Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/blk-integrity.h>
  25#include <linux/ratelimit.h>
  26#include <linux/unaligned.h>
  27
  28#include <scsi/scsi.h>
  29#include <scsi/scsi_cmnd.h>
  30#include <scsi/scsi_dbg.h>
  31#include <scsi/scsi_device.h>
  32#include <scsi/scsi_driver.h>
  33#include <scsi/scsi_eh.h>
  34#include <scsi/scsi_host.h>
  35#include <scsi/scsi_transport.h> /* scsi_init_limits() */
  36#include <scsi/scsi_dh.h>
  37
  38#include <trace/events/scsi.h>
  39
  40#include "scsi_debugfs.h"
  41#include "scsi_priv.h"
  42#include "scsi_logging.h"
  43
  44/*
  45 * Size of integrity metadata is usually small, 1 inline sg should
  46 * cover normal cases.
  47 */
  48#ifdef CONFIG_ARCH_NO_SG_CHAIN
  49#define  SCSI_INLINE_PROT_SG_CNT  0
  50#define  SCSI_INLINE_SG_CNT  0
  51#else
  52#define  SCSI_INLINE_PROT_SG_CNT  1
  53#define  SCSI_INLINE_SG_CNT  2
  54#endif
  55
 
  56static struct kmem_cache *scsi_sense_cache;
 
  57static DEFINE_MUTEX(scsi_sense_cache_mutex);
  58
  59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61int scsi_init_sense_cache(struct Scsi_Host *shost)
  62{
 
  63	int ret = 0;
  64
  65	mutex_lock(&scsi_sense_cache_mutex);
  66	if (!scsi_sense_cache) {
 
 
 
 
 
 
 
 
 
 
 
  67		scsi_sense_cache =
  68			kmem_cache_create_usercopy("scsi_sense_cache",
  69				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  70				0, SCSI_SENSE_BUFFERSIZE, NULL);
  71		if (!scsi_sense_cache)
  72			ret = -ENOMEM;
  73	}
 
  74	mutex_unlock(&scsi_sense_cache_mutex);
  75	return ret;
  76}
  77
 
 
 
 
 
 
 
  78static void
  79scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
  80{
  81	struct Scsi_Host *host = cmd->device->host;
  82	struct scsi_device *device = cmd->device;
  83	struct scsi_target *starget = scsi_target(device);
  84
  85	/*
  86	 * Set the appropriate busy bit for the device/host.
  87	 *
  88	 * If the host/device isn't busy, assume that something actually
  89	 * completed, and that we should be able to queue a command now.
  90	 *
  91	 * Note that the prior mid-layer assumption that any host could
  92	 * always queue at least one command is now broken.  The mid-layer
  93	 * will implement a user specifiable stall (see
  94	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
  95	 * if a command is requeued with no other commands outstanding
  96	 * either for the device or for the host.
  97	 */
  98	switch (reason) {
  99	case SCSI_MLQUEUE_HOST_BUSY:
 100		atomic_set(&host->host_blocked, host->max_host_blocked);
 101		break;
 102	case SCSI_MLQUEUE_DEVICE_BUSY:
 103	case SCSI_MLQUEUE_EH_RETRY:
 104		atomic_set(&device->device_blocked,
 105			   device->max_device_blocked);
 106		break;
 107	case SCSI_MLQUEUE_TARGET_BUSY:
 108		atomic_set(&starget->target_blocked,
 109			   starget->max_target_blocked);
 110		break;
 111	}
 112}
 113
 114static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
 115{
 116	struct request *rq = scsi_cmd_to_rq(cmd);
 117
 118	if (rq->rq_flags & RQF_DONTPREP) {
 119		rq->rq_flags &= ~RQF_DONTPREP;
 120		scsi_mq_uninit_cmd(cmd);
 121	} else {
 122		WARN_ON_ONCE(true);
 123	}
 124
 125	blk_mq_requeue_request(rq, false);
 126	if (!scsi_host_in_recovery(cmd->device->host))
 127		blk_mq_delay_kick_requeue_list(rq->q, msecs);
 128}
 129
 130/**
 131 * __scsi_queue_insert - private queue insertion
 132 * @cmd: The SCSI command being requeued
 133 * @reason:  The reason for the requeue
 134 * @unbusy: Whether the queue should be unbusied
 135 *
 136 * This is a private queue insertion.  The public interface
 137 * scsi_queue_insert() always assumes the queue should be unbusied
 138 * because it's always called before the completion.  This function is
 139 * for a requeue after completion, which should only occur in this
 140 * file.
 141 */
 142static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 143{
 144	struct scsi_device *device = cmd->device;
 145
 146	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 147		"Inserting command %p into mlqueue\n", cmd));
 148
 149	scsi_set_blocked(cmd, reason);
 150
 151	/*
 152	 * Decrement the counters, since these commands are no longer
 153	 * active on the host/device.
 154	 */
 155	if (unbusy)
 156		scsi_device_unbusy(device, cmd);
 157
 158	/*
 159	 * Requeue this command.  It will go before all other commands
 160	 * that are already in the queue. Schedule requeue work under
 161	 * lock such that the kblockd_schedule_work() call happens
 162	 * before blk_mq_destroy_queue() finishes.
 163	 */
 164	cmd->result = 0;
 165
 166	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
 167			       !scsi_host_in_recovery(cmd->device->host));
 168}
 169
 170/**
 171 * scsi_queue_insert - Reinsert a command in the queue.
 172 * @cmd:    command that we are adding to queue.
 173 * @reason: why we are inserting command to queue.
 174 *
 175 * We do this for one of two cases. Either the host is busy and it cannot accept
 176 * any more commands for the time being, or the device returned QUEUE_FULL and
 177 * can accept no more commands.
 178 *
 179 * Context: This could be called either from an interrupt context or a normal
 180 * process context.
 
 
 
 
 
 
 
 
 181 */
 182void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 183{
 184	__scsi_queue_insert(cmd, reason, true);
 185}
 186
 187void scsi_failures_reset_retries(struct scsi_failures *failures)
 188{
 189	struct scsi_failure *failure;
 190
 191	failures->total_retries = 0;
 192
 193	for (failure = failures->failure_definitions; failure->result;
 194	     failure++)
 195		failure->retries = 0;
 196}
 197EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
 198
 199/**
 200 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
 201 * @scmd: scsi_cmnd to check.
 202 * @failures: scsi_failures struct that lists failures to check for.
 203 *
 204 * Returns -EAGAIN if the caller should retry else 0.
 205 */
 206static int scsi_check_passthrough(struct scsi_cmnd *scmd,
 207				  struct scsi_failures *failures)
 208{
 209	struct scsi_failure *failure;
 210	struct scsi_sense_hdr sshdr;
 211	enum sam_status status;
 212
 213	if (!scmd->result)
 214		return 0;
 215
 216	if (!failures)
 217		return 0;
 218
 219	for (failure = failures->failure_definitions; failure->result;
 220	     failure++) {
 221		if (failure->result == SCMD_FAILURE_RESULT_ANY)
 222			goto maybe_retry;
 223
 224		if (host_byte(scmd->result) &&
 225		    host_byte(scmd->result) == host_byte(failure->result))
 226			goto maybe_retry;
 227
 228		status = status_byte(scmd->result);
 229		if (!status)
 230			continue;
 231
 232		if (failure->result == SCMD_FAILURE_STAT_ANY &&
 233		    !scsi_status_is_good(scmd->result))
 234			goto maybe_retry;
 235
 236		if (status != status_byte(failure->result))
 237			continue;
 238
 239		if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
 240		    failure->sense == SCMD_FAILURE_SENSE_ANY)
 241			goto maybe_retry;
 242
 243		if (!scsi_command_normalize_sense(scmd, &sshdr))
 244			return 0;
 245
 246		if (failure->sense != sshdr.sense_key)
 247			continue;
 248
 249		if (failure->asc == SCMD_FAILURE_ASC_ANY)
 250			goto maybe_retry;
 251
 252		if (failure->asc != sshdr.asc)
 253			continue;
 254
 255		if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
 256		    failure->ascq == sshdr.ascq)
 257			goto maybe_retry;
 258	}
 259
 260	return 0;
 261
 262maybe_retry:
 263	if (failure->allowed) {
 264		if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
 265		    ++failure->retries <= failure->allowed)
 266			return -EAGAIN;
 267	} else {
 268		if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
 269		    ++failures->total_retries <= failures->total_allowed)
 270			return -EAGAIN;
 271	}
 272
 273	return 0;
 274}
 275
 276/**
 277 * scsi_execute_cmd - insert request and wait for the result
 278 * @sdev:	scsi_device
 279 * @cmd:	scsi command
 280 * @opf:	block layer request cmd_flags
 281 * @buffer:	data buffer
 282 * @bufflen:	len of buffer
 283 * @timeout:	request timeout in HZ
 284 * @ml_retries:	number of times SCSI midlayer will retry request
 285 * @args:	Optional args. See struct definition for field descriptions
 
 
 
 
 286 *
 287 * Returns the scsi_cmnd result field if a command was executed, or a negative
 288 * Linux error code if we didn't get that far.
 289 */
 290int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
 291		     blk_opf_t opf, void *buffer, unsigned int bufflen,
 292		     int timeout, int ml_retries,
 293		     const struct scsi_exec_args *args)
 
 294{
 295	static const struct scsi_exec_args default_args;
 296	struct request *req;
 297	struct scsi_cmnd *scmd;
 298	int ret;
 299
 300	if (!args)
 301		args = &default_args;
 302	else if (WARN_ON_ONCE(args->sense &&
 303			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
 304		return -EINVAL;
 305
 306retry:
 307	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
 
 308	if (IS_ERR(req))
 309		return PTR_ERR(req);
 
 310
 311	if (bufflen) {
 312		ret = blk_rq_map_kern(sdev->request_queue, req,
 313				      buffer, bufflen, GFP_NOIO);
 314		if (ret)
 315			goto out;
 316	}
 317	scmd = blk_mq_rq_to_pdu(req);
 318	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
 319	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
 320	scmd->allowed = ml_retries;
 321	scmd->flags |= args->scmd_flags;
 322	req->timeout = timeout;
 323	req->rq_flags |= RQF_QUIET;
 
 324
 325	/*
 326	 * head injection *required* here otherwise quiesce won't work
 327	 */
 328	blk_execute_rq(req, true);
 329
 330	if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
 331		blk_mq_free_request(req);
 332		goto retry;
 333	}
 334
 335	/*
 336	 * Some devices (USB mass-storage in particular) may transfer
 337	 * garbage data together with a residue indicating that the data
 338	 * is invalid.  Prevent the garbage from being misinterpreted
 339	 * and prevent security leaks by zeroing out the excess data.
 340	 */
 341	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
 342		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
 343
 344	if (args->resid)
 345		*args->resid = scmd->resid_len;
 346	if (args->sense)
 347		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
 348	if (args->sshdr)
 349		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
 350				     args->sshdr);
 351
 352	ret = scmd->result;
 
 
 
 
 
 
 353 out:
 354	blk_mq_free_request(req);
 355
 356	return ret;
 357}
 358EXPORT_SYMBOL(scsi_execute_cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359
 360/*
 361 * Wake up the error handler if necessary. Avoid as follows that the error
 362 * handler is not woken up if host in-flight requests number ==
 363 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 364 * with an RCU read lock in this function to ensure that this function in
 365 * its entirety either finishes before scsi_eh_scmd_add() increases the
 366 * host_failed counter or that it notices the shost state change made by
 367 * scsi_eh_scmd_add().
 368 */
 369static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
 370{
 371	unsigned long flags;
 372
 373	rcu_read_lock();
 374	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 375	if (unlikely(scsi_host_in_recovery(shost))) {
 376		unsigned int busy = scsi_host_busy(shost);
 377
 378		spin_lock_irqsave(shost->host_lock, flags);
 379		if (shost->host_failed || shost->host_eh_scheduled)
 380			scsi_eh_wakeup(shost, busy);
 381		spin_unlock_irqrestore(shost->host_lock, flags);
 382	}
 383	rcu_read_unlock();
 384}
 385
 386void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
 387{
 388	struct Scsi_Host *shost = sdev->host;
 389	struct scsi_target *starget = scsi_target(sdev);
 390
 391	scsi_dec_host_busy(shost, cmd);
 392
 393	if (starget->can_queue > 0)
 394		atomic_dec(&starget->target_busy);
 395
 396	sbitmap_put(&sdev->budget_map, cmd->budget_token);
 397	cmd->budget_token = -1;
 398}
 399
 400/*
 401 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
 402 * interrupts disabled.
 403 */
 404static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
 405{
 406	struct scsi_device *current_sdev = data;
 407
 408	if (sdev != current_sdev)
 409		blk_mq_run_hw_queues(sdev->request_queue, true);
 410}
 411
 412/*
 413 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 414 * and call blk_run_queue for all the scsi_devices on the target -
 415 * including current_sdev first.
 416 *
 417 * Called with *no* scsi locks held.
 418 */
 419static void scsi_single_lun_run(struct scsi_device *current_sdev)
 420{
 421	struct Scsi_Host *shost = current_sdev->host;
 
 422	struct scsi_target *starget = scsi_target(current_sdev);
 423	unsigned long flags;
 424
 425	spin_lock_irqsave(shost->host_lock, flags);
 426	starget->starget_sdev_user = NULL;
 427	spin_unlock_irqrestore(shost->host_lock, flags);
 428
 429	/*
 430	 * Call blk_run_queue for all LUNs on the target, starting with
 431	 * current_sdev. We race with others (to set starget_sdev_user),
 432	 * but in most cases, we will be first. Ideally, each LU on the
 433	 * target would get some limited time or requests on the target.
 434	 */
 435	blk_mq_run_hw_queues(current_sdev->request_queue,
 436			     shost->queuecommand_may_block);
 437
 438	spin_lock_irqsave(shost->host_lock, flags);
 439	if (!starget->starget_sdev_user)
 440		__starget_for_each_device(starget, current_sdev,
 441					  scsi_kick_sdev_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 442	spin_unlock_irqrestore(shost->host_lock, flags);
 443}
 444
 445static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 446{
 447	if (scsi_device_busy(sdev) >= sdev->queue_depth)
 448		return true;
 449	if (atomic_read(&sdev->device_blocked) > 0)
 450		return true;
 451	return false;
 452}
 453
 454static inline bool scsi_target_is_busy(struct scsi_target *starget)
 455{
 456	if (starget->can_queue > 0) {
 457		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 458			return true;
 459		if (atomic_read(&starget->target_blocked) > 0)
 460			return true;
 461	}
 462	return false;
 463}
 464
 465static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 466{
 
 
 
 467	if (atomic_read(&shost->host_blocked) > 0)
 468		return true;
 469	if (shost->host_self_blocked)
 470		return true;
 471	return false;
 472}
 473
 474static void scsi_starved_list_run(struct Scsi_Host *shost)
 475{
 476	LIST_HEAD(starved_list);
 477	struct scsi_device *sdev;
 478	unsigned long flags;
 479
 480	spin_lock_irqsave(shost->host_lock, flags);
 481	list_splice_init(&shost->starved_list, &starved_list);
 482
 483	while (!list_empty(&starved_list)) {
 484		struct request_queue *slq;
 485
 486		/*
 487		 * As long as shost is accepting commands and we have
 488		 * starved queues, call blk_run_queue. scsi_request_fn
 489		 * drops the queue_lock and can add us back to the
 490		 * starved_list.
 491		 *
 492		 * host_lock protects the starved_list and starved_entry.
 493		 * scsi_request_fn must get the host_lock before checking
 494		 * or modifying starved_list or starved_entry.
 495		 */
 496		if (scsi_host_is_busy(shost))
 497			break;
 498
 499		sdev = list_entry(starved_list.next,
 500				  struct scsi_device, starved_entry);
 501		list_del_init(&sdev->starved_entry);
 502		if (scsi_target_is_busy(scsi_target(sdev))) {
 503			list_move_tail(&sdev->starved_entry,
 504				       &shost->starved_list);
 505			continue;
 506		}
 507
 508		/*
 509		 * Once we drop the host lock, a racing scsi_remove_device()
 510		 * call may remove the sdev from the starved list and destroy
 511		 * it and the queue.  Mitigate by taking a reference to the
 512		 * queue and never touching the sdev again after we drop the
 513		 * host lock.  Note: if __scsi_remove_device() invokes
 514		 * blk_mq_destroy_queue() before the queue is run from this
 515		 * function then blk_run_queue() will return immediately since
 516		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
 517		 */
 518		slq = sdev->request_queue;
 519		if (!blk_get_queue(slq))
 520			continue;
 521		spin_unlock_irqrestore(shost->host_lock, flags);
 522
 523		blk_mq_run_hw_queues(slq, false);
 524		blk_put_queue(slq);
 525
 526		spin_lock_irqsave(shost->host_lock, flags);
 527	}
 528	/* put any unprocessed entries back */
 529	list_splice(&starved_list, &shost->starved_list);
 530	spin_unlock_irqrestore(shost->host_lock, flags);
 531}
 532
 533/**
 534 * scsi_run_queue - Select a proper request queue to serve next.
 535 * @q:  last request's queue
 
 
 
 536 *
 537 * The previous command was completely finished, start a new one if possible.
 
 
 
 538 */
 539static void scsi_run_queue(struct request_queue *q)
 540{
 541	struct scsi_device *sdev = q->queuedata;
 542
 543	if (scsi_target(sdev)->single_lun)
 544		scsi_single_lun_run(sdev);
 545	if (!list_empty(&sdev->host->starved_list))
 546		scsi_starved_list_run(sdev->host);
 547
 548	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
 549	blk_mq_kick_requeue_list(q);
 550}
 551
 552void scsi_requeue_run_queue(struct work_struct *work)
 553{
 554	struct scsi_device *sdev;
 555	struct request_queue *q;
 556
 557	sdev = container_of(work, struct scsi_device, requeue_work);
 558	q = sdev->request_queue;
 559	scsi_run_queue(q);
 560}
 561
 562void scsi_run_host_queues(struct Scsi_Host *shost)
 563{
 564	struct scsi_device *sdev;
 565
 566	shost_for_each_device(sdev, shost)
 567		scsi_run_queue(sdev->request_queue);
 568}
 569
 570static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 571{
 572	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
 573		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 574
 575		if (drv->uninit_command)
 576			drv->uninit_command(cmd);
 577	}
 578}
 579
 580void scsi_free_sgtables(struct scsi_cmnd *cmd)
 581{
 582	if (cmd->sdb.table.nents)
 583		sg_free_table_chained(&cmd->sdb.table,
 584				SCSI_INLINE_SG_CNT);
 585	if (scsi_prot_sg_count(cmd))
 586		sg_free_table_chained(&cmd->prot_sdb->table,
 587				SCSI_INLINE_PROT_SG_CNT);
 588}
 589EXPORT_SYMBOL_GPL(scsi_free_sgtables);
 590
 591static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 592{
 593	scsi_free_sgtables(cmd);
 594	scsi_uninit_cmd(cmd);
 595}
 596
 597static void scsi_run_queue_async(struct scsi_device *sdev)
 598{
 599	if (scsi_host_in_recovery(sdev->host))
 600		return;
 601
 602	if (scsi_target(sdev)->single_lun ||
 603	    !list_empty(&sdev->host->starved_list)) {
 604		kblockd_schedule_work(&sdev->requeue_work);
 605	} else {
 606		/*
 607		 * smp_mb() present in sbitmap_queue_clear() or implied in
 608		 * .end_io is for ordering writing .device_busy in
 609		 * scsi_device_unbusy() and reading sdev->restarts.
 610		 */
 611		int old = atomic_read(&sdev->restarts);
 612
 613		/*
 614		 * ->restarts has to be kept as non-zero if new budget
 615		 *  contention occurs.
 616		 *
 617		 *  No need to run queue when either another re-run
 618		 *  queue wins in updating ->restarts or a new budget
 619		 *  contention occurs.
 620		 */
 621		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
 622			blk_mq_run_hw_queues(sdev->request_queue, true);
 623	}
 624}
 625
 626/* Returns false when no more bytes to process, true if there are more */
 627static bool scsi_end_request(struct request *req, blk_status_t error,
 628		unsigned int bytes)
 629{
 630	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 631	struct scsi_device *sdev = cmd->device;
 632	struct request_queue *q = sdev->request_queue;
 633
 634	if (blk_update_request(req, error, bytes))
 635		return true;
 636
 637	if (q->limits.features & BLK_FEAT_ADD_RANDOM)
 638		add_disk_randomness(req->q->disk);
 639
 640	WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
 641		     !(cmd->flags & SCMD_INITIALIZED));
 642	cmd->flags = 0;
 
 643
 644	/*
 645	 * Calling rcu_barrier() is not necessary here because the
 646	 * SCSI error handler guarantees that the function called by
 647	 * call_rcu() has been called before scsi_end_request() is
 648	 * called.
 649	 */
 650	destroy_rcu_head(&cmd->rcu);
 651
 652	/*
 653	 * In the MQ case the command gets freed by __blk_mq_end_request,
 654	 * so we have to do all cleanup that depends on it earlier.
 655	 *
 656	 * We also can't kick the queues from irq context, so we
 657	 * will have to defer it to a workqueue.
 658	 */
 659	scsi_mq_uninit_cmd(cmd);
 660
 661	/*
 662	 * queue is still alive, so grab the ref for preventing it
 663	 * from being cleaned up during running queue.
 664	 */
 665	percpu_ref_get(&q->q_usage_counter);
 666
 667	__blk_mq_end_request(req, error);
 668
 669	scsi_run_queue_async(sdev);
 
 
 
 
 670
 671	percpu_ref_put(&q->q_usage_counter);
 672	return false;
 673}
 674
 675/**
 676 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 
 677 * @result:	scsi error code
 678 *
 679 * Translate a SCSI result code into a blk_status_t value.
 
 680 */
 681static blk_status_t scsi_result_to_blk_status(int result)
 682{
 683	/*
 684	 * Check the scsi-ml byte first in case we converted a host or status
 685	 * byte.
 686	 */
 687	switch (scsi_ml_byte(result)) {
 688	case SCSIML_STAT_OK:
 689		break;
 690	case SCSIML_STAT_RESV_CONFLICT:
 691		return BLK_STS_RESV_CONFLICT;
 692	case SCSIML_STAT_NOSPC:
 693		return BLK_STS_NOSPC;
 694	case SCSIML_STAT_MED_ERROR:
 695		return BLK_STS_MEDIUM;
 696	case SCSIML_STAT_TGT_FAILURE:
 697		return BLK_STS_TARGET;
 698	case SCSIML_STAT_DL_TIMEOUT:
 699		return BLK_STS_DURATION_LIMIT;
 700	}
 701
 702	switch (host_byte(result)) {
 703	case DID_OK:
 704		if (scsi_status_is_good(result))
 
 
 
 
 
 705			return BLK_STS_OK;
 706		return BLK_STS_IOERR;
 707	case DID_TRANSPORT_FAILFAST:
 708	case DID_TRANSPORT_MARGINAL:
 709		return BLK_STS_TRANSPORT;
 
 
 
 
 
 
 
 
 
 
 
 
 710	default:
 711		return BLK_STS_IOERR;
 712	}
 713}
 714
 715/**
 716 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
 717 * @rq: request to examine
 718 *
 719 * Description:
 720 *     A request could be merge of IOs which require different failure
 721 *     handling.  This function determines the number of bytes which
 722 *     can be failed from the beginning of the request without
 723 *     crossing into area which need to be retried further.
 724 *
 725 * Return:
 726 *     The number of bytes to fail.
 727 */
 728static unsigned int scsi_rq_err_bytes(const struct request *rq)
 729{
 730	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 731	unsigned int bytes = 0;
 732	struct bio *bio;
 733
 734	if (!(rq->rq_flags & RQF_MIXED_MERGE))
 735		return blk_rq_bytes(rq);
 736
 737	/*
 738	 * Currently the only 'mixing' which can happen is between
 739	 * different fastfail types.  We can safely fail portions
 740	 * which have all the failfast bits that the first one has -
 741	 * the ones which are at least as eager to fail as the first
 742	 * one.
 743	 */
 744	for (bio = rq->bio; bio; bio = bio->bi_next) {
 745		if ((bio->bi_opf & ff) != ff)
 746			break;
 747		bytes += bio->bi_iter.bi_size;
 748	}
 749
 750	/* this could lead to infinite loop */
 751	BUG_ON(blk_rq_bytes(rq) && !bytes);
 752	return bytes;
 753}
 754
 755static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
 756{
 757	struct request *req = scsi_cmd_to_rq(cmd);
 758	unsigned long wait_for;
 759
 760	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
 761		return false;
 762
 763	wait_for = (cmd->allowed + 1) * req->timeout;
 764	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
 765		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
 766			    wait_for/HZ);
 767		return true;
 768	}
 769	return false;
 770}
 771
 772/*
 773 * When ALUA transition state is returned, reprep the cmd to
 774 * use the ALUA handler's transition timeout. Delay the reprep
 775 * 1 sec to avoid aggressive retries of the target in that
 776 * state.
 777 */
 778#define ALUA_TRANSITION_REPREP_DELAY	1000
 779
 780/* Helper for scsi_io_completion() when special action required. */
 781static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 782{
 783	struct request *req = scsi_cmd_to_rq(cmd);
 
 784	int level = 0;
 785	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
 786	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
 
