;
1112	vmovdqu %ymm13, 15 * 32(%rax);
1113
1114	/* construct IVs */
1115	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); /* ab:le2 ; cd:le3 */
1116	vpshufb %ymm14, %ymm0, %ymm13;
1117	vmovdqu %ymm13, 14 * 32(%rax);
1118	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1119	vpshufb %ymm14, %ymm0, %ymm13;
1120	vmovdqu %ymm13, 13 * 32(%rax);
1121	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1122	vpshufb %ymm14, %ymm0, %ymm13;
1123	vmovdqu %ymm13, 12 * 32(%rax);
1124	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1125	vpshufb %ymm14, %ymm0, %ymm13;
1126	vmovdqu %ymm13, 11 * 32(%rax);
1127	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1128	vpshufb %ymm14, %ymm0, %ymm10;
1129	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1130	vpshufb %ymm14, %ymm0, %ymm9;
1131	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1132	vpshufb %ymm14, %ymm0, %ymm8;
1133	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1134	vpshufb %ymm14, %ymm0, %ymm7;
1135	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1136	vpshufb %ymm14, %ymm0, %ymm6;
1137	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1138	vpshufb %ymm14, %ymm0, %ymm5;
1139	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1140	vpshufb %ymm14, %ymm0, %ymm4;
1141	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1142	vpshufb %ymm14, %ymm0, %ymm3;
1143	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1144	vpshufb %ymm14, %ymm0, %ymm2;
1145	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1146	vpshufb %ymm14, %ymm0, %ymm1;
1147	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1148	vextracti128 $1, %ymm0, %xmm13;
1149	vpshufb %ymm14, %ymm0, %ymm0;
1150	inc_le128(%xmm13, %xmm15, %xmm14);
1151	vmovdqu %xmm13, (%rcx);
1152
1153	/* inpack32_pre: */
1154	vpbroadcastq (key_table)(CTX), %ymm15;
1155	vpshufb .Lpack_bswap, %ymm15, %ymm15;
1156	vpxor %ymm0, %ymm15, %ymm0;
1157	vpxor %ymm1, %ymm15, %ymm1;
1158	vpxor %ymm2, %ymm15, %ymm2;
1159	vpxor %ymm3, %ymm15, %ymm3;
1160	vpxor %ymm4, %ymm15, %ymm4;
1161	vpxor %ymm5, %ymm15, %ymm5;
1162	vpxor %ymm6, %ymm15, %ymm6;
1163	vpxor %ymm7, %ymm15, %ymm7;
1164	vpxor %ymm8, %ymm15, %ymm8;
1165	vpxor %ymm9, %ymm15, %ymm9;
1166	vpxor %ymm10, %ymm15, %ymm10;
1167	vpxor 11 * 32(%rax), %ymm15, %ymm11;
1168	vpxor 12 * 32(%rax), %ymm15, %ymm12;
1169	vpxor 13 * 32(%rax), %ymm15, %ymm13;
1170	vpxor 14 * 32(%rax), %ymm15, %ymm14;
1171	vpxor 15 * 32(%rax), %ymm15, %ymm15;
1172
1173	call __camellia_enc_blk32;
1174
1175	movq %r10, %rsp;
1176
1177	vpxor 0 * 32(%rdx), %ymm7, %ymm7;
1178	vpxor 1 * 32(%rdx), %ymm6, %ymm6;
1179	vpxor 2 * 32(%rdx), %ymm5, %ymm5;
1180	vpxor 3 * 32(%rdx), %ymm4, %ymm4;
1181	vpxor 4 * 32(%rdx), %ymm3, %ymm3;
1182	vpxor 5 * 32(%rdx), %ymm2, %ymm2;
1183	vpxor 6 * 32(%rdx), %ymm1, %ymm1;
1184	vpxor 7 * 32(%rdx), %ymm0, %ymm0;
1185	vpxor 8 * 32(%rdx), %ymm15, %ymm15;
1186	vpxor 9 * 32(%rdx), %ymm14, %ymm14;
1187	vpxor 10 * 32(%rdx), %ymm13, %ymm13;
1188	vpxor 11 * 32(%rdx), %ymm12, %ymm12;
1189	vpxor 12 * 32(%rdx), %ymm11, %ymm11;
1190	vpxor 13 * 32(%rdx), %ymm10, %ymm10;
1191	vpxor 14 * 32(%rdx), %ymm9, %ymm9;
1192	vpxor 15 * 32(%rdx), %ymm8, %ymm8;
