Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/bpf_trace.h>
   5#include <linux/net/intel/libie/rx.h>
   6#include <linux/prefetch.h>
   7#include <linux/sctp.h>
   8#include <net/mpls.h>
   9#include <net/xdp.h>
  10#include "i40e_txrx_common.h"
  11#include "i40e_trace.h"
  12#include "i40e_xsk.h"
 
 
 
 
 
 
 
 
 
 
  13
  14#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  15/**
  16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  17 * @tx_ring: Tx ring to send buffer on
  18 * @fdata: Flow director filter data
  19 * @add: Indicate if we are adding a rule or deleting one
  20 *
  21 **/
  22static void i40e_fdir(struct i40e_ring *tx_ring,
  23		      struct i40e_fdir_filter *fdata, bool add)
  24{
  25	struct i40e_filter_program_desc *fdir_desc;
  26	struct i40e_pf *pf = tx_ring->vsi->back;
  27	u32 flex_ptype, dtype_cmd, vsi_id;
  28	u16 i;
  29
  30	/* grab the next descriptor */
  31	i = tx_ring->next_to_use;
  32	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  33
  34	i++;
  35	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  36
  37	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
 
  38
  39	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
  40				 fdata->flex_off);
  41
  42	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
 
 
 
 
  43
  44	/* Use LAN VSI Id if not programmed by user */
  45	vsi_id = fdata->dest_vsi ? : i40e_pf_get_main_vsi(pf)->id;
  46	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, vsi_id);
 
  47
  48	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  49
  50	dtype_cmd |= add ?
  51		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  52		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  53		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  54		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  55
  56	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
 
  57
  58	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
  59				fdata->fd_status);
  60
  61	if (fdata->cnt_index) {
  62		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  63		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
  64					fdata->cnt_index);
 
  65	}
  66
  67	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  68	fdir_desc->rsvd = cpu_to_le32(0);
  69	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  70	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  71}
  72
  73#define I40E_FD_CLEAN_DELAY 10
  74/**
  75 * i40e_program_fdir_filter - Program a Flow Director filter
  76 * @fdir_data: Packet data that will be filter parameters
  77 * @raw_packet: the pre-allocated packet buffer for FDir
  78 * @pf: The PF pointer
  79 * @add: True for add/update, False for remove
  80 **/
  81static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  82				    u8 *raw_packet, struct i40e_pf *pf,
  83				    bool add)
  84{
  85	struct i40e_tx_buffer *tx_buf, *first;
  86	struct i40e_tx_desc *tx_desc;
  87	struct i40e_ring *tx_ring;
  88	struct i40e_vsi *vsi;
  89	struct device *dev;
  90	dma_addr_t dma;
  91	u32 td_cmd = 0;
  92	u16 i;
  93
  94	/* find existing FDIR VSI */
  95	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
  96	if (!vsi)
  97		return -ENOENT;
  98
  99	tx_ring = vsi->tx_rings[0];
 100	dev = tx_ring->dev;
 101
 102	/* we need two descriptors to add/del a filter and we can wait */
 103	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 104		if (!i)
 105			return -EAGAIN;
 106		msleep_interruptible(1);
 107	}
 108
 109	dma = dma_map_single(dev, raw_packet,
 110			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 111	if (dma_mapping_error(dev, dma))
 112		goto dma_fail;
 113
 114	/* grab the next descriptor */
 115	i = tx_ring->next_to_use;
 116	first = &tx_ring->tx_bi[i];
 117	i40e_fdir(tx_ring, fdir_data, add);
 118
 119	/* Now program a dummy descriptor */
 120	i = tx_ring->next_to_use;
 121	tx_desc = I40E_TX_DESC(tx_ring, i);
 122	tx_buf = &tx_ring->tx_bi[i];
 123
 124	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 125
 126	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 127
 128	/* record length, and DMA address */
 129	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 130	dma_unmap_addr_set(tx_buf, dma, dma);
 131
 132	tx_desc->buffer_addr = cpu_to_le64(dma);
 133	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 134
 135	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 136	tx_buf->raw_buf = (void *)raw_packet;
 137
 138	tx_desc->cmd_type_offset_bsz =
 139		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 140
 141	/* Force memory writes to complete before letting h/w
 142	 * know there are new descriptors to fetch.
 143	 */
 144	wmb();
 145
 146	/* Mark the data descriptor to be watched */
 147	first->next_to_watch = tx_desc;
 148
 149	writel(tx_ring->next_to_use, tx_ring->tail);
 150	return 0;
 151
 152dma_fail:
 153	return -1;
 154}
 155
 
 
 156/**
 157 * i40e_create_dummy_packet - Constructs dummy packet for HW
 158 * @dummy_packet: preallocated space for dummy packet
 159 * @ipv4: is layer 3 packet of version 4 or 6
 160 * @l4proto: next level protocol used in data portion of l3
 161 * @data: filter data
 162 *
 163 * Returns address of layer 4 protocol dummy packet.
 164 **/
 165static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
 166				      struct i40e_fdir_filter *data)
 167{
 168	bool is_vlan = !!data->vlan_tag;
 169	struct vlan_hdr vlan = {};
 170	struct ipv6hdr ipv6 = {};
 171	struct ethhdr eth = {};
 172	struct iphdr ip = {};
 173	u8 *tmp;
 174
 175	if (ipv4) {
 176		eth.h_proto = cpu_to_be16(ETH_P_IP);
 177		ip.protocol = l4proto;
 178		ip.version = 0x4;
 179		ip.ihl = 0x5;
 180
 181		ip.daddr = data->dst_ip;
 182		ip.saddr = data->src_ip;
 183	} else {
 184		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
 185		ipv6.nexthdr = l4proto;
 186		ipv6.version = 0x6;
 187
 188		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
 189		       sizeof(__be32) * 4);
 190		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
 191		       sizeof(__be32) * 4);
 192	}
 193
 194	if (is_vlan) {
 195		vlan.h_vlan_TCI = data->vlan_tag;
 196		vlan.h_vlan_encapsulated_proto = eth.h_proto;
 197		eth.h_proto = data->vlan_etype;
 198	}
 199
 200	tmp = dummy_packet;
 201	memcpy(tmp, &eth, sizeof(eth));
 202	tmp += sizeof(eth);
 203
 204	if (is_vlan) {
 205		memcpy(tmp, &vlan, sizeof(vlan));
 206		tmp += sizeof(vlan);
 207	}
 208
 209	if (ipv4) {
 210		memcpy(tmp, &ip, sizeof(ip));
 211		tmp += sizeof(ip);
 212	} else {
 213		memcpy(tmp, &ipv6, sizeof(ipv6));
 214		tmp += sizeof(ipv6);
 215	}
 216
 217	return tmp;
 218}
 219
 220/**
 221 * i40e_create_dummy_udp_packet - helper function to create UDP packet
 222 * @raw_packet: preallocated space for dummy packet
 223 * @ipv4: is layer 3 packet of version 4 or 6
 224 * @l4proto: next level protocol used in data portion of l3
 225 * @data: filter data
 226 *
 227 * Helper function to populate udp fields.
 228 **/
 229static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 230					 struct i40e_fdir_filter *data)
 
 231{
 
 232	struct udphdr *udp;
 233	u8 *tmp;
 234
 235	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
 236	udp = (struct udphdr *)(tmp);
 237	udp->dest = data->dst_port;
 238	udp->source = data->src_port;
 239}
 240
 241/**
 242 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
 243 * @raw_packet: preallocated space for dummy packet
 244 * @ipv4: is layer 3 packet of version 4 or 6
 245 * @l4proto: next level protocol used in data portion of l3
 246 * @data: filter data
 247 *
 248 * Helper function to populate tcp fields.
 249 **/
 250static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 251					 struct i40e_fdir_filter *data)
 252{
 253	struct tcphdr *tcp;
 254	u8 *tmp;
 255	/* Dummy tcp packet */
 256	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 257		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
 258
 259	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
 260
 261	tcp = (struct tcphdr *)tmp;
 262	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
 263	tcp->dest = data->dst_port;
 264	tcp->source = data->src_port;
 265}
 266
 267/**
 268 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
 269 * @raw_packet: preallocated space for dummy packet
 270 * @ipv4: is layer 3 packet of version 4 or 6
 271 * @l4proto: next level protocol used in data portion of l3
 272 * @data: filter data
 273 *
 274 * Helper function to populate sctp fields.
 275 **/
 276static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
 277					  u8 l4proto,
 278					  struct i40e_fdir_filter *data)
 279{
 280	struct sctphdr *sctp;
 281	u8 *tmp;
 282
 283	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
 284
 285	sctp = (struct sctphdr *)tmp;
 286	sctp->dest = data->dst_port;
 287	sctp->source = data->src_port;
 288}
 289
 290/**
 291 * i40e_prepare_fdir_filter - Prepare and program fdir filter
 292 * @pf: physical function to attach filter to
 293 * @fd_data: filter data
 294 * @add: add or delete filter
 295 * @packet_addr: address of dummy packet, used in filtering
 296 * @payload_offset: offset from dummy packet address to user defined data
 297 * @pctype: Packet type for which filter is used
 298 *
 299 * Helper function to offset data of dummy packet, program it and
 300 * handle errors.
 301 **/
 302static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
 303				    struct i40e_fdir_filter *fd_data,
 304				    bool add, char *packet_addr,
 305				    int payload_offset, u8 pctype)
 306{
 307	int ret;
 308
 309	if (fd_data->flex_filter) {
 310		u8 *payload;
 311		__be16 pattern = fd_data->flex_word;
 312		u16 off = fd_data->flex_offset;
 313
 314		payload = packet_addr + payload_offset;
 315
 316		/* If user provided vlan, offset payload by vlan header length */
 317		if (!!fd_data->vlan_tag)
 318			payload += VLAN_HLEN;
 319
 320		*((__force __be16 *)(payload + off)) = pattern;
 321	}
 322
 323	fd_data->pctype = pctype;
 324	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
 325	if (ret) {
 326		dev_info(&pf->pdev->dev,
 327			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 328			 fd_data->pctype, fd_data->fd_id, ret);
 329		/* Free the packet buffer since it wasn't added to the ring */
 
 330		return -EOPNOTSUPP;
 331	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 332		if (add)
 333			dev_info(&pf->pdev->dev,
 334				 "Filter OK for PCTYPE %d loc = %d\n",
 335				 fd_data->pctype, fd_data->fd_id);
 336		else
 337			dev_info(&pf->pdev->dev,
 338				 "Filter deleted for PCTYPE %d loc = %d\n",
 339				 fd_data->pctype, fd_data->fd_id);
 340	}
 341
 342	return ret;
 343}
 
 
 344
 345/**
 346 * i40e_change_filter_num - Prepare and program fdir filter
 347 * @ipv4: is layer 3 packet of version 4 or 6
 348 * @add: add or delete filter
 349 * @ipv4_filter_num: field to update
 350 * @ipv6_filter_num: field to update
 351 *
 352 * Update filter number field for pf.
 353 **/
 354static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
 355				   u16 *ipv6_filter_num)
 356{
 357	if (add) {
 358		if (ipv4)
 359			(*ipv4_filter_num)++;
 360		else
 361			(*ipv6_filter_num)++;
 362	} else {
 363		if (ipv4)
 364			(*ipv4_filter_num)--;
 365		else
 366			(*ipv6_filter_num)--;
 367	}
 368}
 369
 370#define I40E_UDPIP_DUMMY_PACKET_LEN	42
 371#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
 372/**
 373 * i40e_add_del_fdir_udp - Add/Remove UDP filters
 374 * @vsi: pointer to the targeted VSI
 375 * @fd_data: the flow director data required for the FDir descriptor
 376 * @add: true adds a filter, false removes it
 377 * @ipv4: true is v4, false is v6
 378 *
 379 * Returns 0 if the filters were successfully added or removed
 380 **/
 381static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
 382				 struct i40e_fdir_filter *fd_data,
 383				 bool add,
 384				 bool ipv4)
 385{
 386	struct i40e_pf *pf = vsi->back;
 
 
 387	u8 *raw_packet;
 388	int ret;
 
 
 
 
 
 389
 390	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 391	if (!raw_packet)
 392		return -ENOMEM;
 
 393
 394	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
 
 
 
 
 
 
 
 395
 396	if (ipv4)
 397		ret = i40e_prepare_fdir_filter
 398			(pf, fd_data, add, raw_packet,
 399			 I40E_UDPIP_DUMMY_PACKET_LEN,
 400			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
 401	else
 402		ret = i40e_prepare_fdir_filter
 403			(pf, fd_data, add, raw_packet,
 404			 I40E_UDPIP6_DUMMY_PACKET_LEN,
 405			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
 406
 407	if (ret) {
 408		kfree(raw_packet);
 409		return ret;
 410	}
 411
 412	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
 413			       &pf->fd_udp6_filter_cnt);
 414
 415	return 0;
 416}
 417
 418#define I40E_TCPIP_DUMMY_PACKET_LEN	54
 419#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
 420/**
 421 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
 422 * @vsi: pointer to the targeted VSI
 423 * @fd_data: the flow director data required for the FDir descriptor
 424 * @add: true adds a filter, false removes it
 425 * @ipv4: true is v4, false is v6
 426 *
 427 * Returns 0 if the filters were successfully added or removed
 428 **/
 429static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
 430				 struct i40e_fdir_filter *fd_data,
 431				 bool add,
 432				 bool ipv4)
 433{
 434	struct i40e_pf *pf = vsi->back;
 435	u8 *raw_packet;
 436	int ret;
 437
 438	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 439	if (!raw_packet)
 440		return -ENOMEM;
 441
 442	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
 443	if (ipv4)
 444		ret = i40e_prepare_fdir_filter
 445			(pf, fd_data, add, raw_packet,
 446			 I40E_TCPIP_DUMMY_PACKET_LEN,
 447			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
 448	else
 449		ret = i40e_prepare_fdir_filter
 450			(pf, fd_data, add, raw_packet,
 451			 I40E_TCPIP6_DUMMY_PACKET_LEN,
 452			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
 453
 454	if (ret) {
 
 
 
 
 455		kfree(raw_packet);
 456		return ret;
 
 
 
 
 
 
 
 
 457	}
 458
 459	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
 460			       &pf->fd_tcp6_filter_cnt);
 461
 462	if (add) {
 463		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
 
 464		    I40E_DEBUG_FD & pf->hw.debug_mask)
 465			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 466		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 
 
 467	}
 
 468	return 0;
 469}
 470
 471#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
 472#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
 473/**
 474 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
 475 * a specific flow spec
 476 * @vsi: pointer to the targeted VSI
 477 * @fd_data: the flow director data required for the FDir descriptor
 478 * @add: true adds a filter, false removes it
 479 * @ipv4: true is v4, false is v6
 480 *
 481 * Returns 0 if the filters were successfully added or removed
 482 **/
 483static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
 484				  struct i40e_fdir_filter *fd_data,
 485				  bool add,
 486				  bool ipv4)
 487{
 488	struct i40e_pf *pf = vsi->back;
 
 
 489	u8 *raw_packet;
 490	int ret;
 
 
 
 
 491
 492	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 493	if (!raw_packet)
 494		return -ENOMEM;
 
 495
 496	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
 
 
 
 
 
 
 
 497
 498	if (ipv4)
 499		ret = i40e_prepare_fdir_filter
 500			(pf, fd_data, add, raw_packet,
 501			 I40E_SCTPIP_DUMMY_PACKET_LEN,
 502			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
 503	else
 504		ret = i40e_prepare_fdir_filter
 505			(pf, fd_data, add, raw_packet,
 506			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
 507			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
 508
 
 
 509	if (ret) {
 
 
 
 
 510		kfree(raw_packet);
 511		return ret;
 
 
 
 
 
 
 
 
 
 512	}
 513
 514	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
 515			       &pf->fd_sctp6_filter_cnt);
 
 
 516
 517	return 0;
 518}
 519
 520#define I40E_IP_DUMMY_PACKET_LEN	34
 521#define I40E_IP6_DUMMY_PACKET_LEN	54
 522/**
 523 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
 524 * a specific flow spec
 525 * @vsi: pointer to the targeted VSI
 526 * @fd_data: the flow director data required for the FDir descriptor
 527 * @add: true adds a filter, false removes it
 528 * @ipv4: true is v4, false is v6
 529 *
 530 * Returns 0 if the filters were successfully added or removed
 531 **/
 532static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
 533				struct i40e_fdir_filter *fd_data,
 534				bool add,
 535				bool ipv4)
 536{
 537	struct i40e_pf *pf = vsi->back;
 538	int payload_offset;
 539	u8 *raw_packet;
 540	int iter_start;
 541	int iter_end;
 542	int ret;
 543	int i;
 
 
 
 544
 545	if (ipv4) {
 546		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 547		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
 548	} else {
 549		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
 550		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
 551	}
 552
 553	for (i = iter_start; i <= iter_end; i++) {
 554		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 555		if (!raw_packet)
 556			return -ENOMEM;
 
 
 557
 558		/* IPv6 no header option differs from IPv4 */
 559		(void)i40e_create_dummy_packet
 560			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
 561			 fd_data);
 562
 563		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
 564			I40E_IP6_DUMMY_PACKET_LEN;
 565		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
 566					       payload_offset, i);
 567		if (ret)
 568			goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569	}
 570
 571	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
 572			       &pf->fd_ip6_filter_cnt);
 
 
 573
 574	return 0;
 575err:
 576	kfree(raw_packet);
 577	return ret;
 578}
 579
 580/**
 581 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 582 * @vsi: pointer to the targeted VSI
 583 * @input: filter to add or delete
 584 * @add: true adds a filter, false removes it
 585 *
 586 **/
 587int i40e_add_del_fdir(struct i40e_vsi *vsi,
 588		      struct i40e_fdir_filter *input, bool add)
 589{
 590	enum ip_ver { ipv6 = 0, ipv4 = 1 };
 591	struct i40e_pf *pf = vsi->back;
 592	int ret;
 593
 594	switch (input->flow_type & ~FLOW_EXT) {
 595	case TCP_V4_FLOW:
 596		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 597		break;
 598	case UDP_V4_FLOW:
 599		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 600		break;
 601	case SCTP_V4_FLOW:
 602		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 603		break;
 604	case TCP_V6_FLOW:
 605		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 606		break;
 607	case UDP_V6_FLOW:
 608		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 609		break;
 610	case SCTP_V6_FLOW:
 611		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 612		break;
 613	case IP_USER_FLOW:
 614		switch (input->ipl4_proto) {
 615		case IPPROTO_TCP:
 616			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 617			break;
 618		case IPPROTO_UDP:
 619			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 620			break;
 621		case IPPROTO_SCTP:
 622			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 623			break;
 624		case IPPROTO_IP:
 625			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
 626			break;
 627		default:
 628			/* We cannot support masking based on protocol */
 629			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 630				 input->ipl4_proto);
 631			return -EINVAL;
 632		}
 633		break;
 634	case IPV6_USER_FLOW:
 635		switch (input->ipl4_proto) {
 636		case IPPROTO_TCP:
 637			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 638			break;
 639		case IPPROTO_UDP:
 640			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 641			break;
 642		case IPPROTO_SCTP:
 643			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 644			break;
 645		case IPPROTO_IP:
 646			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
 647			break;
 648		default:
 649			/* We cannot support masking based on protocol */
 650			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
 651				 input->ipl4_proto);
 652			return -EINVAL;
 653		}
 654		break;
 655	default:
 656		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 657			 input->flow_type);
 658		return -EINVAL;
 659	}
 660
 661	/* The buffer allocated here will be normally be freed by
 662	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 663	 * completion. In the event of an error adding the buffer to the FDIR
 664	 * ring, it will immediately be freed. It may also be freed by
 665	 * i40e_clean_tx_ring() when closing the VSI.
 666	 */
 667	return ret;
 668}
 669
 670/**
 671 * i40e_fd_handle_status - check the Programming Status for FD
 672 * @rx_ring: the Rx ring for this descriptor
 673 * @qword0_raw: qword0
 674 * @qword1: qword1 after le_to_cpu
 675 * @prog_id: the id originally used for programming
 676 *
 677 * This is used to verify if the FD programming or invalidation
 678 * requested by SW to the HW is successful or not and take actions accordingly.
 679 **/
 680static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
 681				  u64 qword1, u8 prog_id)
 682{
 683	struct i40e_pf *pf = rx_ring->vsi->back;
 684	struct pci_dev *pdev = pf->pdev;
 685	struct i40e_16b_rx_wb_qw0 *qw0;
 686	u32 fcnt_prog, fcnt_avail;
 687	u32 error;
 
 688
 689	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
 690	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
 
 691
 692	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 693		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
 694		if (qw0->hi_dword.fd_id != 0 ||
 695		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 696			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 697				 pf->fd_inv);
 698
 699		/* Check if the programming error is for ATR.
 700		 * If so, auto disable ATR and set a state for
 701		 * flush in progress. Next time we come here if flush is in
 702		 * progress do nothing, once flush is complete the state will
 703		 * be cleared.
 704		 */
 705		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 706			return;
 707
 708		pf->fd_add_err++;
 709		/* store the current atr filter count */
 710		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 711
 712		if (qw0->hi_dword.fd_id == 0 &&
 713		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 714			/* These set_bit() calls aren't atomic with the
 715			 * test_bit() here, but worse case we potentially
 716			 * disable ATR and queue a flush right after SB
 717			 * support is re-enabled. That shouldn't cause an
 718			 * issue in practice
 719			 */
 720			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 721			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 722		}
 723
 724		/* filter programming failed most likely due to table full */
 725		fcnt_prog = i40e_get_global_fd_count(pf);
 726		fcnt_avail = pf->fdir_pf_filter_count;
 727		/* If ATR is running fcnt_prog can quickly change,
 728		 * if we are very close to full, it makes sense to disable
 729		 * FD ATR/SB and then re-enable it when there is room.
 730		 */
 731		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 732			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
 733			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 734					      pf->state))
 735				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 736					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 737		}
 738	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 739		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 740			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 741				 qw0->hi_dword.fd_id);
 742	}
 743}
 744
 745/**
 746 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 747 * @ring:      the ring that owns the buffer
 748 * @tx_buffer: the buffer to free
 749 **/
 750static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 751					    struct i40e_tx_buffer *tx_buffer)
 752{
 753	if (tx_buffer->skb) {
 754		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 755			kfree(tx_buffer->raw_buf);
 756		else if (ring_is_xdp(ring))
 757			xdp_return_frame(tx_buffer->xdpf);
 758		else
 759			dev_kfree_skb_any(tx_buffer->skb);
 760		if (dma_unmap_len(tx_buffer, len))
 761			dma_unmap_single(ring->dev,
 762					 dma_unmap_addr(tx_buffer, dma),
 763					 dma_unmap_len(tx_buffer, len),
 764					 DMA_TO_DEVICE);
 765	} else if (dma_unmap_len(tx_buffer, len)) {
 766		dma_unmap_page(ring->dev,
 767			       dma_unmap_addr(tx_buffer, dma),
 768			       dma_unmap_len(tx_buffer, len),
 769			       DMA_TO_DEVICE);
 770	}
 771
 772	tx_buffer->next_to_watch = NULL;
 773	tx_buffer->skb = NULL;
 774	dma_unmap_len_set(tx_buffer, len, 0);
 775	/* tx_buffer must be completely set up in the transmit path */
 776}
 777
 778/**
 779 * i40e_clean_tx_ring - Free any empty Tx buffers
 780 * @tx_ring: ring to be cleaned
 781 **/
 782void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 783{
 784	unsigned long bi_size;
 785	u16 i;
 786
 787	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 788		i40e_xsk_clean_tx_ring(tx_ring);
 789	} else {
 790		/* ring already cleared, nothing to do */
 791		if (!tx_ring->tx_bi)
 792			return;
 793
 794		/* Free all the Tx ring sk_buffs */
 795		for (i = 0; i < tx_ring->count; i++)
 796			i40e_unmap_and_free_tx_resource(tx_ring,
 797							&tx_ring->tx_bi[i]);
 798	}
 799
 800	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 801	memset(tx_ring->tx_bi, 0, bi_size);
 802
 803	/* Zero out the descriptor ring */
 804	memset(tx_ring->desc, 0, tx_ring->size);
 805
 806	tx_ring->next_to_use = 0;
 807	tx_ring->next_to_clean = 0;
 808
 809	if (!tx_ring->netdev)
 810		return;
 811
 812	/* cleanup Tx queue statistics */
 813	netdev_tx_reset_queue(txring_txq(tx_ring));
 814}
 815
 816/**
 817 * i40e_free_tx_resources - Free Tx resources per queue
 818 * @tx_ring: Tx descriptor ring for a specific queue
 819 *
 820 * Free all transmit software resources
 821 **/
 822void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 823{
 824	i40e_clean_tx_ring(tx_ring);
 825	kfree(tx_ring->tx_bi);
 826	tx_ring->tx_bi = NULL;
 827
 828	if (tx_ring->desc) {
 829		dma_free_coherent(tx_ring->dev, tx_ring->size,
 830				  tx_ring->desc, tx_ring->dma);
 831		tx_ring->desc = NULL;
 832	}
 833}
 834
 835/**
 836 * i40e_get_tx_pending - how many tx descriptors not processed
 837 * @ring: the ring of descriptors
 838 * @in_sw: use SW variables
 839 *
 840 * Since there is no access to the ring head register
 841 * in XL710, we need to use our local copies
 842 **/
 843u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 844{
 845	u32 head, tail;
 846
 847	if (!in_sw) {
 848		head = i40e_get_head(ring);
 849		tail = readl(ring->tail);
 850	} else {
 851		head = ring->next_to_clean;
 852		tail = ring->next_to_use;
 853	}
 854
 855	if (head != tail)
 856		return (head < tail) ?
 857			tail - head : (tail + ring->count - head);
 858
 859	return 0;
 860}
 861
 862/**
 863 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 864 * @pf: pointer to PF struct
 865 *
 866 * LAN VSI has netdev and netdev has TX queues. This function is to check
 867 * each of those TX queues if they are hung, trigger recovery by issuing
 868 * SW interrupt.
 869 **/
 870void i40e_detect_recover_hung(struct i40e_pf *pf)
 871{
 872	struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
 873	struct i40e_ring *tx_ring = NULL;
 874	struct net_device *netdev;
 875	unsigned int i;
 876	int packets;
 877
 878	if (!vsi)
 879		return;
 880
 881	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 882		return;
 883
 884	netdev = vsi->netdev;
 885	if (!netdev)
 886		return;
 887
 888	if (!netif_carrier_ok(netdev))
 889		return;
 890
 891	for (i = 0; i < vsi->num_queue_pairs; i++) {
 892		tx_ring = vsi->tx_rings[i];
 893		if (tx_ring && tx_ring->desc) {
 894			/* If packet counter has not changed the queue is
 895			 * likely stalled, so force an interrupt for this
 896			 * queue.
 897			 *
 898			 * prev_pkt_ctr would be negative if there was no
 899			 * pending work.
 900			 */
 901			packets = tx_ring->stats.packets & INT_MAX;
 902			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 903				i40e_force_wb(vsi, tx_ring->q_vector);
 904				continue;
 905			}
 906
 907			/* Memory barrier between read of packet count and call
 908			 * to i40e_get_tx_pending()
 909			 */
 910			smp_rmb();
 911			tx_ring->tx_stats.prev_pkt_ctr =
 912			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 913		}
 914	}
 915}
 916
 