 787	struct scsi_sense_hdr sshdr;
 788	bool sense_valid;
 789	bool sense_current = true;      /* false implies "deferred sense" */
 790	blk_status_t blk_stat;
 791
 792	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 793	if (sense_valid)
 794		sense_current = !scsi_sense_is_deferred(&sshdr);
 795
 796	blk_stat = scsi_result_to_blk_status(result);
 797
 798	if (host_byte(result) == DID_RESET) {
 799		/* Third party bus reset or reset for error recovery
 800		 * reasons.  Just retry the command and see what
 801		 * happens.
 802		 */
 803		action = ACTION_RETRY;
 804	} else if (sense_valid && sense_current) {
 805		switch (sshdr.sense_key) {
 806		case UNIT_ATTENTION:
 807			if (cmd->device->removable) {
 808				/* Detected disc change.  Set a bit
 809				 * and quietly refuse further access.
 810				 */
 811				cmd->device->changed = 1;
 812				action = ACTION_FAIL;
 813			} else {
 814				/* Must have been a power glitch, or a
 815				 * bus reset.  Could not have been a
 816				 * media change, so we just retry the
 817				 * command and see what happens.
 818				 */
 819				action = ACTION_RETRY;
 820			}
 821			break;
 822		case ILLEGAL_REQUEST:
 823			/* If we had an ILLEGAL REQUEST returned, then
 824			 * we may have performed an unsupported
 825			 * command.  The only thing this should be
 826			 * would be a ten byte read where only a six
 827			 * byte read was supported.  Also, on a system
 828			 * where READ CAPACITY failed, we may have
 829			 * read past the end of the disk.
 830			 */
 831			if ((cmd->device->use_10_for_rw &&
 832			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 833			    (cmd->cmnd[0] == READ_10 ||
 834			     cmd->cmnd[0] == WRITE_10)) {
 835				/* This will issue a new 6-byte command. */
 836				cmd->device->use_10_for_rw = 0;
 837				action = ACTION_REPREP;
 838			} else if (sshdr.asc == 0x10) /* DIX */ {
 839				action = ACTION_FAIL;
 840				blk_stat = BLK_STS_PROTECTION;
 841			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 842			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 843				action = ACTION_FAIL;
 844				blk_stat = BLK_STS_TARGET;
 845			} else
 846				action = ACTION_FAIL;
 847			break;
 848		case ABORTED_COMMAND:
 849			action = ACTION_FAIL;
 850			if (sshdr.asc == 0x10) /* DIF */
 851				blk_stat = BLK_STS_PROTECTION;
 852			break;
 853		case NOT_READY:
 854			/* If the device is in the process of becoming
 855			 * ready, or has a temporary blockage, retry.
 856			 */
 857			if (sshdr.asc == 0x04) {
 858				switch (sshdr.ascq) {
 859				case 0x01: /* becoming ready */
 860				case 0x04: /* format in progress */
 861				case 0x05: /* rebuild in progress */
 862				case 0x06: /* recalculation in progress */
 863				case 0x07: /* operation in progress */
 864				case 0x08: /* Long write in progress */
 865				case 0x09: /* self test in progress */
 866				case 0x11: /* notify (enable spinup) required */
 867				case 0x14: /* space allocation in progress */
 868				case 0x1a: /* start stop unit in progress */
 869				case 0x1b: /* sanitize in progress */
 870				case 0x1d: /* configuration in progress */
 
 871					action = ACTION_DELAYED_RETRY;
 872					break;
 873				case 0x0a: /* ALUA state transition */
 874					action = ACTION_DELAYED_REPREP;
 875					break;
 876				/*
 877				 * Depopulation might take many hours,
 878				 * thus it is not worthwhile to retry.
 879				 */
 880				case 0x24: /* depopulation in progress */
 881				case 0x25: /* depopulation restore in progress */
 882					fallthrough;
 883				default:
 884					action = ACTION_FAIL;
 885					break;
 886				}
 887			} else
 888				action = ACTION_FAIL;
 889			break;
 890		case VOLUME_OVERFLOW:
 891			/* See SSC3rXX or current. */
 892			action = ACTION_FAIL;
 893			break;
 894		case DATA_PROTECT:
 895			action = ACTION_FAIL;
 896			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
 897			    (sshdr.asc == 0x55 &&
 898			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
 899				/* Insufficient zone resources */
 900				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
 901			}
 902			break;
 903		case COMPLETED:
 904			fallthrough;
 905		default:
 906			action = ACTION_FAIL;
 907			break;
 908		}
 909	} else
 910		action = ACTION_FAIL;
 911
 912	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
 
 913		action = ACTION_FAIL;
 914
 915	switch (action) {
 916	case ACTION_FAIL:
 917		/* Give up and fail the remainder of the request */
 918		if (!(req->rq_flags & RQF_QUIET)) {
 919			static DEFINE_RATELIMIT_STATE(_rs,
 920					DEFAULT_RATELIMIT_INTERVAL,
 921					DEFAULT_RATELIMIT_BURST);
 922
 923			if (unlikely(scsi_logging_level))
 924				level =
 925				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 926						    SCSI_LOG_MLCOMPLETE_BITS);
 927
 928			/*
 929			 * if logging is enabled the failure will be printed
 930			 * in scsi_log_completion(), so avoid duplicate messages
 931			 */
 932			if (!level && __ratelimit(&_rs)) {
 933				scsi_print_result(cmd, NULL, FAILED);
 934				if (sense_valid)
 935					scsi_print_sense(cmd);
 936				scsi_print_command(cmd);
 937			}
 938		}
 939		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
 940			return;
 941		fallthrough;
 942	case ACTION_REPREP:
 943		scsi_mq_requeue_cmd(cmd, 0);
 944		break;
 945	case ACTION_DELAYED_REPREP:
 946		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
 947		break;
 948	case ACTION_RETRY:
 949		/* Retry the same command immediately */
 950		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 951		break;
 952	case ACTION_DELAYED_RETRY:
 953		/* Retry the same command after a delay */
 954		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 955		break;
 956	}
 957}
 958
 959/*
 960 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 961 * new result that may suppress further error checking. Also modifies
 962 * *blk_statp in some cases.
 963 */
 964static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 965					blk_status_t *blk_statp)
 966{
 967	bool sense_valid;
 968	bool sense_current = true;	/* false implies "deferred sense" */
 969	struct request *req = scsi_cmd_to_rq(cmd);
 970	struct scsi_sense_hdr sshdr;
 971
 972	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 973	if (sense_valid)
 974		sense_current = !scsi_sense_is_deferred(&sshdr);
 975
 976	if (blk_rq_is_passthrough(req)) {
 977		if (sense_valid) {
 978			/*
 979			 * SG_IO wants current and deferred errors
 980			 */
 981			cmd->sense_len = min(8 + cmd->sense_buffer[7],
 982					     SCSI_SENSE_BUFFERSIZE);
 
 983		}
 984		if (sense_current)
 985			*blk_statp = scsi_result_to_blk_status(result);
 986	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 987		/*
 988		 * Flush commands do not transfers any data, and thus cannot use
 989		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 990		 * This sets *blk_statp explicitly for the problem case.
 991		 */
 992		*blk_statp = scsi_result_to_blk_status(result);
 993	}
 994	/*
 995	 * Recovered errors need reporting, but they're always treated as
 996	 * success, so fiddle the result code here.  For passthrough requests
 997	 * we already took a copy of the original into sreq->result which
 998	 * is what gets returned to the user
 999	 */
1000	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
1001		bool do_print = true;
1002		/*
1003		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
1004		 * skip print since caller wants ATA registers. Only occurs
1005		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
1006		 */
1007		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1008			do_print = false;
1009		else if (req->rq_flags & RQF_QUIET)
1010			do_print = false;
1011		if (do_print)
1012			scsi_print_sense(cmd);
1013		result = 0;
1014		/* for passthrough, *blk_statp may be set */
1015		*blk_statp = BLK_STS_OK;
1016	}
1017	/*
1018	 * Another corner case: the SCSI status byte is non-zero but 'good'.
1019	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1020	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1021	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1022	 * intermediate statuses (both obsolete in SAM-4) as good.
1023	 */
1024	if ((result & 0xff) && scsi_status_is_good(result)) {
1025		result = 0;
1026		*blk_statp = BLK_STS_OK;
1027	}
1028	return result;
1029}
1030
1031/**
1032 * scsi_io_completion - Completion processing for SCSI commands.
1033 * @cmd:	command that is finished.
1034 * @good_bytes:	number of processed bytes.
1035 *
1036 * We will finish off the specified number of sectors. If we are done, the
1037 * command block will be released and the queue function will be goosed. If we
1038 * are not done then we have to figure out what to do next:
1039 *
1040 *   a) We can call scsi_mq_requeue_cmd().  The request will be
1041 *	unprepared and put back on the queue.  Then a new command will
1042 *	be created for it.  This should be used if we made forward
1043 *	progress, or if we want to switch from READ(10) to READ(6) for
1044 *	example.
1045 *
1046 *   b) We can call scsi_io_completion_action().  The request will be
1047 *	put back on the queue and retried using the same command as
1048 *	before, possibly after a delay.
1049 *
1050 *   c) We can call scsi_end_request() with blk_stat other than
1051 *	BLK_STS_OK, to fail the remainder of the request.
 
 
 
 
 
 
 
 
 
 
1052 */
1053void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1054{
1055	int result = cmd->result;
1056	struct request *req = scsi_cmd_to_rq(cmd);
 
1057	blk_status_t blk_stat = BLK_STS_OK;
1058
1059	if (unlikely(result))	/* a nz result may or may not be an error */
1060		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1061
 
 
 
 
 
 
 
1062	/*
1063	 * Next deal with any sectors which we were able to correctly
1064	 * handle.
1065	 */
1066	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1067		"%u sectors total, %d bytes done.\n",
1068		blk_rq_sectors(req), good_bytes));
1069
1070	/*
1071	 * Failed, zero length commands always need to drop down
 
1072	 * to retry code. Fast path should return in this block.
1073	 */
1074	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1075		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1076			return; /* no bytes remaining */
1077	}
1078
1079	/* Kill remainder if no retries. */
1080	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1081		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1082			WARN_ONCE(true,
1083			    "Bytes remaining after failed, no-retry command");
1084		return;
1085	}
1086
1087	/*
1088	 * If there had been no error, but we have leftover bytes in the
1089	 * request just queue the command up again.
1090	 */
1091	if (likely(result == 0))
1092		scsi_mq_requeue_cmd(cmd, 0);
1093	else
1094		scsi_io_completion_action(cmd, result);
1095}
1096
1097static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1098		struct request *rq)
1099{
1100	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1101	       !op_is_write(req_op(rq)) &&
1102	       sdev->host->hostt->dma_need_drain(rq);
1103}
1104
1105/**
1106 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1107 * @cmd: SCSI command data structure to initialize.
1108 *
1109 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1110 * for @cmd.
1111 *
1112 * Returns:
1113 * * BLK_STS_OK       - on success
1114 * * BLK_STS_RESOURCE - if the failure is retryable
1115 * * BLK_STS_IOERR    - if the failure is fatal
1116 */
1117blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1118{
1119	struct scsi_device *sdev = cmd->device;
1120	struct request *rq = scsi_cmd_to_rq(cmd);
1121	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1122	struct scatterlist *last_sg = NULL;
1123	blk_status_t ret;
1124	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1125	int count;
1126
1127	if (WARN_ON_ONCE(!nr_segs))
1128		return BLK_STS_IOERR;
1129
1130	/*
1131	 * Make sure there is space for the drain.  The driver must adjust
1132	 * max_hw_segments to be prepared for this.
1133	 */
1134	if (need_drain)
1135		nr_segs++;
1136
1137	/*
1138	 * If sg table allocation fails, requeue request later.
1139	 */
1140	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1141			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
 
1142		return BLK_STS_RESOURCE;
1143
1144	/*
1145	 * Next, walk the list, and fill in the addresses and sizes of
1146	 * each segment.
1147	 */
1148	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1149
1150	if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) {
1151		unsigned int pad_len =
1152			(rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1153
1154		last_sg->length += pad_len;
1155		cmd->extra_len += pad_len;
1156	}
1157
1158	if (need_drain) {
1159		sg_unmark_end(last_sg);
1160		last_sg = sg_next(last_sg);
1161		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1162		sg_mark_end(last_sg);
 
 
 
 
 
 
 
 
 
 
1163
1164		cmd->extra_len += sdev->dma_drain_len;
1165		count++;
1166	}
1167
1168	BUG_ON(count > cmd->sdb.table.nents);
1169	cmd->sdb.table.nents = count;
1170	cmd->sdb.length = blk_rq_payload_bytes(rq);
1171
1172	if (blk_integrity_rq(rq)) {
1173		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
 
1174
1175		if (WARN_ON_ONCE(!prot_sdb)) {
1176			/*
1177			 * This can happen if someone (e.g. multipath)
1178			 * queues a command to a device on an adapter
1179			 * that does not support DIX.
1180			 */
1181			ret = BLK_STS_IOERR;
1182			goto out_free_sgtables;
1183		}
1184
1185		if (sg_alloc_table_chained(&prot_sdb->table,
1186				rq->nr_integrity_segments,
 
1187				prot_sdb->table.sgl,
1188				SCSI_INLINE_PROT_SG_CNT)) {
1189			ret = BLK_STS_RESOURCE;
1190			goto out_free_sgtables;
1191		}
1192
1193		count = blk_rq_map_integrity_sg(rq, prot_sdb->table.sgl);
 
 
 
 
1194		cmd->prot_sdb = prot_sdb;
1195		cmd->prot_sdb->table.nents = count;
1196	}
1197
1198	return BLK_STS_OK;
1199out_free_sgtables:
1200	scsi_free_sgtables(cmd);
1201	return ret;
1202}
1203EXPORT_SYMBOL(scsi_alloc_sgtables);
1204
1205/**
1206 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1207 * @rq: Request associated with the SCSI command to be initialized.
1208 *
1209 * This function initializes the members of struct scsi_cmnd that must be
1210 * initialized before request processing starts and that won't be
1211 * reinitialized if a SCSI command is requeued.
 
 
 
1212 */
1213static void scsi_initialize_rq(struct request *rq)
1214{
1215	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1216
1217	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1218	cmd->cmd_len = MAX_COMMAND_SIZE;
1219	cmd->sense_len = 0;
1220	init_rcu_head(&cmd->rcu);
1221	cmd->jiffies_at_alloc = jiffies;
1222	cmd->retries = 0;
1223}
1224
1225struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1226				   blk_mq_req_flags_t flags)
1227{
1228	struct request *rq;
1229
1230	rq = blk_mq_alloc_request(q, opf, flags);
1231	if (!IS_ERR(rq))
1232		scsi_initialize_rq(rq);
1233	return rq;
1234}
1235EXPORT_SYMBOL_GPL(scsi_alloc_request);
1236
1237/*
1238 * Only called when the request isn't completed by SCSI, and not freed by
1239 * SCSI
1240 */
1241static void scsi_cleanup_rq(struct request *rq)
1242{
1243	if (rq->rq_flags & RQF_DONTPREP) {
1244		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1245		rq->rq_flags &= ~RQF_DONTPREP;
1246	}
1247}
1248
1249/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1250void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1251{
1252	struct request *rq = scsi_cmd_to_rq(cmd);
 
 
 
 
 
1253
1254	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1255		cmd->flags |= SCMD_INITIALIZED;
1256		scsi_initialize_rq(rq);
1257	}
1258
 
 
 
 
 
 
1259	cmd->device = dev;
1260	INIT_LIST_HEAD(&cmd->eh_entry);
 
 
1261	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
 
 
 
 
1262}
1263
1264static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1265		struct request *req)
1266{
1267	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1268
1269	/*
1270	 * Passthrough requests may transfer data, in which case they must
1271	 * a bio attached to them.  Or they might contain a SCSI command
1272	 * that does not transfer data, in which case they may optionally
1273	 * submit a request without an attached bio.
1274	 */
1275	if (req->bio) {
1276		blk_status_t ret = scsi_alloc_sgtables(cmd);
1277		if (unlikely(ret != BLK_STS_OK))
1278			return ret;
1279	} else {
1280		BUG_ON(blk_rq_bytes(req));
1281
1282		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1283	}
1284
 
 
1285	cmd->transfersize = blk_rq_bytes(req);
 
1286	return BLK_STS_OK;
1287}
1288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289static blk_status_t
1290scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1291{
1292	switch (sdev->sdev_state) {
1293	case SDEV_CREATED:
1294		return BLK_STS_OK;
1295	case SDEV_OFFLINE:
1296	case SDEV_TRANSPORT_OFFLINE:
1297		/*
1298		 * If the device is offline we refuse to process any
1299		 * commands.  The device must be brought online
1300		 * before trying any recovery commands.
1301		 */
1302		if (!sdev->offline_already) {
1303			sdev->offline_already = true;
1304			sdev_printk(KERN_ERR, sdev,
1305				    "rejecting I/O to offline device\n");
1306		}
1307		return BLK_STS_IOERR;
1308	case SDEV_DEL:
1309		/*
1310		 * If the device is fully deleted, we refuse to
1311		 * process any commands as well.
1312		 */
1313		sdev_printk(KERN_ERR, sdev,
1314			    "rejecting I/O to dead device\n");
1315		return BLK_STS_IOERR;
1316	case SDEV_BLOCK:
1317	case SDEV_CREATED_BLOCK:
1318		return BLK_STS_RESOURCE;
1319	case SDEV_QUIESCE:
1320		/*
1321		 * If the device is blocked we only accept power management
1322		 * commands.
1323		 */
1324		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1325			return BLK_STS_RESOURCE;
1326		return BLK_STS_OK;
1327	default:
1328		/*
1329		 * For any other not fully online state we only allow
1330		 * power management commands.
 
1331		 */
1332		if (req && !(req->rq_flags & RQF_PM))
1333			return BLK_STS_OFFLINE;
1334		return BLK_STS_OK;
1335	}
1336}
1337
1338/*
1339 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1340 * and return the token else return -1.
 
 
1341 */
1342static inline int scsi_dev_queue_ready(struct request_queue *q,
1343				  struct scsi_device *sdev)
1344{
1345	int token;
1346
1347	token = sbitmap_get(&sdev->budget_map);
1348	if (token < 0)
1349		return -1;
1350
1351	if (!atomic_read(&sdev->device_blocked))
1352		return token;
 
 
1353
1354	/*
1355	 * Only unblock if no other commands are pending and
1356	 * if device_blocked has decreased to zero
1357	 */
1358	if (scsi_device_busy(sdev) > 1 ||
1359	    atomic_dec_return(&sdev->device_blocked) > 0) {
1360		sbitmap_put(&sdev->budget_map, token);
1361		return -1;
1362	}
1363
1364	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1365			 "unblocking device at zero depth\n"));
1366
1367	return token;
 
 
 
1368}
1369
1370/*
1371 * scsi_target_queue_ready: checks if there we can send commands to target
1372 * @sdev: scsi device on starget to check.
1373 */
1374static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1375					   struct scsi_device *sdev)
1376{
1377	struct scsi_target *starget = scsi_target(sdev);
1378	unsigned int busy;
1379
1380	if (starget->single_lun) {
1381		spin_lock_irq(shost->host_lock);
1382		if (starget->starget_sdev_user &&
1383		    starget->starget_sdev_user != sdev) {
1384			spin_unlock_irq(shost->host_lock);
1385			return 0;
1386		}
1387		starget->starget_sdev_user = sdev;
1388		spin_unlock_irq(shost->host_lock);
1389	}
1390
1391	if (starget->can_queue <= 0)
1392		return 1;
1393
1394	busy = atomic_inc_return(&starget->target_busy) - 1;
1395	if (atomic_read(&starget->target_blocked) > 0) {
1396		if (busy)
1397			goto starved;
1398
1399		/*
1400		 * unblock after target_blocked iterates to zero
1401		 */
1402		if (atomic_dec_return(&starget->target_blocked) > 0)
1403			goto out_dec;
1404
1405		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1406				 "unblocking target at zero depth\n"));
1407	}
1408
1409	if (busy >= starget->can_queue)
1410		goto starved;
1411
1412	return 1;
1413
1414starved:
1415	spin_lock_irq(shost->host_lock);
1416	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1417	spin_unlock_irq(shost->host_lock);
1418out_dec:
1419	if (starget->can_queue > 0)
1420		atomic_dec(&starget->target_busy);
1421	return 0;
1422}
1423
1424/*
1425 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1426 * return 0. We must end up running the queue again whenever 0 is
1427 * returned, else IO can hang.
1428 */
1429static inline int scsi_host_queue_ready(struct request_queue *q,
1430				   struct Scsi_Host *shost,
1431				   struct scsi_device *sdev,
1432				   struct scsi_cmnd *cmd)
1433{
 
 
 
 
 
 
1434	if (atomic_read(&shost->host_blocked) > 0) {
1435		if (scsi_host_busy(shost) > 0)
1436			goto starved;
1437
1438		/*
1439		 * unblock after host_blocked iterates to zero
1440		 */
1441		if (atomic_dec_return(&shost->host_blocked) > 0)
1442			goto out_dec;
1443
1444		SCSI_LOG_MLQUEUE(3,
1445			shost_printk(KERN_INFO, shost,
1446				     "unblocking host at zero depth\n"));
1447	}
1448
 
 
1449	if (shost->host_self_blocked)
1450		goto starved;
1451
1452	/* We're OK to process the command, so we can't be starved */
1453	if (!list_empty(&sdev->starved_entry)) {
1454		spin_lock_irq(shost->host_lock);
1455		if (!list_empty(&sdev->starved_entry))
1456			list_del_init(&sdev->starved_entry);
1457		spin_unlock_irq(shost->host_lock);
1458	}
1459
1460	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1461
1462	return 1;
1463
1464starved:
1465	spin_lock_irq(shost->host_lock);
1466	if (list_empty(&sdev->starved_entry))
1467		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1468	spin_unlock_irq(shost->host_lock);
1469out_dec:
1470	scsi_dec_host_busy(shost, cmd);
1471	return 0;
1472}
1473
1474/*
1475 * Busy state exporting function for request stacking drivers.
1476 *
1477 * For efficiency, no lock is taken to check the busy state of
1478 * shost/starget/sdev, since the returned value is not guaranteed and
1479 * may be changed after request stacking drivers call the function,
1480 * regardless of taking lock or not.
1481 *
1482 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1483 * needs to return 'not busy'. Otherwise, request stacking drivers
1484 * may hold requests forever.
1485 */
1486static bool scsi_mq_lld_busy(struct request_queue *q)
1487{
1488	struct scsi_device *sdev = q->queuedata;
1489	struct Scsi_Host *shost;
1490
1491	if (blk_queue_dying(q))
1492		return false;
1493
1494	shost = sdev->host;
1495
1496	/*
1497	 * Ignore host/starget busy state.
1498	 * Since block layer does not have a concept of fairness across
1499	 * multiple queues, congestion of host/starget needs to be handled
1500	 * in SCSI layer.
1501	 */
1502	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1503		return true;
1504
1505	return false;
1506}
1507
1508/*
1509 * Block layer request completion callback. May be called from interrupt
1510 * context.
1511 */
1512static void scsi_complete(struct request *rq)
1513{
1514	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1515	enum scsi_disposition disposition;
 
1516
1517	INIT_LIST_HEAD(&cmd->eh_entry);
1518
1519	atomic_inc(&cmd->device->iodone_cnt);
1520	if (cmd->result)
1521		atomic_inc(&cmd->device->ioerr_cnt);
1522
1523	disposition = scsi_decide_disposition(cmd);
1524	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
 
 
 
 
1525		disposition = SUCCESS;
 
