Linux Audio

Check our new training course

Loading...
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * x86_64/AVX2/AES-NI assembler implementation of Camellia
   4 *
   5 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
 
 
 
 
 
 
   6 */
   7
   8#include <linux/linkage.h>
   9#include <asm/frame.h>
  10
  11#define CAMELLIA_TABLE_BYTE_LEN 272
  12
  13/* struct camellia_ctx: */
  14#define key_table 0
  15#define key_length CAMELLIA_TABLE_BYTE_LEN
  16
  17/* register macros */
  18#define CTX %rdi
  19#define RIO %r8
  20
  21/**********************************************************************
  22  helper macros
  23 **********************************************************************/
  24#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
  25	vpand x, mask4bit, tmp0; \
  26	vpandn x, mask4bit, x; \
  27	vpsrld $4, x, x; \
  28	\
  29	vpshufb tmp0, lo_t, tmp0; \
  30	vpshufb x, hi_t, x; \
  31	vpxor tmp0, x, x;
  32
  33#define ymm0_x xmm0
  34#define ymm1_x xmm1
  35#define ymm2_x xmm2
  36#define ymm3_x xmm3
  37#define ymm4_x xmm4
  38#define ymm5_x xmm5
  39#define ymm6_x xmm6
  40#define ymm7_x xmm7
  41#define ymm8_x xmm8
  42#define ymm9_x xmm9
  43#define ymm10_x xmm10
  44#define ymm11_x xmm11
  45#define ymm12_x xmm12
  46#define ymm13_x xmm13
  47#define ymm14_x xmm14
  48#define ymm15_x xmm15
  49
  50/**********************************************************************
  51  32-way camellia
  52 **********************************************************************/
  53
  54/*
  55 * IN:
  56 *   x0..x7: byte-sliced AB state
  57 *   mem_cd: register pointer storing CD state
  58 *   key: index for key material
  59 * OUT:
  60 *   x0..x7: new byte-sliced CD state
  61 */
  62#define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
  63		  t7, mem_cd, key) \
  64	/* \
  65	 * S-function with AES subbytes \
  66	 */ \
  67	vbroadcasti128 .Linv_shift_row(%rip), t4; \
  68	vpbroadcastd .L0f0f0f0f(%rip), t7; \
  69	vbroadcasti128 .Lpre_tf_lo_s1(%rip), t5; \
  70	vbroadcasti128 .Lpre_tf_hi_s1(%rip), t6; \
  71	vbroadcasti128 .Lpre_tf_lo_s4(%rip), t2; \
  72	vbroadcasti128 .Lpre_tf_hi_s4(%rip), t3; \
  73	\
  74	/* AES inverse shift rows */ \
  75	vpshufb t4, x0, x0; \
  76	vpshufb t4, x7, x7; \
  77	vpshufb t4, x3, x3; \
  78	vpshufb t4, x6, x6; \
  79	vpshufb t4, x2, x2; \
  80	vpshufb t4, x5, x5; \
  81	vpshufb t4, x1, x1; \
  82	vpshufb t4, x4, x4; \
  83	\
  84	/* prefilter sboxes 1, 2 and 3 */ \
  85	/* prefilter sbox 4 */ \
  86	filter_8bit(x0, t5, t6, t7, t4); \
  87	filter_8bit(x7, t5, t6, t7, t4); \
  88	vextracti128 $1, x0, t0##_x; \
  89	vextracti128 $1, x7, t1##_x; \
  90	filter_8bit(x3, t2, t3, t7, t4); \
  91	filter_8bit(x6, t2, t3, t7, t4); \
  92	vextracti128 $1, x3, t3##_x; \
  93	vextracti128 $1, x6, t2##_x; \
  94	filter_8bit(x2, t5, t6, t7, t4); \
  95	filter_8bit(x5, t5, t6, t7, t4); \
  96	filter_8bit(x1, t5, t6, t7, t4); \
  97	filter_8bit(x4, t5, t6, t7, t4); \
  98	\
  99	vpxor t4##_x, t4##_x, t4##_x; \
 100	\
 101	/* AES subbytes + AES shift rows */ \
 102	vextracti128 $1, x2, t6##_x; \
 103	vextracti128 $1, x5, t5##_x; \
 104	vaesenclast t4##_x, x0##_x, x0##_x; \
 105	vaesenclast t4##_x, t0##_x, t0##_x; \
 106	vinserti128 $1, t0##_x, x0, x0; \
 107	vaesenclast t4##_x, x7##_x, x7##_x; \
 108	vaesenclast t4##_x, t1##_x, t1##_x; \
 109	vinserti128 $1, t1##_x, x7, x7; \
 110	vaesenclast t4##_x, x3##_x, x3##_x; \
 111	vaesenclast t4##_x, t3##_x, t3##_x; \
 112	vinserti128 $1, t3##_x, x3, x3; \
 113	vaesenclast t4##_x, x6##_x, x6##_x; \
 114	vaesenclast t4##_x, t2##_x, t2##_x; \
 115	vinserti128 $1, t2##_x, x6, x6; \
 116	vextracti128 $1, x1, t3##_x; \
 117	vextracti128 $1, x4, t2##_x; \
 118	vbroadcasti128 .Lpost_tf_lo_s1(%rip), t0; \
 119	vbroadcasti128 .Lpost_tf_hi_s1(%rip), t1; \
 120	vaesenclast t4##_x, x2##_x, x2##_x; \
 121	vaesenclast t4##_x, t6##_x, t6##_x; \
 122	vinserti128 $1, t6##_x, x2, x2; \
 123	vaesenclast t4##_x, x5##_x, x5##_x; \
 124	vaesenclast t4##_x, t5##_x, t5##_x; \
 125	vinserti128 $1, t5##_x, x5, x5; \
 126	vaesenclast t4##_x, x1##_x, x1##_x; \
 127	vaesenclast t4##_x, t3##_x, t3##_x; \
 128	vinserti128 $1, t3##_x, x1, x1; \
 129	vaesenclast t4##_x, x4##_x, x4##_x; \
 130	vaesenclast t4##_x, t2##_x, t2##_x; \
 131	vinserti128 $1, t2##_x, x4, x4; \
 132	\
 133	/* postfilter sboxes 1 and 4 */ \
 134	vbroadcasti128 .Lpost_tf_lo_s3(%rip), t2; \
 135	vbroadcasti128 .Lpost_tf_hi_s3(%rip), t3; \
 136	filter_8bit(x0, t0, t1, t7, t6); \
 137	filter_8bit(x7, t0, t1, t7, t6); \
 138	filter_8bit(x3, t0, t1, t7, t6); \
 139	filter_8bit(x6, t0, t1, t7, t6); \
 140	\
 141	/* postfilter sbox 3 */ \
 142	vbroadcasti128 .Lpost_tf_lo_s2(%rip), t4; \
 143	vbroadcasti128 .Lpost_tf_hi_s2(%rip), t5; \
 144	filter_8bit(x2, t2, t3, t7, t6); \
 145	filter_8bit(x5, t2, t3, t7, t6); \
 146	\
 147	vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
 148	\
 149	/* postfilter sbox 2 */ \
 150	filter_8bit(x1, t4, t5, t7, t2); \
 151	filter_8bit(x4, t4, t5, t7, t2); \
 152	vpxor t7, t7, t7; \
 153	\
 154	vpsrldq $1, t0, t1; \
 155	vpsrldq $2, t0, t2; \
 156	vpshufb t7, t1, t1; \
 157	vpsrldq $3, t0, t3; \
 158	\
 159	/* P-function */ \
 160	vpxor x5, x0, x0; \
 161	vpxor x6, x1, x1; \
 162	vpxor x7, x2, x2; \
 163	vpxor x4, x3, x3; \
 164	\
 165	vpshufb t7, t2, t2; \
 166	vpsrldq $4, t0, t4; \
 167	vpshufb t7, t3, t3; \
 168	vpsrldq $5, t0, t5; \
 169	vpshufb t7, t4, t4; \
 170	\
 171	vpxor x2, x4, x4; \
 172	vpxor x3, x5, x5; \
 173	vpxor x0, x6, x6; \
 174	vpxor x1, x7, x7; \
 175	\
 176	vpsrldq $6, t0, t6; \
 177	vpshufb t7, t5, t5; \
 178	vpshufb t7, t6, t6; \
 179	\
 180	vpxor x7, x0, x0; \
 181	vpxor x4, x1, x1; \
 182	vpxor x5, x2, x2; \
 183	vpxor x6, x3, x3; \
 184	\
 185	vpxor x3, x4, x4; \
 186	vpxor x0, x5, x5; \
 187	vpxor x1, x6, x6; \
 188	vpxor x2, x7, x7; /* note: high and low parts swapped */ \
 189	\
 190	/* Add key material and result to CD (x becomes new CD) */ \
 191	\
 192	vpxor t6, x1, x1; \
 193	vpxor 5 * 32(mem_cd), x1, x1; \
 194	\
 195	vpsrldq $7, t0, t6; \
 196	vpshufb t7, t0, t0; \
 197	vpshufb t7, t6, t7; \
 198	\
 199	vpxor t7, x0, x0; \
 200	vpxor 4 * 32(mem_cd), x0, x0; \
 201	\
 202	vpxor t5, x2, x2; \
 203	vpxor 6 * 32(mem_cd), x2, x2; \
 204	\
 205	vpxor t4, x3, x3; \
 206	vpxor 7 * 32(mem_cd), x3, x3; \
 207	\
 208	vpxor t3, x4, x4; \
 209	vpxor 0 * 32(mem_cd), x4, x4; \
 210	\
 211	vpxor t2, x5, x5; \
 212	vpxor 1 * 32(mem_cd), x5, x5; \
 213	\
 214	vpxor t1, x6, x6; \
 215	vpxor 2 * 32(mem_cd), x6, x6; \
 216	\
 217	vpxor t0, x7, x7; \
 218	vpxor 3 * 32(mem_cd), x7, x7;
 219
 220/*
 221 * Size optimization... with inlined roundsm32 binary would be over 5 times
 222 * larger and would only marginally faster.
 223 */
 224SYM_FUNC_START_LOCAL(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
 
 225	roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 226		  %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
 227		  %rcx, (%r9));
 228	RET;
 229SYM_FUNC_END(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
 230
 231SYM_FUNC_START_LOCAL(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
 