 
 917/**
 918 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 919 * @vsi: the VSI we care about
 920 * @tx_ring: Tx ring to clean
 921 * @napi_budget: Used to determine if we are in netpoll
 922 * @tx_cleaned: Out parameter set to the number of TXes cleaned
 923 *
 924 * Returns true if there's any budget left (e.g. the clean is finished)
 925 **/
 926static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 927			      struct i40e_ring *tx_ring, int napi_budget,
 928			      unsigned int *tx_cleaned)
 929{
 930	int i = tx_ring->next_to_clean;
 931	struct i40e_tx_buffer *tx_buf;
 932	struct i40e_tx_desc *tx_head;
 933	struct i40e_tx_desc *tx_desc;
 934	unsigned int total_bytes = 0, total_packets = 0;
 935	unsigned int budget = vsi->work_limit;
 936
 937	tx_buf = &tx_ring->tx_bi[i];
 938	tx_desc = I40E_TX_DESC(tx_ring, i);
 939	i -= tx_ring->count;
 940
 941	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 942
 943	do {
 944		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 945
 946		/* if next_to_watch is not set then there is no work pending */
 947		if (!eop_desc)
 948			break;
 949
 950		/* prevent any other reads prior to eop_desc */
 951		smp_rmb();
 952
 953		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 954		/* we have caught up to head, no work left to do */
 955		if (tx_head == tx_desc)
 956			break;
 957
 958		/* clear next_to_watch to prevent false hangs */
 959		tx_buf->next_to_watch = NULL;
 960
 961		/* update the statistics for this packet */
 962		total_bytes += tx_buf->bytecount;
 963		total_packets += tx_buf->gso_segs;
 964
 965		/* free the skb/XDP data */
 966		if (ring_is_xdp(tx_ring))
 967			xdp_return_frame(tx_buf->xdpf);
 968		else
 969			napi_consume_skb(tx_buf->skb, napi_budget);
 970
 971		/* unmap skb header data */
 972		dma_unmap_single(tx_ring->dev,
 973				 dma_unmap_addr(tx_buf, dma),
 974				 dma_unmap_len(tx_buf, len),
 975				 DMA_TO_DEVICE);
 976
 977		/* clear tx_buffer data */
 978		tx_buf->skb = NULL;
 979		dma_unmap_len_set(tx_buf, len, 0);
 980
 981		/* unmap remaining buffers */
 982		while (tx_desc != eop_desc) {
 983			i40e_trace(clean_tx_irq_unmap,
 984				   tx_ring, tx_desc, tx_buf);
 985
 986			tx_buf++;
 987			tx_desc++;
 988			i++;
 989			if (unlikely(!i)) {
 990				i -= tx_ring->count;
 991				tx_buf = tx_ring->tx_bi;
 992				tx_desc = I40E_TX_DESC(tx_ring, 0);
 993			}
 994
 995			/* unmap any remaining paged data */
 996			if (dma_unmap_len(tx_buf, len)) {
 997				dma_unmap_page(tx_ring->dev,
 998					       dma_unmap_addr(tx_buf, dma),
 999					       dma_unmap_len(tx_buf, len),
1000					       DMA_TO_DEVICE);
1001				dma_unmap_len_set(tx_buf, len, 0);
1002			}
1003		}
1004
1005		/* move us one more past the eop_desc for start of next pkt */
1006		tx_buf++;
1007		tx_desc++;
1008		i++;
1009		if (unlikely(!i)) {
1010			i -= tx_ring->count;
1011			tx_buf = tx_ring->tx_bi;
1012			tx_desc = I40E_TX_DESC(tx_ring, 0);
1013		}
1014
1015		prefetch(tx_desc);
1016
1017		/* update budget accounting */
1018		budget--;
1019	} while (likely(budget));
1020
1021	i += tx_ring->count;
1022	tx_ring->next_to_clean = i;
1023	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1024	i40e_arm_wb(tx_ring, vsi, budget);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025
1026	if (ring_is_xdp(tx_ring))
1027		return !!budget;
1028
1029	/* notify netdev of completed buffers */
1030	netdev_tx_completed_queue(txring_txq(tx_ring),
1031				  total_packets, total_bytes);
1032
1033#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1034	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1035		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1036		/* Make sure that anybody stopping the queue after this
1037		 * sees the new next_to_clean.
1038		 */
1039		smp_mb();
1040		if (__netif_subqueue_stopped(tx_ring->netdev,
1041					     tx_ring->queue_index) &&
1042		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1043			netif_wake_subqueue(tx_ring->netdev,
1044					    tx_ring->queue_index);
1045			++tx_ring->tx_stats.restart_queue;
1046		}
1047	}
1048
1049	*tx_cleaned = total_packets;
1050	return !!budget;
1051}
1052
1053/**
1054 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1055 * @vsi: the VSI we care about
1056 * @q_vector: the vector on which to enable writeback
1057 *
1058 **/
1059static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1060				  struct i40e_q_vector *q_vector)
1061{
1062	u16 flags = q_vector->tx.ring[0].flags;
1063	u32 val;
1064
1065	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1066		return;
1067
1068	if (q_vector->arm_wb_state)
1069		return;
1070
1071	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1072		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1073		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1074
1075		wr32(&vsi->back->hw,
1076		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1077		     val);
1078	} else {
1079		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1080		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1081
1082		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1083	}
1084	q_vector->arm_wb_state = true;
1085}
1086
1087/**
1088 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1089 * @vsi: the VSI we care about
1090 * @q_vector: the vector  on which to force writeback
1091 *
1092 **/
1093void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1094{
1095	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1096		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1097			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1098			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1099			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1100			  /* allow 00 to be written to the index */
1101
1102		wr32(&vsi->back->hw,
1103		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1104	} else {
1105		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1106			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1107			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1108			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1109			/* allow 00 to be written to the index */
1110
1111		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1112	}
1113}
1114
1115static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1116					struct i40e_ring_container *rc)
1117{
1118	return &q_vector->rx == rc;
1119}
1120
1121static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1122{
1123	unsigned int divisor;
1124
1125	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1126	case I40E_LINK_SPEED_40GB:
1127		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1128		break;
1129	case I40E_LINK_SPEED_25GB:
1130	case I40E_LINK_SPEED_20GB:
1131		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1132		break;
1133	default:
1134	case I40E_LINK_SPEED_10GB:
1135		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1136		break;
1137	case I40E_LINK_SPEED_1GB:
1138	case I40E_LINK_SPEED_100MB:
1139		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1140		break;
1141	}
1142
1143	return divisor;
1144}
1145
1146/**
1147 * i40e_update_itr - update the dynamic ITR value based on statistics
1148 * @q_vector: structure containing interrupt and ring information
1149 * @rc: structure containing ring performance data
1150 *
1151 * Stores a new ITR value based on packets and byte
1152 * counts during the last interrupt.  The advantage of per interrupt
1153 * computation is faster updates and more accurate ITR for the current
1154 * traffic pattern.  Constants in this function were computed
1155 * based on theoretical maximum wire speed and thresholds were set based
1156 * on testing data as well as attempting to minimize response time
1157 * while increasing bulk throughput.
1158 **/
1159static void i40e_update_itr(struct i40e_q_vector *q_vector,
1160			    struct i40e_ring_container *rc)
1161{
1162	unsigned int avg_wire_size, packets, bytes, itr;
1163	unsigned long next_update = jiffies;
1164
1165	/* If we don't have any rings just leave ourselves set for maximum
1166	 * possible latency so we take ourselves out of the equation.
1167	 */
1168	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1169		return;
1170
1171	/* For Rx we want to push the delay up and default to low latency.
1172	 * for Tx we want to pull the delay down and default to high latency.
1173	 */
1174	itr = i40e_container_is_rx(q_vector, rc) ?
1175	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1176	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1177
1178	/* If we didn't update within up to 1 - 2 jiffies we can assume
1179	 * that either packets are coming in so slow there hasn't been
1180	 * any work, or that there is so much work that NAPI is dealing
1181	 * with interrupt moderation and we don't need to do anything.
1182	 */
1183	if (time_after(next_update, rc->next_update))
1184		goto clear_counts;
1185
1186	/* If itr_countdown is set it means we programmed an ITR within
1187	 * the last 4 interrupt cycles. This has a side effect of us
1188	 * potentially firing an early interrupt. In order to work around
1189	 * this we need to throw out any data received for a few
1190	 * interrupts following the update.
1191	 */
1192	if (q_vector->itr_countdown) {
1193		itr = rc->target_itr;
1194		goto clear_counts;
1195	}
1196
1197	packets = rc->total_packets;
1198	bytes = rc->total_bytes;
1199
1200	if (i40e_container_is_rx(q_vector, rc)) {
1201		/* If Rx there are 1 to 4 packets and bytes are less than
1202		 * 9000 assume insufficient data to use bulk rate limiting
1203		 * approach unless Tx is already in bulk rate limiting. We
1204		 * are likely latency driven.
1205		 */
1206		if (packets && packets < 4 && bytes < 9000 &&
1207		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1208			itr = I40E_ITR_ADAPTIVE_LATENCY;
1209			goto adjust_by_size;
1210		}
1211	} else if (packets < 4) {
1212		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1213		 * bulk mode and we are receiving 4 or fewer packets just
1214		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1215		 * that the Rx can relax.
1216		 */
1217		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1218		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1219		     I40E_ITR_ADAPTIVE_MAX_USECS)
1220			goto clear_counts;
1221	} else if (packets > 32) {
1222		/* If we have processed over 32 packets in a single interrupt
1223		 * for Tx assume we need to switch over to "bulk" mode.
1224		 */
1225		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1226	}
1227
1228	/* We have no packets to actually measure against. This means
1229	 * either one of the other queues on this vector is active or
1230	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1231	 *
1232	 * Between 4 and 56 we can assume that our current interrupt delay
1233	 * is only slightly too low. As such we should increase it by a small
1234	 * fixed amount.
1235	 */
1236	if (packets < 56) {
1237		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1238		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1239			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1240			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1241		}
1242		goto clear_counts;
1243	}
1244
1245	if (packets <= 256) {
1246		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1247		itr &= I40E_ITR_MASK;
1248
1249		/* Between 56 and 112 is our "goldilocks" zone where we are
1250		 * working out "just right". Just report that our current
1251		 * ITR is good for us.
1252		 */
1253		if (packets <= 112)
1254			goto clear_counts;
1255
1256		/* If packet count is 128 or greater we are likely looking
1257		 * at a slight overrun of the delay we want. Try halving
1258		 * our delay to see if that will cut the number of packets
1259		 * in half per interrupt.
1260		 */
1261		itr /= 2;
1262		itr &= I40E_ITR_MASK;
1263		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1264			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1265
1266		goto clear_counts;
1267	}
1268
1269	/* The paths below assume we are dealing with a bulk ITR since
1270	 * number of packets is greater than 256. We are just going to have
1271	 * to compute a value and try to bring the count under control,
1272	 * though for smaller packet sizes there isn't much we can do as
1273	 * NAPI polling will likely be kicking in sooner rather than later.
1274	 */
1275	itr = I40E_ITR_ADAPTIVE_BULK;
1276
1277adjust_by_size:
1278	/* If packet counts are 256 or greater we can assume we have a gross
1279	 * overestimation of what the rate should be. Instead of trying to fine
1280	 * tune it just use the formula below to try and dial in an exact value
1281	 * give the current packet size of the frame.
1282	 */
1283	avg_wire_size = bytes / packets;
1284
1285	/* The following is a crude approximation of:
1286	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1287	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1288	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1289	 *
1290	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1291	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1292	 * formula down to
1293	 *
1294	 *  (170 * (size + 24)) / (size + 640) = ITR
1295	 *
1296	 * We first do some math on the packet size and then finally bitshift
1297	 * by 8 after rounding up. We also have to account for PCIe link speed
1298	 * difference as ITR scales based on this.
1299	 */
1300	if (avg_wire_size <= 60) {
1301		/* Start at 250k ints/sec */
1302		avg_wire_size = 4096;
1303	} else if (avg_wire_size <= 380) {
1304		/* 250K ints/sec to 60K ints/sec */
1305		avg_wire_size *= 40;
1306		avg_wire_size += 1696;
1307	} else if (avg_wire_size <= 1084) {
1308		/* 60K ints/sec to 36K ints/sec */
1309		avg_wire_size *= 15;
1310		avg_wire_size += 11452;
1311	} else if (avg_wire_size <= 1980) {
1312		/* 36K ints/sec to 30K ints/sec */
1313		avg_wire_size *= 5;
1314		avg_wire_size += 22420;
1315	} else {
1316		/* plateau at a limit of 30K ints/sec */
1317		avg_wire_size = 32256;
1318	}
1319
1320	/* If we are in low latency mode halve our delay which doubles the
1321	 * rate to somewhere between 100K to 16K ints/sec
1322	 */
1323	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1324		avg_wire_size /= 2;
1325
1326	/* Resultant value is 256 times larger than it needs to be. This
1327	 * gives us room to adjust the value as needed to either increase
1328	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1329	 *
1330	 * Use addition as we have already recorded the new latency flag
1331	 * for the ITR value.
1332	 */
1333	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1334	       I40E_ITR_ADAPTIVE_MIN_INC;
1335
1336	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1337		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1338		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1339	}
1340
1341clear_counts:
1342	/* write back value */
1343	rc->target_itr = itr;
1344
1345	/* next update should occur within next jiffy */
1346	rc->next_update = next_update + 1;
1347
1348	rc->total_bytes = 0;
1349	rc->total_packets = 0;
1350}
1351
1352static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1353{
1354	return &rx_ring->rx_bi[idx];
1355}
1356
1357/**
1358 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1359 * @rx_ring: rx descriptor ring to store buffers on
1360 * @old_buff: donor buffer to have page reused
1361 *
1362 * Synchronizes page for reuse by the adapter
1363 **/
1364static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1365			       struct i40e_rx_buffer *old_buff)
1366{
1367	struct i40e_rx_buffer *new_buff;
1368	u16 nta = rx_ring->next_to_alloc;
1369
1370	new_buff = i40e_rx_bi(rx_ring, nta);
1371
1372	/* update, and store next to alloc */
1373	nta++;
1374	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1375
1376	/* transfer page from old buffer to new buffer */
1377	new_buff->dma		= old_buff->dma;
1378	new_buff->page		= old_buff->page;
1379	new_buff->page_offset	= old_buff->page_offset;
1380	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
 
1381
1382	/* clear contents of buffer_info */
1383	old_buff->page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1384}
1385
1386/**
1387 * i40e_clean_programming_status - clean the programming status descriptor
1388 * @rx_ring: the rx ring that has this descriptor
1389 * @qword0_raw: qword0
1390 * @qword1: qword1 representing status_error_len in CPU ordering
1391 *
1392 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1393 * status being successful or not and take actions accordingly. FCoE should
1394 * handle its context/filter programming/invalidation status and take actions.
1395 *
1396 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1397 **/
1398void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1399				   u64 qword1)
 
1400{
 
 
1401	u8 id;
1402
1403	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404
1405	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1406		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1407}
1408
1409/**
1410 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1411 * @tx_ring: the tx ring to set up
1412 *
1413 * Return 0 on success, negative on error
1414 **/
1415int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1416{
1417	struct device *dev = tx_ring->dev;
1418	int bi_size;
1419
1420	if (!dev)
1421		return -ENOMEM;
1422
1423	/* warn if we are about to overwrite the pointer */
1424	WARN_ON(tx_ring->tx_bi);
1425	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1426	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1427	if (!tx_ring->tx_bi)
1428		goto err;
1429
1430	u64_stats_init(&tx_ring->syncp);
1431
1432	/* round up to nearest 4K */
1433	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1434	/* add u32 for head writeback, align after this takes care of
1435	 * guaranteeing this is at least one cache line in size
1436	 */
1437	tx_ring->size += sizeof(u32);
1438	tx_ring->size = ALIGN(tx_ring->size, 4096);
1439	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1440					   &tx_ring->dma, GFP_KERNEL);
1441	if (!tx_ring->desc) {
1442		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1443			 tx_ring->size);
1444		goto err;
1445	}
1446
1447	tx_ring->next_to_use = 0;
1448	tx_ring->next_to_clean = 0;
1449	tx_ring->tx_stats.prev_pkt_ctr = -1;
1450	return 0;
1451
1452err:
1453	kfree(tx_ring->tx_bi);
1454	tx_ring->tx_bi = NULL;
1455	return -ENOMEM;
1456}
1457
1458static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1459{
1460	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1461}
1462
1463/**
1464 * i40e_clean_rx_ring - Free Rx buffers
1465 * @rx_ring: ring to be cleaned
1466 **/
1467void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1468{
 
1469	u16 i;
1470
1471	/* ring already cleared, nothing to do */
1472	if (!rx_ring->rx_bi)
1473		return;
1474
1475	if (rx_ring->xsk_pool) {
1476		i40e_xsk_clean_rx_ring(rx_ring);
1477		goto skip_free;
1478	}
1479
1480	/* Free all the Rx ring sk_buffs */
1481	for (i = 0; i < rx_ring->count; i++) {
1482		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1483
1484		if (!rx_bi->page)
1485			continue;
1486
1487		/* Invalidate cache lines that may have been written to by
1488		 * device so that we avoid corrupting memory.
1489		 */
1490		dma_sync_single_range_for_cpu(rx_ring->dev,
1491					      rx_bi->dma,
1492					      rx_bi->page_offset,
1493					      rx_ring->rx_buf_len,
1494					      DMA_FROM_DEVICE);
1495
1496		/* free resources associated with mapping */
1497		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1498				     i40e_rx_pg_size(rx_ring),
1499				     DMA_FROM_DEVICE,
1500				     I40E_RX_DMA_ATTR);
1501
1502		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1503
1504		rx_bi->page = NULL;
1505		rx_bi->page_offset = 0;
1506	}
1507
1508skip_free:
1509	if (rx_ring->xsk_pool)
1510		i40e_clear_rx_bi_zc(rx_ring);
1511	else
1512		i40e_clear_rx_bi(rx_ring);
1513
1514	/* Zero out the descriptor ring */
1515	memset(rx_ring->desc, 0, rx_ring->size);
1516
1517	rx_ring->next_to_alloc = 0;
1518	rx_ring->next_to_clean = 0;
1519	rx_ring->next_to_process = 0;
1520	rx_ring->next_to_use = 0;
1521}
1522
1523/**
1524 * i40e_free_rx_resources - Free Rx resources
1525 * @rx_ring: ring to clean the resources from
1526 *
1527 * Free all receive software resources
1528 **/
1529void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1530{
1531	i40e_clean_rx_ring(rx_ring);
1532	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1533		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1534	rx_ring->xdp_prog = NULL;
1535	kfree(rx_ring->rx_bi);
1536	rx_ring->rx_bi = NULL;
1537
1538	if (rx_ring->desc) {
1539		dma_free_coherent(rx_ring->dev, rx_ring->size,
1540				  rx_ring->desc, rx_ring->dma);
1541		rx_ring->desc = NULL;
1542	}
1543}
1544
1545/**
1546 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1547 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1548 *
1549 * Returns 0 on success, negative on failure
1550 **/
1551int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1552{
1553	struct device *dev = rx_ring->dev;
 
 
 
 
 
 
 
 
 
1554
1555	u64_stats_init(&rx_ring->syncp);
1556
1557	/* Round up to nearest 4K */
1558	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1559	rx_ring->size = ALIGN(rx_ring->size, 4096);
1560	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1561					   &rx_ring->dma, GFP_KERNEL);
1562
1563	if (!rx_ring->desc) {
1564		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1565			 rx_ring->size);
1566		return -ENOMEM;
1567	}
1568
1569	rx_ring->next_to_alloc = 0;
1570	rx_ring->next_to_clean = 0;
1571	rx_ring->next_to_process = 0;
1572	rx_ring->next_to_use = 0;
1573
1574	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
 
 
 
 
 
 
1575
1576	rx_ring->rx_bi =
1577		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1578	if (!rx_ring->rx_bi)
1579		return -ENOMEM;
1580
1581	return 0;
 
 
 
 
1582}
1583
1584/**
1585 * i40e_release_rx_desc - Store the new tail and head values
1586 * @rx_ring: ring to bump
1587 * @val: new head index
1588 **/
1589void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1590{
1591	rx_ring->next_to_use = val;
1592
1593	/* update next to alloc since we have filled the ring */
1594	rx_ring->next_to_alloc = val;
1595
1596	/* Force memory writes to complete before letting h/w
1597	 * know there are new descriptors to fetch.  (Only
1598	 * applicable for weak-ordered memory model archs,
1599	 * such as IA-64).
1600	 */
1601	wmb();
1602	writel(val, rx_ring->tail);
1603}
1604
1605#if (PAGE_SIZE >= 8192)
1606static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1607					   unsigned int size)
1608{
1609	unsigned int truesize;
1610
1611	truesize = rx_ring->rx_offset ?
1612		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1613		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1614		SKB_DATA_ALIGN(size);
1615	return truesize;
1616}
1617#endif
1618
1619/**
1620 * i40e_alloc_mapped_page - recycle or make a new page
1621 * @rx_ring: ring to use
1622 * @bi: rx_buffer struct to modify
1623 *
1624 * Returns true if the page was successfully allocated or
1625 * reused.
1626 **/
1627static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1628				   struct i40e_rx_buffer *bi)
1629{
1630	struct page *page = bi->page;
1631	dma_addr_t dma;
1632
1633	/* since we are recycling buffers we should seldom need to alloc */
1634	if (likely(page)) {
1635		rx_ring->rx_stats.page_reuse_count++;
1636		return true;
1637	}
1638
1639	/* alloc new page for storage */
1640	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1641	if (unlikely(!page)) {
1642		rx_ring->rx_stats.alloc_page_failed++;
1643		return false;
1644	}
1645
1646	rx_ring->rx_stats.page_alloc_count++;
1647
1648	/* map page for use */
1649	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1650				 i40e_rx_pg_size(rx_ring),
1651				 DMA_FROM_DEVICE,
1652				 I40E_RX_DMA_ATTR);
1653
1654	/* if mapping failed free memory back to system since
1655	 * there isn't much point in holding memory we can't use
1656	 */
1657	if (dma_mapping_error(rx_ring->dev, dma)) {
1658		__free_pages(page, i40e_rx_pg_order(rx_ring));
1659		rx_ring->rx_stats.alloc_page_failed++;
1660		return false;
1661	}
1662
1663	bi->dma = dma;
1664	bi->page = page;
1665	bi->page_offset = rx_ring->rx_offset;
1666	page_ref_add(page, USHRT_MAX - 1);
1667	bi->pagecnt_bias = USHRT_MAX;
1668
1669	return true;
1670}
1671
1672/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673 * i40e_alloc_rx_buffers - Replace used receive buffers
1674 * @rx_ring: ring to place buffers on
1675 * @cleaned_count: number of buffers to replace
1676 *
1677 * Returns false if all allocations were successful, true if any fail
1678 **/
1679bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1680{
1681	u16 ntu = rx_ring->next_to_use;
1682	union i40e_rx_desc *rx_desc;
1683	struct i40e_rx_buffer *bi;
1684
1685	/* do nothing if no valid netdev defined */
1686	if (!rx_ring->netdev || !cleaned_count)
1687		return false;
1688
1689	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1690	bi = i40e_rx_bi(rx_ring, ntu);
1691
1692	do {
1693		if (!i40e_alloc_mapped_page(rx_ring, bi))
1694			goto no_buffers;
1695
1696		/* sync the buffer for use by the device */
1697		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1698						 bi->page_offset,
1699						 rx_ring->rx_buf_len,
1700						 DMA_FROM_DEVICE);
1701
1702		/* Refresh the desc even if buffer_addrs didn't change
1703		 * because each write-back erases this info.
1704		 */
1705		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1706
1707		rx_desc++;
1708		bi++;
1709		ntu++;
1710		if (unlikely(ntu == rx_ring->count)) {
1711			rx_desc = I40E_RX_DESC(rx_ring, 0);
1712			bi = i40e_rx_bi(rx_ring, 0);
1713			ntu = 0;
1714		}
1715
1716		/* clear the status bits for the next_to_use descriptor */
1717		rx_desc->wb.qword1.status_error_len = 0;
1718
1719		cleaned_count--;
1720	} while (cleaned_count);
1721
1722	if (rx_ring->next_to_use != ntu)
1723		i40e_release_rx_desc(rx_ring, ntu);
1724
1725	return false;
1726
1727no_buffers:
1728	if (rx_ring->next_to_use != ntu)
1729		i40e_release_rx_desc(rx_ring, ntu);
1730
1731	/* make sure to come back via polling to try again after
1732	 * allocation failure
1733	 */
1734	return true;
1735}
1736
1737/**
1738 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1739 * @vsi: the VSI we care about
1740 * @skb: skb currently being received and modified
1741 * @rx_desc: the receive descriptor
1742 **/
1743static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1744				    struct sk_buff *skb,
1745				    union i40e_rx_desc *rx_desc)
1746{
1747	struct libeth_rx_pt decoded;
1748	u32 rx_error, rx_status;
1749	bool ipv4, ipv6;
1750	u8 ptype;
1751	u64 qword;
1752
 
