Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/blk-integrity.h>
  25#include <linux/ratelimit.h>
  26#include <linux/unaligned.h>
  27
  28#include <scsi/scsi.h>
  29#include <scsi/scsi_cmnd.h>
  30#include <scsi/scsi_dbg.h>
  31#include <scsi/scsi_device.h>
  32#include <scsi/scsi_driver.h>
  33#include <scsi/scsi_eh.h>
  34#include <scsi/scsi_host.h>
  35#include <scsi/scsi_transport.h> /* scsi_init_limits() */
  36#include <scsi/scsi_dh.h>
  37
  38#include <trace/events/scsi.h>
  39
  40#include "scsi_debugfs.h"
  41#include "scsi_priv.h"
  42#include "scsi_logging.h"
  43
  44/*
  45 * Size of integrity metadata is usually small, 1 inline sg should
  46 * cover normal cases.
  47 */
  48#ifdef CONFIG_ARCH_NO_SG_CHAIN
  49#define  SCSI_INLINE_PROT_SG_CNT  0
  50#define  SCSI_INLINE_SG_CNT  0
  51#else
  52#define  SCSI_INLINE_PROT_SG_CNT  1
  53#define  SCSI_INLINE_SG_CNT  2
  54#endif
  55
  56static struct kmem_cache *scsi_sense_cache;
 
  57static DEFINE_MUTEX(scsi_sense_cache_mutex);
  58
  59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61int scsi_init_sense_cache(struct Scsi_Host *shost)
  62{
 
  63	int ret = 0;
  64
 
 
 
 
  65	mutex_lock(&scsi_sense_cache_mutex);
  66	if (!scsi_sense_cache) {
 
 
 
 
 
 
 
  67		scsi_sense_cache =
  68			kmem_cache_create_usercopy("scsi_sense_cache",
  69				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  70				0, SCSI_SENSE_BUFFERSIZE, NULL);
  71		if (!scsi_sense_cache)
  72			ret = -ENOMEM;
  73	}
 
  74	mutex_unlock(&scsi_sense_cache_mutex);
  75	return ret;
  76}
  77
 
 
 
 
 
 
 
  78static void
  79scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
  80{
  81	struct Scsi_Host *host = cmd->device->host;
  82	struct scsi_device *device = cmd->device;
  83	struct scsi_target *starget = scsi_target(device);
  84
  85	/*
  86	 * Set the appropriate busy bit for the device/host.
  87	 *
  88	 * If the host/device isn't busy, assume that something actually
  89	 * completed, and that we should be able to queue a command now.
  90	 *
  91	 * Note that the prior mid-layer assumption that any host could
  92	 * always queue at least one command is now broken.  The mid-layer
  93	 * will implement a user specifiable stall (see
  94	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
  95	 * if a command is requeued with no other commands outstanding
  96	 * either for the device or for the host.
  97	 */
  98	switch (reason) {
  99	case SCSI_MLQUEUE_HOST_BUSY:
 100		atomic_set(&host->host_blocked, host->max_host_blocked);
 101		break;
 102	case SCSI_MLQUEUE_DEVICE_BUSY:
 103	case SCSI_MLQUEUE_EH_RETRY:
 104		atomic_set(&device->device_blocked,
 105			   device->max_device_blocked);
 106		break;
 107	case SCSI_MLQUEUE_TARGET_BUSY:
 108		atomic_set(&starget->target_blocked,
 109			   starget->max_target_blocked);
 110		break;
 111	}
 112}
 113
 114static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
 115{
 116	struct request *rq = scsi_cmd_to_rq(cmd);
 117
 118	if (rq->rq_flags & RQF_DONTPREP) {
 119		rq->rq_flags &= ~RQF_DONTPREP;
 120		scsi_mq_uninit_cmd(cmd);
 121	} else {
 122		WARN_ON_ONCE(true);
 123	}
 124
 125	blk_mq_requeue_request(rq, false);
 126	if (!scsi_host_in_recovery(cmd->device->host))
 127		blk_mq_delay_kick_requeue_list(rq->q, msecs);
 128}
 129
 130/**
 131 * __scsi_queue_insert - private queue insertion
 132 * @cmd: The SCSI command being requeued
 133 * @reason:  The reason for the requeue
 134 * @unbusy: Whether the queue should be unbusied
 135 *
 136 * This is a private queue insertion.  The public interface
 137 * scsi_queue_insert() always assumes the queue should be unbusied
 138 * because it's always called before the completion.  This function is
 139 * for a requeue after completion, which should only occur in this
 140 * file.
 141 */
 142static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 143{
 144	struct scsi_device *device = cmd->device;
 
 
 145
 146	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 147		"Inserting command %p into mlqueue\n", cmd));
 148
 149	scsi_set_blocked(cmd, reason);
 150
 151	/*
 152	 * Decrement the counters, since these commands are no longer
 153	 * active on the host/device.
 154	 */
 155	if (unbusy)
 156		scsi_device_unbusy(device, cmd);
 157
 158	/*
 159	 * Requeue this command.  It will go before all other commands
 160	 * that are already in the queue. Schedule requeue work under
 161	 * lock such that the kblockd_schedule_work() call happens
 162	 * before blk_mq_destroy_queue() finishes.
 163	 */
 164	cmd->result = 0;
 165
 166	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
 167			       !scsi_host_in_recovery(cmd->device->host));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168}
 169
 170/**
 171 * scsi_queue_insert - Reinsert a command in the queue.
 172 * @cmd:    command that we are adding to queue.
 173 * @reason: why we are inserting command to queue.
 174 *
 175 * We do this for one of two cases. Either the host is busy and it cannot accept
 176 * any more commands for the time being, or the device returned QUEUE_FULL and
 177 * can accept no more commands.
 178 *
 179 * Context: This could be called either from an interrupt context or a normal
 180 * process context.
 
 
 
 
 
 
 
 
 181 */
 182void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 183{
 184	__scsi_queue_insert(cmd, reason, true);
 185}
 186
 187void scsi_failures_reset_retries(struct scsi_failures *failures)
 188{
 189	struct scsi_failure *failure;
 190
 191	failures->total_retries = 0;
 192
 193	for (failure = failures->failure_definitions; failure->result;
 194	     failure++)
 195		failure->retries = 0;
 196}
 197EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
 198
 199/**
 200 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
 201 * @scmd: scsi_cmnd to check.
 202 * @failures: scsi_failures struct that lists failures to check for.
 203 *
 204 * Returns -EAGAIN if the caller should retry else 0.
 205 */
 206static int scsi_check_passthrough(struct scsi_cmnd *scmd,
 207				  struct scsi_failures *failures)
 208{
 209	struct scsi_failure *failure;
 210	struct scsi_sense_hdr sshdr;
 211	enum sam_status status;
 212
 213	if (!scmd->result)
 214		return 0;
 215
 216	if (!failures)
 217		return 0;
 218
 219	for (failure = failures->failure_definitions; failure->result;
 220	     failure++) {
 221		if (failure->result == SCMD_FAILURE_RESULT_ANY)
 222			goto maybe_retry;
 223
 224		if (host_byte(scmd->result) &&
 225		    host_byte(scmd->result) == host_byte(failure->result))
 226			goto maybe_retry;
 227
 228		status = status_byte(scmd->result);
 229		if (!status)
 230			continue;
 231
 232		if (failure->result == SCMD_FAILURE_STAT_ANY &&
 233		    !scsi_status_is_good(scmd->result))
 234			goto maybe_retry;
 235
 236		if (status != status_byte(failure->result))
 237			continue;
 238
 239		if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
 240		    failure->sense == SCMD_FAILURE_SENSE_ANY)
 241			goto maybe_retry;
 242
 243		if (!scsi_command_normalize_sense(scmd, &sshdr))
 244			return 0;
 245
 246		if (failure->sense != sshdr.sense_key)
 247			continue;
 248
 249		if (failure->asc == SCMD_FAILURE_ASC_ANY)
 250			goto maybe_retry;
 251
 252		if (failure->asc != sshdr.asc)
 253			continue;
 254
 255		if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
 256		    failure->ascq == sshdr.ascq)
 257			goto maybe_retry;
 258	}
 259
 260	return 0;
 261
 262maybe_retry:
 263	if (failure->allowed) {
 264		if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
 265		    ++failure->retries <= failure->allowed)
 266			return -EAGAIN;
 267	} else {
 268		if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
 269		    ++failures->total_retries <= failures->total_allowed)
 270			return -EAGAIN;
 271	}
 272
 273	return 0;
 274}
 275
 276/**
 277 * scsi_execute_cmd - insert request and wait for the result
 278 * @sdev:	scsi_device
 279 * @cmd:	scsi command
 280 * @opf:	block layer request cmd_flags
 281 * @buffer:	data buffer
 282 * @bufflen:	len of buffer
 283 * @timeout:	request timeout in HZ
 284 * @ml_retries:	number of times SCSI midlayer will retry request
 285 * @args:	Optional args. See struct definition for field descriptions
 
 
 
 
 286 *
 287 * Returns the scsi_cmnd result field if a command was executed, or a negative
 288 * Linux error code if we didn't get that far.
 289 */
 290int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
 291		     blk_opf_t opf, void *buffer, unsigned int bufflen,
 292		     int timeout, int ml_retries,
 293		     const struct scsi_exec_args *args)
 
 294{
 295	static const struct scsi_exec_args default_args;
 296	struct request *req;
 297	struct scsi_cmnd *scmd;
 298	int ret;
 299
 300	if (!args)
 301		args = &default_args;
 302	else if (WARN_ON_ONCE(args->sense &&
 303			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
 304		return -EINVAL;
 305
 306retry:
 307	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
 
 308	if (IS_ERR(req))
 309		return PTR_ERR(req);
 
 310
 311	if (bufflen) {
 312		ret = blk_rq_map_kern(sdev->request_queue, req,
 313				      buffer, bufflen, GFP_NOIO);
 314		if (ret)
 315			goto out;
 316	}
 317	scmd = blk_mq_rq_to_pdu(req);
 318	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
 319	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
 320	scmd->allowed = ml_retries;
 321	scmd->flags |= args->scmd_flags;
 322	req->timeout = timeout;
 323	req->rq_flags |= RQF_QUIET;
 
 324
 325	/*
 326	 * head injection *required* here otherwise quiesce won't work
 327	 */
 328	blk_execute_rq(req, true);
 329
 330	if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
 331		blk_mq_free_request(req);
 332		goto retry;
 333	}
 334
 335	/*
 336	 * Some devices (USB mass-storage in particular) may transfer
 337	 * garbage data together with a residue indicating that the data
 338	 * is invalid.  Prevent the garbage from being misinterpreted
 339	 * and prevent security leaks by zeroing out the excess data.
 340	 */
 341	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
 342		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
 343
 344	if (args->resid)
 345		*args->resid = scmd->resid_len;
 346	if (args->sense)
 347		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
 348	if (args->sshdr)
 349		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
 350				     args->sshdr);
 351
 352	ret = scmd->result;
 
 
 
 
 
 
 353 out:
 354	blk_mq_free_request(req);
 355
 356	return ret;
 357}
 358EXPORT_SYMBOL(scsi_execute_cmd);
 359
 360/*
 361 * Wake up the error handler if necessary. Avoid as follows that the error
 362 * handler is not woken up if host in-flight requests number ==
 363 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 364 * with an RCU read lock in this function to ensure that this function in
 365 * its entirety either finishes before scsi_eh_scmd_add() increases the
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366 * host_failed counter or that it notices the shost state change made by
 367 * scsi_eh_scmd_add().
 368 */
 369static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
 370{
 371	unsigned long flags;
 372
 373	rcu_read_lock();
 374	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 375	if (unlikely(scsi_host_in_recovery(shost))) {
 376		unsigned int busy = scsi_host_busy(shost);
 377
 378		spin_lock_irqsave(shost->host_lock, flags);
 379		if (shost->host_failed || shost->host_eh_scheduled)
 380			scsi_eh_wakeup(shost, busy);
 381		spin_unlock_irqrestore(shost->host_lock, flags);
 382	}
 383	rcu_read_unlock();
 384}
 385
 386void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
 387{
 388	struct Scsi_Host *shost = sdev->host;
 389	struct scsi_target *starget = scsi_target(sdev);
 390
 391	scsi_dec_host_busy(shost, cmd);
 392
 393	if (starget->can_queue > 0)
 394		atomic_dec(&starget->target_busy);
 395
 396	sbitmap_put(&sdev->budget_map, cmd->budget_token);
 397	cmd->budget_token = -1;
 398}
 399
 400/*
 401 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
 402 * interrupts disabled.
 403 */
 404static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
 405{
 406	struct scsi_device *current_sdev = data;
 407
 408	if (sdev != current_sdev)
 409		blk_mq_run_hw_queues(sdev->request_queue, true);
 410}
 411
 412/*
 413 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 414 * and call blk_run_queue for all the scsi_devices on the target -
 415 * including current_sdev first.
 416 *
 417 * Called with *no* scsi locks held.
 418 */
 419static void scsi_single_lun_run(struct scsi_device *current_sdev)
 420{
 421	struct Scsi_Host *shost = current_sdev->host;
 
 422	struct scsi_target *starget = scsi_target(current_sdev);
 423	unsigned long flags;
 424
 425	spin_lock_irqsave(shost->host_lock, flags);
 426	starget->starget_sdev_user = NULL;
 427	spin_unlock_irqrestore(shost->host_lock, flags);
 428
 429	/*
 430	 * Call blk_run_queue for all LUNs on the target, starting with
 431	 * current_sdev. We race with others (to set starget_sdev_user),
 432	 * but in most cases, we will be first. Ideally, each LU on the
 433	 * target would get some limited time or requests on the target.
 434	 */
 435	blk_mq_run_hw_queues(current_sdev->request_queue,
 436			     shost->queuecommand_may_block);
 437
 438	spin_lock_irqsave(shost->host_lock, flags);
 439	if (!starget->starget_sdev_user)
 440		__starget_for_each_device(starget, current_sdev,
 441					  scsi_kick_sdev_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 442	spin_unlock_irqrestore(shost->host_lock, flags);
 443}
 444
 445static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 446{
 447	if (scsi_device_busy(sdev) >= sdev->queue_depth)
 448		return true;
 449	if (atomic_read(&sdev->device_blocked) > 0)
 450		return true;
 451	return false;
 452}
 453
 454static inline bool scsi_target_is_busy(struct scsi_target *starget)
 455{
 456	if (starget->can_queue > 0) {
 457		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 458			return true;
 459		if (atomic_read(&starget->target_blocked) > 0)
 460			return true;
 461	}
 462	return false;
 463}
 464
 465static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 466{
 
 
 
 467	if (atomic_read(&shost->host_blocked) > 0)
 468		return true;
 469	if (shost->host_self_blocked)
 470		return true;
 471	return false;
 472}
 473
 474static void scsi_starved_list_run(struct Scsi_Host *shost)
 475{
 476	LIST_HEAD(starved_list);
 477	struct scsi_device *sdev;
 478	unsigned long flags;
 479
 480	spin_lock_irqsave(shost->host_lock, flags);
 481	list_splice_init(&shost->starved_list, &starved_list);
 482
 483	while (!list_empty(&starved_list)) {
 484		struct request_queue *slq;
 485
 486		/*
 487		 * As long as shost is accepting commands and we have
 488		 * starved queues, call blk_run_queue. scsi_request_fn
 489		 * drops the queue_lock and can add us back to the
 490		 * starved_list.
 491		 *
 492		 * host_lock protects the starved_list and starved_entry.
 493		 * scsi_request_fn must get the host_lock before checking
 494		 * or modifying starved_list or starved_entry.
 495		 */
 496		if (scsi_host_is_busy(shost))
 497			break;
 498
 499		sdev = list_entry(starved_list.next,
 500				  struct scsi_device, starved_entry);
 501		list_del_init(&sdev->starved_entry);
 502		if (scsi_target_is_busy(scsi_target(sdev))) {
 503			list_move_tail(&sdev->starved_entry,
 504				       &shost->starved_list);
 505			continue;
 506		}
 507
 508		/*
 509		 * Once we drop the host lock, a racing scsi_remove_device()
 510		 * call may remove the sdev from the starved list and destroy
 511		 * it and the queue.  Mitigate by taking a reference to the
 512		 * queue and never touching the sdev again after we drop the
 513		 * host lock.  Note: if __scsi_remove_device() invokes
 514		 * blk_mq_destroy_queue() before the queue is run from this
 515		 * function then blk_run_queue() will return immediately since
 516		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
 517		 */
 518		slq = sdev->request_queue;
 519		if (!blk_get_queue(slq))
 520			continue;
 521		spin_unlock_irqrestore(shost->host_lock, flags);
 522
 523		blk_mq_run_hw_queues(slq, false);
 524		blk_put_queue(slq);
 525
 526		spin_lock_irqsave(shost->host_lock, flags);
 527	}
 528	/* put any unprocessed entries back */
 529	list_splice(&starved_list, &shost->starved_list);
 530	spin_unlock_irqrestore(shost->host_lock, flags);
 531}
 532
 533/**
 534 * scsi_run_queue - Select a proper request queue to serve next.
 535 * @q:  last request's queue
 
 
 
 
 
 536 *
 537 * The previous command was completely finished, start a new one if possible.
 
 538 */
 539static void scsi_run_queue(struct request_queue *q)
 540{
 541	struct scsi_device *sdev = q->queuedata;
 542
 543	if (scsi_target(sdev)->single_lun)
 544		scsi_single_lun_run(sdev);
 545	if (!list_empty(&sdev->host->starved_list))
 546		scsi_starved_list_run(sdev->host);
 547
 548	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
 549	blk_mq_kick_requeue_list(q);
 
 
 550}
 551
 552void scsi_requeue_run_queue(struct work_struct *work)
 553{
 554	struct scsi_device *sdev;
 555	struct request_queue *q;
 556
 557	sdev = container_of(work, struct scsi_device, requeue_work);
 558	q = sdev->request_queue;
 559	scsi_run_queue(q);
 560}
 561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562void scsi_run_host_queues(struct Scsi_Host *shost)
 563{
 564	struct scsi_device *sdev;
 565
 566	shost_for_each_device(sdev, shost)
 567		scsi_run_queue(sdev->request_queue);
 568}
 569
 570static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 571{
 572	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
 573		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 574
 575		if (drv->uninit_command)
 576			drv->uninit_command(cmd);
 577	}
 578}
 579
 580void scsi_free_sgtables(struct scsi_cmnd *cmd)
 581{
 
 
 582	if (cmd->sdb.table.nents)
 583		sg_free_table_chained(&cmd->sdb.table,
 584				SCSI_INLINE_SG_CNT);
 
 
 
 
 585	if (scsi_prot_sg_count(cmd))
 586		sg_free_table_chained(&cmd->prot_sdb->table,
 587				SCSI_INLINE_PROT_SG_CNT);
 588}
 589EXPORT_SYMBOL_GPL(scsi_free_sgtables);
 590
 591static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 592{
 593	scsi_free_sgtables(cmd);
 594	scsi_uninit_cmd(cmd);
 
 595}
 596
 597static void scsi_run_queue_async(struct scsi_device *sdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598{
 599	if (scsi_host_in_recovery(sdev->host))
 600		return;
 601
 602	if (scsi_target(sdev)->single_lun ||
 603	    !list_empty(&sdev->host->starved_list)) {
 604		kblockd_schedule_work(&sdev->requeue_work);
 605	} else {
 606		/*
 607		 * smp_mb() present in sbitmap_queue_clear() or implied in
 608		 * .end_io is for ordering writing .device_busy in
 609		 * scsi_device_unbusy() and reading sdev->restarts.
 610		 */
 611		int old = atomic_read(&sdev->restarts);
 612
 613		/*
 614		 * ->restarts has to be kept as non-zero if new budget
 615		 *  contention occurs.
 616		 *
 617		 *  No need to run queue when either another re-run
 618		 *  queue wins in updating ->restarts or a new budget
 619		 *  contention occurs.
 620		 */
 621		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
 622			blk_mq_run_hw_queues(sdev->request_queue, true);
 623	}
 624}
 625
 626/* Returns false when no more bytes to process, true if there are more */
 627static bool scsi_end_request(struct request *req, blk_status_t error,
 628		unsigned int bytes)
 629{
 630	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 631	struct scsi_device *sdev = cmd->device;
 632	struct request_queue *q = sdev->request_queue;
 633
 634	if (blk_update_request(req, error, bytes))
 635		return true;
 636
 637	if (q->limits.features & BLK_FEAT_ADD_RANDOM)
 638		add_disk_randomness(req->q->disk);
 
 
 639
 640	WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
 641		     !(cmd->flags & SCMD_INITIALIZED));
 642	cmd->flags = 0;
 643
 644	/*
 645	 * Calling rcu_barrier() is not necessary here because the
 646	 * SCSI error handler guarantees that the function called by
 647	 * call_rcu() has been called before scsi_end_request() is
 648	 * called.
 649	 */
 650	destroy_rcu_head(&cmd->rcu);
 651
 652	/*
 653	 * In the MQ case the command gets freed by __blk_mq_end_request,
 654	 * so we have to do all cleanup that depends on it earlier.
 655	 *
 656	 * We also can't kick the queues from irq context, so we
 657	 * will have to defer it to a workqueue.
 658	 */
 659	scsi_mq_uninit_cmd(cmd);
 
 660
 661	/*
 662	 * queue is still alive, so grab the ref for preventing it
 663	 * from being cleaned up during running queue.
 664	 */
 665	percpu_ref_get(&q->q_usage_counter);
 
 
 
 
 666
 667	__blk_mq_end_request(req, error);
 
 
 
 668
 669	scsi_run_queue_async(sdev);
 
 
 670
 671	percpu_ref_put(&q->q_usage_counter);
 
 
 
 672	return false;
 673}
 674
 675/**
 676 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 
 677 * @result:	scsi error code
 678 *
 679 * Translate a SCSI result code into a blk_status_t value.
 
 680 */
 681static blk_status_t scsi_result_to_blk_status(int result)
 682{
 683	/*
 684	 * Check the scsi-ml byte first in case we converted a host or status
 685	 * byte.
 686	 */
 687	switch (scsi_ml_byte(result)) {
 688	case SCSIML_STAT_OK:
 689		break;
 690	case SCSIML_STAT_RESV_CONFLICT:
 691		return BLK_STS_RESV_CONFLICT;
 692	case SCSIML_STAT_NOSPC:
 693		return BLK_STS_NOSPC;
 694	case SCSIML_STAT_MED_ERROR:
 695		return BLK_STS_MEDIUM;
 696	case SCSIML_STAT_TGT_FAILURE:
 697		return BLK_STS_TARGET;
 698	case SCSIML_STAT_DL_TIMEOUT:
 699		return BLK_STS_DURATION_LIMIT;
 700	}
 701
 702	switch (host_byte(result)) {
 703	case DID_OK:
 704		if (scsi_status_is_good(result))
 
 
 
 
 
 705			return BLK_STS_OK;
 706		return BLK_STS_IOERR;
 707	case DID_TRANSPORT_FAILFAST:
 708	case DID_TRANSPORT_MARGINAL:
 709		return BLK_STS_TRANSPORT;
 
 
 
 
 
 
 
 
 
 
 
 710	default:
 711		return BLK_STS_IOERR;
 712	}
 713}
 714
 715/**
 716 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
 717 * @rq: request to examine
 
 
 
 
 
 718 *
 719 * Description:
 720 *     A request could be merge of IOs which require different failure
 721 *     handling.  This function determines the number of bytes which
 722 *     can be failed from the beginning of the request without
 723 *     crossing into area which need to be retried further.
 724 *
 725 * Return:
 726 *     The number of bytes to fail.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727 */
 728static unsigned int scsi_rq_err_bytes(const struct request *rq)
 729{
 730	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 731	unsigned int bytes = 0;
 732	struct bio *bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 733
 734	if (!(rq->rq_flags & RQF_MIXED_MERGE))
 735		return blk_rq_bytes(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736
 737	/*
 738	 * Currently the only 'mixing' which can happen is between
 739	 * different fastfail types.  We can safely fail portions
 740	 * which have all the failfast bits that the first one has -
 741	 * the ones which are at least as eager to fail as the first
 742	 * one.
 743	 */
 744	for (bio = rq->bio; bio; bio = bio->bi_next) {
 745		if ((bio->bi_opf & ff) != ff)
 746			break;
 747		bytes += bio->bi_iter.bi_size;
 
 
 
 
 
 
 
 748	}
 749
 750	/* this could lead to infinite loop */
 751	BUG_ON(blk_rq_bytes(rq) && !bytes);
 752	return bytes;
 753}
 754
 755static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
 756{
 757	struct request *req = scsi_cmd_to_rq(cmd);
 758	unsigned long wait_for;
 
 
 
 759
 760	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
 761		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 762
 763	wait_for = (cmd->allowed + 1) * req->timeout;
 764	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
 765		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
 766			    wait_for/HZ);
 767		return true;
 
 
 
 
 
 
 
 
 
 
 
 768	}
 769	return false;
 770}
 771
 772/*
 773 * When ALUA transition state is returned, reprep the cmd to
 774 * use the ALUA handler's transition timeout. Delay the reprep
 775 * 1 sec to avoid aggressive retries of the target in that
 776 * state.
 777 */
 778#define ALUA_TRANSITION_REPREP_DELAY	1000
 779
 780/* Helper for scsi_io_completion() when special action required. */
 781static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 782{
 783	struct request *req = scsi_cmd_to_rq(cmd);
 784	int level = 0;
 785	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
 786	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
 787	struct scsi_sense_hdr sshdr;
 788	bool sense_valid;
 789	bool sense_current = true;      /* false implies "deferred sense" */
 790	blk_status_t blk_stat;
 791
 792	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 793	if (sense_valid)
 794		sense_current = !scsi_sense_is_deferred(&sshdr);
 795
 796	blk_stat = scsi_result_to_blk_status(result);
 797
 798	if (host_byte(result) == DID_RESET) {
 799		/* Third party bus reset or reset for error recovery
 800		 * reasons.  Just retry the command and see what
 801		 * happens.
 802		 */
 803		action = ACTION_RETRY;
 804	} else if (sense_valid && sense_current) {
 805		switch (sshdr.sense_key) {
 806		case UNIT_ATTENTION:
 807			if (cmd->device->removable) {
 808				/* Detected disc change.  Set a bit
 809				 * and quietly refuse further access.
 810				 */
 811				cmd->device->changed = 1;
 812				action = ACTION_FAIL;
 813			} else {
 814				/* Must have been a power glitch, or a
 815				 * bus reset.  Could not have been a
 816				 * media change, so we just retry the
 817				 * command and see what happens.
 818				 */
 819				action = ACTION_RETRY;
 820			}
 821			break;
 822		case ILLEGAL_REQUEST:
 823			/* If we had an ILLEGAL REQUEST returned, then
 824			 * we may have performed an unsupported
 825			 * command.  The only thing this should be
 826			 * would be a ten byte read where only a six
 827			 * byte read was supported.  Also, on a system
 828			 * where READ CAPACITY failed, we may have
 829			 * read past the end of the disk.
 830			 */
 831			if ((cmd->device->use_10_for_rw &&
 832			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 833			    (cmd->cmnd[0] == READ_10 ||
 834			     cmd->cmnd[0] == WRITE_10)) {
 835				/* This will issue a new 6-byte command. */
 836				cmd->device->use_10_for_rw = 0;
 837				action = ACTION_REPREP;
 838			} else if (sshdr.asc == 0x10) /* DIX */ {
 839				action = ACTION_FAIL;
 840				blk_stat = BLK_STS_PROTECTION;
 841			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 842			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 843				action = ACTION_FAIL;
 844				blk_stat = BLK_STS_TARGET;
 845			} else
 846				action = ACTION_FAIL;
 847			break;
 848		case ABORTED_COMMAND:
 849			action = ACTION_FAIL;
 850			if (sshdr.asc == 0x10) /* DIF */
 851				blk_stat = BLK_STS_PROTECTION;
 852			break;
 853		case NOT_READY:
 854			/* If the device is in the process of becoming
 855			 * ready, or has a temporary blockage, retry.
 856			 */
 857			if (sshdr.asc == 0x04) {
 858				switch (sshdr.ascq) {
 859				case 0x01: /* becoming ready */
 860				case 0x04: /* format in progress */
 861				case 0x05: /* rebuild in progress */
 862				case 0x06: /* recalculation in progress */
 863				case 0x07: /* operation in progress */
 864				case 0x08: /* Long write in progress */
 865				case 0x09: /* self test in progress */
 866				case 0x11: /* notify (enable spinup) required */
 867				case 0x14: /* space allocation in progress */
 868				case 0x1a: /* start stop unit in progress */
 869				case 0x1b: /* sanitize in progress */
 870				case 0x1d: /* configuration in progress */
 871					action = ACTION_DELAYED_RETRY;
 872					break;
 873				case 0x0a: /* ALUA state transition */
 874					action = ACTION_DELAYED_REPREP;
 875					break;
 876				/*
 877				 * Depopulation might take many hours,
 878				 * thus it is not worthwhile to retry.
 879				 */
 880				case 0x24: /* depopulation in progress */
 881				case 0x25: /* depopulation restore in progress */
 882					fallthrough;
 883				default:
 884					action = ACTION_FAIL;
 885					break;
 886				}
 887			} else
 888				action = ACTION_FAIL;
 889			break;
 890		case VOLUME_OVERFLOW:
 891			/* See SSC3rXX or current. */
 892			action = ACTION_FAIL;
 893			break;
 894		case DATA_PROTECT:
 895			action = ACTION_FAIL;
 896			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
 897			    (sshdr.asc == 0x55 &&
 898			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
 899				/* Insufficient zone resources */
 900				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
 901			}
 902			break;
 903		case COMPLETED:
 904			fallthrough;
 905		default:
 906			action = ACTION_FAIL;
 907			break;
 908		}
 909	} else
 910		action = ACTION_FAIL;
 911
 912	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
 