 232	roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
 233		  %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
 234		  %rax, (%r9));
 235	RET;
 236SYM_FUNC_END(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
 237
 238/*
 239 * IN/OUT:
 240 *  x0..x7: byte-sliced AB state preloaded
 241 *  mem_ab: byte-sliced AB state in memory
 242 *  mem_cb: byte-sliced CD state in memory
 243 */
 244#define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 245		      y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
 246	leaq (key_table + (i) * 8)(CTX), %r9; \
 247	call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
 248	\
 249	vmovdqu x0, 4 * 32(mem_cd); \
 250	vmovdqu x1, 5 * 32(mem_cd); \
 251	vmovdqu x2, 6 * 32(mem_cd); \
 252	vmovdqu x3, 7 * 32(mem_cd); \
 253	vmovdqu x4, 0 * 32(mem_cd); \
 254	vmovdqu x5, 1 * 32(mem_cd); \
 255	vmovdqu x6, 2 * 32(mem_cd); \
 256	vmovdqu x7, 3 * 32(mem_cd); \
 257	\
 258	leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
 259	call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
 260	\
 261	store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
 262
 263#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
 264
 265#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
 266	/* Store new AB state */ \
 267	vmovdqu x4, 4 * 32(mem_ab); \
 268	vmovdqu x5, 5 * 32(mem_ab); \
 269	vmovdqu x6, 6 * 32(mem_ab); \
 270	vmovdqu x7, 7 * 32(mem_ab); \
 271	vmovdqu x0, 0 * 32(mem_ab); \
 272	vmovdqu x1, 1 * 32(mem_ab); \
 273	vmovdqu x2, 2 * 32(mem_ab); \
 274	vmovdqu x3, 3 * 32(mem_ab);
 275
 276#define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 277		      y6, y7, mem_ab, mem_cd, i) \
 278	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 279		      y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
 280	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 281		      y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
 282	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 283		      y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
 284
 285#define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 286		      y6, y7, mem_ab, mem_cd, i) \
 287	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 288		      y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
 289	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 290		      y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
 291	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 292		      y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
 293
 294/*
 295 * IN:
 296 *  v0..3: byte-sliced 32-bit integers
 297 * OUT:
 298 *  v0..3: (IN <<< 1)
 299 */
 300#define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
 301	vpcmpgtb v0, zero, t0; \
 302	vpaddb v0, v0, v0; \
 303	vpabsb t0, t0; \
 304	\
 305	vpcmpgtb v1, zero, t1; \
 306	vpaddb v1, v1, v1; \
 307	vpabsb t1, t1; \
 308	\
 309	vpcmpgtb v2, zero, t2; \
 310	vpaddb v2, v2, v2; \
 311	vpabsb t2, t2; \
 312	\
 313	vpor t0, v1, v1; \
 314	\
 315	vpcmpgtb v3, zero, t0; \
 316	vpaddb v3, v3, v3; \
 317	vpabsb t0, t0; \
 318	\
 319	vpor t1, v2, v2; \
 320	vpor t2, v3, v3; \
 321	vpor t0, v0, v0;
 322
 323/*
 324 * IN:
 325 *   r: byte-sliced AB state in memory
 326 *   l: byte-sliced CD state in memory
 327 * OUT:
 328 *   x0..x7: new byte-sliced CD state
 329 */
 330#define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
 331	      tt1, tt2, tt3, kll, klr, krl, krr) \
 332	/* \
 333	 * t0 = kll; \
 334	 * t0 &= ll; \
 335	 * lr ^= rol32(t0, 1); \
 336	 */ \
 337	vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
 338	vpxor tt0, tt0, tt0; \
 339	vpshufb tt0, t0, t3; \
 340	vpsrldq $1, t0, t0; \
 341	vpshufb tt0, t0, t2; \
 342	vpsrldq $1, t0, t0; \
 343	vpshufb tt0, t0, t1; \
 344	vpsrldq $1, t0, t0; \
 345	vpshufb tt0, t0, t0; \
 346	\
 347	vpand l0, t0, t0; \
 348	vpand l1, t1, t1; \
 349	vpand l2, t2, t2; \
 350	vpand l3, t3, t3; \
 351	\
 352	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
 353	\
 354	vpxor l4, t0, l4; \
 355	vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
 356	vmovdqu l4, 4 * 32(l); \
 357	vpxor l5, t1, l5; \
 358	vmovdqu l5, 5 * 32(l); \
 359	vpxor l6, t2, l6; \
 360	vmovdqu l6, 6 * 32(l); \
 361	vpxor l7, t3, l7; \
 362	vmovdqu l7, 7 * 32(l); \
 363	\
 364	/* \
 365	 * t2 = krr; \
 366	 * t2 |= rr; \
 367	 * rl ^= t2; \
 368	 */ \
 369	\
 370	vpshufb tt0, t0, t3; \
 371	vpsrldq $1, t0, t0; \
 372	vpshufb tt0, t0, t2; \
 373	vpsrldq $1, t0, t0; \
 374	vpshufb tt0, t0, t1; \
 375	vpsrldq $1, t0, t0; \
 376	vpshufb tt0, t0, t0; \
 377	\
 378	vpor 4 * 32(r), t0, t0; \
 379	vpor 5 * 32(r), t1, t1; \
 380	vpor 6 * 32(r), t2, t2; \
 381	vpor 7 * 32(r), t3, t3; \
 382	\
 383	vpxor 0 * 32(r), t0, t0; \
 384	vpxor 1 * 32(r), t1, t1; \
 385	vpxor 2 * 32(r), t2, t2; \
 386	vpxor 3 * 32(r), t3, t3; \
 387	vmovdqu t0, 0 * 32(r); \
 388	vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
 389	vmovdqu t1, 1 * 32(r); \
 390	vmovdqu t2, 2 * 32(r); \
 391	vmovdqu t3, 3 * 32(r); \
 392	\
 393	/* \
 394	 * t2 = krl; \
 395	 * t2 &= rl; \
 396	 * rr ^= rol32(t2, 1); \
 397	 */ \
 398	vpshufb tt0, t0, t3; \
 399	vpsrldq $1, t0, t0; \
 400	vpshufb tt0, t0, t2; \
 401	vpsrldq $1, t0, t0; \
 402	vpshufb tt0, t0, t1; \
 403	vpsrldq $1, t0, t0; \
 404	vpshufb tt0, t0, t0; \
 405	\
 406	vpand 0 * 32(r), t0, t0; \
 407	vpand 1 * 32(r), t1, t1; \
 408	vpand 2 * 32(r), t2, t2; \
 409	vpand 3 * 32(r), t3, t3; \
 410	\
 411	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
 412	\
 413	vpxor 4 * 32(r), t0, t0; \
 414	vpxor 5 * 32(r), t1, t1; \
 415	vpxor 6 * 32(r), t2, t2; \
 416	vpxor 7 * 32(r), t3, t3; \
 417	vmovdqu t0, 4 * 32(r); \
 418	vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
 419	vmovdqu t1, 5 * 32(r); \
 420	vmovdqu t2, 6 * 32(r); \
 421	vmovdqu t3, 7 * 32(r); \
 422	\
 423	/* \
 424	 * t0 = klr; \
 425	 * t0 |= lr; \
 426	 * ll ^= t0; \
 427	 */ \
 428	\
 429	vpshufb tt0, t0, t3; \
 430	vpsrldq $1, t0, t0; \
 431	vpshufb tt0, t0, t2; \
 432	vpsrldq $1, t0, t0; \
 433	vpshufb tt0, t0, t1; \
 434	vpsrldq $1, t0, t0; \
 435	vpshufb tt0, t0, t0; \
 436	\
 437	vpor l4, t0, t0; \
 438	vpor l5, t1, t1; \
 439	vpor l6, t2, t2; \
 440	vpor l7, t3, t3; \
 441	\
 442	vpxor l0, t0, l0; \
 443	vmovdqu l0, 0 * 32(l); \
 444	vpxor l1, t1, l1; \
 445	vmovdqu l1, 1 * 32(l); \
 446	vpxor l2, t2, l2; \
 447	vmovdqu l2, 2 * 32(l); \
 448	vpxor l3, t3, l3; \
 449	vmovdqu l3, 3 * 32(l);
 450
 451#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
 452	vpunpckhdq x1, x0, t2; \
 453	vpunpckldq x1, x0, x0; \
 454	\
 455	vpunpckldq x3, x2, t1; \
 456	vpunpckhdq x3, x2, x2; \
 457	\
 458	vpunpckhqdq t1, x0, x1; \
 459	vpunpcklqdq t1, x0, x0; \
 460	\
 461	vpunpckhqdq x2, t2, x3; \
 462	vpunpcklqdq x2, t2, x2;
 463
 464#define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
 465			      a3, b3, c3, d3, st0, st1) \
 466	vmovdqu d2, st0; \
 467	vmovdqu d3, st1; \
 468	transpose_4x4(a0, a1, a2, a3, d2, d3); \
 469	transpose_4x4(b0, b1, b2, b3, d2, d3); \
 470	vmovdqu st0, d2; \
 471	vmovdqu st1, d3; \
 472	\
 473	vmovdqu a0, st0; \
 474	vmovdqu a1, st1; \
 475	transpose_4x4(c0, c1, c2, c3, a0, a1); \
 476	transpose_4x4(d0, d1, d2, d3, a0, a1); \
 477	\
 478	vbroadcasti128 .Lshufb_16x16b(%rip), a0; \
 479	vmovdqu st1, a1; \
 480	vpshufb a0, a2, a2; \
 481	vpshufb a0, a3, a3; \
 482	vpshufb a0, b0, b0; \
 483	vpshufb a0, b1, b1; \
 484	vpshufb a0, b2, b2; \
 485	vpshufb a0, b3, b3; \
 486	vpshufb a0, a1, a1; \
 487	vpshufb a0, c0, c0; \
 488	vpshufb a0, c1, c1; \
 489	vpshufb a0, c2, c2; \
 490	vpshufb a0, c3, c3; \
 491	vpshufb a0, d0, d0; \
 492	vpshufb a0, d1, d1; \
 493	vpshufb a0, d2, d2; \
 494	vpshufb a0, d3, d3; \
 495	vmovdqu d3, st1; \
 496	vmovdqu st0, d3; \
 497	vpshufb a0, d3, a0; \
 498	vmovdqu d2, st0; \
 499	\
 500	transpose_4x4(a0, b0, c0, d0, d2, d3); \
 501	transpose_4x4(a1, b1, c1, d1, d2, d3); \
 502	vmovdqu st0, d2; \
 503	vmovdqu st1, d3; \
 504	\
 505	vmovdqu b0, st0; \
 506	vmovdqu b1, st1; \
 507	transpose_4x4(a2, b2, c2, d2, b0, b1); \
 508	transpose_4x4(a3, b3, c3, d3, b0, b1); \
 509	vmovdqu st0, b0; \
 510	vmovdqu st1, b1; \
 511	/* does not adjust output bytes inside vectors */
 512
 513/* load blocks to registers and apply pre-whitening */
 514#define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 515		     y6, y7, rio, key) \
 516	vpbroadcastq key, x0; \
 517	vpshufb .Lpack_bswap(%rip), x0, x0; \
 518	\
 519	vpxor 0 * 32(rio), x0, y7; \
 520	vpxor 1 * 32(rio), x0, y6; \
 521	vpxor 2 * 32(rio), x0, y5; \
 522	vpxor 3 * 32(rio), x0, y4; \
 523	vpxor 4 * 32(rio), x0, y3; \
 524	vpxor 5 * 32(rio), x0, y2; \
 525	vpxor 6 * 32(rio), x0, y1; \
 526	vpxor 7 * 32(rio), x0, y0; \
 527	vpxor 8 * 32(rio), x0, x7; \
 528	vpxor 9 * 32(rio), x0, x6; \
 529	vpxor 10 * 32(rio), x0, x5; \
 530	vpxor 11 * 32(rio), x0, x4; \
 531	vpxor 12 * 32(rio), x0, x3; \
 532	vpxor 13 * 32(rio), x0, x2; \
 533	vpxor 14 * 32(rio), x0, x1; \
 534	vpxor 15 * 32(rio), x0, x0;
 535
 536/* byteslice pre-whitened blocks and store to temporary memory */
 537#define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 538		      y6, y7, mem_ab, mem_cd) \
 539	byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
 540			      y4, y5, y6, y7, (mem_ab), (mem_cd)); \
 541	\
 542	vmovdqu x0, 0 * 32(mem_ab); \
 543	vmovdqu x1, 1 * 32(mem_ab); \
 544	vmovdqu x2, 2 * 32(mem_ab); \
 545	vmovdqu x3, 3 * 32(mem_ab); \
 546	vmovdqu x4, 4 * 32(mem_ab); \
 547	vmovdqu x5, 5 * 32(mem_ab); \
 548	vmovdqu x6, 6 * 32(mem_ab); \
 549	vmovdqu x7, 7 * 32(mem_ab); \
 550	vmovdqu y0, 0 * 32(mem_cd); \
 551	vmovdqu y1, 1 * 32(mem_cd); \
 552	vmovdqu y2, 2 * 32(mem_cd); \
 553	vmovdqu y3, 3 * 32(mem_cd); \
 554	vmovdqu y4, 4 * 32(mem_cd); \
 555	vmovdqu y5, 5 * 32(mem_cd); \
 556	vmovdqu y6, 6 * 32(mem_cd); \
 557	vmovdqu y7, 7 * 32(mem_cd);
 558
 559/* de-byteslice, apply post-whitening and store blocks */
 560#define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
 561		    y5, y6, y7, key, stack_tmp0, stack_tmp1) \
 562	byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
 563			      y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
 564	\
 565	vmovdqu x0, stack_tmp0; \
 566	\
 567	vpbroadcastq key, x0; \
 568	vpshufb .Lpack_bswap(%rip), x0, x0; \
 569	\
 570	vpxor x0, y7, y7; \
 571	vpxor x0, y6, y6; \
 572	vpxor x0, y5, y5; \
 573	vpxor x0, y4, y4; \
 574	vpxor x0, y3, y3; \
 575	vpxor x0, y2, y2; \
 576	vpxor x0, y1, y1; \
 577	vpxor x0, y0, y0; \
 578	vpxor x0, x7, x7; \
 579	vpxor x0, x6, x6; \
 580	vpxor x0, x5, x5; \
 581	vpxor x0, x4, x4; \
 582	vpxor x0, x3, x3; \
 583	vpxor x0, x2, x2; \
 584	vpxor x0, x1, x1; \
 585	vpxor stack_tmp0, x0, x0;
 586
 587#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 588		     y6, y7, rio) \
 589	vmovdqu x0, 0 * 32(rio); \
 590	vmovdqu x1, 1 * 32(rio); \
 591	vmovdqu x2, 2 * 32(rio); \
 592	vmovdqu x3, 3 * 32(rio); \
 593	vmovdqu x4, 4 * 32(rio); \
 594	vmovdqu x5, 5 * 32(rio); \
 595	vmovdqu x6, 6 * 32(rio); \
 596	vmovdqu x7, 7 * 32(rio); \
 597	vmovdqu y0, 8 * 32(rio); \
 598	vmovdqu y1, 9 * 32(rio); \
 599	vmovdqu y2, 10 * 32(rio); \
 600	vmovdqu y3, 11 * 32(rio); \
 601	vmovdqu y4, 12 * 32(rio); \
 602	vmovdqu y5, 13 * 32(rio); \
 603	vmovdqu y6, 14 * 32(rio); \
 604	vmovdqu y7, 15 * 32(rio);
 605
 606
 607.section	.rodata.cst32.shufb_16x16b, "aM", @progbits, 32
 608.align 32
 