 
 
 
 
 
 
 
1753	skb->ip_summed = CHECKSUM_NONE;
1754
1755	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1756	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1757
1758	decoded = libie_rx_pt_parse(ptype);
1759	if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
1760		return;
1761
1762	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1763	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1764
1765	/* did the hardware decode the packet and checksum? */
1766	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1767		return;
1768
1769	ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
1770	ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
 
 
 
 
 
 
1771
1772	if (ipv4 &&
1773	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1774			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1775		goto checksum_fail;
1776
1777	/* likely incorrect csum if alternate IP extension headers found */
1778	if (ipv6 &&
1779	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1780		/* don't increment checksum err here, non-fatal err */
1781		return;
1782
1783	/* there was some L4 error, count error and punt packet to the stack */
1784	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1785		goto checksum_fail;
1786
1787	/* handle packets that were not able to be checksummed due
1788	 * to arrival speed, in this case the stack can compute
1789	 * the csum.
1790	 */
1791	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1792		return;
1793
1794	/* If there is an outer header present that might contain a checksum
1795	 * we need to bump the checksum level by 1 to reflect the fact that
1796	 * we are indicating we validated the inner checksum.
1797	 */
1798	if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
1799		skb->csum_level = 1;
1800
1801	skb->ip_summed = CHECKSUM_UNNECESSARY;
 
 
 
 
 
 
 
 
 
 
1802	return;
1803
1804checksum_fail:
1805	vsi->back->hw_csum_rx_error++;
1806}
1807
1808/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809 * i40e_rx_hash - set the hash value in the skb
1810 * @ring: descriptor ring
1811 * @rx_desc: specific descriptor
1812 * @skb: skb currently being received and modified
1813 * @rx_ptype: Rx packet type
1814 **/
1815static inline void i40e_rx_hash(struct i40e_ring *ring,
1816				union i40e_rx_desc *rx_desc,
1817				struct sk_buff *skb,
1818				u8 rx_ptype)
1819{
1820	struct libeth_rx_pt decoded;
1821	u32 hash;
1822	const __le64 rss_mask =
1823		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1824			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1825
1826	decoded = libie_rx_pt_parse(rx_ptype);
1827	if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
1828		return;
1829
1830	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1831		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1832		libeth_rx_pt_set_hash(skb, hash, decoded);
1833	}
1834}
1835
1836/**
1837 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1838 * @rx_ring: rx descriptor ring packet is being transacted on
1839 * @rx_desc: pointer to the EOP Rx descriptor
1840 * @skb: pointer to current skb being populated
 
1841 *
1842 * This function checks the ring, descriptor, and packet information in
1843 * order to populate the hash, checksum, VLAN, protocol, and
1844 * other fields within the skb.
1845 **/
 
1846void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1847			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
 
1848{
1849	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1850	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
 
1851	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1852	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1853	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1854
1855	if (unlikely(tsynvalid))
1856		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1857
1858	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1859
1860	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1861
1862	skb_record_rx_queue(skb, rx_ring->queue_index);
1863
1864	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1865		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1866
1867		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1868				       le16_to_cpu(vlan_tag));
1869	}
1870
1871	/* modifies the skb - consumes the enet header */
1872	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1873}
1874
1875/**
1876 * i40e_cleanup_headers - Correct empty headers
1877 * @rx_ring: rx descriptor ring packet is being transacted on
1878 * @skb: pointer to current skb being fixed
1879 * @rx_desc: pointer to the EOP Rx descriptor
1880 *
 
 
 
1881 * In addition if skb is not at least 60 bytes we need to pad it so that
1882 * it is large enough to qualify as a valid Ethernet frame.
1883 *
1884 * Returns true if an error was encountered and skb was freed.
1885 **/
1886static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1887				 union i40e_rx_desc *rx_desc)
1888
1889{
 
 
 
 
1890	/* ERR_MASK will only have valid bits if EOP set, and
1891	 * what we are doing here is actually checking
1892	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1893	 * the error field
1894	 */
1895	if (unlikely(i40e_test_staterr(rx_desc,
1896				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1897		dev_kfree_skb_any(skb);
1898		return true;
1899	}
1900
1901	/* if eth_skb_pad returns an error the skb was freed */
1902	if (eth_skb_pad(skb))
1903		return true;
1904
1905	return false;
1906}
1907
1908/**
1909 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910 * @rx_buffer: buffer containing the page
1911 * @rx_stats: rx stats structure for the rx ring
1912 *
1913 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1914 * which will assign the current buffer to the buffer that next_to_alloc is
1915 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1916 * page freed.
1917 *
1918 * rx_stats will be updated to indicate whether the page was waived
1919 * or busy if it could not be reused.
1920 */
1921static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1922				   struct i40e_rx_queue_stats *rx_stats)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923{
1924	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1925	struct page *page = rx_buffer->page;
1926
1927	/* Is any reuse possible? */
1928	if (!dev_page_is_reusable(page)) {
1929		rx_stats->page_waive_count++;
1930		return false;
1931	}
1932
1933#if (PAGE_SIZE < 8192)
1934	/* if we are only owner of page we can reuse it */
1935	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1936		rx_stats->page_busy_count++;
1937		return false;
1938	}
1939#else
1940#define I40E_LAST_OFFSET \
1941	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1942	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1943		rx_stats->page_busy_count++;
1944		return false;
1945	}
1946#endif
1947
1948	/* If we have drained the page fragment pool we need to update
1949	 * the pagecnt_bias and page count so that we fully restock the
1950	 * number of references the driver holds.
1951	 */
1952	if (unlikely(pagecnt_bias == 1)) {
1953		page_ref_add(page, USHRT_MAX - 1);
1954		rx_buffer->pagecnt_bias = USHRT_MAX;
1955	}
1956
1957	return true;
1958}
1959
1960/**
1961 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1962 * @rx_buffer: Rx buffer to adjust
1963 * @truesize: Size of adjustment
1964 **/
1965static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
1966				unsigned int truesize)
 
 
 
 
 
 
 
 
 
1967{
1968#if (PAGE_SIZE < 8192)
 
 
 
 
 
 
 
 
 
 
1969	rx_buffer->page_offset ^= truesize;
1970#else
1971	rx_buffer->page_offset += truesize;
1972#endif
1973}
1974
1975/**
1976 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1977 * @rx_ring: rx descriptor ring to transact packets on
1978 * @size: size of buffer to add to skb
1979 *
1980 * This function will pull an Rx buffer from the ring and synchronize it
1981 * for use by the CPU.
1982 */
1983static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1984						 const unsigned int size)
1985{
1986	struct i40e_rx_buffer *rx_buffer;
1987
1988	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
1989	rx_buffer->page_count =
1990#if (PAGE_SIZE < 8192)
1991		page_count(rx_buffer->page);
1992#else
1993		0;
1994#endif
1995	prefetch_page_address(rx_buffer->page);
1996
1997	/* we are reusing so sync this buffer for CPU use */
1998	dma_sync_single_range_for_cpu(rx_ring->dev,
1999				      rx_buffer->dma,
2000				      rx_buffer->page_offset,
2001				      size,
2002				      DMA_FROM_DEVICE);
2003
2004	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2005	rx_buffer->pagecnt_bias--;
2006
2007	return rx_buffer;
2008}
2009
2010/**
2011 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2012 * @rx_ring: rx descriptor ring to transact packets on
2013 * @rx_buffer: rx buffer to pull data from
2014 *
2015 * This function will clean up the contents of the rx_buffer.  It will
2016 * either recycle the buffer or unmap it and free the associated resources.
2017 */
2018static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2019			       struct i40e_rx_buffer *rx_buffer)
2020{
2021	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2022		/* hand second half of page back to the ring */
2023		i40e_reuse_rx_page(rx_ring, rx_buffer);
2024	} else {
2025		/* we are not reusing the buffer so unmap it */
2026		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2027				     i40e_rx_pg_size(rx_ring),
2028				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2029		__page_frag_cache_drain(rx_buffer->page,
2030					rx_buffer->pagecnt_bias);
2031		/* clear contents of buffer_info */
2032		rx_buffer->page = NULL;
2033	}
2034}
2035
2036/**
2037 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2038 * @rx_ring: Rx descriptor ring to transact packets on
2039 * @xdp_res: Result of the XDP program
2040 * @xdp: xdp_buff pointing to the data
2041 **/
2042static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2043				  struct xdp_buff *xdp)
2044{
2045	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2046	u32 next = rx_ring->next_to_clean, i = 0;
2047	struct i40e_rx_buffer *rx_buffer;
2048
2049	xdp->flags = 0;
2050
2051	while (1) {
2052		rx_buffer = i40e_rx_bi(rx_ring, next);
2053		if (++next == rx_ring->count)
2054			next = 0;
2055
2056		if (!rx_buffer->page)
2057			continue;
2058
2059		if (xdp_res != I40E_XDP_CONSUMED)
2060			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2061		else if (i++ <= nr_frags)
2062			rx_buffer->pagecnt_bias++;
2063
2064		/* EOP buffer will be put in i40e_clean_rx_irq() */
2065		if (next == rx_ring->next_to_process)
2066			return;
2067
2068		i40e_put_rx_buffer(rx_ring, rx_buffer);
2069	}
2070}
2071
2072/**
2073 * i40e_construct_skb - Allocate skb and populate it
2074 * @rx_ring: rx descriptor ring to transact packets on
 
2075 * @xdp: xdp_buff pointing to the data
2076 *
2077 * This function allocates an skb.  It then populates it with the page
2078 * data from the current receive descriptor, taking care to set up the
2079 * skb correctly.
2080 */
2081static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
 
2082					  struct xdp_buff *xdp)
2083{
2084	unsigned int size = xdp->data_end - xdp->data;
2085	struct i40e_rx_buffer *rx_buffer;
2086	struct skb_shared_info *sinfo;
 
 
 
2087	unsigned int headlen;
2088	struct sk_buff *skb;
2089	u32 nr_frags = 0;
2090
2091	/* prefetch first cache line of first page */
2092	net_prefetch(xdp->data);
2093
2094	/* Note, we get here by enabling legacy-rx via:
2095	 *
2096	 *    ethtool --set-priv-flags <dev> legacy-rx on
2097	 *
2098	 * In this mode, we currently get 0 extra XDP headroom as
2099	 * opposed to having legacy-rx off, where we process XDP
2100	 * packets going to stack via i40e_build_skb(). The latter
2101	 * provides us currently with 192 bytes of headroom.
2102	 *
2103	 * For i40e_construct_skb() mode it means that the
2104	 * xdp->data_meta will always point to xdp->data, since
2105	 * the helper cannot expand the head. Should this ever
2106	 * change in future for legacy-rx mode on, then lets also
2107	 * add xdp->data_meta handling here.
2108	 */
2109
2110	/* allocate a skb to store the frags */
2111	skb = napi_alloc_skb(&rx_ring->q_vector->napi, I40E_RX_HDR_SIZE);
 
 
2112	if (unlikely(!skb))
2113		return NULL;
2114
2115	/* Determine available headroom for copy */
2116	headlen = size;
2117	if (headlen > I40E_RX_HDR_SIZE)
2118		headlen = eth_get_headlen(skb->dev, xdp->data,
2119					  I40E_RX_HDR_SIZE);
2120
2121	/* align pull length to size of long to optimize memcpy performance */
2122	memcpy(__skb_put(skb, headlen), xdp->data,
2123	       ALIGN(headlen, sizeof(long)));
2124
2125	if (unlikely(xdp_buff_has_frags(xdp))) {
2126		sinfo = xdp_get_shared_info_from_buff(xdp);
2127		nr_frags = sinfo->nr_frags;
2128	}
2129	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2130	/* update all of the pointers */
2131	size -= headlen;
2132	if (size) {
2133		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2134			dev_kfree_skb(skb);
2135			return NULL;
2136		}
2137		skb_add_rx_frag(skb, 0, rx_buffer->page,
2138				rx_buffer->page_offset + headlen,
2139				size, xdp->frame_sz);
 
2140		/* buffer is used by skb, update page_offset */
2141		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
 
 
 
 
2142	} else {
2143		/* buffer is unused, reset bias back to rx_buffer */
2144		rx_buffer->pagecnt_bias++;
2145	}
2146
2147	if (unlikely(xdp_buff_has_frags(xdp))) {
2148		struct skb_shared_info *skinfo = skb_shinfo(skb);
2149
2150		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2151		       sizeof(skb_frag_t) * nr_frags);
2152
2153		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2154					   sinfo->xdp_frags_size,
2155					   nr_frags * xdp->frame_sz,
2156					   xdp_buff_is_frag_pfmemalloc(xdp));
2157
2158		/* First buffer has already been processed, so bump ntc */
2159		if (++rx_ring->next_to_clean == rx_ring->count)
2160			rx_ring->next_to_clean = 0;
2161
2162		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2163	}
2164
2165	return skb;
2166}
2167
2168/**
2169 * i40e_build_skb - Build skb around an existing buffer
2170 * @rx_ring: Rx descriptor ring to transact packets on
 
2171 * @xdp: xdp_buff pointing to the data
2172 *
2173 * This function builds an skb around an existing Rx buffer, taking care
2174 * to set up the skb correctly and avoid any memcpy overhead.
2175 */
2176static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
 
2177				      struct xdp_buff *xdp)
2178{
2179	unsigned int metasize = xdp->data - xdp->data_meta;
2180	struct skb_shared_info *sinfo;
 
 
 
 
 
2181	struct sk_buff *skb;
2182	u32 nr_frags;
2183
2184	/* Prefetch first cache line of first page. If xdp->data_meta
2185	 * is unused, this points exactly as xdp->data, otherwise we
2186	 * likely have a consumer accessing first few bytes of meta
2187	 * data, and then actual data.
2188	 */
2189	net_prefetch(xdp->data_meta);
2190
2191	if (unlikely(xdp_buff_has_frags(xdp))) {
2192		sinfo = xdp_get_shared_info_from_buff(xdp);
2193		nr_frags = sinfo->nr_frags;
2194	}
2195
 
 
 
 
 
2196	/* build an skb around the page buffer */
2197	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2198	if (unlikely(!skb))
2199		return NULL;
2200
2201	/* update pointers within the skb to store the data */
2202	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2203	__skb_put(skb, xdp->data_end - xdp->data);
2204	if (metasize)
2205		skb_metadata_set(skb, metasize);
2206
2207	if (unlikely(xdp_buff_has_frags(xdp))) {
2208		xdp_update_skb_shared_info(skb, nr_frags,
2209					   sinfo->xdp_frags_size,
2210					   nr_frags * xdp->frame_sz,
2211					   xdp_buff_is_frag_pfmemalloc(xdp));
2212
2213		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2214	} else {
2215		struct i40e_rx_buffer *rx_buffer;
 
 
 
2216
2217		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2218		/* buffer is used by skb, update page_offset */
2219		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2220	}
2221
2222	return skb;
 
2223}
2224
2225/**
2226 * i40e_is_non_eop - process handling of non-EOP buffers
2227 * @rx_ring: Rx ring being processed
2228 * @rx_desc: Rx descriptor for current buffer
 
2229 *
2230 * If the buffer is an EOP buffer, this function exits returning false,
2231 * otherwise return true indicating that this is in fact a non-EOP buffer.
2232 */
2233bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2234		     union i40e_rx_desc *rx_desc)
 
 
 
2235{
 
 
 
 
 
 
 
 
2236	/* if we are the last buffer then there is nothing else to do */
2237#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2238	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2239		return false;
2240
2241	rx_ring->rx_stats.non_eop_descs++;
2242
2243	return true;
2244}
2245
2246static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2247			      struct i40e_ring *xdp_ring);
2248
2249int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2250{
2251	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2252
2253	if (unlikely(!xdpf))
2254		return I40E_XDP_CONSUMED;
2255
2256	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2257}
2258
2259/**
2260 * i40e_run_xdp - run an XDP program
2261 * @rx_ring: Rx ring being processed
2262 * @xdp: XDP buffer containing the frame
2263 * @xdp_prog: XDP program to run
2264 **/
2265static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
 
2266{
2267	int err, result = I40E_XDP_PASS;
2268	struct i40e_ring *xdp_ring;
 
2269	u32 act;
2270
 
 
 
2271	if (!xdp_prog)
2272		goto xdp_out;
2273
2274	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2275
2276	act = bpf_prog_run_xdp(xdp_prog, xdp);
2277	switch (act) {
2278	case XDP_PASS:
2279		break;
2280	case XDP_TX:
2281		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2282		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2283		if (result == I40E_XDP_CONSUMED)
2284			goto out_failure;
2285		break;
2286	case XDP_REDIRECT:
2287		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2288		if (err)
2289			goto out_failure;
2290		result = I40E_XDP_REDIR;
2291		break;
2292	default:
2293		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2294		fallthrough;
2295	case XDP_ABORTED:
2296out_failure:
2297		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2298		fallthrough; /* handle aborts by dropping packet */
2299	case XDP_DROP:
2300		result = I40E_XDP_CONSUMED;
2301		break;
2302	}
2303xdp_out:
2304	return result;
2305}
2306
2307/**
2308 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2309 * @xdp_ring: XDP Tx ring
2310 *
2311 * This function updates the XDP Tx ring tail register.
2312 **/
2313void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2314{
2315	/* Force memory writes to complete before letting h/w
2316	 * know there are new descriptors to fetch.
2317	 */
2318	wmb();
2319	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2320}
2321
2322/**
2323 * i40e_update_rx_stats - Update Rx ring statistics
2324 * @rx_ring: rx descriptor ring
2325 * @total_rx_bytes: number of bytes received
2326 * @total_rx_packets: number of packets received
2327 *
2328 * This function updates the Rx ring statistics.
2329 **/
2330void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2331			  unsigned int total_rx_bytes,
2332			  unsigned int total_rx_packets)
2333{
2334	u64_stats_update_begin(&rx_ring->syncp);
2335	rx_ring->stats.packets += total_rx_packets;
2336	rx_ring->stats.bytes += total_rx_bytes;
2337	u64_stats_update_end(&rx_ring->syncp);
2338	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2339	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2340}
2341
2342/**
2343 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2344 * @rx_ring: Rx ring
2345 * @xdp_res: Result of the receive batch
2346 *
2347 * This function bumps XDP Tx tail and/or flush redirect map, and
2348 * should be called when a batch of packets has been processed in the
2349 * napi loop.
2350 **/
2351void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
 
 
2352{
2353	if (xdp_res & I40E_XDP_REDIR)
2354		xdp_do_flush();
2355
2356	if (xdp_res & I40E_XDP_TX) {
2357		struct i40e_ring *xdp_ring =
2358			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2359
2360		i40e_xdp_ring_update_tail(xdp_ring);
2361	}
2362}
2363
2364/**
2365 * i40e_inc_ntp: Advance the next_to_process index
2366 * @rx_ring: Rx ring
2367 **/
2368static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2369{
2370	u32 ntp = rx_ring->next_to_process + 1;
2371
2372	ntp = (ntp < rx_ring->count) ? ntp : 0;
2373	rx_ring->next_to_process = ntp;
2374	prefetch(I40E_RX_DESC(rx_ring, ntp));
2375}
2376
2377/**
2378 * i40e_add_xdp_frag: Add a frag to xdp_buff
2379 * @xdp: xdp_buff pointing to the data
2380 * @nr_frags: return number of buffers for the packet
2381 * @rx_buffer: rx_buffer holding data of the current frag
2382 * @size: size of data of current frag
2383 */
2384static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2385			     struct i40e_rx_buffer *rx_buffer, u32 size)
2386{
2387	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2388
2389	if (!xdp_buff_has_frags(xdp)) {
2390		sinfo->nr_frags = 0;
2391		sinfo->xdp_frags_size = 0;
2392		xdp_buff_set_frags_flag(xdp);
2393	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2394		/* Overflowing packet: All frags need to be dropped */
2395		return -ENOMEM;
2396	}
2397
2398	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2399				   rx_buffer->page_offset, size);
2400
2401	sinfo->xdp_frags_size += size;
2402
2403	if (page_is_pfmemalloc(rx_buffer->page))
2404		xdp_buff_set_frag_pfmemalloc(xdp);
2405	*nr_frags = sinfo->nr_frags;
2406
2407	return 0;
2408}
2409
2410/**
2411 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2412 * @rx_ring: rx descriptor ring to transact packets on
2413 * @xdp: xdp_buff pointing to the data
2414 * @rx_buffer: rx_buffer of eop desc
2415 */
2416static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2417				  struct xdp_buff *xdp,
2418				  struct i40e_rx_buffer *rx_buffer)
2419{
2420	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2421	i40e_put_rx_buffer(rx_ring, rx_buffer);
2422	rx_ring->next_to_clean = rx_ring->next_to_process;
2423	xdp->data = NULL;
2424}
2425
2426/**
2427 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2428 * @rx_ring: rx descriptor ring to transact packets on
2429 * @budget: Total limit on number of packets to process
2430 * @rx_cleaned: Out parameter of the number of packets processed
2431 *
2432 * This function provides a "bounce buffer" approach to Rx interrupt
2433 * processing.  The advantage to this is that on systems that have
2434 * expensive overhead for IOMMU access this provides a means of avoiding
2435 * it by maintaining the mapping of the page to the system.
2436 *
2437 * Returns amount of work completed
2438 **/
2439static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2440			     unsigned int *rx_cleaned)
2441{
2442	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 
2443	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2444	u16 clean_threshold = rx_ring->count / 2;
2445	unsigned int offset = rx_ring->rx_offset;
2446	struct xdp_buff *xdp = &rx_ring->xdp;
2447	unsigned int xdp_xmit = 0;
2448	struct bpf_prog *xdp_prog;
2449	bool failure = false;
2450	int xdp_res = 0;
2451
2452	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2453
2454	while (likely(total_rx_packets < (unsigned int)budget)) {
2455		u16 ntp = rx_ring->next_to_process;
2456		struct i40e_rx_buffer *rx_buffer;
2457		union i40e_rx_desc *rx_desc;
2458		struct sk_buff *skb;
2459		unsigned int size;
2460		u32 nfrags = 0;
2461		bool neop;
2462		u64 qword;
2463
2464		/* return some buffers to hardware, one at a time is too slow */
2465		if (cleaned_count >= clean_threshold) {
2466			failure = failure ||
2467				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2468			cleaned_count = 0;
2469		}
2470
2471		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2472
2473		/* status_error_len will always be zero for unused descriptors
2474		 * because it's cleared in cleanup, and overlaps with hdr_addr
2475		 * which is always zero because packet split isn't used, if the
2476		 * hardware wrote DD then the length will be non-zero
2477		 */
2478		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2479
2480		/* This memory barrier is needed to keep us from reading
2481		 * any other fields out of the rx_desc until we have
2482		 * verified the descriptor has been written back.
2483		 */
2484		dma_rmb();
2485
2486		if (i40e_rx_is_programming_status(qword)) {
2487			i40e_clean_programming_status(rx_ring,
2488						      rx_desc->raw.qword[0],
2489						      qword);
2490			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2491			i40e_inc_ntp(rx_ring);
2492			i40e_reuse_rx_page(rx_ring, rx_buffer);
2493			/* Update ntc and bump cleaned count if not in the
2494			 * middle of mb packet.
2495			 */
2496			if (rx_ring->next_to_clean == ntp) {
2497				rx_ring->next_to_clean =
2498					rx_ring->next_to_process;
2499				cleaned_count++;
2500			}
2501			continue;
2502		}
2503
2504		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2505		if (!size)
2506			break;
2507
2508		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2509		/* retrieve a buffer from the ring */
2510		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2511
2512		neop = i40e_is_non_eop(rx_ring, rx_desc);
2513		i40e_inc_ntp(rx_ring);
2514
2515		if (!xdp->data) {
2516			unsigned char *hard_start;
2517
2518			hard_start = page_address(rx_buffer->page) +
2519				     rx_buffer->page_offset - offset;
2520			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2521#if (PAGE_SIZE > 4096)
2522			/* At larger PAGE_SIZE, frame_sz depend on len size */
2523			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2524#endif
2525		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2526			   !neop) {
2527			/* Overflowing packet: Drop all frags on EOP */
2528			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2529			break;
2530		}
2531
2532		if (neop)
2533			continue;
2534
2535		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2536
2537		if (xdp_res) {
2538			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2539
2540			if (unlikely(xdp_buff_has_frags(xdp))) {
2541				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2542				size = xdp_get_buff_len(xdp);
2543			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2544				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2545			} else {
2546				rx_buffer->pagecnt_bias++;
2547			}
2548			total_rx_bytes += size;
 
 
 
 
 
2549		} else {
2550			if (ring_uses_build_skb(rx_ring))
2551				skb = i40e_build_skb(rx_ring, xdp);
2552			else
2553				skb = i40e_construct_skb(rx_ring, xdp);
2554
2555			/* drop if we failed to retrieve a buffer */
2556			if (!skb) {
2557				rx_ring->rx_stats.alloc_buff_failed++;
2558				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2559				break;
2560			}
2561
2562			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2563				goto process_next;
 
 
 
 
2564
2565			/* probably a little skewed due to removing CRC */
2566			total_rx_bytes += skb->len;
2567
2568			/* populate checksum, VLAN, and protocol */
2569			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2570
2571			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2572			napi_gro_receive(&rx_ring->q_vector->napi, skb);
 
2573		}
2574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2575		/* update budget accounting */
2576		total_rx_packets++;
2577process_next:
2578		cleaned_count += nfrags + 1;
2579		i40e_put_rx_buffer(rx_ring, rx_buffer);
2580		rx_ring->next_to_clean = rx_ring->next_to_process;
2581
2582		xdp->data = NULL;
2583	}
2584
2585	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
 
 
2586
2587	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
 
 
2588
2589	*rx_cleaned = total_rx_packets;
 
 
 
 
 
 
 
2590
2591	/* guarantee a trip back through this routine if there was a failure */
2592	return failure ? budget : (int)total_rx_packets;
2593}
2594
2595/**
2596 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2597 * @itr_idx: interrupt throttling index
2598 * @interval: interrupt throttling interval value in usecs
2599 * @force_swint: force software interrupt
2600 *
2601 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2602 * is used to update interrupt throttling interval for specified ITR index
2603 * and optionally enforces a software interrupt. If the @itr_idx is equal
2604 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2605 * parameter is taken into account. If the interval change and enforced
2606 * software interrupt are not requested then the built value just enables
2607 * appropriate vector interrupt.
2608 **/
2609static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2610			     bool force_swint)
2611{
2612	u32 val;
2613
2614	/* We don't bother with setting the CLEARPBA bit as the data sheet
2615	 * points out doing so is "meaningless since it was already
2616	 * auto-cleared". The auto-clearing happens when the interrupt is
2617	 * asserted.
2618	 *
2619	 * Hardware errata 28 for also indicates that writing to a
2620	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2621	 * an event in the PBA anyway so we need to rely on the automask
2622	 * to hold pending events for us until the interrupt is re-enabled
2623	 *
2624	 * We have to shift the given value as it is reported in microseconds
2625	 * and the register value is recorded in 2 microsecond units.
 