 913		action = ACTION_FAIL;
 914
 915	switch (action) {
 916	case ACTION_FAIL:
 917		/* Give up and fail the remainder of the request */
 918		if (!(req->rq_flags & RQF_QUIET)) {
 919			static DEFINE_RATELIMIT_STATE(_rs,
 920					DEFAULT_RATELIMIT_INTERVAL,
 921					DEFAULT_RATELIMIT_BURST);
 922
 923			if (unlikely(scsi_logging_level))
 924				level =
 925				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 926						    SCSI_LOG_MLCOMPLETE_BITS);
 927
 928			/*
 929			 * if logging is enabled the failure will be printed
 930			 * in scsi_log_completion(), so avoid duplicate messages
 931			 */
 932			if (!level && __ratelimit(&_rs)) {
 933				scsi_print_result(cmd, NULL, FAILED);
 934				if (sense_valid)
 935					scsi_print_sense(cmd);
 936				scsi_print_command(cmd);
 937			}
 938		}
 939		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
 940			return;
 941		fallthrough;
 942	case ACTION_REPREP:
 943		scsi_mq_requeue_cmd(cmd, 0);
 944		break;
 945	case ACTION_DELAYED_REPREP:
 946		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
 
 
 
 
 
 
 947		break;
 948	case ACTION_RETRY:
 949		/* Retry the same command immediately */
 950		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 951		break;
 952	case ACTION_DELAYED_RETRY:
 953		/* Retry the same command after a delay */
 954		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 955		break;
 956	}
 957}
 958
 959/*
 960 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 961 * new result that may suppress further error checking. Also modifies
 962 * *blk_statp in some cases.
 963 */
 964static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 965					blk_status_t *blk_statp)
 966{
 967	bool sense_valid;
 968	bool sense_current = true;	/* false implies "deferred sense" */
 969	struct request *req = scsi_cmd_to_rq(cmd);
 970	struct scsi_sense_hdr sshdr;
 971
 972	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 973	if (sense_valid)
 974		sense_current = !scsi_sense_is_deferred(&sshdr);
 975
 976	if (blk_rq_is_passthrough(req)) {
 977		if (sense_valid) {
 978			/*
 979			 * SG_IO wants current and deferred errors
 980			 */
 981			cmd->sense_len = min(8 + cmd->sense_buffer[7],
 982					     SCSI_SENSE_BUFFERSIZE);
 983		}
 984		if (sense_current)
 985			*blk_statp = scsi_result_to_blk_status(result);
 986	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 987		/*
 988		 * Flush commands do not transfers any data, and thus cannot use
 989		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 990		 * This sets *blk_statp explicitly for the problem case.
 991		 */
 992		*blk_statp = scsi_result_to_blk_status(result);
 993	}
 994	/*
 995	 * Recovered errors need reporting, but they're always treated as
 996	 * success, so fiddle the result code here.  For passthrough requests
 997	 * we already took a copy of the original into sreq->result which
 998	 * is what gets returned to the user
 999	 */
1000	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
1001		bool do_print = true;
1002		/*
1003		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
1004		 * skip print since caller wants ATA registers. Only occurs
1005		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
1006		 */
1007		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1008			do_print = false;
1009		else if (req->rq_flags & RQF_QUIET)
1010			do_print = false;
1011		if (do_print)
1012			scsi_print_sense(cmd);
1013		result = 0;
1014		/* for passthrough, *blk_statp may be set */
1015		*blk_statp = BLK_STS_OK;
1016	}
1017	/*
1018	 * Another corner case: the SCSI status byte is non-zero but 'good'.
1019	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1020	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1021	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1022	 * intermediate statuses (both obsolete in SAM-4) as good.
1023	 */
1024	if ((result & 0xff) && scsi_status_is_good(result)) {
1025		result = 0;
1026		*blk_statp = BLK_STS_OK;
1027	}
1028	return result;
1029}
1030
1031/**
1032 * scsi_io_completion - Completion processing for SCSI commands.
1033 * @cmd:	command that is finished.
1034 * @good_bytes:	number of processed bytes.
1035 *
1036 * We will finish off the specified number of sectors. If we are done, the
1037 * command block will be released and the queue function will be goosed. If we
1038 * are not done then we have to figure out what to do next:
1039 *
1040 *   a) We can call scsi_mq_requeue_cmd().  The request will be
1041 *	unprepared and put back on the queue.  Then a new command will
1042 *	be created for it.  This should be used if we made forward
1043 *	progress, or if we want to switch from READ(10) to READ(6) for
1044 *	example.
1045 *
1046 *   b) We can call scsi_io_completion_action().  The request will be
1047 *	put back on the queue and retried using the same command as
1048 *	before, possibly after a delay.
1049 *
1050 *   c) We can call scsi_end_request() with blk_stat other than
1051 *	BLK_STS_OK, to fail the remainder of the request.
1052 */
1053void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1054{
1055	int result = cmd->result;
1056	struct request *req = scsi_cmd_to_rq(cmd);
1057	blk_status_t blk_stat = BLK_STS_OK;
1058
1059	if (unlikely(result))	/* a nz result may or may not be an error */
1060		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1061
1062	/*
1063	 * Next deal with any sectors which we were able to correctly
1064	 * handle.
1065	 */
1066	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1067		"%u sectors total, %d bytes done.\n",
1068		blk_rq_sectors(req), good_bytes));
1069
1070	/*
1071	 * Failed, zero length commands always need to drop down
1072	 * to retry code. Fast path should return in this block.
1073	 */
1074	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1075		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1076			return; /* no bytes remaining */
1077	}
1078
1079	/* Kill remainder if no retries. */
1080	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1081		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1082			WARN_ONCE(true,
1083			    "Bytes remaining after failed, no-retry command");
1084		return;
1085	}
1086
1087	/*
1088	 * If there had been no error, but we have leftover bytes in the
1089	 * request just queue the command up again.
1090	 */
1091	if (likely(result == 0))
1092		scsi_mq_requeue_cmd(cmd, 0);
1093	else
1094		scsi_io_completion_action(cmd, result);
 
1095}
1096
1097static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1098		struct request *rq)
1099{
1100	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1101	       !op_is_write(req_op(rq)) &&
1102	       sdev->host->hostt->dma_need_drain(rq);
1103}
1104
1105/**
1106 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1107 * @cmd: SCSI command data structure to initialize.
1108 *
1109 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1110 * for @cmd.
1111 *
1112 * Returns:
1113 * * BLK_STS_OK       - on success
1114 * * BLK_STS_RESOURCE - if the failure is retryable
1115 * * BLK_STS_IOERR    - if the failure is fatal
1116 */
1117blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1118{
1119	struct scsi_device *sdev = cmd->device;
1120	struct request *rq = scsi_cmd_to_rq(cmd);
1121	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1122	struct scatterlist *last_sg = NULL;
1123	blk_status_t ret;
1124	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1125	int count;
1126
1127	if (WARN_ON_ONCE(!nr_segs))
1128		return BLK_STS_IOERR;
1129
1130	/*
1131	 * Make sure there is space for the drain.  The driver must adjust
1132	 * max_hw_segments to be prepared for this.
1133	 */
1134	if (need_drain)
1135		nr_segs++;
1136
1137	/*
1138	 * If sg table allocation fails, requeue request later.
1139	 */
1140	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1141			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1142		return BLK_STS_RESOURCE;
1143
1144	/*
1145	 * Next, walk the list, and fill in the addresses and sizes of
1146	 * each segment.
1147	 */
1148	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1149
1150	if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) {
1151		unsigned int pad_len =
1152			(rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1153
1154		last_sg->length += pad_len;
1155		cmd->extra_len += pad_len;
1156	}
1157
1158	if (need_drain) {
1159		sg_unmark_end(last_sg);
1160		last_sg = sg_next(last_sg);
1161		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1162		sg_mark_end(last_sg);
1163
1164		cmd->extra_len += sdev->dma_drain_len;
1165		count++;
 
1166	}
1167
1168	BUG_ON(count > cmd->sdb.table.nents);
1169	cmd->sdb.table.nents = count;
1170	cmd->sdb.length = blk_rq_payload_bytes(rq);
1171
1172	if (blk_integrity_rq(rq)) {
1173		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
 
1174
1175		if (WARN_ON_ONCE(!prot_sdb)) {
1176			/*
1177			 * This can happen if someone (e.g. multipath)
1178			 * queues a command to a device on an adapter
1179			 * that does not support DIX.
1180			 */
1181			ret = BLK_STS_IOERR;
1182			goto out_free_sgtables;
 
1183		}
1184
1185		if (sg_alloc_table_chained(&prot_sdb->table,
1186				rq->nr_integrity_segments,
1187				prot_sdb->table.sgl,
1188				SCSI_INLINE_PROT_SG_CNT)) {
1189			ret = BLK_STS_RESOURCE;
1190			goto out_free_sgtables;
1191		}
1192
1193		count = blk_rq_map_integrity_sg(rq, prot_sdb->table.sgl);
 
 
 
 
1194		cmd->prot_sdb = prot_sdb;
1195		cmd->prot_sdb->table.nents = count;
1196	}
1197
1198	return BLK_STS_OK;
1199out_free_sgtables:
1200	scsi_free_sgtables(cmd);
1201	return ret;
 
 
 
 
 
 
 
1202}
1203EXPORT_SYMBOL(scsi_alloc_sgtables);
1204
1205/**
1206 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1207 * @rq: Request associated with the SCSI command to be initialized.
1208 *
1209 * This function initializes the members of struct scsi_cmnd that must be
1210 * initialized before request processing starts and that won't be
1211 * reinitialized if a SCSI command is requeued.
 
 
 
1212 */
1213static void scsi_initialize_rq(struct request *rq)
1214{
1215	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1216
1217	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1218	cmd->cmd_len = MAX_COMMAND_SIZE;
1219	cmd->sense_len = 0;
1220	init_rcu_head(&cmd->rcu);
1221	cmd->jiffies_at_alloc = jiffies;
1222	cmd->retries = 0;
1223}
1224
1225struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1226				   blk_mq_req_flags_t flags)
1227{
1228	struct request *rq;
 
 
1229
1230	rq = blk_mq_alloc_request(q, opf, flags);
1231	if (!IS_ERR(rq))
1232		scsi_initialize_rq(rq);
1233	return rq;
 
1234}
1235EXPORT_SYMBOL_GPL(scsi_alloc_request);
1236
1237/*
1238 * Only called when the request isn't completed by SCSI, and not freed by
1239 * SCSI
1240 */
1241static void scsi_cleanup_rq(struct request *rq)
1242{
1243	if (rq->rq_flags & RQF_DONTPREP) {
1244		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1245		rq->rq_flags &= ~RQF_DONTPREP;
 
 
 
 
 
 
1246	}
1247}
1248
1249/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1250void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1251{
1252	struct request *rq = scsi_cmd_to_rq(cmd);
 
 
 
 
 
1253
1254	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1255		cmd->flags |= SCMD_INITIALIZED;
1256		scsi_initialize_rq(rq);
1257	}
1258
 
 
 
 
 
 
1259	cmd->device = dev;
1260	INIT_LIST_HEAD(&cmd->eh_entry);
 
 
1261	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
 
 
 
 
1262}
1263
1264static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1265		struct request *req)
1266{
1267	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1268
1269	/*
1270	 * Passthrough requests may transfer data, in which case they must
1271	 * a bio attached to them.  Or they might contain a SCSI command
1272	 * that does not transfer data, in which case they may optionally
1273	 * submit a request without an attached bio.
1274	 */
1275	if (req->bio) {
1276		blk_status_t ret = scsi_alloc_sgtables(cmd);
1277		if (unlikely(ret != BLK_STS_OK))
1278			return ret;
1279	} else {
1280		BUG_ON(blk_rq_bytes(req));
1281
1282		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1283	}
1284
 
 
1285	cmd->transfersize = blk_rq_bytes(req);
1286	return BLK_STS_OK;
 
1287}
1288
1289static blk_status_t
1290scsi_device_state_check(struct scsi_device *sdev, struct request *req)
 
 
 
1291{
1292	switch (sdev->sdev_state) {
1293	case SDEV_CREATED:
1294		return BLK_STS_OK;
1295	case SDEV_OFFLINE:
1296	case SDEV_TRANSPORT_OFFLINE:
1297		/*
1298		 * If the device is offline we refuse to process any
1299		 * commands.  The device must be brought online
1300		 * before trying any recovery commands.
1301		 */
1302		if (!sdev->offline_already) {
1303			sdev->offline_already = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304			sdev_printk(KERN_ERR, sdev,
1305				    "rejecting I/O to offline device\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306		}
1307		return BLK_STS_IOERR;
1308	case SDEV_DEL:
1309		/*
1310		 * If the device is fully deleted, we refuse to
1311		 * process any commands as well.
1312		 */
1313		sdev_printk(KERN_ERR, sdev,
1314			    "rejecting I/O to dead device\n");
1315		return BLK_STS_IOERR;
1316	case SDEV_BLOCK:
1317	case SDEV_CREATED_BLOCK:
1318		return BLK_STS_RESOURCE;
1319	case SDEV_QUIESCE:
 
 
 
 
 
 
 
 
 
 
1320		/*
1321		 * If the device is blocked we only accept power management
1322		 * commands.
 
1323		 */
1324		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1325			return BLK_STS_RESOURCE;
1326		return BLK_STS_OK;
1327	default:
1328		/*
1329		 * For any other not fully online state we only allow
1330		 * power management commands.
1331		 */
1332		if (req && !(req->rq_flags & RQF_PM))
1333			return BLK_STS_OFFLINE;
1334		return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1336}
1337
1338/*
1339 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1340 * and return the token else return -1.
 
 
1341 */
1342static inline int scsi_dev_queue_ready(struct request_queue *q,
1343				  struct scsi_device *sdev)
1344{
1345	int token;
1346
1347	token = sbitmap_get(&sdev->budget_map);
1348	if (token < 0)
1349		return -1;
1350
1351	if (!atomic_read(&sdev->device_blocked))
1352		return token;
 
 
1353
1354	/*
1355	 * Only unblock if no other commands are pending and
1356	 * if device_blocked has decreased to zero
1357	 */
1358	if (scsi_device_busy(sdev) > 1 ||
1359	    atomic_dec_return(&sdev->device_blocked) > 0) {
1360		sbitmap_put(&sdev->budget_map, token);
1361		return -1;
 
 
 
 
 
1362	}
1363
1364	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1365			 "unblocking device at zero depth\n"));
1366
1367	return token;
 
 
 
1368}
1369
1370/*
1371 * scsi_target_queue_ready: checks if there we can send commands to target
1372 * @sdev: scsi device on starget to check.
1373 */
1374static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1375					   struct scsi_device *sdev)
1376{
1377	struct scsi_target *starget = scsi_target(sdev);
1378	unsigned int busy;
1379
1380	if (starget->single_lun) {
1381		spin_lock_irq(shost->host_lock);
1382		if (starget->starget_sdev_user &&
1383		    starget->starget_sdev_user != sdev) {
1384			spin_unlock_irq(shost->host_lock);
1385			return 0;
1386		}
1387		starget->starget_sdev_user = sdev;
1388		spin_unlock_irq(shost->host_lock);
1389	}
1390
1391	if (starget->can_queue <= 0)
1392		return 1;
1393
1394	busy = atomic_inc_return(&starget->target_busy) - 1;
1395	if (atomic_read(&starget->target_blocked) > 0) {
1396		if (busy)
1397			goto starved;
1398
1399		/*
1400		 * unblock after target_blocked iterates to zero
1401		 */
1402		if (atomic_dec_return(&starget->target_blocked) > 0)
1403			goto out_dec;
1404
1405		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1406				 "unblocking target at zero depth\n"));
1407	}
1408
1409	if (busy >= starget->can_queue)
1410		goto starved;
1411
1412	return 1;
1413
1414starved:
1415	spin_lock_irq(shost->host_lock);
1416	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1417	spin_unlock_irq(shost->host_lock);
1418out_dec:
1419	if (starget->can_queue > 0)
1420		atomic_dec(&starget->target_busy);
1421	return 0;
1422}
1423
1424/*
1425 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1426 * return 0. We must end up running the queue again whenever 0 is
1427 * returned, else IO can hang.
1428 */
1429static inline int scsi_host_queue_ready(struct request_queue *q,
1430				   struct Scsi_Host *shost,
1431				   struct scsi_device *sdev,
1432				   struct scsi_cmnd *cmd)
1433{
 
 
 
 
 
 
1434	if (atomic_read(&shost->host_blocked) > 0) {
1435		if (scsi_host_busy(shost) > 0)
1436			goto starved;
1437
1438		/*
1439		 * unblock after host_blocked iterates to zero
1440		 */
1441		if (atomic_dec_return(&shost->host_blocked) > 0)
1442			goto out_dec;
1443
1444		SCSI_LOG_MLQUEUE(3,
1445			shost_printk(KERN_INFO, shost,
1446				     "unblocking host at zero depth\n"));
1447	}
1448
 
 
1449	if (shost->host_self_blocked)
1450		goto starved;
1451
1452	/* We're OK to process the command, so we can't be starved */
1453	if (!list_empty(&sdev->starved_entry)) {
1454		spin_lock_irq(shost->host_lock);
1455		if (!list_empty(&sdev->starved_entry))
1456			list_del_init(&sdev->starved_entry);
1457		spin_unlock_irq(shost->host_lock);
1458	}
1459
1460	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1461
1462	return 1;
1463
1464starved:
1465	spin_lock_irq(shost->host_lock);
1466	if (list_empty(&sdev->starved_entry))
1467		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1468	spin_unlock_irq(shost->host_lock);
1469out_dec:
1470	scsi_dec_host_busy(shost, cmd);
1471	return 0;
1472}
1473
1474/*
1475 * Busy state exporting function for request stacking drivers.
1476 *
1477 * For efficiency, no lock is taken to check the busy state of
1478 * shost/starget/sdev, since the returned value is not guaranteed and
1479 * may be changed after request stacking drivers call the function,
1480 * regardless of taking lock or not.
1481 *
1482 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1483 * needs to return 'not busy'. Otherwise, request stacking drivers
1484 * may hold requests forever.
1485 */
1486static bool scsi_mq_lld_busy(struct request_queue *q)
1487{
1488	struct scsi_device *sdev = q->queuedata;
1489	struct Scsi_Host *shost;
1490
1491	if (blk_queue_dying(q))
1492		return false;
1493
1494	shost = sdev->host;
1495
1496	/*
1497	 * Ignore host/starget busy state.
1498	 * Since block layer does not have a concept of fairness across
1499	 * multiple queues, congestion of host/starget needs to be handled
1500	 * in SCSI layer.
1501	 */
1502	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1503		return true;
1504
1505	return false;
1506}
1507
1508/*
1509 * Block layer request completion callback. May be called from interrupt
1510 * context.
1511 */
1512static void scsi_complete(struct request *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1513{
1514	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1515	enum scsi_disposition disposition;
 
1516
1517	INIT_LIST_HEAD(&cmd->eh_entry);
1518
1519	atomic_inc(&cmd->device->iodone_cnt);
1520	if (cmd->result)
1521		atomic_inc(&cmd->device->ioerr_cnt);
1522
1523	disposition = scsi_decide_disposition(cmd);
1524	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
 
 
 
 
1525		disposition = SUCCESS;
 
1526
1527	scsi_log_completion(cmd, disposition);
1528
1529	switch (disposition) {
1530	case SUCCESS:
1531		scsi_finish_command(cmd);
1532		break;
1533	case NEEDS_RETRY:
1534		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1535		break;
1536	case ADD_TO_MLQUEUE:
1537		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1538		break;
1539	default:
1540		scsi_eh_scmd_add(cmd);
1541		break;
1542	}
1543}
1544
1545/**
1546 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1547 * @cmd: command block we are dispatching.
1548 *
1549 * Return: nonzero return request was rejected and device's queue needs to be
1550 * plugged.
1551 */
1552static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1553{
1554	struct Scsi_Host *host = cmd->device->host;
1555	int rtn = 0;
1556
1557	atomic_inc(&cmd->device->iorequest_cnt);
1558
1559	/* check if the device is still usable */
1560	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1561		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1562		 * returns an immediate error upwards, and signals
1563		 * that the device is no longer present */
1564		cmd->result = DID_NO_CONNECT << 16;
1565		goto done;
1566	}
1567
1568	/* Check to see if the scsi lld made this device blocked. */
1569	if (unlikely(scsi_device_blocked(cmd->device))) {
1570		/*
1571		 * in blocked state, the command is just put back on
1572		 * the device queue.  The suspend state has already
1573		 * blocked the queue so future requests should not
1574		 * occur until the device transitions out of the
1575		 * suspend state.
1576		 */
1577		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1578			"queuecommand : device blocked\n"));
1579		atomic_dec(&cmd->device->iorequest_cnt);
1580		return SCSI_MLQUEUE_DEVICE_BUSY;
1581	}
1582
1583	/* Store the LUN value in cmnd, if needed. */
1584	if (cmd->device->lun_in_cdb)
1585		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1586			       (cmd->device->lun << 5 & 0xe0);
1587
1588	scsi_log_send(cmd);
1589
1590	/*
1591	 * Before we queue this command, check if the command
1592	 * length exceeds what the host adapter can handle.
1593	 */
1594	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1595		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1596			       "queuecommand : command too long. "
1597			       "cdb_size=%d host->max_cmd_len=%d\n",
1598			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1599		cmd->result = (DID_ABORT << 16);
1600		goto done;
1601	}
1602
1603	if (unlikely(host->shost_state == SHOST_DEL)) {
1604		cmd->result = (DID_NO_CONNECT << 16);
1605		goto done;
1606
1607	}
1608
1609	trace_scsi_dispatch_cmd_start(cmd);
1610	rtn = host->hostt->queuecommand(host, cmd);
1611	if (rtn) {
1612		atomic_dec(&cmd->device->iorequest_cnt);
1613		trace_scsi_dispatch_cmd_error(cmd, rtn);
1614		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1615		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1616			rtn = SCSI_MLQUEUE_HOST_BUSY;
1617
1618		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1619			"queuecommand : request rejected\n"));
1620	}
1621
1622	return rtn;
1623 done:
1624	scsi_done(cmd);
1625	return 0;
1626}
1627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1629static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1630{
1631	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1632		sizeof(struct scatterlist);
1633}
1634
1635static blk_status_t scsi_prepare_cmd(struct request *req)
1636{
1637	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1638	struct scsi_device *sdev = req->q->queuedata;
1639	struct Scsi_Host *shost = sdev->host;
1640	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1641	struct scatterlist *sg;
1642
1643	scsi_init_command(sdev, cmd);
1644
1645	cmd->eh_eflags = 0;
1646	cmd->prot_type = 0;
1647	cmd->prot_flags = 0;
1648	cmd->submitter = 0;
1649	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1650	cmd->underflow = 0;
1651	cmd->transfersize = 0;
1652	cmd->host_scribble = NULL;
1653	cmd->result = 0;
1654	cmd->extra_len = 0;
1655	cmd->state = 0;
1656	if (in_flight)
1657		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1658
 
 
 
1659	cmd->prot_op = SCSI_PROT_NORMAL;
1660	if (blk_rq_bytes(req))
1661		cmd->sc_data_direction = rq_dma_dir(req);
1662	else
1663		cmd->sc_data_direction = DMA_NONE;
1664
1665	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1666	cmd->sdb.table.sgl = sg;
1667
1668	if (scsi_host_get_prot(shost)) {
1669		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1670
1671		cmd->prot_sdb->table.sgl =
1672			(struct scatterlist *)(cmd->prot_sdb + 1);
1673	}
1674
1675	/*
1676	 * Special handling for passthrough commands, which don't go to the ULP
1677	 * at all:
1678	 */
1679	if (blk_rq_is_passthrough(req))
1680		return scsi_setup_scsi_cmnd(sdev, req);
1681
1682	if (sdev->handler && sdev->handler->prep_fn) {
1683		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1684
1685		if (ret != BLK_STS_OK)
1686			return ret;
1687	}
1688
1689	/* Usually overridden by the ULP */
1690	cmd->allowed = 0;
1691	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1692	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1693}
1694
1695static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1696{
1697	struct request *req = scsi_cmd_to_rq(cmd);
1698
1699	switch (cmd->submitter) {
1700	case SUBMITTED_BY_BLOCK_LAYER:
1701		break;
1702	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1703		return scsi_eh_done(cmd);
1704	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1705		return;
1706	}
1707
1708	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1709		return;
1710	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1711		return;
1712	trace_scsi_dispatch_cmd_done(cmd);
1713
1714	if (complete_directly)
1715		blk_mq_complete_request_direct(req, scsi_complete);
1716	else
1717		blk_mq_complete_request(req);
1718}
1719
1720void scsi_done(struct scsi_cmnd *cmd)
1721{
1722	scsi_done_internal(cmd, false);
1723}
1724EXPORT_SYMBOL(scsi_done);
1725
1726void scsi_done_direct(struct scsi_cmnd *cmd)
1727{
1728	scsi_done_internal(cmd, true);
 
1729}
1730EXPORT_SYMBOL(scsi_done_direct);
1731
1732static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1733{
 
1734	struct scsi_device *sdev = q->queuedata;
1735
1736	sbitmap_put(&sdev->budget_map, budget_token);
 
1737}
1738
1739/*
1740 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1741 * not change behaviour from the previous unplug mechanism, experimentation
1742 * may prove this needs changing.
1743 */
1744#define SCSI_QUEUE_DELAY 3
1745
1746static int scsi_mq_get_budget(struct request_queue *q)
1747{
 