 609#define SHUFB_BYTES(idx) \
 610	0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
 
 611.Lshufb_16x16b:
 612	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
 613	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
 614
 615.section	.rodata.cst32.pack_bswap, "aM", @progbits, 32
 616.align 32
 617.Lpack_bswap:
 618	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
 619	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
 620
 621/* NB: section is mergeable, all elements must be aligned 16-byte blocks */
 622.section	.rodata.cst16, "aM", @progbits, 16
 623.align 16
 
 
 
 
 
 
 624
 625/*
 626 * pre-SubByte transform
 627 *
 628 * pre-lookup for sbox1, sbox2, sbox3:
 629 *   swap_bitendianness(
 630 *       isom_map_camellia_to_aes(
 631 *           camellia_f(
 632 *               swap_bitendianess(in)
 633 *           )
 634 *       )
 635 *   )
 636 *
 637 * (note: '⊕ 0xc5' inside camellia_f())
 638 */
 639.Lpre_tf_lo_s1:
 640	.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
 641	.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
 642.Lpre_tf_hi_s1:
 643	.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
 644	.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
 645
 646/*
 647 * pre-SubByte transform
 648 *
 649 * pre-lookup for sbox4:
 650 *   swap_bitendianness(
 651 *       isom_map_camellia_to_aes(
 652 *           camellia_f(
 653 *               swap_bitendianess(in <<< 1)
 654 *           )
 655 *       )
 656 *   )
 657 *
 658 * (note: '⊕ 0xc5' inside camellia_f())
 659 */
 660.Lpre_tf_lo_s4:
 661	.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
 662	.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
 663.Lpre_tf_hi_s4:
 664	.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
 665	.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
 666
 667/*
 668 * post-SubByte transform
 669 *
 670 * post-lookup for sbox1, sbox4:
 671 *  swap_bitendianness(
 672 *      camellia_h(
 673 *          isom_map_aes_to_camellia(
 674 *              swap_bitendianness(
 675 *                  aes_inverse_affine_transform(in)
 676 *              )
 677 *          )
 678 *      )
 679 *  )
 680 *
 681 * (note: '⊕ 0x6e' inside camellia_h())
 682 */
 683.Lpost_tf_lo_s1:
 684	.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
 685	.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
 686.Lpost_tf_hi_s1:
 687	.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
 688	.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
 689
 690/*
 691 * post-SubByte transform
 692 *
 693 * post-lookup for sbox2:
 694 *  swap_bitendianness(
 695 *      camellia_h(
 696 *          isom_map_aes_to_camellia(
 697 *              swap_bitendianness(
 698 *                  aes_inverse_affine_transform(in)
 699 *              )
 700 *          )
 701 *      )
 702 *  ) <<< 1
 703 *
 704 * (note: '⊕ 0x6e' inside camellia_h())
 705 */
 706.Lpost_tf_lo_s2:
 707	.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
 708	.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
 709.Lpost_tf_hi_s2:
 710	.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
 711	.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
 712
 713/*
 714 * post-SubByte transform
 715 *
 716 * post-lookup for sbox3:
 717 *  swap_bitendianness(
 718 *      camellia_h(
 719 *          isom_map_aes_to_camellia(
 720 *              swap_bitendianness(
 721 *                  aes_inverse_affine_transform(in)
 722 *              )
 723 *          )
 724 *      )
 725 *  ) >>> 1
 726 *
 727 * (note: '⊕ 0x6e' inside camellia_h())
 728 */
 729.Lpost_tf_lo_s3:
 730	.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
 731	.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
 732.Lpost_tf_hi_s3:
 733	.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
 734	.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
 735
 736/* For isolating SubBytes from AESENCLAST, inverse shift row */
 737.Linv_shift_row:
 738	.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
 739	.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
 740
 741.section	.rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
 742.align 4
 743/* 4-bit mask */
 744.L0f0f0f0f:
 745	.long 0x0f0f0f0f
 746
 747.text
 748
 749SYM_FUNC_START_LOCAL(__camellia_enc_blk32)
 
 750	/* input:
 751	 *	%rdi: ctx, CTX
 752	 *	%rax: temporary storage, 512 bytes
 753	 *	%ymm0..%ymm15: 32 plaintext blocks
 754	 * output:
 755	 *	%ymm0..%ymm15: 32 encrypted blocks, order swapped:
 756	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
 757	 */
 758	FRAME_BEGIN
 759
 760	leaq 8 * 32(%rax), %rcx;
 761
 762	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 763		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 764		      %ymm15, %rax, %rcx);
 765
 766	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 767		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 768		     %ymm15, %rax, %rcx, 0);
 769
 770	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 771	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 772	      %ymm15,
 773	      ((key_table + (8) * 8) + 0)(CTX),
 774	      ((key_table + (8) * 8) + 4)(CTX),
 775	      ((key_table + (8) * 8) + 8)(CTX),
 776	      ((key_table + (8) * 8) + 12)(CTX));
 777
 778	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 779		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 780		     %ymm15, %rax, %rcx, 8);
 781
 782	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 783	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 784	      %ymm15,
 785	      ((key_table + (16) * 8) + 0)(CTX),
 786	      ((key_table + (16) * 8) + 4)(CTX),
 787	      ((key_table + (16) * 8) + 8)(CTX),
 788	      ((key_table + (16) * 8) + 12)(CTX));
 789
 790	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 791		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 792		     %ymm15, %rax, %rcx, 16);
 793
 794	movl $24, %r8d;
 795	cmpl $16, key_length(CTX);
 796	jne .Lenc_max32;
 797
 798.Lenc_done:
 799	/* load CD for output */
 800	vmovdqu 0 * 32(%rcx), %ymm8;
 801	vmovdqu 1 * 32(%rcx), %ymm9;
 802	vmovdqu 2 * 32(%rcx), %ymm10;
 803	vmovdqu 3 * 32(%rcx), %ymm11;
 804	vmovdqu 4 * 32(%rcx), %ymm12;
 805	vmovdqu 5 * 32(%rcx), %ymm13;
 806	vmovdqu 6 * 32(%rcx), %ymm14;
 807	vmovdqu 7 * 32(%rcx), %ymm15;
 808
 809	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 810		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 811		    %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
 812
 813	FRAME_END
 814	RET;
 815
 816.align 8
 817.Lenc_max32:
 818	movl $32, %r8d;
 819
 820	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 821	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 822	      %ymm15,
 823	      ((key_table + (24) * 8) + 0)(CTX),
 824	      ((key_table + (24) * 8) + 4)(CTX),
 825	      ((key_table + (24) * 8) + 8)(CTX),
 826	      ((key_table + (24) * 8) + 12)(CTX));
 827
 828	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 829		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 830		     %ymm15, %rax, %rcx, 24);
 831
 832	jmp .Lenc_done;
 833SYM_FUNC_END(__camellia_enc_blk32)
 834
 835SYM_FUNC_START_LOCAL(__camellia_dec_blk32)
 