1526
1527	scsi_log_completion(cmd, disposition);
1528
1529	switch (disposition) {
1530	case SUCCESS:
1531		scsi_finish_command(cmd);
1532		break;
1533	case NEEDS_RETRY:
1534		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1535		break;
1536	case ADD_TO_MLQUEUE:
1537		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1538		break;
1539	default:
1540		scsi_eh_scmd_add(cmd);
1541		break;
1542	}
1543}
1544
1545/**
1546 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1547 * @cmd: command block we are dispatching.
1548 *
1549 * Return: nonzero return request was rejected and device's queue needs to be
1550 * plugged.
1551 */
1552static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1553{
1554	struct Scsi_Host *host = cmd->device->host;
1555	int rtn = 0;
1556
1557	atomic_inc(&cmd->device->iorequest_cnt);
1558
1559	/* check if the device is still usable */
1560	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1561		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1562		 * returns an immediate error upwards, and signals
1563		 * that the device is no longer present */
1564		cmd->result = DID_NO_CONNECT << 16;
1565		goto done;
1566	}
1567
1568	/* Check to see if the scsi lld made this device blocked. */
1569	if (unlikely(scsi_device_blocked(cmd->device))) {
1570		/*
1571		 * in blocked state, the command is just put back on
1572		 * the device queue.  The suspend state has already
1573		 * blocked the queue so future requests should not
1574		 * occur until the device transitions out of the
1575		 * suspend state.
1576		 */
1577		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1578			"queuecommand : device blocked\n"));
1579		atomic_dec(&cmd->device->iorequest_cnt);
1580		return SCSI_MLQUEUE_DEVICE_BUSY;
1581	}
1582
1583	/* Store the LUN value in cmnd, if needed. */
1584	if (cmd->device->lun_in_cdb)
1585		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1586			       (cmd->device->lun << 5 & 0xe0);
1587
1588	scsi_log_send(cmd);
1589
1590	/*
1591	 * Before we queue this command, check if the command
1592	 * length exceeds what the host adapter can handle.
1593	 */
1594	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1595		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1596			       "queuecommand : command too long. "
1597			       "cdb_size=%d host->max_cmd_len=%d\n",
1598			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1599		cmd->result = (DID_ABORT << 16);
1600		goto done;
1601	}
1602
1603	if (unlikely(host->shost_state == SHOST_DEL)) {
1604		cmd->result = (DID_NO_CONNECT << 16);
1605		goto done;
1606
1607	}
1608
1609	trace_scsi_dispatch_cmd_start(cmd);
1610	rtn = host->hostt->queuecommand(host, cmd);
1611	if (rtn) {
1612		atomic_dec(&cmd->device->iorequest_cnt);
1613		trace_scsi_dispatch_cmd_error(cmd, rtn);
1614		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1615		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1616			rtn = SCSI_MLQUEUE_HOST_BUSY;
1617
1618		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1619			"queuecommand : request rejected\n"));
1620	}
1621
1622	return rtn;
1623 done:
1624	scsi_done(cmd);
1625	return 0;
1626}
1627
1628/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1629static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1630{
1631	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1632		sizeof(struct scatterlist);
1633}
1634
1635static blk_status_t scsi_prepare_cmd(struct request *req)
1636{
1637	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1638	struct scsi_device *sdev = req->q->queuedata;
1639	struct Scsi_Host *shost = sdev->host;
1640	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1641	struct scatterlist *sg;
1642
1643	scsi_init_command(sdev, cmd);
1644
1645	cmd->eh_eflags = 0;
1646	cmd->prot_type = 0;
1647	cmd->prot_flags = 0;
1648	cmd->submitter = 0;
1649	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1650	cmd->underflow = 0;
1651	cmd->transfersize = 0;
1652	cmd->host_scribble = NULL;
1653	cmd->result = 0;
1654	cmd->extra_len = 0;
1655	cmd->state = 0;
1656	if (in_flight)
1657		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1658
1659	cmd->prot_op = SCSI_PROT_NORMAL;
1660	if (blk_rq_bytes(req))
1661		cmd->sc_data_direction = rq_dma_dir(req);
1662	else
1663		cmd->sc_data_direction = DMA_NONE;
1664
1665	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1666	cmd->sdb.table.sgl = sg;
1667
1668	if (scsi_host_get_prot(shost)) {
1669		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1670
1671		cmd->prot_sdb->table.sgl =
1672			(struct scatterlist *)(cmd->prot_sdb + 1);
1673	}
1674
1675	/*
1676	 * Special handling for passthrough commands, which don't go to the ULP
1677	 * at all:
1678	 */
1679	if (blk_rq_is_passthrough(req))
1680		return scsi_setup_scsi_cmnd(sdev, req);
1681
1682	if (sdev->handler && sdev->handler->prep_fn) {
1683		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1684
1685		if (ret != BLK_STS_OK)
1686			return ret;
1687	}
1688
1689	/* Usually overridden by the ULP */
1690	cmd->allowed = 0;
1691	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1692	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1693}
1694
1695static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1696{
1697	struct request *req = scsi_cmd_to_rq(cmd);
1698
1699	switch (cmd->submitter) {
1700	case SUBMITTED_BY_BLOCK_LAYER:
1701		break;
1702	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1703		return scsi_eh_done(cmd);
1704	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1705		return;
1706	}
1707
1708	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1709		return;
1710	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1711		return;
1712	trace_scsi_dispatch_cmd_done(cmd);
1713
1714	if (complete_directly)
1715		blk_mq_complete_request_direct(req, scsi_complete);
1716	else
1717		blk_mq_complete_request(req);
1718}
1719
1720void scsi_done(struct scsi_cmnd *cmd)
1721{
1722	scsi_done_internal(cmd, false);
1723}
1724EXPORT_SYMBOL(scsi_done);
1725
1726void scsi_done_direct(struct scsi_cmnd *cmd)
1727{
1728	scsi_done_internal(cmd, true);
1729}
1730EXPORT_SYMBOL(scsi_done_direct);
1731
1732static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1733{
 
1734	struct scsi_device *sdev = q->queuedata;
1735
1736	sbitmap_put(&sdev->budget_map, budget_token);
1737}
1738
1739/*
1740 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1741 * not change behaviour from the previous unplug mechanism, experimentation
1742 * may prove this needs changing.
1743 */
1744#define SCSI_QUEUE_DELAY 3
1745
1746static int scsi_mq_get_budget(struct request_queue *q)
1747{
 
1748	struct scsi_device *sdev = q->queuedata;
1749	int token = scsi_dev_queue_ready(q, sdev);
1750
1751	if (token >= 0)
1752		return token;
1753
1754	atomic_inc(&sdev->restarts);
1755
1756	/*
1757	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1758	 * .restarts must be incremented before .device_busy is read because the
1759	 * code in scsi_run_queue_async() depends on the order of these operations.
1760	 */
1761	smp_mb__after_atomic();
1762
1763	/*
1764	 * If all in-flight requests originated from this LUN are completed
1765	 * before reading .device_busy, sdev->device_busy will be observed as
1766	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1767	 * soon. Otherwise, completion of one of these requests will observe
1768	 * the .restarts flag, and the request queue will be run for handling
1769	 * this request, see scsi_end_request().
1770	 */
1771	if (unlikely(scsi_device_busy(sdev) == 0 &&
1772				!scsi_device_blocked(sdev)))
1773		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1774	return -1;
1775}
1776
1777static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1778{
1779	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1780
1781	cmd->budget_token = token;
1782}
1783
1784static int scsi_mq_get_rq_budget_token(struct request *req)
1785{
1786	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1787
1788	return cmd->budget_token;
 
 
1789}
1790
1791static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1792			 const struct blk_mq_queue_data *bd)
1793{
1794	struct request *req = bd->rq;
1795	struct request_queue *q = req->q;
1796	struct scsi_device *sdev = q->queuedata;
1797	struct Scsi_Host *shost = sdev->host;
1798	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1799	blk_status_t ret;
1800	int reason;
1801
1802	WARN_ON_ONCE(cmd->budget_token < 0);
1803
1804	/*
1805	 * If the device is not in running state we will reject some or all
1806	 * commands.
1807	 */
1808	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1809		ret = scsi_device_state_check(sdev, req);
1810		if (ret != BLK_STS_OK)
1811			goto out_put_budget;
1812	}
1813
1814	ret = BLK_STS_RESOURCE;
1815	if (!scsi_target_queue_ready(shost, sdev))
1816		goto out_put_budget;
1817	if (unlikely(scsi_host_in_recovery(shost))) {
1818		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1819			ret = BLK_STS_OFFLINE;
1820		goto out_dec_target_busy;
1821	}
1822	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1823		goto out_dec_target_busy;
1824
1825	/*
1826	 * Only clear the driver-private command data if the LLD does not supply
1827	 * a function to initialize that data.
1828	 */
1829	if (shost->hostt->cmd_size && !shost->hostt->init_cmd_priv)
1830		memset(cmd + 1, 0, shost->hostt->cmd_size);
1831
1832	if (!(req->rq_flags & RQF_DONTPREP)) {
1833		ret = scsi_prepare_cmd(req);
1834		if (ret != BLK_STS_OK)
1835			goto out_dec_host_busy;
1836		req->rq_flags |= RQF_DONTPREP;
1837	} else {
1838		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
 
1839	}
1840
1841	cmd->flags &= SCMD_PRESERVED_FLAGS;
1842	if (sdev->simple_tags)
1843		cmd->flags |= SCMD_TAGGED;
1844	if (bd->last)
1845		cmd->flags |= SCMD_LAST;
1846
1847	scsi_set_resid(cmd, 0);
1848	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1849	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1850
1851	blk_mq_start_request(req);
1852	reason = scsi_dispatch_cmd(cmd);
1853	if (reason) {
1854		scsi_set_blocked(cmd, reason);
1855		ret = BLK_STS_RESOURCE;
1856		goto out_dec_host_busy;
1857	}
1858
1859	return BLK_STS_OK;
1860
1861out_dec_host_busy:
1862	scsi_dec_host_busy(shost, cmd);
1863out_dec_target_busy:
1864	if (scsi_target(sdev)->can_queue > 0)
1865		atomic_dec(&scsi_target(sdev)->target_busy);
1866out_put_budget:
1867	scsi_mq_put_budget(q, cmd->budget_token);
1868	cmd->budget_token = -1;
1869	switch (ret) {
1870	case BLK_STS_OK:
1871		break;
1872	case BLK_STS_RESOURCE:
1873		if (scsi_device_blocked(sdev))
 
1874			ret = BLK_STS_DEV_RESOURCE;
1875		break;
1876	case BLK_STS_AGAIN:
1877		cmd->result = DID_BUS_BUSY << 16;
1878		if (req->rq_flags & RQF_DONTPREP)
1879			scsi_mq_uninit_cmd(cmd);
1880		break;
1881	default:
1882		if (unlikely(!scsi_device_online(sdev)))
1883			cmd->result = DID_NO_CONNECT << 16;
1884		else
1885			cmd->result = DID_ERROR << 16;
1886		/*
1887		 * Make sure to release all allocated resources when
1888		 * we hit an error, as we will never see this command
1889		 * again.
1890		 */
1891		if (req->rq_flags & RQF_DONTPREP)
1892			scsi_mq_uninit_cmd(cmd);
1893		scsi_run_queue_async(sdev);
1894		break;
1895	}
1896	return ret;
1897}
1898
 
 
 
 
 
 
 
 
1899static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1900				unsigned int hctx_idx, unsigned int numa_node)
1901{
1902	struct Scsi_Host *shost = set->driver_data;
 
1903	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1904	struct scatterlist *sg;
1905	int ret = 0;
1906
1907	cmd->sense_buffer =
1908		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
 
 
1909	if (!cmd->sense_buffer)
1910		return -ENOMEM;
 
1911
1912	if (scsi_host_get_prot(shost)) {
1913		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1914			shost->hostt->cmd_size;
1915		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1916	}
1917
1918	if (shost->hostt->init_cmd_priv) {
1919		ret = shost->hostt->init_cmd_priv(shost, cmd);
1920		if (ret < 0)
1921			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1922	}
1923
1924	return ret;
1925}
1926
1927static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1928				 unsigned int hctx_idx)
1929{
1930	struct Scsi_Host *shost = set->driver_data;
1931	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1932
1933	if (shost->hostt->exit_cmd_priv)
1934		shost->hostt->exit_cmd_priv(shost, cmd);
1935	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1936}
1937
1938
1939static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1940{
1941	struct Scsi_Host *shost = hctx->driver_data;
1942
1943	if (shost->hostt->mq_poll)
1944		return shost->hostt->mq_poll(shost, hctx->queue_num);
1945
1946	return 0;
1947}
1948
1949static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1950			  unsigned int hctx_idx)
1951{
1952	struct Scsi_Host *shost = data;
1953
1954	hctx->driver_data = shost;
1955	return 0;
1956}
1957
1958static void scsi_map_queues(struct blk_mq_tag_set *set)
1959{
1960	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1961
1962	if (shost->hostt->map_queues)
1963		return shost->hostt->map_queues(shost);
1964	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1965}
1966
1967void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim)
1968{
1969	struct device *dev = shost->dma_dev;
1970
1971	memset(lim, 0, sizeof(*lim));
1972	lim->max_segments =
1973		min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS);
 
 
1974
1975	if (scsi_host_prot_dma(shost)) {
1976		shost->sg_prot_tablesize =
1977			min_not_zero(shost->sg_prot_tablesize,
1978				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1979		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1980		lim->max_integrity_segments = shost->sg_prot_tablesize;
1981	}
1982
1983	lim->max_hw_sectors = shost->max_sectors;
1984	lim->seg_boundary_mask = shost->dma_boundary;
1985	lim->max_segment_size = shost->max_segment_size;
1986	lim->virt_boundary_mask = shost->virt_boundary_mask;
1987	lim->dma_alignment = max_t(unsigned int,
1988		shost->dma_alignment, dma_get_cache_alignment() - 1);
 
 
 
1989
1990	if (shost->no_highmem)
1991		lim->features |= BLK_FEAT_BOUNCE_HIGH;
 
1992
1993	/*
1994	 * Propagate the DMA formation properties to the dma-mapping layer as
1995	 * a courtesy service to the LLDDs.  This needs to check that the buses
1996	 * actually support the DMA API first, though.
 
 
1997	 */
1998	if (dev->dma_parms) {
1999		dma_set_seg_boundary(dev, shost->dma_boundary);
2000		dma_set_max_seg_size(dev, shost->max_segment_size);
2001	}
2002}
2003EXPORT_SYMBOL_GPL(scsi_init_limits);
2004
2005static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2006	.get_budget	= scsi_mq_get_budget,
2007	.put_budget	= scsi_mq_put_budget,
2008	.queue_rq	= scsi_queue_rq,
2009	.complete	= scsi_complete,
2010	.timeout	= scsi_timeout,
2011#ifdef CONFIG_BLK_DEBUG_FS
2012	.show_rq	= scsi_show_rq,
2013#endif
2014	.init_request	= scsi_mq_init_request,
2015	.exit_request	= scsi_mq_exit_request,
 
2016	.cleanup_rq	= scsi_cleanup_rq,
2017	.busy		= scsi_mq_lld_busy,
2018	.map_queues	= scsi_map_queues,
2019	.init_hctx	= scsi_init_hctx,
2020	.poll		= scsi_mq_poll,
2021	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2022	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2023};
2024
2025
2026static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2027{
2028	struct Scsi_Host *shost = hctx->driver_data;
 
 
2029
2030	shost->hostt->commit_rqs(shost, hctx->queue_num);
2031}
2032
2033static const struct blk_mq_ops scsi_mq_ops = {
2034	.get_budget	= scsi_mq_get_budget,
2035	.put_budget	= scsi_mq_put_budget,
2036	.queue_rq	= scsi_queue_rq,
2037	.commit_rqs	= scsi_commit_rqs,
2038	.complete	= scsi_complete,
2039	.timeout	= scsi_timeout,
2040#ifdef CONFIG_BLK_DEBUG_FS
2041	.show_rq	= scsi_show_rq,
2042#endif
2043	.init_request	= scsi_mq_init_request,
2044	.exit_request	= scsi_mq_exit_request,
 
2045	.cleanup_rq	= scsi_cleanup_rq,
2046	.busy		= scsi_mq_lld_busy,
2047	.map_queues	= scsi_map_queues,
2048	.init_hctx	= scsi_init_hctx,
2049	.poll		= scsi_mq_poll,
2050	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2051	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2052};
2053
 
 
 
 
 
 
 
 
 
 
 
 
2054int scsi_mq_setup_tags(struct Scsi_Host *shost)
2055{
2056	unsigned int cmd_size, sgl_size;
2057	struct blk_mq_tag_set *tag_set = &shost->tag_set;
2058
2059	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2060				scsi_mq_inline_sgl_size(shost));
2061	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2062	if (scsi_host_get_prot(shost))
2063		cmd_size += sizeof(struct scsi_data_buffer) +
2064			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2065
2066	memset(tag_set, 0, sizeof(*tag_set));
2067	if (shost->hostt->commit_rqs)
2068		tag_set->ops = &scsi_mq_ops;
2069	else
2070		tag_set->ops = &scsi_mq_ops_no_commit;
2071	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2072	tag_set->nr_maps = shost->nr_maps ? : 1;
2073	tag_set->queue_depth = shost->can_queue;
2074	tag_set->cmd_size = cmd_size;
2075	tag_set->numa_node = dev_to_node(shost->dma_dev);
2076	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2077	tag_set->flags |=
2078		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2079	if (shost->queuecommand_may_block)
2080		tag_set->flags |= BLK_MQ_F_BLOCKING;
2081	tag_set->driver_data = shost;
2082	if (shost->host_tagset)
2083		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2084
2085	return blk_mq_alloc_tag_set(tag_set);
2086}
2087
2088void scsi_mq_free_tags(struct kref *kref)
2089{
2090	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2091					       tagset_refcnt);
2092
2093	blk_mq_free_tag_set(&shost->tag_set);
2094	complete(&shost->tagset_freed);
2095}
2096
2097/**
2098 * scsi_device_from_queue - return sdev associated with a request_queue
2099 * @q: The request queue to return the sdev from
2100 *
2101 * Return the sdev associated with a request queue or NULL if the
2102 * request_queue does not reference a SCSI device.
2103 */
2104struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2105{
2106	struct scsi_device *sdev = NULL;
2107
2108	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2109	    q->mq_ops == &scsi_mq_ops)
2110		sdev = q->queuedata;
2111	if (!sdev || !get_device(&sdev->sdev_gendev))
2112		sdev = NULL;
2113
2114	return sdev;
2115}
2116/*
2117 * pktcdvd should have been integrated into the SCSI layers, but for historical
2118 * reasons like the old IDE driver it isn't.  This export allows it to safely
2119 * probe if a given device is a SCSI one and only attach to that.
2120 */
2121#ifdef CONFIG_CDROM_PKTCDVD_MODULE
2122EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2123#endif
2124
2125/**
2126 * scsi_block_requests - Utility function used by low-level drivers to prevent
2127 * further commands from being queued to the device.
2128 * @shost:  host in question
 
 
 
2129 *
2130 * There is no timer nor any other means by which the requests get unblocked
2131 * other than the low-level driver calling scsi_unblock_requests().
 
 
 
 
 
2132 */
2133void scsi_block_requests(struct Scsi_Host *shost)
2134{
2135	shost->host_self_blocked = 1;
2136}
2137EXPORT_SYMBOL(scsi_block_requests);
2138
2139/**
2140 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2141 * further commands to be queued to the device.
2142 * @shost:  host in question
2143 *
2144 * There is no timer nor any other means by which the requests get unblocked
2145 * other than the low-level driver calling scsi_unblock_requests(). This is done
2146 * as an API function so that changes to the internals of the scsi mid-layer
2147 * won't require wholesale changes to drivers that use this feature.
 
 
 
 
 
 
 
 
 
 
2148 */
2149void scsi_unblock_requests(struct Scsi_Host *shost)
2150{
2151	shost->host_self_blocked = 0;
2152	scsi_run_host_queues(shost);
2153}
2154EXPORT_SYMBOL(scsi_unblock_requests);
2155
 
 
 
 
 
 
 
 
 
 
 
 
 
2156void scsi_exit_queue(void)
2157{
2158	kmem_cache_destroy(scsi_sense_cache);
 
 
2159}
2160
2161/**
2162 *	scsi_mode_select - issue a mode select
2163 *	@sdev:	SCSI device to be queried
2164 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2165 *	@sp:	Save page bit (0 == don't save, 1 == save)
 
2166 *	@buffer: request buffer (may not be smaller than eight bytes)
2167 *	@len:	length of request buffer.
2168 *	@timeout: command timeout
2169 *	@retries: number of retries before failing
2170 *	@data: returns a structure abstracting the mode header data
2171 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2172 *		must be SCSI_SENSE_BUFFERSIZE big.
2173 *
2174 *	Returns zero if successful; negative error number or scsi
2175 *	status on error
2176 *
2177 */
2178int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2179		     unsigned char *buffer, int len, int timeout, int retries,
2180		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
 
2181{
2182	unsigned char cmd[10];
2183	unsigned char *real_buffer;
2184	const struct scsi_exec_args exec_args = {
2185		.sshdr = sshdr,
2186	};
2187	int ret;
2188
2189	memset(cmd, 0, sizeof(cmd));
2190	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2191
2192	/*
2193	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2194	 * and the mode select header cannot fit within the maximumm 255 bytes
2195	 * of the MODE SELECT(6) command.
2196	 */
2197	if (sdev->use_10_for_ms ||
2198	    len + 4 > 255 ||
2199	    data->block_descriptor_length > 255) {
2200		if (len > 65535 - 8)
2201			return -EINVAL;
2202		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2203		if (!real_buffer)
2204			return -ENOMEM;
2205		memcpy(real_buffer + 8, buffer, len);
2206		len += 8;
2207		real_buffer[0] = 0;
2208		real_buffer[1] = 0;
2209		real_buffer[2] = data->medium_type;
2210		real_buffer[3] = data->device_specific;
2211		real_buffer[4] = data->longlba ? 0x01 : 0;
2212		real_buffer[5] = 0;
2213		put_unaligned_be16(data->block_descriptor_length,
2214				   &real_buffer[6]);
2215
2216		cmd[0] = MODE_SELECT_10;
2217		put_unaligned_be16(len, &cmd[7]);
 
2218	} else {
2219		if (data->longlba)
 
2220			return -EINVAL;
2221
2222		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2223		if (!real_buffer)
2224			return -ENOMEM;
2225		memcpy(real_buffer + 4, buffer, len);
2226		len += 4;
2227		real_buffer[0] = 0;
2228		real_buffer[1] = data->medium_type;
2229		real_buffer[2] = data->device_specific;
2230		real_buffer[3] = data->block_descriptor_length;
 
2231
2232		cmd[0] = MODE_SELECT;
2233		cmd[4] = len;
2234	}
2235
2236	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2237			       timeout, retries, &exec_args);
2238	kfree(real_buffer);
2239	return ret;
2240}
2241EXPORT_SYMBOL_GPL(scsi_mode_select);
2242
2243/**
2244 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2245 *	@sdev:	SCSI device to be queried
2246 *	@dbd:	set to prevent mode sense from returning block descriptors
2247 *	@modepage: mode page being requested
2248 *	@subpage: sub-page of the mode page being requested
2249 *	@buffer: request buffer (may not be smaller than eight bytes)
2250 *	@len:	length of request buffer.
2251 *	@timeout: command timeout
2252 *	@retries: number of retries before failing
2253 *	@data: returns a structure abstracting the mode header data
2254 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2255 *		must be SCSI_SENSE_BUFFERSIZE big.
2256 *
2257 *	Returns zero if successful, or a negative error number on failure
 
 
2258 */
2259int
2260scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2261		  unsigned char *buffer, int len, int timeout, int retries,
2262		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2263{
2264	unsigned char cmd[12];
2265	int use_10_for_ms;
2266	int header_length;
2267	int result;
2268	struct scsi_sense_hdr my_sshdr;
2269	struct scsi_failure failure_defs[] = {
2270		{
2271			.sense = UNIT_ATTENTION,
2272			.asc = SCMD_FAILURE_ASC_ANY,
2273			.ascq = SCMD_FAILURE_ASCQ_ANY,
2274			.allowed = retries,
2275			.result = SAM_STAT_CHECK_CONDITION,
2276		},
2277		{}
2278	};
2279	struct scsi_failures failures = {
2280		.failure_definitions = failure_defs,
2281	};
2282	const struct scsi_exec_args exec_args = {
2283		/* caller might not be interested in sense, but we need it */
2284		.sshdr = sshdr ? : &my_sshdr,
2285		.failures = &failures,
2286	};
2287
2288	memset(data, 0, sizeof(*data));
2289	memset(&cmd[0], 0, 12);
2290
2291	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2292	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2293	cmd[2] = modepage;
2294	cmd[3] = subpage;
2295
2296	sshdr = exec_args.sshdr;
 
 
2297
2298 retry:
2299	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2300
2301	if (use_10_for_ms) {
2302		if (len < 8 || len > 65535)
2303			return -EINVAL;
2304
2305		cmd[0] = MODE_SENSE_10;
2306		put_unaligned_be16(len, &cmd[7]);
2307		header_length = 8;
2308	} else {
2309		if (len < 4)
2310			return -EINVAL;
2311
2312		cmd[0] = MODE_SENSE;
2313		cmd[4] = len;
2314		header_length = 4;
2315	}
2316
2317	memset(buffer, 0, len);
2318
2319	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2320				  timeout, retries, &exec_args);
2321	if (result < 0)
2322		return result;
2323
2324	/* This code looks awful: what it's doing is making sure an
2325	 * ILLEGAL REQUEST sense return identifies the actual command
2326	 * byte as the problem.  MODE_SENSE commands can return
2327	 * ILLEGAL REQUEST if the code page isn't supported */
2328
2329	if (!scsi_status_is_good(result)) {
 
2330		if (scsi_sense_valid(sshdr)) {
2331			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2332			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2333				/*
2334				 * Invalid command operation code: retry using
2335				 * MODE SENSE(6) if this was a MODE SENSE(10)
2336				 * request, except if the request mode page is
2337				 * too large for MODE SENSE single byte
2338				 * allocation length field.
2339				 */
2340				if (use_10_for_ms) {
2341					if (len > 255)
2342						return -EIO;
2343					sdev->use_10_for_ms = 0;
2344					goto retry;
2345				}
2346			}
2347		}
2348		return -EIO;
2349	}
2350	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2351		     (modepage == 6 || modepage == 8))) {
2352		/* Initio breakage? */
2353		header_length = 0;
2354		data->length = 13;
2355		data->medium_type = 0;
2356		data->device_specific = 0;
2357		data->longlba = 0;
2358		data->block_descriptor_length = 0;
2359	} else if (use_10_for_ms) {
2360		data->length = get_unaligned_be16(&buffer[0]) + 2;
2361		data->medium_type = buffer[2];
2362		data->device_specific = buffer[3];
2363		data->longlba = buffer[4] & 0x01;
2364		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2365	} else {
2366		data->length = buffer[0] + 1;
2367		data->medium_type = buffer[1];
2368		data->device_specific = buffer[2];
2369		data->block_descriptor_length = buffer[3];
 
 
 
 
 
 
 
 
 