 
2626	 */
2627	interval >>= 1;
2628
2629	/* 1. Enable vector interrupt
2630	 * 2. Update the interval for the specified ITR index
2631	 *    (I40E_ITR_NONE in the register is used to indicate that
2632	 *     no interval update is requested)
2633	 */
2634	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2635	      FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2636	      FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2637
2638	/* 3. Enforce software interrupt trigger if requested
2639	 *    (These software interrupts rate is limited by ITR2 that is
2640	 *     set to 20K interrupts per second)
2641	 */
2642	if (force_swint)
2643		val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2644		       I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2645		       FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2646				  I40E_SW_ITR);
2647
2648	return val;
2649}
2650
 
 
 
2651/* The act of updating the ITR will cause it to immediately trigger. In order
2652 * to prevent this from throwing off adaptive update statistics we defer the
2653 * update so that it can only happen so often. So after either Tx or Rx are
2654 * updated we make the adaptive scheme wait until either the ITR completely
2655 * expires via the next_update expiration or we have been through at least
2656 * 3 interrupts.
2657 */
2658#define ITR_COUNTDOWN_START 3
2659
2660/**
2661 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2662 * @vsi: the VSI we care about
2663 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2664 *
2665 **/
2666static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2667					  struct i40e_q_vector *q_vector)
2668{
2669	enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2670	struct i40e_hw *hw = &vsi->back->hw;
2671	u16 interval = 0;
2672	u32 itr_val;
2673
2674	/* If we don't have MSIX, then we only need to re-enable icr0 */
2675	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2676		i40e_irq_dynamic_enable_icr0(vsi->back);
2677		return;
2678	}
2679
2680	/* These will do nothing if dynamic updates are not enabled */
2681	i40e_update_itr(q_vector, &q_vector->tx);
2682	i40e_update_itr(q_vector, &q_vector->rx);
2683
2684	/* This block of logic allows us to get away with only updating
2685	 * one ITR value with each interrupt. The idea is to perform a
2686	 * pseudo-lazy update with the following criteria.
2687	 *
2688	 * 1. Rx is given higher priority than Tx if both are in same state
2689	 * 2. If we must reduce an ITR that is given highest priority.
2690	 * 3. We then give priority to increasing ITR based on amount.
2691	 */
2692	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2693		/* Rx ITR needs to be reduced, this is highest priority */
2694		itr_idx = I40E_RX_ITR;
2695		interval = q_vector->rx.target_itr;
2696		q_vector->rx.current_itr = q_vector->rx.target_itr;
2697		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2698	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2699		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2700		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2701		/* Tx ITR needs to be reduced, this is second priority
2702		 * Tx ITR needs to be increased more than Rx, fourth priority
2703		 */
2704		itr_idx = I40E_TX_ITR;
2705		interval = q_vector->tx.target_itr;
2706		q_vector->tx.current_itr = q_vector->tx.target_itr;
2707		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2708	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2709		/* Rx ITR needs to be increased, third priority */
2710		itr_idx = I40E_RX_ITR;
2711		interval = q_vector->rx.target_itr;
2712		q_vector->rx.current_itr = q_vector->rx.target_itr;
2713		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2714	} else {
2715		/* No ITR update, lowest priority */
 
2716		if (q_vector->itr_countdown)
2717			q_vector->itr_countdown--;
2718	}
2719
2720	/* Do not update interrupt control register if VSI is down */
2721	if (test_bit(__I40E_VSI_DOWN, vsi->state))
2722		return;
2723
2724	/* Update ITR interval if necessary and enforce software interrupt
2725	 * if we are exiting busy poll.
2726	 */
2727	if (q_vector->in_busy_poll) {
2728		itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2729		q_vector->in_busy_poll = false;
2730	} else {
2731		itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2732	}
2733	wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2734}
2735
2736/**
2737 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738 * @napi: napi struct with our devices info in it
2739 * @budget: amount of work driver is allowed to do this pass, in packets
2740 *
2741 * This function will clean all queues associated with a q_vector.
2742 *
2743 * Returns the amount of work done
2744 **/
2745int i40e_napi_poll(struct napi_struct *napi, int budget)
2746{
2747	struct i40e_q_vector *q_vector =
2748			       container_of(napi, struct i40e_q_vector, napi);
2749	struct i40e_vsi *vsi = q_vector->vsi;
2750	struct i40e_ring *ring;
2751	bool tx_clean_complete = true;
2752	bool rx_clean_complete = true;
2753	unsigned int tx_cleaned = 0;
2754	unsigned int rx_cleaned = 0;
2755	bool clean_complete = true;
2756	bool arm_wb = false;
2757	int budget_per_ring;
2758	int work_done = 0;
2759
2760	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761		napi_complete(napi);
2762		return 0;
2763	}
2764
2765	/* Since the actual Tx work is minimal, we can give the Tx a larger
2766	 * budget and be more aggressive about cleaning up the Tx descriptors.
2767	 */
2768	i40e_for_each_ring(ring, q_vector->tx) {
2769		bool wd = ring->xsk_pool ?
2770			  i40e_clean_xdp_tx_irq(vsi, ring) :
2771			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772
2773		if (!wd) {
2774			clean_complete = tx_clean_complete = false;
2775			continue;
2776		}
2777		arm_wb |= ring->arm_wb;
2778		ring->arm_wb = false;
2779	}
2780
2781	/* Handle case where we are called by netpoll with a budget of 0 */
2782	if (budget <= 0)
2783		goto tx_only;
2784
2785	/* normally we have 1 Rx ring per q_vector */
2786	if (unlikely(q_vector->num_ringpairs > 1))
2787		/* We attempt to distribute budget to each Rx queue fairly, but
2788		 * don't allow the budget to go below 1 because that would exit
2789		 * polling early.
2790		 */
2791		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792	else
2793		/* Max of 1 Rx ring in this q_vector so give it the budget */
2794		budget_per_ring = budget;
2795
2796	i40e_for_each_ring(ring, q_vector->rx) {
2797		int cleaned = ring->xsk_pool ?
2798			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2800
2801		work_done += cleaned;
2802		/* if we clean as many as budgeted, we must not be done */
2803		if (cleaned >= budget_per_ring)
2804			clean_complete = rx_clean_complete = false;
2805	}
2806
2807	if (!i40e_enabled_xdp_vsi(vsi))
2808		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2810
2811	/* If work not completed, return budget and polling will return */
2812	if (!clean_complete) {
2813		int cpu_id = smp_processor_id();
2814
2815		/* It is possible that the interrupt affinity has changed but,
2816		 * if the cpu is pegged at 100%, polling will never exit while
2817		 * traffic continues and the interrupt will be stuck on this
2818		 * cpu.  We check to make sure affinity is correct before we
2819		 * continue to poll, otherwise we must stop polling so the
2820		 * interrupt can move to the correct cpu.
2821		 */
2822		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823			/* Tell napi that we are done polling */
2824			napi_complete_done(napi, work_done);
2825
2826			/* Force an interrupt */
2827			i40e_force_wb(vsi, q_vector);
2828
2829			/* Return budget-1 so that polling stops */
2830			return budget - 1;
2831		}
2832tx_only:
2833		if (arm_wb) {
2834			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835			i40e_enable_wb_on_itr(vsi, q_vector);
2836		}
2837		return budget;
2838	}
2839
2840	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841		q_vector->arm_wb_state = false;
2842
2843	/* Exit the polling mode, but don't re-enable interrupts if stack might
2844	 * poll us due to busy-polling
2845	 */
2846	if (likely(napi_complete_done(napi, work_done)))
2847		i40e_update_enable_itr(vsi, q_vector);
2848	else
2849		q_vector->in_busy_poll = true;
2850
2851	return min(work_done, budget - 1);
2852}
2853
2854/**
2855 * i40e_atr - Add a Flow Director ATR filter
2856 * @tx_ring:  ring to add programming descriptor to
2857 * @skb:      send buffer
2858 * @tx_flags: send tx flags
2859 **/
2860static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2861		     u32 tx_flags)
2862{
2863	struct i40e_filter_program_desc *fdir_desc;
2864	struct i40e_pf *pf = tx_ring->vsi->back;
2865	union {
2866		unsigned char *network;
2867		struct iphdr *ipv4;
2868		struct ipv6hdr *ipv6;
2869	} hdr;
2870	struct tcphdr *th;
2871	unsigned int hlen;
2872	u32 flex_ptype, dtype_cmd;
2873	int l4_proto;
2874	u16 i;
2875
2876	/* make sure ATR is enabled */
2877	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2878		return;
2879
2880	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2881		return;
2882
2883	/* if sampling is disabled do nothing */
2884	if (!tx_ring->atr_sample_rate)
2885		return;
2886
2887	/* Currently only IPv4/IPv6 with TCP is supported */
2888	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2889		return;
2890
2891	/* snag network header to get L4 type and address */
2892	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2893		      skb_inner_network_header(skb) : skb_network_header(skb);
2894
2895	/* Note: tx_flags gets modified to reflect inner protocols in
2896	 * tx_enable_csum function if encap is enabled.
2897	 */
2898	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2899		/* access ihl as u8 to avoid unaligned access on ia64 */
2900		hlen = (hdr.network[0] & 0x0F) << 2;
2901		l4_proto = hdr.ipv4->protocol;
2902	} else {
2903		/* find the start of the innermost ipv6 header */
2904		unsigned int inner_hlen = hdr.network - skb->data;
2905		unsigned int h_offset = inner_hlen;
2906
2907		/* this function updates h_offset to the end of the header */
2908		l4_proto =
2909		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2910		/* hlen will contain our best estimate of the tcp header */
2911		hlen = h_offset - inner_hlen;
2912	}
2913
2914	if (l4_proto != IPPROTO_TCP)
2915		return;
2916
2917	th = (struct tcphdr *)(hdr.network + hlen);
2918
2919	/* Due to lack of space, no more new filters can be programmed */
2920	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2921		return;
2922	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2923		/* HW ATR eviction will take care of removing filters on FIN
2924		 * and RST packets.
2925		 */
2926		if (th->fin || th->rst)
2927			return;
2928	}
2929
2930	tx_ring->atr_count++;
2931
2932	/* sample on all syn/fin/rst packets or once every atr sample rate */
2933	if (!th->fin &&
2934	    !th->syn &&
2935	    !th->rst &&
2936	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2937		return;
2938
2939	tx_ring->atr_count = 0;
2940
2941	/* grab the next descriptor */
2942	i = tx_ring->next_to_use;
2943	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2944
2945	i++;
2946	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2947
2948	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2949				tx_ring->queue_index);
2950	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2951		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2952		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2953		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2954		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2955
2956	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2957
2958	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2959
2960	dtype_cmd |= (th->fin || th->rst) ?
2961		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2962		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2963		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2964		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2965
2966	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2967		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2968
2969	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2970		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2971
2972	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2973	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2974		dtype_cmd |=
2975			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2976				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
 
2977	else
2978		dtype_cmd |=
2979			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2980				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
 
2981
2982	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2983		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2984
2985	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2986	fdir_desc->rsvd = cpu_to_le32(0);
2987	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2988	fdir_desc->fd_id = cpu_to_le32(0);
2989}
2990
2991/**
2992 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2993 * @skb:     send buffer
2994 * @tx_ring: ring to send buffer on
2995 * @flags:   the tx flags to be set
2996 *
2997 * Checks the skb and set up correspondingly several generic transmit flags
2998 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2999 *
3000 * Returns error code indicate the frame should be dropped upon error and the
3001 * otherwise  returns 0 to indicate the flags has been set properly.
3002 **/
3003static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3004					     struct i40e_ring *tx_ring,
3005					     u32 *flags)
3006{
3007	__be16 protocol = skb->protocol;
3008	u32  tx_flags = 0;
3009
3010	if (protocol == htons(ETH_P_8021Q) &&
3011	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3012		/* When HW VLAN acceleration is turned off by the user the
3013		 * stack sets the protocol to 8021q so that the driver
3014		 * can take any steps required to support the SW only
3015		 * VLAN handling.  In our case the driver doesn't need
3016		 * to take any further steps so just set the protocol
3017		 * to the encapsulated ethertype.
3018		 */
3019		skb->protocol = vlan_get_protocol(skb);
3020		goto out;
3021	}
3022
3023	/* if we have a HW VLAN tag being added, default to the HW one */
3024	if (skb_vlan_tag_present(skb)) {
3025		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3026		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3027	/* else if it is a SW VLAN, check the next protocol and store the tag */
3028	} else if (protocol == htons(ETH_P_8021Q)) {
3029		struct vlan_hdr *vhdr, _vhdr;
3030
3031		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3032		if (!vhdr)
3033			return -EINVAL;
3034
3035		protocol = vhdr->h_vlan_encapsulated_proto;
3036		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3037		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3038	}
3039
3040	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3041		goto out;
3042
3043	/* Insert 802.1p priority into VLAN header */
3044	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3045	    (skb->priority != TC_PRIO_CONTROL)) {
3046		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3047		tx_flags |= (skb->priority & 0x7) <<
3048				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3049		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3050			struct vlan_ethhdr *vhdr;
3051			int rc;
3052
3053			rc = skb_cow_head(skb, 0);
3054			if (rc < 0)
3055				return rc;
3056			vhdr = skb_vlan_eth_hdr(skb);
3057			vhdr->h_vlan_TCI = htons(tx_flags >>
3058						 I40E_TX_FLAGS_VLAN_SHIFT);
3059		} else {
3060			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3061		}
3062	}
3063
3064out:
3065	*flags = tx_flags;
3066	return 0;
3067}
3068
3069/**
3070 * i40e_tso - set up the tso context descriptor
3071 * @first:    pointer to first Tx buffer for xmit
3072 * @hdr_len:  ptr to the size of the packet header
3073 * @cd_type_cmd_tso_mss: Quad Word 1
3074 *
3075 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3076 **/
3077static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3078		    u64 *cd_type_cmd_tso_mss)
3079{
3080	struct sk_buff *skb = first->skb;
3081	u64 cd_cmd, cd_tso_len, cd_mss;
3082	__be16 protocol;
3083	union {
3084		struct iphdr *v4;
3085		struct ipv6hdr *v6;
3086		unsigned char *hdr;
3087	} ip;
3088	union {
3089		struct tcphdr *tcp;
3090		struct udphdr *udp;
3091		unsigned char *hdr;
3092	} l4;
3093	u32 paylen, l4_offset;
3094	u16 gso_size;
3095	int err;
3096
3097	if (skb->ip_summed != CHECKSUM_PARTIAL)
3098		return 0;
3099
3100	if (!skb_is_gso(skb))
3101		return 0;
3102
3103	err = skb_cow_head(skb, 0);
3104	if (err < 0)
3105		return err;
3106
3107	protocol = vlan_get_protocol(skb);
3108
3109	if (eth_p_mpls(protocol))
3110		ip.hdr = skb_inner_network_header(skb);
3111	else
3112		ip.hdr = skb_network_header(skb);
3113	l4.hdr = skb_checksum_start(skb);
3114
3115	/* initialize outer IP header fields */
3116	if (ip.v4->version == 4) {
3117		ip.v4->tot_len = 0;
3118		ip.v4->check = 0;
3119
3120		first->tx_flags |= I40E_TX_FLAGS_TSO;
3121	} else {
3122		ip.v6->payload_len = 0;
3123		first->tx_flags |= I40E_TX_FLAGS_TSO;
3124	}
3125
3126	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3127					 SKB_GSO_GRE_CSUM |
3128					 SKB_GSO_IPXIP4 |
3129					 SKB_GSO_IPXIP6 |
3130					 SKB_GSO_UDP_TUNNEL |
3131					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3132		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3133		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3134			l4.udp->len = 0;
3135
3136			/* determine offset of outer transport header */
3137			l4_offset = l4.hdr - skb->data;
3138
3139			/* remove payload length from outer checksum */
3140			paylen = skb->len - l4_offset;
3141			csum_replace_by_diff(&l4.udp->check,
3142					     (__force __wsum)htonl(paylen));
3143		}
3144
3145		/* reset pointers to inner headers */
3146		ip.hdr = skb_inner_network_header(skb);
3147		l4.hdr = skb_inner_transport_header(skb);
3148
3149		/* initialize inner IP header fields */
3150		if (ip.v4->version == 4) {
3151			ip.v4->tot_len = 0;
3152			ip.v4->check = 0;
3153		} else {
3154			ip.v6->payload_len = 0;
3155		}
3156	}
3157
3158	/* determine offset of inner transport header */
3159	l4_offset = l4.hdr - skb->data;
3160
3161	/* remove payload length from inner checksum */
3162	paylen = skb->len - l4_offset;
 
3163
3164	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3165		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3166		/* compute length of segmentation header */
3167		*hdr_len = sizeof(*l4.udp) + l4_offset;
3168	} else {
3169		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3170		/* compute length of segmentation header */
3171		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3172	}
3173
3174	/* pull values out of skb_shinfo */
3175	gso_size = skb_shinfo(skb)->gso_size;
 