 836	/* input:
 837	 *	%rdi: ctx, CTX
 838	 *	%rax: temporary storage, 512 bytes
 839	 *	%r8d: 24 for 16 byte key, 32 for larger
 840	 *	%ymm0..%ymm15: 16 encrypted blocks
 841	 * output:
 842	 *	%ymm0..%ymm15: 16 plaintext blocks, order swapped:
 843	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
 844	 */
 845	FRAME_BEGIN
 846
 847	leaq 8 * 32(%rax), %rcx;
 848
 849	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 850		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 851		      %ymm15, %rax, %rcx);
 852
 853	cmpl $32, %r8d;
 854	je .Ldec_max32;
 855
 856.Ldec_max24:
 857	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 858		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 859		     %ymm15, %rax, %rcx, 16);
 860
 861	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 862	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 863	      %ymm15,
 864	      ((key_table + (16) * 8) + 8)(CTX),
 865	      ((key_table + (16) * 8) + 12)(CTX),
 866	      ((key_table + (16) * 8) + 0)(CTX),
 867	      ((key_table + (16) * 8) + 4)(CTX));
 868
 869	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 870		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 871		     %ymm15, %rax, %rcx, 8);
 872
 873	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 874	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 875	      %ymm15,
 876	      ((key_table + (8) * 8) + 8)(CTX),
 877	      ((key_table + (8) * 8) + 12)(CTX),
 878	      ((key_table + (8) * 8) + 0)(CTX),
 879	      ((key_table + (8) * 8) + 4)(CTX));
 880
 881	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 882		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 883		     %ymm15, %rax, %rcx, 0);
 884
 885	/* load CD for output */
 886	vmovdqu 0 * 32(%rcx), %ymm8;
 887	vmovdqu 1 * 32(%rcx), %ymm9;
 888	vmovdqu 2 * 32(%rcx), %ymm10;
 889	vmovdqu 3 * 32(%rcx), %ymm11;
 890	vmovdqu 4 * 32(%rcx), %ymm12;
 891	vmovdqu 5 * 32(%rcx), %ymm13;
 892	vmovdqu 6 * 32(%rcx), %ymm14;
 893	vmovdqu 7 * 32(%rcx), %ymm15;
 894
 895	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 896		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 897		    %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
 898
 899	FRAME_END
 900	RET;
 901
 902.align 8
 903.Ldec_max32:
 904	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 905		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 906		     %ymm15, %rax, %rcx, 24);
 907
 908	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 909	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 910	      %ymm15,
 911	      ((key_table + (24) * 8) + 8)(CTX),
 912	      ((key_table + (24) * 8) + 12)(CTX),
 913	      ((key_table + (24) * 8) + 0)(CTX),
 914	      ((key_table + (24) * 8) + 4)(CTX));
 915
 916	jmp .Ldec_max24;
 917SYM_FUNC_END(__camellia_dec_blk32)
 918
 919SYM_FUNC_START(camellia_ecb_enc_32way)
 920	/* input:
 921	 *	%rdi: ctx, CTX
 922	 *	%rsi: dst (32 blocks)
 923	 *	%rdx: src (32 blocks)
 924	 */
 925	FRAME_BEGIN
 926
 927	vzeroupper;
 928
 929	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 930		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 931		     %ymm15, %rdx, (key_table)(CTX));
 932
 933	/* now dst can be used as temporary buffer (even in src == dst case) */
 934	movq	%rsi, %rax;
 935
 936	call __camellia_enc_blk32;
 937
 938	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
 939		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
 940		     %ymm8, %rsi);
 941
 942	vzeroupper;
 943
 944	FRAME_END
 945	RET;
 946SYM_FUNC_END(camellia_ecb_enc_32way)
 947
 948SYM_FUNC_START(camellia_ecb_dec_32way)
 949	/* input:
 950	 *	%rdi: ctx, CTX
 951	 *	%rsi: dst (32 blocks)
 952	 *	%rdx: src (32 blocks)
 953	 */
 954	FRAME_BEGIN
 955
 956	vzeroupper;
 957
 958	cmpl $16, key_length(CTX);
 959	movl $32, %r8d;
 960	movl $24, %eax;
 961	cmovel %eax, %r8d; /* max */
 962
 963	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 964		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 965		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
 966
 967	/* now dst can be used as temporary buffer (even in src == dst case) */
 968	movq	%rsi, %rax;
 969
 970	call __camellia_dec_blk32;
 971
 972	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
 973		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
 974		     %ymm8, %rsi);
 975
 976	vzeroupper;
 977
 978	FRAME_END
 979	RET;
 980SYM_FUNC_END(camellia_ecb_dec_32way)
 981
 982SYM_FUNC_START(camellia_cbc_dec_32way)
 983	/* input:
 984	 *	%rdi: ctx, CTX
 985	 *	%rsi: dst (32 blocks)
 986	 *	%rdx: src (32 blocks)
 987	 */
 988	FRAME_BEGIN
 989	subq $(16 * 32), %rsp;
 990
 991	vzeroupper;
 992
 993	cmpl $16, key_length(CTX);
 994	movl $32, %r8d;
 995	movl $24, %eax;
 996	cmovel %eax, %r8d; /* max */
 997
 998	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 999		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
1000		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
1001
 
1002	cmpq %rsi, %rdx;
1003	je .Lcbc_dec_use_stack;
1004
1005	/* dst can be used as temporary storage, src is not overwritten. */
1006	movq %rsi, %rax;
1007	jmp .Lcbc_dec_continue;
1008
1009.Lcbc_dec_use_stack:
1010	/*
1011	 * dst still in-use (because dst == src), so use stack for temporary
1012	 * storage.
1013	 */
 
1014	movq %rsp, %rax;
1015
1016.Lcbc_dec_continue:
1017	call __camellia_dec_blk32;
1018
1019	vmovdqu %ymm7, (%rax);
1020	vpxor %ymm7, %ymm7, %ymm7;
1021	vinserti128 $1, (%rdx), %ymm7, %ymm7;
1022	vpxor (%rax), %ymm7, %ymm7;
 
1023	vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1024	vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1025	vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1026	vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1027	vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1028	vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1029	vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1030	vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1031	vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1032	vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1033	vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1034	vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1035	vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1036	vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1037	vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1038	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1039		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1040		     %ymm8, %rsi);
1041
1042	vzeroupper;
1043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044	addq $(16 * 32), %rsp;
1045	FRAME_END
1046	RET;
1047SYM_FUNC_END(camellia_cbc_dec_32way)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v3.15
 
   1/*
   2 * x86_64/AVX2/AES-NI assembler implementation of Camellia
   3 *
   4 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 */
  12
  13#include <linux/linkage.h>
 