 
2370	}
2371	data->header_length = header_length;
2372
2373	return 0;
2374}
2375EXPORT_SYMBOL(scsi_mode_sense);
2376
2377/**
2378 *	scsi_test_unit_ready - test if unit is ready
2379 *	@sdev:	scsi device to change the state of.
2380 *	@timeout: command timeout
2381 *	@retries: number of retries before failing
2382 *	@sshdr: outpout pointer for decoded sense information.
2383 *
2384 *	Returns zero if unsuccessful or an error if TUR failed.  For
2385 *	removable media, UNIT_ATTENTION sets ->changed flag.
2386 **/
2387int
2388scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2389		     struct scsi_sense_hdr *sshdr)
2390{
2391	char cmd[] = {
2392		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2393	};
2394	const struct scsi_exec_args exec_args = {
2395		.sshdr = sshdr,
2396	};
2397	int result;
2398
2399	/* try to eat the UNIT_ATTENTION if there are enough retries */
2400	do {
2401		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2402					  timeout, 1, &exec_args);
2403		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2404		    sshdr->sense_key == UNIT_ATTENTION)
2405			sdev->changed = 1;
2406	} while (result > 0 && scsi_sense_valid(sshdr) &&
2407		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2408
2409	return result;
2410}
2411EXPORT_SYMBOL(scsi_test_unit_ready);
2412
2413/**
2414 *	scsi_device_set_state - Take the given device through the device state model.
2415 *	@sdev:	scsi device to change the state of.
2416 *	@state:	state to change to.
2417 *
2418 *	Returns zero if successful or an error if the requested
2419 *	transition is illegal.
2420 */
2421int
2422scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2423{
2424	enum scsi_device_state oldstate = sdev->sdev_state;
2425
2426	if (state == oldstate)
2427		return 0;
2428
2429	switch (state) {
2430	case SDEV_CREATED:
2431		switch (oldstate) {
2432		case SDEV_CREATED_BLOCK:
2433			break;
2434		default:
2435			goto illegal;
2436		}
2437		break;
2438
2439	case SDEV_RUNNING:
2440		switch (oldstate) {
2441		case SDEV_CREATED:
2442		case SDEV_OFFLINE:
2443		case SDEV_TRANSPORT_OFFLINE:
2444		case SDEV_QUIESCE:
2445		case SDEV_BLOCK:
2446			break;
2447		default:
2448			goto illegal;
2449		}
2450		break;
2451
2452	case SDEV_QUIESCE:
2453		switch (oldstate) {
2454		case SDEV_RUNNING:
2455		case SDEV_OFFLINE:
2456		case SDEV_TRANSPORT_OFFLINE:
2457			break;
2458		default:
2459			goto illegal;
2460		}
2461		break;
2462
2463	case SDEV_OFFLINE:
2464	case SDEV_TRANSPORT_OFFLINE:
2465		switch (oldstate) {
2466		case SDEV_CREATED:
2467		case SDEV_RUNNING:
2468		case SDEV_QUIESCE:
2469		case SDEV_BLOCK:
2470			break;
2471		default:
2472			goto illegal;
2473		}
2474		break;
2475
2476	case SDEV_BLOCK:
2477		switch (oldstate) {
2478		case SDEV_RUNNING:
2479		case SDEV_CREATED_BLOCK:
2480		case SDEV_QUIESCE:
2481		case SDEV_OFFLINE:
2482			break;
2483		default:
2484			goto illegal;
2485		}
2486		break;
2487
2488	case SDEV_CREATED_BLOCK:
2489		switch (oldstate) {
2490		case SDEV_CREATED:
2491			break;
2492		default:
2493			goto illegal;
2494		}
2495		break;
2496
2497	case SDEV_CANCEL:
2498		switch (oldstate) {
2499		case SDEV_CREATED:
2500		case SDEV_RUNNING:
2501		case SDEV_QUIESCE:
2502		case SDEV_OFFLINE:
2503		case SDEV_TRANSPORT_OFFLINE:
2504			break;
2505		default:
2506			goto illegal;
2507		}
2508		break;
2509
2510	case SDEV_DEL:
2511		switch (oldstate) {
2512		case SDEV_CREATED:
2513		case SDEV_RUNNING:
2514		case SDEV_OFFLINE:
2515		case SDEV_TRANSPORT_OFFLINE:
2516		case SDEV_CANCEL:
2517		case SDEV_BLOCK:
2518		case SDEV_CREATED_BLOCK:
2519			break;
2520		default:
2521			goto illegal;
2522		}
2523		break;
2524
2525	}
2526	sdev->offline_already = false;
2527	sdev->sdev_state = state;
2528	return 0;
2529
2530 illegal:
2531	SCSI_LOG_ERROR_RECOVERY(1,
2532				sdev_printk(KERN_ERR, sdev,
2533					    "Illegal state transition %s->%s",
2534					    scsi_device_state_name(oldstate),
2535					    scsi_device_state_name(state))
2536				);
2537	return -EINVAL;
2538}
2539EXPORT_SYMBOL(scsi_device_set_state);
2540
2541/**
2542 *	scsi_evt_emit - emit a single SCSI device uevent
2543 *	@sdev: associated SCSI device
2544 *	@evt: event to emit
2545 *
2546 *	Send a single uevent (scsi_event) to the associated scsi_device.
2547 */
2548static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2549{
2550	int idx = 0;
2551	char *envp[3];
2552
2553	switch (evt->evt_type) {
2554	case SDEV_EVT_MEDIA_CHANGE:
2555		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2556		break;
2557	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2558		scsi_rescan_device(sdev);
2559		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2560		break;
2561	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2562		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2563		break;
2564	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2565	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2566		break;
2567	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2568		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2569		break;
2570	case SDEV_EVT_LUN_CHANGE_REPORTED:
2571		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2572		break;
2573	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2574		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2575		break;
2576	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2577		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2578		break;
2579	default:
2580		/* do nothing */
2581		break;
2582	}
2583
2584	envp[idx++] = NULL;
2585
2586	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2587}
2588
2589/**
2590 *	scsi_evt_thread - send a uevent for each scsi event
2591 *	@work: work struct for scsi_device
2592 *
2593 *	Dispatch queued events to their associated scsi_device kobjects
2594 *	as uevents.
2595 */
2596void scsi_evt_thread(struct work_struct *work)
2597{
2598	struct scsi_device *sdev;
2599	enum scsi_device_event evt_type;
2600	LIST_HEAD(event_list);
2601
2602	sdev = container_of(work, struct scsi_device, event_work);
2603
2604	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2605		if (test_and_clear_bit(evt_type, sdev->pending_events))
2606			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2607
2608	while (1) {
2609		struct scsi_event *evt;
2610		struct list_head *this, *tmp;
2611		unsigned long flags;
2612
2613		spin_lock_irqsave(&sdev->list_lock, flags);
2614		list_splice_init(&sdev->event_list, &event_list);
2615		spin_unlock_irqrestore(&sdev->list_lock, flags);
2616
2617		if (list_empty(&event_list))
2618			break;
2619
2620		list_for_each_safe(this, tmp, &event_list) {
2621			evt = list_entry(this, struct scsi_event, node);
2622			list_del(&evt->node);
2623			scsi_evt_emit(sdev, evt);
2624			kfree(evt);
2625		}
2626	}
2627}
2628
2629/**
2630 * 	sdev_evt_send - send asserted event to uevent thread
2631 *	@sdev: scsi_device event occurred on
2632 *	@evt: event to send
2633 *
2634 *	Assert scsi device event asynchronously.
2635 */
2636void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2637{
2638	unsigned long flags;
2639
2640#if 0
2641	/* FIXME: currently this check eliminates all media change events
2642	 * for polled devices.  Need to update to discriminate between AN
2643	 * and polled events */
2644	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2645		kfree(evt);
2646		return;
2647	}
2648#endif
2649
2650	spin_lock_irqsave(&sdev->list_lock, flags);
2651	list_add_tail(&evt->node, &sdev->event_list);
2652	schedule_work(&sdev->event_work);
2653	spin_unlock_irqrestore(&sdev->list_lock, flags);
2654}
2655EXPORT_SYMBOL_GPL(sdev_evt_send);
2656
2657/**
2658 * 	sdev_evt_alloc - allocate a new scsi event
2659 *	@evt_type: type of event to allocate
2660 *	@gfpflags: GFP flags for allocation
2661 *
2662 *	Allocates and returns a new scsi_event.
2663 */
2664struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2665				  gfp_t gfpflags)
2666{
2667	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2668	if (!evt)
2669		return NULL;
2670
2671	evt->evt_type = evt_type;
2672	INIT_LIST_HEAD(&evt->node);
2673
2674	/* evt_type-specific initialization, if any */
2675	switch (evt_type) {
2676	case SDEV_EVT_MEDIA_CHANGE:
2677	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2678	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2679	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2680	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2681	case SDEV_EVT_LUN_CHANGE_REPORTED:
2682	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2683	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2684	default:
2685		/* do nothing */
2686		break;
2687	}
2688
2689	return evt;
2690}
2691EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2692
2693/**
2694 * 	sdev_evt_send_simple - send asserted event to uevent thread
2695 *	@sdev: scsi_device event occurred on
2696 *	@evt_type: type of event to send
2697 *	@gfpflags: GFP flags for allocation
2698 *
2699 *	Assert scsi device event asynchronously, given an event type.
2700 */
2701void sdev_evt_send_simple(struct scsi_device *sdev,
2702			  enum scsi_device_event evt_type, gfp_t gfpflags)
2703{
2704	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2705	if (!evt) {
2706		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2707			    evt_type);
2708		return;
2709	}
2710
2711	sdev_evt_send(sdev, evt);
2712}
2713EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2714
2715/**
2716 *	scsi_device_quiesce - Block all commands except power management.
2717 *	@sdev:	scsi device to quiesce.
2718 *
2719 *	This works by trying to transition to the SDEV_QUIESCE state
2720 *	(which must be a legal transition).  When the device is in this
2721 *	state, only power management requests will be accepted, all others will
2722 *	be deferred.
 
 
2723 *
2724 *	Must be called with user context, may sleep.
2725 *
2726 *	Returns zero if unsuccessful or an error if not.
2727 */
2728int
2729scsi_device_quiesce(struct scsi_device *sdev)
2730{
2731	struct request_queue *q = sdev->request_queue;
2732	int err;
2733
2734	/*
2735	 * It is allowed to call scsi_device_quiesce() multiple times from
2736	 * the same context but concurrent scsi_device_quiesce() calls are
2737	 * not allowed.
2738	 */
2739	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2740
2741	if (sdev->quiesced_by == current)
2742		return 0;
2743
2744	blk_set_pm_only(q);
2745
2746	blk_mq_freeze_queue(q);
2747	/*
2748	 * Ensure that the effect of blk_set_pm_only() will be visible
2749	 * for percpu_ref_tryget() callers that occur after the queue
2750	 * unfreeze even if the queue was already frozen before this function
2751	 * was called. See also https://lwn.net/Articles/573497/.
2752	 */
2753	synchronize_rcu();
2754	blk_mq_unfreeze_queue(q);
2755
2756	mutex_lock(&sdev->state_mutex);
2757	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2758	if (err == 0)
2759		sdev->quiesced_by = current;
2760	else
2761		blk_clear_pm_only(q);
2762	mutex_unlock(&sdev->state_mutex);
2763
2764	return err;
2765}
2766EXPORT_SYMBOL(scsi_device_quiesce);
2767
2768/**
2769 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2770 *	@sdev:	scsi device to resume.
2771 *
2772 *	Moves the device from quiesced back to running and restarts the
2773 *	queues.
2774 *
2775 *	Must be called with user context, may sleep.
2776 */
2777void scsi_device_resume(struct scsi_device *sdev)
2778{
2779	/* check if the device state was mutated prior to resume, and if
2780	 * so assume the state is being managed elsewhere (for example
2781	 * device deleted during suspend)
2782	 */
2783	mutex_lock(&sdev->state_mutex);
2784	if (sdev->sdev_state == SDEV_QUIESCE)
2785		scsi_device_set_state(sdev, SDEV_RUNNING);
2786	if (sdev->quiesced_by) {
2787		sdev->quiesced_by = NULL;
2788		blk_clear_pm_only(sdev->request_queue);
2789	}
 
 
2790	mutex_unlock(&sdev->state_mutex);
2791}
2792EXPORT_SYMBOL(scsi_device_resume);
2793
2794static void
2795device_quiesce_fn(struct scsi_device *sdev, void *data)
2796{
2797	scsi_device_quiesce(sdev);
2798}
2799
2800void
2801scsi_target_quiesce(struct scsi_target *starget)
2802{
2803	starget_for_each_device(starget, NULL, device_quiesce_fn);
2804}
2805EXPORT_SYMBOL(scsi_target_quiesce);
2806
2807static void
2808device_resume_fn(struct scsi_device *sdev, void *data)
2809{
2810	scsi_device_resume(sdev);
2811}
2812
2813void
2814scsi_target_resume(struct scsi_target *starget)
2815{
2816	starget_for_each_device(starget, NULL, device_resume_fn);
2817}
2818EXPORT_SYMBOL(scsi_target_resume);
2819
2820static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2821{
2822	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2823		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2824
2825	return 0;
2826}
2827
2828void scsi_start_queue(struct scsi_device *sdev)
2829{
2830	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2831		blk_mq_unquiesce_queue(sdev->request_queue);
2832}
2833
2834static void scsi_stop_queue(struct scsi_device *sdev)
2835{
2836	/*
2837	 * The atomic variable of ->queue_stopped covers that
2838	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2839	 *
2840	 * The caller needs to wait until quiesce is done.
2841	 */
2842	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2843		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2844}
2845
2846/**
2847 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2848 * @sdev: device to block
2849 *
2850 * Pause SCSI command processing on the specified device. Does not sleep.
2851 *
2852 * Returns zero if successful or a negative error code upon failure.
2853 *
2854 * Notes:
2855 * This routine transitions the device to the SDEV_BLOCK state (which must be
2856 * a legal transition). When the device is in this state, command processing
2857 * is paused until the device leaves the SDEV_BLOCK state. See also
2858 * scsi_internal_device_unblock_nowait().
2859 */
2860int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2861{
2862	int ret = __scsi_internal_device_block_nowait(sdev);
 
2863
2864	/*
 
 
 
 
 
 
 
 
2865	 * The device has transitioned to SDEV_BLOCK.  Stop the
2866	 * block layer from calling the midlayer with this device's
2867	 * request queue.
2868	 */
2869	if (!ret)
2870		scsi_stop_queue(sdev);
2871	return ret;
2872}
2873EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2874
2875/**
2876 * scsi_device_block - try to transition to the SDEV_BLOCK state
2877 * @sdev: device to block
2878 * @data: dummy argument, ignored
2879 *
2880 * Pause SCSI command processing on the specified device. Callers must wait
2881 * until all ongoing scsi_queue_rq() calls have finished after this function
2882 * returns.
 
2883 *
2884 * Note:
2885 * This routine transitions the device to the SDEV_BLOCK state (which must be
2886 * a legal transition). When the device is in this state, command processing
2887 * is paused until the device leaves the SDEV_BLOCK state. See also
2888 * scsi_internal_device_unblock().
2889 */
2890static void scsi_device_block(struct scsi_device *sdev, void *data)
2891{
 
2892	int err;
2893	enum scsi_device_state state;
2894
2895	mutex_lock(&sdev->state_mutex);
2896	err = __scsi_internal_device_block_nowait(sdev);
2897	state = sdev->sdev_state;
2898	if (err == 0)
2899		/*
2900		 * scsi_stop_queue() must be called with the state_mutex
2901		 * held. Otherwise a simultaneous scsi_start_queue() call
2902		 * might unquiesce the queue before we quiesce it.
2903		 */
2904		scsi_stop_queue(sdev);
2905
2906	mutex_unlock(&sdev->state_mutex);
2907
2908	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2909		  __func__, dev_name(&sdev->sdev_gendev), state);
 
 
 
 
 
 
2910}
2911
2912/**
2913 * scsi_internal_device_unblock_nowait - resume a device after a block request
2914 * @sdev:	device to resume
2915 * @new_state:	state to set the device to after unblocking
2916 *
2917 * Restart the device queue for a previously suspended SCSI device. Does not
2918 * sleep.
2919 *
2920 * Returns zero if successful or a negative error code upon failure.
2921 *
2922 * Notes:
2923 * This routine transitions the device to the SDEV_RUNNING state or to one of
2924 * the offline states (which must be a legal transition) allowing the midlayer
2925 * to goose the queue for this device.
2926 */
2927int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2928					enum scsi_device_state new_state)
2929{
2930	switch (new_state) {
2931	case SDEV_RUNNING:
2932	case SDEV_TRANSPORT_OFFLINE:
2933		break;
2934	default:
2935		return -EINVAL;
2936	}
2937
2938	/*
2939	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2940	 * offlined states and goose the device queue if successful.
2941	 */
2942	switch (sdev->sdev_state) {
2943	case SDEV_BLOCK:
2944	case SDEV_TRANSPORT_OFFLINE:
2945		sdev->sdev_state = new_state;
2946		break;
2947	case SDEV_CREATED_BLOCK:
2948		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2949		    new_state == SDEV_OFFLINE)
2950			sdev->sdev_state = new_state;
2951		else
2952			sdev->sdev_state = SDEV_CREATED;
2953		break;
2954	case SDEV_CANCEL:
2955	case SDEV_OFFLINE:
2956		break;
2957	default:
2958		return -EINVAL;
2959	}
2960	scsi_start_queue(sdev);
2961
2962	return 0;
2963}
2964EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2965
2966/**
2967 * scsi_internal_device_unblock - resume a device after a block request
2968 * @sdev:	device to resume
2969 * @new_state:	state to set the device to after unblocking
2970 *
2971 * Restart the device queue for a previously suspended SCSI device. May sleep.
2972 *
2973 * Returns zero if successful or a negative error code upon failure.
2974 *
2975 * Notes:
2976 * This routine transitions the device to the SDEV_RUNNING state or to one of
2977 * the offline states (which must be a legal transition) allowing the midlayer
2978 * to goose the queue for this device.
2979 */
2980static int scsi_internal_device_unblock(struct scsi_device *sdev,
2981					enum scsi_device_state new_state)
2982{
2983	int ret;
2984
2985	mutex_lock(&sdev->state_mutex);
2986	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2987	mutex_unlock(&sdev->state_mutex);
2988
2989	return ret;
2990}
2991
 
 
 
 
 
 
 
 
 
 
 
2992static int
2993target_block(struct device *dev, void *data)
2994{
2995	if (scsi_is_target_device(dev))
2996		starget_for_each_device(to_scsi_target(dev), NULL,
2997					scsi_device_block);
2998	return 0;
2999}
3000
3001/**
3002 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3003 * @dev: a parent device of one or more scsi_target devices
3004 * @shost: the Scsi_Host to which this device belongs
3005 *
3006 * Iterate over all children of @dev, which should be scsi_target devices,
3007 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3008 * ongoing scsi_queue_rq() calls to finish. May sleep.
3009 *
3010 * Note:
3011 * @dev must not itself be a scsi_target device.
3012 */
3013void
3014scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3015{
3016	WARN_ON_ONCE(scsi_is_target_device(dev));
3017	device_for_each_child(dev, NULL, target_block);
3018	blk_mq_wait_quiesce_done(&shost->tag_set);
 
 
3019}
3020EXPORT_SYMBOL_GPL(scsi_block_targets);
3021
3022static void
3023device_unblock(struct scsi_device *sdev, void *data)
3024{
3025	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3026}
3027
3028static int
3029target_unblock(struct device *dev, void *data)
3030{
3031	if (scsi_is_target_device(dev))
3032		starget_for_each_device(to_scsi_target(dev), data,
3033					device_unblock);
3034	return 0;
3035}
3036
3037void
3038scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3039{
3040	if (scsi_is_target_device(dev))
3041		starget_for_each_device(to_scsi_target(dev), &new_state,
3042					device_unblock);
3043	else
3044		device_for_each_child(dev, &new_state, target_unblock);
3045}
3046EXPORT_SYMBOL_GPL(scsi_target_unblock);
3047
3048/**
3049 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3050 * @shost: device to block
3051 *
3052 * Pause SCSI command processing for all logical units associated with the SCSI
3053 * host and wait until pending scsi_queue_rq() calls have finished.
3054 *
3055 * Returns zero if successful or a negative error code upon failure.
3056 */
3057int
3058scsi_host_block(struct Scsi_Host *shost)
3059{
3060	struct scsi_device *sdev;
3061	int ret;
3062
3063	/*
3064	 * Call scsi_internal_device_block_nowait so we can avoid
3065	 * calling synchronize_rcu() for each LUN.
3066	 */
3067	shost_for_each_device(sdev, shost) {
3068		mutex_lock(&sdev->state_mutex);
3069		ret = scsi_internal_device_block_nowait(sdev);
3070		mutex_unlock(&sdev->state_mutex);
3071		if (ret) {
3072			scsi_device_put(sdev);
3073			return ret;
3074		}
3075	}
3076
3077	/* Wait for ongoing scsi_queue_rq() calls to finish. */
3078	blk_mq_wait_quiesce_done(&shost->tag_set);
3079
3080	return 0;
3081}
3082EXPORT_SYMBOL_GPL(scsi_host_block);
3083
3084int
3085scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3086{
3087	struct scsi_device *sdev;
3088	int ret = 0;
3089
3090	shost_for_each_device(sdev, shost) {
3091		ret = scsi_internal_device_unblock(sdev, new_state);
3092		if (ret) {
3093			scsi_device_put(sdev);
3094			break;
3095		}
3096	}
3097	return ret;
3098}
3099EXPORT_SYMBOL_GPL(scsi_host_unblock);
3100
3101/**
3102 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3103 * @sgl:	scatter-gather list
3104 * @sg_count:	number of segments in sg
3105 * @offset:	offset in bytes into sg, on return offset into the mapped area
3106 * @len:	bytes to map, on return number of bytes mapped
3107 *
3108 * Returns virtual address of the start of the mapped page
3109 */
3110void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3111			  size_t *offset, size_t *len)
3112{
3113	int i;
3114	size_t sg_len = 0, len_complete = 0;
3115	struct scatterlist *sg;
3116	struct page *page;
3117
3118	WARN_ON(!irqs_disabled());
3119
3120	for_each_sg(sgl, sg, sg_count, i) {
3121		len_complete = sg_len; /* Complete sg-entries */
3122		sg_len += sg->length;
3123		if (sg_len > *offset)
3124			break;
3125	}
3126
3127	if (unlikely(i == sg_count)) {
3128		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3129			"elements %d\n",
3130		       __func__, sg_len, *offset, sg_count);
3131		WARN_ON(1);
3132		return NULL;
3133	}
3134
3135	/* Offset starting from the beginning of first page in this sg-entry */
3136	*offset = *offset - len_complete + sg->offset;
3137
3138	/* Assumption: contiguous pages can be accessed as "page + i" */
3139	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3140	*offset &= ~PAGE_MASK;
3141
3142	/* Bytes in this sg-entry from *offset to the end of the page */
3143	sg_len = PAGE_SIZE - *offset;
3144	if (*len > sg_len)
3145		*len = sg_len;
3146
3147	return kmap_atomic(page);
3148}
3149EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3150
3151/**
3152 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3153 * @virt:	virtual address to be unmapped
3154 */
3155void scsi_kunmap_atomic_sg(void *virt)
3156{
3157	kunmap_atomic(virt);
3158}
3159EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3160
3161void sdev_disable_disk_events(struct scsi_device *sdev)
3162{
3163	atomic_inc(&sdev->disk_events_disable_depth);
3164}
3165EXPORT_SYMBOL(sdev_disable_disk_events);
3166
3167void sdev_enable_disk_events(struct scsi_device *sdev)
3168{
3169	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3170		return;
3171	atomic_dec(&sdev->disk_events_disable_depth);
3172}
3173EXPORT_SYMBOL(sdev_enable_disk_events);
3174
3175static unsigned char designator_prio(const unsigned char *d)
3176{
3177	if (d[1] & 0x30)
3178		/* not associated with LUN */
3179		return 0;
3180
3181	if (d[3] == 0)
3182		/* invalid length */
3183		return 0;
3184
3185	/*
3186	 * Order of preference for lun descriptor:
3187	 * - SCSI name string
3188	 * - NAA IEEE Registered Extended
3189	 * - EUI-64 based 16-byte
3190	 * - EUI-64 based 12-byte
3191	 * - NAA IEEE Registered
3192	 * - NAA IEEE Extended
3193	 * - EUI-64 based 8-byte
3194	 * - SCSI name string (truncated)
3195	 * - T10 Vendor ID
3196	 * as longer descriptors reduce the likelyhood
3197	 * of identification clashes.
3198	 */
3199
3200	switch (d[1] & 0xf) {
3201	case 8:
3202		/* SCSI name string, variable-length UTF-8 */
3203		return 9;
3204	case 3:
3205		switch (d[4] >> 4) {
3206		case 6:
3207			/* NAA registered extended */
3208			return 8;
3209		case 5:
3210			/* NAA registered */
3211			return 5;
3212		case 4:
3213			/* NAA extended */
3214			return 4;
3215		case 3:
3216			/* NAA locally assigned */
3217			return 1;
3218		default:
3219			break;
3220		}
3221		break;
3222	case 2:
3223		switch (d[3]) {
3224		case 16:
3225			/* EUI64-based, 16 byte */
3226			return 7;
3227		case 12:
3228			/* EUI64-based, 12 byte */
3229			return 6;
3230		case 8:
3231			/* EUI64-based, 8 byte */
3232			return 3;
3233		default:
3234			break;
3235		}
3236		break;
3237	case 1:
3238		/* T10 vendor ID */
3239		return 1;
3240	default:
3241		break;
3242	}
3243
3244	return 0;
3245}
3246
3247/**
3248 * scsi_vpd_lun_id - return a unique device identification
3249 * @sdev: SCSI device
3250 * @id:   buffer for the identification
3251 * @id_len:  length of the buffer
3252 *
3253 * Copies a unique device identification into @id based
3254 * on the information in the VPD page 0x83 of the device.
3255 * The string will be formatted as a SCSI name string.
3256 *
3257 * Returns the length of the identification or error on failure.
3258 * If the identifier is longer than the supplied buffer the actual
3259 * identifier length is returned and the buffer is not zero-padded.
3260 */
3261int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3262{
3263	u8 cur_id_prio = 0;
3264	u8 cur_id_size = 0;
3265	const unsigned char *d, *cur_id_str;
3266	const struct scsi_vpd *vpd_pg83;
3267	int id_size = -EINVAL;
3268
3269	rcu_read_lock();
3270	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3271	if (!vpd_pg83) {
3272		rcu_read_unlock();
3273		return -ENXIO;
3274	}
3275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3276	/* The id string must be at least 20 bytes + terminating NULL byte */
3277	if (id_len < 21) {
3278		rcu_read_unlock();
3279		return -EINVAL;
3280	}
3281
3282	memset(id, 0, id_len);
3283	for (d = vpd_pg83->data + 4;
3284	     d < vpd_pg83->data + vpd_pg83->len;
3285	     d += d[3] + 4) {
3286		u8 prio = designator_prio(d);
3287
3288		if (prio == 0 || cur_id_prio > prio)
3289			continue;
3290
3291		switch (d[1] & 0xf) {
3292		case 0x1:
3293			/* T10 Vendor ID */
3294			if (cur_id_size > d[3])
3295				break;
3296			cur_id_prio = prio;
 