1748	struct scsi_device *sdev = q->queuedata;
1749	int token = scsi_dev_queue_ready(q, sdev);
1750
1751	if (token >= 0)
1752		return token;
1753
1754	atomic_inc(&sdev->restarts);
1755
1756	/*
1757	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1758	 * .restarts must be incremented before .device_busy is read because the
1759	 * code in scsi_run_queue_async() depends on the order of these operations.
1760	 */
1761	smp_mb__after_atomic();
1762
1763	/*
1764	 * If all in-flight requests originated from this LUN are completed
1765	 * before reading .device_busy, sdev->device_busy will be observed as
1766	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1767	 * soon. Otherwise, completion of one of these requests will observe
1768	 * the .restarts flag, and the request queue will be run for handling
1769	 * this request, see scsi_end_request().
1770	 */
1771	if (unlikely(scsi_device_busy(sdev) == 0 &&
1772				!scsi_device_blocked(sdev)))
1773		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1774	return -1;
1775}
1776
1777static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1778{
1779	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1780
1781	cmd->budget_token = token;
1782}
1783
1784static int scsi_mq_get_rq_budget_token(struct request *req)
1785{
1786	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1787
1788	return cmd->budget_token;
 
 
 
 
 
 
 
 
 
 
 
 
1789}
1790
1791static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1792			 const struct blk_mq_queue_data *bd)
1793{
1794	struct request *req = bd->rq;
1795	struct request_queue *q = req->q;
1796	struct scsi_device *sdev = q->queuedata;
1797	struct Scsi_Host *shost = sdev->host;
1798	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1799	blk_status_t ret;
1800	int reason;
1801
1802	WARN_ON_ONCE(cmd->budget_token < 0);
1803
1804	/*
1805	 * If the device is not in running state we will reject some or all
1806	 * commands.
1807	 */
1808	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1809		ret = scsi_device_state_check(sdev, req);
1810		if (ret != BLK_STS_OK)
1811			goto out_put_budget;
1812	}
1813
1814	ret = BLK_STS_RESOURCE;
1815	if (!scsi_target_queue_ready(shost, sdev))
1816		goto out_put_budget;
1817	if (unlikely(scsi_host_in_recovery(shost))) {
1818		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1819			ret = BLK_STS_OFFLINE;
1820		goto out_dec_target_busy;
1821	}
1822	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1823		goto out_dec_target_busy;
1824
1825	/*
1826	 * Only clear the driver-private command data if the LLD does not supply
1827	 * a function to initialize that data.
1828	 */
1829	if (shost->hostt->cmd_size && !shost->hostt->init_cmd_priv)
1830		memset(cmd + 1, 0, shost->hostt->cmd_size);
1831
1832	if (!(req->rq_flags & RQF_DONTPREP)) {
1833		ret = scsi_prepare_cmd(req);
1834		if (ret != BLK_STS_OK)
1835			goto out_dec_host_busy;
1836		req->rq_flags |= RQF_DONTPREP;
1837	} else {
1838		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1839	}
1840
1841	cmd->flags &= SCMD_PRESERVED_FLAGS;
1842	if (sdev->simple_tags)
1843		cmd->flags |= SCMD_TAGGED;
1844	if (bd->last)
1845		cmd->flags |= SCMD_LAST;
1846
1847	scsi_set_resid(cmd, 0);
1848	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1849	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1850
1851	blk_mq_start_request(req);
1852	reason = scsi_dispatch_cmd(cmd);
1853	if (reason) {
1854		scsi_set_blocked(cmd, reason);
1855		ret = BLK_STS_RESOURCE;
1856		goto out_dec_host_busy;
1857	}
1858
1859	return BLK_STS_OK;
1860
1861out_dec_host_busy:
1862	scsi_dec_host_busy(shost, cmd);
1863out_dec_target_busy:
1864	if (scsi_target(sdev)->can_queue > 0)
1865		atomic_dec(&scsi_target(sdev)->target_busy);
1866out_put_budget:
1867	scsi_mq_put_budget(q, cmd->budget_token);
1868	cmd->budget_token = -1;
1869	switch (ret) {
1870	case BLK_STS_OK:
1871		break;
1872	case BLK_STS_RESOURCE:
1873		if (scsi_device_blocked(sdev))
 
1874			ret = BLK_STS_DEV_RESOURCE;
1875		break;
1876	case BLK_STS_AGAIN:
1877		cmd->result = DID_BUS_BUSY << 16;
1878		if (req->rq_flags & RQF_DONTPREP)
1879			scsi_mq_uninit_cmd(cmd);
1880		break;
1881	default:
1882		if (unlikely(!scsi_device_online(sdev)))
1883			cmd->result = DID_NO_CONNECT << 16;
1884		else
1885			cmd->result = DID_ERROR << 16;
1886		/*
1887		 * Make sure to release all allocated resources when
1888		 * we hit an error, as we will never see this command
1889		 * again.
1890		 */
1891		if (req->rq_flags & RQF_DONTPREP)
1892			scsi_mq_uninit_cmd(cmd);
1893		scsi_run_queue_async(sdev);
1894		break;
1895	}
1896	return ret;
1897}
1898
 
 
 
 
 
 
 
 
1899static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1900				unsigned int hctx_idx, unsigned int numa_node)
1901{
1902	struct Scsi_Host *shost = set->driver_data;
 
1903	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1904	struct scatterlist *sg;
1905	int ret = 0;
1906
1907	cmd->sense_buffer =
1908		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
 
 
1909	if (!cmd->sense_buffer)
1910		return -ENOMEM;
 
1911
1912	if (scsi_host_get_prot(shost)) {
1913		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1914			shost->hostt->cmd_size;
1915		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1916	}
1917
1918	if (shost->hostt->init_cmd_priv) {
1919		ret = shost->hostt->init_cmd_priv(shost, cmd);
1920		if (ret < 0)
1921			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1922	}
1923
1924	return ret;
1925}
1926
1927static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1928				 unsigned int hctx_idx)
1929{
1930	struct Scsi_Host *shost = set->driver_data;
1931	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1932
1933	if (shost->hostt->exit_cmd_priv)
1934		shost->hostt->exit_cmd_priv(shost, cmd);
1935	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1936}
1937
1938
1939static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1940{
1941	struct Scsi_Host *shost = hctx->driver_data;
1942
1943	if (shost->hostt->mq_poll)
1944		return shost->hostt->mq_poll(shost, hctx->queue_num);
1945
1946	return 0;
 
 
1947}
1948
1949static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1950			  unsigned int hctx_idx)
1951{
1952	struct Scsi_Host *shost = data;
 
1953
1954	hctx->driver_data = shost;
1955	return 0;
1956}
 
 
 
 
 
1957
1958static void scsi_map_queues(struct blk_mq_tag_set *set)
1959{
1960	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1961
1962	if (shost->hostt->map_queues)
1963		return shost->hostt->map_queues(shost);
1964	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1965}
1966
1967void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim)
1968{
1969	struct device *dev = shost->dma_dev;
1970
1971	memset(lim, 0, sizeof(*lim));
1972	lim->max_segments =
1973		min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS);
 
 
1974
1975	if (scsi_host_prot_dma(shost)) {
1976		shost->sg_prot_tablesize =
1977			min_not_zero(shost->sg_prot_tablesize,
1978				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1979		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1980		lim->max_integrity_segments = shost->sg_prot_tablesize;
1981	}
1982
1983	lim->max_hw_sectors = shost->max_sectors;
1984	lim->seg_boundary_mask = shost->dma_boundary;
1985	lim->max_segment_size = shost->max_segment_size;
1986	lim->virt_boundary_mask = shost->virt_boundary_mask;
1987	lim->dma_alignment = max_t(unsigned int,
1988		shost->dma_alignment, dma_get_cache_alignment() - 1);
1989
1990	if (shost->no_highmem)
1991		lim->features |= BLK_FEAT_BOUNCE_HIGH;
1992
1993	/*
1994	 * Propagate the DMA formation properties to the dma-mapping layer as
1995	 * a courtesy service to the LLDDs.  This needs to check that the buses
1996	 * actually support the DMA API first, though.
 
 
1997	 */
1998	if (dev->dma_parms) {
1999		dma_set_seg_boundary(dev, shost->dma_boundary);
2000		dma_set_max_seg_size(dev, shost->max_segment_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001	}
 
 
 
 
 
 
 
2002}
2003EXPORT_SYMBOL_GPL(scsi_init_limits);
2004
2005static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2006	.get_budget	= scsi_mq_get_budget,
2007	.put_budget	= scsi_mq_put_budget,
2008	.queue_rq	= scsi_queue_rq,
2009	.complete	= scsi_complete,
2010	.timeout	= scsi_timeout,
2011#ifdef CONFIG_BLK_DEBUG_FS
2012	.show_rq	= scsi_show_rq,
2013#endif
2014	.init_request	= scsi_mq_init_request,
2015	.exit_request	= scsi_mq_exit_request,
2016	.cleanup_rq	= scsi_cleanup_rq,
2017	.busy		= scsi_mq_lld_busy,
2018	.map_queues	= scsi_map_queues,
2019	.init_hctx	= scsi_init_hctx,
2020	.poll		= scsi_mq_poll,
2021	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2022	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2023};
2024
 
 
 
 
 
2025
2026static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2027{
2028	struct Scsi_Host *shost = hctx->driver_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2029
2030	shost->hostt->commit_rqs(shost, hctx->queue_num);
 
 
 
 
 
 
 
2031}
2032
2033static const struct blk_mq_ops scsi_mq_ops = {
2034	.get_budget	= scsi_mq_get_budget,
2035	.put_budget	= scsi_mq_put_budget,
2036	.queue_rq	= scsi_queue_rq,
2037	.commit_rqs	= scsi_commit_rqs,
2038	.complete	= scsi_complete,
2039	.timeout	= scsi_timeout,
2040#ifdef CONFIG_BLK_DEBUG_FS
2041	.show_rq	= scsi_show_rq,
2042#endif
2043	.init_request	= scsi_mq_init_request,
2044	.exit_request	= scsi_mq_exit_request,
2045	.cleanup_rq	= scsi_cleanup_rq,
2046	.busy		= scsi_mq_lld_busy,
2047	.map_queues	= scsi_map_queues,
2048	.init_hctx	= scsi_init_hctx,
2049	.poll		= scsi_mq_poll,
2050	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2051	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2052};
2053
 
 
 
 
 
 
 
 
 
 
 
 
2054int scsi_mq_setup_tags(struct Scsi_Host *shost)
2055{
2056	unsigned int cmd_size, sgl_size;
2057	struct blk_mq_tag_set *tag_set = &shost->tag_set;
2058
2059	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2060				scsi_mq_inline_sgl_size(shost));
2061	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2062	if (scsi_host_get_prot(shost))
2063		cmd_size += sizeof(struct scsi_data_buffer) +
2064			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2065
2066	memset(tag_set, 0, sizeof(*tag_set));
2067	if (shost->hostt->commit_rqs)
2068		tag_set->ops = &scsi_mq_ops;
2069	else
2070		tag_set->ops = &scsi_mq_ops_no_commit;
2071	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2072	tag_set->nr_maps = shost->nr_maps ? : 1;
2073	tag_set->queue_depth = shost->can_queue;
2074	tag_set->cmd_size = cmd_size;
2075	tag_set->numa_node = dev_to_node(shost->dma_dev);
2076	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2077	tag_set->flags |=
2078		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2079	if (shost->queuecommand_may_block)
2080		tag_set->flags |= BLK_MQ_F_BLOCKING;
2081	tag_set->driver_data = shost;
2082	if (shost->host_tagset)
2083		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2084
2085	return blk_mq_alloc_tag_set(tag_set);
2086}
2087
2088void scsi_mq_free_tags(struct kref *kref)
2089{
2090	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2091					       tagset_refcnt);
2092
2093	blk_mq_free_tag_set(&shost->tag_set);
2094	complete(&shost->tagset_freed);
2095}
2096
2097/**
2098 * scsi_device_from_queue - return sdev associated with a request_queue
2099 * @q: The request queue to return the sdev from
2100 *
2101 * Return the sdev associated with a request queue or NULL if the
2102 * request_queue does not reference a SCSI device.
2103 */
2104struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2105{
2106	struct scsi_device *sdev = NULL;
2107
2108	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2109	    q->mq_ops == &scsi_mq_ops)
 
 
2110		sdev = q->queuedata;
2111	if (!sdev || !get_device(&sdev->sdev_gendev))
2112		sdev = NULL;
2113
2114	return sdev;
2115}
2116/*
2117 * pktcdvd should have been integrated into the SCSI layers, but for historical
2118 * reasons like the old IDE driver it isn't.  This export allows it to safely
2119 * probe if a given device is a SCSI one and only attach to that.
2120 */
2121#ifdef CONFIG_CDROM_PKTCDVD_MODULE
2122EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2123#endif
2124
2125/**
2126 * scsi_block_requests - Utility function used by low-level drivers to prevent
2127 * further commands from being queued to the device.
2128 * @shost:  host in question
 
 
 
 
 
2129 *
2130 * There is no timer nor any other means by which the requests get unblocked
2131 * other than the low-level driver calling scsi_unblock_requests().
 
 
 
2132 */
2133void scsi_block_requests(struct Scsi_Host *shost)
2134{
2135	shost->host_self_blocked = 1;
2136}
2137EXPORT_SYMBOL(scsi_block_requests);
2138
2139/**
2140 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2141 * further commands to be queued to the device.
2142 * @shost:  host in question
2143 *
2144 * There is no timer nor any other means by which the requests get unblocked
2145 * other than the low-level driver calling scsi_unblock_requests(). This is done
2146 * as an API function so that changes to the internals of the scsi mid-layer
2147 * won't require wholesale changes to drivers that use this feature.
 
 
 
 
 
 
 
 
 
 
2148 */
2149void scsi_unblock_requests(struct Scsi_Host *shost)
2150{
2151	shost->host_self_blocked = 0;
2152	scsi_run_host_queues(shost);
2153}
2154EXPORT_SYMBOL(scsi_unblock_requests);
2155
 
 
 
 
 
 
 
 
 
 
 
 
 
2156void scsi_exit_queue(void)
2157{
2158	kmem_cache_destroy(scsi_sense_cache);
 
 
2159}
2160
2161/**
2162 *	scsi_mode_select - issue a mode select
2163 *	@sdev:	SCSI device to be queried
2164 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2165 *	@sp:	Save page bit (0 == don't save, 1 == save)
 
2166 *	@buffer: request buffer (may not be smaller than eight bytes)
2167 *	@len:	length of request buffer.
2168 *	@timeout: command timeout
2169 *	@retries: number of retries before failing
2170 *	@data: returns a structure abstracting the mode header data
2171 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2172 *		must be SCSI_SENSE_BUFFERSIZE big.
2173 *
2174 *	Returns zero if successful; negative error number or scsi
2175 *	status on error
2176 *
2177 */
2178int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2179		     unsigned char *buffer, int len, int timeout, int retries,
2180		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
 
2181{
2182	unsigned char cmd[10];
2183	unsigned char *real_buffer;
2184	const struct scsi_exec_args exec_args = {
2185		.sshdr = sshdr,
2186	};
2187	int ret;
2188
2189	memset(cmd, 0, sizeof(cmd));
2190	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2191
2192	/*
2193	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2194	 * and the mode select header cannot fit within the maximumm 255 bytes
2195	 * of the MODE SELECT(6) command.
2196	 */
2197	if (sdev->use_10_for_ms ||
2198	    len + 4 > 255 ||
2199	    data->block_descriptor_length > 255) {
2200		if (len > 65535 - 8)
2201			return -EINVAL;
2202		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2203		if (!real_buffer)
2204			return -ENOMEM;
2205		memcpy(real_buffer + 8, buffer, len);
2206		len += 8;
2207		real_buffer[0] = 0;
2208		real_buffer[1] = 0;
2209		real_buffer[2] = data->medium_type;
2210		real_buffer[3] = data->device_specific;
2211		real_buffer[4] = data->longlba ? 0x01 : 0;
2212		real_buffer[5] = 0;
2213		put_unaligned_be16(data->block_descriptor_length,
2214				   &real_buffer[6]);
2215
2216		cmd[0] = MODE_SELECT_10;
2217		put_unaligned_be16(len, &cmd[7]);
 
2218	} else {
2219		if (data->longlba)
 
2220			return -EINVAL;
2221
2222		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2223		if (!real_buffer)
2224			return -ENOMEM;
2225		memcpy(real_buffer + 4, buffer, len);
2226		len += 4;
2227		real_buffer[0] = 0;
2228		real_buffer[1] = data->medium_type;
2229		real_buffer[2] = data->device_specific;
2230		real_buffer[3] = data->block_descriptor_length;
 
2231
2232		cmd[0] = MODE_SELECT;
2233		cmd[4] = len;
2234	}
2235
2236	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2237			       timeout, retries, &exec_args);
2238	kfree(real_buffer);
2239	return ret;
2240}
2241EXPORT_SYMBOL_GPL(scsi_mode_select);
2242
2243/**
2244 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2245 *	@sdev:	SCSI device to be queried
2246 *	@dbd:	set to prevent mode sense from returning block descriptors
2247 *	@modepage: mode page being requested
2248 *	@subpage: sub-page of the mode page being requested
2249 *	@buffer: request buffer (may not be smaller than eight bytes)
2250 *	@len:	length of request buffer.
2251 *	@timeout: command timeout
2252 *	@retries: number of retries before failing
2253 *	@data: returns a structure abstracting the mode header data
2254 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2255 *		must be SCSI_SENSE_BUFFERSIZE big.
2256 *
2257 *	Returns zero if successful, or a negative error number on failure
 
 
2258 */
2259int
2260scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2261		  unsigned char *buffer, int len, int timeout, int retries,
2262		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2263{
2264	unsigned char cmd[12];
2265	int use_10_for_ms;
2266	int header_length;
2267	int result;
2268	struct scsi_sense_hdr my_sshdr;
2269	struct scsi_failure failure_defs[] = {
2270		{
2271			.sense = UNIT_ATTENTION,
2272			.asc = SCMD_FAILURE_ASC_ANY,
2273			.ascq = SCMD_FAILURE_ASCQ_ANY,
2274			.allowed = retries,
2275			.result = SAM_STAT_CHECK_CONDITION,
2276		},
2277		{}
2278	};
2279	struct scsi_failures failures = {
2280		.failure_definitions = failure_defs,
2281	};
2282	const struct scsi_exec_args exec_args = {
2283		/* caller might not be interested in sense, but we need it */
2284		.sshdr = sshdr ? : &my_sshdr,
2285		.failures = &failures,
2286	};
2287
2288	memset(data, 0, sizeof(*data));
2289	memset(&cmd[0], 0, 12);
2290
2291	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2292	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2293	cmd[2] = modepage;
2294	cmd[3] = subpage;
2295
2296	sshdr = exec_args.sshdr;
 
 
2297
2298 retry:
2299	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2300
2301	if (use_10_for_ms) {
2302		if (len < 8 || len > 65535)
2303			return -EINVAL;
2304
2305		cmd[0] = MODE_SENSE_10;
2306		put_unaligned_be16(len, &cmd[7]);
2307		header_length = 8;
2308	} else {
2309		if (len < 4)
2310			return -EINVAL;
2311
2312		cmd[0] = MODE_SENSE;
2313		cmd[4] = len;
2314		header_length = 4;
2315	}
2316
2317	memset(buffer, 0, len);
2318
2319	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2320				  timeout, retries, &exec_args);
2321	if (result < 0)
2322		return result;
2323
2324	/* This code looks awful: what it's doing is making sure an
2325	 * ILLEGAL REQUEST sense return identifies the actual command
2326	 * byte as the problem.  MODE_SENSE commands can return
2327	 * ILLEGAL REQUEST if the code page isn't supported */
2328
2329	if (!scsi_status_is_good(result)) {
 
2330		if (scsi_sense_valid(sshdr)) {
2331			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2332			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2333				/*
2334				 * Invalid command operation code: retry using
2335				 * MODE SENSE(6) if this was a MODE SENSE(10)
2336				 * request, except if the request mode page is
2337				 * too large for MODE SENSE single byte
2338				 * allocation length field.
2339				 */
2340				if (use_10_for_ms) {
2341					if (len > 255)
2342						return -EIO;
2343					sdev->use_10_for_ms = 0;
2344					goto retry;
2345				}
2346			}
2347		}
2348		return -EIO;
2349	}
2350	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2351		     (modepage == 6 || modepage == 8))) {
2352		/* Initio breakage? */
2353		header_length = 0;
2354		data->length = 13;
2355		data->medium_type = 0;
2356		data->device_specific = 0;
2357		data->longlba = 0;
2358		data->block_descriptor_length = 0;
2359	} else if (use_10_for_ms) {
2360		data->length = get_unaligned_be16(&buffer[0]) + 2;
2361		data->medium_type = buffer[2];
2362		data->device_specific = buffer[3];
2363		data->longlba = buffer[4] & 0x01;
2364		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2365	} else {
2366		data->length = buffer[0] + 1;
2367		data->medium_type = buffer[1];
2368		data->device_specific = buffer[2];
2369		data->block_descriptor_length = buffer[3];
 
 
 
 
 
 
 
 
 
 
2370	}
2371	data->header_length = header_length;
2372
2373	return 0;
2374}
2375EXPORT_SYMBOL(scsi_mode_sense);
2376
2377/**
2378 *	scsi_test_unit_ready - test if unit is ready
2379 *	@sdev:	scsi device to change the state of.
2380 *	@timeout: command timeout
2381 *	@retries: number of retries before failing
2382 *	@sshdr: outpout pointer for decoded sense information.
2383 *
2384 *	Returns zero if unsuccessful or an error if TUR failed.  For
2385 *	removable media, UNIT_ATTENTION sets ->changed flag.
2386 **/
2387int
2388scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2389		     struct scsi_sense_hdr *sshdr)
2390{
2391	char cmd[] = {
2392		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2393	};
2394	const struct scsi_exec_args exec_args = {
2395		.sshdr = sshdr,
2396	};
2397	int result;
2398
2399	/* try to eat the UNIT_ATTENTION if there are enough retries */
2400	do {
2401		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2402					  timeout, 1, &exec_args);
2403		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2404		    sshdr->sense_key == UNIT_ATTENTION)
2405			sdev->changed = 1;
2406	} while (result > 0 && scsi_sense_valid(sshdr) &&
2407		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2408
2409	return result;
2410}
2411EXPORT_SYMBOL(scsi_test_unit_ready);
2412
2413/**
2414 *	scsi_device_set_state - Take the given device through the device state model.
2415 *	@sdev:	scsi device to change the state of.
2416 *	@state:	state to change to.
2417 *
2418 *	Returns zero if successful or an error if the requested
2419 *	transition is illegal.
2420 */
2421int
2422scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2423{
2424	enum scsi_device_state oldstate = sdev->sdev_state;
2425
2426	if (state == oldstate)
2427		return 0;
2428
2429	switch (state) {
2430	case SDEV_CREATED:
2431		switch (oldstate) {
2432		case SDEV_CREATED_BLOCK:
2433			break;
2434		default:
2435			goto illegal;
2436		}
2437		break;
2438
2439	case SDEV_RUNNING:
2440		switch (oldstate) {
2441		case SDEV_CREATED:
2442		case SDEV_OFFLINE:
2443		case SDEV_TRANSPORT_OFFLINE:
2444		case SDEV_QUIESCE:
2445		case SDEV_BLOCK:
2446			break;
2447		default:
2448			goto illegal;
2449		}
2450		break;
2451
2452	case SDEV_QUIESCE:
2453		switch (oldstate) {
2454		case SDEV_RUNNING:
2455		case SDEV_OFFLINE:
2456		case SDEV_TRANSPORT_OFFLINE:
2457			break;
2458		default:
2459			goto illegal;
2460		}
2461		break;
2462
2463	case SDEV_OFFLINE:
2464	case SDEV_TRANSPORT_OFFLINE:
2465		switch (oldstate) {
2466		case SDEV_CREATED:
2467		case SDEV_RUNNING:
2468		case SDEV_QUIESCE:
2469		case SDEV_BLOCK:
2470			break;
2471		default:
2472			goto illegal;
2473		}
2474		break;
2475
2476	case SDEV_BLOCK:
2477		switch (oldstate) {
2478		case SDEV_RUNNING:
2479		case SDEV_CREATED_BLOCK:
2480		case SDEV_QUIESCE:
2481		case SDEV_OFFLINE:
2482			break;
2483		default:
2484			goto illegal;
2485		}
2486		break;
2487
2488	case SDEV_CREATED_BLOCK:
2489		switch (oldstate) {
2490		case SDEV_CREATED:
2491			break;
2492		default:
2493			goto illegal;
2494		}
2495		break;
2496
2497	case SDEV_CANCEL:
2498		switch (oldstate) {
2499		case SDEV_CREATED:
2500		case SDEV_RUNNING:
2501		case SDEV_QUIESCE:
2502		case SDEV_OFFLINE:
2503		case SDEV_TRANSPORT_OFFLINE:
2504			break;
2505		default:
2506			goto illegal;
2507		}
2508		break;
2509
2510	case SDEV_DEL:
2511		switch (oldstate) {
2512		case SDEV_CREATED:
2513		case SDEV_RUNNING:
2514		case SDEV_OFFLINE:
2515		case SDEV_TRANSPORT_OFFLINE:
2516		case SDEV_CANCEL:
2517		case SDEV_BLOCK:
2518		case SDEV_CREATED_BLOCK:
2519			break;
2520		default:
2521			goto illegal;
2522		}
2523		break;
2524
2525	}
2526	sdev->offline_already = false;
2527	sdev->sdev_state = state;
2528	return 0;
2529
2530 illegal:
2531	SCSI_LOG_ERROR_RECOVERY(1,
2532				sdev_printk(KERN_ERR, sdev,
2533					    "Illegal state transition %s->%s",
2534					    scsi_device_state_name(oldstate),
2535					    scsi_device_state_name(state))
2536				);
2537	return -EINVAL;
2538}
2539EXPORT_SYMBOL(scsi_device_set_state);
2540
2541/**
2542 *	scsi_evt_emit - emit a single SCSI device uevent
2543 *	@sdev: associated SCSI device
2544 *	@evt: event to emit
2545 *
2546 *	Send a single uevent (scsi_event) to the associated scsi_device.
2547 */
2548static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2549{
2550	int idx = 0;
2551	char *envp[3];
2552
2553	switch (evt->evt_type) {
2554	case SDEV_EVT_MEDIA_CHANGE:
2555		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2556		break;
2557	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2558		scsi_rescan_device(sdev);
2559		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2560		break;
2561	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2562		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2563		break;
2564	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2565	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2566		break;
2567	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2568		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2569		break;
2570	case SDEV_EVT_LUN_CHANGE_REPORTED:
2571		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2572		break;
2573	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2574		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2575		break;
2576	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2577		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2578		break;
2579	default:
2580		/* do nothing */
2581		break;
2582	}
2583
2584	envp[idx++] = NULL;
2585
2586	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2587}
2588
2589/**
2590 *	scsi_evt_thread - send a uevent for each scsi event
2591 *	@work: work struct for scsi_device
2592 *
2593 *	Dispatch queued events to their associated scsi_device kobjects
2594 *	as uevents.
2595 */
2596void scsi_evt_thread(struct work_struct *work)
2597{
2598	struct scsi_device *sdev;
2599	enum scsi_device_event evt_type;
2600	LIST_HEAD(event_list);
2601
2602	sdev = container_of(work, struct scsi_device, event_work);
2603
2604	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2605		if (test_and_clear_bit(evt_type, sdev->pending_events))
2606			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2607
2608	while (1) {
2609		struct scsi_event *evt;
2610		struct list_head *this, *tmp;
2611		unsigned long flags;
2612
2613		spin_lock_irqsave(&sdev->list_lock, flags);
2614		list_splice_init(&sdev->event_list, &event_list);
2615		spin_unlock_irqrestore(&sdev->list_lock, flags);
2616
2617		if (list_empty(&event_list))
2618			break;
2619
2620		list_for_each_safe(this, tmp, &event_list) {
2621			evt = list_entry(this, struct scsi_event, node);
2622			list_del(&evt->node);
2623			scsi_evt_emit(sdev, evt);
2624			kfree(evt);
2625		}
2626	}
2627}
2628
2629/**
2630 * 	sdev_evt_send - send asserted event to uevent thread
2631 *	@sdev: scsi_device event occurred on
2632 *	@evt: event to send
2633 *
2634 *	Assert scsi device event asynchronously.
2635 */
2636void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2637{
2638	unsigned long flags;
2639
2640#if 0
2641	/* FIXME: currently this check eliminates all media change events
2642	 * for polled devices.  Need to update to discriminate between AN
2643	 * and polled events */
2644	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2645		kfree(evt);
2646		return;
2647	}
2648#endif
2649
2650	spin_lock_irqsave(&sdev->list_lock, flags);
2651	list_add_tail(&evt->node, &sdev->event_list);
2652	schedule_work(&sdev->event_work);
2653	spin_unlock_irqrestore(&sdev->list_lock, flags);
2654}
2655EXPORT_SYMBOL_GPL(sdev_evt_send);
2656
2657/**
2658 * 	sdev_evt_alloc - allocate a new scsi event
2659 *	@evt_type: type of event to allocate
2660 *	@gfpflags: GFP flags for allocation
2661 *
2662 *	Allocates and returns a new scsi_event.
2663 */
2664struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2665				  gfp_t gfpflags)
2666{
2667	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2668	if (!evt)
2669		return NULL;
2670
2671	evt->evt_type = evt_type;
2672	INIT_LIST_HEAD(&evt->node);
2673
2674	/* evt_type-specific initialization, if any */
2675	switch (evt_type) {
2676	case SDEV_EVT_MEDIA_CHANGE:
2677	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2678	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2679	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2680	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2681	case SDEV_EVT_LUN_CHANGE_REPORTED:
2682	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2683	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2684	default:
2685		/* do nothing */
2686		break;
2687	}
2688
2689	return evt;
2690}
2691EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2692
2693/**
2694 * 	sdev_evt_send_simple - send asserted event to uevent thread
2695 *	@sdev: scsi_device event occurred on
2696 *	@evt_type: type of event to send
2697 *	@gfpflags: GFP flags for allocation
2698 *
2699 *	Assert scsi device event asynchronously, given an event type.
2700 */
2701void sdev_evt_send_simple(struct scsi_device *sdev,
2702			  enum scsi_device_event evt_type, gfp_t gfpflags)
2703{
2704	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2705	if (!evt) {
2706		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2707			    evt_type);
2708		return;
2709	}
2710
2711	sdev_evt_send(sdev, evt);
2712}
2713EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2714
2715/**
2716 *	scsi_device_quiesce - Block all commands except power management.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2717 *	@sdev:	scsi device to quiesce.
2718 *
2719 *	This works by trying to transition to the SDEV_QUIESCE state
2720 *	(which must be a legal transition).  When the device is in this
2721 *	state, only power management requests will be accepted, all others will
2722 *	be deferred.
 