  14
  15#define CAMELLIA_TABLE_BYTE_LEN 272
  16
  17/* struct camellia_ctx: */
  18#define key_table 0
  19#define key_length CAMELLIA_TABLE_BYTE_LEN
  20
  21/* register macros */
  22#define CTX %rdi
  23#define RIO %r8
  24
  25/**********************************************************************
  26  helper macros
  27 **********************************************************************/
  28#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
  29	vpand x, mask4bit, tmp0; \
  30	vpandn x, mask4bit, x; \
  31	vpsrld $4, x, x; \
  32	\
  33	vpshufb tmp0, lo_t, tmp0; \
  34	vpshufb x, hi_t, x; \
  35	vpxor tmp0, x, x;
  36
  37#define ymm0_x xmm0
  38#define ymm1_x xmm1
  39#define ymm2_x xmm2
  40#define ymm3_x xmm3
  41#define ymm4_x xmm4
  42#define ymm5_x xmm5
  43#define ymm6_x xmm6
  44#define ymm7_x xmm7
  45#define ymm8_x xmm8
  46#define ymm9_x xmm9
  47#define ymm10_x xmm10
  48#define ymm11_x xmm11
  49#define ymm12_x xmm12
  50#define ymm13_x xmm13
  51#define ymm14_x xmm14
  52#define ymm15_x xmm15
  53
  54/**********************************************************************
  55  32-way camellia
  56 **********************************************************************/
  57
  58/*
  59 * IN:
  60 *   x0..x7: byte-sliced AB state
  61 *   mem_cd: register pointer storing CD state
  62 *   key: index for key material
  63 * OUT:
  64 *   x0..x7: new byte-sliced CD state
  65 */
  66#define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
  67		  t7, mem_cd, key) \
  68	/* \
  69	 * S-function with AES subbytes \
  70	 */ \
  71	vbroadcasti128 .Linv_shift_row, t4; \
  72	vpbroadcastd .L0f0f0f0f, t7; \
  73	vbroadcasti128 .Lpre_tf_lo_s1, t5; \
  74	vbroadcasti128 .Lpre_tf_hi_s1, t6; \
  75	vbroadcasti128 .Lpre_tf_lo_s4, t2; \
  76	vbroadcasti128 .Lpre_tf_hi_s4, t3; \
  77	\
  78	/* AES inverse shift rows */ \
  79	vpshufb t4, x0, x0; \
  80	vpshufb t4, x7, x7; \
  81	vpshufb t4, x3, x3; \
  82	vpshufb t4, x6, x6; \
  83	vpshufb t4, x2, x2; \
  84	vpshufb t4, x5, x5; \
  85	vpshufb t4, x1, x1; \
  86	vpshufb t4, x4, x4; \
  87	\
  88	/* prefilter sboxes 1, 2 and 3 */ \
  89	/* prefilter sbox 4 */ \
  90	filter_8bit(x0, t5, t6, t7, t4); \
  91	filter_8bit(x7, t5, t6, t7, t4); \
  92	vextracti128 $1, x0, t0##_x; \
  93	vextracti128 $1, x7, t1##_x; \
  94	filter_8bit(x3, t2, t3, t7, t4); \
  95	filter_8bit(x6, t2, t3, t7, t4); \
  96	vextracti128 $1, x3, t3##_x; \
  97	vextracti128 $1, x6, t2##_x; \
  98	filter_8bit(x2, t5, t6, t7, t4); \
  99	filter_8bit(x5, t5, t6, t7, t4); \
 100	filter_8bit(x1, t5, t6, t7, t4); \
 101	filter_8bit(x4, t5, t6, t7, t4); \
 102	\
 103	vpxor t4##_x, t4##_x, t4##_x; \
 104	\
 105	/* AES subbytes + AES shift rows */ \
 106	vextracti128 $1, x2, t6##_x; \
 107	vextracti128 $1, x5, t5##_x; \
 108	vaesenclast t4##_x, x0##_x, x0##_x; \
 109	vaesenclast t4##_x, t0##_x, t0##_x; \
 110	vinserti128 $1, t0##_x, x0, x0; \
 111	vaesenclast t4##_x, x7##_x, x7##_x; \
 112	vaesenclast t4##_x, t1##_x, t1##_x; \
 113	vinserti128 $1, t1##_x, x7, x7; \
 114	vaesenclast t4##_x, x3##_x, x3##_x; \
 115	vaesenclast t4##_x, t3##_x, t3##_x; \
 116	vinserti128 $1, t3##_x, x3, x3; \
 117	vaesenclast t4##_x, x6##_x, x6##_x; \
 118	vaesenclast t4##_x, t2##_x, t2##_x; \
 119	vinserti128 $1, t2##_x, x6, x6; \
 120	vextracti128 $1, x1, t3##_x; \
 121	vextracti128 $1, x4, t2##_x; \
 122	vbroadcasti128 .Lpost_tf_lo_s1, t0; \
 123	vbroadcasti128 .Lpost_tf_hi_s1, t1; \
 124	vaesenclast t4##_x, x2##_x, x2##_x; \
 125	vaesenclast t4##_x, t6##_x, t6##_x; \
 126	vinserti128 $1, t6##_x, x2, x2; \
 127	vaesenclast t4##_x, x5##_x, x5##_x; \
 128	vaesenclast t4##_x, t5##_x, t5##_x; \
 129	vinserti128 $1, t5##_x, x5, x5; \
 130	vaesenclast t4##_x, x1##_x, x1##_x; \
 131	vaesenclast t4##_x, t3##_x, t3##_x; \
 132	vinserti128 $1, t3##_x, x1, x1; \
 133	vaesenclast t4##_x, x4##_x, x4##_x; \
 134	vaesenclast t4##_x, t2##_x, t2##_x; \
 135	vinserti128 $1, t2##_x, x4, x4; \
 136	\
 137	/* postfilter sboxes 1 and 4 */ \
 138	vbroadcasti128 .Lpost_tf_lo_s3, t2; \
 139	vbroadcasti128 .Lpost_tf_hi_s3, t3; \
 140	filter_8bit(x0, t0, t1, t7, t6); \
 141	filter_8bit(x7, t0, t1, t7, t6); \
 142	filter_8bit(x3, t0, t1, t7, t6); \
 143	filter_8bit(x6, t0, t1, t7, t6); \
 144	\
 145	/* postfilter sbox 3 */ \
 146	vbroadcasti128 .Lpost_tf_lo_s2, t4; \
 147	vbroadcasti128 .Lpost_tf_hi_s2, t5; \
 148	filter_8bit(x2, t2, t3, t7, t6); \
 149	filter_8bit(x5, t2, t3, t7, t6); \
 150	\
 151	vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
 152	\
 153	/* postfilter sbox 2 */ \
 154	filter_8bit(x1, t4, t5, t7, t2); \
 155	filter_8bit(x4, t4, t5, t7, t2); \
 156	vpxor t7, t7, t7; \
 157	\
 158	vpsrldq $1, t0, t1; \
 159	vpsrldq $2, t0, t2; \
 160	vpshufb t7, t1, t1; \
 161	vpsrldq $3, t0, t3; \
 162	\
 163	/* P-function */ \
 164	vpxor x5, x0, x0; \
 165	vpxor x6, x1, x1; \
 166	vpxor x7, x2, x2; \
 167	vpxor x4, x3, x3; \
 168	\
 169	vpshufb t7, t2, t2; \
 170	vpsrldq $4, t0, t4; \
 171	vpshufb t7, t3, t3; \
 172	vpsrldq $5, t0, t5; \
 173	vpshufb t7, t4, t4; \
 174	\
 175	vpxor x2, x4, x4; \
 176	vpxor x3, x5, x5; \
 177	vpxor x0, x6, x6; \
 178	vpxor x1, x7, x7; \
 179	\
 180	vpsrldq $6, t0, t6; \
 181	vpshufb t7, t5, t5; \
 182	vpshufb t7, t6, t6; \
 183	\
 184	vpxor x7, x0, x0; \
 185	vpxor x4, x1, x1; \
 186	vpxor x5, x2, x2; \
 187	vpxor x6, x3, x3; \
 188	\
 189	vpxor x3, x4, x4; \
 190	vpxor x0, x5, x5; \
 191	vpxor x1, x6, x6; \
 192	vpxor x2, x7, x7; /* note: high and low parts swapped */ \
 193	\
 194	/* Add key material and result to CD (x becomes new CD) */ \
 195	\
 196	vpxor t6, x1, x1; \
 197	vpxor 5 * 32(mem_cd), x1, x1; \
 198	\
 199	vpsrldq $7, t0, t6; \
 200	vpshufb t7, t0, t0; \
 201	vpshufb t7, t6, t7; \
 202	\
 203	vpxor t7, x0, x0; \
 204	vpxor 4 * 32(mem_cd), x0, x0; \
 205	\
 206	vpxor t5, x2, x2; \
 207	vpxor 6 * 32(mem_cd), x2, x2; \
 208	\
 209	vpxor t4, x3, x3; \
 210	vpxor 7 * 32(mem_cd), x3, x3; \
 211	\
 212	vpxor t3, x4, x4; \
 213	vpxor 0 * 32(mem_cd), x4, x4; \
 214	\
 215	vpxor t2, x5, x5; \
 216	vpxor 1 * 32(mem_cd), x5, x5; \
 217	\
 218	vpxor t1, x6, x6; \
 219	vpxor 2 * 32(mem_cd), x6, x6; \
 220	\
 221	vpxor t0, x7, x7; \
 222	vpxor 3 * 32(mem_cd), x7, x7;
 223
 224/*
 225 * Size optimization... with inlined roundsm32 binary would be over 5 times
 226 * larger and would only marginally faster.
 227 */
 228.align 8
 229roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
 230	roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 231		  %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
 232		  %rcx, (%r9));
 233	ret;
 234ENDPROC(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
 235
 236.align 8
 237roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
 238	roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
 239		  %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
 240		  %rax, (%r9));
 241	ret;
 242ENDPROC(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
 243
 244/*
 245 * IN/OUT:
 246 *  x0..x7: byte-sliced AB state preloaded
 247 *  mem_ab: byte-sliced AB state in memory
 248 *  mem_cb: byte-sliced CD state in memory
 249 */
 250#define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 251		      y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
 252	leaq (key_table + (i) * 8)(CTX), %r9; \
 253	call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
 254	\
 255	vmovdqu x0, 4 * 32(mem_cd); \
 256	vmovdqu x1, 5 * 32(mem_cd); \
 257	vmovdqu x2, 6 * 32(mem_cd); \
 258	vmovdqu x3, 7 * 32(mem_cd); \
 259	vmovdqu x4, 0 * 32(mem_cd); \
 260	vmovdqu x5, 1 * 32(mem_cd); \
 261	vmovdqu x6, 2 * 32(mem_cd); \
 262	vmovdqu x7, 3 * 32(mem_cd); \
 263	\
 264	leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
 265	call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
 266	\
 267	store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
 268
 269#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
 270
 271#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
 272	/* Store new AB state */ \
 273	vmovdqu x4, 4 * 32(mem_ab); \
 274	vmovdqu x5, 5 * 32(mem_ab); \
 275	vmovdqu x6, 6 * 32(mem_ab); \
 276	vmovdqu x7, 7 * 32(mem_ab); \
 277	vmovdqu x0, 0 * 32(mem_ab); \
 278	vmovdqu x1, 1 * 32(mem_ab); \
 279	vmovdqu x2, 2 * 32(mem_ab); \
 280	vmovdqu x3, 3 * 32(mem_ab);
 281
 282#define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 283		      y6, y7, mem_ab, mem_cd, i) \
 284	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 285		      y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
 286	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 287		      y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
 288	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 289		      y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
 290
 291#define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 292		      y6, y7, mem_ab, mem_cd, i) \
 293	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 294		      y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
 295	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 296		      y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
 297	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 298		      y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
 299
 300/*
 301 * IN:
 302 *  v0..3: byte-sliced 32-bit integers
 303 * OUT:
 304 *  v0..3: (IN <<< 1)
 305 */
 306#define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
 307	vpcmpgtb v0, zero, t0; \
 308	vpaddb v0, v0, v0; \
 309	vpabsb t0, t0; \
 310	\
 311	vpcmpgtb v1, zero, t1; \
 312	vpaddb v1, v1, v1; \
 313	vpabsb t1, t1; \
 314	\
 315	vpcmpgtb v2, zero, t2; \
 316	vpaddb v2, v2, v2; \
 317	vpabsb t2, t2; \
 318	\
 319	vpor t0, v1, v1; \
 320	\
 321	vpcmpgtb v3, zero, t0; \
 322	vpaddb v3, v3, v3; \
 323	vpabsb t0, t0; \
 324	\
 325	vpor t1, v2, v2; \
 326	vpor t2, v3, v3; \
 327	vpor t0, v0, v0;
 328
 329/*
 330 * IN:
 331 *   r: byte-sliced AB state in memory
 332 *   l: byte-sliced CD state in memory
 333 * OUT:
 334 *   x0..x7: new byte-sliced CD state
 335 */
 336#define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
 337	      tt1, tt2, tt3, kll, klr, krl, krr) \
 338	/* \
 339	 * t0 = kll; \
 340	 * t0 &= ll; \
 341	 * lr ^= rol32(t0, 1); \
 342	 */ \
 343	vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
 344	vpxor tt0, tt0, tt0; \
 345	vpshufb tt0, t0, t3; \
 346	vpsrldq $1, t0, t0; \
 347	vpshufb tt0, t0, t2; \
 348	vpsrldq $1, t0, t0; \
 349	vpshufb tt0, t0, t1; \
 350	vpsrldq $1, t0, t0; \
 351	vpshufb tt0, t0, t0; \
 352	\
 353	vpand l0, t0, t0; \
 354	vpand l1, t1, t1; \
 355	vpand l2, t2, t2; \
 356	vpand l3, t3, t3; \
 357	\
 358	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
 359	\
 360	vpxor l4, t0, l4; \
 361	vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
 362	vmovdqu l4, 4 * 32(l); \
 363	vpxor l5, t1, l5; \
 364	vmovdqu l5, 5 * 32(l); \
 365	vpxor l6, t2, l6; \
 366	vmovdqu l6, 6 * 32(l); \
 367	vpxor l7, t3, l7; \
 368	vmovdqu l7, 7 * 32(l); \
 369	\
 370	/* \
 371	 * t2 = krr; \
 372	 * t2 |= rr; \
 373	 * rl ^= t2; \
 374	 */ \
 375	\
 376	vpshufb tt0, t0, t3; \
 377	vpsrldq $1, t0, t0; \
 378	vpshufb tt0, t0, t2; \
 379	vpsrldq $1, t0, t0; \
 380	vpshufb tt0, t0, t1; \
 381	vpsrldq $1, t0, t0; \
 382	vpshufb tt0, t0, t0; \
 383	\
 384	vpor 4 * 32(r), t0, t0; \
 385	vpor 5 * 32(r), t1, t1; \
 386	vpor 6 * 32(r), t2, t2; \
 387	vpor 7 * 32(r), t3, t3; \
 388	\
 389	vpxor 0 * 32(r), t0, t0; \
 390	vpxor 1 * 32(r), t1, t1; \
 391	vpxor 2 * 32(r), t2, t2; \
 392	vpxor 3 * 32(r), t3, t3; \
 393	vmovdqu t0, 0 * 32(r); \
 394	vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
 395	vmovdqu t1, 1 * 32(r); \
 396	vmovdqu t2, 2 * 32(r); \
 397	vmovdqu t3, 3 * 32(r); \
 398	\
 399	/* \
 400	 * t2 = krl; \
 401	 * t2 &= rl; \
 402	 * rr ^= rol32(t2, 1); \
 403	 */ \
 404	vpshufb tt0, t0, t3; \
 405	vpsrldq $1, t0, t0; \
 406	vpshufb tt0, t0, t2; \
 407	vpsrldq $1, t0, t0; \
 408	vpshufb tt0, t0, t1; \
 409	vpsrldq $1, t0, t0; \
 410	vpshufb tt0, t0, t0; \
 411	\
 412	vpand 0 * 32(r), t0, t0; \
 413	vpand 1 * 32(r), t1, t1; \
 414	vpand 2 * 32(r), t2, t2; \
 415	vpand 3 * 32(r), t3, t3; \
 416	\
 417	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
 418	\
 419	vpxor 4 * 32(r), t0, t0; \
 420	vpxor 5 * 32(r), t1, t1; \
 421	vpxor 6 * 32(r), t2, t2; \
 422	vpxor 7 * 32(r), t3, t3; \
 423	vmovdqu t0, 4 * 32(r); \
 424	vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
 425	vmovdqu t1, 5 * 32(r); \
 426	vmovdqu t2, 6 * 32(r); \
 427	vmovdqu t3, 7 * 32(r); \
 428	\
 429	/* \
 430	 * t0 = klr; \
 431	 * t0 |= lr; \
 432	 * ll ^= t0; \
 433	 */ \
 434	\
 435	vpshufb tt0, t0, t3; \
 436	vpsrldq $1, t0, t0; \
 437	vpshufb tt0, t0, t2; \
 438	vpsrldq $1, t0, t0; \
 439	vpshufb tt0, t0, t1; \
 440	vpsrldq $1, t0, t0; \
 441	vpshufb tt0, t0, t0; \
 442	\
 443	vpor l4, t0, t0; \
 444	vpor l5, t1, t1; \
 445	vpor l6, t2, t2; \
 446	vpor l7, t3, t3; \
 447	\
 448	vpxor l0, t0, l0; \
 449	vmovdqu l0, 0 * 32(l); \
 450	vpxor l1, t1, l1; \
 451	vmovdqu l1, 1 * 32(l); \
 452	vpxor l2, t2, l2; \
 453	vmovdqu l2, 2 * 32(l); \
 454	vpxor l3, t3, l3; \
 455	vmovdqu l3, 3 * 32(l);
 456
 457#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
 458	vpunpckhdq x1, x0, t2; \
 459	vpunpckldq x1, x0, x0; \
 460	\
 461	vpunpckldq x3, x2, t1; \
 462	vpunpckhdq x3, x2, x2; \
 463	\
 464	vpunpckhqdq t1, x0, x1; \
 465	vpunpcklqdq t1, x0, x0; \
 466	\
 467	vpunpckhqdq x2, t2, x3; \
 468	vpunpcklqdq x2, t2, x2;
 469
 470#define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
 471			      a3, b3, c3, d3, st0, st1) \
 472	vmovdqu d2, st0; \
 473	vmovdqu d3, st1; \
 474	transpose_4x4(a0, a1, a2, a3, d2, d3); \
 475	transpose_4x4(b0, b1, b2, b3, d2, d3); \
 476	vmovdqu st0, d2; \
 477	vmovdqu st1, d3; \
 478	\
 479	vmovdqu a0, st0; \
 480	vmovdqu a1, st1; \
 481	transpose_4x4(c0, c1, c2, c3, a0, a1); \
 482	transpose_4x4(d0, d1, d2, d3, a0, a1); \
 483	\
 484	vbroadcasti128 .Lshufb_16x16b, a0; \
 485	vmovdqu st1, a1; \
 486	vpshufb a0, a2, a2; \
 487	vpshufb a0, a3, a3; \
 488	vpshufb a0, b0, b0; \
 489	vpshufb a0, b1, b1; \
 490	vpshufb a0, b2, b2; \
 491	vpshufb a0, b3, b3; \
 492	vpshufb a0, a1, a1; \
 493	vpshufb a0, c0, c0; \
 494	vpshufb a0, c1, c1; \
 495	vpshufb a0, c2, c2; \
 496	vpshufb a0, c3, c3; \
 497	vpshufb a0, d0, d0; \
 498	vpshufb a0, d1, d1; \
 499	vpshufb a0, d2, d2; \
 500	vpshufb a0, d3, d3; \
 501	vmovdqu d3, st1; \
 502	vmovdqu st0, d3; \
 503	vpshufb a0, d3, a0; \
 504	vmovdqu d2, st0; \
 505	\
 506	transpose_4x4(a0, b0, c0, d0, d2, d3); \
 507	transpose_4x4(a1, b1, c1, d1, d2, d3); \
 508	vmovdqu st0, d2; \
 509	vmovdqu st1, d3; \
 510	\
 511	vmovdqu b0, st0; \
 512	vmovdqu b1, st1; \
 513	transpose_4x4(a2, b2, c2, d2, b0, b1); \
 514	transpose_4x4(a3, b3, c3, d3, b0, b1); \
 515	vmovdqu st0, b0; \
 516	vmovdqu st1, b1; \
 517	/* does not adjust output bytes inside vectors */
 518
 519/* load blocks to registers and apply pre-whitening */
 520#define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 521		     y6, y7, rio, key) \
 522	vpbroadcastq key, x0; \
 523	vpshufb .Lpack_bswap, x0, x0; \
 524	\
 525	vpxor 0 * 32(rio), x0, y7; \
 526	vpxor 1 * 32(rio), x0, y6; \
 527	vpxor 2 * 32(rio), x0, y5; \
 528	vpxor 3 * 32(rio), x0, y4; \
 529	vpxor 4 * 32(rio), x0, y3; \
 530	vpxor 5 * 32(rio), x0, y2; \
 531	vpxor 6 * 32(rio), x0, y1; \
 532	vpxor 7 * 32(rio), x0, y0; \
 533	vpxor 8 * 32(rio), x0, x7; \
 534	vpxor 9 * 32(rio), x0, x6; \
 535	vpxor 10 * 32(rio), x0, x5; \
 536	vpxor 11 * 32(rio), x0, x4; \
 537	vpxor 12 * 32(rio), x0, x3; \
 538	vpxor 13 * 32(rio), x0, x2; \
 539	vpxor 14 * 32(rio), x0, x1; \
 540	vpxor 15 * 32(rio), x0, x0;
 541
 542/* byteslice pre-whitened blocks and store to temporary memory */
 543#define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 544		      y6, y7, mem_ab, mem_cd) \
 545	byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
 546			      y4, y5, y6, y7, (mem_ab), (mem_cd)); \
 547	\
 548	vmovdqu x0, 0 * 32(mem_ab); \
 549	vmovdqu x1, 1 * 32(mem_ab); \
 550	vmovdqu x2, 2 * 32(mem_ab); \
 551	vmovdqu x3, 3 * 32(mem_ab); \
 552	vmovdqu x4, 4 * 32(mem_ab); \
 553	vmovdqu x5, 5 * 32(mem_ab); \
 554	vmovdqu x6, 6 * 32(mem_ab); \
 555	vmovdqu x7, 7 * 32(mem_ab); \
 556	vmovdqu y0, 0 * 32(mem_cd); \
 557	vmovdqu y1, 1 * 32(mem_cd); \
 558	vmovdqu y2, 2 * 32(mem_cd); \
 559	vmovdqu y3, 3 * 32(mem_cd); \
 560	vmovdqu y4, 4 * 32(mem_cd); \
 561	vmovdqu y5, 5 * 32(mem_cd); \
 562	vmovdqu y6, 6 * 32(mem_cd); \
 563	vmovdqu y7, 7 * 32(mem_cd);
 564
 565/* de-byteslice, apply post-whitening and store blocks */
 566#define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
 567		    y5, y6, y7, key, stack_tmp0, stack_tmp1) \
 568	byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
 569			      y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
 570	\
 571	vmovdqu x0, stack_tmp0; \
 572	\
 573	vpbroadcastq key, x0; \
 574	vpshufb .Lpack_bswap, x0, x0; \
 575	\
 576	vpxor x0, y7, y7; \
 577	vpxor x0, y6, y6; \
 578	vpxor x0, y5, y5; \
 579	vpxor x0, y4, y4; \
 580	vpxor x0, y3, y3; \
 581	vpxor x0, y2, y2; \
 582	vpxor x0, y1, y1; \
 583	vpxor x0, y0, y0; \
 584	vpxor x0, x7, x7; \
 585	vpxor x0, x6, x6; \
 586	vpxor x0, x5, x5; \
 587	vpxor x0, x4, x4; \
 588	vpxor x0, x3, x3; \
 589	vpxor x0, x2, x2; \
 590	vpxor x0, x1, x1; \
 591	vpxor stack_tmp0, x0, x0;
 592
 593#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 594		     y6, y7, rio) \
 595	vmovdqu x0, 0 * 32(rio); \
 596	vmovdqu x1, 1 * 32(rio); \
 597	vmovdqu x2, 2 * 32(rio); \
 598	vmovdqu x3, 3 * 32(rio); \
 599	vmovdqu x4, 4 * 32(rio); \
 600	vmovdqu x5, 5 * 32(rio); \
 601	vmovdqu x6, 6 * 32(rio); \
 602	vmovdqu x7, 7 * 32(rio); \
 603	vmovdqu y0, 8 * 32(rio); \
 604	vmovdqu y1, 9 * 32(rio); \
 605	vmovdqu y2, 10 * 32(rio); \
 606	vmovdqu y3, 11 * 32(rio); \
 607	vmovdqu y4, 12 * 32(rio); \
 608	vmovdqu y5, 13 * 32(rio); \
 609	vmovdqu y6, 14 * 32(rio); \
 610	vmovdqu y7, 15 * 32(rio);
 611
 612.data
 