 
3297			cur_id_size = d[3];
3298			if (cur_id_size + 4 > id_len)
3299				cur_id_size = id_len - 4;
3300			cur_id_str = d + 4;
 
3301			id_size = snprintf(id, id_len, "t10.%*pE",
3302					   cur_id_size, cur_id_str);
3303			break;
3304		case 0x2:
3305			/* EUI-64 */
3306			cur_id_prio = prio;
 
 
 
 
 
3307			cur_id_size = d[3];
3308			cur_id_str = d + 4;
 
3309			switch (cur_id_size) {
3310			case 8:
3311				id_size = snprintf(id, id_len,
3312						   "eui.%8phN",
3313						   cur_id_str);
3314				break;
3315			case 12:
3316				id_size = snprintf(id, id_len,
3317						   "eui.%12phN",
3318						   cur_id_str);
3319				break;
3320			case 16:
3321				id_size = snprintf(id, id_len,
3322						   "eui.%16phN",
3323						   cur_id_str);
3324				break;
3325			default:
 
3326				break;
3327			}
3328			break;
3329		case 0x3:
3330			/* NAA */
3331			cur_id_prio = prio;
 
3332			cur_id_size = d[3];
3333			cur_id_str = d + 4;
 
3334			switch (cur_id_size) {
3335			case 8:
3336				id_size = snprintf(id, id_len,
3337						   "naa.%8phN",
3338						   cur_id_str);
3339				break;
3340			case 16:
3341				id_size = snprintf(id, id_len,
3342						   "naa.%16phN",
3343						   cur_id_str);
3344				break;
3345			default:
 
3346				break;
3347			}
3348			break;
3349		case 0x8:
3350			/* SCSI name string */
3351			if (cur_id_size > d[3])
3352				break;
3353			/* Prefer others for truncated descriptor */
3354			if (d[3] > id_len) {
3355				prio = 2;
3356				if (cur_id_prio > prio)
3357					break;
3358			}
3359			cur_id_prio = prio;
3360			cur_id_size = id_size = d[3];
3361			cur_id_str = d + 4;
 
3362			if (cur_id_size >= id_len)
3363				cur_id_size = id_len - 1;
3364			memcpy(id, cur_id_str, cur_id_size);
 
 
 
3365			break;
3366		default:
3367			break;
3368		}
 
 
3369	}
3370	rcu_read_unlock();
3371
3372	return id_size;
3373}
3374EXPORT_SYMBOL(scsi_vpd_lun_id);
3375
3376/*
3377 * scsi_vpd_tpg_id - return a target port group identifier
3378 * @sdev: SCSI device
3379 *
3380 * Returns the Target Port Group identifier from the information
3381 * froom VPD page 0x83 of the device.
3382 *
3383 * Returns the identifier or error on failure.
3384 */
3385int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3386{
3387	const unsigned char *d;
3388	const struct scsi_vpd *vpd_pg83;
3389	int group_id = -EAGAIN, rel_port = -1;
3390
3391	rcu_read_lock();
3392	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3393	if (!vpd_pg83) {
3394		rcu_read_unlock();
3395		return -ENXIO;
3396	}
3397
3398	d = vpd_pg83->data + 4;
3399	while (d < vpd_pg83->data + vpd_pg83->len) {
3400		switch (d[1] & 0xf) {
3401		case 0x4:
3402			/* Relative target port */
3403			rel_port = get_unaligned_be16(&d[6]);
3404			break;
3405		case 0x5:
3406			/* Target port group */
3407			group_id = get_unaligned_be16(&d[6]);
3408			break;
3409		default:
3410			break;
3411		}
3412		d += d[3] + 4;
3413	}
3414	rcu_read_unlock();
3415
3416	if (group_id >= 0 && rel_id && rel_port != -1)
3417		*rel_id = rel_port;
3418
3419	return group_id;
3420}
3421EXPORT_SYMBOL(scsi_vpd_tpg_id);
3422
3423/**
3424 * scsi_build_sense - build sense data for a command
3425 * @scmd:	scsi command for which the sense should be formatted
3426 * @desc:	Sense format (non-zero == descriptor format,
3427 *              0 == fixed format)
3428 * @key:	Sense key
3429 * @asc:	Additional sense code
3430 * @ascq:	Additional sense code qualifier
3431 *
3432 **/
3433void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3434{
3435	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3436	scmd->result = SAM_STAT_CHECK_CONDITION;
3437}
3438EXPORT_SYMBOL_GPL(scsi_build_sense);
3439
3440#ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3441#include "scsi_lib_test.c"
3442#endif
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
 
  24#include <linux/ratelimit.h>
  25#include <asm/unaligned.h>
  26
  27#include <scsi/scsi.h>
  28#include <scsi/scsi_cmnd.h>
  29#include <scsi/scsi_dbg.h>
  30#include <scsi/scsi_device.h>
  31#include <scsi/scsi_driver.h>
  32#include <scsi/scsi_eh.h>
  33#include <scsi/scsi_host.h>
  34#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  35#include <scsi/scsi_dh.h>
  36
  37#include <trace/events/scsi.h>
  38
  39#include "scsi_debugfs.h"
  40#include "scsi_priv.h"
  41#include "scsi_logging.h"
  42
  43/*
  44 * Size of integrity metadata is usually small, 1 inline sg should
  45 * cover normal cases.
  46 */
  47#ifdef CONFIG_ARCH_NO_SG_CHAIN
  48#define  SCSI_INLINE_PROT_SG_CNT  0
  49#define  SCSI_INLINE_SG_CNT  0
  50#else
  51#define  SCSI_INLINE_PROT_SG_CNT  1
  52#define  SCSI_INLINE_SG_CNT  2
  53#endif
  54
  55static struct kmem_cache *scsi_sdb_cache;
  56static struct kmem_cache *scsi_sense_cache;
  57static struct kmem_cache *scsi_sense_isadma_cache;
  58static DEFINE_MUTEX(scsi_sense_cache_mutex);
  59
  60static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  61
  62static inline struct kmem_cache *
  63scsi_select_sense_cache(bool unchecked_isa_dma)
  64{
  65	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
  66}
  67
  68static void scsi_free_sense_buffer(bool unchecked_isa_dma,
  69				   unsigned char *sense_buffer)
  70{
  71	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
  72			sense_buffer);
  73}
  74
  75static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
  76	gfp_t gfp_mask, int numa_node)
  77{
  78	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
  79				     gfp_mask, numa_node);
  80}
  81
  82int scsi_init_sense_cache(struct Scsi_Host *shost)
  83{
  84	struct kmem_cache *cache;
  85	int ret = 0;
  86
  87	mutex_lock(&scsi_sense_cache_mutex);
  88	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
  89	if (cache)
  90		goto exit;
  91
  92	if (shost->unchecked_isa_dma) {
  93		scsi_sense_isadma_cache =
  94			kmem_cache_create("scsi_sense_cache(DMA)",
  95				SCSI_SENSE_BUFFERSIZE, 0,
  96				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
  97		if (!scsi_sense_isadma_cache)
  98			ret = -ENOMEM;
  99	} else {
 100		scsi_sense_cache =
 101			kmem_cache_create_usercopy("scsi_sense_cache",
 102				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
 103				0, SCSI_SENSE_BUFFERSIZE, NULL);
 104		if (!scsi_sense_cache)
 105			ret = -ENOMEM;
 106	}
 107 exit:
 108	mutex_unlock(&scsi_sense_cache_mutex);
 109	return ret;
 110}
 111
 112/*
 113 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
 114 * not change behaviour from the previous unplug mechanism, experimentation
 115 * may prove this needs changing.
 116 */
 117#define SCSI_QUEUE_DELAY	3
 118
 119static void
 120scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 121{
 122	struct Scsi_Host *host = cmd->device->host;
 123	struct scsi_device *device = cmd->device;
 124	struct scsi_target *starget = scsi_target(device);
 125
 126	/*
 127	 * Set the appropriate busy bit for the device/host.
 128	 *
 129	 * If the host/device isn't busy, assume that something actually
 130	 * completed, and that we should be able to queue a command now.
 131	 *
 132	 * Note that the prior mid-layer assumption that any host could
 133	 * always queue at least one command is now broken.  The mid-layer
 134	 * will implement a user specifiable stall (see
 135	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 136	 * if a command is requeued with no other commands outstanding
 137	 * either for the device or for the host.
 138	 */
 139	switch (reason) {
 140	case SCSI_MLQUEUE_HOST_BUSY:
 141		atomic_set(&host->host_blocked, host->max_host_blocked);
 142		break;
 143	case SCSI_MLQUEUE_DEVICE_BUSY:
 144	case SCSI_MLQUEUE_EH_RETRY:
 145		atomic_set(&device->device_blocked,
 146			   device->max_device_blocked);
 147		break;
 148	case SCSI_MLQUEUE_TARGET_BUSY:
 149		atomic_set(&starget->target_blocked,
 150			   starget->max_target_blocked);
 151		break;
 152	}
 153}
 154
 155static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 156{
 157	if (cmd->request->rq_flags & RQF_DONTPREP) {
 158		cmd->request->rq_flags &= ~RQF_DONTPREP;
 
 
 159		scsi_mq_uninit_cmd(cmd);
 160	} else {
 161		WARN_ON_ONCE(true);
 162	}
 163	blk_mq_requeue_request(cmd->request, true);
 
 
 
 164}
 165
 166/**
 167 * __scsi_queue_insert - private queue insertion
 168 * @cmd: The SCSI command being requeued
 169 * @reason:  The reason for the requeue
 170 * @unbusy: Whether the queue should be unbusied
 171 *
 172 * This is a private queue insertion.  The public interface
 173 * scsi_queue_insert() always assumes the queue should be unbusied
 174 * because it's always called before the completion.  This function is
 175 * for a requeue after completion, which should only occur in this
 176 * file.
 177 */
 178static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 179{
 180	struct scsi_device *device = cmd->device;
 181
 182	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 183		"Inserting command %p into mlqueue\n", cmd));
 184
 185	scsi_set_blocked(cmd, reason);
 186
 187	/*
 188	 * Decrement the counters, since these commands are no longer
 189	 * active on the host/device.
 190	 */
 191	if (unbusy)
 192		scsi_device_unbusy(device);
 193
 194	/*
 195	 * Requeue this command.  It will go before all other commands
 196	 * that are already in the queue. Schedule requeue work under
 197	 * lock such that the kblockd_schedule_work() call happens
 198	 * before blk_cleanup_queue() finishes.
 199	 */
 200	cmd->result = 0;
 201
 202	blk_mq_requeue_request(cmd->request, true);
 
 203}
 204
 205/*
 206 * Function:    scsi_queue_insert()
 207 *
 208 * Purpose:     Insert a command in the midlevel queue.
 209 *
 210 * Arguments:   cmd    - command that we are adding to queue.
 211 *              reason - why we are inserting command to queue.
 
 212 *
 213 * Lock status: Assumed that lock is not held upon entry.
 214 *
 215 * Returns:     Nothing.
 216 *
 217 * Notes:       We do this for one of two cases.  Either the host is busy
 218 *              and it cannot accept any more commands for the time being,
 219 *              or the device returned QUEUE_FULL and can accept no more
 220 *              commands.
 221 * Notes:       This could be called either from an interrupt context or a
 222 *              normal process context.
 223 */
 224void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 225{
 226	__scsi_queue_insert(cmd, reason, true);
 227}
 228
 
 
 
 
 
 
 
 
 
 
 
 229
 230/**
 231 * __scsi_execute - insert request and wait for the result
 232 * @sdev:	scsi device
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233 * @cmd:	scsi command
 234 * @data_direction: data direction
 235 * @buffer:	data buffer
 236 * @bufflen:	len of buffer
 237 * @sense:	optional sense buffer
 238 * @sshdr:	optional decoded sense header
 239 * @timeout:	request timeout in seconds
 240 * @retries:	number of times to retry request
 241 * @flags:	flags for ->cmd_flags
 242 * @rq_flags:	flags for ->rq_flags
 243 * @resid:	optional residual length
 244 *
 245 * Returns the scsi_cmnd result field if a command was executed, or a negative
 246 * Linux error code if we didn't get that far.
 247 */
 248int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 249		 int data_direction, void *buffer, unsigned bufflen,
 250		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 251		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
 252		 int *resid)
 253{
 
 254	struct request *req;
 255	struct scsi_request *rq;
 256	int ret = DRIVER_ERROR << 24;
 
 
 
 
 
 
 257
 258	req = blk_get_request(sdev->request_queue,
 259			data_direction == DMA_TO_DEVICE ?
 260			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
 261	if (IS_ERR(req))
 262		return ret;
 263	rq = scsi_req(req);
 264
 265	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 266					buffer, bufflen, GFP_NOIO))
 267		goto out;
 268
 269	rq->cmd_len = COMMAND_SIZE(cmd[0]);
 270	memcpy(rq->cmd, cmd, rq->cmd_len);
 271	rq->retries = retries;
 
 
 
 
 272	req->timeout = timeout;
 273	req->cmd_flags |= flags;
 274	req->rq_flags |= rq_flags | RQF_QUIET;
 275
 276	/*
 277	 * head injection *required* here otherwise quiesce won't work
 278	 */
 279	blk_execute_rq(req->q, NULL, req, 1);
 
 
 
 
 
 280
 281	/*
 282	 * Some devices (USB mass-storage in particular) may transfer
 283	 * garbage data together with a residue indicating that the data
 284	 * is invalid.  Prevent the garbage from being misinterpreted
 285	 * and prevent security leaks by zeroing out the excess data.
 286	 */
 287	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
 288		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
 
 
 
 
 
 
 
 
 289
 290	if (resid)
 291		*resid = rq->resid_len;
 292	if (sense && rq->sense_len)
 293		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
 294	if (sshdr)
 295		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
 296	ret = rq->result;
 297 out:
 298	blk_put_request(req);
 299
 300	return ret;
 301}
 302EXPORT_SYMBOL(__scsi_execute);
 303
 304/*
 305 * Function:    scsi_init_cmd_errh()
 306 *
 307 * Purpose:     Initialize cmd fields related to error handling.
 308 *
 309 * Arguments:   cmd	- command that is ready to be queued.
 310 *
 311 * Notes:       This function has the job of initializing a number of
 312 *              fields related to error handling.   Typically this will
 313 *              be called once for each command, as required.
 314 */
 315static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 316{
 317	scsi_set_resid(cmd, 0);
 318	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 319	if (cmd->cmd_len == 0)
 320		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 321}
 322
 323/*
 324 * Decrement the host_busy counter and wake up the error handler if necessary.
 325 * Avoid as follows that the error handler is not woken up if shost->host_busy
 326 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 327 * with an RCU read lock in this function to ensure that this function in its
 328 * entirety either finishes before scsi_eh_scmd_add() increases the
 329 * host_failed counter or that it notices the shost state change made by
 330 * scsi_eh_scmd_add().
 331 */
 332static void scsi_dec_host_busy(struct Scsi_Host *shost)
 333{
 334	unsigned long flags;
 335
 336	rcu_read_lock();
 337	atomic_dec(&shost->host_busy);
 338	if (unlikely(scsi_host_in_recovery(shost))) {
 
 
 339		spin_lock_irqsave(shost->host_lock, flags);
 340		if (shost->host_failed || shost->host_eh_scheduled)
 341			scsi_eh_wakeup(shost);
 342		spin_unlock_irqrestore(shost->host_lock, flags);
 343	}
 344	rcu_read_unlock();
 345}
 346
 347void scsi_device_unbusy(struct scsi_device *sdev)
 348{
 349	struct Scsi_Host *shost = sdev->host;
 350	struct scsi_target *starget = scsi_target(sdev);
 351
 352	scsi_dec_host_busy(shost);
 353
 354	if (starget->can_queue > 0)
 355		atomic_dec(&starget->target_busy);
 356
 357	atomic_dec(&sdev->device_busy);
 
 358}
 359
 360static void scsi_kick_queue(struct request_queue *q)
 
 
 
 
 361{
 362	blk_mq_run_hw_queues(q, false);
 
 
 
 363}
 364
 365/*
 366 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 367 * and call blk_run_queue for all the scsi_devices on the target -
 368 * including current_sdev first.
 369 *
 370 * Called with *no* scsi locks held.
 371 */
 372static void scsi_single_lun_run(struct scsi_device *current_sdev)
 373{
 374	struct Scsi_Host *shost = current_sdev->host;
 375	struct scsi_device *sdev, *tmp;
 376	struct scsi_target *starget = scsi_target(current_sdev);
 377	unsigned long flags;
 378
 379	spin_lock_irqsave(shost->host_lock, flags);
 380	starget->starget_sdev_user = NULL;
 381	spin_unlock_irqrestore(shost->host_lock, flags);
 382
 383	/*
 384	 * Call blk_run_queue for all LUNs on the target, starting with
 385	 * current_sdev. We race with others (to set starget_sdev_user),
 386	 * but in most cases, we will be first. Ideally, each LU on the
 387	 * target would get some limited time or requests on the target.
 388	 */
 389	scsi_kick_queue(current_sdev->request_queue);
 
 390
 391	spin_lock_irqsave(shost->host_lock, flags);
 392	if (starget->starget_sdev_user)
 393		goto out;
 394	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 395			same_target_siblings) {
 396		if (sdev == current_sdev)
 397			continue;
 398		if (scsi_device_get(sdev))
 399			continue;
 400
 401		spin_unlock_irqrestore(shost->host_lock, flags);
 402		scsi_kick_queue(sdev->request_queue);
 403		spin_lock_irqsave(shost->host_lock, flags);
 404	
 405		scsi_device_put(sdev);
 406	}
 407 out:
 408	spin_unlock_irqrestore(shost->host_lock, flags);
 409}
 410
 411static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 412{
 413	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 414		return true;
 415	if (atomic_read(&sdev->device_blocked) > 0)
 416		return true;
 417	return false;
 418}
 419
 420static inline bool scsi_target_is_busy(struct scsi_target *starget)
 421{
 422	if (starget->can_queue > 0) {
 423		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 424			return true;
 425		if (atomic_read(&starget->target_blocked) > 0)
 426			return true;
 427	}
 428	return false;
 429}
 430
 431static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 432{
 433	if (shost->can_queue > 0 &&
 434	    atomic_read(&shost->host_busy) >= shost->can_queue)
 435		return true;
 436	if (atomic_read(&shost->host_blocked) > 0)
 437		return true;
 438	if (shost->host_self_blocked)
 439		return true;
 440	return false;
 441}
 442
 443static void scsi_starved_list_run(struct Scsi_Host *shost)
 444{
 445	LIST_HEAD(starved_list);
 446	struct scsi_device *sdev;
 447	unsigned long flags;
 448
 449	spin_lock_irqsave(shost->host_lock, flags);
 450	list_splice_init(&shost->starved_list, &starved_list);
 451
 452	while (!list_empty(&starved_list)) {
 453		struct request_queue *slq;
 454
 455		/*
 456		 * As long as shost is accepting commands and we have
 457		 * starved queues, call blk_run_queue. scsi_request_fn
 458		 * drops the queue_lock and can add us back to the
 459		 * starved_list.
 460		 *
 461		 * host_lock protects the starved_list and starved_entry.
 462		 * scsi_request_fn must get the host_lock before checking
 463		 * or modifying starved_list or starved_entry.
 464		 */
 465		if (scsi_host_is_busy(shost))
 466			break;
 467
 468		sdev = list_entry(starved_list.next,
 469				  struct scsi_device, starved_entry);
 470		list_del_init(&sdev->starved_entry);
 471		if (scsi_target_is_busy(scsi_target(sdev))) {
 472			list_move_tail(&sdev->starved_entry,
 473				       &shost->starved_list);
 474			continue;
 475		}
 476
 477		/*
 478		 * Once we drop the host lock, a racing scsi_remove_device()
 479		 * call may remove the sdev from the starved list and destroy
 480		 * it and the queue.  Mitigate by taking a reference to the
 481		 * queue and never touching the sdev again after we drop the
 482		 * host lock.  Note: if __scsi_remove_device() invokes
 483		 * blk_cleanup_queue() before the queue is run from this
 484		 * function then blk_run_queue() will return immediately since
 485		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 486		 */
 487		slq = sdev->request_queue;
 488		if (!blk_get_queue(slq))
 489			continue;
 490		spin_unlock_irqrestore(shost->host_lock, flags);
 491
 492		scsi_kick_queue(slq);
 493		blk_put_queue(slq);
 494
 495		spin_lock_irqsave(shost->host_lock, flags);
 496	}
 497	/* put any unprocessed entries back */
 498	list_splice(&starved_list, &shost->starved_list);
 499	spin_unlock_irqrestore(shost->host_lock, flags);
 500}
 501
 502/*
 503 * Function:   scsi_run_queue()
 504 *
 505 * Purpose:    Select a proper request queue to serve next
 506 *
 507 * Arguments:  q       - last request's queue
 508 *
 509 * Returns:     Nothing
 510 *
 511 * Notes:      The previous command was completely finished, start
 512 *             a new one if possible.
 513 */
 514static void scsi_run_queue(struct request_queue *q)
 515{
 516	struct scsi_device *sdev = q->queuedata;
 517
 518	if (scsi_target(sdev)->single_lun)
 519		scsi_single_lun_run(sdev);
 520	if (!list_empty(&sdev->host->starved_list))
 521		scsi_starved_list_run(sdev->host);
 522
 523	blk_mq_run_hw_queues(q, false);
 
 524}
 525
 526void scsi_requeue_run_queue(struct work_struct *work)
 527{
 528	struct scsi_device *sdev;
 529	struct request_queue *q;
 530
 531	sdev = container_of(work, struct scsi_device, requeue_work);
 532	q = sdev->request_queue;
 533	scsi_run_queue(q);
 534}
 535
 536void scsi_run_host_queues(struct Scsi_Host *shost)
 537{
 538	struct scsi_device *sdev;
 539
 540	shost_for_each_device(sdev, shost)
 541		scsi_run_queue(sdev->request_queue);
 542}
 543
 544static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 545{
 546	if (!blk_rq_is_passthrough(cmd->request)) {
 547		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 548
 549		if (drv->uninit_command)
 550			drv->uninit_command(cmd);
 551	}
 552}
 553
 554static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 555{
 556	if (cmd->sdb.table.nents)
 557		sg_free_table_chained(&cmd->sdb.table,
 558				SCSI_INLINE_SG_CNT);
 559	if (scsi_prot_sg_count(cmd))
 560		sg_free_table_chained(&cmd->prot_sdb->table,
 561				SCSI_INLINE_PROT_SG_CNT);
 562}
 
 563
 564static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 565{
 566	scsi_mq_free_sgtables(cmd);
 567	scsi_uninit_cmd(cmd);
 568	scsi_del_cmd_from_list(cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569}
 570
 571/* Returns false when no more bytes to process, true if there are more */
 572static bool scsi_end_request(struct request *req, blk_status_t error,
 573		unsigned int bytes)
 574{
 575	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 576	struct scsi_device *sdev = cmd->device;
 577	struct request_queue *q = sdev->request_queue;
 578
 579	if (blk_update_request(req, error, bytes))
 580		return true;
 581
 582	if (blk_queue_add_random(q))
 583		add_disk_randomness(req->rq_disk);
 584
 585	if (!blk_rq_is_scsi(req)) {
 586		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 587		cmd->flags &= ~SCMD_INITIALIZED;
 588	}
 589
 590	/*
 591	 * Calling rcu_barrier() is not necessary here because the
 592	 * SCSI error handler guarantees that the function called by
 593	 * call_rcu() has been called before scsi_end_request() is
 594	 * called.
 595	 */
 596	destroy_rcu_head(&cmd->rcu);
 597
 598	/*
 599	 * In the MQ case the command gets freed by __blk_mq_end_request,
 600	 * so we have to do all cleanup that depends on it earlier.
 601	 *
 602	 * We also can't kick the queues from irq context, so we
 603	 * will have to defer it to a workqueue.
 604	 */
 605	scsi_mq_uninit_cmd(cmd);
 606
 607	/*
 608	 * queue is still alive, so grab the ref for preventing it
 609	 * from being cleaned up during running queue.
 610	 */
 611	percpu_ref_get(&q->q_usage_counter);
 612
 613	__blk_mq_end_request(req, error);
 614
 615	if (scsi_target(sdev)->single_lun ||
 616	    !list_empty(&sdev->host->starved_list))
 617		kblockd_schedule_work(&sdev->requeue_work);
 618	else
 619		blk_mq_run_hw_queues(q, true);
 620
 621	percpu_ref_put(&q->q_usage_counter);
 622	return false;
 623}
 624
 625/**
 626 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 627 * @cmd:	SCSI command
 628 * @result:	scsi error code
 629 *
 630 * Translate a SCSI result code into a blk_status_t value. May reset the host
 631 * byte of @cmd->result.
 632 */
 633static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
 634{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635	switch (host_byte(result)) {
 636	case DID_OK:
 637		/*
 638		 * Also check the other bytes than the status byte in result
 639		 * to handle the case when a SCSI LLD sets result to
 640		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
 641		 */
 642		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
 643			return BLK_STS_OK;
 644		return BLK_STS_IOERR;
 645	case DID_TRANSPORT_FAILFAST:
 