3176
3177	/* update GSO size and bytecount with header size */
3178	first->gso_segs = skb_shinfo(skb)->gso_segs;
3179	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3180
3181	/* find the field values */
3182	cd_cmd = I40E_TX_CTX_DESC_TSO;
3183	cd_tso_len = skb->len - *hdr_len;
3184	cd_mss = gso_size;
3185	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3186				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3187				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3188	return 1;
3189}
3190
3191/**
3192 * i40e_tsyn - set up the tsyn context descriptor
3193 * @tx_ring:  ptr to the ring to send
3194 * @skb:      ptr to the skb we're sending
3195 * @tx_flags: the collected send information
3196 * @cd_type_cmd_tso_mss: Quad Word 1
3197 *
3198 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3199 **/
3200static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3201		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3202{
3203	struct i40e_pf *pf;
3204
3205	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3206		return 0;
3207
3208	/* Tx timestamps cannot be sampled when doing TSO */
3209	if (tx_flags & I40E_TX_FLAGS_TSO)
3210		return 0;
3211
3212	/* only timestamp the outbound packet if the user has requested it and
3213	 * we are not already transmitting a packet to be timestamped
3214	 */
3215	pf = i40e_netdev_to_pf(tx_ring->netdev);
3216	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3217		return 0;
3218
3219	if (pf->ptp_tx &&
3220	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3221		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3222		pf->ptp_tx_start = jiffies;
3223		pf->ptp_tx_skb = skb_get(skb);
3224	} else {
3225		pf->tx_hwtstamp_skipped++;
3226		return 0;
3227	}
3228
3229	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3230				I40E_TXD_CTX_QW1_CMD_SHIFT;
3231
3232	return 1;
3233}
3234
3235/**
3236 * i40e_tx_enable_csum - Enable Tx checksum offloads
3237 * @skb: send buffer
3238 * @tx_flags: pointer to Tx flags currently set
3239 * @td_cmd: Tx descriptor command bits to set
3240 * @td_offset: Tx descriptor header offsets to set
3241 * @tx_ring: Tx descriptor ring
3242 * @cd_tunneling: ptr to context desc bits
3243 **/
3244static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3245			       u32 *td_cmd, u32 *td_offset,
3246			       struct i40e_ring *tx_ring,
3247			       u32 *cd_tunneling)
3248{
3249	union {
3250		struct iphdr *v4;
3251		struct ipv6hdr *v6;
3252		unsigned char *hdr;
3253	} ip;
3254	union {
3255		struct tcphdr *tcp;
3256		struct udphdr *udp;
3257		unsigned char *hdr;
3258	} l4;
3259	unsigned char *exthdr;
3260	u32 offset, cmd = 0;
3261	__be16 frag_off;
3262	__be16 protocol;
3263	u8 l4_proto = 0;
3264
3265	if (skb->ip_summed != CHECKSUM_PARTIAL)
3266		return 0;
3267
3268	protocol = vlan_get_protocol(skb);
3269
3270	if (eth_p_mpls(protocol)) {
3271		ip.hdr = skb_inner_network_header(skb);
3272		l4.hdr = skb_checksum_start(skb);
3273	} else {
3274		ip.hdr = skb_network_header(skb);
3275		l4.hdr = skb_transport_header(skb);
3276	}
3277
3278	/* set the tx_flags to indicate the IP protocol type. this is
3279	 * required so that checksum header computation below is accurate.
3280	 */
3281	if (ip.v4->version == 4)
3282		*tx_flags |= I40E_TX_FLAGS_IPV4;
3283	else
3284		*tx_flags |= I40E_TX_FLAGS_IPV6;
3285
3286	/* compute outer L2 header size */
3287	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3288
3289	if (skb->encapsulation) {
3290		u32 tunnel = 0;
3291		/* define outer network header type */
3292		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3293			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3294				  I40E_TX_CTX_EXT_IP_IPV4 :
3295				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3296
3297			l4_proto = ip.v4->protocol;
3298		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3299			int ret;
3300
3301			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3302
3303			exthdr = ip.hdr + sizeof(*ip.v6);
3304			l4_proto = ip.v6->nexthdr;
3305			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3306					       &l4_proto, &frag_off);
3307			if (ret < 0)
3308				return -1;
3309		}
3310
3311		/* define outer transport */
3312		switch (l4_proto) {
3313		case IPPROTO_UDP:
3314			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3315			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3316			break;
3317		case IPPROTO_GRE:
3318			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3319			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3320			break;
3321		case IPPROTO_IPIP:
3322		case IPPROTO_IPV6:
3323			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3324			l4.hdr = skb_inner_network_header(skb);
3325			break;
3326		default:
3327			if (*tx_flags & I40E_TX_FLAGS_TSO)
3328				return -1;
3329
3330			skb_checksum_help(skb);
3331			return 0;
3332		}
3333
3334		/* compute outer L3 header size */
3335		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3336			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3337
3338		/* switch IP header pointer from outer to inner header */
3339		ip.hdr = skb_inner_network_header(skb);
3340
3341		/* compute tunnel header size */
3342		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3343			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3344
3345		/* indicate if we need to offload outer UDP header */
3346		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3347		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3348		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3349			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3350
3351		/* record tunnel offload values */
3352		*cd_tunneling |= tunnel;
3353
3354		/* switch L4 header pointer from outer to inner */
3355		l4.hdr = skb_inner_transport_header(skb);
3356		l4_proto = 0;
3357
3358		/* reset type as we transition from outer to inner headers */
3359		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3360		if (ip.v4->version == 4)
3361			*tx_flags |= I40E_TX_FLAGS_IPV4;
3362		if (ip.v6->version == 6)
3363			*tx_flags |= I40E_TX_FLAGS_IPV6;
3364	}
3365
3366	/* Enable IP checksum offloads */
3367	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3368		l4_proto = ip.v4->protocol;
3369		/* the stack computes the IP header already, the only time we
3370		 * need the hardware to recompute it is in the case of TSO.
3371		 */
3372		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3373		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3374		       I40E_TX_DESC_CMD_IIPT_IPV4;
3375	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3376		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3377
3378		exthdr = ip.hdr + sizeof(*ip.v6);
3379		l4_proto = ip.v6->nexthdr;
3380		if (l4.hdr != exthdr)
3381			ipv6_skip_exthdr(skb, exthdr - skb->data,
3382					 &l4_proto, &frag_off);
3383	}
3384
3385	/* compute inner L3 header size */
3386	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3387
3388	/* Enable L4 checksum offloads */
3389	switch (l4_proto) {
3390	case IPPROTO_TCP:
3391		/* enable checksum offloads */
3392		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3393		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3394		break;
3395	case IPPROTO_SCTP:
3396		/* enable SCTP checksum offload */
3397		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3398		offset |= (sizeof(struct sctphdr) >> 2) <<
3399			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3400		break;
3401	case IPPROTO_UDP:
3402		/* enable UDP checksum offload */
3403		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3404		offset |= (sizeof(struct udphdr) >> 2) <<
3405			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3406		break;
3407	default:
3408		if (*tx_flags & I40E_TX_FLAGS_TSO)
3409			return -1;
3410		skb_checksum_help(skb);
3411		return 0;
3412	}
3413
3414	*td_cmd |= cmd;
3415	*td_offset |= offset;
3416
3417	return 1;
3418}
3419
3420/**
3421 * i40e_create_tx_ctx - Build the Tx context descriptor
3422 * @tx_ring:  ring to create the descriptor on
3423 * @cd_type_cmd_tso_mss: Quad Word 1
3424 * @cd_tunneling: Quad Word 0 - bits 0-31
3425 * @cd_l2tag2: Quad Word 0 - bits 32-63
3426 **/
3427static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3428			       const u64 cd_type_cmd_tso_mss,
3429			       const u32 cd_tunneling, const u32 cd_l2tag2)
3430{
3431	struct i40e_tx_context_desc *context_desc;
3432	int i = tx_ring->next_to_use;
3433
3434	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3435	    !cd_tunneling && !cd_l2tag2)
3436		return;
3437
3438	/* grab the next descriptor */
3439	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3440
3441	i++;
3442	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3443
3444	/* cpu_to_le32 and assign to struct fields */
3445	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3446	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3447	context_desc->rsvd = cpu_to_le16(0);
3448	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3449}
3450
3451/**
3452 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3453 * @tx_ring: the ring to be checked
3454 * @size:    the size buffer we want to assure is available
3455 *
3456 * Returns -EBUSY if a stop is needed, else 0
3457 **/
3458int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3459{
3460	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3461	/* Memory barrier before checking head and tail */
3462	smp_mb();
3463
3464	++tx_ring->tx_stats.tx_stopped;
3465
3466	/* Check again in a case another CPU has just made room available. */
3467	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3468		return -EBUSY;
3469
3470	/* A reprieve! - use start_queue because it doesn't call schedule */
3471	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3472	++tx_ring->tx_stats.restart_queue;
3473	return 0;
3474}
3475
3476/**
3477 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3478 * @skb:      send buffer
3479 *
3480 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3481 * and so we need to figure out the cases where we need to linearize the skb.
3482 *
3483 * For TSO we need to count the TSO header and segment payload separately.
3484 * As such we need to check cases where we have 7 fragments or more as we
3485 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3486 * the segment payload in the first descriptor, and another 7 for the
3487 * fragments.
3488 **/
3489bool __i40e_chk_linearize(struct sk_buff *skb)
3490{
3491	const skb_frag_t *frag, *stale;
3492	int nr_frags, sum;
3493
3494	/* no need to check if number of frags is less than 7 */
3495	nr_frags = skb_shinfo(skb)->nr_frags;
3496	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3497		return false;
3498
3499	/* We need to walk through the list and validate that each group
3500	 * of 6 fragments totals at least gso_size.
3501	 */
3502	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3503	frag = &skb_shinfo(skb)->frags[0];
3504
3505	/* Initialize size to the negative value of gso_size minus 1.  We
3506	 * use this as the worst case scenerio in which the frag ahead
3507	 * of us only provides one byte which is why we are limited to 6
3508	 * descriptors for a single transmit as the header and previous
3509	 * fragment are already consuming 2 descriptors.
3510	 */
3511	sum = 1 - skb_shinfo(skb)->gso_size;
3512
3513	/* Add size of frags 0 through 4 to create our initial sum */
3514	sum += skb_frag_size(frag++);
3515	sum += skb_frag_size(frag++);
3516	sum += skb_frag_size(frag++);
3517	sum += skb_frag_size(frag++);
3518	sum += skb_frag_size(frag++);
3519
3520	/* Walk through fragments adding latest fragment, testing it, and
3521	 * then removing stale fragments from the sum.
3522	 */
3523	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3524		int stale_size = skb_frag_size(stale);
3525
3526		sum += skb_frag_size(frag++);
3527
3528		/* The stale fragment may present us with a smaller
3529		 * descriptor than the actual fragment size. To account
3530		 * for that we need to remove all the data on the front and
3531		 * figure out what the remainder would be in the last
3532		 * descriptor associated with the fragment.
3533		 */
3534		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3535			int align_pad = -(skb_frag_off(stale)) &
3536					(I40E_MAX_READ_REQ_SIZE - 1);
3537
3538			sum -= align_pad;
3539			stale_size -= align_pad;
3540
3541			do {
3542				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3543				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3544			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3545		}
3546
3547		/* if sum is negative we failed to make sufficient progress */
3548		if (sum < 0)
3549			return true;
3550
3551		if (!nr_frags--)
3552			break;
3553
3554		sum -= stale_size;
3555	}
3556
3557	return false;
3558}
3559
3560/**
3561 * i40e_tx_map - Build the Tx descriptor
3562 * @tx_ring:  ring to send buffer on
3563 * @skb:      send buffer
3564 * @first:    first buffer info buffer to use
3565 * @tx_flags: collected send information
3566 * @hdr_len:  size of the packet header
3567 * @td_cmd:   the command field in the descriptor
3568 * @td_offset: offset for checksum or crc
3569 *
3570 * Returns 0 on success, -1 on failure to DMA
3571 **/
3572static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3573			      struct i40e_tx_buffer *first, u32 tx_flags,
3574			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3575{
3576	unsigned int data_len = skb->data_len;
3577	unsigned int size = skb_headlen(skb);
3578	skb_frag_t *frag;
3579	struct i40e_tx_buffer *tx_bi;
3580	struct i40e_tx_desc *tx_desc;
3581	u16 i = tx_ring->next_to_use;
3582	u32 td_tag = 0;
3583	dma_addr_t dma;
3584	u16 desc_count = 1;
3585
3586	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3587		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3588		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
 
3589	}
3590
3591	first->tx_flags = tx_flags;
3592
3593	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3594
3595	tx_desc = I40E_TX_DESC(tx_ring, i);
3596	tx_bi = first;
3597
3598	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3599		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3600
3601		if (dma_mapping_error(tx_ring->dev, dma))
3602			goto dma_error;
3603
3604		/* record length, and DMA address */
3605		dma_unmap_len_set(tx_bi, len, size);
3606		dma_unmap_addr_set(tx_bi, dma, dma);
3607
3608		/* align size to end of page */
3609		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3610		tx_desc->buffer_addr = cpu_to_le64(dma);
3611
3612		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3613			tx_desc->cmd_type_offset_bsz =
3614				build_ctob(td_cmd, td_offset,
3615					   max_data, td_tag);
3616
3617			tx_desc++;
3618			i++;
3619			desc_count++;
3620
3621			if (i == tx_ring->count) {
3622				tx_desc = I40E_TX_DESC(tx_ring, 0);
3623				i = 0;
3624			}
3625
3626			dma += max_data;
3627			size -= max_data;
3628
3629			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3630			tx_desc->buffer_addr = cpu_to_le64(dma);
3631		}
3632
3633		if (likely(!data_len))
3634			break;
3635
3636		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3637							  size, td_tag);
3638
3639		tx_desc++;
3640		i++;
3641		desc_count++;
3642
3643		if (i == tx_ring->count) {
3644			tx_desc = I40E_TX_DESC(tx_ring, 0);
3645			i = 0;
3646		}
3647
3648		size = skb_frag_size(frag);
3649		data_len -= size;
3650
3651		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3652				       DMA_TO_DEVICE);
3653
3654		tx_bi = &tx_ring->tx_bi[i];
3655	}
3656
3657	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3658
3659	i++;
3660	if (i == tx_ring->count)
3661		i = 0;
3662
3663	tx_ring->next_to_use = i;
3664
3665	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3666
3667	/* write last descriptor with EOP bit */
3668	td_cmd |= I40E_TX_DESC_CMD_EOP;
3669
3670	/* We OR these values together to check both against 4 (WB_STRIDE)
3671	 * below. This is safe since we don't re-use desc_count afterwards.
3672	 */
3673	desc_count |= ++tx_ring->packet_stride;
3674
3675	if (desc_count >= WB_STRIDE) {
3676		/* write last descriptor with RS bit set */
3677		td_cmd |= I40E_TX_DESC_CMD_RS;
3678		tx_ring->packet_stride = 0;
3679	}
3680
3681	tx_desc->cmd_type_offset_bsz =
3682			build_ctob(td_cmd, td_offset, size, td_tag);
3683
3684	skb_tx_timestamp(skb);
3685
3686	/* Force memory writes to complete before letting h/w know there
3687	 * are new descriptors to fetch.
3688	 *
3689	 * We also use this memory barrier to make certain all of the
3690	 * status bits have been updated before next_to_watch is written.
3691	 */
3692	wmb();
3693
3694	/* set next_to_watch value indicating a packet is present */
3695	first->next_to_watch = tx_desc;
3696
3697	/* notify HW of packet */
3698	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3699		writel(i, tx_ring->tail);
 
 
 
 
 
3700	}
3701
3702	return 0;
3703
3704dma_error:
3705	dev_info(tx_ring->dev, "TX DMA map failed\n");
3706
3707	/* clear dma mappings for failed tx_bi map */
3708	for (;;) {
3709		tx_bi = &tx_ring->tx_bi[i];
3710		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3711		if (tx_bi == first)
3712			break;
3713		if (i == 0)
3714			i = tx_ring->count;
3715		i--;
3716	}
3717
3718	tx_ring->next_to_use = i;
3719
3720	return -1;
3721}
3722
3723static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3724				  const struct sk_buff *skb,
3725				  u16 num_tx_queues)
3726{
3727	u32 jhash_initval_salt = 0xd631614b;
3728	u32 hash;
3729
3730	if (skb->sk && skb->sk->sk_hash)
3731		hash = skb->sk->sk_hash;
3732	else
3733		hash = (__force u16)skb->protocol ^ skb->hash;
3734
3735	hash = jhash_1word(hash, jhash_initval_salt);
3736
3737	return (u16)(((u64)hash * num_tx_queues) >> 32);
3738}
3739
3740u16 i40e_lan_select_queue(struct net_device *netdev,
3741			  struct sk_buff *skb,
3742			  struct net_device __always_unused *sb_dev)
3743{
3744	struct i40e_netdev_priv *np = netdev_priv(netdev);
3745	struct i40e_vsi *vsi = np->vsi;
3746	struct i40e_hw *hw;
3747	u16 qoffset;
3748	u16 qcount;
3749	u8 tclass;
3750	u16 hash;
3751	u8 prio;
3752
3753	/* is DCB enabled at all? */
3754	if (vsi->tc_config.numtc == 1 ||
3755	    i40e_is_tc_mqprio_enabled(vsi->back))
3756		return netdev_pick_tx(netdev, skb, sb_dev);
3757
3758	prio = skb->priority;
3759	hw = &vsi->back->hw;
3760	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3761	/* sanity check */
3762	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3763		tclass = 0;
3764
3765	/* select a queue assigned for the given TC */
3766	qcount = vsi->tc_config.tc_info[tclass].qcount;
3767	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3768
3769	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3770	return qoffset + hash;
3771}
3772
3773/**
3774 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3775 * @xdpf: data to transmit
3776 * @xdp_ring: XDP Tx ring
3777 **/
3778static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3779			      struct i40e_ring *xdp_ring)
3780{
3781	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3782	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3783	u16 i = 0, index = xdp_ring->next_to_use;
3784	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3785	struct i40e_tx_buffer *tx_bi = tx_head;
3786	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3787	void *data = xdpf->data;
3788	u32 size = xdpf->len;
3789
3790	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3791		xdp_ring->tx_stats.tx_busy++;
3792		return I40E_XDP_CONSUMED;
3793	}
3794
3795	tx_head->bytecount = xdp_get_frame_len(xdpf);
3796	tx_head->gso_segs = 1;
3797	tx_head->xdpf = xdpf;
3798
3799	for (;;) {
3800		dma_addr_t dma;
3801
3802		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3803		if (dma_mapping_error(xdp_ring->dev, dma))
3804			goto unmap;
3805
3806		/* record length, and DMA address */
3807		dma_unmap_len_set(tx_bi, len, size);
3808		dma_unmap_addr_set(tx_bi, dma, dma);
3809
3810		tx_desc->buffer_addr = cpu_to_le64(dma);
3811		tx_desc->cmd_type_offset_bsz =
3812			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3813
3814		if (++index == xdp_ring->count)
3815			index = 0;
3816
3817		if (i == nr_frags)
3818			break;
3819
3820		tx_bi = &xdp_ring->tx_bi[index];
3821		tx_desc = I40E_TX_DESC(xdp_ring, index);
 
 
3822
3823		data = skb_frag_address(&sinfo->frags[i]);
3824		size = skb_frag_size(&sinfo->frags[i]);
3825		i++;
3826	}
3827
3828	tx_desc->cmd_type_offset_bsz |=
3829		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
 
 
 
3830
3831	/* Make certain all of the status bits have been updated
3832	 * before next_to_watch is written.
3833	 */
3834	smp_wmb();
3835
3836	xdp_ring->xdp_tx_active++;
 
 
3837
3838	tx_head->next_to_watch = tx_desc;
3839	xdp_ring->next_to_use = index;
3840
3841	return I40E_XDP_TX;
3842
3843unmap:
3844	for (;;) {
3845		tx_bi = &xdp_ring->tx_bi[index];
3846		if (dma_unmap_len(tx_bi, len))
3847			dma_unmap_page(xdp_ring->dev,
3848				       dma_unmap_addr(tx_bi, dma),
3849				       dma_unmap_len(tx_bi, len),
3850				       DMA_TO_DEVICE);
3851		dma_unmap_len_set(tx_bi, len, 0);
3852		if (tx_bi == tx_head)
3853			break;
3854
3855		if (!index)
3856			index += xdp_ring->count;
3857		index--;
3858	}
3859
3860	return I40E_XDP_CONSUMED;
3861}
3862
3863/**
3864 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3865 * @skb:     send buffer
3866 * @tx_ring: ring to send buffer on
3867 *
3868 * Returns NETDEV_TX_OK if sent, else an error code
3869 **/
3870static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3871					struct i40e_ring *tx_ring)
3872{
3873	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3874	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3875	struct i40e_tx_buffer *first;
3876	u32 td_offset = 0;
3877	u32 tx_flags = 0;
 
3878	u32 td_cmd = 0;
3879	u8 hdr_len = 0;
3880	int tso, count;
3881	int tsyn;
3882
3883	/* prefetch the data, we'll need it later */
3884	prefetch(skb->data);
3885
3886	i40e_trace(xmit_frame_ring, skb, tx_ring);
3887
3888	count = i40e_xmit_descriptor_count(skb);
3889	if (i40e_chk_linearize(skb, count)) {
3890		if (__skb_linearize(skb)) {
3891			dev_kfree_skb_any(skb);
3892			return NETDEV_TX_OK;
3893		}
3894		count = i40e_txd_use_count(skb->len);
3895		tx_ring->tx_stats.tx_linearize++;
3896	}
3897
3898	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3899	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3900	 *       + 4 desc gap to avoid the cache line where head is,
3901	 *       + 1 desc for context descriptor,
3902	 * otherwise try next time
3903	 */
3904	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3905		tx_ring->tx_stats.tx_busy++;
3906		return NETDEV_TX_BUSY;
3907	}
3908
3909	/* record the location of the first descriptor for this packet */
3910	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3911	first->skb = skb;
3912	first->bytecount = skb->len;
3913	first->gso_segs = 1;
3914
3915	/* prepare the xmit flags */
3916	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3917		goto out_drop;
3918
 
 
 
 
 
 
 
 
 
3919	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3920
3921	if (tso < 0)
3922		goto out_drop;
3923	else if (tso)
3924		tx_flags |= I40E_TX_FLAGS_TSO;
3925
3926	/* Always offload the checksum, since it's in the data descriptor */
3927	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3928				  tx_ring, &cd_tunneling);
3929	if (tso < 0)
3930		goto out_drop;
3931
3932	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3933
3934	if (tsyn)
3935		tx_flags |= I40E_TX_FLAGS_TSYN;
3936
 
 
3937	/* always enable CRC insertion offload */
3938	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3939
3940	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3941			   cd_tunneling, cd_l2tag2);
3942
3943	/* Add Flow Director ATR if it's enabled.
3944	 *
3945	 * NOTE: this must always be directly before the data descriptor.
3946	 */
3947	i40e_atr(tx_ring, skb, tx_flags);
3948
3949	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3950			td_cmd, td_offset))
3951		goto cleanup_tx_tstamp;
3952
3953	return NETDEV_TX_OK;
3954
3955out_drop:
3956	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3957	dev_kfree_skb_any(first->skb);
3958	first->skb = NULL;
3959cleanup_tx_tstamp:
3960	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3961		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3962
3963		dev_kfree_skb_any(pf->ptp_tx_skb);
3964		pf->ptp_tx_skb = NULL;
3965		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3966	}
3967
3968	return NETDEV_TX_OK;
3969}
3970
3971/**
3972 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3973 * @skb:    send buffer
3974 * @netdev: network interface device structure
3975 *
3976 * Returns NETDEV_TX_OK if sent, else an error code
3977 **/
3978netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3979{
3980	struct i40e_netdev_priv *np = netdev_priv(netdev);
3981	struct i40e_vsi *vsi = np->vsi;
3982	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3983
3984	/* hardware can't handle really short frames, hardware padding works
3985	 * beyond this point
3986	 */
3987	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3988		return NETDEV_TX_OK;
3989
3990	return i40e_xmit_frame_ring(skb, tx_ring);
3991}
3992
3993/**
3994 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3995 * @dev: netdev
3996 * @n: number of frames
3997 * @frames: array of XDP buffer pointers
3998 * @flags: XDP extra info
3999 *
4000 * Returns number of frames successfully sent. Failed frames
4001 * will be free'ed by XDP core.
4002 *
4003 * For error cases, a negative errno code is returned and no-frames
4004 * are transmitted (caller must handle freeing frames).
4005 **/
4006int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4007		  u32 flags)
4008{
4009	struct i40e_netdev_priv *np = netdev_priv(dev);
4010	unsigned int queue_index = smp_processor_id();
4011	struct i40e_vsi *vsi = np->vsi;
4012	struct i40e_pf *pf = vsi->back;
4013	struct i40e_ring *xdp_ring;
4014	int nxmit = 0;
4015	int i;
4016
4017	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4018		return -ENETDOWN;
4019
4020	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4021	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4022		return -ENXIO;
4023
4024	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4025		return -EINVAL;
 
4026
4027	xdp_ring = vsi->xdp_rings[queue_index];
 
4028
4029	for (i = 0; i < n; i++) {
4030		struct xdp_frame *xdpf = frames[i];
4031		int err;
 
 
 
 
 
 
4032
4033		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4034		if (err != I40E_XDP_TX)
4035			break;
4036		nxmit++;
4037	}
4038
4039	if (unlikely(flags & XDP_XMIT_FLUSH))
4040		i40e_xdp_ring_update_tail(xdp_ring);
4041
4042	return nxmit;
4043}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*******************************************************************************
   3 *
   4 * Intel Ethernet Controller XL710 Family Linux Driver
   5 * Copyright(c) 2013 - 2016 Intel Corporation.
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along
  17 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  18 *
  19 * The full GNU General Public License is included in this distribution in
  20 * the file called "COPYING".
  21 *
  22 * Contact Information:
  23 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25 *
  26 ******************************************************************************/
  27
 
 
  28#include <linux/prefetch.h>
  29#include <net/busy_poll.h>
  30#include <linux/bpf_trace.h>
  31#include <net/xdp.h>
  32#include "i40e.h"
  33#include "i40e_trace.h"
  34#include "i40e_prototype.h"
  35
  36static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  37				u32 td_tag)
  38{
  39	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  40			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  41			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  42			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  43			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  44}
  45
  46#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  47/**
  48 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  49 * @tx_ring: Tx ring to send buffer on
  50 * @fdata: Flow director filter data
  51 * @add: Indicate if we are adding a rule or deleting one
  52 *
  53 **/
  54static void i40e_fdir(struct i40e_ring *tx_ring,
  55		      struct i40e_fdir_filter *fdata, bool add)
  56{
  57	struct i40e_filter_program_desc *fdir_desc;
  58	struct i40e_pf *pf = tx_ring->vsi->back;
  59	u32 flex_ptype, dtype_cmd;
  60	u16 i;
  61
  62	/* grab the next descriptor */
  63	i = tx_ring->next_to_use;
  64	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  65
  66	i++;
  67	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  68
  69	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  70		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  71
  72	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  73		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  74
  75	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  76		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  77
  78	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  79		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  80
  81	/* Use LAN VSI Id if not programmed by user */
  82	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  83		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  84		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  85
  86	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  87
  88	dtype_cmd |= add ?
  89		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  90		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  91		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  92		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  93
  94	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  95		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  96
  97	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  98		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  99
 100	if (fdata->cnt_index) {
 101		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
 102		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
 103			     ((u32)fdata->cnt_index <<
 104			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
 105	}
 106
 107	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
 108	fdir_desc->rsvd = cpu_to_le32(0);
 109	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
 110	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
 111}
 112
 113#define I40E_FD_CLEAN_DELAY 10
 114/**
 115 * i40e_program_fdir_filter - Program a Flow Director filter
 116 * @fdir_data: Packet data that will be filter parameters
 117 * @raw_packet: the pre-allocated packet buffer for FDir
 118 * @pf: The PF pointer
 119 * @add: True for add/update, False for remove
 120 **/
 121static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
 122				    u8 *raw_packet, struct i40e_pf *pf,
 123				    bool add)
 124{
 125	struct i40e_tx_buffer *tx_buf, *first;
 126	struct i40e_tx_desc *tx_desc;
 127	struct i40e_ring *tx_ring;
 128	struct i40e_vsi *vsi;
 129	struct device *dev;
 130	dma_addr_t dma;
 131	u32 td_cmd = 0;
 132	u16 i;
 133
 134	/* find existing FDIR VSI */
 135	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 136	if (!vsi)
 137		return -ENOENT;
 138
 139	tx_ring = vsi->tx_rings[0];
 140	dev = tx_ring->dev;
 141
 142	/* we need two descriptors to add/del a filter and we can wait */
 143	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 144		if (!i)
 145			return -EAGAIN;
 146		msleep_interruptible(1);
 147	}
 148
 149	dma = dma_map_single(dev, raw_packet,
 150			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 151	if (dma_mapping_error(dev, dma))
 152		goto dma_fail;
 153
 154	/* grab the next descriptor */
 155	i = tx_ring->next_to_use;
 156	first = &tx_ring->tx_bi[i];
 157	i40e_fdir(tx_ring, fdir_data, add);
 158
 159	/* Now program a dummy descriptor */
 160	i = tx_ring->next_to_use;
 161	tx_desc = I40E_TX_DESC(tx_ring, i);
 162	tx_buf = &tx_ring->tx_bi[i];
 163
 164	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 165
 166	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 167
 168	/* record length, and DMA address */
 169	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 170	dma_unmap_addr_set(tx_buf, dma, dma);
 171
 172	tx_desc->buffer_addr = cpu_to_le64(dma);
 173	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 174
 175	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 176	tx_buf->raw_buf = (void *)raw_packet;
 177
 178	tx_desc->cmd_type_offset_bsz =
 179		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 180
 181	/* Force memory writes to complete before letting h/w
 182	 * know there are new descriptors to fetch.
 183	 */
 184	wmb();
 185
 186	/* Mark the data descriptor to be watched */
 187	first->next_to_watch = tx_desc;
 188
 189	writel(tx_ring->next_to_use, tx_ring->tail);
 190	return 0;
 191
 192dma_fail:
 193	return -1;
 194}
 195
 196#define IP_HEADER_OFFSET 14
 197#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 198/**
 199 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 200 * @vsi: pointer to the targeted VSI
 201 * @fd_data: the flow director data required for the FDir descriptor
 202 * @add: true adds a filter, false removes it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203 *
 204 * Returns 0 if the filters were successfully added or removed
 205 **/
 206static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 207				   struct i40e_fdir_filter *fd_data,
 208				   bool add)
 209{
 210	struct i40e_pf *pf = vsi->back;
 211	struct udphdr *udp;
 212	struct iphdr *ip;
 213	u8 *raw_packet;
 214	int ret;
 215	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 216		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 217		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218
 219	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 220	if (!raw_packet)
 221		return -ENOMEM;
 222	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 223
 224	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 225	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 226	      + sizeof(struct iphdr));
 227
 228	ip->daddr = fd_data->dst_ip;
 229	udp->dest = fd_data->dst_port;
 230	ip->saddr = fd_data->src_ip;
 231	udp->source = fd_data->src_port;
 