 613.align 32
 614
 615#define SHUFB_BYTES(idx) \
 616	0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
 617
 618.Lshufb_16x16b:
 619	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
 620	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
 621
 
 
 622.Lpack_bswap:
 623	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
 624	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
 625
 626/* For CTR-mode IV byteswap */
 627.Lbswap128_mask:
 628	.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
 629
 630/* For XTS mode */
 631.Lxts_gf128mul_and_shl1_mask_0:
 632	.byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
 633.Lxts_gf128mul_and_shl1_mask_1:
 634	.byte 0x0e, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
 635
 636/*
 637 * pre-SubByte transform
 638 *
 639 * pre-lookup for sbox1, sbox2, sbox3:
 640 *   swap_bitendianness(
 641 *       isom_map_camellia_to_aes(
 642 *           camellia_f(
 643 *               swap_bitendianess(in)
 644 *           )
 645 *       )
 646 *   )
 647 *
 648 * (note: '⊕ 0xc5' inside camellia_f())
 649 */
 650.Lpre_tf_lo_s1:
 651	.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
 652	.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
 653.Lpre_tf_hi_s1:
 654	.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
 655	.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
 656
 657/*
 658 * pre-SubByte transform
 659 *
 660 * pre-lookup for sbox4:
 661 *   swap_bitendianness(
 662 *       isom_map_camellia_to_aes(
 663 *           camellia_f(
 664 *               swap_bitendianess(in <<< 1)
 665 *           )
 666 *       )
 667 *   )
 668 *
 669 * (note: '⊕ 0xc5' inside camellia_f())
 670 */
 671.Lpre_tf_lo_s4:
 672	.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
 673	.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
 674.Lpre_tf_hi_s4:
 675	.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
 676	.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
 677
 678/*
 679 * post-SubByte transform
 680 *
 681 * post-lookup for sbox1, sbox4:
 682 *  swap_bitendianness(
 683 *      camellia_h(
 684 *          isom_map_aes_to_camellia(
 685 *              swap_bitendianness(
 686 *                  aes_inverse_affine_transform(in)
 687 *              )
 688 *          )
 689 *      )
 690 *  )
 691 *
 692 * (note: '⊕ 0x6e' inside camellia_h())
 693 */
 694.Lpost_tf_lo_s1:
 695	.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
 696	.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
 697.Lpost_tf_hi_s1:
 698	.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
 699	.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
 700
 701/*
 702 * post-SubByte transform
 703 *
 704 * post-lookup for sbox2:
 705 *  swap_bitendianness(
 706 *      camellia_h(
 707 *          isom_map_aes_to_camellia(
 708 *              swap_bitendianness(
 709 *                  aes_inverse_affine_transform(in)
 710 *              )
 711 *          )
 712 *      )
 713 *  ) <<< 1
 714 *
 715 * (note: '⊕ 0x6e' inside camellia_h())
 716 */
 717.Lpost_tf_lo_s2:
 718	.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
 719	.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
 720.Lpost_tf_hi_s2:
 721	.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
 722	.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
 723
 724/*
 725 * post-SubByte transform
 726 *
 727 * post-lookup for sbox3:
 728 *  swap_bitendianness(
 729 *      camellia_h(
 730 *          isom_map_aes_to_camellia(
 731 *              swap_bitendianness(
 732 *                  aes_inverse_affine_transform(in)
 733 *              )
 734 *          )
 735 *      )
 736 *  ) >>> 1
 737 *
 738 * (note: '⊕ 0x6e' inside camellia_h())
 739 */
 740.Lpost_tf_lo_s3:
 741	.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
 742	.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
 743.Lpost_tf_hi_s3:
 744	.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
 745	.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
 746
 747/* For isolating SubBytes from AESENCLAST, inverse shift row */
 748.Linv_shift_row:
 749	.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
 750	.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
 751
 
 752.align 4
 753/* 4-bit mask */
 754.L0f0f0f0f:
 755	.long 0x0f0f0f0f
 756
 757.text
 758
 759.align 8
 760__camellia_enc_blk32:
 761	/* input:
 762	 *	%rdi: ctx, CTX
 763	 *	%rax: temporary storage, 512 bytes
 764	 *	%ymm0..%ymm15: 32 plaintext blocks
 765	 * output:
 766	 *	%ymm0..%ymm15: 32 encrypted blocks, order swapped:
 767	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
 768	 */
 
 769
 770	leaq 8 * 32(%rax), %rcx;
 771
 772	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 773		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 774		      %ymm15, %rax, %rcx);
 775
 776	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 777		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 778		     %ymm15, %rax, %rcx, 0);
 779
 780	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 781	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 782	      %ymm15,
 783	      ((key_table + (8) * 8) + 0)(CTX),
 784	      ((key_table + (8) * 8) + 4)(CTX),
 785	      ((key_table + (8) * 8) + 8)(CTX),
 786	      ((key_table + (8) * 8) + 12)(CTX));
 787
 788	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 789		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 790		     %ymm15, %rax, %rcx, 8);
 791
 792	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 793	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 794	      %ymm15,
 795	      ((key_table + (16) * 8) + 0)(CTX),
 796	      ((key_table + (16) * 8) + 4)(CTX),
 797	      ((key_table + (16) * 8) + 8)(CTX),
 798	      ((key_table + (16) * 8) + 12)(CTX));
 799
 800	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 801		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 802		     %ymm15, %rax, %rcx, 16);
 803
 804	movl $24, %r8d;
 805	cmpl $16, key_length(CTX);
 806	jne .Lenc_max32;
 807
 808.Lenc_done:
 809	/* load CD for output */
 810	vmovdqu 0 * 32(%rcx), %ymm8;
 811	vmovdqu 1 * 32(%rcx), %ymm9;
 812	vmovdqu 2 * 32(%rcx), %ymm10;
 813	vmovdqu 3 * 32(%rcx), %ymm11;
 814	vmovdqu 4 * 32(%rcx), %ymm12;
 815	vmovdqu 5 * 32(%rcx), %ymm13;
 816	vmovdqu 6 * 32(%rcx), %ymm14;
 817	vmovdqu 7 * 32(%rcx), %ymm15;
 818
 819	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 820		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 821		    %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
 822
 823	ret;
 