 646		return BLK_STS_TRANSPORT;
 647	case DID_TARGET_FAILURE:
 648		set_host_byte(cmd, DID_OK);
 649		return BLK_STS_TARGET;
 650	case DID_NEXUS_FAILURE:
 651		set_host_byte(cmd, DID_OK);
 652		return BLK_STS_NEXUS;
 653	case DID_ALLOC_FAILURE:
 654		set_host_byte(cmd, DID_OK);
 655		return BLK_STS_NOSPC;
 656	case DID_MEDIUM_ERROR:
 657		set_host_byte(cmd, DID_OK);
 658		return BLK_STS_MEDIUM;
 659	default:
 660		return BLK_STS_IOERR;
 661	}
 662}
 663
 664/* Helper for scsi_io_completion() when "reprep" action required. */
 665static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
 666				      struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 667{
 668	/* A new command will be prepared and issued. */
 669	scsi_mq_requeue_cmd(cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670}
 671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 672/* Helper for scsi_io_completion() when special action required. */
 673static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 674{
 675	struct request_queue *q = cmd->device->request_queue;
 676	struct request *req = cmd->request;
 677	int level = 0;
 678	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 679	      ACTION_DELAYED_RETRY} action;
 680	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 681	struct scsi_sense_hdr sshdr;
 682	bool sense_valid;
 683	bool sense_current = true;      /* false implies "deferred sense" */
 684	blk_status_t blk_stat;
 685
 686	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 687	if (sense_valid)
 688		sense_current = !scsi_sense_is_deferred(&sshdr);
 689
 690	blk_stat = scsi_result_to_blk_status(cmd, result);
 691
 692	if (host_byte(result) == DID_RESET) {
 693		/* Third party bus reset or reset for error recovery
 694		 * reasons.  Just retry the command and see what
 695		 * happens.
 696		 */
 697		action = ACTION_RETRY;
 698	} else if (sense_valid && sense_current) {
 699		switch (sshdr.sense_key) {
 700		case UNIT_ATTENTION:
 701			if (cmd->device->removable) {
 702				/* Detected disc change.  Set a bit
 703				 * and quietly refuse further access.
 704				 */
 705				cmd->device->changed = 1;
 706				action = ACTION_FAIL;
 707			} else {
 708				/* Must have been a power glitch, or a
 709				 * bus reset.  Could not have been a
 710				 * media change, so we just retry the
 711				 * command and see what happens.
 712				 */
 713				action = ACTION_RETRY;
 714			}
 715			break;
 716		case ILLEGAL_REQUEST:
 717			/* If we had an ILLEGAL REQUEST returned, then
 718			 * we may have performed an unsupported
 719			 * command.  The only thing this should be
 720			 * would be a ten byte read where only a six
 721			 * byte read was supported.  Also, on a system
 722			 * where READ CAPACITY failed, we may have
 723			 * read past the end of the disk.
 724			 */
 725			if ((cmd->device->use_10_for_rw &&
 726			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 727			    (cmd->cmnd[0] == READ_10 ||
 728			     cmd->cmnd[0] == WRITE_10)) {
 729				/* This will issue a new 6-byte command. */
 730				cmd->device->use_10_for_rw = 0;
 731				action = ACTION_REPREP;
 732			} else if (sshdr.asc == 0x10) /* DIX */ {
 733				action = ACTION_FAIL;
 734				blk_stat = BLK_STS_PROTECTION;
 735			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 736			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 737				action = ACTION_FAIL;
 738				blk_stat = BLK_STS_TARGET;
 739			} else
 740				action = ACTION_FAIL;
 741			break;
 742		case ABORTED_COMMAND:
 743			action = ACTION_FAIL;
 744			if (sshdr.asc == 0x10) /* DIF */
 745				blk_stat = BLK_STS_PROTECTION;
 746			break;
 747		case NOT_READY:
 748			/* If the device is in the process of becoming
 749			 * ready, or has a temporary blockage, retry.
 750			 */
 751			if (sshdr.asc == 0x04) {
 752				switch (sshdr.ascq) {
 753				case 0x01: /* becoming ready */
 754				case 0x04: /* format in progress */
 755				case 0x05: /* rebuild in progress */
 756				case 0x06: /* recalculation in progress */
 757				case 0x07: /* operation in progress */
 758				case 0x08: /* Long write in progress */
 759				case 0x09: /* self test in progress */
 
 760				case 0x14: /* space allocation in progress */
 761				case 0x1a: /* start stop unit in progress */
 762				case 0x1b: /* sanitize in progress */
 763				case 0x1d: /* configuration in progress */
 764				case 0x24: /* depopulation in progress */
 765					action = ACTION_DELAYED_RETRY;
 766					break;
 
 
 
 
 
 
 
 
 
 
 767				default:
 768					action = ACTION_FAIL;
 769					break;
 770				}
 771			} else
 772				action = ACTION_FAIL;
 773			break;
 774		case VOLUME_OVERFLOW:
 775			/* See SSC3rXX or current. */
 776			action = ACTION_FAIL;
 777			break;
 
 
 
 
 
 
 
 
 
 
 
 778		default:
 779			action = ACTION_FAIL;
 780			break;
 781		}
 782	} else
 783		action = ACTION_FAIL;
 784
 785	if (action != ACTION_FAIL &&
 786	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
 787		action = ACTION_FAIL;
 788
 789	switch (action) {
 790	case ACTION_FAIL:
 791		/* Give up and fail the remainder of the request */
 792		if (!(req->rq_flags & RQF_QUIET)) {
 793			static DEFINE_RATELIMIT_STATE(_rs,
 794					DEFAULT_RATELIMIT_INTERVAL,
 795					DEFAULT_RATELIMIT_BURST);
 796
 797			if (unlikely(scsi_logging_level))
 798				level =
 799				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 800						    SCSI_LOG_MLCOMPLETE_BITS);
 801
 802			/*
 803			 * if logging is enabled the failure will be printed
 804			 * in scsi_log_completion(), so avoid duplicate messages
 805			 */
 806			if (!level && __ratelimit(&_rs)) {
 807				scsi_print_result(cmd, NULL, FAILED);
 808				if (driver_byte(result) == DRIVER_SENSE)
 809					scsi_print_sense(cmd);
 810				scsi_print_command(cmd);
 811			}
 812		}
 813		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
 814			return;
 815		/*FALLTHRU*/
 816	case ACTION_REPREP:
 817		scsi_io_completion_reprep(cmd, q);
 
 
 
 818		break;
 819	case ACTION_RETRY:
 820		/* Retry the same command immediately */
 821		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 822		break;
 823	case ACTION_DELAYED_RETRY:
 824		/* Retry the same command after a delay */
 825		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 826		break;
 827	}
 828}
 829
 830/*
 831 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 832 * new result that may suppress further error checking. Also modifies
 833 * *blk_statp in some cases.
 834 */
 835static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 836					blk_status_t *blk_statp)
 837{
 838	bool sense_valid;
 839	bool sense_current = true;	/* false implies "deferred sense" */
 840	struct request *req = cmd->request;
 841	struct scsi_sense_hdr sshdr;
 842
 843	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 844	if (sense_valid)
 845		sense_current = !scsi_sense_is_deferred(&sshdr);
 846
 847	if (blk_rq_is_passthrough(req)) {
 848		if (sense_valid) {
 849			/*
 850			 * SG_IO wants current and deferred errors
 851			 */
 852			scsi_req(req)->sense_len =
 853				min(8 + cmd->sense_buffer[7],
 854				    SCSI_SENSE_BUFFERSIZE);
 855		}
 856		if (sense_current)
 857			*blk_statp = scsi_result_to_blk_status(cmd, result);
 858	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 859		/*
 860		 * Flush commands do not transfers any data, and thus cannot use
 861		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 862		 * This sets *blk_statp explicitly for the problem case.
 863		 */
 864		*blk_statp = scsi_result_to_blk_status(cmd, result);
 865	}
 866	/*
 867	 * Recovered errors need reporting, but they're always treated as
 868	 * success, so fiddle the result code here.  For passthrough requests
 869	 * we already took a copy of the original into sreq->result which
 870	 * is what gets returned to the user
 871	 */
 872	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 873		bool do_print = true;
 874		/*
 875		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 876		 * skip print since caller wants ATA registers. Only occurs
 877		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 878		 */
 879		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 880			do_print = false;
 881		else if (req->rq_flags & RQF_QUIET)
 882			do_print = false;
 883		if (do_print)
 884			scsi_print_sense(cmd);
 885		result = 0;
 886		/* for passthrough, *blk_statp may be set */
 887		*blk_statp = BLK_STS_OK;
 888	}
 889	/*
 890	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 891	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 892	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 893	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 894	 * intermediate statuses (both obsolete in SAM-4) as good.
 895	 */
 896	if (status_byte(result) && scsi_status_is_good(result)) {
 897		result = 0;
 898		*blk_statp = BLK_STS_OK;
 899	}
 900	return result;
 901}
 902
 903/*
 904 * Function:    scsi_io_completion()
 905 *
 906 * Purpose:     Completion processing for block device I/O requests.
 907 *
 908 * Arguments:   cmd   - command that is finished.
 909 *
 910 * Lock status: Assumed that no lock is held upon entry.
 911 *
 912 * Returns:     Nothing
 913 *
 914 * Notes:       We will finish off the specified number of sectors.  If we
 915 *		are done, the command block will be released and the queue
 916 *		function will be goosed.  If we are not done then we have to
 917 *		figure out what to do next:
 
 
 
 918 *
 919 *		a) We can call scsi_requeue_command().  The request
 920 *		   will be unprepared and put back on the queue.  Then
 921 *		   a new command will be created for it.  This should
 922 *		   be used if we made forward progress, or if we want
 923 *		   to switch from READ(10) to READ(6) for example.
 924 *
 925 *		b) We can call __scsi_queue_insert().  The request will
 926 *		   be put back on the queue and retried using the same
 927 *		   command as before, possibly after a delay.
 928 *
 929 *		c) We can call scsi_end_request() with blk_stat other than
 930 *		   BLK_STS_OK, to fail the remainder of the request.
 931 */
 932void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 933{
 934	int result = cmd->result;
 935	struct request_queue *q = cmd->device->request_queue;
 936	struct request *req = cmd->request;
 937	blk_status_t blk_stat = BLK_STS_OK;
 938
 939	if (unlikely(result))	/* a nz result may or may not be an error */
 940		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
 941
 942	if (unlikely(blk_rq_is_passthrough(req))) {
 943		/*
 944		 * scsi_result_to_blk_status may have reset the host_byte
 945		 */
 946		scsi_req(req)->result = cmd->result;
 947	}
 948
 949	/*
 950	 * Next deal with any sectors which we were able to correctly
 951	 * handle.
 952	 */
 953	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 954		"%u sectors total, %d bytes done.\n",
 955		blk_rq_sectors(req), good_bytes));
 956
 957	/*
 958	 * Next deal with any sectors which we were able to correctly
 959	 * handle. Failed, zero length commands always need to drop down
 960	 * to retry code. Fast path should return in this block.
 961	 */
 962	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
 963		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
 964			return; /* no bytes remaining */
 965	}
 966
 967	/* Kill remainder if no retries. */
 968	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
 969		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
 970			WARN_ONCE(true,
 971			    "Bytes remaining after failed, no-retry command");
 972		return;
 973	}
 974
 975	/*
 976	 * If there had been no error, but we have leftover bytes in the
 977	 * requeues just queue the command up again.
 978	 */
 979	if (likely(result == 0))
 980		scsi_io_completion_reprep(cmd, q);
 981	else
 982		scsi_io_completion_action(cmd, result);
 983}
 984
 985static blk_status_t scsi_init_sgtable(struct request *req,
 986		struct scsi_data_buffer *sdb)
 987{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988	int count;
 989
 
 
 
 
 
 
 
 
 
 
 990	/*
 991	 * If sg table allocation fails, requeue request later.
 992	 */
 993	if (unlikely(sg_alloc_table_chained(&sdb->table,
 994			blk_rq_nr_phys_segments(req), sdb->table.sgl,
 995			SCSI_INLINE_SG_CNT)))
 996		return BLK_STS_RESOURCE;
 997
 998	/* 
 999	 * Next, walk the list, and fill in the addresses and sizes of
1000	 * each segment.
1001	 */
1002	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1003	BUG_ON(count > sdb->table.nents);
1004	sdb->table.nents = count;
1005	sdb->length = blk_rq_payload_bytes(req);
1006	return BLK_STS_OK;
1007}
 
 
 
1008
1009/*
1010 * Function:    scsi_init_io()
1011 *
1012 * Purpose:     SCSI I/O initialize function.
1013 *
1014 * Arguments:   cmd   - Command descriptor we wish to initialize
1015 *
1016 * Returns:     BLK_STS_OK on success
1017 *		BLK_STS_RESOURCE if the failure is retryable
1018 *		BLK_STS_IOERR if the failure is fatal
1019 */
1020blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
1021{
1022	struct request *rq = cmd->request;
1023	blk_status_t ret;
1024
1025	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1026		return BLK_STS_IOERR;
 
1027
1028	ret = scsi_init_sgtable(rq, &cmd->sdb);
1029	if (ret)
1030		return ret;
1031
1032	if (blk_integrity_rq(rq)) {
1033		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1034		int ivecs, count;
1035
1036		if (WARN_ON_ONCE(!prot_sdb)) {
1037			/*
1038			 * This can happen if someone (e.g. multipath)
1039			 * queues a command to a device on an adapter
1040			 * that does not support DIX.
1041			 */
1042			ret = BLK_STS_IOERR;
1043			goto out_free_sgtables;
1044		}
1045
1046		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1047
1048		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1049				prot_sdb->table.sgl,
1050				SCSI_INLINE_PROT_SG_CNT)) {
1051			ret = BLK_STS_RESOURCE;
1052			goto out_free_sgtables;
1053		}
1054
1055		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1056						prot_sdb->table.sgl);
1057		BUG_ON(count > ivecs);
1058		BUG_ON(count > queue_max_integrity_segments(rq->q));
1059
1060		cmd->prot_sdb = prot_sdb;
1061		cmd->prot_sdb->table.nents = count;
1062	}
1063
1064	return BLK_STS_OK;
1065out_free_sgtables:
1066	scsi_mq_free_sgtables(cmd);
1067	return ret;
1068}
1069EXPORT_SYMBOL(scsi_init_io);
1070
1071/**
1072 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1073 * @rq: Request associated with the SCSI command to be initialized.
1074 *
1075 * This function initializes the members of struct scsi_cmnd that must be
1076 * initialized before request processing starts and that won't be
1077 * reinitialized if a SCSI command is requeued.
1078 *
1079 * Called from inside blk_get_request() for pass-through requests and from
1080 * inside scsi_init_command() for filesystem requests.
1081 */
1082static void scsi_initialize_rq(struct request *rq)
1083{
1084	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1085
1086	scsi_req_init(&cmd->req);
 
 
1087	init_rcu_head(&cmd->rcu);
1088	cmd->jiffies_at_alloc = jiffies;
1089	cmd->retries = 0;
1090}
1091
 
 
 
 
 
 
 
 
 
 
 
 
1092/*
1093 * Only called when the request isn't completed by SCSI, and not freed by
1094 * SCSI
1095 */
1096static void scsi_cleanup_rq(struct request *rq)
1097{
1098	if (rq->rq_flags & RQF_DONTPREP) {
1099		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1100		rq->rq_flags &= ~RQF_DONTPREP;
1101	}
1102}
1103
1104/* Add a command to the list used by the aacraid and dpt_i2o drivers */
1105void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1106{
1107	struct scsi_device *sdev = cmd->device;
1108	struct Scsi_Host *shost = sdev->host;
1109	unsigned long flags;
1110
1111	if (shost->use_cmd_list) {
1112		spin_lock_irqsave(&sdev->list_lock, flags);
1113		list_add_tail(&cmd->list, &sdev->cmd_list);
1114		spin_unlock_irqrestore(&sdev->list_lock, flags);
1115	}
1116}
1117
1118/* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1119void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1120{
1121	struct scsi_device *sdev = cmd->device;
1122	struct Scsi_Host *shost = sdev->host;
1123	unsigned long flags;
1124
1125	if (shost->use_cmd_list) {
1126		spin_lock_irqsave(&sdev->list_lock, flags);
1127		BUG_ON(list_empty(&cmd->list));
1128		list_del_init(&cmd->list);
1129		spin_unlock_irqrestore(&sdev->list_lock, flags);
1130	}
1131}
1132
1133/* Called after a request has been started. */
1134void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1135{
1136	void *buf = cmd->sense_buffer;
1137	void *prot = cmd->prot_sdb;
1138	struct request *rq = blk_mq_rq_from_pdu(cmd);
1139	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1140	unsigned long jiffies_at_alloc;
1141	int retries;
1142
1143	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1144		flags |= SCMD_INITIALIZED;
1145		scsi_initialize_rq(rq);
1146	}
1147
1148	jiffies_at_alloc = cmd->jiffies_at_alloc;
1149	retries = cmd->retries;
1150	/* zero out the cmd, except for the embedded scsi_request */
1151	memset((char *)cmd + sizeof(cmd->req), 0,
1152		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1153
1154	cmd->device = dev;
1155	cmd->sense_buffer = buf;
1156	cmd->prot_sdb = prot;
1157	cmd->flags = flags;
1158	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1159	cmd->jiffies_at_alloc = jiffies_at_alloc;
1160	cmd->retries = retries;
1161
1162	scsi_add_cmd_to_list(cmd);
1163}
1164
1165static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1166		struct request *req)
1167{
1168	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1169
1170	/*
1171	 * Passthrough requests may transfer data, in which case they must
1172	 * a bio attached to them.  Or they might contain a SCSI command
1173	 * that does not transfer data, in which case they may optionally
1174	 * submit a request without an attached bio.
1175	 */
1176	if (req->bio) {
1177		blk_status_t ret = scsi_init_io(cmd);
1178		if (unlikely(ret != BLK_STS_OK))
1179			return ret;
1180	} else {
1181		BUG_ON(blk_rq_bytes(req));
1182
1183		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1184	}
1185
1186	cmd->cmd_len = scsi_req(req)->cmd_len;
1187	cmd->cmnd = scsi_req(req)->cmd;
1188	cmd->transfersize = blk_rq_bytes(req);
1189	cmd->allowed = scsi_req(req)->retries;
1190	return BLK_STS_OK;
1191}
1192
1193/*
1194 * Setup a normal block command.  These are simple request from filesystems
1195 * that still need to be translated to SCSI CDBs from the ULD.
1196 */
1197static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1198		struct request *req)
1199{
1200	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1201
1202	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1203		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1204		if (ret != BLK_STS_OK)
1205			return ret;
1206	}
1207
1208	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1209	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1210	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1211}
1212
1213static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1214		struct request *req)
1215{
1216	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1217
1218	if (!blk_rq_bytes(req))
1219		cmd->sc_data_direction = DMA_NONE;
1220	else if (rq_data_dir(req) == WRITE)
1221		cmd->sc_data_direction = DMA_TO_DEVICE;
1222	else
1223		cmd->sc_data_direction = DMA_FROM_DEVICE;
1224
1225	if (blk_rq_is_scsi(req))
1226		return scsi_setup_scsi_cmnd(sdev, req);
1227	else
1228		return scsi_setup_fs_cmnd(sdev, req);
1229}
1230
1231static blk_status_t
1232scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1233{
1234	switch (sdev->sdev_state) {
 
 
1235	case SDEV_OFFLINE:
1236	case SDEV_TRANSPORT_OFFLINE:
1237		/*
1238		 * If the device is offline we refuse to process any
1239		 * commands.  The device must be brought online
1240		 * before trying any recovery commands.
1241		 */
1242		sdev_printk(KERN_ERR, sdev,
1243			    "rejecting I/O to offline device\n");
 
 
 
1244		return BLK_STS_IOERR;
1245	case SDEV_DEL:
1246		/*
1247		 * If the device is fully deleted, we refuse to
1248		 * process any commands as well.
1249		 */
1250		sdev_printk(KERN_ERR, sdev,
1251			    "rejecting I/O to dead device\n");
1252		return BLK_STS_IOERR;
1253	case SDEV_BLOCK:
1254	case SDEV_CREATED_BLOCK:
1255		return BLK_STS_RESOURCE;
1256	case SDEV_QUIESCE:
1257		/*
1258		 * If the devices is blocked we defer normal commands.
 
1259		 */
1260		if (req && !(req->rq_flags & RQF_PREEMPT))
1261			return BLK_STS_RESOURCE;
1262		return BLK_STS_OK;
1263	default:
1264		/*
1265		 * For any other not fully online state we only allow
1266		 * special commands.  In particular any user initiated
1267		 * command is not allowed.
1268		 */
1269		if (req && !(req->rq_flags & RQF_PREEMPT))
1270			return BLK_STS_IOERR;
1271		return BLK_STS_OK;
1272	}
1273}
1274
1275/*
1276 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1277 * return 0.
1278 *
1279 * Called with the queue_lock held.
1280 */
1281static inline int scsi_dev_queue_ready(struct request_queue *q,
1282				  struct scsi_device *sdev)
1283{
1284	unsigned int busy;
 
 
 
 
1285
1286	busy = atomic_inc_return(&sdev->device_busy) - 1;
1287	if (atomic_read(&sdev->device_blocked)) {
1288		if (busy)
1289			goto out_dec;
1290
1291		/*
1292		 * unblock after device_blocked iterates to zero
1293		 */
1294		if (atomic_dec_return(&sdev->device_blocked) > 0)
1295			goto out_dec;
1296		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1297				   "unblocking device at zero depth\n"));
 
1298	}
1299
1300	if (busy >= sdev->queue_depth)
1301		goto out_dec;
1302
1303	return 1;
1304out_dec:
1305	atomic_dec(&sdev->device_busy);
1306	return 0;
1307}
1308
1309/*
1310 * scsi_target_queue_ready: checks if there we can send commands to target
1311 * @sdev: scsi device on starget to check.
1312 */
1313static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1314					   struct scsi_device *sdev)
1315{
1316	struct scsi_target *starget = scsi_target(sdev);
1317	unsigned int busy;
1318
1319	if (starget->single_lun) {
1320		spin_lock_irq(shost->host_lock);
1321		if (starget->starget_sdev_user &&
1322		    starget->starget_sdev_user != sdev) {
1323			spin_unlock_irq(shost->host_lock);
1324			return 0;
1325		}
1326		starget->starget_sdev_user = sdev;
1327		spin_unlock_irq(shost->host_lock);
1328	}
1329
1330	if (starget->can_queue <= 0)
1331		return 1;
1332
1333	busy = atomic_inc_return(&starget->target_busy) - 1;
1334	if (atomic_read(&starget->target_blocked) > 0) {
1335		if (busy)
1336			goto starved;
1337
1338		/*
1339		 * unblock after target_blocked iterates to zero
1340		 */
1341		if (atomic_dec_return(&starget->target_blocked) > 0)
1342			goto out_dec;
1343
1344		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1345				 "unblocking target at zero depth\n"));
1346	}
1347
1348	if (busy >= starget->can_queue)
1349		goto starved;
1350
1351	return 1;
1352
1353starved:
1354	spin_lock_irq(shost->host_lock);
1355	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1356	spin_unlock_irq(shost->host_lock);
1357out_dec:
1358	if (starget->can_queue > 0)
1359		atomic_dec(&starget->target_busy);
1360	return 0;
1361}
1362
1363/*
1364 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1365 * return 0. We must end up running the queue again whenever 0 is
1366 * returned, else IO can hang.
1367 */
1368static inline int scsi_host_queue_ready(struct request_queue *q,
1369				   struct Scsi_Host *shost,
1370				   struct scsi_device *sdev)
 
1371{
1372	unsigned int busy;
1373
1374	if (scsi_host_in_recovery(shost))
1375		return 0;
1376
1377	busy = atomic_inc_return(&shost->host_busy) - 1;
1378	if (atomic_read(&shost->host_blocked) > 0) {
1379		if (busy)
1380			goto starved;
1381
1382		/*
1383		 * unblock after host_blocked iterates to zero
1384		 */
1385		if (atomic_dec_return(&shost->host_blocked) > 0)
1386			goto out_dec;
1387
1388		SCSI_LOG_MLQUEUE(3,
1389			shost_printk(KERN_INFO, shost,
1390				     "unblocking host at zero depth\n"));
1391	}
1392
1393	if (shost->can_queue > 0 && busy >= shost->can_queue)
1394		goto starved;
1395	if (shost->host_self_blocked)
1396		goto starved;
1397
1398	/* We're OK to process the command, so we can't be starved */
1399	if (!list_empty(&sdev->starved_entry)) {
1400		spin_lock_irq(shost->host_lock);
1401		if (!list_empty(&sdev->starved_entry))
1402			list_del_init(&sdev->starved_entry);
1403		spin_unlock_irq(shost->host_lock);
1404	}
1405
 
 
1406	return 1;
1407
1408starved:
1409	spin_lock_irq(shost->host_lock);
1410	if (list_empty(&sdev->starved_entry))
1411		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1412	spin_unlock_irq(shost->host_lock);
1413out_dec:
1414	scsi_dec_host_busy(shost);
1415	return 0;
1416}
1417
1418/*
1419 * Busy state exporting function for request stacking drivers.
1420 *
1421 * For efficiency, no lock is taken to check the busy state of
1422 * shost/starget/sdev, since the returned value is not guaranteed and
1423 * may be changed after request stacking drivers call the function,
1424 * regardless of taking lock or not.
1425 *
1426 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1427 * needs to return 'not busy'. Otherwise, request stacking drivers
1428 * may hold requests forever.
1429 */
1430static bool scsi_mq_lld_busy(struct request_queue *q)
1431{
1432	struct scsi_device *sdev = q->queuedata;
1433	struct Scsi_Host *shost;
1434
1435	if (blk_queue_dying(q))
1436		return false;
1437
1438	shost = sdev->host;
1439
1440	/*
1441	 * Ignore host/starget busy state.
1442	 * Since block layer does not have a concept of fairness across
1443	 * multiple queues, congestion of host/starget needs to be handled
1444	 * in SCSI layer.
1445	 */
1446	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1447		return true;
1448
1449	return false;
1450}
1451
1452static void scsi_softirq_done(struct request *rq)
 
 
 