1193	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1194		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1195		     %ymm8, %rsi);
1196
1197	vzeroupper;
1198
1199	FRAME_END
1200	ret;
1201ENDPROC(camellia_ctr_32way)
1202
1203#define gf128mul_x_ble(iv, mask, tmp) \
1204	vpsrad $31, iv, tmp; \
1205	vpaddq iv, iv, iv; \
1206	vpshufd $0x13, tmp, tmp; \
1207	vpand mask, tmp, tmp; \
1208	vpxor tmp, iv, iv;
1209
1210#define gf128mul_x2_ble(iv, mask1, mask2, tmp0, tmp1) \
1211	vpsrad $31, iv, tmp0; \
1212	vpaddq iv, iv, tmp1; \
1213	vpsllq $2, iv, iv; \
1214	vpshufd $0x13, tmp0, tmp0; \
1215	vpsrad $31, tmp1, tmp1; \
1216	vpand mask2, tmp0, tmp0; \
1217	vpshufd $0x13, tmp1, tmp1; \
1218	vpxor tmp0, iv, iv; \
1219	vpand mask1, tmp1, tmp1; \
1220	vpxor tmp1, iv, iv;
1221
1222.align 8
1223camellia_xts_crypt_32way:
1224	/* input:
1225	 *	%rdi: ctx, CTX
1226	 *	%rsi: dst (32 blocks)
1227	 *	%rdx: src (32 blocks)
1228	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1229	 *	%r8: index for input whitening key
1230	 *	%r9: pointer to  __camellia_enc_blk32 or __camellia_dec_blk32
1231	 */
1232	FRAME_BEGIN
1233
1234	vzeroupper;
1235
1236	subq $(16 * 32), %rsp;
1237	movq %rsp, %rax;
1238
1239	vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_0, %ymm12;
1240
1241	/* load IV and construct second IV */
1242	vmovdqu (%rcx), %xmm0;
1243	vmovdqa %xmm0, %xmm15;
1244	gf128mul_x_ble(%xmm0, %xmm12, %xmm13);
1245	vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_1, %ymm13;
1246	vinserti128 $1, %xmm0, %ymm15, %ymm0;
1247	vpxor 0 * 32(%rdx), %ymm0, %ymm15;
1248	vmovdqu %ymm15, 15 * 32(%rax);
1249	vmovdqu %ymm0, 0 * 32(%rsi);
1250
1251	/* construct IVs */
1252	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1253	vpxor 1 * 32(%rdx), %ymm0, %ymm15;
1254	vmovdqu %ymm15, 14 * 32(%rax);
1255	vmovdqu %ymm0, 1 * 32(%rsi);
1256
1257	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1258	vpxor 2 * 32(%rdx), %ymm0, %ymm15;
1259	vmovdqu %ymm15, 13 * 32(%rax);
1260	vmovdqu %ymm0, 2 * 32(%rsi);
1261
1262	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1263	vpxor 3 * 32(%rdx), %ymm0, %ymm15;
1264	vmovdqu %ymm15, 12 * 32(%rax);
1265	vmovdqu %ymm0, 3 * 32(%rsi);
1266
1267	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1268	vpxor 4 * 32(%rdx), %ymm0, %ymm11;
1269	vmovdqu %ymm0, 4 * 32(%rsi);
1270
1271	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1272	vpxor 5 * 32(%rdx), %ymm0, %ymm10;
1273	vmovdqu %ymm0, 5 * 32(%rsi);
1274
1275	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1276	vpxor 6 * 32(%rdx), %ymm0, %ymm9;
1277	vmovdqu %ymm0, 6 * 32(%rsi);
1278
1279	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1280	vpxor 7 * 32(%rdx), %ymm0, %ymm8;
1281	vmovdqu %ymm0, 7 * 32(%rsi);
1282
1283	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1284	vpxor 8 * 32(%rdx), %ymm0, %ymm7;
1285	vmovdqu %ymm0, 8 * 32(%rsi);
1286
1287	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1288	vpxor 9 * 32(%rdx), %ymm0, %ymm6;
1289	vmovdqu %ymm0, 9 * 32(%rsi);
1290
1291	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1292	vpxor 10 * 32(%rdx), %ymm0, %ymm5;
1293	vmovdqu %ymm0, 10 * 32(%rsi);
1294
1295	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1296	vpxor 11 * 32(%rdx), %ymm0, %ymm4;