 824
 825.align 8
 826.Lenc_max32:
 827	movl $32, %r8d;
 828
 829	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 830	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 831	      %ymm15,
 832	      ((key_table + (24) * 8) + 0)(CTX),
 833	      ((key_table + (24) * 8) + 4)(CTX),
 834	      ((key_table + (24) * 8) + 8)(CTX),
 835	      ((key_table + (24) * 8) + 12)(CTX));
 836
 837	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 838		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 839		     %ymm15, %rax, %rcx, 24);
 840
 841	jmp .Lenc_done;
 842ENDPROC(__camellia_enc_blk32)
 843
 844.align 8
 845__camellia_dec_blk32:
 846	/* input:
 847	 *	%rdi: ctx, CTX
 848	 *	%rax: temporary storage, 512 bytes
 849	 *	%r8d: 24 for 16 byte key, 32 for larger
 850	 *	%ymm0..%ymm15: 16 encrypted blocks
 851	 * output:
 852	 *	%ymm0..%ymm15: 16 plaintext blocks, order swapped:
 853	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
 854	 */
 
 855
 856	leaq 8 * 32(%rax), %rcx;
 857
 858	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 859		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 860		      %ymm15, %rax, %rcx);
 861
 862	cmpl $32, %r8d;
 863	je .Ldec_max32;
 864
 865.Ldec_max24:
 866	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 867		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 868		     %ymm15, %rax, %rcx, 16);
 869
 870	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 871	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 872	      %ymm15,
 873	      ((key_table + (16) * 8) + 8)(CTX),
 874	      ((key_table + (16) * 8) + 12)(CTX),
 875	      ((key_table + (16) * 8) + 0)(CTX),
 876	      ((key_table + (16) * 8) + 4)(CTX));
 877
 878	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 879		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 880		     %ymm15, %rax, %rcx, 8);
 881
 882	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 883	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 884	      %ymm15,
 885	      ((key_table + (8) * 8) + 8)(CTX),
 886	      ((key_table + (8) * 8) + 12)(CTX),
 887	      ((key_table + (8) * 8) + 0)(CTX),
 888	      ((key_table + (8) * 8) + 4)(CTX));
 889
 890	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 891		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 892		     %ymm15, %rax, %rcx, 0);
 893
 894	/* load CD for output */
 895	vmovdqu 0 * 32(%rcx), %ymm8;
 896	vmovdqu 1 * 32(%rcx), %ymm9;
 897	vmovdqu 2 * 32(%rcx), %ymm10;
 898	vmovdqu 3 * 32(%rcx), %ymm11;
 899	vmovdqu 4 * 32(%rcx), %ymm12;
 900	vmovdqu 5 * 32(%rcx), %ymm13;
 901	vmovdqu 6 * 32(%rcx), %ymm14;
 902	vmovdqu 7 * 32(%rcx), %ymm15;
 903
 904	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 905		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 906		    %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
 907
 908	ret;
 
 909
 910.align 8
 911.Ldec_max32:
 912	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 913		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 914		     %ymm15, %rax, %rcx, 24);
 915
 916	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 917	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 918	      %ymm15,
 919	      ((key_table + (24) * 8) + 8)(CTX),
 920	      ((key_table + (24) * 8) + 12)(CTX),
 921	      ((key_table + (24) * 8) + 0)(CTX),
 922	      ((key_table + (24) * 8) + 4)(CTX));
 923
 924	jmp .Ldec_max24;
 925ENDPROC(__camellia_dec_blk32)
 926
 927ENTRY(camellia_ecb_enc_32way)
 928	/* input:
 929	 *	%rdi: ctx, CTX
 930	 *	%rsi: dst (32 blocks)
 931	 *	%rdx: src (32 blocks)
 932	 */
 
 933
 934	vzeroupper;
 935
 936	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 937		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 938		     %ymm15, %rdx, (key_table)(CTX));
 939
 940	/* now dst can be used as temporary buffer (even in src == dst case) */
 941	movq	%rsi, %rax;
 942
 943	call __camellia_enc_blk32;
 944
 945	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
 946		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
 947		     %ymm8, %rsi);
 948
 949	vzeroupper;
 950
 951	ret;
 952ENDPROC(camellia_ecb_enc_32way)
 
 953
 954ENTRY(camellia_ecb_dec_32way)
 955	/* input:
 956	 *	%rdi: ctx, CTX
 957	 *	%rsi: dst (32 blocks)
 958	 *	%rdx: src (32 blocks)
 959	 */
 
 960
 961	vzeroupper;
 962
 963	cmpl $16, key_length(CTX);
 964	movl $32, %r8d;
 965	movl $24, %eax;
 966	cmovel %eax, %r8d; /* max */
 967
 968	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
 969		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
 970		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
 971
 972	/* now dst can be used as temporary buffer (even in src == dst case) */
 973	movq	%rsi, %rax;
 974
 975	call __camellia_dec_blk32;
 976
 977	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
 978		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
 979		     %ymm8, %rsi);
 980
 981	vzeroupper;
 982
 983	ret;
 984ENDPROC(camellia_ecb_dec_32way)
 
 985
 986ENTRY(camellia_cbc_dec_32way)
 987	/* input:
 988	 *	%rdi: ctx, CTX
 989	 *	%rsi: dst (32 blocks)
 990	 *	%rdx: src (32 blocks)
 991	 */
 