 
2723 *
2724 *	Must be called with user context, may sleep.
2725 *
2726 *	Returns zero if unsuccessful or an error if not.
2727 */
2728int
2729scsi_device_quiesce(struct scsi_device *sdev)
2730{
2731	struct request_queue *q = sdev->request_queue;
2732	int err;
2733
2734	/*
2735	 * It is allowed to call scsi_device_quiesce() multiple times from
2736	 * the same context but concurrent scsi_device_quiesce() calls are
2737	 * not allowed.
2738	 */
2739	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2740
2741	if (sdev->quiesced_by == current)
2742		return 0;
2743
2744	blk_set_pm_only(q);
2745
2746	blk_mq_freeze_queue(q);
2747	/*
2748	 * Ensure that the effect of blk_set_pm_only() will be visible
2749	 * for percpu_ref_tryget() callers that occur after the queue
2750	 * unfreeze even if the queue was already frozen before this function
2751	 * was called. See also https://lwn.net/Articles/573497/.
2752	 */
2753	synchronize_rcu();
2754	blk_mq_unfreeze_queue(q);
2755
2756	mutex_lock(&sdev->state_mutex);
2757	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2758	if (err == 0)
2759		sdev->quiesced_by = current;
2760	else
2761		blk_clear_pm_only(q);
2762	mutex_unlock(&sdev->state_mutex);
2763
2764	return err;
2765}
2766EXPORT_SYMBOL(scsi_device_quiesce);
2767
2768/**
2769 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2770 *	@sdev:	scsi device to resume.
2771 *
2772 *	Moves the device from quiesced back to running and restarts the
2773 *	queues.
2774 *
2775 *	Must be called with user context, may sleep.
2776 */
2777void scsi_device_resume(struct scsi_device *sdev)
2778{
2779	/* check if the device state was mutated prior to resume, and if
2780	 * so assume the state is being managed elsewhere (for example
2781	 * device deleted during suspend)
2782	 */
2783	mutex_lock(&sdev->state_mutex);
 
 
 
2784	if (sdev->sdev_state == SDEV_QUIESCE)
2785		scsi_device_set_state(sdev, SDEV_RUNNING);
2786	if (sdev->quiesced_by) {
2787		sdev->quiesced_by = NULL;
2788		blk_clear_pm_only(sdev->request_queue);
2789	}
2790	mutex_unlock(&sdev->state_mutex);
2791}
2792EXPORT_SYMBOL(scsi_device_resume);
2793
2794static void
2795device_quiesce_fn(struct scsi_device *sdev, void *data)
2796{
2797	scsi_device_quiesce(sdev);
2798}
2799
2800void
2801scsi_target_quiesce(struct scsi_target *starget)
2802{
2803	starget_for_each_device(starget, NULL, device_quiesce_fn);
2804}
2805EXPORT_SYMBOL(scsi_target_quiesce);
2806
2807static void
2808device_resume_fn(struct scsi_device *sdev, void *data)
2809{
2810	scsi_device_resume(sdev);
2811}
2812
2813void
2814scsi_target_resume(struct scsi_target *starget)
2815{
2816	starget_for_each_device(starget, NULL, device_resume_fn);
2817}
2818EXPORT_SYMBOL(scsi_target_resume);
2819
2820static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2821{
2822	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2823		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2824
2825	return 0;
2826}
2827
2828void scsi_start_queue(struct scsi_device *sdev)
2829{
2830	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2831		blk_mq_unquiesce_queue(sdev->request_queue);
2832}
2833
2834static void scsi_stop_queue(struct scsi_device *sdev)
2835{
2836	/*
2837	 * The atomic variable of ->queue_stopped covers that
2838	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2839	 *
2840	 * The caller needs to wait until quiesce is done.
2841	 */
2842	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2843		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2844}
2845
2846/**
2847 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2848 * @sdev: device to block
2849 *
2850 * Pause SCSI command processing on the specified device. Does not sleep.
2851 *
2852 * Returns zero if successful or a negative error code upon failure.
2853 *
2854 * Notes:
2855 * This routine transitions the device to the SDEV_BLOCK state (which must be
2856 * a legal transition). When the device is in this state, command processing
2857 * is paused until the device leaves the SDEV_BLOCK state. See also
2858 * scsi_internal_device_unblock_nowait().
2859 */
2860int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2861{
2862	int ret = __scsi_internal_device_block_nowait(sdev);
 
 
2863
2864	/*
 
 
 
 
 
 
 
 
2865	 * The device has transitioned to SDEV_BLOCK.  Stop the
2866	 * block layer from calling the midlayer with this device's
2867	 * request queue.
2868	 */
2869	if (!ret)
2870		scsi_stop_queue(sdev);
2871	return ret;
 
 
 
 
 
 
2872}
2873EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2874
2875/**
2876 * scsi_device_block - try to transition to the SDEV_BLOCK state
2877 * @sdev: device to block
2878 * @data: dummy argument, ignored
2879 *
2880 * Pause SCSI command processing on the specified device. Callers must wait
2881 * until all ongoing scsi_queue_rq() calls have finished after this function
2882 * returns.
 
2883 *
2884 * Note:
2885 * This routine transitions the device to the SDEV_BLOCK state (which must be
2886 * a legal transition). When the device is in this state, command processing
2887 * is paused until the device leaves the SDEV_BLOCK state. See also
2888 * scsi_internal_device_unblock().
 
 
 
 
2889 */
2890static void scsi_device_block(struct scsi_device *sdev, void *data)
2891{
 
2892	int err;
2893	enum scsi_device_state state;
2894
2895	mutex_lock(&sdev->state_mutex);
2896	err = __scsi_internal_device_block_nowait(sdev);
2897	state = sdev->sdev_state;
2898	if (err == 0)
2899		/*
2900		 * scsi_stop_queue() must be called with the state_mutex
2901		 * held. Otherwise a simultaneous scsi_start_queue() call
2902		 * might unquiesce the queue before we quiesce it.
2903		 */
2904		scsi_stop_queue(sdev);
2905
2906	mutex_unlock(&sdev->state_mutex);
2907
2908	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2909		  __func__, dev_name(&sdev->sdev_gendev), state);
 
 
 
 
 
 
 
 
 
 
 
 
 
2910}
2911
2912/**
2913 * scsi_internal_device_unblock_nowait - resume a device after a block request
2914 * @sdev:	device to resume
2915 * @new_state:	state to set the device to after unblocking
2916 *
2917 * Restart the device queue for a previously suspended SCSI device. Does not
2918 * sleep.
2919 *
2920 * Returns zero if successful or a negative error code upon failure.
2921 *
2922 * Notes:
2923 * This routine transitions the device to the SDEV_RUNNING state or to one of
2924 * the offline states (which must be a legal transition) allowing the midlayer
2925 * to goose the queue for this device.
2926 */
2927int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2928					enum scsi_device_state new_state)
2929{
2930	switch (new_state) {
2931	case SDEV_RUNNING:
2932	case SDEV_TRANSPORT_OFFLINE:
2933		break;
2934	default:
2935		return -EINVAL;
2936	}
2937
2938	/*
2939	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2940	 * offlined states and goose the device queue if successful.
2941	 */
2942	switch (sdev->sdev_state) {
2943	case SDEV_BLOCK:
2944	case SDEV_TRANSPORT_OFFLINE:
2945		sdev->sdev_state = new_state;
2946		break;
2947	case SDEV_CREATED_BLOCK:
2948		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2949		    new_state == SDEV_OFFLINE)
2950			sdev->sdev_state = new_state;
2951		else
2952			sdev->sdev_state = SDEV_CREATED;
2953		break;
2954	case SDEV_CANCEL:
2955	case SDEV_OFFLINE:
2956		break;
2957	default:
2958		return -EINVAL;
2959	}
2960	scsi_start_queue(sdev);
2961
2962	return 0;
2963}
2964EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2965
2966/**
2967 * scsi_internal_device_unblock - resume a device after a block request
2968 * @sdev:	device to resume
2969 * @new_state:	state to set the device to after unblocking
2970 *
2971 * Restart the device queue for a previously suspended SCSI device. May sleep.
2972 *
2973 * Returns zero if successful or a negative error code upon failure.
2974 *
2975 * Notes:
2976 * This routine transitions the device to the SDEV_RUNNING state or to one of
2977 * the offline states (which must be a legal transition) allowing the midlayer
2978 * to goose the queue for this device.
2979 */
2980static int scsi_internal_device_unblock(struct scsi_device *sdev,
2981					enum scsi_device_state new_state)
2982{
2983	int ret;
2984
2985	mutex_lock(&sdev->state_mutex);
2986	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2987	mutex_unlock(&sdev->state_mutex);
2988
2989	return ret;
2990}
2991
 
 
 
 
 
 
2992static int
2993target_block(struct device *dev, void *data)
2994{
2995	if (scsi_is_target_device(dev))
2996		starget_for_each_device(to_scsi_target(dev), NULL,
2997					scsi_device_block);
2998	return 0;
2999}
3000
3001/**
3002 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3003 * @dev: a parent device of one or more scsi_target devices
3004 * @shost: the Scsi_Host to which this device belongs
3005 *
3006 * Iterate over all children of @dev, which should be scsi_target devices,
3007 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3008 * ongoing scsi_queue_rq() calls to finish. May sleep.
3009 *
3010 * Note:
3011 * @dev must not itself be a scsi_target device.
3012 */
3013void
3014scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3015{
3016	WARN_ON_ONCE(scsi_is_target_device(dev));
3017	device_for_each_child(dev, NULL, target_block);
3018	blk_mq_wait_quiesce_done(&shost->tag_set);
 
 
3019}
3020EXPORT_SYMBOL_GPL(scsi_block_targets);
3021
3022static void
3023device_unblock(struct scsi_device *sdev, void *data)
3024{
3025	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3026}
3027
3028static int
3029target_unblock(struct device *dev, void *data)
3030{
3031	if (scsi_is_target_device(dev))
3032		starget_for_each_device(to_scsi_target(dev), data,
3033					device_unblock);
3034	return 0;
3035}
3036
3037void
3038scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3039{
3040	if (scsi_is_target_device(dev))
3041		starget_for_each_device(to_scsi_target(dev), &new_state,
3042					device_unblock);
3043	else
3044		device_for_each_child(dev, &new_state, target_unblock);
3045}
3046EXPORT_SYMBOL_GPL(scsi_target_unblock);
3047
3048/**
3049 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3050 * @shost: device to block
3051 *
3052 * Pause SCSI command processing for all logical units associated with the SCSI
3053 * host and wait until pending scsi_queue_rq() calls have finished.
3054 *
3055 * Returns zero if successful or a negative error code upon failure.
3056 */
3057int
3058scsi_host_block(struct Scsi_Host *shost)
3059{
3060	struct scsi_device *sdev;
3061	int ret;
3062
3063	/*
3064	 * Call scsi_internal_device_block_nowait so we can avoid
3065	 * calling synchronize_rcu() for each LUN.
3066	 */
3067	shost_for_each_device(sdev, shost) {
3068		mutex_lock(&sdev->state_mutex);
3069		ret = scsi_internal_device_block_nowait(sdev);
3070		mutex_unlock(&sdev->state_mutex);
3071		if (ret) {
3072			scsi_device_put(sdev);
3073			return ret;
3074		}
3075	}
3076
3077	/* Wait for ongoing scsi_queue_rq() calls to finish. */
3078	blk_mq_wait_quiesce_done(&shost->tag_set);
3079
3080	return 0;
3081}
3082EXPORT_SYMBOL_GPL(scsi_host_block);
3083
3084int
3085scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3086{
3087	struct scsi_device *sdev;
3088	int ret = 0;
3089
3090	shost_for_each_device(sdev, shost) {
3091		ret = scsi_internal_device_unblock(sdev, new_state);
3092		if (ret) {
3093			scsi_device_put(sdev);
3094			break;
3095		}
3096	}
3097	return ret;
3098}
3099EXPORT_SYMBOL_GPL(scsi_host_unblock);
3100
3101/**
3102 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3103 * @sgl:	scatter-gather list
3104 * @sg_count:	number of segments in sg
3105 * @offset:	offset in bytes into sg, on return offset into the mapped area
3106 * @len:	bytes to map, on return number of bytes mapped
3107 *
3108 * Returns virtual address of the start of the mapped page
3109 */
3110void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3111			  size_t *offset, size_t *len)
3112{
3113	int i;
3114	size_t sg_len = 0, len_complete = 0;
3115	struct scatterlist *sg;
3116	struct page *page;
3117
3118	WARN_ON(!irqs_disabled());
3119
3120	for_each_sg(sgl, sg, sg_count, i) {
3121		len_complete = sg_len; /* Complete sg-entries */
3122		sg_len += sg->length;
3123		if (sg_len > *offset)
3124			break;
3125	}
3126
3127	if (unlikely(i == sg_count)) {
3128		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3129			"elements %d\n",
3130		       __func__, sg_len, *offset, sg_count);
3131		WARN_ON(1);
3132		return NULL;
3133	}
3134
3135	/* Offset starting from the beginning of first page in this sg-entry */
3136	*offset = *offset - len_complete + sg->offset;
3137
3138	/* Assumption: contiguous pages can be accessed as "page + i" */
3139	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3140	*offset &= ~PAGE_MASK;
3141
3142	/* Bytes in this sg-entry from *offset to the end of the page */
3143	sg_len = PAGE_SIZE - *offset;
3144	if (*len > sg_len)
3145		*len = sg_len;
3146
3147	return kmap_atomic(page);
3148}
3149EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3150
3151/**
3152 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3153 * @virt:	virtual address to be unmapped
3154 */
3155void scsi_kunmap_atomic_sg(void *virt)
3156{
3157	kunmap_atomic(virt);
3158}
3159EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3160
3161void sdev_disable_disk_events(struct scsi_device *sdev)
3162{
3163	atomic_inc(&sdev->disk_events_disable_depth);
3164}
3165EXPORT_SYMBOL(sdev_disable_disk_events);
3166
3167void sdev_enable_disk_events(struct scsi_device *sdev)
3168{
3169	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3170		return;
3171	atomic_dec(&sdev->disk_events_disable_depth);
3172}
3173EXPORT_SYMBOL(sdev_enable_disk_events);
3174
3175static unsigned char designator_prio(const unsigned char *d)
3176{
3177	if (d[1] & 0x30)
3178		/* not associated with LUN */
3179		return 0;
3180
3181	if (d[3] == 0)
3182		/* invalid length */
3183		return 0;
3184
3185	/*
3186	 * Order of preference for lun descriptor:
3187	 * - SCSI name string
3188	 * - NAA IEEE Registered Extended
3189	 * - EUI-64 based 16-byte
3190	 * - EUI-64 based 12-byte
3191	 * - NAA IEEE Registered
3192	 * - NAA IEEE Extended
3193	 * - EUI-64 based 8-byte
3194	 * - SCSI name string (truncated)
3195	 * - T10 Vendor ID
3196	 * as longer descriptors reduce the likelyhood
3197	 * of identification clashes.
3198	 */
3199
3200	switch (d[1] & 0xf) {
3201	case 8:
3202		/* SCSI name string, variable-length UTF-8 */
3203		return 9;
3204	case 3:
3205		switch (d[4] >> 4) {
3206		case 6:
3207			/* NAA registered extended */
3208			return 8;
3209		case 5:
3210			/* NAA registered */
3211			return 5;
3212		case 4:
3213			/* NAA extended */
3214			return 4;
3215		case 3:
3216			/* NAA locally assigned */
3217			return 1;
3218		default:
3219			break;
3220		}
3221		break;
3222	case 2:
3223		switch (d[3]) {
3224		case 16:
3225			/* EUI64-based, 16 byte */
3226			return 7;
3227		case 12:
3228			/* EUI64-based, 12 byte */
3229			return 6;
3230		case 8:
3231			/* EUI64-based, 8 byte */
3232			return 3;
3233		default:
3234			break;
3235		}
3236		break;
3237	case 1:
3238		/* T10 vendor ID */
3239		return 1;
3240	default:
3241		break;
3242	}
3243
3244	return 0;
3245}
3246
3247/**
3248 * scsi_vpd_lun_id - return a unique device identification
3249 * @sdev: SCSI device
3250 * @id:   buffer for the identification
3251 * @id_len:  length of the buffer
3252 *
3253 * Copies a unique device identification into @id based
3254 * on the information in the VPD page 0x83 of the device.
3255 * The string will be formatted as a SCSI name string.
3256 *
3257 * Returns the length of the identification or error on failure.
3258 * If the identifier is longer than the supplied buffer the actual
3259 * identifier length is returned and the buffer is not zero-padded.
3260 */
3261int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3262{
3263	u8 cur_id_prio = 0;
3264	u8 cur_id_size = 0;
3265	const unsigned char *d, *cur_id_str;
3266	const struct scsi_vpd *vpd_pg83;
3267	int id_size = -EINVAL;
3268
3269	rcu_read_lock();
3270	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3271	if (!vpd_pg83) {
3272		rcu_read_unlock();
3273		return -ENXIO;
3274	}
3275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3276	/* The id string must be at least 20 bytes + terminating NULL byte */
3277	if (id_len < 21) {
3278		rcu_read_unlock();
3279		return -EINVAL;
3280	}
3281
3282	memset(id, 0, id_len);
3283	for (d = vpd_pg83->data + 4;
3284	     d < vpd_pg83->data + vpd_pg83->len;
3285	     d += d[3] + 4) {
3286		u8 prio = designator_prio(d);
3287
3288		if (prio == 0 || cur_id_prio > prio)
3289			continue;
3290
3291		switch (d[1] & 0xf) {
3292		case 0x1:
3293			/* T10 Vendor ID */
3294			if (cur_id_size > d[3])
3295				break;
3296			cur_id_prio = prio;
 
 
3297			cur_id_size = d[3];
3298			if (cur_id_size + 4 > id_len)
3299				cur_id_size = id_len - 4;
3300			cur_id_str = d + 4;
 
3301			id_size = snprintf(id, id_len, "t10.%*pE",
3302					   cur_id_size, cur_id_str);
3303			break;
3304		case 0x2:
3305			/* EUI-64 */
3306			cur_id_prio = prio;
 
 
 
 
 
3307			cur_id_size = d[3];
3308			cur_id_str = d + 4;
 
3309			switch (cur_id_size) {
3310			case 8:
3311				id_size = snprintf(id, id_len,
3312						   "eui.%8phN",
3313						   cur_id_str);
3314				break;
3315			case 12:
3316				id_size = snprintf(id, id_len,
3317						   "eui.%12phN",
3318						   cur_id_str);
3319				break;
3320			case 16:
3321				id_size = snprintf(id, id_len,
3322						   "eui.%16phN",
3323						   cur_id_str);
3324				break;
3325			default:
 
3326				break;
3327			}
3328			break;
3329		case 0x3:
3330			/* NAA */
3331			cur_id_prio = prio;
 
3332			cur_id_size = d[3];
3333			cur_id_str = d + 4;
 
3334			switch (cur_id_size) {
3335			case 8:
3336				id_size = snprintf(id, id_len,
3337						   "naa.%8phN",
3338						   cur_id_str);
3339				break;
3340			case 16:
3341				id_size = snprintf(id, id_len,
3342						   "naa.%16phN",
3343						   cur_id_str);
3344				break;
3345			default:
 
3346				break;
3347			}
3348			break;
3349		case 0x8:
3350			/* SCSI name string */
3351			if (cur_id_size > d[3])
3352				break;
3353			/* Prefer others for truncated descriptor */
3354			if (d[3] > id_len) {
3355				prio = 2;
3356				if (cur_id_prio > prio)
3357					break;
3358			}
3359			cur_id_prio = prio;
3360			cur_id_size = id_size = d[3];
3361			cur_id_str = d + 4;
 
3362			if (cur_id_size >= id_len)
3363				cur_id_size = id_len - 1;
3364			memcpy(id, cur_id_str, cur_id_size);
 
 
 
3365			break;
3366		default:
3367			break;
3368		}
 
 
3369	}
3370	rcu_read_unlock();
3371
3372	return id_size;
3373}
3374EXPORT_SYMBOL(scsi_vpd_lun_id);
3375
3376/*
3377 * scsi_vpd_tpg_id - return a target port group identifier
3378 * @sdev: SCSI device
3379 *
3380 * Returns the Target Port Group identifier from the information
3381 * froom VPD page 0x83 of the device.
3382 *
3383 * Returns the identifier or error on failure.
3384 */
3385int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3386{
3387	const unsigned char *d;
3388	const struct scsi_vpd *vpd_pg83;
3389	int group_id = -EAGAIN, rel_port = -1;
3390
3391	rcu_read_lock();
3392	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3393	if (!vpd_pg83) {
3394		rcu_read_unlock();
3395		return -ENXIO;
3396	}
3397
3398	d = vpd_pg83->data + 4;
3399	while (d < vpd_pg83->data + vpd_pg83->len) {
3400		switch (d[1] & 0xf) {
3401		case 0x4:
3402			/* Relative target port */
3403			rel_port = get_unaligned_be16(&d[6]);
3404			break;
3405		case 0x5:
3406			/* Target port group */
3407			group_id = get_unaligned_be16(&d[6]);
3408			break;
3409		default:
3410			break;
3411		}
3412		d += d[3] + 4;
3413	}
3414	rcu_read_unlock();
3415
3416	if (group_id >= 0 && rel_id && rel_port != -1)
3417		*rel_id = rel_port;
3418
3419	return group_id;
3420}
3421EXPORT_SYMBOL(scsi_vpd_tpg_id);
3422
3423/**
3424 * scsi_build_sense - build sense data for a command
3425 * @scmd:	scsi command for which the sense should be formatted
3426 * @desc:	Sense format (non-zero == descriptor format,
3427 *              0 == fixed format)
3428 * @key:	Sense key
3429 * @asc:	Additional sense code
3430 * @ascq:	Additional sense code qualifier
3431 *
3432 **/
3433void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3434{
3435	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3436	scmd->result = SAM_STAT_CHECK_CONDITION;
3437}
3438EXPORT_SYMBOL_GPL(scsi_build_sense);
3439
3440#ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3441#include "scsi_lib_test.c"
3442#endif
v4.17
 
   1/*
   2 * Copyright (C) 1999 Eric Youngdale
   3 * Copyright (C) 2014 Christoph Hellwig
   4 *
   5 *  SCSI queueing library.
   6 *      Initial versions: Eric Youngdale (eric@andante.org).
   7 *                        Based upon conversations with large numbers
   8 *                        of people at Linux Expo.
   9 */
  10
  11#include <linux/bio.h>
  12#include <linux/bitops.h>
  13#include <linux/blkdev.h>
  14#include <linux/completion.h>
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/pci.h>
  19#include <linux/delay.h>
  20#include <linux/hardirq.h>
  21#include <linux/scatterlist.h>
  22#include <linux/blk-mq.h>
 
  23#include <linux/ratelimit.h>
  24#include <asm/unaligned.h>
  25
  26#include <scsi/scsi.h>
  27#include <scsi/scsi_cmnd.h>
  28#include <scsi/scsi_dbg.h>
  29#include <scsi/scsi_device.h>
  30#include <scsi/scsi_driver.h>
  31#include <scsi/scsi_eh.h>
  32#include <scsi/scsi_host.h>
  33#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  34#include <scsi/scsi_dh.h>
  35
  36#include <trace/events/scsi.h>
  37
  38#include "scsi_debugfs.h"
  39#include "scsi_priv.h"
  40#include "scsi_logging.h"
  41
  42static struct kmem_cache *scsi_sdb_cache;
 
 
 
 
 
 
 
 
 
 
 