 
 
 
 
 
 
 
 
 
 232
 233	if (fd_data->flex_filter) {
 234		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
 235		__be16 pattern = fd_data->flex_word;
 236		u16 off = fd_data->flex_offset;
 237
 
 
 
 
 
 
 238		*((__force __be16 *)(payload + off)) = pattern;
 239	}
 240
 241	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 242	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 243	if (ret) {
 244		dev_info(&pf->pdev->dev,
 245			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 246			 fd_data->pctype, fd_data->fd_id, ret);
 247		/* Free the packet buffer since it wasn't added to the ring */
 248		kfree(raw_packet);
 249		return -EOPNOTSUPP;
 250	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 251		if (add)
 252			dev_info(&pf->pdev->dev,
 253				 "Filter OK for PCTYPE %d loc = %d\n",
 254				 fd_data->pctype, fd_data->fd_id);
 255		else
 256			dev_info(&pf->pdev->dev,
 257				 "Filter deleted for PCTYPE %d loc = %d\n",
 258				 fd_data->pctype, fd_data->fd_id);
 259	}
 260
 261	if (add)
 262		pf->fd_udp4_filter_cnt++;
 263	else
 264		pf->fd_udp4_filter_cnt--;
 265
 266	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267}
 268
 269#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 
 270/**
 271 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 272 * @vsi: pointer to the targeted VSI
 273 * @fd_data: the flow director data required for the FDir descriptor
 274 * @add: true adds a filter, false removes it
 
 275 *
 276 * Returns 0 if the filters were successfully added or removed
 277 **/
 278static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 279				   struct i40e_fdir_filter *fd_data,
 280				   bool add)
 
 281{
 282	struct i40e_pf *pf = vsi->back;
 283	struct tcphdr *tcp;
 284	struct iphdr *ip;
 285	u8 *raw_packet;
 286	int ret;
 287	/* Dummy packet */
 288	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 289		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 290		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 291		0x0, 0x72, 0, 0, 0, 0};
 292
 293	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 294	if (!raw_packet)
 295		return -ENOMEM;
 296	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 297
 298	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 299	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 300	      + sizeof(struct iphdr));
 301
 302	ip->daddr = fd_data->dst_ip;
 303	tcp->dest = fd_data->dst_port;
 304	ip->saddr = fd_data->src_ip;
 305	tcp->source = fd_data->src_port;
 306
 307	if (fd_data->flex_filter) {
 308		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
 309		__be16 pattern = fd_data->flex_word;
 310		u16 off = fd_data->flex_offset;
 
 
 
 
 
 
 311
 312		*((__force __be16 *)(payload + off)) = pattern;
 
 
 313	}
 314
 315	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 316	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317	if (ret) {
 318		dev_info(&pf->pdev->dev,
 319			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 320			 fd_data->pctype, fd_data->fd_id, ret);
 321		/* Free the packet buffer since it wasn't added to the ring */
 322		kfree(raw_packet);
 323		return -EOPNOTSUPP;
 324	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 325		if (add)
 326			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 327				 fd_data->pctype, fd_data->fd_id);
 328		else
 329			dev_info(&pf->pdev->dev,
 330				 "Filter deleted for PCTYPE %d loc = %d\n",
 331				 fd_data->pctype, fd_data->fd_id);
 332	}
 333
 
 
 
 334	if (add) {
 335		pf->fd_tcp4_filter_cnt++;
 336		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 337		    I40E_DEBUG_FD & pf->hw.debug_mask)
 338			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 339		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 340	} else {
 341		pf->fd_tcp4_filter_cnt--;
 342	}
 343
 344	return 0;
 345}
 346
 347#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
 
 348/**
 349 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 350 * a specific flow spec
 351 * @vsi: pointer to the targeted VSI
 352 * @fd_data: the flow director data required for the FDir descriptor
 353 * @add: true adds a filter, false removes it
 
 354 *
 355 * Returns 0 if the filters were successfully added or removed
 356 **/
 357static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 358				    struct i40e_fdir_filter *fd_data,
 359				    bool add)
 
 360{
 361	struct i40e_pf *pf = vsi->back;
 362	struct sctphdr *sctp;
 363	struct iphdr *ip;
 364	u8 *raw_packet;
 365	int ret;
 366	/* Dummy packet */
 367	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 368		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
 369		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 370
 371	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 372	if (!raw_packet)
 373		return -ENOMEM;
 374	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
 375
 376	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 377	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
 378	      + sizeof(struct iphdr));
 379
 380	ip->daddr = fd_data->dst_ip;
 381	sctp->dest = fd_data->dst_port;
 382	ip->saddr = fd_data->src_ip;
 383	sctp->source = fd_data->src_port;
 384
 385	if (fd_data->flex_filter) {
 386		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
 387		__be16 pattern = fd_data->flex_word;
 388		u16 off = fd_data->flex_offset;
 389
 390		*((__force __be16 *)(payload + off)) = pattern;
 391	}
 
 
 
 392
 393	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
 394	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 395	if (ret) {
 396		dev_info(&pf->pdev->dev,
 397			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 398			 fd_data->pctype, fd_data->fd_id, ret);
 399		/* Free the packet buffer since it wasn't added to the ring */
 400		kfree(raw_packet);
 401		return -EOPNOTSUPP;
 402	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 403		if (add)
 404			dev_info(&pf->pdev->dev,
 405				 "Filter OK for PCTYPE %d loc = %d\n",
 406				 fd_data->pctype, fd_data->fd_id);
 407		else
 408			dev_info(&pf->pdev->dev,
 409				 "Filter deleted for PCTYPE %d loc = %d\n",
 410				 fd_data->pctype, fd_data->fd_id);
 411	}
 412
 413	if (add)
 414		pf->fd_sctp4_filter_cnt++;
 415	else
 416		pf->fd_sctp4_filter_cnt--;
 417
 418	return 0;
 419}
 420
 421#define I40E_IP_DUMMY_PACKET_LEN 34
 
 422/**
 423 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 424 * a specific flow spec
 425 * @vsi: pointer to the targeted VSI
 426 * @fd_data: the flow director data required for the FDir descriptor
 427 * @add: true adds a filter, false removes it
 
 428 *
 429 * Returns 0 if the filters were successfully added or removed
 430 **/
 431static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 432				  struct i40e_fdir_filter *fd_data,
 433				  bool add)
 
 434{
 435	struct i40e_pf *pf = vsi->back;
 436	struct iphdr *ip;
 437	u8 *raw_packet;
 
 
 438	int ret;
 439	int i;
 440	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 441		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 442		0, 0, 0, 0};
 443
 444	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 445	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 
 
 
 
 
 
 
 446		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 447		if (!raw_packet)
 448			return -ENOMEM;
 449		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 450		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 451
 452		ip->saddr = fd_data->src_ip;
 453		ip->daddr = fd_data->dst_ip;
 454		ip->protocol = 0;
 455
 456		if (fd_data->flex_filter) {
 457			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
 458			__be16 pattern = fd_data->flex_word;
 459			u16 off = fd_data->flex_offset;
 460
 461			*((__force __be16 *)(payload + off)) = pattern;
 462		}
 463
 464		fd_data->pctype = i;
 465		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 466		if (ret) {
 467			dev_info(&pf->pdev->dev,
 468				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 469				 fd_data->pctype, fd_data->fd_id, ret);
 470			/* The packet buffer wasn't added to the ring so we
 471			 * need to free it now.
 472			 */
 473			kfree(raw_packet);
 474			return -EOPNOTSUPP;
 475		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 476			if (add)
 477				dev_info(&pf->pdev->dev,
 478					 "Filter OK for PCTYPE %d loc = %d\n",
 479					 fd_data->pctype, fd_data->fd_id);
 480			else
 481				dev_info(&pf->pdev->dev,
 482					 "Filter deleted for PCTYPE %d loc = %d\n",
 483					 fd_data->pctype, fd_data->fd_id);
 484		}
 485	}
 486
 487	if (add)
 488		pf->fd_ip4_filter_cnt++;
 489	else
 490		pf->fd_ip4_filter_cnt--;
 491
 492	return 0;
 
 
 
 493}
 494
 495/**
 496 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 497 * @vsi: pointer to the targeted VSI
 498 * @cmd: command to get or set RX flow classification rules
 499 * @add: true adds a filter, false removes it
 500 *
 501 **/
 502int i40e_add_del_fdir(struct i40e_vsi *vsi,
 503		      struct i40e_fdir_filter *input, bool add)
 504{
 
 505	struct i40e_pf *pf = vsi->back;
 506	int ret;
 507
 508	switch (input->flow_type & ~FLOW_EXT) {
 509	case TCP_V4_FLOW:
 510		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 511		break;
 512	case UDP_V4_FLOW:
 513		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 514		break;
 515	case SCTP_V4_FLOW:
 516		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 
 
 
 
 
 
 
 
 
 517		break;
 518	case IP_USER_FLOW:
 519		switch (input->ip4_proto) {
 520		case IPPROTO_TCP:
 521			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 522			break;
 523		case IPPROTO_UDP:
 524			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 525			break;
 526		case IPPROTO_SCTP:
 527			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 528			break;
 529		case IPPROTO_IP:
 530			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 531			break;
 532		default:
 533			/* We cannot support masking based on protocol */
 534			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 535				 input->ip4_proto);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 536			return -EINVAL;
 537		}
 538		break;
 539	default:
 540		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 541			 input->flow_type);
 542		return -EINVAL;
 543	}
 544
 545	/* The buffer allocated here will be normally be freed by
 546	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 547	 * completion. In the event of an error adding the buffer to the FDIR
 548	 * ring, it will immediately be freed. It may also be freed by
 549	 * i40e_clean_tx_ring() when closing the VSI.
 550	 */
 551	return ret;
 552}
 553
 554/**
 555 * i40e_fd_handle_status - check the Programming Status for FD
 556 * @rx_ring: the Rx ring for this descriptor
 557 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 
 558 * @prog_id: the id originally used for programming
 559 *
 560 * This is used to verify if the FD programming or invalidation
 561 * requested by SW to the HW is successful or not and take actions accordingly.
 562 **/
 563static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 564				  union i40e_rx_desc *rx_desc, u8 prog_id)
 565{
 566	struct i40e_pf *pf = rx_ring->vsi->back;
 567	struct pci_dev *pdev = pf->pdev;
 
 568	u32 fcnt_prog, fcnt_avail;
 569	u32 error;
 570	u64 qw;
 571
 572	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 573	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 574		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 575
 576	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 577		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 578		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 579		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 580			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 581				 pf->fd_inv);
 582
 583		/* Check if the programming error is for ATR.
 584		 * If so, auto disable ATR and set a state for
 585		 * flush in progress. Next time we come here if flush is in
 586		 * progress do nothing, once flush is complete the state will
 587		 * be cleared.
 588		 */
 589		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 590			return;
 591
 592		pf->fd_add_err++;
 593		/* store the current atr filter count */
 594		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 595
 596		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 597		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 598			/* These set_bit() calls aren't atomic with the
 599			 * test_bit() here, but worse case we potentially
 600			 * disable ATR and queue a flush right after SB
 601			 * support is re-enabled. That shouldn't cause an
 602			 * issue in practice
 603			 */
 604			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 605			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 606		}
 607
 608		/* filter programming failed most likely due to table full */
 609		fcnt_prog = i40e_get_global_fd_count(pf);
 610		fcnt_avail = pf->fdir_pf_filter_count;
 611		/* If ATR is running fcnt_prog can quickly change,
 612		 * if we are very close to full, it makes sense to disable
 613		 * FD ATR/SB and then re-enable it when there is room.
 614		 */
 615		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 616			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 617			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 618					      pf->state))
 619				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 620					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 621		}
 622	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 623		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 624			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 625				 rx_desc->wb.qword0.hi_dword.fd_id);
 626	}
 627}
 628
 629/**
 630 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 631 * @ring:      the ring that owns the buffer
 632 * @tx_buffer: the buffer to free
 633 **/
 634static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 635					    struct i40e_tx_buffer *tx_buffer)
 636{
 637	if (tx_buffer->skb) {
 638		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 639			kfree(tx_buffer->raw_buf);
 640		else if (ring_is_xdp(ring))
 641			page_frag_free(tx_buffer->raw_buf);
 642		else
 643			dev_kfree_skb_any(tx_buffer->skb);
 644		if (dma_unmap_len(tx_buffer, len))
 645			dma_unmap_single(ring->dev,
 646					 dma_unmap_addr(tx_buffer, dma),
 647					 dma_unmap_len(tx_buffer, len),
 648					 DMA_TO_DEVICE);
 649	} else if (dma_unmap_len(tx_buffer, len)) {
 650		dma_unmap_page(ring->dev,
 651			       dma_unmap_addr(tx_buffer, dma),
 652			       dma_unmap_len(tx_buffer, len),
 653			       DMA_TO_DEVICE);
 654	}
 655
 656	tx_buffer->next_to_watch = NULL;
 657	tx_buffer->skb = NULL;
 658	dma_unmap_len_set(tx_buffer, len, 0);
 659	/* tx_buffer must be completely set up in the transmit path */
 660}
 661
 662/**
 663 * i40e_clean_tx_ring - Free any empty Tx buffers
 664 * @tx_ring: ring to be cleaned
 665 **/
 666void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 667{
 668	unsigned long bi_size;
 669	u16 i;
 670
 671	/* ring already cleared, nothing to do */
 672	if (!tx_ring->tx_bi)
 673		return;
 
 
 
 674
 675	/* Free all the Tx ring sk_buffs */
 676	for (i = 0; i < tx_ring->count; i++)
 677		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
 
 
 678
 679	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 680	memset(tx_ring->tx_bi, 0, bi_size);
 681
 682	/* Zero out the descriptor ring */
 683	memset(tx_ring->desc, 0, tx_ring->size);
 684
 685	tx_ring->next_to_use = 0;
 686	tx_ring->next_to_clean = 0;
 687
 688	if (!tx_ring->netdev)
 689		return;
 690
 691	/* cleanup Tx queue statistics */
 692	netdev_tx_reset_queue(txring_txq(tx_ring));
 693}
 694
 695/**
 696 * i40e_free_tx_resources - Free Tx resources per queue
 697 * @tx_ring: Tx descriptor ring for a specific queue
 698 *
 699 * Free all transmit software resources
 700 **/
 701void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 702{
 703	i40e_clean_tx_ring(tx_ring);
 704	kfree(tx_ring->tx_bi);
 705	tx_ring->tx_bi = NULL;
 706
 707	if (tx_ring->desc) {
 708		dma_free_coherent(tx_ring->dev, tx_ring->size,
 709				  tx_ring->desc, tx_ring->dma);
 710		tx_ring->desc = NULL;
 711	}
 712}
 713
 714/**
 715 * i40e_get_tx_pending - how many tx descriptors not processed
 716 * @tx_ring: the ring of descriptors
 717 * @in_sw: use SW variables
 718 *
 719 * Since there is no access to the ring head register
 720 * in XL710, we need to use our local copies
 721 **/
 722u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 723{
 724	u32 head, tail;
 725
 726	if (!in_sw) {
 727		head = i40e_get_head(ring);
 728		tail = readl(ring->tail);
 729	} else {
 730		head = ring->next_to_clean;
 731		tail = ring->next_to_use;
 732	}
 733
 734	if (head != tail)
 735		return (head < tail) ?
 736			tail - head : (tail + ring->count - head);
 737
 738	return 0;
 739}
 740
 741/**
 742 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 743 * @vsi:  pointer to vsi struct with tx queues
 744 *
 745 * VSI has netdev and netdev has TX queues. This function is to check each of
 746 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 
 747 **/
 748void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 749{
 
 750	struct i40e_ring *tx_ring = NULL;
 751	struct net_device *netdev;
 752	unsigned int i;
 753	int packets;
 754
 755	if (!vsi)
 756		return;
 757
 758	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 759		return;
 760
 761	netdev = vsi->netdev;
 762	if (!netdev)
 763		return;
 764
 765	if (!netif_carrier_ok(netdev))
 766		return;
 767
 768	for (i = 0; i < vsi->num_queue_pairs; i++) {
 769		tx_ring = vsi->tx_rings[i];
 770		if (tx_ring && tx_ring->desc) {
 771			/* If packet counter has not changed the queue is
 772			 * likely stalled, so force an interrupt for this
 773			 * queue.
 774			 *
 775			 * prev_pkt_ctr would be negative if there was no
 776			 * pending work.
 777			 */
 778			packets = tx_ring->stats.packets & INT_MAX;
 779			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 780				i40e_force_wb(vsi, tx_ring->q_vector);
 781				continue;
 782			}
 783
 784			/* Memory barrier between read of packet count and call
 785			 * to i40e_get_tx_pending()
 786			 */
 787			smp_rmb();
 788			tx_ring->tx_stats.prev_pkt_ctr =
 789			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 790		}
 791	}
 792}
 793
 794#define WB_STRIDE 4
 795
 796/**
 797 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 798 * @vsi: the VSI we care about
 799 * @tx_ring: Tx ring to clean
 800 * @napi_budget: Used to determine if we are in netpoll
 
 801 *
 802 * Returns true if there's any budget left (e.g. the clean is finished)
 803 **/
 804static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 805			      struct i40e_ring *tx_ring, int napi_budget)
 
 806{
 807	u16 i = tx_ring->next_to_clean;
 808	struct i40e_tx_buffer *tx_buf;
 809	struct i40e_tx_desc *tx_head;
 810	struct i40e_tx_desc *tx_desc;
 811	unsigned int total_bytes = 0, total_packets = 0;
 812	unsigned int budget = vsi->work_limit;
 813
 814	tx_buf = &tx_ring->tx_bi[i];
 815	tx_desc = I40E_TX_DESC(tx_ring, i);
 816	i -= tx_ring->count;
 817
 818	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 819
 820	do {
 821		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 822
 823		/* if next_to_watch is not set then there is no work pending */
 824		if (!eop_desc)
 825			break;
 826
 827		/* prevent any other reads prior to eop_desc */
 828		smp_rmb();
 829
 830		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 831		/* we have caught up to head, no work left to do */
 832		if (tx_head == tx_desc)
 833			break;
 834
 835		/* clear next_to_watch to prevent false hangs */
 836		tx_buf->next_to_watch = NULL;
 837
 838		/* update the statistics for this packet */
 839		total_bytes += tx_buf->bytecount;
 840		total_packets += tx_buf->gso_segs;
 841
 842		/* free the skb/XDP data */
 843		if (ring_is_xdp(tx_ring))
 844			page_frag_free(tx_buf->raw_buf);
 845		else
 846			napi_consume_skb(tx_buf->skb, napi_budget);
 847
 848		/* unmap skb header data */
 849		dma_unmap_single(tx_ring->dev,
 850				 dma_unmap_addr(tx_buf, dma),
 851				 dma_unmap_len(tx_buf, len),
 852				 DMA_TO_DEVICE);
 853
 854		/* clear tx_buffer data */
 855		tx_buf->skb = NULL;
 856		dma_unmap_len_set(tx_buf, len, 0);
 857
 858		/* unmap remaining buffers */
 859		while (tx_desc != eop_desc) {
 860			i40e_trace(clean_tx_irq_unmap,
 861				   tx_ring, tx_desc, tx_buf);
 862
 863			tx_buf++;
 864			tx_desc++;
 865			i++;
 866			if (unlikely(!i)) {
 867				i -= tx_ring->count;
 868				tx_buf = tx_ring->tx_bi;
 869				tx_desc = I40E_TX_DESC(tx_ring, 0);
 870			}
 871
 872			/* unmap any remaining paged data */
 873			if (dma_unmap_len(tx_buf, len)) {
 874				dma_unmap_page(tx_ring->dev,
 875					       dma_unmap_addr(tx_buf, dma),
 876					       dma_unmap_len(tx_buf, len),
 877					       DMA_TO_DEVICE);
 878				dma_unmap_len_set(tx_buf, len, 0);
 879			}
 880		}
 881
 882		/* move us one more past the eop_desc for start of next pkt */
 883		tx_buf++;
 884		tx_desc++;
 885		i++;
 886		if (unlikely(!i)) {
 887			i -= tx_ring->count;
 888			tx_buf = tx_ring->tx_bi;
 889			tx_desc = I40E_TX_DESC(tx_ring, 0);
 890		}
 891
 892		prefetch(tx_desc);
 893
 894		/* update budget accounting */
 895		budget--;
 896	} while (likely(budget));
 897
 898	i += tx_ring->count;
 899	tx_ring->next_to_clean = i;
 900	u64_stats_update_begin(&tx_ring->syncp);
 901	tx_ring->stats.bytes += total_bytes;
 902	tx_ring->stats.packets += total_packets;
 903	u64_stats_update_end(&tx_ring->syncp);
 904	tx_ring->q_vector->tx.total_bytes += total_bytes;
 905	tx_ring->q_vector->tx.total_packets += total_packets;
 906
 907	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
 908		/* check to see if there are < 4 descriptors
 909		 * waiting to be written back, then kick the hardware to force
 910		 * them to be written back in case we stay in NAPI.
 911		 * In this mode on X722 we do not enable Interrupt.
 912		 */
 913		unsigned int j = i40e_get_tx_pending(tx_ring, false);
 914
 915		if (budget &&
 916		    ((j / WB_STRIDE) == 0) && (j > 0) &&
 917		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
 918		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
 919			tx_ring->arm_wb = true;
 920	}
 921
 922	if (ring_is_xdp(tx_ring))
 923		return !!budget;
 924
 925	/* notify netdev of completed buffers */
 926	netdev_tx_completed_queue(txring_txq(tx_ring),
 927				  total_packets, total_bytes);
 928
 929#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 930	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 931		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 932		/* Make sure that anybody stopping the queue after this
 933		 * sees the new next_to_clean.
 934		 */
 935		smp_mb();
 936		if (__netif_subqueue_stopped(tx_ring->netdev,
 937					     tx_ring->queue_index) &&
 938		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
 939			netif_wake_subqueue(tx_ring->netdev,
 940					    tx_ring->queue_index);
 941			++tx_ring->tx_stats.restart_queue;
 942		}
 943	}
 944
 