 
1453{
1454	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1455	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1456	int disposition;
1457
1458	INIT_LIST_HEAD(&cmd->eh_entry);
1459
1460	atomic_inc(&cmd->device->iodone_cnt);
1461	if (cmd->result)
1462		atomic_inc(&cmd->device->ioerr_cnt);
1463
1464	disposition = scsi_decide_disposition(cmd);
1465	if (disposition != SUCCESS &&
1466	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1467		scmd_printk(KERN_ERR, cmd,
1468			    "timing out command, waited %lus\n",
1469			    wait_for/HZ);
1470		disposition = SUCCESS;
1471	}
1472
1473	scsi_log_completion(cmd, disposition);
1474
1475	switch (disposition) {
1476		case SUCCESS:
1477			scsi_finish_command(cmd);
1478			break;
1479		case NEEDS_RETRY:
1480			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1481			break;
1482		case ADD_TO_MLQUEUE:
1483			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1484			break;
1485		default:
1486			scsi_eh_scmd_add(cmd);
1487			break;
1488	}
1489}
1490
1491/**
1492 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1493 * @cmd: command block we are dispatching.
1494 *
1495 * Return: nonzero return request was rejected and device's queue needs to be
1496 * plugged.
1497 */
1498static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1499{
1500	struct Scsi_Host *host = cmd->device->host;
1501	int rtn = 0;
1502
1503	atomic_inc(&cmd->device->iorequest_cnt);
1504
1505	/* check if the device is still usable */
1506	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1507		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1508		 * returns an immediate error upwards, and signals
1509		 * that the device is no longer present */
1510		cmd->result = DID_NO_CONNECT << 16;
1511		goto done;
1512	}
1513
1514	/* Check to see if the scsi lld made this device blocked. */
1515	if (unlikely(scsi_device_blocked(cmd->device))) {
1516		/*
1517		 * in blocked state, the command is just put back on
1518		 * the device queue.  The suspend state has already
1519		 * blocked the queue so future requests should not
1520		 * occur until the device transitions out of the
1521		 * suspend state.
1522		 */
1523		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1524			"queuecommand : device blocked\n"));
 
1525		return SCSI_MLQUEUE_DEVICE_BUSY;
1526	}
1527
1528	/* Store the LUN value in cmnd, if needed. */
1529	if (cmd->device->lun_in_cdb)
1530		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1531			       (cmd->device->lun << 5 & 0xe0);
1532
1533	scsi_log_send(cmd);
1534
1535	/*
1536	 * Before we queue this command, check if the command
1537	 * length exceeds what the host adapter can handle.
1538	 */
1539	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1540		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1541			       "queuecommand : command too long. "
1542			       "cdb_size=%d host->max_cmd_len=%d\n",
1543			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1544		cmd->result = (DID_ABORT << 16);
1545		goto done;
1546	}
1547
1548	if (unlikely(host->shost_state == SHOST_DEL)) {
1549		cmd->result = (DID_NO_CONNECT << 16);
1550		goto done;
1551
1552	}
1553
1554	trace_scsi_dispatch_cmd_start(cmd);
1555	rtn = host->hostt->queuecommand(host, cmd);
1556	if (rtn) {
 
1557		trace_scsi_dispatch_cmd_error(cmd, rtn);
1558		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1559		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1560			rtn = SCSI_MLQUEUE_HOST_BUSY;
1561
1562		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1563			"queuecommand : request rejected\n"));
1564	}
1565
1566	return rtn;
1567 done:
1568	cmd->scsi_done(cmd);
1569	return 0;
1570}
1571
1572/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1573static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1574{
1575	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1576		sizeof(struct scatterlist);
1577}
1578
1579static blk_status_t scsi_mq_prep_fn(struct request *req)
1580{
1581	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1582	struct scsi_device *sdev = req->q->queuedata;
1583	struct Scsi_Host *shost = sdev->host;
 
1584	struct scatterlist *sg;
1585
1586	scsi_init_command(sdev, cmd);
1587
1588	cmd->request = req;
1589	cmd->tag = req->tag;
 
 
 
 
 
 
 
 
 
 
 
 
1590	cmd->prot_op = SCSI_PROT_NORMAL;
 
 
 
 
1591
1592	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1593	cmd->sdb.table.sgl = sg;
1594
1595	if (scsi_host_get_prot(shost)) {
1596		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1597
1598		cmd->prot_sdb->table.sgl =
1599			(struct scatterlist *)(cmd->prot_sdb + 1);
1600	}
1601
1602	blk_mq_start_request(req);
 
 
 
 
 
 
 
 
 
 
 
 
1603
1604	return scsi_setup_cmnd(sdev, req);
 
 
 
1605}
1606
1607static void scsi_mq_done(struct scsi_cmnd *cmd)
1608{
 
 
 
 
 
 
 
 
 
 
 
 
 
1609	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1610		return;
1611	trace_scsi_dispatch_cmd_done(cmd);
1612
1613	/*
1614	 * If the block layer didn't complete the request due to a timeout
1615	 * injection, scsi must clear its internal completed state so that the
1616	 * timeout handler will see it needs to escalate its own error
1617	 * recovery.
1618	 */
1619	if (unlikely(!blk_mq_complete_request(cmd->request)))
1620		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
 
 
 
 
 
 
 
1621}
 
1622
1623static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1624{
1625	struct request_queue *q = hctx->queue;
1626	struct scsi_device *sdev = q->queuedata;
1627
1628	atomic_dec(&sdev->device_busy);
1629}
1630
1631static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
 
 
 
 
 
 
 
1632{
1633	struct request_queue *q = hctx->queue;
1634	struct scsi_device *sdev = q->queuedata;
 
 
 
 
1635
1636	if (scsi_dev_queue_ready(q, sdev))
1637		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1638
1639	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1640		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1641	return false;
1642}
1643
1644static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1645			 const struct blk_mq_queue_data *bd)
1646{
1647	struct request *req = bd->rq;
1648	struct request_queue *q = req->q;
1649	struct scsi_device *sdev = q->queuedata;
1650	struct Scsi_Host *shost = sdev->host;
1651	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1652	blk_status_t ret;
1653	int reason;
1654
 
 
1655	/*
1656	 * If the device is not in running state we will reject some or all
1657	 * commands.
1658	 */
1659	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1660		ret = scsi_prep_state_check(sdev, req);
1661		if (ret != BLK_STS_OK)
1662			goto out_put_budget;
1663	}
1664
1665	ret = BLK_STS_RESOURCE;
1666	if (!scsi_target_queue_ready(shost, sdev))
1667		goto out_put_budget;
1668	if (!scsi_host_queue_ready(q, shost, sdev))
 
 
1669		goto out_dec_target_busy;
 
 
 
 
 
 
 
 
 
 
1670
1671	if (!(req->rq_flags & RQF_DONTPREP)) {
1672		ret = scsi_mq_prep_fn(req);
1673		if (ret != BLK_STS_OK)
1674			goto out_dec_host_busy;
1675		req->rq_flags |= RQF_DONTPREP;
1676	} else {
1677		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1678		blk_mq_start_request(req);
1679	}
1680
1681	cmd->flags &= SCMD_PRESERVED_FLAGS;
1682	if (sdev->simple_tags)
1683		cmd->flags |= SCMD_TAGGED;
1684	if (bd->last)
1685		cmd->flags |= SCMD_LAST;
1686
1687	scsi_init_cmd_errh(cmd);
1688	cmd->scsi_done = scsi_mq_done;
 
1689
 
1690	reason = scsi_dispatch_cmd(cmd);
1691	if (reason) {
1692		scsi_set_blocked(cmd, reason);
1693		ret = BLK_STS_RESOURCE;
1694		goto out_dec_host_busy;
1695	}
1696
1697	return BLK_STS_OK;
1698
1699out_dec_host_busy:
1700	scsi_dec_host_busy(shost);
1701out_dec_target_busy:
1702	if (scsi_target(sdev)->can_queue > 0)
1703		atomic_dec(&scsi_target(sdev)->target_busy);
1704out_put_budget:
1705	scsi_mq_put_budget(hctx);
 
1706	switch (ret) {
1707	case BLK_STS_OK:
1708		break;
1709	case BLK_STS_RESOURCE:
1710		if (atomic_read(&sdev->device_busy) ||
1711		    scsi_device_blocked(sdev))
1712			ret = BLK_STS_DEV_RESOURCE;
1713		break;
 
 
 
 
 
1714	default:
1715		if (unlikely(!scsi_device_online(sdev)))
1716			scsi_req(req)->result = DID_NO_CONNECT << 16;
1717		else
1718			scsi_req(req)->result = DID_ERROR << 16;
1719		/*
1720		 * Make sure to release all allocated resources when
1721		 * we hit an error, as we will never see this command
1722		 * again.
1723		 */
1724		if (req->rq_flags & RQF_DONTPREP)
1725			scsi_mq_uninit_cmd(cmd);
 
1726		break;
1727	}
1728	return ret;
1729}
1730
1731static enum blk_eh_timer_return scsi_timeout(struct request *req,
1732		bool reserved)
1733{
1734	if (reserved)
1735		return BLK_EH_RESET_TIMER;
1736	return scsi_times_out(req);
1737}
1738
1739static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1740				unsigned int hctx_idx, unsigned int numa_node)
1741{
1742	struct Scsi_Host *shost = set->driver_data;
1743	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1744	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1745	struct scatterlist *sg;
 
1746
1747	if (unchecked_isa_dma)
1748		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1749	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1750						    GFP_KERNEL, numa_node);
1751	if (!cmd->sense_buffer)
1752		return -ENOMEM;
1753	cmd->req.sense = cmd->sense_buffer;
1754
1755	if (scsi_host_get_prot(shost)) {
1756		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1757			shost->hostt->cmd_size;
1758		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1759	}
1760
1761	return 0;
 
 
 
 
 
 
1762}
1763
1764static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1765				 unsigned int hctx_idx)
1766{
 
1767	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1768
1769	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1770			       cmd->sense_buffer);
 
 
 
 
 
 
 
 
 
 
 
 
1771}
1772
1773static int scsi_map_queues(struct blk_mq_tag_set *set)
 
 
 
 
 
 
 
 
 
1774{
1775	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1776
1777	if (shost->hostt->map_queues)
1778		return shost->hostt->map_queues(shost);
1779	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1780}
1781
1782void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1783{
1784	struct device *dev = shost->dma_dev;
1785
1786	/*
1787	 * this limit is imposed by hardware restrictions
1788	 */
1789	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1790					SG_MAX_SEGMENTS));
1791
1792	if (scsi_host_prot_dma(shost)) {
1793		shost->sg_prot_tablesize =
1794			min_not_zero(shost->sg_prot_tablesize,
1795				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1796		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1797		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1798	}
1799
1800	if (dev->dma_mask) {
1801		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1802				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1803	}
1804	blk_queue_max_hw_sectors(q, shost->max_sectors);
1805	if (shost->unchecked_isa_dma)
1806		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1807	blk_queue_segment_boundary(q, shost->dma_boundary);
1808	dma_set_seg_boundary(dev, shost->dma_boundary);
1809
1810	blk_queue_max_segment_size(q, shost->max_segment_size);
1811	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1812	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1813
1814	/*
1815	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1816	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1817	 * which is set by the platform.
1818	 *
1819	 * Devices that require a bigger alignment can increase it later.
1820	 */
1821	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
 
 
 
1822}
1823EXPORT_SYMBOL_GPL(__scsi_init_queue);
1824
1825static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1826	.get_budget	= scsi_mq_get_budget,
1827	.put_budget	= scsi_mq_put_budget,
1828	.queue_rq	= scsi_queue_rq,
1829	.complete	= scsi_softirq_done,
1830	.timeout	= scsi_timeout,
1831#ifdef CONFIG_BLK_DEBUG_FS
1832	.show_rq	= scsi_show_rq,
1833#endif
1834	.init_request	= scsi_mq_init_request,
1835	.exit_request	= scsi_mq_exit_request,
1836	.initialize_rq_fn = scsi_initialize_rq,
1837	.cleanup_rq	= scsi_cleanup_rq,
1838	.busy		= scsi_mq_lld_busy,
1839	.map_queues	= scsi_map_queues,
 
 
 
 
1840};
1841
1842
1843static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1844{
1845	struct request_queue *q = hctx->queue;
1846	struct scsi_device *sdev = q->queuedata;
1847	struct Scsi_Host *shost = sdev->host;
1848
1849	shost->hostt->commit_rqs(shost, hctx->queue_num);
1850}
1851
1852static const struct blk_mq_ops scsi_mq_ops = {
1853	.get_budget	= scsi_mq_get_budget,
1854	.put_budget	= scsi_mq_put_budget,
1855	.queue_rq	= scsi_queue_rq,
1856	.commit_rqs	= scsi_commit_rqs,
1857	.complete	= scsi_softirq_done,
1858	.timeout	= scsi_timeout,
1859#ifdef CONFIG_BLK_DEBUG_FS
1860	.show_rq	= scsi_show_rq,
1861#endif
1862	.init_request	= scsi_mq_init_request,
1863	.exit_request	= scsi_mq_exit_request,
1864	.initialize_rq_fn = scsi_initialize_rq,
1865	.cleanup_rq	= scsi_cleanup_rq,
1866	.busy		= scsi_mq_lld_busy,
1867	.map_queues	= scsi_map_queues,
 
 
 
 
1868};
1869
1870struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1871{
1872	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1873	if (IS_ERR(sdev->request_queue))
1874		return NULL;
1875
1876	sdev->request_queue->queuedata = sdev;
1877	__scsi_init_queue(sdev->host, sdev->request_queue);
1878	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1879	return sdev->request_queue;
1880}
1881
1882int scsi_mq_setup_tags(struct Scsi_Host *shost)
1883{
1884	unsigned int cmd_size, sgl_size;
 
1885
1886	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1887				scsi_mq_inline_sgl_size(shost));
1888	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1889	if (scsi_host_get_prot(shost))
1890		cmd_size += sizeof(struct scsi_data_buffer) +
1891			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1892
1893	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
1894	if (shost->hostt->commit_rqs)
1895		shost->tag_set.ops = &scsi_mq_ops;
1896	else
1897		shost->tag_set.ops = &scsi_mq_ops_no_commit;
1898	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
1899	shost->tag_set.queue_depth = shost->can_queue;
1900	shost->tag_set.cmd_size = cmd_size;
1901	shost->tag_set.numa_node = NUMA_NO_NODE;
1902	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1903	shost->tag_set.flags |=
 
1904		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1905	shost->tag_set.driver_data = shost;
 
 
 
 
1906
1907	return blk_mq_alloc_tag_set(&shost->tag_set);
1908}
1909
1910void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1911{
 
 
 
1912	blk_mq_free_tag_set(&shost->tag_set);
 
1913}
1914
1915/**
1916 * scsi_device_from_queue - return sdev associated with a request_queue
1917 * @q: The request queue to return the sdev from
1918 *
1919 * Return the sdev associated with a request queue or NULL if the
1920 * request_queue does not reference a SCSI device.
1921 */
1922struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1923{
1924	struct scsi_device *sdev = NULL;
1925
1926	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1927	    q->mq_ops == &scsi_mq_ops)
1928		sdev = q->queuedata;
1929	if (!sdev || !get_device(&sdev->sdev_gendev))
1930		sdev = NULL;
1931
1932	return sdev;
1933}
 
 
 
 
 
 
1934EXPORT_SYMBOL_GPL(scsi_device_from_queue);
 
1935
1936/*
1937 * Function:    scsi_block_requests()
1938 *
1939 * Purpose:     Utility function used by low-level drivers to prevent further
1940 *		commands from being queued to the device.
1941 *
1942 * Arguments:   shost       - Host in question
1943 *
1944 * Returns:     Nothing
1945 *
1946 * Lock status: No locks are assumed held.
1947 *
1948 * Notes:       There is no timer nor any other means by which the requests
1949 *		get unblocked other than the low-level driver calling
1950 *		scsi_unblock_requests().
1951 */
1952void scsi_block_requests(struct Scsi_Host *shost)
1953{
1954	shost->host_self_blocked = 1;
1955}
1956EXPORT_SYMBOL(scsi_block_requests);
1957
1958/*
1959 * Function:    scsi_unblock_requests()
1960 *
1961 * Purpose:     Utility function used by low-level drivers to allow further
1962 *		commands from being queued to the device.
1963 *
1964 * Arguments:   shost       - Host in question
1965 *
1966 * Returns:     Nothing
1967 *
1968 * Lock status: No locks are assumed held.
1969 *
1970 * Notes:       There is no timer nor any other means by which the requests
1971 *		get unblocked other than the low-level driver calling
1972 *		scsi_unblock_requests().
1973 *
1974 *		This is done as an API function so that changes to the
1975 *		internals of the scsi mid-layer won't require wholesale
1976 *		changes to drivers that use this feature.
1977 */
1978void scsi_unblock_requests(struct Scsi_Host *shost)
1979{
1980	shost->host_self_blocked = 0;
1981	scsi_run_host_queues(shost);
1982}
1983EXPORT_SYMBOL(scsi_unblock_requests);
1984
1985int __init scsi_init_queue(void)
1986{
1987	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1988					   sizeof(struct scsi_data_buffer),
1989					   0, 0, NULL);
1990	if (!scsi_sdb_cache) {
1991		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1992		return -ENOMEM;
1993	}
1994
1995	return 0;
1996}
1997
1998void scsi_exit_queue(void)
1999{
2000	kmem_cache_destroy(scsi_sense_cache);
2001	kmem_cache_destroy(scsi_sense_isadma_cache);
2002	kmem_cache_destroy(scsi_sdb_cache);
2003}
2004
2005/**
2006 *	scsi_mode_select - issue a mode select
2007 *	@sdev:	SCSI device to be queried
2008 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2009 *	@sp:	Save page bit (0 == don't save, 1 == save)
2010 *	@modepage: mode page being requested
2011 *	@buffer: request buffer (may not be smaller than eight bytes)
2012 *	@len:	length of request buffer.
2013 *	@timeout: command timeout
2014 *	@retries: number of retries before failing
2015 *	@data: returns a structure abstracting the mode header data
2016 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2017 *		must be SCSI_SENSE_BUFFERSIZE big.
2018 *
2019 *	Returns zero if successful; negative error number or scsi
2020 *	status on error
2021 *
2022 */
2023int
2024scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2025		 unsigned char *buffer, int len, int timeout, int retries,
2026		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2027{
2028	unsigned char cmd[10];
2029	unsigned char *real_buffer;
 
 
 
2030	int ret;
2031
2032	memset(cmd, 0, sizeof(cmd));
2033	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2034
2035	if (sdev->use_10_for_ms) {
2036		if (len > 65535)
 
 
 
 
 
 
 
2037			return -EINVAL;
2038		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2039		if (!real_buffer)
2040			return -ENOMEM;
2041		memcpy(real_buffer + 8, buffer, len);
2042		len += 8;
2043		real_buffer[0] = 0;
2044		real_buffer[1] = 0;
2045		real_buffer[2] = data->medium_type;
2046		real_buffer[3] = data->device_specific;
2047		real_buffer[4] = data->longlba ? 0x01 : 0;
2048		real_buffer[5] = 0;
2049		real_buffer[6] = data->block_descriptor_length >> 8;
2050		real_buffer[7] = data->block_descriptor_length;
2051
2052		cmd[0] = MODE_SELECT_10;
2053		cmd[7] = len >> 8;
2054		cmd[8] = len;
2055	} else {
2056		if (len > 255 || data->block_descriptor_length > 255 ||
2057		    data->longlba)
2058			return -EINVAL;
2059
2060		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2061		if (!real_buffer)
2062			return -ENOMEM;
2063		memcpy(real_buffer + 4, buffer, len);
2064		len += 4;
2065		real_buffer[0] = 0;
2066		real_buffer[1] = data->medium_type;
2067		real_buffer[2] = data->device_specific;
2068		real_buffer[3] = data->block_descriptor_length;
2069		
2070
2071		cmd[0] = MODE_SELECT;
2072		cmd[4] = len;
2073	}
2074
2075	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2076			       sshdr, timeout, retries, NULL);
2077	kfree(real_buffer);
2078	return ret;
2079}
2080EXPORT_SYMBOL_GPL(scsi_mode_select);
2081
2082/**
2083 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2084 *	@sdev:	SCSI device to be queried
2085 *	@dbd:	set if mode sense will allow block descriptors to be returned
2086 *	@modepage: mode page being requested
 
2087 *	@buffer: request buffer (may not be smaller than eight bytes)
2088 *	@len:	length of request buffer.
2089 *	@timeout: command timeout
2090 *	@retries: number of retries before failing
2091 *	@data: returns a structure abstracting the mode header data
2092 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2093 *		must be SCSI_SENSE_BUFFERSIZE big.
2094 *
2095 *	Returns zero if unsuccessful, or the header offset (either 4
2096 *	or 8 depending on whether a six or ten byte command was
2097 *	issued) if successful.
2098 */
2099int
2100scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2101		  unsigned char *buffer, int len, int timeout, int retries,
2102		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2103{
2104	unsigned char cmd[12];
2105	int use_10_for_ms;
2106	int header_length;
2107	int result, retry_count = retries;
2108	struct scsi_sense_hdr my_sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2109
2110	memset(data, 0, sizeof(*data));
2111	memset(&cmd[0], 0, 12);
 
 
2112	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2113	cmd[2] = modepage;
 
2114
2115	/* caller might not be interested in sense, but we need it */
2116	if (!sshdr)
2117		sshdr = &my_sshdr;
2118
2119 retry:
2120	use_10_for_ms = sdev->use_10_for_ms;
2121
2122	if (use_10_for_ms) {
2123		if (len < 8)
2124			len = 8;
2125
2126		cmd[0] = MODE_SENSE_10;
2127		cmd[8] = len;
2128		header_length = 8;
2129	} else {
2130		if (len < 4)
2131			len = 4;
2132
2133		cmd[0] = MODE_SENSE;
2134		cmd[4] = len;
2135		header_length = 4;
2136	}
2137
2138	memset(buffer, 0, len);
2139
2140	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2141				  sshdr, timeout, retries, NULL);
 
 
2142
2143	/* This code looks awful: what it's doing is making sure an
2144	 * ILLEGAL REQUEST sense return identifies the actual command
2145	 * byte as the problem.  MODE_SENSE commands can return
2146	 * ILLEGAL REQUEST if the code page isn't supported */
2147
2148	if (use_10_for_ms && !scsi_status_is_good(result) &&
2149	    driver_byte(result) == DRIVER_SENSE) {
2150		if (scsi_sense_valid(sshdr)) {
2151			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2152			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2153				/* 
2154				 * Invalid command operation code
 
 
 
 
2155				 */
2156				sdev->use_10_for_ms = 0;
2157				goto retry;
 
 
 
 
2158			}
2159		}
 
2160	}
2161
2162	if(scsi_status_is_good(result)) {
2163		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2164			     (modepage == 6 || modepage == 8))) {
2165			/* Initio breakage? */
2166			header_length = 0;
2167			data->length = 13;
2168			data->medium_type = 0;
2169			data->device_specific = 0;
2170			data->longlba = 0;
2171			data->block_descriptor_length = 0;
2172		} else if(use_10_for_ms) {
2173			data->length = buffer[0]*256 + buffer[1] + 2;
2174			data->medium_type = buffer[2];
2175			data->device_specific = buffer[3];
2176			data->longlba = buffer[4] & 0x01;
2177			data->block_descriptor_length = buffer[6]*256
2178				+ buffer[7];
2179		} else {
2180			data->length = buffer[0] + 1;
2181			data->medium_type = buffer[1];
2182			data->device_specific = buffer[2];
2183			data->block_descriptor_length = buffer[3];
2184		}
2185		data->header_length = header_length;
2186	} else if ((status_byte(result) == CHECK_CONDITION) &&
2187		   scsi_sense_valid(sshdr) &&
2188		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2189		retry_count--;
2190		goto retry;
2191	}
 
2192
2193	return result;
2194}
2195EXPORT_SYMBOL(scsi_mode_sense);
2196
2197/**
2198 *	scsi_test_unit_ready - test if unit is ready
2199 *	@sdev:	scsi device to change the state of.
2200 *	@timeout: command timeout
2201 *	@retries: number of retries before failing
2202 *	@sshdr: outpout pointer for decoded sense information.
2203 *
2204 *	Returns zero if unsuccessful or an error if TUR failed.  For
2205 *	removable media, UNIT_ATTENTION sets ->changed flag.
2206 **/
2207int
2208scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2209		     struct scsi_sense_hdr *sshdr)
2210{
2211	char cmd[] = {
2212		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2213	};
 
 
 
2214	int result;
2215
2216	/* try to eat the UNIT_ATTENTION if there are enough retries */
2217	do {
2218		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2219					  timeout, 1, NULL);
2220		if (sdev->removable && scsi_sense_valid(sshdr) &&
2221		    sshdr->sense_key == UNIT_ATTENTION)
2222			sdev->changed = 1;
2223	} while (scsi_sense_valid(sshdr) &&
2224		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2225
2226	return result;
2227}
2228EXPORT_SYMBOL(scsi_test_unit_ready);
2229
2230/**
2231 *	scsi_device_set_state - Take the given device through the device state model.
2232 *	@sdev:	scsi device to change the state of.
2233 *	@state:	state to change to.
2234 *
2235 *	Returns zero if successful or an error if the requested
2236 *	transition is illegal.
2237 */
2238int
2239scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2240{
2241	enum scsi_device_state oldstate = sdev->sdev_state;
2242
2243	if (state == oldstate)
2244		return 0;
2245
2246	switch (state) {
2247	case SDEV_CREATED:
2248		switch (oldstate) {
2249		case SDEV_CREATED_BLOCK:
2250			break;
2251		default:
2252			goto illegal;
2253		}
2254		break;
2255			
2256	case SDEV_RUNNING:
2257		switch (oldstate) {
2258		case SDEV_CREATED:
2259		case SDEV_OFFLINE:
2260		case SDEV_TRANSPORT_OFFLINE:
2261		case SDEV_QUIESCE:
2262		case SDEV_BLOCK:
2263			break;
2264		default:
2265			goto illegal;
2266		}
2267		break;
2268
2269	case SDEV_QUIESCE:
2270		switch (oldstate) {
2271		case SDEV_RUNNING:
2272		case SDEV_OFFLINE:
2273		case SDEV_TRANSPORT_OFFLINE:
2274			break;
2275		default:
2276			goto illegal;
2277		}
2278		break;
2279
2280	case SDEV_OFFLINE:
2281	case SDEV_TRANSPORT_OFFLINE:
2282		switch (oldstate) {
2283		case SDEV_CREATED:
2284		case SDEV_RUNNING:
2285		case SDEV_QUIESCE:
2286		case SDEV_BLOCK:
2287			break;
2288		default:
2289			goto illegal;
2290		}
2291		break;
2292
2293	case SDEV_BLOCK:
2294		switch (oldstate) {
2295		case SDEV_RUNNING:
2296		case SDEV_CREATED_BLOCK:
 