  43static struct kmem_cache *scsi_sense_cache;
  44static struct kmem_cache *scsi_sense_isadma_cache;
  45static DEFINE_MUTEX(scsi_sense_cache_mutex);
  46
  47static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  48
  49static inline struct kmem_cache *
  50scsi_select_sense_cache(bool unchecked_isa_dma)
  51{
  52	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
  53}
  54
  55static void scsi_free_sense_buffer(bool unchecked_isa_dma,
  56				   unsigned char *sense_buffer)
  57{
  58	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
  59			sense_buffer);
  60}
  61
  62static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
  63	gfp_t gfp_mask, int numa_node)
  64{
  65	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
  66				     gfp_mask, numa_node);
  67}
  68
  69int scsi_init_sense_cache(struct Scsi_Host *shost)
  70{
  71	struct kmem_cache *cache;
  72	int ret = 0;
  73
  74	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
  75	if (cache)
  76		return 0;
  77
  78	mutex_lock(&scsi_sense_cache_mutex);
  79	if (shost->unchecked_isa_dma) {
  80		scsi_sense_isadma_cache =
  81			kmem_cache_create("scsi_sense_cache(DMA)",
  82				SCSI_SENSE_BUFFERSIZE, 0,
  83				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
  84		if (!scsi_sense_isadma_cache)
  85			ret = -ENOMEM;
  86	} else {
  87		scsi_sense_cache =
  88			kmem_cache_create_usercopy("scsi_sense_cache",
  89				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  90				0, SCSI_SENSE_BUFFERSIZE, NULL);
  91		if (!scsi_sense_cache)
  92			ret = -ENOMEM;
  93	}
  94
  95	mutex_unlock(&scsi_sense_cache_mutex);
  96	return ret;
  97}
  98
  99/*
 100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
 101 * not change behaviour from the previous unplug mechanism, experimentation
 102 * may prove this needs changing.
 103 */
 104#define SCSI_QUEUE_DELAY	3
 105
 106static void
 107scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 108{
 109	struct Scsi_Host *host = cmd->device->host;
 110	struct scsi_device *device = cmd->device;
 111	struct scsi_target *starget = scsi_target(device);
 112
 113	/*
 114	 * Set the appropriate busy bit for the device/host.
 115	 *
 116	 * If the host/device isn't busy, assume that something actually
 117	 * completed, and that we should be able to queue a command now.
 118	 *
 119	 * Note that the prior mid-layer assumption that any host could
 120	 * always queue at least one command is now broken.  The mid-layer
 121	 * will implement a user specifiable stall (see
 122	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 123	 * if a command is requeued with no other commands outstanding
 124	 * either for the device or for the host.
 125	 */
 126	switch (reason) {
 127	case SCSI_MLQUEUE_HOST_BUSY:
 128		atomic_set(&host->host_blocked, host->max_host_blocked);
 129		break;
 130	case SCSI_MLQUEUE_DEVICE_BUSY:
 131	case SCSI_MLQUEUE_EH_RETRY:
 132		atomic_set(&device->device_blocked,
 133			   device->max_device_blocked);
 134		break;
 135	case SCSI_MLQUEUE_TARGET_BUSY:
 136		atomic_set(&starget->target_blocked,
 137			   starget->max_target_blocked);
 138		break;
 139	}
 140}
 141
 142static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 143{
 144	struct scsi_device *sdev = cmd->device;
 145
 146	if (cmd->request->rq_flags & RQF_DONTPREP) {
 147		cmd->request->rq_flags &= ~RQF_DONTPREP;
 148		scsi_mq_uninit_cmd(cmd);
 149	} else {
 150		WARN_ON_ONCE(true);
 151	}
 152	blk_mq_requeue_request(cmd->request, true);
 153	put_device(&sdev->sdev_gendev);
 
 
 154}
 155
 156/**
 157 * __scsi_queue_insert - private queue insertion
 158 * @cmd: The SCSI command being requeued
 159 * @reason:  The reason for the requeue
 160 * @unbusy: Whether the queue should be unbusied
 161 *
 162 * This is a private queue insertion.  The public interface
 163 * scsi_queue_insert() always assumes the queue should be unbusied
 164 * because it's always called before the completion.  This function is
 165 * for a requeue after completion, which should only occur in this
 166 * file.
 167 */
 168static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 169{
 170	struct scsi_device *device = cmd->device;
 171	struct request_queue *q = device->request_queue;
 172	unsigned long flags;
 173
 174	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 175		"Inserting command %p into mlqueue\n", cmd));
 176
 177	scsi_set_blocked(cmd, reason);
 178
 179	/*
 180	 * Decrement the counters, since these commands are no longer
 181	 * active on the host/device.
 182	 */
 183	if (unbusy)
 184		scsi_device_unbusy(device);
 185
 186	/*
 187	 * Requeue this command.  It will go before all other commands
 188	 * that are already in the queue. Schedule requeue work under
 189	 * lock such that the kblockd_schedule_work() call happens
 190	 * before blk_cleanup_queue() finishes.
 191	 */
 192	cmd->result = 0;
 193	if (q->mq_ops) {
 194		/*
 195		 * Before a SCSI command is dispatched,
 196		 * get_device(&sdev->sdev_gendev) is called and the host,
 197		 * target and device busy counters are increased. Since
 198		 * requeuing a request causes these actions to be repeated and
 199		 * since scsi_device_unbusy() has already been called,
 200		 * put_device(&device->sdev_gendev) must still be called. Call
 201		 * put_device() after blk_mq_requeue_request() to avoid that
 202		 * removal of the SCSI device can start before requeueing has
 203		 * happened.
 204		 */
 205		blk_mq_requeue_request(cmd->request, true);
 206		put_device(&device->sdev_gendev);
 207		return;
 208	}
 209	spin_lock_irqsave(q->queue_lock, flags);
 210	blk_requeue_request(q, cmd->request);
 211	kblockd_schedule_work(&device->requeue_work);
 212	spin_unlock_irqrestore(q->queue_lock, flags);
 213}
 214
 215/*
 216 * Function:    scsi_queue_insert()
 217 *
 218 * Purpose:     Insert a command in the midlevel queue.
 219 *
 220 * Arguments:   cmd    - command that we are adding to queue.
 221 *              reason - why we are inserting command to queue.
 
 222 *
 223 * Lock status: Assumed that lock is not held upon entry.
 224 *
 225 * Returns:     Nothing.
 226 *
 227 * Notes:       We do this for one of two cases.  Either the host is busy
 228 *              and it cannot accept any more commands for the time being,
 229 *              or the device returned QUEUE_FULL and can accept no more
 230 *              commands.
 231 * Notes:       This could be called either from an interrupt context or a
 232 *              normal process context.
 233 */
 234void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 235{
 236	__scsi_queue_insert(cmd, reason, true);
 237}
 238
 
 
 
 
 
 
 
 
 
 
 
 239
 240/**
 241 * scsi_execute - insert request and wait for the result
 242 * @sdev:	scsi device
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243 * @cmd:	scsi command
 244 * @data_direction: data direction
 245 * @buffer:	data buffer
 246 * @bufflen:	len of buffer
 247 * @sense:	optional sense buffer
 248 * @sshdr:	optional decoded sense header
 249 * @timeout:	request timeout in seconds
 250 * @retries:	number of times to retry request
 251 * @flags:	flags for ->cmd_flags
 252 * @rq_flags:	flags for ->rq_flags
 253 * @resid:	optional residual length
 254 *
 255 * Returns the scsi_cmnd result field if a command was executed, or a negative
 256 * Linux error code if we didn't get that far.
 257 */
 258int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 259		 int data_direction, void *buffer, unsigned bufflen,
 260		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 261		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
 262		 int *resid)
 263{
 
 264	struct request *req;
 265	struct scsi_request *rq;
 266	int ret = DRIVER_ERROR << 24;
 
 
 
 
 
 
 267
 268	req = blk_get_request_flags(sdev->request_queue,
 269			data_direction == DMA_TO_DEVICE ?
 270			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
 271	if (IS_ERR(req))
 272		return ret;
 273	rq = scsi_req(req);
 274
 275	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 276					buffer, bufflen, __GFP_RECLAIM))
 277		goto out;
 278
 279	rq->cmd_len = COMMAND_SIZE(cmd[0]);
 280	memcpy(rq->cmd, cmd, rq->cmd_len);
 281	rq->retries = retries;
 
 
 
 
 282	req->timeout = timeout;
 283	req->cmd_flags |= flags;
 284	req->rq_flags |= rq_flags | RQF_QUIET;
 285
 286	/*
 287	 * head injection *required* here otherwise quiesce won't work
 288	 */
 289	blk_execute_rq(req->q, NULL, req, 1);
 
 
 
 
 
 290
 291	/*
 292	 * Some devices (USB mass-storage in particular) may transfer
 293	 * garbage data together with a residue indicating that the data
 294	 * is invalid.  Prevent the garbage from being misinterpreted
 295	 * and prevent security leaks by zeroing out the excess data.
 296	 */
 297	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
 298		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
 
 
 
 
 
 
 
 
 299
 300	if (resid)
 301		*resid = rq->resid_len;
 302	if (sense && rq->sense_len)
 303		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
 304	if (sshdr)
 305		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
 306	ret = rq->result;
 307 out:
 308	blk_put_request(req);
 309
 310	return ret;
 311}
 312EXPORT_SYMBOL(scsi_execute);
 313
 314/*
 315 * Function:    scsi_init_cmd_errh()
 316 *
 317 * Purpose:     Initialize cmd fields related to error handling.
 318 *
 319 * Arguments:   cmd	- command that is ready to be queued.
 320 *
 321 * Notes:       This function has the job of initializing a number of
 322 *              fields related to error handling.   Typically this will
 323 *              be called once for each command, as required.
 324 */
 325static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 326{
 327	cmd->serial_number = 0;
 328	scsi_set_resid(cmd, 0);
 329	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 330	if (cmd->cmd_len == 0)
 331		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 332}
 333
 334/*
 335 * Decrement the host_busy counter and wake up the error handler if necessary.
 336 * Avoid as follows that the error handler is not woken up if shost->host_busy
 337 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 338 * with an RCU read lock in this function to ensure that this function in its
 339 * entirety either finishes before scsi_eh_scmd_add() increases the
 340 * host_failed counter or that it notices the shost state change made by
 341 * scsi_eh_scmd_add().
 342 */
 343static void scsi_dec_host_busy(struct Scsi_Host *shost)
 344{
 345	unsigned long flags;
 346
 347	rcu_read_lock();
 348	atomic_dec(&shost->host_busy);
 349	if (unlikely(scsi_host_in_recovery(shost))) {
 
 
 350		spin_lock_irqsave(shost->host_lock, flags);
 351		if (shost->host_failed || shost->host_eh_scheduled)
 352			scsi_eh_wakeup(shost);
 353		spin_unlock_irqrestore(shost->host_lock, flags);
 354	}
 355	rcu_read_unlock();
 356}
 357
 358void scsi_device_unbusy(struct scsi_device *sdev)
 359{
 360	struct Scsi_Host *shost = sdev->host;
 361	struct scsi_target *starget = scsi_target(sdev);
 362
 363	scsi_dec_host_busy(shost);
 364
 365	if (starget->can_queue > 0)
 366		atomic_dec(&starget->target_busy);
 367
 368	atomic_dec(&sdev->device_busy);
 
 369}
 370
 371static void scsi_kick_queue(struct request_queue *q)
 
 
 
 
 372{
 373	if (q->mq_ops)
 374		blk_mq_start_hw_queues(q);
 375	else
 376		blk_run_queue(q);
 377}
 378
 379/*
 380 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 381 * and call blk_run_queue for all the scsi_devices on the target -
 382 * including current_sdev first.
 383 *
 384 * Called with *no* scsi locks held.
 385 */
 386static void scsi_single_lun_run(struct scsi_device *current_sdev)
 387{
 388	struct Scsi_Host *shost = current_sdev->host;
 389	struct scsi_device *sdev, *tmp;
 390	struct scsi_target *starget = scsi_target(current_sdev);
 391	unsigned long flags;
 392
 393	spin_lock_irqsave(shost->host_lock, flags);
 394	starget->starget_sdev_user = NULL;
 395	spin_unlock_irqrestore(shost->host_lock, flags);
 396
 397	/*
 398	 * Call blk_run_queue for all LUNs on the target, starting with
 399	 * current_sdev. We race with others (to set starget_sdev_user),
 400	 * but in most cases, we will be first. Ideally, each LU on the
 401	 * target would get some limited time or requests on the target.
 402	 */
 403	scsi_kick_queue(current_sdev->request_queue);
 
 404
 405	spin_lock_irqsave(shost->host_lock, flags);
 406	if (starget->starget_sdev_user)
 407		goto out;
 408	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 409			same_target_siblings) {
 410		if (sdev == current_sdev)
 411			continue;
 412		if (scsi_device_get(sdev))
 413			continue;
 414
 415		spin_unlock_irqrestore(shost->host_lock, flags);
 416		scsi_kick_queue(sdev->request_queue);
 417		spin_lock_irqsave(shost->host_lock, flags);
 418	
 419		scsi_device_put(sdev);
 420	}
 421 out:
 422	spin_unlock_irqrestore(shost->host_lock, flags);
 423}
 424
 425static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 426{
 427	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 428		return true;
 429	if (atomic_read(&sdev->device_blocked) > 0)
 430		return true;
 431	return false;
 432}
 433
 434static inline bool scsi_target_is_busy(struct scsi_target *starget)
 435{
 436	if (starget->can_queue > 0) {
 437		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 438			return true;
 439		if (atomic_read(&starget->target_blocked) > 0)
 440			return true;
 441	}
 442	return false;
 443}
 444
 445static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 446{
 447	if (shost->can_queue > 0 &&
 448	    atomic_read(&shost->host_busy) >= shost->can_queue)
 449		return true;
 450	if (atomic_read(&shost->host_blocked) > 0)
 451		return true;
 452	if (shost->host_self_blocked)
 453		return true;
 454	return false;
 455}
 456
 457static void scsi_starved_list_run(struct Scsi_Host *shost)
 458{
 459	LIST_HEAD(starved_list);
 460	struct scsi_device *sdev;
 461	unsigned long flags;
 462
 463	spin_lock_irqsave(shost->host_lock, flags);
 464	list_splice_init(&shost->starved_list, &starved_list);
 465
 466	while (!list_empty(&starved_list)) {
 467		struct request_queue *slq;
 468
 469		/*
 470		 * As long as shost is accepting commands and we have
 471		 * starved queues, call blk_run_queue. scsi_request_fn
 472		 * drops the queue_lock and can add us back to the
 473		 * starved_list.
 474		 *
 475		 * host_lock protects the starved_list and starved_entry.
 476		 * scsi_request_fn must get the host_lock before checking
 477		 * or modifying starved_list or starved_entry.
 478		 */
 479		if (scsi_host_is_busy(shost))
 480			break;
 481
 482		sdev = list_entry(starved_list.next,
 483				  struct scsi_device, starved_entry);
 484		list_del_init(&sdev->starved_entry);
 485		if (scsi_target_is_busy(scsi_target(sdev))) {
 486			list_move_tail(&sdev->starved_entry,
 487				       &shost->starved_list);
 488			continue;
 489		}
 490
 491		/*
 492		 * Once we drop the host lock, a racing scsi_remove_device()
 493		 * call may remove the sdev from the starved list and destroy
 494		 * it and the queue.  Mitigate by taking a reference to the
 495		 * queue and never touching the sdev again after we drop the
 496		 * host lock.  Note: if __scsi_remove_device() invokes
 497		 * blk_cleanup_queue() before the queue is run from this
 498		 * function then blk_run_queue() will return immediately since
 499		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 500		 */
 501		slq = sdev->request_queue;
 502		if (!blk_get_queue(slq))
 503			continue;
 504		spin_unlock_irqrestore(shost->host_lock, flags);
 505
 506		scsi_kick_queue(slq);
 507		blk_put_queue(slq);
 508
 509		spin_lock_irqsave(shost->host_lock, flags);
 510	}
 511	/* put any unprocessed entries back */
 512	list_splice(&starved_list, &shost->starved_list);
 513	spin_unlock_irqrestore(shost->host_lock, flags);
 514}
 515
 516/*
 517 * Function:   scsi_run_queue()
 518 *
 519 * Purpose:    Select a proper request queue to serve next
 520 *
 521 * Arguments:  q       - last request's queue
 522 *
 523 * Returns:     Nothing
 524 *
 525 * Notes:      The previous command was completely finished, start
 526 *             a new one if possible.
 527 */
 528static void scsi_run_queue(struct request_queue *q)
 529{
 530	struct scsi_device *sdev = q->queuedata;
 531
 532	if (scsi_target(sdev)->single_lun)
 533		scsi_single_lun_run(sdev);
 534	if (!list_empty(&sdev->host->starved_list))
 535		scsi_starved_list_run(sdev->host);
 536
 537	if (q->mq_ops)
 538		blk_mq_run_hw_queues(q, false);
 539	else
 540		blk_run_queue(q);
 541}
 542
 543void scsi_requeue_run_queue(struct work_struct *work)
 544{
 545	struct scsi_device *sdev;
 546	struct request_queue *q;
 547
 548	sdev = container_of(work, struct scsi_device, requeue_work);
 549	q = sdev->request_queue;
 550	scsi_run_queue(q);
 551}
 552
 553/*
 554 * Function:	scsi_requeue_command()
 555 *
 556 * Purpose:	Handle post-processing of completed commands.
 557 *
 558 * Arguments:	q	- queue to operate on
 559 *		cmd	- command that may need to be requeued.
 560 *
 561 * Returns:	Nothing
 562 *
 563 * Notes:	After command completion, there may be blocks left
 564 *		over which weren't finished by the previous command
 565 *		this can be for a number of reasons - the main one is
 566 *		I/O errors in the middle of the request, in which case
 567 *		we need to request the blocks that come after the bad
 568 *		sector.
 569 * Notes:	Upon return, cmd is a stale pointer.
 570 */
 571static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 572{
 573	struct scsi_device *sdev = cmd->device;
 574	struct request *req = cmd->request;
 575	unsigned long flags;
 576
 577	spin_lock_irqsave(q->queue_lock, flags);
 578	blk_unprep_request(req);
 579	req->special = NULL;
 580	scsi_put_command(cmd);
 581	blk_requeue_request(q, req);
 582	spin_unlock_irqrestore(q->queue_lock, flags);
 583
 584	scsi_run_queue(q);
 585
 586	put_device(&sdev->sdev_gendev);
 587}
 588
 589void scsi_run_host_queues(struct Scsi_Host *shost)
 590{
 591	struct scsi_device *sdev;
 592
 593	shost_for_each_device(sdev, shost)
 594		scsi_run_queue(sdev->request_queue);
 595}
 596
 597static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 598{
 599	if (!blk_rq_is_passthrough(cmd->request)) {
 600		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 601
 602		if (drv->uninit_command)
 603			drv->uninit_command(cmd);
 604	}
 605}
 606
 607static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 608{
 609	struct scsi_data_buffer *sdb;
 610
 611	if (cmd->sdb.table.nents)
 612		sg_free_table_chained(&cmd->sdb.table, true);
 613	if (cmd->request->next_rq) {
 614		sdb = cmd->request->next_rq->special;
 615		if (sdb)
 616			sg_free_table_chained(&sdb->table, true);
 617	}
 618	if (scsi_prot_sg_count(cmd))
 619		sg_free_table_chained(&cmd->prot_sdb->table, true);
 
 620}
 
 621
 622static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 623{
 624	scsi_mq_free_sgtables(cmd);
 625	scsi_uninit_cmd(cmd);
 626	scsi_del_cmd_from_list(cmd);
 627}
 628
 629/*
 630 * Function:    scsi_release_buffers()
 631 *
 632 * Purpose:     Free resources allocate for a scsi_command.
 633 *
 634 * Arguments:   cmd	- command that we are bailing.
 635 *
 636 * Lock status: Assumed that no lock is held upon entry.
 637 *
 638 * Returns:     Nothing
 639 *
 640 * Notes:       In the event that an upper level driver rejects a
 641 *		command, we must release resources allocated during
 642 *		the __init_io() function.  Primarily this would involve
 643 *		the scatter-gather table.
 644 */
 645static void scsi_release_buffers(struct scsi_cmnd *cmd)
 646{
 647	if (cmd->sdb.table.nents)
 648		sg_free_table_chained(&cmd->sdb.table, false);
 649
 650	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 
 
 
 
 
 
 
 
 
 651
 652	if (scsi_prot_sg_count(cmd))
 653		sg_free_table_chained(&cmd->prot_sdb->table, false);
 654}
 655
 656static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
 657{
 658	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
 659
 660	sg_free_table_chained(&bidi_sdb->table, false);
 661	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 662	cmd->request->next_rq->special = NULL;
 663}
 664
 
 665static bool scsi_end_request(struct request *req, blk_status_t error,
 666		unsigned int bytes, unsigned int bidi_bytes)
 667{
 668	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 669	struct scsi_device *sdev = cmd->device;
 670	struct request_queue *q = sdev->request_queue;
 671
 672	if (blk_update_request(req, error, bytes))
 673		return true;
 674
 675	/* Bidi request must be completed as a whole */
 676	if (unlikely(bidi_bytes) &&
 677	    blk_update_request(req->next_rq, error, bidi_bytes))
 678		return true;
 679
 680	if (blk_queue_add_random(q))
 681		add_disk_randomness(req->rq_disk);
 
 682
 683	if (!blk_rq_is_scsi(req)) {
 684		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 685		cmd->flags &= ~SCMD_INITIALIZED;
 686		destroy_rcu_head(&cmd->rcu);
 687	}
 
 
 688
 689	if (req->mq_ctx) {
 690		/*
 691		 * In the MQ case the command gets freed by __blk_mq_end_request,
 692		 * so we have to do all cleanup that depends on it earlier.
 693		 *
 694		 * We also can't kick the queues from irq context, so we
 695		 * will have to defer it to a workqueue.
 696		 */
 697		scsi_mq_uninit_cmd(cmd);
 698
 699		__blk_mq_end_request(req, error);
 700
 701		if (scsi_target(sdev)->single_lun ||
 702		    !list_empty(&sdev->host->starved_list))
 703			kblockd_schedule_work(&sdev->requeue_work);
 704		else
 705			blk_mq_run_hw_queues(q, true);
 706	} else {
 707		unsigned long flags;
 708
 709		if (bidi_bytes)
 710			scsi_release_bidi_buffers(cmd);
 711		scsi_release_buffers(cmd);
 712		scsi_put_command(cmd);
 713
 714		spin_lock_irqsave(q->queue_lock, flags);
 715		blk_finish_request(req, error);
 716		spin_unlock_irqrestore(q->queue_lock, flags);
 717
 718		scsi_run_queue(q);
 719	}
 720
 721	put_device(&sdev->sdev_gendev);
 722	return false;
 723}
 724
 725/**
 726 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 727 * @cmd:	SCSI command
 728 * @result:	scsi error code
 729 *
 730 * Translate a SCSI result code into a blk_status_t value. May reset the host
 731 * byte of @cmd->result.
 732 */
 733static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
 734{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 735	switch (host_byte(result)) {
 736	case DID_OK:
 737		/*
 738		 * Also check the other bytes than the status byte in result
 739		 * to handle the case when a SCSI LLD sets result to
 740		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
 741		 */
 742		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
 743			return BLK_STS_OK;
 744		return BLK_STS_IOERR;
 745	case DID_TRANSPORT_FAILFAST:
 
 746		return BLK_STS_TRANSPORT;
 747	case DID_TARGET_FAILURE:
 748		set_host_byte(cmd, DID_OK);
 749		return BLK_STS_TARGET;
 750	case DID_NEXUS_FAILURE:
 751		return BLK_STS_NEXUS;
 752	case DID_ALLOC_FAILURE:
 753		set_host_byte(cmd, DID_OK);
 754		return BLK_STS_NOSPC;
 755	case DID_MEDIUM_ERROR:
 756		set_host_byte(cmd, DID_OK);
 757		return BLK_STS_MEDIUM;
 758	default:
 759		return BLK_STS_IOERR;
 760	}
 761}
 762
 763/*
 764 * Function:    scsi_io_completion()
 765 *
 766 * Purpose:     Completion processing for block device I/O requests.
 767 *
 768 * Arguments:   cmd   - command that is finished.
 769 *
 770 * Lock status: Assumed that no lock is held upon entry.
 771 *
 772 * Returns:     Nothing
 
 
 
 
 773 *
 774 * Notes:       We will finish off the specified number of sectors.  If we
 775 *		are done, the command block will be released and the queue
 776 *		function will be goosed.  If we are not done then we have to
 777 *		figure out what to do next:
 778 *
 779 *		a) We can call scsi_requeue_command().  The request
 780 *		   will be unprepared and put back on the queue.  Then
 781 *		   a new command will be created for it.  This should
 782 *		   be used if we made forward progress, or if we want
 783 *		   to switch from READ(10) to READ(6) for example.
 784 *
 785 *		b) We can call __scsi_queue_insert().  The request will
 786 *		   be put back on the queue and retried using the same
 787 *		   command as before, possibly after a delay.
 788 *
 789 *		c) We can call scsi_end_request() with -EIO to fail
 790 *		   the remainder of the request.
 791 */
 792void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 793{
 794	int result = cmd->result;
 795	struct request_queue *q = cmd->device->request_queue;
 796	struct request *req = cmd->request;
 797	blk_status_t error = BLK_STS_OK;
 798	struct scsi_sense_hdr sshdr;
 799	bool sense_valid = false;
 800	int sense_deferred = 0, level = 0;
 801	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 802	      ACTION_DELAYED_RETRY} action;
 803	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 804
 805	if (result) {
 806		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 807		if (sense_valid)
 808			sense_deferred = scsi_sense_is_deferred(&sshdr);
 809	}
 810
 811	if (blk_rq_is_passthrough(req)) {
 812		if (result) {
 813			if (sense_valid) {
 814				/*
 815				 * SG_IO wants current and deferred errors
 816				 */
 817				scsi_req(req)->sense_len =
 818					min(8 + cmd->sense_buffer[7],
 819					    SCSI_SENSE_BUFFERSIZE);
 820			}
 821			if (!sense_deferred)
 822				error = scsi_result_to_blk_status(cmd, result);
 823		}
 824		/*
 825		 * scsi_result_to_blk_status may have reset the host_byte
 826		 */
 827		scsi_req(req)->result = cmd->result;
 828		scsi_req(req)->resid_len = scsi_get_resid(cmd);
 829
 830		if (scsi_bidi_cmnd(cmd)) {
 831			/*
 832			 * Bidi commands Must be complete as a whole,
 833			 * both sides at once.
 834			 */
 835			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
 836			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
 837					blk_rq_bytes(req->next_rq)))
 838				BUG();
 839			return;
 840		}
 841	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
 842		/*
 843		 * Flush commands do not transfers any data, and thus cannot use
 844		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 845		 * This sets the error explicitly for the problem case.
 846		 */
 847		error = scsi_result_to_blk_status(cmd, result);
 848	}
 849
 850	/* no bidi support for !blk_rq_is_passthrough yet */
 851	BUG_ON(blk_bidi_rq(req));
 
 
 852
 853	/*
 854	 * Next deal with any sectors which we were able to correctly
 855	 * handle.
 856	 */
 857	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 858		"%u sectors total, %d bytes done.\n",
 859		blk_rq_sectors(req), good_bytes));
 860
 861	/*
 862	 * Recovered errors need reporting, but they're always treated as
 863	 * success, so fiddle the result code here.  For passthrough requests
 864	 * we already took a copy of the original into sreq->result which
 865	 * is what gets returned to the user
 866	 */
 867	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 868		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 869		 * print since caller wants ATA registers. Only occurs on
 870		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 871		 */
 872		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 873			;
 874		else if (!(req->rq_flags & RQF_QUIET))
 875			scsi_print_sense(cmd);
 876		result = 0;
 877		/* for passthrough error may be set */
 878		error = BLK_STS_OK;
 879	}
 880	/*
 881	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 882	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 883	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 884	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 885	 * intermediate statuses (both obsolete in SAM-4) as good.
 886	 */
 887	if (status_byte(result) && scsi_status_is_good(result)) {
 888		result = 0;
 889		error = BLK_STS_OK;
 890	}
 891
 892	/*
 893	 * special case: failed zero length commands always need to
 894	 * drop down into the retry code. Otherwise, if we finished
 895	 * all bytes in the request we are done now.
 896	 */
 897	if (!(blk_rq_bytes(req) == 0 && error) &&
 898	    !scsi_end_request(req, error, good_bytes, 0))
 899		return;
 900
 901	/*
 902	 * Kill remainder if no retrys.
 903	 */
 904	if (error && scsi_noretry_cmd(cmd)) {
 905		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
 906			BUG();
 907		return;
 908	}
 