1297	vmovdqu %ymm0, 11 * 32(%rsi);
1298
1299	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1300	vpxor 12 * 32(%rdx), %ymm0, %ymm3;
1301	vmovdqu %ymm0, 12 * 32(%rsi);
1302
1303	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1304	vpxor 13 * 32(%rdx), %ymm0, %ymm2;
1305	vmovdqu %ymm0, 13 * 32(%rsi);
1306
1307	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1308	vpxor 14 * 32(%rdx), %ymm0, %ymm1;
1309	vmovdqu %ymm0, 14 * 32(%rsi);
1310
1311	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1312	vpxor 15 * 32(%rdx), %ymm0, %ymm15;
1313	vmovdqu %ymm15, 0 * 32(%rax);
1314	vmovdqu %ymm0, 15 * 32(%rsi);
1315
1316	vextracti128 $1, %ymm0, %xmm0;
1317	gf128mul_x_ble(%xmm0, %xmm12, %xmm15);
1318	vmovdqu %xmm0, (%rcx);
1319
1320	/* inpack32_pre: */
1321	vpbroadcastq (key_table)(CTX, %r8, 8), %ymm15;
1322	vpshufb .Lpack_bswap, %ymm15, %ymm15;
1323	vpxor 0 * 32(%rax), %ymm15, %ymm0;
1324	vpxor %ymm1, %ymm15, %ymm1;
1325	vpxor %ymm2, %ymm15, %ymm2;
1326	vpxor %ymm3, %ymm15, %ymm3;
1327	vpxor %ymm4, %ymm15, %ymm4;
1328	vpxor %ymm5, %ymm15, %ymm5;
1329	vpxor %ymm6, %ymm15, %ymm6;
1330	vpxor %ymm7, %ymm15, %ymm7;
1331	vpxor %ymm8, %ymm15, %ymm8;
1332	vpxor %ymm9, %ymm15, %ymm9;
1333	vpxor %ymm10, %ymm15, %ymm10;
1334	vpxor %ymm11, %ymm15, %ymm11;
1335	vpxor 12 * 32(%rax), %ymm15, %ymm12;
1336	vpxor 13 * 32(%rax), %ymm15, %ymm13;
1337	vpxor 14 * 32(%rax), %ymm15, %ymm14;
1338	vpxor 15 * 32(%rax), %ymm15, %ymm15;
1339
1340	call *%r9;
1341
1342	addq $(16 * 32), %rsp;
1343
1344	vpxor 0 * 32(%rsi), %ymm7, %ymm7;
1345	vpxor 1 * 32(%rsi), %ymm6, %ymm6;
1346	vpxor 2 * 32(%rsi), %ymm5, %ymm5;
1347	vpxor 3 * 32(%rsi), %ymm4, %ymm4;
1348	vpxor 4 * 32(%rsi), %ymm3, %ymm3;
1349	vpxor 5 * 32(%rsi), %ymm2, %ymm2;
1350	vpxor 6 * 32(%rsi), %ymm1, %ymm1;
1351	vpxor 7 * 32(%rsi), %ymm0, %ymm0;
1352	vpxor 8 * 32(%rsi), %ymm15, %ymm15;
1353	vpxor 9 * 32(%rsi), %ymm14, %ymm14;
1354	vpxor 10 * 32(%rsi), %ymm13, %ymm13;
1355	vpxor 11 * 32(%rsi), %ymm12, %ymm12;
1356	vpxor 12 * 32(%rsi), %ymm11, %ymm11;
1357	vpxor 13 * 32(%rsi), %ymm10, %ymm10;
1358	vpxor 14 * 32(%rsi), %ymm9, %ymm9;
1359	vpxor 15 * 32(%rsi), %ymm8, %ymm8;
1360	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1361		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1362		     %ymm8, %rsi);
1363
1364	vzeroupper;
1365
1366	FRAME_END
1367	ret;
1368ENDPROC(camellia_xts_crypt_32way)
1369
1370ENTRY(camellia_xts_enc_32way)
1371	/* input:
1372	 *	%rdi: ctx, CTX
1373	 *	%rsi: dst (32 blocks)
1374	 *	%rdx: src (32 blocks)
1375	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1376	 */
1377
1378	xorl %r8d, %r8d; /* input whitening key, 0 for enc */
1379
1380	leaq __camellia_enc_blk32, %r9;
1381
1382	jmp camellia_xts_crypt_32way;
1383ENDPROC(camellia_xts_enc_32way)
1384
1385ENTRY(camellia_xts_dec_32way)
1386	/* input:
1387	 *	%rdi: ctx, CTX
1388	 *	%rsi: dst (32 blocks)
1389	 *	%rdx: src (32 blocks)
1390	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1391	 */
1392
1393	cmpl $16, key_length(CTX);
1394	movl $32, %r8d;
1395	movl $24, %eax;
1396	cmovel %eax, %r8d;  /* input whitening key, last for dec */
1397
1398	leaq __camellia_dec_blk32, %r9;
1399
1400	jmp camellia_xts_crypt_32way;
1401ENDPROC(camellia_xts_dec_32way)