2297		case SDEV_OFFLINE:
2298			break;
2299		default:
2300			goto illegal;
2301		}
2302		break;
2303
2304	case SDEV_CREATED_BLOCK:
2305		switch (oldstate) {
2306		case SDEV_CREATED:
2307			break;
2308		default:
2309			goto illegal;
2310		}
2311		break;
2312
2313	case SDEV_CANCEL:
2314		switch (oldstate) {
2315		case SDEV_CREATED:
2316		case SDEV_RUNNING:
2317		case SDEV_QUIESCE:
2318		case SDEV_OFFLINE:
2319		case SDEV_TRANSPORT_OFFLINE:
2320			break;
2321		default:
2322			goto illegal;
2323		}
2324		break;
2325
2326	case SDEV_DEL:
2327		switch (oldstate) {
2328		case SDEV_CREATED:
2329		case SDEV_RUNNING:
2330		case SDEV_OFFLINE:
2331		case SDEV_TRANSPORT_OFFLINE:
2332		case SDEV_CANCEL:
2333		case SDEV_BLOCK:
2334		case SDEV_CREATED_BLOCK:
2335			break;
2336		default:
2337			goto illegal;
2338		}
2339		break;
2340
2341	}
 
2342	sdev->sdev_state = state;
2343	return 0;
2344
2345 illegal:
2346	SCSI_LOG_ERROR_RECOVERY(1,
2347				sdev_printk(KERN_ERR, sdev,
2348					    "Illegal state transition %s->%s",
2349					    scsi_device_state_name(oldstate),
2350					    scsi_device_state_name(state))
2351				);
2352	return -EINVAL;
2353}
2354EXPORT_SYMBOL(scsi_device_set_state);
2355
2356/**
2357 * 	sdev_evt_emit - emit a single SCSI device uevent
2358 *	@sdev: associated SCSI device
2359 *	@evt: event to emit
2360 *
2361 *	Send a single uevent (scsi_event) to the associated scsi_device.
2362 */
2363static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2364{
2365	int idx = 0;
2366	char *envp[3];
2367
2368	switch (evt->evt_type) {
2369	case SDEV_EVT_MEDIA_CHANGE:
2370		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2371		break;
2372	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2373		scsi_rescan_device(&sdev->sdev_gendev);
2374		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2375		break;
2376	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2377		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2378		break;
2379	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2380	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2381		break;
2382	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2383		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2384		break;
2385	case SDEV_EVT_LUN_CHANGE_REPORTED:
2386		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2387		break;
2388	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2389		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2390		break;
2391	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2392		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2393		break;
2394	default:
2395		/* do nothing */
2396		break;
2397	}
2398
2399	envp[idx++] = NULL;
2400
2401	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2402}
2403
2404/**
2405 * 	sdev_evt_thread - send a uevent for each scsi event
2406 *	@work: work struct for scsi_device
2407 *
2408 *	Dispatch queued events to their associated scsi_device kobjects
2409 *	as uevents.
2410 */
2411void scsi_evt_thread(struct work_struct *work)
2412{
2413	struct scsi_device *sdev;
2414	enum scsi_device_event evt_type;
2415	LIST_HEAD(event_list);
2416
2417	sdev = container_of(work, struct scsi_device, event_work);
2418
2419	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2420		if (test_and_clear_bit(evt_type, sdev->pending_events))
2421			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2422
2423	while (1) {
2424		struct scsi_event *evt;
2425		struct list_head *this, *tmp;
2426		unsigned long flags;
2427
2428		spin_lock_irqsave(&sdev->list_lock, flags);
2429		list_splice_init(&sdev->event_list, &event_list);
2430		spin_unlock_irqrestore(&sdev->list_lock, flags);
2431
2432		if (list_empty(&event_list))
2433			break;
2434
2435		list_for_each_safe(this, tmp, &event_list) {
2436			evt = list_entry(this, struct scsi_event, node);
2437			list_del(&evt->node);
2438			scsi_evt_emit(sdev, evt);
2439			kfree(evt);
2440		}
2441	}
2442}
2443
2444/**
2445 * 	sdev_evt_send - send asserted event to uevent thread
2446 *	@sdev: scsi_device event occurred on
2447 *	@evt: event to send
2448 *
2449 *	Assert scsi device event asynchronously.
2450 */
2451void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2452{
2453	unsigned long flags;
2454
2455#if 0
2456	/* FIXME: currently this check eliminates all media change events
2457	 * for polled devices.  Need to update to discriminate between AN
2458	 * and polled events */
2459	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2460		kfree(evt);
2461		return;
2462	}
2463#endif
2464
2465	spin_lock_irqsave(&sdev->list_lock, flags);
2466	list_add_tail(&evt->node, &sdev->event_list);
2467	schedule_work(&sdev->event_work);
2468	spin_unlock_irqrestore(&sdev->list_lock, flags);
2469}
2470EXPORT_SYMBOL_GPL(sdev_evt_send);
2471
2472/**
2473 * 	sdev_evt_alloc - allocate a new scsi event
2474 *	@evt_type: type of event to allocate
2475 *	@gfpflags: GFP flags for allocation
2476 *
2477 *	Allocates and returns a new scsi_event.
2478 */
2479struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2480				  gfp_t gfpflags)
2481{
2482	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2483	if (!evt)
2484		return NULL;
2485
2486	evt->evt_type = evt_type;
2487	INIT_LIST_HEAD(&evt->node);
2488
2489	/* evt_type-specific initialization, if any */
2490	switch (evt_type) {
2491	case SDEV_EVT_MEDIA_CHANGE:
2492	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2493	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2494	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2495	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2496	case SDEV_EVT_LUN_CHANGE_REPORTED:
2497	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2498	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2499	default:
2500		/* do nothing */
2501		break;
2502	}
2503
2504	return evt;
2505}
2506EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2507
2508/**
2509 * 	sdev_evt_send_simple - send asserted event to uevent thread
2510 *	@sdev: scsi_device event occurred on
2511 *	@evt_type: type of event to send
2512 *	@gfpflags: GFP flags for allocation
2513 *
2514 *	Assert scsi device event asynchronously, given an event type.
2515 */
2516void sdev_evt_send_simple(struct scsi_device *sdev,
2517			  enum scsi_device_event evt_type, gfp_t gfpflags)
2518{
2519	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2520	if (!evt) {
2521		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2522			    evt_type);
2523		return;
2524	}
2525
2526	sdev_evt_send(sdev, evt);
2527}
2528EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2529
2530/**
2531 *	scsi_device_quiesce - Block user issued commands.
2532 *	@sdev:	scsi device to quiesce.
2533 *
2534 *	This works by trying to transition to the SDEV_QUIESCE state
2535 *	(which must be a legal transition).  When the device is in this
2536 *	state, only special requests will be accepted, all others will
2537 *	be deferred.  Since special requests may also be requeued requests,
2538 *	a successful return doesn't guarantee the device will be 
2539 *	totally quiescent.
2540 *
2541 *	Must be called with user context, may sleep.
2542 *
2543 *	Returns zero if unsuccessful or an error if not.
2544 */
2545int
2546scsi_device_quiesce(struct scsi_device *sdev)
2547{
2548	struct request_queue *q = sdev->request_queue;
2549	int err;
2550
2551	/*
2552	 * It is allowed to call scsi_device_quiesce() multiple times from
2553	 * the same context but concurrent scsi_device_quiesce() calls are
2554	 * not allowed.
2555	 */
2556	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2557
2558	if (sdev->quiesced_by == current)
2559		return 0;
2560
2561	blk_set_pm_only(q);
2562
2563	blk_mq_freeze_queue(q);
2564	/*
2565	 * Ensure that the effect of blk_set_pm_only() will be visible
2566	 * for percpu_ref_tryget() callers that occur after the queue
2567	 * unfreeze even if the queue was already frozen before this function
2568	 * was called. See also https://lwn.net/Articles/573497/.
2569	 */
2570	synchronize_rcu();
2571	blk_mq_unfreeze_queue(q);
2572
2573	mutex_lock(&sdev->state_mutex);
2574	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2575	if (err == 0)
2576		sdev->quiesced_by = current;
2577	else
2578		blk_clear_pm_only(q);
2579	mutex_unlock(&sdev->state_mutex);
2580
2581	return err;
2582}
2583EXPORT_SYMBOL(scsi_device_quiesce);
2584
2585/**
2586 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2587 *	@sdev:	scsi device to resume.
2588 *
2589 *	Moves the device from quiesced back to running and restarts the
2590 *	queues.
2591 *
2592 *	Must be called with user context, may sleep.
2593 */
2594void scsi_device_resume(struct scsi_device *sdev)
2595{
2596	/* check if the device state was mutated prior to resume, and if
2597	 * so assume the state is being managed elsewhere (for example
2598	 * device deleted during suspend)
2599	 */
2600	mutex_lock(&sdev->state_mutex);
 
 
2601	if (sdev->quiesced_by) {
2602		sdev->quiesced_by = NULL;
2603		blk_clear_pm_only(sdev->request_queue);
2604	}
2605	if (sdev->sdev_state == SDEV_QUIESCE)
2606		scsi_device_set_state(sdev, SDEV_RUNNING);
2607	mutex_unlock(&sdev->state_mutex);
2608}
2609EXPORT_SYMBOL(scsi_device_resume);
2610
2611static void
2612device_quiesce_fn(struct scsi_device *sdev, void *data)
2613{
2614	scsi_device_quiesce(sdev);
2615}
2616
2617void
2618scsi_target_quiesce(struct scsi_target *starget)
2619{
2620	starget_for_each_device(starget, NULL, device_quiesce_fn);
2621}
2622EXPORT_SYMBOL(scsi_target_quiesce);
2623
2624static void
2625device_resume_fn(struct scsi_device *sdev, void *data)
2626{
2627	scsi_device_resume(sdev);
2628}
2629
2630void
2631scsi_target_resume(struct scsi_target *starget)
2632{
2633	starget_for_each_device(starget, NULL, device_resume_fn);
2634}
2635EXPORT_SYMBOL(scsi_target_resume);
2636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2637/**
2638 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2639 * @sdev: device to block
2640 *
2641 * Pause SCSI command processing on the specified device. Does not sleep.
2642 *
2643 * Returns zero if successful or a negative error code upon failure.
2644 *
2645 * Notes:
2646 * This routine transitions the device to the SDEV_BLOCK state (which must be
2647 * a legal transition). When the device is in this state, command processing
2648 * is paused until the device leaves the SDEV_BLOCK state. See also
2649 * scsi_internal_device_unblock_nowait().
2650 */
2651int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2652{
2653	struct request_queue *q = sdev->request_queue;
2654	int err = 0;
2655
2656	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2657	if (err) {
2658		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2659
2660		if (err)
2661			return err;
2662	}
2663
2664	/* 
2665	 * The device has transitioned to SDEV_BLOCK.  Stop the
2666	 * block layer from calling the midlayer with this device's
2667	 * request queue. 
2668	 */
2669	blk_mq_quiesce_queue_nowait(q);
2670	return 0;
 
2671}
2672EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2673
2674/**
2675 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2676 * @sdev: device to block
 
2677 *
2678 * Pause SCSI command processing on the specified device and wait until all
2679 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2680 *
2681 * Returns zero if successful or a negative error code upon failure.
2682 *
2683 * Note:
2684 * This routine transitions the device to the SDEV_BLOCK state (which must be
2685 * a legal transition). When the device is in this state, command processing
2686 * is paused until the device leaves the SDEV_BLOCK state. See also
2687 * scsi_internal_device_unblock().
2688 */
2689static int scsi_internal_device_block(struct scsi_device *sdev)
2690{
2691	struct request_queue *q = sdev->request_queue;
2692	int err;
 
2693
2694	mutex_lock(&sdev->state_mutex);
2695	err = scsi_internal_device_block_nowait(sdev);
 
2696	if (err == 0)
2697		blk_mq_quiesce_queue(q);
 
 
 
 
 
 
2698	mutex_unlock(&sdev->state_mutex);
2699
2700	return err;
2701}
2702 
2703void scsi_start_queue(struct scsi_device *sdev)
2704{
2705	struct request_queue *q = sdev->request_queue;
2706
2707	blk_mq_unquiesce_queue(q);
2708}
2709
2710/**
2711 * scsi_internal_device_unblock_nowait - resume a device after a block request
2712 * @sdev:	device to resume
2713 * @new_state:	state to set the device to after unblocking
2714 *
2715 * Restart the device queue for a previously suspended SCSI device. Does not
2716 * sleep.
2717 *
2718 * Returns zero if successful or a negative error code upon failure.
2719 *
2720 * Notes:
2721 * This routine transitions the device to the SDEV_RUNNING state or to one of
2722 * the offline states (which must be a legal transition) allowing the midlayer
2723 * to goose the queue for this device.
2724 */
2725int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2726					enum scsi_device_state new_state)
2727{
2728	switch (new_state) {
2729	case SDEV_RUNNING:
2730	case SDEV_TRANSPORT_OFFLINE:
2731		break;
2732	default:
2733		return -EINVAL;
2734	}
2735
2736	/*
2737	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2738	 * offlined states and goose the device queue if successful.
2739	 */
2740	switch (sdev->sdev_state) {
2741	case SDEV_BLOCK:
2742	case SDEV_TRANSPORT_OFFLINE:
2743		sdev->sdev_state = new_state;
2744		break;
2745	case SDEV_CREATED_BLOCK:
2746		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2747		    new_state == SDEV_OFFLINE)
2748			sdev->sdev_state = new_state;
2749		else
2750			sdev->sdev_state = SDEV_CREATED;
2751		break;
2752	case SDEV_CANCEL:
2753	case SDEV_OFFLINE:
2754		break;
2755	default:
2756		return -EINVAL;
2757	}
2758	scsi_start_queue(sdev);
2759
2760	return 0;
2761}
2762EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2763
2764/**
2765 * scsi_internal_device_unblock - resume a device after a block request
2766 * @sdev:	device to resume
2767 * @new_state:	state to set the device to after unblocking
2768 *
2769 * Restart the device queue for a previously suspended SCSI device. May sleep.
2770 *
2771 * Returns zero if successful or a negative error code upon failure.
2772 *
2773 * Notes:
2774 * This routine transitions the device to the SDEV_RUNNING state or to one of
2775 * the offline states (which must be a legal transition) allowing the midlayer
2776 * to goose the queue for this device.
2777 */
2778static int scsi_internal_device_unblock(struct scsi_device *sdev,
2779					enum scsi_device_state new_state)
2780{
2781	int ret;
2782
2783	mutex_lock(&sdev->state_mutex);
2784	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2785	mutex_unlock(&sdev->state_mutex);
2786
2787	return ret;
2788}
2789
2790static void
2791device_block(struct scsi_device *sdev, void *data)
2792{
2793	int ret;
2794
2795	ret = scsi_internal_device_block(sdev);
2796
2797	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2798		  dev_name(&sdev->sdev_gendev), ret);
2799}
2800
2801static int
2802target_block(struct device *dev, void *data)
2803{
2804	if (scsi_is_target_device(dev))
2805		starget_for_each_device(to_scsi_target(dev), NULL,
2806					device_block);
2807	return 0;
2808}
2809
 
 
 
 
 
 
 
 
 
 
 
 
2810void
2811scsi_target_block(struct device *dev)
2812{
2813	if (scsi_is_target_device(dev))
2814		starget_for_each_device(to_scsi_target(dev), NULL,
2815					device_block);
2816	else
2817		device_for_each_child(dev, NULL, target_block);
2818}
2819EXPORT_SYMBOL_GPL(scsi_target_block);
2820
2821static void
2822device_unblock(struct scsi_device *sdev, void *data)
2823{
2824	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2825}
2826
2827static int
2828target_unblock(struct device *dev, void *data)
2829{
2830	if (scsi_is_target_device(dev))
2831		starget_for_each_device(to_scsi_target(dev), data,
2832					device_unblock);
2833	return 0;
2834}
2835
2836void
2837scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2838{
2839	if (scsi_is_target_device(dev))
2840		starget_for_each_device(to_scsi_target(dev), &new_state,
2841					device_unblock);
2842	else
2843		device_for_each_child(dev, &new_state, target_unblock);
2844}
2845EXPORT_SYMBOL_GPL(scsi_target_unblock);
2846
2847/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2848 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2849 * @sgl:	scatter-gather list
2850 * @sg_count:	number of segments in sg
2851 * @offset:	offset in bytes into sg, on return offset into the mapped area
2852 * @len:	bytes to map, on return number of bytes mapped
2853 *
2854 * Returns virtual address of the start of the mapped page
2855 */
2856void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2857			  size_t *offset, size_t *len)
2858{
2859	int i;
2860	size_t sg_len = 0, len_complete = 0;
2861	struct scatterlist *sg;
2862	struct page *page;
2863
2864	WARN_ON(!irqs_disabled());
2865
2866	for_each_sg(sgl, sg, sg_count, i) {
2867		len_complete = sg_len; /* Complete sg-entries */
2868		sg_len += sg->length;
2869		if (sg_len > *offset)
2870			break;
2871	}
2872
2873	if (unlikely(i == sg_count)) {
2874		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2875			"elements %d\n",
2876		       __func__, sg_len, *offset, sg_count);
2877		WARN_ON(1);
2878		return NULL;
2879	}
2880
2881	/* Offset starting from the beginning of first page in this sg-entry */
2882	*offset = *offset - len_complete + sg->offset;
2883
2884	/* Assumption: contiguous pages can be accessed as "page + i" */
2885	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2886	*offset &= ~PAGE_MASK;
2887
2888	/* Bytes in this sg-entry from *offset to the end of the page */
2889	sg_len = PAGE_SIZE - *offset;
2890	if (*len > sg_len)
2891		*len = sg_len;
2892
2893	return kmap_atomic(page);
2894}
2895EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2896
2897/**
2898 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2899 * @virt:	virtual address to be unmapped
2900 */
2901void scsi_kunmap_atomic_sg(void *virt)
2902{
2903	kunmap_atomic(virt);
2904}
2905EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2906
2907void sdev_disable_disk_events(struct scsi_device *sdev)
2908{
2909	atomic_inc(&sdev->disk_events_disable_depth);
2910}
2911EXPORT_SYMBOL(sdev_disable_disk_events);
2912
2913void sdev_enable_disk_events(struct scsi_device *sdev)
2914{
2915	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2916		return;
2917	atomic_dec(&sdev->disk_events_disable_depth);
2918}
2919EXPORT_SYMBOL(sdev_enable_disk_events);
2920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2921/**
2922 * scsi_vpd_lun_id - return a unique device identification
2923 * @sdev: SCSI device
2924 * @id:   buffer for the identification
2925 * @id_len:  length of the buffer
2926 *
2927 * Copies a unique device identification into @id based
2928 * on the information in the VPD page 0x83 of the device.
2929 * The string will be formatted as a SCSI name string.
2930 *
2931 * Returns the length of the identification or error on failure.
2932 * If the identifier is longer than the supplied buffer the actual
2933 * identifier length is returned and the buffer is not zero-padded.
2934 */
2935int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2936{
2937	u8 cur_id_type = 0xff;
2938	u8 cur_id_size = 0;
2939	const unsigned char *d, *cur_id_str;
2940	const struct scsi_vpd *vpd_pg83;
2941	int id_size = -EINVAL;
2942
2943	rcu_read_lock();
2944	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2945	if (!vpd_pg83) {
2946		rcu_read_unlock();
2947		return -ENXIO;
2948	}
2949
2950	/*
2951	 * Look for the correct descriptor.
2952	 * Order of preference for lun descriptor:
2953	 * - SCSI name string
2954	 * - NAA IEEE Registered Extended
2955	 * - EUI-64 based 16-byte
2956	 * - EUI-64 based 12-byte
2957	 * - NAA IEEE Registered
2958	 * - NAA IEEE Extended
2959	 * - T10 Vendor ID
2960	 * as longer descriptors reduce the likelyhood
2961	 * of identification clashes.
2962	 */
2963
2964	/* The id string must be at least 20 bytes + terminating NULL byte */
2965	if (id_len < 21) {
2966		rcu_read_unlock();
2967		return -EINVAL;
2968	}
2969
2970	memset(id, 0, id_len);
2971	d = vpd_pg83->data + 4;
2972	while (d < vpd_pg83->data + vpd_pg83->len) {
2973		/* Skip designators not referring to the LUN */
2974		if ((d[1] & 0x30) != 0x00)
2975			goto next_desig;
 
 
2976
2977		switch (d[1] & 0xf) {
2978		case 0x1:
2979			/* T10 Vendor ID */
2980			if (cur_id_size > d[3])
2981				break;
2982			/* Prefer anything */
2983			if (cur_id_type > 0x01 && cur_id_type != 0xff)
2984				break;
2985			cur_id_size = d[3];
2986			if (cur_id_size + 4 > id_len)
2987				cur_id_size = id_len - 4;
2988			cur_id_str = d + 4;
2989			cur_id_type = d[1] & 0xf;
2990			id_size = snprintf(id, id_len, "t10.%*pE",
2991					   cur_id_size, cur_id_str);
2992			break;
2993		case 0x2:
2994			/* EUI-64 */
2995			if (cur_id_size > d[3])
2996				break;
2997			/* Prefer NAA IEEE Registered Extended */
2998			if (cur_id_type == 0x3 &&
2999			    cur_id_size == d[3])
3000				break;
3001			cur_id_size = d[3];
3002			cur_id_str = d + 4;
3003			cur_id_type = d[1] & 0xf;
3004			switch (cur_id_size) {
3005			case 8:
3006				id_size = snprintf(id, id_len,
3007						   "eui.%8phN",
3008						   cur_id_str);
3009				break;
3010			case 12:
3011				id_size = snprintf(id, id_len,
3012						   "eui.%12phN",
3013						   cur_id_str);
3014				break;
3015			case 16:
3016				id_size = snprintf(id, id_len,
3017						   "eui.%16phN",
3018						   cur_id_str);
3019				break;
3020			default:
3021				cur_id_size = 0;
3022				break;
3023			}
3024			break;
3025		case 0x3:
3026			/* NAA */
3027			if (cur_id_size > d[3])
3028				break;
3029			cur_id_size = d[3];
3030			cur_id_str = d + 4;
3031			cur_id_type = d[1] & 0xf;
3032			switch (cur_id_size) {
3033			case 8:
3034				id_size = snprintf(id, id_len,
3035						   "naa.%8phN",
3036						   cur_id_str);
3037				break;
3038			case 16:
3039				id_size = snprintf(id, id_len,
3040						   "naa.%16phN",
3041						   cur_id_str);
3042				break;
3043			default:
3044				cur_id_size = 0;
3045				break;
3046			}
3047			break;
3048		case 0x8:
3049			/* SCSI name string */
3050			if (cur_id_size + 4 > d[3])
3051				break;
3052			/* Prefer others for truncated descriptor */
3053			if (cur_id_size && d[3] > id_len)
3054				break;
 
 
 
 
3055			cur_id_size = id_size = d[3];
3056			cur_id_str = d + 4;
3057			cur_id_type = d[1] & 0xf;
3058			if (cur_id_size >= id_len)
3059				cur_id_size = id_len - 1;
3060			memcpy(id, cur_id_str, cur_id_size);
3061			/* Decrease priority for truncated descriptor */
3062			if (cur_id_size != id_size)
3063				cur_id_size = 6;
3064			break;
3065		default:
3066			break;
3067		}
3068next_desig:
3069		d += d[3] + 4;
3070	}
3071	rcu_read_unlock();
3072
3073	return id_size;
3074}
3075EXPORT_SYMBOL(scsi_vpd_lun_id);
3076
3077/*
3078 * scsi_vpd_tpg_id - return a target port group identifier
3079 * @sdev: SCSI device
3080 *
3081 * Returns the Target Port Group identifier from the information
3082 * froom VPD page 0x83 of the device.
3083 *
3084 * Returns the identifier or error on failure.
3085 */
3086int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3087{
3088	const unsigned char *d;
3089	const struct scsi_vpd *vpd_pg83;
3090	int group_id = -EAGAIN, rel_port = -1;
3091
3092	rcu_read_lock();
3093	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3094	if (!vpd_pg83) {
3095		rcu_read_unlock();
3096		return -ENXIO;
3097	}
3098
3099	d = vpd_pg83->data + 4;
3100	while (d < vpd_pg83->data + vpd_pg83->len) {
3101		switch (d[1] & 0xf) {
3102		case 0x4:
3103			/* Relative target port */
3104			rel_port = get_unaligned_be16(&d[6]);
3105			break;
3106		case 0x5:
3107			/* Target port group */
3108			group_id = get_unaligned_be16(&d[6]);
3109			break;
3110		default:
3111			break;
3112		}
3113		d += d[3] + 4;
3114	}
3115	rcu_read_unlock();
3116
3117	if (group_id >= 0 && rel_id && rel_port != -1)
3118		*rel_id = rel_port;
3119
3120	return group_id;
3121}
3122EXPORT_SYMBOL(scsi_vpd_tpg_id);