 
 909
 910	/*
 911	 * If there had been no error, but we have leftover bytes in the
 912	 * requeues just queue the command up again.
 913	 */
 914	if (result == 0)
 915		goto requeue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916
 917	error = scsi_result_to_blk_status(cmd, result);
 918
 919	if (host_byte(result) == DID_RESET) {
 920		/* Third party bus reset or reset for error recovery
 921		 * reasons.  Just retry the command and see what
 922		 * happens.
 923		 */
 924		action = ACTION_RETRY;
 925	} else if (sense_valid && !sense_deferred) {
 926		switch (sshdr.sense_key) {
 927		case UNIT_ATTENTION:
 928			if (cmd->device->removable) {
 929				/* Detected disc change.  Set a bit
 930				 * and quietly refuse further access.
 931				 */
 932				cmd->device->changed = 1;
 933				action = ACTION_FAIL;
 934			} else {
 935				/* Must have been a power glitch, or a
 936				 * bus reset.  Could not have been a
 937				 * media change, so we just retry the
 938				 * command and see what happens.
 939				 */
 940				action = ACTION_RETRY;
 941			}
 942			break;
 943		case ILLEGAL_REQUEST:
 944			/* If we had an ILLEGAL REQUEST returned, then
 945			 * we may have performed an unsupported
 946			 * command.  The only thing this should be
 947			 * would be a ten byte read where only a six
 948			 * byte read was supported.  Also, on a system
 949			 * where READ CAPACITY failed, we may have
 950			 * read past the end of the disk.
 951			 */
 952			if ((cmd->device->use_10_for_rw &&
 953			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 954			    (cmd->cmnd[0] == READ_10 ||
 955			     cmd->cmnd[0] == WRITE_10)) {
 956				/* This will issue a new 6-byte command. */
 957				cmd->device->use_10_for_rw = 0;
 958				action = ACTION_REPREP;
 959			} else if (sshdr.asc == 0x10) /* DIX */ {
 960				action = ACTION_FAIL;
 961				error = BLK_STS_PROTECTION;
 962			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 963			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 964				action = ACTION_FAIL;
 965				error = BLK_STS_TARGET;
 966			} else
 967				action = ACTION_FAIL;
 968			break;
 969		case ABORTED_COMMAND:
 970			action = ACTION_FAIL;
 971			if (sshdr.asc == 0x10) /* DIF */
 972				error = BLK_STS_PROTECTION;
 973			break;
 974		case NOT_READY:
 975			/* If the device is in the process of becoming
 976			 * ready, or has a temporary blockage, retry.
 977			 */
 978			if (sshdr.asc == 0x04) {
 979				switch (sshdr.ascq) {
 980				case 0x01: /* becoming ready */
 981				case 0x04: /* format in progress */
 982				case 0x05: /* rebuild in progress */
 983				case 0x06: /* recalculation in progress */
 984				case 0x07: /* operation in progress */
 985				case 0x08: /* Long write in progress */
 986				case 0x09: /* self test in progress */
 
 987				case 0x14: /* space allocation in progress */
 
 
 
 988					action = ACTION_DELAYED_RETRY;
 989					break;
 
 
 
 
 
 
 
 
 
 
 990				default:
 991					action = ACTION_FAIL;
 992					break;
 993				}
 994			} else
 995				action = ACTION_FAIL;
 996			break;
 997		case VOLUME_OVERFLOW:
 998			/* See SSC3rXX or current. */
 999			action = ACTION_FAIL;
1000			break;
 
 
 
 
 
 
 
 
 
 
 
1001		default:
1002			action = ACTION_FAIL;
1003			break;
1004		}
1005	} else
1006		action = ACTION_FAIL;
1007
1008	if (action != ACTION_FAIL &&
1009	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1010		action = ACTION_FAIL;
1011
1012	switch (action) {
1013	case ACTION_FAIL:
1014		/* Give up and fail the remainder of the request */
1015		if (!(req->rq_flags & RQF_QUIET)) {
1016			static DEFINE_RATELIMIT_STATE(_rs,
1017					DEFAULT_RATELIMIT_INTERVAL,
1018					DEFAULT_RATELIMIT_BURST);
1019
1020			if (unlikely(scsi_logging_level))
1021				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1022						       SCSI_LOG_MLCOMPLETE_BITS);
 
1023
1024			/*
1025			 * if logging is enabled the failure will be printed
1026			 * in scsi_log_completion(), so avoid duplicate messages
1027			 */
1028			if (!level && __ratelimit(&_rs)) {
1029				scsi_print_result(cmd, NULL, FAILED);
1030				if (driver_byte(result) & DRIVER_SENSE)
1031					scsi_print_sense(cmd);
1032				scsi_print_command(cmd);
1033			}
1034		}
1035		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1036			return;
1037		/*FALLTHRU*/
1038	case ACTION_REPREP:
1039	requeue:
1040		/* Unprep the request and put it back at the head of the queue.
1041		 * A new command will be prepared and issued.
1042		 */
1043		if (q->mq_ops) {
1044			scsi_mq_requeue_cmd(cmd);
1045		} else {
1046			scsi_release_buffers(cmd);
1047			scsi_requeue_command(q, cmd);
1048		}
1049		break;
1050	case ACTION_RETRY:
1051		/* Retry the same command immediately */
1052		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1053		break;
1054	case ACTION_DELAYED_RETRY:
1055		/* Retry the same command after a delay */
1056		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1057		break;
1058	}
1059}
1060
1061static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062{
1063	int count;
 
 
 
 
 
 
 
 
 
 
 
 
 
1064
1065	/*
1066	 * If sg table allocation fails, requeue request later.
 
1067	 */
1068	if (unlikely(sg_alloc_table_chained(&sdb->table,
1069			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1070		return BLKPREP_DEFER;
 
1071
1072	/* 
1073	 * Next, walk the list, and fill in the addresses and sizes of
1074	 * each segment.
 
 
 
 
 
 
 
 
1075	 */
1076	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1077	BUG_ON(count > sdb->table.nents);
1078	sdb->table.nents = count;
1079	sdb->length = blk_rq_payload_bytes(req);
1080	return BLKPREP_OK;
1081}
1082
1083/*
1084 * Function:    scsi_init_io()
1085 *
1086 * Purpose:     SCSI I/O initialize function.
 
 
 
 
 
 
 
1087 *
1088 * Arguments:   cmd   - Command descriptor we wish to initialize
 
1089 *
1090 * Returns:     0 on success
1091 *		BLKPREP_DEFER if the failure is retryable
1092 *		BLKPREP_KILL if the failure is fatal
 
1093 */
1094int scsi_init_io(struct scsi_cmnd *cmd)
1095{
1096	struct scsi_device *sdev = cmd->device;
1097	struct request *rq = cmd->request;
1098	bool is_mq = (rq->mq_ctx != NULL);
1099	int error = BLKPREP_KILL;
1100
1101	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1102		goto err_exit;
1103
1104	error = scsi_init_sgtable(rq, &cmd->sdb);
1105	if (error)
1106		goto err_exit;
1107
1108	if (blk_bidi_rq(rq)) {
1109		if (!rq->q->mq_ops) {
1110			struct scsi_data_buffer *bidi_sdb =
1111				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1112			if (!bidi_sdb) {
1113				error = BLKPREP_DEFER;
1114				goto err_exit;
1115			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116
1117			rq->next_rq->special = bidi_sdb;
1118		}
 
 
 
1119
1120		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1121		if (error)
1122			goto err_exit;
1123	}
1124
 
 
 
 
1125	if (blk_integrity_rq(rq)) {
1126		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1127		int ivecs, count;
1128
1129		if (prot_sdb == NULL) {
1130			/*
1131			 * This can happen if someone (e.g. multipath)
1132			 * queues a command to a device on an adapter
1133			 * that does not support DIX.
1134			 */
1135			WARN_ON_ONCE(1);
1136			error = BLKPREP_KILL;
1137			goto err_exit;
1138		}
1139
1140		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1141
1142		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1143				prot_sdb->table.sgl)) {
1144			error = BLKPREP_DEFER;
1145			goto err_exit;
1146		}
1147
1148		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1149						prot_sdb->table.sgl);
1150		BUG_ON(unlikely(count > ivecs));
1151		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1152
1153		cmd->prot_sdb = prot_sdb;
1154		cmd->prot_sdb->table.nents = count;
1155	}
1156
1157	return BLKPREP_OK;
1158err_exit:
1159	if (is_mq) {
1160		scsi_mq_free_sgtables(cmd);
1161	} else {
1162		scsi_release_buffers(cmd);
1163		cmd->request->special = NULL;
1164		scsi_put_command(cmd);
1165		put_device(&sdev->sdev_gendev);
1166	}
1167	return error;
1168}
1169EXPORT_SYMBOL(scsi_init_io);
1170
1171/**
1172 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1173 * @rq: Request associated with the SCSI command to be initialized.
1174 *
1175 * This function initializes the members of struct scsi_cmnd that must be
1176 * initialized before request processing starts and that won't be
1177 * reinitialized if a SCSI command is requeued.
1178 *
1179 * Called from inside blk_get_request() for pass-through requests and from
1180 * inside scsi_init_command() for filesystem requests.
1181 */
1182static void scsi_initialize_rq(struct request *rq)
1183{
1184	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1185
1186	scsi_req_init(&cmd->req);
 
 
1187	init_rcu_head(&cmd->rcu);
1188	cmd->jiffies_at_alloc = jiffies;
1189	cmd->retries = 0;
1190}
1191
1192/* Add a command to the list used by the aacraid and dpt_i2o drivers */
1193void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1194{
1195	struct scsi_device *sdev = cmd->device;
1196	struct Scsi_Host *shost = sdev->host;
1197	unsigned long flags;
1198
1199	if (shost->use_cmd_list) {
1200		spin_lock_irqsave(&sdev->list_lock, flags);
1201		list_add_tail(&cmd->list, &sdev->cmd_list);
1202		spin_unlock_irqrestore(&sdev->list_lock, flags);
1203	}
1204}
 
1205
1206/* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1207void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
 
 
 
1208{
1209	struct scsi_device *sdev = cmd->device;
1210	struct Scsi_Host *shost = sdev->host;
1211	unsigned long flags;
1212
1213	if (shost->use_cmd_list) {
1214		spin_lock_irqsave(&sdev->list_lock, flags);
1215		BUG_ON(list_empty(&cmd->list));
1216		list_del_init(&cmd->list);
1217		spin_unlock_irqrestore(&sdev->list_lock, flags);
1218	}
1219}
1220
1221/* Called after a request has been started. */
1222void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1223{
1224	void *buf = cmd->sense_buffer;
1225	void *prot = cmd->prot_sdb;
1226	struct request *rq = blk_mq_rq_from_pdu(cmd);
1227	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1228	unsigned long jiffies_at_alloc;
1229	int retries;
1230
1231	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1232		flags |= SCMD_INITIALIZED;
1233		scsi_initialize_rq(rq);
1234	}
1235
1236	jiffies_at_alloc = cmd->jiffies_at_alloc;
1237	retries = cmd->retries;
1238	/* zero out the cmd, except for the embedded scsi_request */
1239	memset((char *)cmd + sizeof(cmd->req), 0,
1240		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1241
1242	cmd->device = dev;
1243	cmd->sense_buffer = buf;
1244	cmd->prot_sdb = prot;
1245	cmd->flags = flags;
1246	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1247	cmd->jiffies_at_alloc = jiffies_at_alloc;
1248	cmd->retries = retries;
1249
1250	scsi_add_cmd_to_list(cmd);
1251}
1252
1253static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
 
1254{
1255	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1256
1257	/*
1258	 * Passthrough requests may transfer data, in which case they must
1259	 * a bio attached to them.  Or they might contain a SCSI command
1260	 * that does not transfer data, in which case they may optionally
1261	 * submit a request without an attached bio.
1262	 */
1263	if (req->bio) {
1264		int ret = scsi_init_io(cmd);
1265		if (unlikely(ret))
1266			return ret;
1267	} else {
1268		BUG_ON(blk_rq_bytes(req));
1269
1270		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1271	}
1272
1273	cmd->cmd_len = scsi_req(req)->cmd_len;
1274	cmd->cmnd = scsi_req(req)->cmd;
1275	cmd->transfersize = blk_rq_bytes(req);
1276	cmd->allowed = scsi_req(req)->retries;
1277	return BLKPREP_OK;
1278}
1279
1280/*
1281 * Setup a normal block command.  These are simple request from filesystems
1282 * that still need to be translated to SCSI CDBs from the ULD.
1283 */
1284static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1285{
1286	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1287
1288	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1289		int ret = sdev->handler->prep_fn(sdev, req);
1290		if (ret != BLKPREP_OK)
1291			return ret;
1292	}
1293
1294	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1295	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1296	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1297}
1298
1299static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1300{
1301	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1302
1303	if (!blk_rq_bytes(req))
1304		cmd->sc_data_direction = DMA_NONE;
1305	else if (rq_data_dir(req) == WRITE)
1306		cmd->sc_data_direction = DMA_TO_DEVICE;
1307	else
1308		cmd->sc_data_direction = DMA_FROM_DEVICE;
1309
1310	if (blk_rq_is_scsi(req))
1311		return scsi_setup_scsi_cmnd(sdev, req);
1312	else
1313		return scsi_setup_fs_cmnd(sdev, req);
1314}
1315
1316static int
1317scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1318{
1319	int ret = BLKPREP_OK;
1320
1321	/*
1322	 * If the device is not in running state we will reject some
1323	 * or all commands.
1324	 */
1325	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1326		switch (sdev->sdev_state) {
1327		case SDEV_OFFLINE:
1328		case SDEV_TRANSPORT_OFFLINE:
1329			/*
1330			 * If the device is offline we refuse to process any
1331			 * commands.  The device must be brought online
1332			 * before trying any recovery commands.
1333			 */
1334			sdev_printk(KERN_ERR, sdev,
1335				    "rejecting I/O to offline device\n");
1336			ret = BLKPREP_KILL;
1337			break;
1338		case SDEV_DEL:
1339			/*
1340			 * If the device is fully deleted, we refuse to
1341			 * process any commands as well.
1342			 */
1343			sdev_printk(KERN_ERR, sdev,
1344				    "rejecting I/O to dead device\n");
1345			ret = BLKPREP_KILL;
1346			break;
1347		case SDEV_BLOCK:
1348		case SDEV_CREATED_BLOCK:
1349			ret = BLKPREP_DEFER;
1350			break;
1351		case SDEV_QUIESCE:
1352			/*
1353			 * If the devices is blocked we defer normal commands.
1354			 */
1355			if (req && !(req->rq_flags & RQF_PREEMPT))
1356				ret = BLKPREP_DEFER;
1357			break;
1358		default:
1359			/*
1360			 * For any other not fully online state we only allow
1361			 * special commands.  In particular any user initiated
1362			 * command is not allowed.
1363			 */
1364			if (req && !(req->rq_flags & RQF_PREEMPT))
1365				ret = BLKPREP_KILL;
1366			break;
1367		}
1368	}
1369	return ret;
1370}
1371
1372static int
1373scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1374{
1375	struct scsi_device *sdev = q->queuedata;
1376
1377	switch (ret) {
1378	case BLKPREP_KILL:
1379	case BLKPREP_INVALID:
1380		scsi_req(req)->result = DID_NO_CONNECT << 16;
1381		/* release the command and kill it */
1382		if (req->special) {
1383			struct scsi_cmnd *cmd = req->special;
1384			scsi_release_buffers(cmd);
1385			scsi_put_command(cmd);
1386			put_device(&sdev->sdev_gendev);
1387			req->special = NULL;
1388		}
1389		break;
1390	case BLKPREP_DEFER:
1391		/*
1392		 * If we defer, the blk_peek_request() returns NULL, but the
1393		 * queue must be restarted, so we schedule a callback to happen
1394		 * shortly.
1395		 */
1396		if (atomic_read(&sdev->device_busy) == 0)
1397			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1398		break;
1399	default:
1400		req->rq_flags |= RQF_DONTPREP;
1401	}
1402
1403	return ret;
1404}
1405
1406static int scsi_prep_fn(struct request_queue *q, struct request *req)
1407{
1408	struct scsi_device *sdev = q->queuedata;
1409	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1410	int ret;
1411
1412	ret = scsi_prep_state_check(sdev, req);
1413	if (ret != BLKPREP_OK)
1414		goto out;
1415
1416	if (!req->special) {
1417		/* Bail if we can't get a reference to the device */
1418		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1419			ret = BLKPREP_DEFER;
1420			goto out;
1421		}
1422
1423		scsi_init_command(sdev, cmd);
1424		req->special = cmd;
1425	}
1426
1427	cmd->tag = req->tag;
1428	cmd->request = req;
1429	cmd->prot_op = SCSI_PROT_NORMAL;
1430
1431	ret = scsi_setup_cmnd(sdev, req);
1432out:
1433	return scsi_prep_return(q, req, ret);
1434}
1435
1436static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1437{
1438	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1439}
1440
1441/*
1442 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1443 * return 0.
1444 *
1445 * Called with the queue_lock held.
1446 */
1447static inline int scsi_dev_queue_ready(struct request_queue *q,
1448				  struct scsi_device *sdev)
1449{
1450	unsigned int busy;
 
 
 
 
1451
1452	busy = atomic_inc_return(&sdev->device_busy) - 1;
1453	if (atomic_read(&sdev->device_blocked)) {
1454		if (busy)
1455			goto out_dec;
1456
1457		/*
1458		 * unblock after device_blocked iterates to zero
1459		 */
1460		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1461			/*
1462			 * For the MQ case we take care of this in the caller.
1463			 */
1464			if (!q->mq_ops)
1465				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1466			goto out_dec;
1467		}
1468		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1469				   "unblocking device at zero depth\n"));
1470	}
1471
1472	if (busy >= sdev->queue_depth)
1473		goto out_dec;
1474
1475	return 1;
1476out_dec:
1477	atomic_dec(&sdev->device_busy);
1478	return 0;
1479}
1480
1481/*
1482 * scsi_target_queue_ready: checks if there we can send commands to target
1483 * @sdev: scsi device on starget to check.
1484 */
1485static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1486					   struct scsi_device *sdev)
1487{
1488	struct scsi_target *starget = scsi_target(sdev);
1489	unsigned int busy;
1490
1491	if (starget->single_lun) {
1492		spin_lock_irq(shost->host_lock);
1493		if (starget->starget_sdev_user &&
1494		    starget->starget_sdev_user != sdev) {
1495			spin_unlock_irq(shost->host_lock);
1496			return 0;
1497		}
1498		starget->starget_sdev_user = sdev;
1499		spin_unlock_irq(shost->host_lock);
1500	}
1501
1502	if (starget->can_queue <= 0)
1503		return 1;
1504
1505	busy = atomic_inc_return(&starget->target_busy) - 1;
1506	if (atomic_read(&starget->target_blocked) > 0) {
1507		if (busy)
1508			goto starved;
1509
1510		/*
1511		 * unblock after target_blocked iterates to zero
1512		 */
1513		if (atomic_dec_return(&starget->target_blocked) > 0)
1514			goto out_dec;
1515
1516		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1517				 "unblocking target at zero depth\n"));
1518	}
1519
1520	if (busy >= starget->can_queue)
1521		goto starved;
1522
1523	return 1;
1524
1525starved:
1526	spin_lock_irq(shost->host_lock);
1527	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1528	spin_unlock_irq(shost->host_lock);
1529out_dec:
1530	if (starget->can_queue > 0)
1531		atomic_dec(&starget->target_busy);
1532	return 0;
1533}
1534
1535/*
1536 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1537 * return 0. We must end up running the queue again whenever 0 is
1538 * returned, else IO can hang.
1539 */
1540static inline int scsi_host_queue_ready(struct request_queue *q,
1541				   struct Scsi_Host *shost,
1542				   struct scsi_device *sdev)
 
1543{
1544	unsigned int busy;
1545
1546	if (scsi_host_in_recovery(shost))
1547		return 0;
1548
1549	busy = atomic_inc_return(&shost->host_busy) - 1;
1550	if (atomic_read(&shost->host_blocked) > 0) {
1551		if (busy)
1552			goto starved;
1553
1554		/*
1555		 * unblock after host_blocked iterates to zero
1556		 */
1557		if (atomic_dec_return(&shost->host_blocked) > 0)
1558			goto out_dec;
1559
1560		SCSI_LOG_MLQUEUE(3,
1561			shost_printk(KERN_INFO, shost,
1562				     "unblocking host at zero depth\n"));
1563	}
1564
1565	if (shost->can_queue > 0 && busy >= shost->can_queue)
1566		goto starved;
1567	if (shost->host_self_blocked)
1568		goto starved;
1569
1570	/* We're OK to process the command, so we can't be starved */
1571	if (!list_empty(&sdev->starved_entry)) {
1572		spin_lock_irq(shost->host_lock);
1573		if (!list_empty(&sdev->starved_entry))
1574			list_del_init(&sdev->starved_entry);
1575		spin_unlock_irq(shost->host_lock);
1576	}
1577
 
 
1578	return 1;
1579
1580starved:
1581	spin_lock_irq(shost->host_lock);
1582	if (list_empty(&sdev->starved_entry))
1583		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1584	spin_unlock_irq(shost->host_lock);
1585out_dec:
1586	scsi_dec_host_busy(shost);
1587	return 0;
1588}
1589
1590/*
1591 * Busy state exporting function for request stacking drivers.
1592 *
1593 * For efficiency, no lock is taken to check the busy state of
1594 * shost/starget/sdev, since the returned value is not guaranteed and
1595 * may be changed after request stacking drivers call the function,
1596 * regardless of taking lock or not.
1597 *
1598 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1599 * needs to return 'not busy'. Otherwise, request stacking drivers
1600 * may hold requests forever.
1601 */
1602static int scsi_lld_busy(struct request_queue *q)
1603{
1604	struct scsi_device *sdev = q->queuedata;
1605	struct Scsi_Host *shost;
1606
1607	if (blk_queue_dying(q))
1608		return 0;
1609
1610	shost = sdev->host;
1611
1612	/*
1613	 * Ignore host/starget busy state.
1614	 * Since block layer does not have a concept of fairness across
1615	 * multiple queues, congestion of host/starget needs to be handled
1616	 * in SCSI layer.
1617	 */
1618	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1619		return 1;
1620
1621	return 0;
1622}
1623
1624/*
1625 * Kill a request for a dead device
 
1626 */
1627static void scsi_kill_request(struct request *req, struct request_queue *q)
1628{
1629	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1630	struct scsi_device *sdev;
1631	struct scsi_target *starget;
1632	struct Scsi_Host *shost;
1633
1634	blk_start_request(req);
1635
1636	scmd_printk(KERN_INFO, cmd, "killing request\n");
1637
1638	sdev = cmd->device;
1639	starget = scsi_target(sdev);
1640	shost = sdev->host;
1641	scsi_init_cmd_errh(cmd);
1642	cmd->result = DID_NO_CONNECT << 16;
1643	atomic_inc(&cmd->device->iorequest_cnt);
1644
1645	/*
1646	 * SCSI request completion path will do scsi_device_unbusy(),
1647	 * bump busy counts.  To bump the counters, we need to dance
1648	 * with the locks as normal issue path does.
1649	 */
1650	atomic_inc(&sdev->device_busy);
1651	atomic_inc(&shost->host_busy);
1652	if (starget->can_queue > 0)
1653		atomic_inc(&starget->target_busy);
1654
1655	blk_complete_request(req);
1656}
1657
1658static void scsi_softirq_done(struct request *rq)
1659{
1660	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1661	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1662	int disposition;
1663
1664	INIT_LIST_HEAD(&cmd->eh_entry);
1665
1666	atomic_inc(&cmd->device->iodone_cnt);
1667	if (cmd->result)
1668		atomic_inc(&cmd->device->ioerr_cnt);
1669
1670	disposition = scsi_decide_disposition(cmd);
1671	if (disposition != SUCCESS &&
1672	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1673		sdev_printk(KERN_ERR, cmd->device,
1674			    "timing out command, waited %lus\n",
1675			    wait_for/HZ);
1676		disposition = SUCCESS;
1677	}
1678
1679	scsi_log_completion(cmd, disposition);
1680
1681	switch (disposition) {
1682		case SUCCESS:
1683			scsi_finish_command(cmd);
1684			break;
1685		case NEEDS_RETRY:
1686			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1687			break;
1688		case ADD_TO_MLQUEUE:
1689			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1690			break;
1691		default:
1692			scsi_eh_scmd_add(cmd);
1693			break;
1694	}
1695}
1696
1697/**
1698 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1699 * @cmd: command block we are dispatching.
1700 *
1701 * Return: nonzero return request was rejected and device's queue needs to be
1702 * plugged.
1703 */
1704static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1705{
1706	struct Scsi_Host *host = cmd->device->host;
1707	int rtn = 0;
1708
1709	atomic_inc(&cmd->device->iorequest_cnt);
1710
1711	/* check if the device is still usable */
1712	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1713		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1714		 * returns an immediate error upwards, and signals
1715		 * that the device is no longer present */
1716		cmd->result = DID_NO_CONNECT << 16;
1717		goto done;
1718	}
1719
1720	/* Check to see if the scsi lld made this device blocked. */
1721	if (unlikely(scsi_device_blocked(cmd->device))) {
1722		/*
1723		 * in blocked state, the command is just put back on
1724		 * the device queue.  The suspend state has already
1725		 * blocked the queue so future requests should not
1726		 * occur until the device transitions out of the
1727		 * suspend state.
1728		 */
1729		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1730			"queuecommand : device blocked\n"));
 
1731		return SCSI_MLQUEUE_DEVICE_BUSY;
1732	}
1733
1734	/* Store the LUN value in cmnd, if needed. */
1735	if (cmd->device->lun_in_cdb)
1736		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1737			       (cmd->device->lun << 5 & 0xe0);
1738
1739	scsi_log_send(cmd);
1740
1741	/*
1742	 * Before we queue this command, check if the command
1743	 * length exceeds what the host adapter can handle.
1744	 */
1745	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1746		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1747			       "queuecommand : command too long. "
1748			       "cdb_size=%d host->max_cmd_len=%d\n",
1749			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1750		cmd->result = (DID_ABORT << 16);
1751		goto done;
1752	}
1753
1754	if (unlikely(host->shost_state == SHOST_DEL)) {
1755		cmd->result = (DID_NO_CONNECT << 16);
1756		goto done;
1757
1758	}
1759
1760	trace_scsi_dispatch_cmd_start(cmd);
1761	rtn = host->hostt->queuecommand(host, cmd);
1762	if (rtn) {
 