 945	return !!budget;
 946}
 947
 948/**
 949 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 950 * @vsi: the VSI we care about
 951 * @q_vector: the vector on which to enable writeback
 952 *
 953 **/
 954static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 955				  struct i40e_q_vector *q_vector)
 956{
 957	u16 flags = q_vector->tx.ring[0].flags;
 958	u32 val;
 959
 960	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 961		return;
 962
 963	if (q_vector->arm_wb_state)
 964		return;
 965
 966	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 967		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 968		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 969
 970		wr32(&vsi->back->hw,
 971		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
 972		     val);
 973	} else {
 974		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 975		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 976
 977		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 978	}
 979	q_vector->arm_wb_state = true;
 980}
 981
 982/**
 983 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 984 * @vsi: the VSI we care about
 985 * @q_vector: the vector  on which to force writeback
 986 *
 987 **/
 988void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 989{
 990	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 991		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 992			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 993			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 994			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 995			  /* allow 00 to be written to the index */
 996
 997		wr32(&vsi->back->hw,
 998		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
 999	} else {
1000		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1001			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1002			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1003			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1004			/* allow 00 to be written to the index */
1005
1006		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1007	}
1008}
1009
1010static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1011					struct i40e_ring_container *rc)
1012{
1013	return &q_vector->rx == rc;
1014}
1015
1016static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1017{
1018	unsigned int divisor;
1019
1020	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1021	case I40E_LINK_SPEED_40GB:
1022		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1023		break;
1024	case I40E_LINK_SPEED_25GB:
1025	case I40E_LINK_SPEED_20GB:
1026		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1027		break;
1028	default:
1029	case I40E_LINK_SPEED_10GB:
1030		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1031		break;
1032	case I40E_LINK_SPEED_1GB:
1033	case I40E_LINK_SPEED_100MB:
1034		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1035		break;
1036	}
1037
1038	return divisor;
1039}
1040
1041/**
1042 * i40e_update_itr - update the dynamic ITR value based on statistics
1043 * @q_vector: structure containing interrupt and ring information
1044 * @rc: structure containing ring performance data
1045 *
1046 * Stores a new ITR value based on packets and byte
1047 * counts during the last interrupt.  The advantage of per interrupt
1048 * computation is faster updates and more accurate ITR for the current
1049 * traffic pattern.  Constants in this function were computed
1050 * based on theoretical maximum wire speed and thresholds were set based
1051 * on testing data as well as attempting to minimize response time
1052 * while increasing bulk throughput.
1053 **/
1054static void i40e_update_itr(struct i40e_q_vector *q_vector,
1055			    struct i40e_ring_container *rc)
1056{
1057	unsigned int avg_wire_size, packets, bytes, itr;
1058	unsigned long next_update = jiffies;
1059
1060	/* If we don't have any rings just leave ourselves set for maximum
1061	 * possible latency so we take ourselves out of the equation.
1062	 */
1063	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1064		return;
1065
1066	/* For Rx we want to push the delay up and default to low latency.
1067	 * for Tx we want to pull the delay down and default to high latency.
1068	 */
1069	itr = i40e_container_is_rx(q_vector, rc) ?
1070	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1071	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1072
1073	/* If we didn't update within up to 1 - 2 jiffies we can assume
1074	 * that either packets are coming in so slow there hasn't been
1075	 * any work, or that there is so much work that NAPI is dealing
1076	 * with interrupt moderation and we don't need to do anything.
1077	 */
1078	if (time_after(next_update, rc->next_update))
1079		goto clear_counts;
1080
1081	/* If itr_countdown is set it means we programmed an ITR within
1082	 * the last 4 interrupt cycles. This has a side effect of us
1083	 * potentially firing an early interrupt. In order to work around
1084	 * this we need to throw out any data received for a few
1085	 * interrupts following the update.
1086	 */
1087	if (q_vector->itr_countdown) {
1088		itr = rc->target_itr;
1089		goto clear_counts;
1090	}
1091
1092	packets = rc->total_packets;
1093	bytes = rc->total_bytes;
1094
1095	if (i40e_container_is_rx(q_vector, rc)) {
1096		/* If Rx there are 1 to 4 packets and bytes are less than
1097		 * 9000 assume insufficient data to use bulk rate limiting
1098		 * approach unless Tx is already in bulk rate limiting. We
1099		 * are likely latency driven.
1100		 */
1101		if (packets && packets < 4 && bytes < 9000 &&
1102		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1103			itr = I40E_ITR_ADAPTIVE_LATENCY;
1104			goto adjust_by_size;
1105		}
1106	} else if (packets < 4) {
1107		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1108		 * bulk mode and we are receiving 4 or fewer packets just
1109		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1110		 * that the Rx can relax.
1111		 */
1112		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1113		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1114		     I40E_ITR_ADAPTIVE_MAX_USECS)
1115			goto clear_counts;
1116	} else if (packets > 32) {
1117		/* If we have processed over 32 packets in a single interrupt
1118		 * for Tx assume we need to switch over to "bulk" mode.
1119		 */
1120		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1121	}
1122
1123	/* We have no packets to actually measure against. This means
1124	 * either one of the other queues on this vector is active or
1125	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1126	 *
1127	 * Between 4 and 56 we can assume that our current interrupt delay
1128	 * is only slightly too low. As such we should increase it by a small
1129	 * fixed amount.
1130	 */
1131	if (packets < 56) {
1132		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1133		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1134			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1135			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1136		}
1137		goto clear_counts;
1138	}
1139
1140	if (packets <= 256) {
1141		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1142		itr &= I40E_ITR_MASK;
1143
1144		/* Between 56 and 112 is our "goldilocks" zone where we are
1145		 * working out "just right". Just report that our current
1146		 * ITR is good for us.
1147		 */
1148		if (packets <= 112)
1149			goto clear_counts;
1150
1151		/* If packet count is 128 or greater we are likely looking
1152		 * at a slight overrun of the delay we want. Try halving
1153		 * our delay to see if that will cut the number of packets
1154		 * in half per interrupt.
1155		 */
1156		itr /= 2;
1157		itr &= I40E_ITR_MASK;
1158		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1159			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1160
1161		goto clear_counts;
1162	}
1163
1164	/* The paths below assume we are dealing with a bulk ITR since
1165	 * number of packets is greater than 256. We are just going to have
1166	 * to compute a value and try to bring the count under control,
1167	 * though for smaller packet sizes there isn't much we can do as
1168	 * NAPI polling will likely be kicking in sooner rather than later.
1169	 */
1170	itr = I40E_ITR_ADAPTIVE_BULK;
1171
1172adjust_by_size:
1173	/* If packet counts are 256 or greater we can assume we have a gross
1174	 * overestimation of what the rate should be. Instead of trying to fine
1175	 * tune it just use the formula below to try and dial in an exact value
1176	 * give the current packet size of the frame.
1177	 */
1178	avg_wire_size = bytes / packets;
1179
1180	/* The following is a crude approximation of:
1181	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1182	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1183	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1184	 *
1185	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1186	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1187	 * formula down to
1188	 *
1189	 *  (170 * (size + 24)) / (size + 640) = ITR
1190	 *
1191	 * We first do some math on the packet size and then finally bitshift
1192	 * by 8 after rounding up. We also have to account for PCIe link speed
1193	 * difference as ITR scales based on this.
1194	 */
1195	if (avg_wire_size <= 60) {
1196		/* Start at 250k ints/sec */
1197		avg_wire_size = 4096;
1198	} else if (avg_wire_size <= 380) {
1199		/* 250K ints/sec to 60K ints/sec */
1200		avg_wire_size *= 40;
1201		avg_wire_size += 1696;
1202	} else if (avg_wire_size <= 1084) {
1203		/* 60K ints/sec to 36K ints/sec */
1204		avg_wire_size *= 15;
1205		avg_wire_size += 11452;
1206	} else if (avg_wire_size <= 1980) {
1207		/* 36K ints/sec to 30K ints/sec */
1208		avg_wire_size *= 5;
1209		avg_wire_size += 22420;
1210	} else {
1211		/* plateau at a limit of 30K ints/sec */
1212		avg_wire_size = 32256;
1213	}
1214
1215	/* If we are in low latency mode halve our delay which doubles the
1216	 * rate to somewhere between 100K to 16K ints/sec
1217	 */
1218	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1219		avg_wire_size /= 2;
1220
1221	/* Resultant value is 256 times larger than it needs to be. This
1222	 * gives us room to adjust the value as needed to either increase
1223	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1224	 *
1225	 * Use addition as we have already recorded the new latency flag
1226	 * for the ITR value.
1227	 */
1228	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1229	       I40E_ITR_ADAPTIVE_MIN_INC;
1230
1231	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1232		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1233		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1234	}
1235
1236clear_counts:
1237	/* write back value */
1238	rc->target_itr = itr;
1239
1240	/* next update should occur within next jiffy */
1241	rc->next_update = next_update + 1;
1242
1243	rc->total_bytes = 0;
1244	rc->total_packets = 0;
1245}
1246
 
 
 
 
 
1247/**
1248 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1249 * @rx_ring: rx descriptor ring to store buffers on
1250 * @old_buff: donor buffer to have page reused
1251 *
1252 * Synchronizes page for reuse by the adapter
1253 **/
1254static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1255			       struct i40e_rx_buffer *old_buff)
1256{
1257	struct i40e_rx_buffer *new_buff;
1258	u16 nta = rx_ring->next_to_alloc;
1259
1260	new_buff = &rx_ring->rx_bi[nta];
1261
1262	/* update, and store next to alloc */
1263	nta++;
1264	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1265
1266	/* transfer page from old buffer to new buffer */
1267	new_buff->dma		= old_buff->dma;
1268	new_buff->page		= old_buff->page;
1269	new_buff->page_offset	= old_buff->page_offset;
1270	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1271}
1272
1273/**
1274 * i40e_rx_is_programming_status - check for programming status descriptor
1275 * @qw: qword representing status_error_len in CPU ordering
1276 *
1277 * The value of in the descriptor length field indicate if this
1278 * is a programming status descriptor for flow director or FCoE
1279 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1280 * it is a packet descriptor.
1281 **/
1282static inline bool i40e_rx_is_programming_status(u64 qw)
1283{
1284	/* The Rx filter programming status and SPH bit occupy the same
1285	 * spot in the descriptor. Since we don't support packet split we
1286	 * can just reuse the bit as an indication that this is a
1287	 * programming status descriptor.
1288	 */
1289	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1290}
1291
1292/**
1293 * i40e_clean_programming_status - clean the programming status descriptor
1294 * @rx_ring: the rx ring that has this descriptor
1295 * @rx_desc: the rx descriptor written back by HW
1296 * @qw: qword representing status_error_len in CPU ordering
1297 *
1298 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1299 * status being successful or not and take actions accordingly. FCoE should
1300 * handle its context/filter programming/invalidation status and take actions.
1301 *
 
1302 **/
1303static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1304					  union i40e_rx_desc *rx_desc,
1305					  u64 qw)
1306{
1307	struct i40e_rx_buffer *rx_buffer;
1308	u32 ntc = rx_ring->next_to_clean;
1309	u8 id;
1310
1311	/* fetch, update, and store next to clean */
1312	rx_buffer = &rx_ring->rx_bi[ntc++];
1313	ntc = (ntc < rx_ring->count) ? ntc : 0;
1314	rx_ring->next_to_clean = ntc;
1315
1316	prefetch(I40E_RX_DESC(rx_ring, ntc));
1317
1318	/* place unused page back on the ring */
1319	i40e_reuse_rx_page(rx_ring, rx_buffer);
1320	rx_ring->rx_stats.page_reuse_count++;
1321
1322	/* clear contents of buffer_info */
1323	rx_buffer->page = NULL;
1324
1325	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1326		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1327
1328	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1329		i40e_fd_handle_status(rx_ring, rx_desc, id);
1330}
1331
1332/**
1333 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1334 * @tx_ring: the tx ring to set up
1335 *
1336 * Return 0 on success, negative on error
1337 **/
1338int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1339{
1340	struct device *dev = tx_ring->dev;
1341	int bi_size;
1342
1343	if (!dev)
1344		return -ENOMEM;
1345
1346	/* warn if we are about to overwrite the pointer */
1347	WARN_ON(tx_ring->tx_bi);
1348	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1349	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1350	if (!tx_ring->tx_bi)
1351		goto err;
1352
1353	u64_stats_init(&tx_ring->syncp);
1354
1355	/* round up to nearest 4K */
1356	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1357	/* add u32 for head writeback, align after this takes care of
1358	 * guaranteeing this is at least one cache line in size
1359	 */
1360	tx_ring->size += sizeof(u32);
1361	tx_ring->size = ALIGN(tx_ring->size, 4096);
1362	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1363					   &tx_ring->dma, GFP_KERNEL);
1364	if (!tx_ring->desc) {
1365		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1366			 tx_ring->size);
1367		goto err;
1368	}
1369
1370	tx_ring->next_to_use = 0;
1371	tx_ring->next_to_clean = 0;
1372	tx_ring->tx_stats.prev_pkt_ctr = -1;
1373	return 0;
1374
1375err:
1376	kfree(tx_ring->tx_bi);
1377	tx_ring->tx_bi = NULL;
1378	return -ENOMEM;
1379}
1380
 
 
 
 
 
1381/**
1382 * i40e_clean_rx_ring - Free Rx buffers
1383 * @rx_ring: ring to be cleaned
1384 **/
1385void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1386{
1387	unsigned long bi_size;
1388	u16 i;
1389
1390	/* ring already cleared, nothing to do */
1391	if (!rx_ring->rx_bi)
1392		return;
1393
1394	if (rx_ring->skb) {
1395		dev_kfree_skb(rx_ring->skb);
1396		rx_ring->skb = NULL;
1397	}
1398
1399	/* Free all the Rx ring sk_buffs */
1400	for (i = 0; i < rx_ring->count; i++) {
1401		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1402
1403		if (!rx_bi->page)
1404			continue;
1405
1406		/* Invalidate cache lines that may have been written to by
1407		 * device so that we avoid corrupting memory.
1408		 */
1409		dma_sync_single_range_for_cpu(rx_ring->dev,
1410					      rx_bi->dma,
1411					      rx_bi->page_offset,
1412					      rx_ring->rx_buf_len,
1413					      DMA_FROM_DEVICE);
1414
1415		/* free resources associated with mapping */
1416		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1417				     i40e_rx_pg_size(rx_ring),
1418				     DMA_FROM_DEVICE,
1419				     I40E_RX_DMA_ATTR);
1420
1421		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1422
1423		rx_bi->page = NULL;
1424		rx_bi->page_offset = 0;
1425	}
1426
1427	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1428	memset(rx_ring->rx_bi, 0, bi_size);
 
 
 
1429
1430	/* Zero out the descriptor ring */
1431	memset(rx_ring->desc, 0, rx_ring->size);
1432
1433	rx_ring->next_to_alloc = 0;
1434	rx_ring->next_to_clean = 0;
 
1435	rx_ring->next_to_use = 0;
1436}
1437
1438/**
1439 * i40e_free_rx_resources - Free Rx resources
1440 * @rx_ring: ring to clean the resources from
1441 *
1442 * Free all receive software resources
1443 **/
1444void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1445{
1446	i40e_clean_rx_ring(rx_ring);
1447	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1448		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1449	rx_ring->xdp_prog = NULL;
1450	kfree(rx_ring->rx_bi);
1451	rx_ring->rx_bi = NULL;
1452
1453	if (rx_ring->desc) {
1454		dma_free_coherent(rx_ring->dev, rx_ring->size,
1455				  rx_ring->desc, rx_ring->dma);
1456		rx_ring->desc = NULL;
1457	}
1458}
1459
1460/**
1461 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1462 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1463 *
1464 * Returns 0 on success, negative on failure
1465 **/
1466int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1467{
1468	struct device *dev = rx_ring->dev;
1469	int err = -ENOMEM;
1470	int bi_size;
1471
1472	/* warn if we are about to overwrite the pointer */
1473	WARN_ON(rx_ring->rx_bi);
1474	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1475	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1476	if (!rx_ring->rx_bi)
1477		goto err;
1478
1479	u64_stats_init(&rx_ring->syncp);
1480
1481	/* Round up to nearest 4K */
1482	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1483	rx_ring->size = ALIGN(rx_ring->size, 4096);
1484	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1485					   &rx_ring->dma, GFP_KERNEL);
1486
1487	if (!rx_ring->desc) {
1488		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1489			 rx_ring->size);
1490		goto err;
1491	}
1492
1493	rx_ring->next_to_alloc = 0;
1494	rx_ring->next_to_clean = 0;
 
1495	rx_ring->next_to_use = 0;
1496
1497	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1498	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1499		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1500				       rx_ring->queue_index);
1501		if (err < 0)
1502			goto err;
1503	}
1504
1505	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
 
 
 
1506
1507	return 0;
1508err:
1509	kfree(rx_ring->rx_bi);
1510	rx_ring->rx_bi = NULL;
1511	return err;
1512}
1513
1514/**
1515 * i40e_release_rx_desc - Store the new tail and head values
1516 * @rx_ring: ring to bump
1517 * @val: new head index
1518 **/
1519static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1520{
1521	rx_ring->next_to_use = val;
1522
1523	/* update next to alloc since we have filled the ring */
1524	rx_ring->next_to_alloc = val;
1525
1526	/* Force memory writes to complete before letting h/w
1527	 * know there are new descriptors to fetch.  (Only
1528	 * applicable for weak-ordered memory model archs,
1529	 * such as IA-64).
1530	 */
1531	wmb();
1532	writel(val, rx_ring->tail);
1533}
1534
1535/**
1536 * i40e_rx_offset - Return expected offset into page to access data
1537 * @rx_ring: Ring we are requesting offset of
1538 *
1539 * Returns the offset value for ring into the data buffer.
1540 */
1541static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1542{
1543	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
 
 
1544}
 
1545
1546/**
1547 * i40e_alloc_mapped_page - recycle or make a new page
1548 * @rx_ring: ring to use
1549 * @bi: rx_buffer struct to modify
1550 *
1551 * Returns true if the page was successfully allocated or
1552 * reused.
1553 **/
1554static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1555				   struct i40e_rx_buffer *bi)
1556{
1557	struct page *page = bi->page;
1558	dma_addr_t dma;
1559
1560	/* since we are recycling buffers we should seldom need to alloc */
1561	if (likely(page)) {
1562		rx_ring->rx_stats.page_reuse_count++;
1563		return true;
1564	}
1565
1566	/* alloc new page for storage */
1567	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1568	if (unlikely(!page)) {
1569		rx_ring->rx_stats.alloc_page_failed++;
1570		return false;
1571	}
1572
 
 
1573	/* map page for use */
1574	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1575				 i40e_rx_pg_size(rx_ring),
1576				 DMA_FROM_DEVICE,
1577				 I40E_RX_DMA_ATTR);
1578
1579	/* if mapping failed free memory back to system since
1580	 * there isn't much point in holding memory we can't use
1581	 */
1582	if (dma_mapping_error(rx_ring->dev, dma)) {
1583		__free_pages(page, i40e_rx_pg_order(rx_ring));
1584		rx_ring->rx_stats.alloc_page_failed++;
1585		return false;
1586	}
1587
1588	bi->dma = dma;
1589	bi->page = page;
1590	bi->page_offset = i40e_rx_offset(rx_ring);
1591	page_ref_add(page, USHRT_MAX - 1);
1592	bi->pagecnt_bias = USHRT_MAX;
1593
1594	return true;
1595}
1596
1597/**
1598 * i40e_receive_skb - Send a completed packet up the stack
1599 * @rx_ring:  rx ring in play
1600 * @skb: packet to send up
1601 * @vlan_tag: vlan tag for packet
1602 **/
1603static void i40e_receive_skb(struct i40e_ring *rx_ring,
1604			     struct sk_buff *skb, u16 vlan_tag)
1605{
1606	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1607
1608	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1609	    (vlan_tag & VLAN_VID_MASK))
1610		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1611
1612	napi_gro_receive(&q_vector->napi, skb);
1613}
1614
1615/**
1616 * i40e_alloc_rx_buffers - Replace used receive buffers
1617 * @rx_ring: ring to place buffers on
1618 * @cleaned_count: number of buffers to replace
1619 *
1620 * Returns false if all allocations were successful, true if any fail
1621 **/
1622bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1623{
1624	u16 ntu = rx_ring->next_to_use;
1625	union i40e_rx_desc *rx_desc;
1626	struct i40e_rx_buffer *bi;
1627
1628	/* do nothing if no valid netdev defined */
1629	if (!rx_ring->netdev || !cleaned_count)
1630		return false;
1631
1632	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1633	bi = &rx_ring->rx_bi[ntu];
1634
1635	do {
1636		if (!i40e_alloc_mapped_page(rx_ring, bi))
1637			goto no_buffers;
1638
1639		/* sync the buffer for use by the device */
1640		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1641						 bi->page_offset,
1642						 rx_ring->rx_buf_len,
1643						 DMA_FROM_DEVICE);
1644
1645		/* Refresh the desc even if buffer_addrs didn't change
1646		 * because each write-back erases this info.
1647		 */
1648		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1649
1650		rx_desc++;
1651		bi++;
1652		ntu++;
1653		if (unlikely(ntu == rx_ring->count)) {
1654			rx_desc = I40E_RX_DESC(rx_ring, 0);
1655			bi = rx_ring->rx_bi;
1656			ntu = 0;
1657		}
1658
1659		/* clear the status bits for the next_to_use descriptor */
1660		rx_desc->wb.qword1.status_error_len = 0;
1661
1662		cleaned_count--;
1663	} while (cleaned_count);
1664
1665	if (rx_ring->next_to_use != ntu)
1666		i40e_release_rx_desc(rx_ring, ntu);
1667
1668	return false;
1669
1670no_buffers:
1671	if (rx_ring->next_to_use != ntu)
1672		i40e_release_rx_desc(rx_ring, ntu);
1673
1674	/* make sure to come back via polling to try again after
1675	 * allocation failure
1676	 */
1677	return true;
1678}
1679
1680/**
1681 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1682 * @vsi: the VSI we care about
1683 * @skb: skb currently being received and modified
1684 * @rx_desc: the receive descriptor
1685 **/
1686static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1687				    struct sk_buff *skb,
1688				    union i40e_rx_desc *rx_desc)
1689{
1690	struct i40e_rx_ptype_decoded decoded;
1691	u32 rx_error, rx_status;
1692	bool ipv4, ipv6;
1693	u8 ptype;
1694	u64 qword;
1695
1696	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1697	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1698	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1699		   I40E_RXD_QW1_ERROR_SHIFT;
1700	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1701		    I40E_RXD_QW1_STATUS_SHIFT;
1702	decoded = decode_rx_desc_ptype(ptype);
1703
1704	skb->ip_summed = CHECKSUM_NONE;
1705
1706	skb_checksum_none_assert(skb);
 
1707
1708	/* Rx csum enabled and ip headers found? */
1709	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1710		return;
1711
 
 
 
1712	/* did the hardware decode the packet and checksum? */
1713	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1714		return;
1715
1716	/* both known and outer_ip must be set for the below code to work */
1717	if (!(decoded.known && decoded.outer_ip))
1718		return;
1719
1720	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1721	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1722	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1723	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1724
1725	if (ipv4 &&
1726	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1727			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1728		goto checksum_fail;
1729
1730	/* likely incorrect csum if alternate IP extension headers found */
1731	if (ipv6 &&
1732	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1733		/* don't increment checksum err here, non-fatal err */
1734		return;
1735
1736	/* there was some L4 error, count error and punt packet to the stack */
1737	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1738		goto checksum_fail;
1739
1740	/* handle packets that were not able to be checksummed due
1741	 * to arrival speed, in this case the stack can compute
1742	 * the csum.
1743	 */
1744	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1745		return;
1746
1747	/* If there is an outer header present that might contain a checksum
1748	 * we need to bump the checksum level by 1 to reflect the fact that
1749	 * we are indicating we validated the inner checksum.
1750	 */
1751	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1752		skb->csum_level = 1;
1753
1754	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1755	switch (decoded.inner_prot) {
1756	case I40E_RX_PTYPE_INNER_PROT_TCP:
1757	case I40E_RX_PTYPE_INNER_PROT_UDP:
1758	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1759		skb->ip_summed = CHECKSUM_UNNECESSARY;
1760		/* fall though */
1761	default:
1762		break;
1763	}
1764
1765	return;
1766
1767checksum_fail:
1768	vsi->back->hw_csum_rx_error++;
1769}
1770
1771/**
1772 * i40e_ptype_to_htype - get a hash type
1773 * @ptype: the ptype value from the descriptor
1774 *
1775 * Returns a hash type to be used by skb_set_hash
1776 **/
1777static inline int i40e_ptype_to_htype(u8 ptype)
1778{
1779	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1780
1781	if (!decoded.known)
1782		return PKT_HASH_TYPE_NONE;
1783
1784	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1785	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1786		return PKT_HASH_TYPE_L4;
1787	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1788		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1789		return PKT_HASH_TYPE_L3;
1790	else
1791		return PKT_HASH_TYPE_L2;
1792}
1793
1794/**
1795 * i40e_rx_hash - set the hash value in the skb
1796 * @ring: descriptor ring
1797 * @rx_desc: specific descriptor
 
 
1798 **/
1799static inline void i40e_rx_hash(struct i40e_ring *ring,
1800				union i40e_rx_desc *rx_desc,
1801				struct sk_buff *skb,
1802				u8 rx_ptype)
1803{
 
1804	u32 hash;
1805	const __le64 rss_mask =
1806		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1807			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1808
1809	if (!(ring->netdev->features & NETIF_F_RXHASH))
 
1810		return;
1811
1812	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1813		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1814		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1815	}
1816}
1817
1818/**
1819 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1820 * @rx_ring: rx descriptor ring packet is being transacted on
1821 * @rx_desc: pointer to the EOP Rx descriptor
1822 * @skb: pointer to current skb being populated
1823 * @rx_ptype: the packet type decoded by hardware
1824 *
1825 * This function checks the ring, descriptor, and packet information in
1826 * order to populate the hash, checksum, VLAN, protocol, and
1827 * other fields within the skb.
1828 **/
1829static inline
1830void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1831			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1832			     u8 rx_ptype)
1833{
1834	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1835	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1836			I40E_RXD_QW1_STATUS_SHIFT;
1837	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1838	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1839		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1840
1841	if (unlikely(tsynvalid))
1842		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1843
1844	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1845
1846	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1847
1848	skb_record_rx_queue(skb, rx_ring->queue_index);
1849
 
 
 
 
 
 
 
1850	/* modifies the skb - consumes the enet header */
1851	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1852}
1853
1854/**
1855 * i40e_cleanup_headers - Correct empty headers
1856 * @rx_ring: rx descriptor ring packet is being transacted on
1857 * @skb: pointer to current skb being fixed
1858 * @rx_desc: pointer to the EOP Rx descriptor
1859 *
1860 * Also address the case where we are pulling data in on pages only
1861 * and as such no data is present in the skb header.
1862 *
1863 * In addition if skb is not at least 60 bytes we need to pad it so that
1864 * it is large enough to qualify as a valid Ethernet frame.
1865 *
1866 * Returns true if an error was encountered and skb was freed.
1867 **/
1868static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1869				 union i40e_rx_desc *rx_desc)
1870
1871{
1872	/* XDP packets use error pointer so abort at this point */
1873	if (IS_ERR(skb))
1874		return true;
1875
1876	/* ERR_MASK will only have valid bits if EOP set, and
1877	 * what we are doing here is actually checking
1878	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1879	 * the error field
1880	 */
1881	if (unlikely(i40e_test_staterr(rx_desc,
1882				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1883		dev_kfree_skb_any(skb);
1884		return true;
1885	}
1886
1887	/* if eth_skb_pad returns an error the skb was freed */
1888	if (eth_skb_pad(skb))
1889		return true;
1890
1891	return false;
1892}
1893
1894/**
1895 * i40e_page_is_reusable - check if any reuse is possible
1896 * @page: page struct to check
1897 *
1898 * A page is not reusable if it was allocated under low memory
1899 * conditions, or it's not in the same NUMA node as this CPU.
1900 */
1901static inline bool i40e_page_is_reusable(struct page *page)
1902{
1903	return (page_to_nid(page) == numa_mem_id()) &&
1904		!page_is_pfmemalloc(page);
1905}
1906
1907/**
1908 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1909 * the adapter for another receive
1910 *
1911 * @rx_buffer: buffer containing the page
 
1912 *
1913 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1914 * an unused region in the page.
 