 
 992
 993	vzeroupper;
 994
 995	cmpl $16, key_length(CTX);
 996	movl $32, %r8d;
 997	movl $24, %eax;
 998	cmovel %eax, %r8d; /* max */
 999
1000	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
1001		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
1002		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
1003
1004	movq %rsp, %r10;
1005	cmpq %rsi, %rdx;
1006	je .Lcbc_dec_use_stack;
1007
1008	/* dst can be used as temporary storage, src is not overwritten. */
1009	movq %rsi, %rax;
1010	jmp .Lcbc_dec_continue;
1011
1012.Lcbc_dec_use_stack:
1013	/*
1014	 * dst still in-use (because dst == src), so use stack for temporary
1015	 * storage.
1016	 */
1017	subq $(16 * 32), %rsp;
1018	movq %rsp, %rax;
1019
1020.Lcbc_dec_continue:
1021	call __camellia_dec_blk32;
1022
1023	vmovdqu %ymm7, (%rax);
1024	vpxor %ymm7, %ymm7, %ymm7;
1025	vinserti128 $1, (%rdx), %ymm7, %ymm7;
1026	vpxor (%rax), %ymm7, %ymm7;
1027	movq %r10, %rsp;
1028	vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1029	vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1030	vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1031	vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1032	vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1033	vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1034	vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1035	vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1036	vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1037	vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1038	vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1039	vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1040	vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1041	vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1042	vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1043	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1044		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1045		     %ymm8, %rsi);
1046
1047	vzeroupper;
1048
1049	ret;
1050ENDPROC(camellia_cbc_dec_32way)
1051
1052#define inc_le128(x, minus_one, tmp) \
1053	vpcmpeqq minus_one, x, tmp; \
1054	vpsubq minus_one, x, x; \
1055	vpslldq $8, tmp, tmp; \
1056	vpsubq tmp, x, x;
1057
1058#define add2_le128(x, minus_one, minus_two, tmp1, tmp2) \
1059	vpcmpeqq minus_one, x, tmp1; \
1060	vpcmpeqq minus_two, x, tmp2; \
1061	vpsubq minus_two, x, x; \
1062	vpor tmp2, tmp1, tmp1; \
1063	vpslldq $8, tmp1, tmp1; \
1064	vpsubq tmp1, x, x;
1065
1066ENTRY(camellia_ctr_32way)
1067	/* input:
1068	 *	%rdi: ctx, CTX
1069	 *	%rsi: dst (32 blocks)
1070	 *	%rdx: src (32 blocks)
1071	 *	%rcx: iv (little endian, 128bit)
1072	 */
1073
1074	vzeroupper;
1075
1076	movq %rsp, %r10;
1077	cmpq %rsi, %rdx;
1078	je .Lctr_use_stack;
1079
1080	/* dst can be used as temporary storage, src is not overwritten. */
1081	movq %rsi, %rax;
1082	jmp .Lctr_continue;
1083
1084.Lctr_use_stack:
1085	subq $(16 * 32), %rsp;
1086	movq %rsp, %rax;
1087
1088.Lctr_continue:
1089	vpcmpeqd %ymm15, %ymm15, %ymm15;
1090	vpsrldq $8, %ymm15, %ymm15; /* ab: -1:0 ; cd: -1:0 */
1091	vpaddq %ymm15, %ymm15, %ymm12; /* ab: -2:0 ; cd: -2:0 */
1092
1093	/* load IV and byteswap */
1094	vmovdqu (%rcx), %xmm0;
1095	vmovdqa %xmm0, %xmm1;
1096	inc_le128(%xmm0, %xmm15, %xmm14);
1097	vbroadcasti128 .Lbswap128_mask, %ymm14;
1098	vinserti128 $1, %xmm0, %ymm1, %ymm0;
1099	vpshufb %ymm14, %ymm0, %ymm13;
1100	vmovdqu %ymm13, 15 * 32(%rax);
1101
1102	/* construct IVs */
1103	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); /* ab:le2 ; cd:le3 */
1104	vpshufb %ymm14, %ymm0, %ymm13;
1105	vmovdqu %ymm13, 14 * 32(%rax);
1106	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1107	vpshufb %ymm14, %ymm0, %ymm13;
1108	vmovdqu %ymm13, 13 * 32(%rax);
1109	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1110	vpshufb %ymm14, %ymm0, %ymm13;
1111	vmovdqu %ymm13, 12 * 32(%rax);
1112	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1113	vpshufb %ymm14, %ymm0, %ymm13;
1114	vmovdqu %ymm13, 11 * 32(%rax);
1115	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1116	vpshufb %ymm14, %ymm0, %ymm10;
1117	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1118	vpshufb %ymm14, %ymm0, %ymm9;
1119	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1120	vpshufb %ymm14, %ymm0, %ymm8;
1121	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1122	vpshufb %ymm14, %ymm0, %ymm7;
1123	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1124	vpshufb %ymm14, %ymm0, %ymm6;
1125	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1126	vpshufb %ymm14, %ymm0, %ymm5;
1127	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1128	vpshufb %ymm14, %ymm0, %ymm4;
1129	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1130	vpshufb %ymm14, %ymm0, %ymm3;
1131	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1132	vpshufb %ymm14, %ymm0, %ymm2;
1133	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1134	vpshufb %ymm14, %ymm0, %ymm1;
1135	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1136	vextracti128 $1, %ymm0, %xmm13;
1137	vpshufb %ymm14, %ymm0, %ymm0;
1138	inc_le128(%xmm13, %xmm15, %xmm14);
1139	vmovdqu %xmm13, (%rcx);
1140
1141	/* inpack32_pre: */
1142	vpbroadcastq (key_table)(CTX), %ymm15;
1143	vpshufb .Lpack_bswap, %ymm15, %ymm15;
1144	vpxor %ymm0, %ymm15, %ymm0;
1145	vpxor %ymm1, %ymm15, %ymm1;
1146	vpxor %ymm2, %ymm15, %ymm2;
1147	vpxor %ymm3, %ymm15, %ymm3;
1148	vpxor %ymm4, %ymm15, %ymm4;
1149	vpxor %ymm5, %ymm15, %ymm5;
1150	vpxor %ymm6, %ymm15, %ymm6;
1151	vpxor %ymm7, %ymm15, %ymm7;
1152	vpxor %ymm8, %ymm15, %ymm8;
1153	vpxor %ymm9, %ymm15, %ymm9;
1154	vpxor %ymm10, %ymm15, %ymm10;
1155	vpxor 11 * 32(%rax), %ymm15, %ymm11;
1156	vpxor 12 * 32(%rax), %ymm15, %ymm12;
1157	vpxor 13 * 32(%rax), %ymm15, %ymm13;
1158	vpxor 14 * 32(%rax), %ymm15, %ymm14;
1159	vpxor 15 * 32(%rax), %ymm15, %ymm15;
1160
1161	call __camellia_enc_blk32;
1162
1163	movq %r10, %rsp;
1164
1165	vpxor 0 * 32(%rdx), %ymm7, %ymm7;
1166	vpxor 1 * 32(%rdx), %ymm6, %ymm6;
1167	vpxor 2 * 32(%rdx), %ymm5, %ymm5;
1168	vpxor 3 * 32(%rdx), %ymm4, %ymm4;
1169	vpxor 4 * 32(%rdx), %ymm3, %ymm3;
1170	vpxor 5 * 32(%rdx), %ymm2, %ymm2;
1171	vpxor 6 * 32(%rdx), %ymm1, %ymm1;
1172	vpxor 7 * 32(%rdx), %ymm0, %ymm0;
1173	vpxor 8 * 32(%rdx), %ymm15, %ymm15;
1174	vpxor 9 * 32(%rdx), %ymm14, %ymm14;
1175	vpxor 10 * 32(%rdx), %ymm13, %ymm13;
1176	vpxor 11 * 32(%rdx), %ymm12, %ymm12;
1177	vpxor 12 * 32(%rdx), %ymm11, %ymm11;
1178	vpxor 13 * 32(%rdx), %ymm10, %ymm10;
1179	vpxor 14 * 32(%rdx), %ymm9, %ymm9;
1180	vpxor 15 * 32(%rdx), %ymm8, %ymm8;
1181	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1182		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1183		     %ymm8, %rsi);
1184
1185	vzeroupper;
1186
1187	ret;
1188ENDPROC(camellia_ctr_32way)
1189
1190#define gf128mul_x_ble(iv, mask, tmp) \
1191	vpsrad $31, iv, tmp; \
1192	vpaddq iv, iv, iv; \
1193	vpshufd $0x13, tmp, tmp; \
1194	vpand mask, tmp, tmp; \
1195	vpxor tmp, iv, iv;
1196
1197#define gf128mul_x2_ble(iv, mask1, mask2, tmp0, tmp1) \
1198	vpsrad $31, iv, tmp0; \
1199	vpaddq iv, iv, tmp1; \
1200	vpsllq $2, iv, iv; \
1201	vpshufd $0x13, tmp0, tmp0; \
1202	vpsrad $31, tmp1, tmp1; \
1203	vpand mask2, tmp0, tmp0; \
1204	vpshufd $0x13, tmp1, tmp1; \
1205	vpxor tmp0, iv, iv; \
1206	vpand mask1, tmp1, tmp1; \
1207	vpxor tmp1, iv, iv;
1208
1209.align 8
1210camellia_xts_crypt_32way:
1211	/* input:
1212	 *	%rdi: ctx, CTX
1213	 *	%rsi: dst (32 blocks)
1214	 *	%rdx: src (32 blocks)
1215	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1216	 *	%r8: index for input whitening key
1217	 *	%r9: pointer to  __camellia_enc_blk32 or __camellia_dec_blk32
1218	 */
1219
1220	vzeroupper;
1221
1222	subq $(16 * 32), %rsp;
1223	movq %rsp, %rax;
1224
1225	vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_0, %ymm12;
1226
1227	/* load IV and construct second IV */
1228	vmovdqu (%rcx), %xmm0;
1229	vmovdqa %xmm0, %xmm15;
1230	gf128mul_x_ble(%xmm0, %xmm12, %xmm13);
1231	vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_1, %ymm13;
1232	vinserti128 $1, %xmm0, %ymm15, %ymm0;
1233	vpxor 0 * 32(%rdx), %ymm0, %ymm15;
1234	vmovdqu %ymm15, 15 * 32(%rax);
1235	vmovdqu %ymm0, 0 * 32(%rsi);
1236
1237	/* construct IVs */
1238	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1239	vpxor 1 * 32(%rdx), %ymm0, %ymm15;
1240	vmovdqu %ymm15, 14 * 32(%rax);
1241	vmovdqu %ymm0, 1 * 32(%rsi);
1242
1243	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1244	vpxor 2 * 32(%rdx), %ymm0, %ymm15;
1245	vmovdqu %ymm15, 13 * 32(%rax);
1246	vmovdqu %ymm0, 2 * 32(%rsi);
1247
1248	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1249	vpxor 3 * 32(%rdx), %ymm0, %ymm15;
1250	vmovdqu %ymm15, 12 * 32(%rax);
1251	vmovdqu %ymm0, 3 * 32(%rsi);
1252
1253	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1254	vpxor 4 * 32(%rdx), %ymm0, %ymm11;
1255	vmovdqu %ymm0, 4 * 32(%rsi);
1256
1257	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1258	vpxor 5 * 32(%rdx), %ymm0, %ymm10;
1259	vmovdqu %ymm0, 5 * 32(%rsi);
1260
1261	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1262	vpxor 6 * 32(%rdx), %ymm0, %ymm9;
1263	vmovdqu %ymm0, 6 * 32(%rsi);
1264
1265	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1266	vpxor 7 * 32(%rdx), %ymm0, %ymm8;
1267	vmovdqu %ymm0, 7 * 32(%rsi);
1268
1269	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1270	vpxor 8 * 32(%rdx), %ymm0, %ymm7;
1271	vmovdqu %ymm0, 8 * 32(%rsi);
1272
1273	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1274	vpxor 9 * 32(%rdx), %ymm0, %ymm6;
1275	vmovdqu %ymm0, 9 * 32(%rsi);
1276
1277	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1278	vpxor 10 * 32(%rdx), %ymm0, %ymm5;
1279	vmovdqu %ymm0, 10 * 32(%rsi);
1280
1281	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1282	vpxor 11 * 32(%rdx), %ymm0, %ymm4;
1283	vmovdqu %ymm0, 11 * 32(%rsi);
1284
1285	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1286	vpxor 12 * 32(%rdx), %ymm0, %ymm3;
1287	vmovdqu %ymm0, 12 * 32(%rsi);
1288
1289	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1290	vpxor 13 * 32(%rdx), %ymm0, %ymm2;
1291	vmovdqu %ymm0, 13 * 32(%rsi);
1292
1293	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1294	vpxor 14 * 32(%rdx), %ymm0, %ymm1;
1295	vmovdqu %ymm0, 14 * 32(%rsi);
1296
1297	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1298	vpxor 15 * 32(%rdx), %ymm0, %ymm15;
1299	vmovdqu %ymm15, 0 * 32(%rax);
1300	vmovdqu %ymm0, 15 * 32(%rsi);
1301
1302	vextracti128 $1, %ymm0, %xmm0;
1303	gf128mul_x_ble(%xmm0, %xmm12, %xmm15);
1304	vmovdqu %xmm0, (%rcx);
1305
1306	/* inpack32_pre: */
1307	vpbroadcastq (key_table)(CTX, %r8, 8), %ymm15;
1308	vpshufb .Lpack_bswap, %ymm15, %ymm15;
1309	vpxor 0 * 32(%rax), %ymm15, %ymm0;
1310	vpxor %ymm1, %ymm15, %ymm1;
1311	vpxor %ymm2, %ymm15, %ymm2;
1312	vpxor %ymm3, %ymm15, %ymm3;
1313	vpxor %ymm4, %ymm15, %ymm4;
1314	vpxor %ymm5, %ymm15, %ymm5;
1315	vpxor %ymm6, %ymm15, %ymm6;
1316	vpxor %ymm7, %ymm15, %ymm7;
1317	vpxor %ymm8, %ymm15, %ymm8;
1318	vpxor %ymm9, %ymm15, %ymm9;
1319	vpxor %ymm10, %ymm15, %ymm10;
1320	vpxor %ymm11, %ymm15, %ymm11;
1321	vpxor 12 * 32(%rax), %ymm15, %ymm12;
1322	vpxor 13 * 32(%rax), %ymm15, %ymm13;
1323	vpxor 14 * 32(%rax), %ymm15, %ymm14;
1324	vpxor 15 * 32(%rax), %ymm15, %ymm15;
1325
1326	call *%r9;
1327
1328	addq $(16 * 32), %rsp;
1329
1330	vpxor 0 * 32(%rsi), %ymm7, %ymm7;
1331	vpxor 1 * 32(%rsi), %ymm6, %ymm6;
1332	vpxor 2 * 32(%rsi), %ymm5, %ymm5;
1333	vpxor 3 * 32(%rsi), %ymm4, %ymm4;
1334	vpxor 4 * 32(%rsi), %ymm3, %ymm3;
1335	vpxor 5 * 32(%rsi), %ymm2, %ymm2;
1336	vpxor 6 * 32(%rsi), %ymm1, %ymm1;
1337	vpxor 7 * 32(%rsi), %ymm0, %ymm0;
1338	vpxor 8 * 32(%rsi), %ymm15, %ymm15;
1339	vpxor 9 * 32(%rsi), %ymm14, %ymm14;
1340	vpxor 10 * 32(%rsi), %ymm13, %ymm13;
1341	vpxor 11 * 32(%rsi), %ymm12, %ymm12;
1342	vpxor 12 * 32(%rsi), %ymm11, %ymm11;
1343	vpxor 13 * 32(%rsi), %ymm10, %ymm10;
1344	vpxor 14 * 32(%rsi), %ymm9, %ymm9;
1345	vpxor 15 * 32(%rsi), %ymm8, %ymm8;
1346	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1347		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1348		     %ymm8, %rsi);
1349
1350	vzeroupper;
1351
1352	ret;
1353ENDPROC(camellia_xts_crypt_32way)
1354
1355ENTRY(camellia_xts_enc_32way)
1356	/* input:
1357	 *	%rdi: ctx, CTX
1358	 *	%rsi: dst (32 blocks)
1359	 *	%rdx: src (32 blocks)
1360	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1361	 */
1362
1363	xorl %r8d, %r8d; /* input whitening key, 0 for enc */
1364
1365	leaq __camellia_enc_blk32, %r9;
1366
1367	jmp camellia_xts_crypt_32way;
1368ENDPROC(camellia_xts_enc_32way)
1369
1370ENTRY(camellia_xts_dec_32way)
1371	/* input:
1372	 *	%rdi: ctx, CTX
1373	 *	%rsi: dst (32 blocks)
1374	 *	%rdx: src (32 blocks)
1375	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1376	 */
1377
1378	cmpl $16, key_length(CTX);
1379	movl $32, %r8d;
1380	movl $24, %eax;
1381	cmovel %eax, %r8d;  /* input whitening key, last for dec */
1382
1383	leaq __camellia_dec_blk32, %r9;
1384
1385	jmp camellia_xts_crypt_32way;
1386ENDPROC(camellia_xts_dec_32way)