1763		trace_scsi_dispatch_cmd_error(cmd, rtn);
1764		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1765		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1766			rtn = SCSI_MLQUEUE_HOST_BUSY;
1767
1768		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1769			"queuecommand : request rejected\n"));
1770	}
1771
1772	return rtn;
1773 done:
1774	cmd->scsi_done(cmd);
1775	return 0;
1776}
1777
1778/**
1779 * scsi_done - Invoke completion on finished SCSI command.
1780 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1781 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1782 *
1783 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1784 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1785 * calls blk_complete_request() for further processing.
1786 *
1787 * This function is interrupt context safe.
1788 */
1789static void scsi_done(struct scsi_cmnd *cmd)
1790{
1791	trace_scsi_dispatch_cmd_done(cmd);
1792	blk_complete_request(cmd->request);
1793}
1794
1795/*
1796 * Function:    scsi_request_fn()
1797 *
1798 * Purpose:     Main strategy routine for SCSI.
1799 *
1800 * Arguments:   q       - Pointer to actual queue.
1801 *
1802 * Returns:     Nothing
1803 *
1804 * Lock status: request queue lock assumed to be held when called.
1805 *
1806 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1807 * protection for ZBC disks.
1808 */
1809static void scsi_request_fn(struct request_queue *q)
1810	__releases(q->queue_lock)
1811	__acquires(q->queue_lock)
1812{
1813	struct scsi_device *sdev = q->queuedata;
1814	struct Scsi_Host *shost;
1815	struct scsi_cmnd *cmd;
1816	struct request *req;
1817
1818	/*
1819	 * To start with, we keep looping until the queue is empty, or until
1820	 * the host is no longer able to accept any more requests.
1821	 */
1822	shost = sdev->host;
1823	for (;;) {
1824		int rtn;
1825		/*
1826		 * get next queueable request.  We do this early to make sure
1827		 * that the request is fully prepared even if we cannot
1828		 * accept it.
1829		 */
1830		req = blk_peek_request(q);
1831		if (!req)
1832			break;
1833
1834		if (unlikely(!scsi_device_online(sdev))) {
1835			sdev_printk(KERN_ERR, sdev,
1836				    "rejecting I/O to offline device\n");
1837			scsi_kill_request(req, q);
1838			continue;
1839		}
1840
1841		if (!scsi_dev_queue_ready(q, sdev))
1842			break;
1843
1844		/*
1845		 * Remove the request from the request list.
1846		 */
1847		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1848			blk_start_request(req);
1849
1850		spin_unlock_irq(q->queue_lock);
1851		cmd = blk_mq_rq_to_pdu(req);
1852		if (cmd != req->special) {
1853			printk(KERN_CRIT "impossible request in %s.\n"
1854					 "please mail a stack trace to "
1855					 "linux-scsi@vger.kernel.org\n",
1856					 __func__);
1857			blk_dump_rq_flags(req, "foo");
1858			BUG();
1859		}
1860
1861		/*
1862		 * We hit this when the driver is using a host wide
1863		 * tag map. For device level tag maps the queue_depth check
1864		 * in the device ready fn would prevent us from trying
1865		 * to allocate a tag. Since the map is a shared host resource
1866		 * we add the dev to the starved list so it eventually gets
1867		 * a run when a tag is freed.
1868		 */
1869		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1870			spin_lock_irq(shost->host_lock);
1871			if (list_empty(&sdev->starved_entry))
1872				list_add_tail(&sdev->starved_entry,
1873					      &shost->starved_list);
1874			spin_unlock_irq(shost->host_lock);
1875			goto not_ready;
1876		}
1877
1878		if (!scsi_target_queue_ready(shost, sdev))
1879			goto not_ready;
1880
1881		if (!scsi_host_queue_ready(q, shost, sdev))
1882			goto host_not_ready;
1883	
1884		if (sdev->simple_tags)
1885			cmd->flags |= SCMD_TAGGED;
1886		else
1887			cmd->flags &= ~SCMD_TAGGED;
1888
1889		/*
1890		 * Finally, initialize any error handling parameters, and set up
1891		 * the timers for timeouts.
1892		 */
1893		scsi_init_cmd_errh(cmd);
1894
1895		/*
1896		 * Dispatch the command to the low-level driver.
1897		 */
1898		cmd->scsi_done = scsi_done;
1899		rtn = scsi_dispatch_cmd(cmd);
1900		if (rtn) {
1901			scsi_queue_insert(cmd, rtn);
1902			spin_lock_irq(q->queue_lock);
1903			goto out_delay;
1904		}
1905		spin_lock_irq(q->queue_lock);
1906	}
1907
1908	return;
1909
1910 host_not_ready:
1911	if (scsi_target(sdev)->can_queue > 0)
1912		atomic_dec(&scsi_target(sdev)->target_busy);
1913 not_ready:
1914	/*
1915	 * lock q, handle tag, requeue req, and decrement device_busy. We
1916	 * must return with queue_lock held.
1917	 *
1918	 * Decrementing device_busy without checking it is OK, as all such
1919	 * cases (host limits or settings) should run the queue at some
1920	 * later time.
1921	 */
1922	spin_lock_irq(q->queue_lock);
1923	blk_requeue_request(q, req);
1924	atomic_dec(&sdev->device_busy);
1925out_delay:
1926	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1927		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1928}
1929
1930static inline blk_status_t prep_to_mq(int ret)
1931{
1932	switch (ret) {
1933	case BLKPREP_OK:
1934		return BLK_STS_OK;
1935	case BLKPREP_DEFER:
1936		return BLK_STS_RESOURCE;
1937	default:
1938		return BLK_STS_IOERR;
1939	}
1940}
1941
1942/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1943static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1944{
1945	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1946		sizeof(struct scatterlist);
1947}
1948
1949static int scsi_mq_prep_fn(struct request *req)
1950{
1951	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1952	struct scsi_device *sdev = req->q->queuedata;
1953	struct Scsi_Host *shost = sdev->host;
 
1954	struct scatterlist *sg;
1955
1956	scsi_init_command(sdev, cmd);
1957
1958	req->special = cmd;
 
 
 
 
 
 
 
 
 
 
 
 
1959
1960	cmd->request = req;
1961
1962	cmd->tag = req->tag;
1963	cmd->prot_op = SCSI_PROT_NORMAL;
 
 
 
 
1964
1965	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1966	cmd->sdb.table.sgl = sg;
1967
1968	if (scsi_host_get_prot(shost)) {
1969		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1970
1971		cmd->prot_sdb->table.sgl =
1972			(struct scatterlist *)(cmd->prot_sdb + 1);
1973	}
1974
1975	if (blk_bidi_rq(req)) {
1976		struct request *next_rq = req->next_rq;
1977		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1978
1979		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1980		bidi_sdb->table.sgl =
1981			(struct scatterlist *)(bidi_sdb + 1);
 
 
1982
1983		next_rq->special = bidi_sdb;
 
1984	}
1985
1986	blk_mq_start_request(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987
1988	return scsi_setup_cmnd(sdev, req);
 
 
1989}
 
1990
1991static void scsi_mq_done(struct scsi_cmnd *cmd)
1992{
1993	trace_scsi_dispatch_cmd_done(cmd);
1994	blk_mq_complete_request(cmd->request);
1995}
 
1996
1997static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1998{
1999	struct request_queue *q = hctx->queue;
2000	struct scsi_device *sdev = q->queuedata;
2001
2002	atomic_dec(&sdev->device_busy);
2003	put_device(&sdev->sdev_gendev);
2004}
2005
2006static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
 
 
 
 
 
 
 
2007{
2008	struct request_queue *q = hctx->queue;
2009	struct scsi_device *sdev = q->queuedata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2010
2011	if (!get_device(&sdev->sdev_gendev))
2012		goto out;
2013	if (!scsi_dev_queue_ready(q, sdev))
2014		goto out_put_device;
2015
2016	return true;
2017
2018out_put_device:
2019	put_device(&sdev->sdev_gendev);
2020out:
2021	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2022		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2023	return false;
2024}
2025
2026static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2027			 const struct blk_mq_queue_data *bd)
2028{
2029	struct request *req = bd->rq;
2030	struct request_queue *q = req->q;
2031	struct scsi_device *sdev = q->queuedata;
2032	struct Scsi_Host *shost = sdev->host;
2033	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2034	blk_status_t ret;
2035	int reason;
2036
2037	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2038	if (ret != BLK_STS_OK)
2039		goto out_put_budget;
 
 
 
 
 
 
 
 
2040
2041	ret = BLK_STS_RESOURCE;
2042	if (!scsi_target_queue_ready(shost, sdev))
2043		goto out_put_budget;
2044	if (!scsi_host_queue_ready(q, shost, sdev))
 
 
 
 
 
2045		goto out_dec_target_busy;
2046
 
 
 
 
 
 
 
2047	if (!(req->rq_flags & RQF_DONTPREP)) {
2048		ret = prep_to_mq(scsi_mq_prep_fn(req));
2049		if (ret != BLK_STS_OK)
2050			goto out_dec_host_busy;
2051		req->rq_flags |= RQF_DONTPREP;
2052	} else {
2053		blk_mq_start_request(req);
2054	}
2055
 
2056	if (sdev->simple_tags)
2057		cmd->flags |= SCMD_TAGGED;
2058	else
2059		cmd->flags &= ~SCMD_TAGGED;
2060
2061	scsi_init_cmd_errh(cmd);
2062	cmd->scsi_done = scsi_mq_done;
 
2063
 
2064	reason = scsi_dispatch_cmd(cmd);
2065	if (reason) {
2066		scsi_set_blocked(cmd, reason);
2067		ret = BLK_STS_RESOURCE;
2068		goto out_dec_host_busy;
2069	}
2070
2071	return BLK_STS_OK;
2072
2073out_dec_host_busy:
2074	scsi_dec_host_busy(shost);
2075out_dec_target_busy:
2076	if (scsi_target(sdev)->can_queue > 0)
2077		atomic_dec(&scsi_target(sdev)->target_busy);
2078out_put_budget:
2079	scsi_mq_put_budget(hctx);
 
2080	switch (ret) {
2081	case BLK_STS_OK:
2082		break;
2083	case BLK_STS_RESOURCE:
2084		if (atomic_read(&sdev->device_busy) ||
2085		    scsi_device_blocked(sdev))
2086			ret = BLK_STS_DEV_RESOURCE;
2087		break;
 
 
 
 
 
2088	default:
 
 
 
 
2089		/*
2090		 * Make sure to release all allocated ressources when
2091		 * we hit an error, as we will never see this command
2092		 * again.
2093		 */
2094		if (req->rq_flags & RQF_DONTPREP)
2095			scsi_mq_uninit_cmd(cmd);
 
2096		break;
2097	}
2098	return ret;
2099}
2100
2101static enum blk_eh_timer_return scsi_timeout(struct request *req,
2102		bool reserved)
2103{
2104	if (reserved)
2105		return BLK_EH_RESET_TIMER;
2106	return scsi_times_out(req);
2107}
2108
2109static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2110				unsigned int hctx_idx, unsigned int numa_node)
2111{
2112	struct Scsi_Host *shost = set->driver_data;
2113	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2114	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2115	struct scatterlist *sg;
 
2116
2117	if (unchecked_isa_dma)
2118		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2119	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2120						    GFP_KERNEL, numa_node);
2121	if (!cmd->sense_buffer)
2122		return -ENOMEM;
2123	cmd->req.sense = cmd->sense_buffer;
2124
2125	if (scsi_host_get_prot(shost)) {
2126		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2127			shost->hostt->cmd_size;
2128		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2129	}
2130
2131	return 0;
 
 
 
 
 
 
2132}
2133
2134static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2135				 unsigned int hctx_idx)
2136{
 
2137	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2138
2139	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2140			       cmd->sense_buffer);
 
2141}
2142
2143static int scsi_map_queues(struct blk_mq_tag_set *set)
 
2144{
2145	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
 
 
 
2146
2147	if (shost->hostt->map_queues)
2148		return shost->hostt->map_queues(shost);
2149	return blk_mq_map_queues(set);
2150}
2151
2152static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
 
2153{
2154	struct device *host_dev;
2155	u64 bounce_limit = 0xffffffff;
2156
2157	if (shost->unchecked_isa_dma)
2158		return BLK_BOUNCE_ISA;
2159	/*
2160	 * Platforms with virtual-DMA translation
2161	 * hardware have no practical limit.
2162	 */
2163	if (!PCI_DMA_BUS_IS_PHYS)
2164		return BLK_BOUNCE_ANY;
2165
2166	host_dev = scsi_get_device(shost);
2167	if (host_dev && host_dev->dma_mask)
2168		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2169
2170	return bounce_limit;
 
 
2171}
2172
2173void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2174{
2175	struct device *dev = shost->dma_dev;
2176
2177	/*
2178	 * this limit is imposed by hardware restrictions
2179	 */
2180	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2181					SG_MAX_SEGMENTS));
2182
2183	if (scsi_host_prot_dma(shost)) {
2184		shost->sg_prot_tablesize =
2185			min_not_zero(shost->sg_prot_tablesize,
2186				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2187		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2188		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2189	}
2190
2191	blk_queue_max_hw_sectors(q, shost->max_sectors);
2192	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2193	blk_queue_segment_boundary(q, shost->dma_boundary);
2194	dma_set_seg_boundary(dev, shost->dma_boundary);
2195
2196	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2197
2198	if (!shost->use_clustering)
2199		q->limits.cluster = 0;
2200
2201	/*
2202	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
2203	 * which is a common minimum for HBAs, and the minimum DMA alignment,
2204	 * which is set by the platform.
2205	 *
2206	 * Devices that require a bigger alignment can increase it later.
2207	 */
2208	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2209}
2210EXPORT_SYMBOL_GPL(__scsi_init_queue);
2211
2212static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2213			    gfp_t gfp)
2214{
2215	struct Scsi_Host *shost = q->rq_alloc_data;
2216	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2217	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2218
2219	memset(cmd, 0, sizeof(*cmd));
2220
2221	if (unchecked_isa_dma)
2222		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2223	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2224						    NUMA_NO_NODE);
2225	if (!cmd->sense_buffer)
2226		goto fail;
2227	cmd->req.sense = cmd->sense_buffer;
2228
2229	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2230		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2231		if (!cmd->prot_sdb)
2232			goto fail_free_sense;
2233	}
2234
2235	return 0;
2236
2237fail_free_sense:
2238	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2239fail:
2240	return -ENOMEM;
2241}
 
2242
2243static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2244{
2245	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2246
2247	if (cmd->prot_sdb)
2248		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2249	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2250			       cmd->sense_buffer);
2251}
2252
2253struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2254{
2255	struct Scsi_Host *shost = sdev->host;
2256	struct request_queue *q;
2257
2258	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2259	if (!q)
2260		return NULL;
2261	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2262	q->rq_alloc_data = shost;
2263	q->request_fn = scsi_request_fn;
2264	q->init_rq_fn = scsi_old_init_rq;
2265	q->exit_rq_fn = scsi_old_exit_rq;
2266	q->initialize_rq_fn = scsi_initialize_rq;
2267
2268	if (blk_init_allocated_queue(q) < 0) {
2269		blk_cleanup_queue(q);
2270		return NULL;
2271	}
2272
2273	__scsi_init_queue(shost, q);
2274	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2275	blk_queue_prep_rq(q, scsi_prep_fn);
2276	blk_queue_unprep_rq(q, scsi_unprep_fn);
2277	blk_queue_softirq_done(q, scsi_softirq_done);
2278	blk_queue_rq_timed_out(q, scsi_times_out);
2279	blk_queue_lld_busy(q, scsi_lld_busy);
2280	return q;
2281}
2282
2283static const struct blk_mq_ops scsi_mq_ops = {
2284	.get_budget	= scsi_mq_get_budget,
2285	.put_budget	= scsi_mq_put_budget,
2286	.queue_rq	= scsi_queue_rq,
2287	.complete	= scsi_softirq_done,
 
2288	.timeout	= scsi_timeout,
2289#ifdef CONFIG_BLK_DEBUG_FS
2290	.show_rq	= scsi_show_rq,
2291#endif
2292	.init_request	= scsi_mq_init_request,
2293	.exit_request	= scsi_mq_exit_request,
2294	.initialize_rq_fn = scsi_initialize_rq,
 
2295	.map_queues	= scsi_map_queues,
 
 
 
 
2296};
2297
2298struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2299{
2300	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2301	if (IS_ERR(sdev->request_queue))
2302		return NULL;
2303
2304	sdev->request_queue->queuedata = sdev;
2305	__scsi_init_queue(sdev->host, sdev->request_queue);
2306	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2307	return sdev->request_queue;
2308}
2309
2310int scsi_mq_setup_tags(struct Scsi_Host *shost)
2311{
2312	unsigned int cmd_size, sgl_size;
 
2313
2314	sgl_size = scsi_mq_sgl_size(shost);
 
2315	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2316	if (scsi_host_get_prot(shost))
2317		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
 
2318
2319	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2320	shost->tag_set.ops = &scsi_mq_ops;
2321	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2322	shost->tag_set.queue_depth = shost->can_queue;
2323	shost->tag_set.cmd_size = cmd_size;
2324	shost->tag_set.numa_node = NUMA_NO_NODE;
2325	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2326	shost->tag_set.flags |=
 
 
 
 
2327		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2328	shost->tag_set.driver_data = shost;
 
 
 
 
2329
2330	return blk_mq_alloc_tag_set(&shost->tag_set);
2331}
2332
2333void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2334{
 
 
 
2335	blk_mq_free_tag_set(&shost->tag_set);
 
2336}
2337
2338/**
2339 * scsi_device_from_queue - return sdev associated with a request_queue
2340 * @q: The request queue to return the sdev from
2341 *
2342 * Return the sdev associated with a request queue or NULL if the
2343 * request_queue does not reference a SCSI device.
2344 */
2345struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2346{
2347	struct scsi_device *sdev = NULL;
2348
2349	if (q->mq_ops) {
2350		if (q->mq_ops == &scsi_mq_ops)
2351			sdev = q->queuedata;
2352	} else if (q->request_fn == scsi_request_fn)
2353		sdev = q->queuedata;
2354	if (!sdev || !get_device(&sdev->sdev_gendev))
2355		sdev = NULL;
2356
2357	return sdev;
2358}
 
 
 
 
 
 
2359EXPORT_SYMBOL_GPL(scsi_device_from_queue);
 
2360
2361/*
2362 * Function:    scsi_block_requests()
2363 *
2364 * Purpose:     Utility function used by low-level drivers to prevent further
2365 *		commands from being queued to the device.
2366 *
2367 * Arguments:   shost       - Host in question
2368 *
2369 * Returns:     Nothing
2370 *
2371 * Lock status: No locks are assumed held.
2372 *
2373 * Notes:       There is no timer nor any other means by which the requests
2374 *		get unblocked other than the low-level driver calling
2375 *		scsi_unblock_requests().
2376 */
2377void scsi_block_requests(struct Scsi_Host *shost)
2378{
2379	shost->host_self_blocked = 1;
2380}
2381EXPORT_SYMBOL(scsi_block_requests);
2382
2383/*
2384 * Function:    scsi_unblock_requests()
2385 *
2386 * Purpose:     Utility function used by low-level drivers to allow further
2387 *		commands from being queued to the device.
2388 *
2389 * Arguments:   shost       - Host in question
2390 *
2391 * Returns:     Nothing
2392 *
2393 * Lock status: No locks are assumed held.
2394 *
2395 * Notes:       There is no timer nor any other means by which the requests
2396 *		get unblocked other than the low-level driver calling
2397 *		scsi_unblock_requests().
2398 *
2399 *		This is done as an API function so that changes to the
2400 *		internals of the scsi mid-layer won't require wholesale
2401 *		changes to drivers that use this feature.
2402 */
2403void scsi_unblock_requests(struct Scsi_Host *shost)
2404{
2405	shost->host_self_blocked = 0;
2406	scsi_run_host_queues(shost);
2407}
2408EXPORT_SYMBOL(scsi_unblock_requests);
2409
2410int __init scsi_init_queue(void)
2411{
2412	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2413					   sizeof(struct scsi_data_buffer),
2414					   0, 0, NULL);
2415	if (!scsi_sdb_cache) {
2416		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2417		return -ENOMEM;
2418	}
2419
2420	return 0;
2421}
2422
2423void scsi_exit_queue(void)
2424{
2425	kmem_cache_destroy(scsi_sense_cache);
2426	kmem_cache_destroy(scsi_sense_isadma_cache);
2427	kmem_cache_destroy(scsi_sdb_cache);
2428}
2429
2430/**
2431 *	scsi_mode_select - issue a mode select
2432 *	@sdev:	SCSI device to be queried
2433 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2434 *	@sp:	Save page bit (0 == don't save, 1 == save)
2435 *	@modepage: mode page being requested
2436 *	@buffer: request buffer (may not be smaller than eight bytes)
2437 *	@len:	length of request buffer.
2438 *	@timeout: command timeout
2439 *	@retries: number of retries before failing
2440 *	@data: returns a structure abstracting the mode header data
2441 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2442 *		must be SCSI_SENSE_BUFFERSIZE big.
2443 *
2444 *	Returns zero if successful; negative error number or scsi
2445 *	status on error
2446 *
2447 */
2448int
2449scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2450		 unsigned char *buffer, int len, int timeout, int retries,
2451		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2452{
2453	unsigned char cmd[10];
2454	unsigned char *real_buffer;
 
 
 
2455	int ret;
2456
2457	memset(cmd, 0, sizeof(cmd));
2458	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2459
2460	if (sdev->use_10_for_ms) {
2461		if (len > 65535)
 
 
 
 
 
 
 
2462			return -EINVAL;
2463		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2464		if (!real_buffer)
2465			return -ENOMEM;
2466		memcpy(real_buffer + 8, buffer, len);
2467		len += 8;
2468		real_buffer[0] = 0;
2469		real_buffer[1] = 0;
2470		real_buffer[2] = data->medium_type;
2471		real_buffer[3] = data->device_specific;
2472		real_buffer[4] = data->longlba ? 0x01 : 0;
2473		real_buffer[5] = 0;
2474		real_buffer[6] = data->block_descriptor_length >> 8;
2475		real_buffer[7] = data->block_descriptor_length;
2476
2477		cmd[0] = MODE_SELECT_10;
2478		cmd[7] = len >> 8;
2479		cmd[8] = len;
2480	} else {
2481		if (len > 255 || data->block_descriptor_length > 255 ||
2482		    data->longlba)
2483			return -EINVAL;
2484
2485		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2486		if (!real_buffer)
2487			return -ENOMEM;
2488		memcpy(real_buffer + 4, buffer, len);
2489		len += 4;
2490		real_buffer[0] = 0;
2491		real_buffer[1] = data->medium_type;
2492		real_buffer[2] = data->device_specific;
2493		real_buffer[3] = data->block_descriptor_length;
2494		
2495
2496		cmd[0] = MODE_SELECT;
2497		cmd[4] = len;
2498	}
2499
2500	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2501			       sshdr, timeout, retries, NULL);
2502	kfree(real_buffer);
2503	return ret;
2504}
2505EXPORT_SYMBOL_GPL(scsi_mode_select);
2506
2507/**
2508 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2509 *	@sdev:	SCSI device to be queried
2510 *	@dbd:	set if mode sense will allow block descriptors to be returned
2511 *	@modepage: mode page being requested
 
2512 *	@buffer: request buffer (may not be smaller than eight bytes)
2513 *	@len:	length of request buffer.
2514 *	@timeout: command timeout
2515 *	@retries: number of retries before failing
2516 *	@data: returns a structure abstracting the mode header data
2517 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2518 *		must be SCSI_SENSE_BUFFERSIZE big.
2519 *
2520 *	Returns zero if unsuccessful, or the header offset (either 4
2521 *	or 8 depending on whether a six or ten byte command was
2522 *	issued) if successful.
2523 */
2524int
2525scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2526		  unsigned char *buffer, int len, int timeout, int retries,
2527		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2528{
2529	unsigned char cmd[12];
2530	int use_10_for_ms;
2531	int header_length;
2532	int result, retry_count = retries;
2533	struct scsi_sense_hdr my_sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2534
2535	memset(data, 0, sizeof(*data));
2536	memset(&cmd[0], 0, 12);
 
 
2537	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2538	cmd[2] = modepage;
 
2539
2540	/* caller might not be interested in sense, but we need it */
2541	if (!sshdr)
2542		sshdr = &my_sshdr;
2543
2544 retry:
2545	use_10_for_ms = sdev->use_10_for_ms;
2546
2547	if (use_10_for_ms) {
2548		if (len < 8)
2549			len = 8;
2550
2551		cmd[0] = MODE_SENSE_10;
2552		cmd[8] = len;
2553		header_length = 8;
2554	} else {
2555		if (len < 4)
2556			len = 4;
2557
2558		cmd[0] = MODE_SENSE;
2559		cmd[4] = len;
2560		header_length = 4;
2561	}
2562
2563	memset(buffer, 0, len);
2564
2565	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2566				  sshdr, timeout, retries, NULL);
 
 
2567
2568	/* This code looks awful: what it's doing is making sure an
2569	 * ILLEGAL REQUEST sense return identifies the actual command
2570	 * byte as the problem.  MODE_SENSE commands can return
2571	 * ILLEGAL REQUEST if the code page isn't supported */
2572
2573	if (use_10_for_ms && !scsi_status_is_good(result) &&
2574	    (driver_byte(result) & DRIVER_SENSE)) {
2575		if (scsi_sense_valid(sshdr)) {
2576			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2577			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2578				/* 
2579				 * Invalid command operation code
 
 
 
 
2580				 */
2581				sdev->use_10_for_ms = 0;
2582				goto retry;
 
 
 
 
2583			}
2584		}
 
2585	}
2586
2587	if(scsi_status_is_good(result)) {
2588		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2589			     (modepage == 6 || modepage == 8))) {
2590			/* Initio breakage? */
2591			header_length = 0;
2592			data->length = 13;
2593			data->medium_type = 0;
2594			data->device_specific = 0;
2595			data->longlba = 0;
2596			data->block_descriptor_length = 0;
2597		} else if(use_10_for_ms) {
2598			data->length = buffer[0]*256 + buffer[1] + 2;
2599			data->medium_type = buffer[2];
2600			data->device_specific = buffer[3];
2601			data->longlba = buffer[4] & 0x01;
2602			data->block_descriptor_length = buffer[6]*256
2603				+ buffer[7];
2604		} else {
2605			data->length = buffer[0] + 1;
2606			data->medium_type = buffer[1];
2607			data->device_specific = buffer[2];
2608			data->block_descriptor_length = buffer[3];
2609		}
2610		data->header_length = header_length;
2611	} else if ((status_byte(result) == CHECK_CONDITION) &&
2612		   scsi_sense_valid(sshdr) &&
2613		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2614		retry_count--;
2615		goto retry;
2616	}
 
2617
2618	return result;
2619}
2620EXPORT_SYMBOL(scsi_mode_sense);
2621
2622/**
2623 *	scsi_test_unit_ready - test if unit is ready
2624 *	@sdev:	scsi device to change the state of.
2625 *	@timeout: command timeout
2626 *	@retries: number of retries before failing
2627 *	@sshdr: outpout pointer for decoded sense information.
2628 *
2629 *	Returns zero if unsuccessful or an error if TUR failed.  For
2630 *	removable media, UNIT_ATTENTION sets ->changed flag.
2631 **/
2632int
2633scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2634		     struct scsi_sense_hdr *sshdr)
2635{
2636	char cmd[] = {
2637		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2638	};
 
 
 
2639	int result;
2640
2641	/* try to eat the UNIT_ATTENTION if there are enough retries */
2642	do {
2643		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2644					  timeout, 1, NULL);
2645		if (sdev->removable && scsi_sense_valid(sshdr) &&
2646		    sshdr->sense_key == UNIT_ATTENTION)
2647			sdev->changed = 1;
2648	} while (scsi_sense_valid(sshdr) &&
2649		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2650
2651	return result;
2652}
2653EXPORT_SYMBOL(scsi_test_unit_ready);
2654
2655/**
2656 *	scsi_device_set_state - Take the given device through the device state model.
2657 *	@sdev:	scsi device to change the state of.
2658 *	@state:	state to change to.
2659 *
2660 *	Returns zero if successful or an error if the requested
2661 *	transition is illegal.
2662 */
2663int
2664scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2665{
2666	enum scsi_device_state oldstate = sdev->sdev_state;
2667
2668	if (state == oldstate)
2669		return 0;
2670
2671	switch (state) {
2672	case SDEV_CREATED:
2673		switch (oldstate) {
2674		case SDEV_CREATED_BLOCK:
2675			break;
2676		default:
2677			goto illegal;
2678		}
2679		break;
2680			
2681	case SDEV_RUNNING:
2682		switch (oldstate) {
2683		case SDEV_CREATED:
2684		case SDEV_OFFLINE:
2685		case SDEV_TRANSPORT_OFFLINE:
2686		case SDEV_QUIESCE:
2687		case SDEV_BLOCK:
2688			break;
2689		default:
2690			goto illegal;
2691		}
2692		break;
2693
2694	case SDEV_QUIESCE:
2695		switch (oldstate) {
2696		case SDEV_RUNNING:
2697		case SDEV_OFFLINE:
2698		case SDEV_TRANSPORT_OFFLINE:
2699			break;
2700		default:
2701			goto illegal;
2702		}
2703		break;
2704
2705	case SDEV_OFFLINE:
2706	case SDEV_TRANSPORT_OFFLINE:
2707		switch (oldstate) {
2708		case SDEV_CREATED:
2709		case SDEV_RUNNING:
2710		case SDEV_QUIESCE:
2711		case SDEV_BLOCK:
2712			break;
2713		default:
2714			goto illegal;
2715		}
2716		break;
2717
2718	case SDEV_BLOCK:
2719		switch (oldstate) {
2720		case SDEV_RUNNING:
2721		case SDEV_CREATED_BLOCK:
 
 
2722			break;
2723		default:
2724			goto illegal;
2725		}
2726		break;
2727
2728	case SDEV_CREATED_BLOCK:
2729		switch (oldstate) {
2730		case SDEV_CREATED:
2731			break;
2732		default:
2733			goto illegal;
2734		}
2735		break;
2736
2737	case SDEV_CANCEL:
2738		switch (oldstate) {
2739		case SDEV_CREATED:
2740		case SDEV_RUNNING:
2741		case SDEV_QUIESCE:
2742		case SDEV_OFFLINE:
2743		case SDEV_TRANSPORT_OFFLINE:
2744			break;
2745		default:
2746			goto illegal;
2747		}
2748		break;
2749
2750	case SDEV_DEL:
2751		switch (oldstate) {
2752		case SDEV_CREATED:
2753		case SDEV_RUNNING:
2754		case SDEV_OFFLINE:
2755		case SDEV_TRANSPORT_OFFLINE:
2756		case SDEV_CANCEL:
2757		case SDEV_BLOCK:
2758		case SDEV_CREATED_BLOCK:
2759			break;
2760		default:
2761			goto illegal;
2762		}
2763		break;
2764
2765	}
 
2766	sdev->sdev_state = state;
2767	return 0;
2768
2769 illegal:
2770	SCSI_LOG_ERROR_RECOVERY(1,
2771				sdev_printk(KERN_ERR, sdev,
2772					    "Illegal state transition %s->%s",
2773					    scsi_device_state_name(oldstate),
2774					    scsi_device_state_name(state))
2775				);
2776	return -EINVAL;
2777}
2778EXPORT_SYMBOL(scsi_device_set_state);
2779
2780/**
2781 * 	sdev_evt_emit - emit a single SCSI device uevent
2782 *	@sdev: associated SCSI device
2783 *	@evt: event to emit
2784 *
2785 *	Send a single uevent (scsi_event) to the associated scsi_device.
2786 */
2787static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2788{
2789	int idx = 0;
2790	char *envp[3];
2791
2792	switch (evt->evt_type) {
2793	case SDEV_EVT_MEDIA_CHANGE:
2794		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2795		break;
2796	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2797		scsi_rescan_device(&sdev->sdev_gendev);
2798		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2799		break;
2800	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2801		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2802		break;
2803	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2804	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2805		break;
2806	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2807		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2808		break;
2809	case SDEV_EVT_LUN_CHANGE_REPORTED:
2810		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2811		break;
2812	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2813		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2814		break;
2815	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2816		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2817		break;
2818	default:
2819		/* do nothing */
2820		break;
2821	}
2822
2823	envp[idx++] = NULL;
2824
2825	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2826}
2827
2828/**
2829 * 	sdev_evt_thread - send a uevent for each scsi event
2830 *	@work: work struct for scsi_device
2831 *
2832 *	Dispatch queued events to their associated scsi_device kobjects
2833 *	as uevents.
2834 */
2835void scsi_evt_thread(struct work_struct *work)
2836{
2837	struct scsi_device *sdev;
2838	enum scsi_device_event evt_type;
2839	LIST_HEAD(event_list);
2840
2841	sdev = container_of(work, struct scsi_device, event_work);
2842
2843	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2844		if (test_and_clear_bit(evt_type, sdev->pending_events))
2845			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2846
2847	while (1) {
2848		struct scsi_event *evt;
2849		struct list_head *this, *tmp;
2850		unsigned long flags;
2851
2852		spin_lock_irqsave(&sdev->list_lock, flags);
2853		list_splice_init(&sdev->event_list, &event_list);
2854		spin_unlock_irqrestore(&sdev->list_lock, flags);
2855
2856		if (list_empty(&event_list))
2857			break;
2858
2859		list_for_each_safe(this, tmp, &event_list) {
2860			evt = list_entry(this, struct scsi_event, node);
2861			list_del(&evt->node);
2862			scsi_evt_emit(sdev, evt);
2863			kfree(evt);
2864		}
2865	}
2866}
2867
2868/**
2869 * 	sdev_evt_send - send asserted event to uevent thread
2870 *	@sdev: scsi_device event occurred on
2871 *	@evt: event to send
2872 *
2873 *	Assert scsi device event asynchronously.
2874 */
2875void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2876{
2877	unsigned long flags;
2878
2879#if 0
2880	/* FIXME: currently this check eliminates all media change events
2881	 * for polled devices.  Need to update to discriminate between AN
2882	 * and polled events */
2883	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2884		kfree(evt);
2885		return;
2886	}
2887#endif
2888
2889	spin_lock_irqsave(&sdev->list_lock, flags);
2890	list_add_tail(&evt->node, &sdev->event_list);
2891	schedule_work(&sdev->event_work);
2892	spin_unlock_irqrestore(&sdev->list_lock, flags);
2893}
2894EXPORT_SYMBOL_GPL(sdev_evt_send);
2895
2896/**
2897 * 	sdev_evt_alloc - allocate a new scsi event
2898 *	@evt_type: type of event to allocate
2899 *	@gfpflags: GFP flags for allocation
2900 *
2901 *	Allocates and returns a new scsi_event.
2902 */
2903struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2904				  gfp_t gfpflags)
2905{
2906	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2907	if (!evt)
2908		return NULL;
2909
2910	evt->evt_type = evt_type;
2911	INIT_LIST_HEAD(&evt->node);
2912
2913	/* evt_type-specific initialization, if any */
2914	switch (evt_type) {
2915	case SDEV_EVT_MEDIA_CHANGE:
2916	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2917	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2918	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2919	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2920	case SDEV_EVT_LUN_CHANGE_REPORTED:
2921	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2922	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2923	default:
2924		/* do nothing */
2925		break;
2926	}
2927
2928	return evt;
2929}
2930EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2931
2932/**
2933 * 	sdev_evt_send_simple - send asserted event to uevent thread
2934 *	@sdev: scsi_device event occurred on
2935 *	@evt_type: type of event to send
2936 *	@gfpflags: GFP flags for allocation
2937 *
2938 *	Assert scsi device event asynchronously, given an event type.
2939 */
2940void sdev_evt_send_simple(struct scsi_device *sdev,
2941			  enum scsi_device_event evt_type, gfp_t gfpflags)
2942{
2943	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2944	if (!evt) {
2945		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2946			    evt_type);
2947		return;
2948	}
2949
2950	sdev_evt_send(sdev, evt);
2951}
2952EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2953
2954/**
2955 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2956 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2957 */
2958static int scsi_request_fn_active(struct scsi_device *sdev)
2959{
2960	struct request_queue *q = sdev->request_queue;
2961	int request_fn_active;
2962
2963	WARN_ON_ONCE(sdev->host->use_blk_mq);
2964
2965	spin_lock_irq(q->queue_lock);
2966	request_fn_active = q->request_fn_active;
2967	spin_unlock_irq(q->queue_lock);
2968
2969	return request_fn_active;
2970}
2971
2972/**
2973 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2974 * @sdev: SCSI device pointer.
2975 *
2976 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2977 * invoked from scsi_request_fn() have finished.
2978 */
2979static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2980{
2981	WARN_ON_ONCE(sdev->host->use_blk_mq);
2982
2983	while (scsi_request_fn_active(sdev))
2984		msleep(20);
2985}
2986
2987/**
2988 *	scsi_device_quiesce - Block user issued commands.
2989 *	@sdev:	scsi device to quiesce.
2990 *
2991 *	This works by trying to transition to the SDEV_QUIESCE state
2992 *	(which must be a legal transition).  When the device is in this
2993 *	state, only special requests will be accepted, all others will
2994 *	be deferred.  Since special requests may also be requeued requests,
2995 *	a successful return doesn't guarantee the device will be 
2996 *	totally quiescent.
2997 *
2998 *	Must be called with user context, may sleep.
2999 *
3000 *	Returns zero if unsuccessful or an error if not.
3001 */
3002int
3003scsi_device_quiesce(struct scsi_device *sdev)
3004{
3005	struct request_queue *q = sdev->request_queue;
3006	int err;
3007
3008	/*
3009	 * It is allowed to call scsi_device_quiesce() multiple times from
3010	 * the same context but concurrent scsi_device_quiesce() calls are
3011	 * not allowed.
3012	 */
3013	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3014
3015	blk_set_preempt_only(q);
 
 
 
3016
3017	blk_mq_freeze_queue(q);
3018	/*
3019	 * Ensure that the effect of blk_set_preempt_only() will be visible
3020	 * for percpu_ref_tryget() callers that occur after the queue
3021	 * unfreeze even if the queue was already frozen before this function
3022	 * was called. See also https://lwn.net/Articles/573497/.
3023	 */
3024	synchronize_rcu();
3025	blk_mq_unfreeze_queue(q);
3026
3027	mutex_lock(&sdev->state_mutex);
3028	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3029	if (err == 0)
3030		sdev->quiesced_by = current;
3031	else
3032		blk_clear_preempt_only(q);
3033	mutex_unlock(&sdev->state_mutex);
3034
3035	return err;
3036}
3037EXPORT_SYMBOL(scsi_device_quiesce);
3038
3039/**
3040 *	scsi_device_resume - Restart user issued commands to a quiesced device.
3041 *	@sdev:	scsi device to resume.
3042 *
3043 *	Moves the device from quiesced back to running and restarts the
3044 *	queues.
3045 *
3046 *	Must be called with user context, may sleep.
3047 */
3048void scsi_device_resume(struct scsi_device *sdev)
3049{
3050	/* check if the device state was mutated prior to resume, and if
3051	 * so assume the state is being managed elsewhere (for example
3052	 * device deleted during suspend)
3053	 */
3054	mutex_lock(&sdev->state_mutex);
3055	WARN_ON_ONCE(!sdev->quiesced_by);
3056	sdev->quiesced_by = NULL;
3057	blk_clear_preempt_only(sdev->request_queue);
3058	if (sdev->sdev_state == SDEV_QUIESCE)
3059		scsi_device_set_state(sdev, SDEV_RUNNING);
 
 
 
 
3060	mutex_unlock(&sdev->state_mutex);
3061}
3062EXPORT_SYMBOL(scsi_device_resume);
3063
3064static void
3065device_quiesce_fn(struct scsi_device *sdev, void *data)
3066{
3067	scsi_device_quiesce(sdev);
3068}
3069
3070void
3071scsi_target_quiesce(struct scsi_target *starget)
3072{
3073	starget_for_each_device(starget, NULL, device_quiesce_fn);
3074}
3075EXPORT_SYMBOL(scsi_target_quiesce);
3076
3077static void
3078device_resume_fn(struct scsi_device *sdev, void *data)
3079{
3080	scsi_device_resume(sdev);
3081}
3082
3083void
3084scsi_target_resume(struct scsi_target *starget)
3085{
3086	starget_for_each_device(starget, NULL, device_resume_fn);
3087}
3088EXPORT_SYMBOL(scsi_target_resume);
3089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3090/**
3091 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3092 * @sdev: device to block
3093 *
3094 * Pause SCSI command processing on the specified device. Does not sleep.
3095 *
3096 * Returns zero if successful or a negative error code upon failure.
3097 *
3098 * Notes:
3099 * This routine transitions the device to the SDEV_BLOCK state (which must be
3100 * a legal transition). When the device is in this state, command processing
3101 * is paused until the device leaves the SDEV_BLOCK state. See also
3102 * scsi_internal_device_unblock_nowait().
3103 */
3104int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3105{
3106	struct request_queue *q = sdev->request_queue;
3107	unsigned long flags;
3108	int err = 0;
3109
3110	err = scsi_device_set_state(sdev, SDEV_BLOCK);
3111	if (err) {
3112		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3113
3114		if (err)
3115			return err;
3116	}
3117
3118	/* 
3119	 * The device has transitioned to SDEV_BLOCK.  Stop the
3120	 * block layer from calling the midlayer with this device's
3121	 * request queue. 
3122	 */
3123	if (q->mq_ops) {
3124		blk_mq_quiesce_queue_nowait(q);
3125	} else {
3126		spin_lock_irqsave(q->queue_lock, flags);
3127		blk_stop_queue(q);
3128		spin_unlock_irqrestore(q->queue_lock, flags);
3129	}
3130
3131	return 0;
3132}
3133EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3134
3135/**
3136 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3137 * @sdev: device to block
 
3138 *
3139 * Pause SCSI command processing on the specified device and wait until all
3140 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3141 *
3142 * Returns zero if successful or a negative error code upon failure.
3143 *
3144 * Note:
3145 * This routine transitions the device to the SDEV_BLOCK state (which must be
3146 * a legal transition). When the device is in this state, command processing
3147 * is paused until the device leaves the SDEV_BLOCK state. See also
3148 * scsi_internal_device_unblock().
3149 *
3150 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3151 * scsi_internal_device_block() has blocked a SCSI device and also
3152 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3153 */
3154static int scsi_internal_device_block(struct scsi_device *sdev)
3155{
3156	struct request_queue *q = sdev->request_queue;
3157	int err;
 
3158
3159	mutex_lock(&sdev->state_mutex);
3160	err = scsi_internal_device_block_nowait(sdev);
3161	if (err == 0) {
3162		if (q->mq_ops)
3163			blk_mq_quiesce_queue(q);
3164		else
3165			scsi_wait_for_queuecommand(sdev);
3166	}
 
 
 
3167	mutex_unlock(&sdev->state_mutex);
3168
3169	return err;
3170}
3171 
3172void scsi_start_queue(struct scsi_device *sdev)
3173{
3174	struct request_queue *q = sdev->request_queue;
3175	unsigned long flags;
3176
3177	if (q->mq_ops) {
3178		blk_mq_unquiesce_queue(q);
3179	} else {
3180		spin_lock_irqsave(q->queue_lock, flags);
3181		blk_start_queue(q);
3182		spin_unlock_irqrestore(q->queue_lock, flags);
3183	}
3184}
3185
3186/**
3187 * scsi_internal_device_unblock_nowait - resume a device after a block request
3188 * @sdev:	device to resume
3189 * @new_state:	state to set the device to after unblocking
3190 *
3191 * Restart the device queue for a previously suspended SCSI device. Does not
3192 * sleep.
3193 *
3194 * Returns zero if successful or a negative error code upon failure.
3195 *
3196 * Notes:
3197 * This routine transitions the device to the SDEV_RUNNING state or to one of
3198 * the offline states (which must be a legal transition) allowing the midlayer
3199 * to goose the queue for this device.
3200 */
3201int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3202					enum scsi_device_state new_state)
3203{
 
 
 
 
 
 
 
 
3204	/*
3205	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3206	 * offlined states and goose the device queue if successful.
3207	 */
3208	switch (sdev->sdev_state) {
3209	case SDEV_BLOCK:
3210	case SDEV_TRANSPORT_OFFLINE:
3211		sdev->sdev_state = new_state;
3212		break;
3213	case SDEV_CREATED_BLOCK:
3214		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3215		    new_state == SDEV_OFFLINE)
3216			sdev->sdev_state = new_state;
3217		else
3218			sdev->sdev_state = SDEV_CREATED;
3219		break;
3220	case SDEV_CANCEL:
3221	case SDEV_OFFLINE:
3222		break;
3223	default:
3224		return -EINVAL;
3225	}
3226	scsi_start_queue(sdev);
3227
3228	return 0;
3229}
3230EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3231
3232/**
3233 * scsi_internal_device_unblock - resume a device after a block request
3234 * @sdev:	device to resume
3235 * @new_state:	state to set the device to after unblocking
3236 *
3237 * Restart the device queue for a previously suspended SCSI device. May sleep.
3238 *
3239 * Returns zero if successful or a negative error code upon failure.
3240 *
3241 * Notes:
3242 * This routine transitions the device to the SDEV_RUNNING state or to one of
3243 * the offline states (which must be a legal transition) allowing the midlayer
3244 * to goose the queue for this device.
3245 */
3246static int scsi_internal_device_unblock(struct scsi_device *sdev,
3247					enum scsi_device_state new_state)
3248{
3249	int ret;
3250
3251	mutex_lock(&sdev->state_mutex);
3252	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3253	mutex_unlock(&sdev->state_mutex);
3254
3255	return ret;
3256}
3257
3258static void
3259device_block(struct scsi_device *sdev, void *data)
3260{
3261	scsi_internal_device_block(sdev);
3262}
3263
3264static int
3265target_block(struct device *dev, void *data)
3266{
3267	if (scsi_is_target_device(dev))
3268		starget_for_each_device(to_scsi_target(dev), NULL,
3269					device_block);
3270	return 0;
3271}
3272
 
 
 
 
 
 
 
 
 
 
 
 
3273void
3274scsi_target_block(struct device *dev)
3275{
3276	if (scsi_is_target_device(dev))
3277		starget_for_each_device(to_scsi_target(dev), NULL,
3278					device_block);
3279	else
3280		device_for_each_child(dev, NULL, target_block);
3281}
3282EXPORT_SYMBOL_GPL(scsi_target_block);
3283
3284static void
3285device_unblock(struct scsi_device *sdev, void *data)
3286{
3287	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3288}
3289
3290static int
3291target_unblock(struct device *dev, void *data)
3292{
3293	if (scsi_is_target_device(dev))
3294		starget_for_each_device(to_scsi_target(dev), data,
3295					device_unblock);
3296	return 0;
3297}
3298
3299void
3300scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3301{
3302	if (scsi_is_target_device(dev))
3303		starget_for_each_device(to_scsi_target(dev), &new_state,
3304					device_unblock);
3305	else
3306		device_for_each_child(dev, &new_state, target_unblock);
3307}
3308EXPORT_SYMBOL_GPL(scsi_target_unblock);
3309
3310/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3311 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3312 * @sgl:	scatter-gather list
3313 * @sg_count:	number of segments in sg
3314 * @offset:	offset in bytes into sg, on return offset into the mapped area
3315 * @len:	bytes to map, on return number of bytes mapped
3316 *
3317 * Returns virtual address of the start of the mapped page
3318 */
3319void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3320			  size_t *offset, size_t *len)
3321{
3322	int i;
3323	size_t sg_len = 0, len_complete = 0;
3324	struct scatterlist *sg;
3325	struct page *page;
3326
3327	WARN_ON(!irqs_disabled());
3328
3329	for_each_sg(sgl, sg, sg_count, i) {
3330		len_complete = sg_len; /* Complete sg-entries */
3331		sg_len += sg->length;
3332		if (sg_len > *offset)
3333			break;
3334	}
3335
3336	if (unlikely(i == sg_count)) {
3337		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3338			"elements %d\n",
3339		       __func__, sg_len, *offset, sg_count);
3340		WARN_ON(1);
3341		return NULL;
3342	}
3343
3344	/* Offset starting from the beginning of first page in this sg-entry */
3345	*offset = *offset - len_complete + sg->offset;
3346
3347	/* Assumption: contiguous pages can be accessed as "page + i" */
3348	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3349	*offset &= ~PAGE_MASK;
3350
3351	/* Bytes in this sg-entry from *offset to the end of the page */
3352	sg_len = PAGE_SIZE - *offset;
3353	if (*len > sg_len)
3354		*len = sg_len;
3355
3356	return kmap_atomic(page);
3357}
3358EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3359
3360/**
3361 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3362 * @virt:	virtual address to be unmapped
3363 */
3364void scsi_kunmap_atomic_sg(void *virt)
3365{
3366	kunmap_atomic(virt);
3367}
3368EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3369
3370void sdev_disable_disk_events(struct scsi_device *sdev)
3371{
3372	atomic_inc(&sdev->disk_events_disable_depth);
3373}
3374EXPORT_SYMBOL(sdev_disable_disk_events);
3375
3376void sdev_enable_disk_events(struct scsi_device *sdev)
3377{
3378	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3379		return;
3380	atomic_dec(&sdev->disk_events_disable_depth);
3381}
3382EXPORT_SYMBOL(sdev_enable_disk_events);
3383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3384/**
3385 * scsi_vpd_lun_id - return a unique device identification
3386 * @sdev: SCSI device
3387 * @id:   buffer for the identification
3388 * @id_len:  length of the buffer
3389 *
3390 * Copies a unique device identification into @id based
3391 * on the information in the VPD page 0x83 of the device.
3392 * The string will be formatted as a SCSI name string.
3393 *
3394 * Returns the length of the identification or error on failure.
3395 * If the identifier is longer than the supplied buffer the actual
3396 * identifier length is returned and the buffer is not zero-padded.
3397 */
3398int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3399{
3400	u8 cur_id_type = 0xff;
3401	u8 cur_id_size = 0;
3402	const unsigned char *d, *cur_id_str;
3403	const struct scsi_vpd *vpd_pg83;
3404	int id_size = -EINVAL;
3405
3406	rcu_read_lock();
3407	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3408	if (!vpd_pg83) {
3409		rcu_read_unlock();
3410		return -ENXIO;
3411	}
3412
3413	/*
3414	 * Look for the correct descriptor.
3415	 * Order of preference for lun descriptor:
3416	 * - SCSI name string
3417	 * - NAA IEEE Registered Extended
3418	 * - EUI-64 based 16-byte
3419	 * - EUI-64 based 12-byte
3420	 * - NAA IEEE Registered
3421	 * - NAA IEEE Extended
3422	 * - T10 Vendor ID
3423	 * as longer descriptors reduce the likelyhood
3424	 * of identification clashes.
3425	 */
3426
3427	/* The id string must be at least 20 bytes + terminating NULL byte */
3428	if (id_len < 21) {
3429		rcu_read_unlock();
3430		return -EINVAL;
3431	}
3432
3433	memset(id, 0, id_len);
3434	d = vpd_pg83->data + 4;
3435	while (d < vpd_pg83->data + vpd_pg83->len) {
3436		/* Skip designators not referring to the LUN */
3437		if ((d[1] & 0x30) != 0x00)
3438			goto next_desig;
 
 
3439
3440		switch (d[1] & 0xf) {
3441		case 0x1:
3442			/* T10 Vendor ID */
3443			if (cur_id_size > d[3])
3444				break;
3445			/* Prefer anything */
3446			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3447				break;
3448			cur_id_size = d[3];
3449			if (cur_id_size + 4 > id_len)
3450				cur_id_size = id_len - 4;
3451			cur_id_str = d + 4;
3452			cur_id_type = d[1] & 0xf;
3453			id_size = snprintf(id, id_len, "t10.%*pE",
3454					   cur_id_size, cur_id_str);
3455			break;
3456		case 0x2:
3457			/* EUI-64 */
3458			if (cur_id_size > d[3])
3459				break;
3460			/* Prefer NAA IEEE Registered Extended */
3461			if (cur_id_type == 0x3 &&
3462			    cur_id_size == d[3])
3463				break;
3464			cur_id_size = d[3];
3465			cur_id_str = d + 4;
3466			cur_id_type = d[1] & 0xf;
3467			switch (cur_id_size) {
3468			case 8:
3469				id_size = snprintf(id, id_len,
3470						   "eui.%8phN",
3471						   cur_id_str);
3472				break;
3473			case 12:
3474				id_size = snprintf(id, id_len,
3475						   "eui.%12phN",
3476						   cur_id_str);
3477				break;
3478			case 16:
3479				id_size = snprintf(id, id_len,
3480						   "eui.%16phN",
3481						   cur_id_str);
3482				break;
3483			default:
3484				cur_id_size = 0;
3485				break;
3486			}
3487			break;
3488		case 0x3:
3489			/* NAA */
3490			if (cur_id_size > d[3])
3491				break;
3492			cur_id_size = d[3];
3493			cur_id_str = d + 4;
3494			cur_id_type = d[1] & 0xf;
3495			switch (cur_id_size) {
3496			case 8:
3497				id_size = snprintf(id, id_len,
3498						   "naa.%8phN",
3499						   cur_id_str);
3500				break;
3501			case 16:
3502				id_size = snprintf(id, id_len,
3503						   "naa.%16phN",
3504						   cur_id_str);
3505				break;
3506			default:
3507				cur_id_size = 0;
3508				break;
3509			}
3510			break;
3511		case 0x8:
3512			/* SCSI name string */
3513			if (cur_id_size + 4 > d[3])
3514				break;
3515			/* Prefer others for truncated descriptor */
3516			if (cur_id_size && d[3] > id_len)
3517				break;
 
 
 
 
3518			cur_id_size = id_size = d[3];
3519			cur_id_str = d + 4;
3520			cur_id_type = d[1] & 0xf;
3521			if (cur_id_size >= id_len)
3522				cur_id_size = id_len - 1;
3523			memcpy(id, cur_id_str, cur_id_size);
3524			/* Decrease priority for truncated descriptor */
3525			if (cur_id_size != id_size)
3526				cur_id_size = 6;
3527			break;
3528		default:
3529			break;
3530		}
3531next_desig:
3532		d += d[3] + 4;
3533	}
3534	rcu_read_unlock();
3535
3536	return id_size;
3537}
3538EXPORT_SYMBOL(scsi_vpd_lun_id);
3539
3540/*
3541 * scsi_vpd_tpg_id - return a target port group identifier
3542 * @sdev: SCSI device
3543 *
3544 * Returns the Target Port Group identifier from the information
3545 * froom VPD page 0x83 of the device.
3546 *
3547 * Returns the identifier or error on failure.
3548 */
3549int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3550{
3551	const unsigned char *d;
3552	const struct scsi_vpd *vpd_pg83;
3553	int group_id = -EAGAIN, rel_port = -1;
3554
3555	rcu_read_lock();
3556	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3557	if (!vpd_pg83) {
3558		rcu_read_unlock();
3559		return -ENXIO;
3560	}
3561
3562	d = vpd_pg83->data + 4;
3563	while (d < vpd_pg83->data + vpd_pg83->len) {
3564		switch (d[1] & 0xf) {
3565		case 0x4:
3566			/* Relative target port */
3567			rel_port = get_unaligned_be16(&d[6]);
3568			break;
3569		case 0x5:
3570			/* Target port group */
3571			group_id = get_unaligned_be16(&d[6]);
3572			break;
3573		default:
3574			break;
3575		}
3576		d += d[3] + 4;
3577	}
3578	rcu_read_unlock();
3579
3580	if (group_id >= 0 && rel_id && rel_port != -1)
3581		*rel_id = rel_port;
3582
3583	return group_id;
3584}
3585EXPORT_SYMBOL(scsi_vpd_tpg_id);