 
1915 *
1916 * For small pages, @truesize will be a constant value, half the size
1917 * of the memory at page.  We'll attempt to alternate between high and
1918 * low halves of the page, with one half ready for use by the hardware
1919 * and the other half being consumed by the stack.  We use the page
1920 * ref count to determine whether the stack has finished consuming the
1921 * portion of this page that was passed up with a previous packet.  If
1922 * the page ref count is >1, we'll assume the "other" half page is
1923 * still busy, and this page cannot be reused.
1924 *
1925 * For larger pages, @truesize will be the actual space used by the
1926 * received packet (adjusted upward to an even multiple of the cache
1927 * line size).  This will advance through the page by the amount
1928 * actually consumed by the received packets while there is still
1929 * space for a buffer.  Each region of larger pages will be used at
1930 * most once, after which the page will not be reused.
1931 *
1932 * In either case, if the page is reusable its refcount is increased.
1933 **/
1934static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1935{
1936	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1937	struct page *page = rx_buffer->page;
1938
1939	/* Is any reuse possible? */
1940	if (unlikely(!i40e_page_is_reusable(page)))
 
1941		return false;
 
1942
1943#if (PAGE_SIZE < 8192)
1944	/* if we are only owner of page we can reuse it */
1945	if (unlikely((page_count(page) - pagecnt_bias) > 1))
 
1946		return false;
 
1947#else
1948#define I40E_LAST_OFFSET \
1949	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1950	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
 
1951		return false;
 
1952#endif
1953
1954	/* If we have drained the page fragment pool we need to update
1955	 * the pagecnt_bias and page count so that we fully restock the
1956	 * number of references the driver holds.
1957	 */
1958	if (unlikely(pagecnt_bias == 1)) {
1959		page_ref_add(page, USHRT_MAX - 1);
1960		rx_buffer->pagecnt_bias = USHRT_MAX;
1961	}
1962
1963	return true;
1964}
1965
1966/**
1967 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1968 * @rx_ring: rx descriptor ring to transact packets on
1969 * @rx_buffer: buffer containing page to add
1970 * @skb: sk_buff to place the data into
1971 * @size: packet length from rx_desc
1972 *
1973 * This function will add the data contained in rx_buffer->page to the skb.
1974 * It will just attach the page as a frag to the skb.
1975 *
1976 * The function will then update the page offset.
1977 **/
1978static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1979			     struct i40e_rx_buffer *rx_buffer,
1980			     struct sk_buff *skb,
1981			     unsigned int size)
1982{
1983#if (PAGE_SIZE < 8192)
1984	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1985#else
1986	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1987#endif
1988
1989	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1990			rx_buffer->page_offset, size, truesize);
1991
1992	/* page is being used so we must update the page offset */
1993#if (PAGE_SIZE < 8192)
1994	rx_buffer->page_offset ^= truesize;
1995#else
1996	rx_buffer->page_offset += truesize;
1997#endif
1998}
1999
2000/**
2001 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2002 * @rx_ring: rx descriptor ring to transact packets on
2003 * @size: size of buffer to add to skb
2004 *
2005 * This function will pull an Rx buffer from the ring and synchronize it
2006 * for use by the CPU.
2007 */
2008static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2009						 const unsigned int size)
2010{
2011	struct i40e_rx_buffer *rx_buffer;
2012
2013	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
2014	prefetchw(rx_buffer->page);
 
 
 
 
 
 
2015
2016	/* we are reusing so sync this buffer for CPU use */
2017	dma_sync_single_range_for_cpu(rx_ring->dev,
2018				      rx_buffer->dma,
2019				      rx_buffer->page_offset,
2020				      size,
2021				      DMA_FROM_DEVICE);
2022
2023	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2024	rx_buffer->pagecnt_bias--;
2025
2026	return rx_buffer;
2027}
2028
2029/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2030 * i40e_construct_skb - Allocate skb and populate it
2031 * @rx_ring: rx descriptor ring to transact packets on
2032 * @rx_buffer: rx buffer to pull data from
2033 * @xdp: xdp_buff pointing to the data
2034 *
2035 * This function allocates an skb.  It then populates it with the page
2036 * data from the current receive descriptor, taking care to set up the
2037 * skb correctly.
2038 */
2039static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2040					  struct i40e_rx_buffer *rx_buffer,
2041					  struct xdp_buff *xdp)
2042{
2043	unsigned int size = xdp->data_end - xdp->data;
2044#if (PAGE_SIZE < 8192)
2045	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2046#else
2047	unsigned int truesize = SKB_DATA_ALIGN(size);
2048#endif
2049	unsigned int headlen;
2050	struct sk_buff *skb;
 
2051
2052	/* prefetch first cache line of first page */
2053	prefetch(xdp->data);
2054#if L1_CACHE_BYTES < 128
2055	prefetch(xdp->data + L1_CACHE_BYTES);
2056#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
2057
2058	/* allocate a skb to store the frags */
2059	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2060			       I40E_RX_HDR_SIZE,
2061			       GFP_ATOMIC | __GFP_NOWARN);
2062	if (unlikely(!skb))
2063		return NULL;
2064
2065	/* Determine available headroom for copy */
2066	headlen = size;
2067	if (headlen > I40E_RX_HDR_SIZE)
2068		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
 
2069
2070	/* align pull length to size of long to optimize memcpy performance */
2071	memcpy(__skb_put(skb, headlen), xdp->data,
2072	       ALIGN(headlen, sizeof(long)));
2073
 
 
 
 
 
2074	/* update all of the pointers */
2075	size -= headlen;
2076	if (size) {
 
 
 
 
2077		skb_add_rx_frag(skb, 0, rx_buffer->page,
2078				rx_buffer->page_offset + headlen,
2079				size, truesize);
2080
2081		/* buffer is used by skb, update page_offset */
2082#if (PAGE_SIZE < 8192)
2083		rx_buffer->page_offset ^= truesize;
2084#else
2085		rx_buffer->page_offset += truesize;
2086#endif
2087	} else {
2088		/* buffer is unused, reset bias back to rx_buffer */
2089		rx_buffer->pagecnt_bias++;
2090	}
2091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2092	return skb;
2093}
2094
2095/**
2096 * i40e_build_skb - Build skb around an existing buffer
2097 * @rx_ring: Rx descriptor ring to transact packets on
2098 * @rx_buffer: Rx buffer to pull data from
2099 * @xdp: xdp_buff pointing to the data
2100 *
2101 * This function builds an skb around an existing Rx buffer, taking care
2102 * to set up the skb correctly and avoid any memcpy overhead.
2103 */
2104static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2105				      struct i40e_rx_buffer *rx_buffer,
2106				      struct xdp_buff *xdp)
2107{
2108	unsigned int size = xdp->data_end - xdp->data;
2109#if (PAGE_SIZE < 8192)
2110	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2111#else
2112	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2113				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
2114#endif
2115	struct sk_buff *skb;
 
 
 
 
 
 
 
 
 
 
 
 
 
2116
2117	/* prefetch first cache line of first page */
2118	prefetch(xdp->data);
2119#if L1_CACHE_BYTES < 128
2120	prefetch(xdp->data + L1_CACHE_BYTES);
2121#endif
2122	/* build an skb around the page buffer */
2123	skb = build_skb(xdp->data_hard_start, truesize);
2124	if (unlikely(!skb))
2125		return NULL;
2126
2127	/* update pointers within the skb to store the data */
2128	skb_reserve(skb, I40E_SKB_PAD);
2129	__skb_put(skb, size);
 
 
 
 
 
 
 
 
2130
2131	/* buffer is used by skb, update page_offset */
2132#if (PAGE_SIZE < 8192)
2133	rx_buffer->page_offset ^= truesize;
2134#else
2135	rx_buffer->page_offset += truesize;
2136#endif
2137
2138	return skb;
2139}
2140
2141/**
2142 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2143 * @rx_ring: rx descriptor ring to transact packets on
2144 * @rx_buffer: rx buffer to pull data from
2145 *
2146 * This function will clean up the contents of the rx_buffer.  It will
2147 * either recycle the buffer or unmap it and free the associated resources.
2148 */
2149static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2150			       struct i40e_rx_buffer *rx_buffer)
2151{
2152	if (i40e_can_reuse_rx_page(rx_buffer)) {
2153		/* hand second half of page back to the ring */
2154		i40e_reuse_rx_page(rx_ring, rx_buffer);
2155		rx_ring->rx_stats.page_reuse_count++;
2156	} else {
2157		/* we are not reusing the buffer so unmap it */
2158		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2159				     i40e_rx_pg_size(rx_ring),
2160				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2161		__page_frag_cache_drain(rx_buffer->page,
2162					rx_buffer->pagecnt_bias);
2163	}
2164
2165	/* clear contents of buffer_info */
2166	rx_buffer->page = NULL;
2167}
2168
2169/**
2170 * i40e_is_non_eop - process handling of non-EOP buffers
2171 * @rx_ring: Rx ring being processed
2172 * @rx_desc: Rx descriptor for current buffer
2173 * @skb: Current socket buffer containing buffer in progress
2174 *
2175 * This function updates next to clean.  If the buffer is an EOP buffer
2176 * this function exits returning false, otherwise it will place the
2177 * sk_buff in the next buffer to be chained and return true indicating
2178 * that this is in fact a non-EOP buffer.
2179 **/
2180static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2181			    union i40e_rx_desc *rx_desc,
2182			    struct sk_buff *skb)
2183{
2184	u32 ntc = rx_ring->next_to_clean + 1;
2185
2186	/* fetch, update, and store next to clean */
2187	ntc = (ntc < rx_ring->count) ? ntc : 0;
2188	rx_ring->next_to_clean = ntc;
2189
2190	prefetch(I40E_RX_DESC(rx_ring, ntc));
2191
2192	/* if we are the last buffer then there is nothing else to do */
2193#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2194	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2195		return false;
2196
2197	rx_ring->rx_stats.non_eop_descs++;
2198
2199	return true;
2200}
2201
2202#define I40E_XDP_PASS 0
2203#define I40E_XDP_CONSUMED 1
2204#define I40E_XDP_TX 2
 
 
 
 
 
 
2205
2206static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
2207			      struct i40e_ring *xdp_ring);
2208
2209/**
2210 * i40e_run_xdp - run an XDP program
2211 * @rx_ring: Rx ring being processed
2212 * @xdp: XDP buffer containing the frame
 
2213 **/
2214static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2215				    struct xdp_buff *xdp)
2216{
2217	int err, result = I40E_XDP_PASS;
2218	struct i40e_ring *xdp_ring;
2219	struct bpf_prog *xdp_prog;
2220	u32 act;
2221
2222	rcu_read_lock();
2223	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2224
2225	if (!xdp_prog)
2226		goto xdp_out;
2227
 
 
2228	act = bpf_prog_run_xdp(xdp_prog, xdp);
2229	switch (act) {
2230	case XDP_PASS:
2231		break;
2232	case XDP_TX:
2233		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2234		result = i40e_xmit_xdp_ring(xdp, xdp_ring);
 
 
2235		break;
2236	case XDP_REDIRECT:
2237		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2238		result = !err ? I40E_XDP_TX : I40E_XDP_CONSUMED;
 
 
2239		break;
2240	default:
2241		bpf_warn_invalid_xdp_action(act);
 
2242	case XDP_ABORTED:
 
2243		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2244		/* fallthrough -- handle aborts by dropping packet */
2245	case XDP_DROP:
2246		result = I40E_XDP_CONSUMED;
2247		break;
2248	}
2249xdp_out:
2250	rcu_read_unlock();
2251	return ERR_PTR(-result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2252}
2253
2254/**
2255 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2256 * @rx_ring: Rx ring
2257 * @rx_buffer: Rx buffer to adjust
2258 * @size: Size of adjustment
 
 
 
2259 **/
2260static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2261				struct i40e_rx_buffer *rx_buffer,
2262				unsigned int size)
2263{
2264#if (PAGE_SIZE < 8192)
2265	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2266
2267	rx_buffer->page_offset ^= truesize;
2268#else
2269	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2270
2271	rx_buffer->page_offset += truesize;
2272#endif
2273}
2274
2275static inline void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
 
 
 
 
2276{
2277	/* Force memory writes to complete before letting h/w
2278	 * know there are new descriptors to fetch.
2279	 */
2280	wmb();
2281	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2282}
2283
2284/**
2285 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2286 * @rx_ring: rx descriptor ring to transact packets on
2287 * @budget: Total limit on number of packets to process
 
2288 *
2289 * This function provides a "bounce buffer" approach to Rx interrupt
2290 * processing.  The advantage to this is that on systems that have
2291 * expensive overhead for IOMMU access this provides a means of avoiding
2292 * it by maintaining the mapping of the page to the system.
2293 *
2294 * Returns amount of work completed
2295 **/
2296static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
 
2297{
2298	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2299	struct sk_buff *skb = rx_ring->skb;
2300	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2301	bool failure = false, xdp_xmit = false;
2302	struct xdp_buff xdp;
 
 
 
 
 
2303
2304	xdp.rxq = &rx_ring->xdp_rxq;
2305
2306	while (likely(total_rx_packets < (unsigned int)budget)) {
 
2307		struct i40e_rx_buffer *rx_buffer;
2308		union i40e_rx_desc *rx_desc;
 
2309		unsigned int size;
2310		u16 vlan_tag;
2311		u8 rx_ptype;
2312		u64 qword;
2313
2314		/* return some buffers to hardware, one at a time is too slow */
2315		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2316			failure = failure ||
2317				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2318			cleaned_count = 0;
2319		}
2320
2321		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2322
2323		/* status_error_len will always be zero for unused descriptors
2324		 * because it's cleared in cleanup, and overlaps with hdr_addr
2325		 * which is always zero because packet split isn't used, if the
2326		 * hardware wrote DD then the length will be non-zero
2327		 */
2328		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2329
2330		/* This memory barrier is needed to keep us from reading
2331		 * any other fields out of the rx_desc until we have
2332		 * verified the descriptor has been written back.
2333		 */
2334		dma_rmb();
2335
2336		if (unlikely(i40e_rx_is_programming_status(qword))) {
2337			i40e_clean_programming_status(rx_ring, rx_desc, qword);
2338			cleaned_count++;
 
 
 
 
 
 
 
 
 
 
 
 
2339			continue;
2340		}
2341		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2342		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2343		if (!size)
2344			break;
2345
2346		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
 
2347		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2348
2349		/* retrieve a buffer from the ring */
2350		if (!skb) {
2351			xdp.data = page_address(rx_buffer->page) +
2352				   rx_buffer->page_offset;
2353			xdp_set_data_meta_invalid(&xdp);
2354			xdp.data_hard_start = xdp.data -
2355					      i40e_rx_offset(rx_ring);
2356			xdp.data_end = xdp.data + size;
2357
2358			skb = i40e_run_xdp(rx_ring, &xdp);
 
 
 
 
 
 
 
 
2359		}
2360
2361		if (IS_ERR(skb)) {
2362			if (PTR_ERR(skb) == -I40E_XDP_TX) {
2363				xdp_xmit = true;
2364				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
 
 
 
 
 
 
 
 
 
2365			} else {
2366				rx_buffer->pagecnt_bias++;
2367			}
2368			total_rx_bytes += size;
2369			total_rx_packets++;
2370		} else if (skb) {
2371			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2372		} else if (ring_uses_build_skb(rx_ring)) {
2373			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2374		} else {
2375			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2376		}
 
 
 
 
 
 
 
 
 
2377
2378		/* exit if we failed to retrieve a buffer */
2379		if (!skb) {
2380			rx_ring->rx_stats.alloc_buff_failed++;
2381			rx_buffer->pagecnt_bias++;
2382			break;
2383		}
2384
2385		i40e_put_rx_buffer(rx_ring, rx_buffer);
2386		cleaned_count++;
2387
2388		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2389			continue;
2390
2391		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2392			skb = NULL;
2393			continue;
2394		}
2395
2396		/* probably a little skewed due to removing CRC */
2397		total_rx_bytes += skb->len;
2398
2399		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2400		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2401			   I40E_RXD_QW1_PTYPE_SHIFT;
2402
2403		/* populate checksum, VLAN, and protocol */
2404		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2405
2406		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2407			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2408
2409		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2410		i40e_receive_skb(rx_ring, skb, vlan_tag);
2411		skb = NULL;
2412
2413		/* update budget accounting */
2414		total_rx_packets++;
 
 
 
 
 
 
2415	}
2416
2417	if (xdp_xmit) {
2418		struct i40e_ring *xdp_ring =
2419			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2420
2421		i40e_xdp_ring_update_tail(xdp_ring);
2422		xdp_do_flush_map();
2423	}
2424
2425	rx_ring->skb = skb;
2426
2427	u64_stats_update_begin(&rx_ring->syncp);
2428	rx_ring->stats.packets += total_rx_packets;
2429	rx_ring->stats.bytes += total_rx_bytes;
2430	u64_stats_update_end(&rx_ring->syncp);
2431	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2432	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2433
2434	/* guarantee a trip back through this routine if there was a failure */
2435	return failure ? budget : (int)total_rx_packets;
2436}
2437
2438static inline u32 i40e_buildreg_itr(const int type, u16 itr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2439{
2440	u32 val;
2441
2442	/* We don't bother with setting the CLEARPBA bit as the data sheet
2443	 * points out doing so is "meaningless since it was already
2444	 * auto-cleared". The auto-clearing happens when the interrupt is
2445	 * asserted.
2446	 *
2447	 * Hardware errata 28 for also indicates that writing to a
2448	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2449	 * an event in the PBA anyway so we need to rely on the automask
2450	 * to hold pending events for us until the interrupt is re-enabled
2451	 *
2452	 * The itr value is reported in microseconds, and the register
2453	 * value is recorded in 2 microsecond units. For this reason we
2454	 * only need to shift by the interval shift - 1 instead of the
2455	 * full value.
2456	 */
2457	itr &= I40E_ITR_MASK;
2458
 
 
 
 
 
2459	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2460	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2461	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
 
 
 
 
 
 
 
 
 
 
2462
2463	return val;
2464}
2465
2466/* a small macro to shorten up some long lines */
2467#define INTREG I40E_PFINT_DYN_CTLN
2468
2469/* The act of updating the ITR will cause it to immediately trigger. In order
2470 * to prevent this from throwing off adaptive update statistics we defer the
2471 * update so that it can only happen so often. So after either Tx or Rx are
2472 * updated we make the adaptive scheme wait until either the ITR completely
2473 * expires via the next_update expiration or we have been through at least
2474 * 3 interrupts.
2475 */
2476#define ITR_COUNTDOWN_START 3
2477
2478/**
2479 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2480 * @vsi: the VSI we care about
2481 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2482 *
2483 **/
2484static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2485					  struct i40e_q_vector *q_vector)
2486{
 
2487	struct i40e_hw *hw = &vsi->back->hw;
2488	u32 intval;
 
2489
2490	/* If we don't have MSIX, then we only need to re-enable icr0 */
2491	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2492		i40e_irq_dynamic_enable_icr0(vsi->back);
2493		return;
2494	}
2495
2496	/* These will do nothing if dynamic updates are not enabled */
2497	i40e_update_itr(q_vector, &q_vector->tx);
2498	i40e_update_itr(q_vector, &q_vector->rx);
2499
2500	/* This block of logic allows us to get away with only updating
2501	 * one ITR value with each interrupt. The idea is to perform a
2502	 * pseudo-lazy update with the following criteria.
2503	 *
2504	 * 1. Rx is given higher priority than Tx if both are in same state
2505	 * 2. If we must reduce an ITR that is given highest priority.
2506	 * 3. We then give priority to increasing ITR based on amount.
2507	 */
2508	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2509		/* Rx ITR needs to be reduced, this is highest priority */
2510		intval = i40e_buildreg_itr(I40E_RX_ITR,
2511					   q_vector->rx.target_itr);
2512		q_vector->rx.current_itr = q_vector->rx.target_itr;
2513		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2514	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2515		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2516		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2517		/* Tx ITR needs to be reduced, this is second priority
2518		 * Tx ITR needs to be increased more than Rx, fourth priority
2519		 */
2520		intval = i40e_buildreg_itr(I40E_TX_ITR,
2521					   q_vector->tx.target_itr);
2522		q_vector->tx.current_itr = q_vector->tx.target_itr;
2523		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2524	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2525		/* Rx ITR needs to be increased, third priority */
2526		intval = i40e_buildreg_itr(I40E_RX_ITR,
2527					   q_vector->rx.target_itr);
2528		q_vector->rx.current_itr = q_vector->rx.target_itr;
2529		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2530	} else {
2531		/* No ITR update, lowest priority */
2532		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2533		if (q_vector->itr_countdown)
2534			q_vector->itr_countdown--;
2535	}
2536
2537	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2538		wr32(hw, INTREG(q_vector->reg_idx), intval);
 
 
 
 
 
 
 
 
 
 
 
 
2539}
2540
2541/**
2542 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2543 * @napi: napi struct with our devices info in it
2544 * @budget: amount of work driver is allowed to do this pass, in packets
2545 *
2546 * This function will clean all queues associated with a q_vector.
2547 *
2548 * Returns the amount of work done
2549 **/
2550int i40e_napi_poll(struct napi_struct *napi, int budget)
2551{
2552	struct i40e_q_vector *q_vector =
2553			       container_of(napi, struct i40e_q_vector, napi);
2554	struct i40e_vsi *vsi = q_vector->vsi;
2555	struct i40e_ring *ring;
 
 
 
 
2556	bool clean_complete = true;
2557	bool arm_wb = false;
2558	int budget_per_ring;
2559	int work_done = 0;
2560
2561	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2562		napi_complete(napi);
2563		return 0;
2564	}
2565
2566	/* Since the actual Tx work is minimal, we can give the Tx a larger
2567	 * budget and be more aggressive about cleaning up the Tx descriptors.
2568	 */
2569	i40e_for_each_ring(ring, q_vector->tx) {
2570		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2571			clean_complete = false;
 
 
 
 
2572			continue;
2573		}
2574		arm_wb |= ring->arm_wb;
2575		ring->arm_wb = false;
2576	}
2577
2578	/* Handle case where we are called by netpoll with a budget of 0 */
2579	if (budget <= 0)
2580		goto tx_only;
2581
2582	/* We attempt to distribute budget to each Rx queue fairly, but don't
2583	 * allow the budget to go below 1 because that would exit polling early.
2584	 */
2585	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
 
 
 
 
 
 
2586
2587	i40e_for_each_ring(ring, q_vector->rx) {
2588		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
 
 
2589
2590		work_done += cleaned;
2591		/* if we clean as many as budgeted, we must not be done */
2592		if (cleaned >= budget_per_ring)
2593			clean_complete = false;
2594	}
2595
 
 
 
 
2596	/* If work not completed, return budget and polling will return */
2597	if (!clean_complete) {
2598		int cpu_id = smp_processor_id();
2599
2600		/* It is possible that the interrupt affinity has changed but,
2601		 * if the cpu is pegged at 100%, polling will never exit while
2602		 * traffic continues and the interrupt will be stuck on this
2603		 * cpu.  We check to make sure affinity is correct before we
2604		 * continue to poll, otherwise we must stop polling so the
2605		 * interrupt can move to the correct cpu.
2606		 */
2607		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2608			/* Tell napi that we are done polling */
2609			napi_complete_done(napi, work_done);
2610
2611			/* Force an interrupt */
2612			i40e_force_wb(vsi, q_vector);
2613
2614			/* Return budget-1 so that polling stops */
2615			return budget - 1;
2616		}
2617tx_only:
2618		if (arm_wb) {
2619			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2620			i40e_enable_wb_on_itr(vsi, q_vector);
2621		}
2622		return budget;
2623	}
2624
2625	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2626		q_vector->arm_wb_state = false;
2627
2628	/* Work is done so exit the polling mode and re-enable the interrupt */
2629	napi_complete_done(napi, work_done);
2630
2631	i40e_update_enable_itr(vsi, q_vector);
 
 
 
2632
2633	return min(work_done, budget - 1);
2634}
2635
2636/**
2637 * i40e_atr - Add a Flow Director ATR filter
2638 * @tx_ring:  ring to add programming descriptor to
2639 * @skb:      send buffer
2640 * @tx_flags: send tx flags
2641 **/
2642static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2643		     u32 tx_flags)
2644{
2645	struct i40e_filter_program_desc *fdir_desc;
2646	struct i40e_pf *pf = tx_ring->vsi->back;
2647	union {
2648		unsigned char *network;
2649		struct iphdr *ipv4;
2650		struct ipv6hdr *ipv6;
2651	} hdr;
2652	struct tcphdr *th;
2653	unsigned int hlen;
2654	u32 flex_ptype, dtype_cmd;
2655	int l4_proto;
2656	u16 i;
2657
2658	/* make sure ATR is enabled */
2659	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2660		return;
2661
2662	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2663		return;
2664
2665	/* if sampling is disabled do nothing */
2666	if (!tx_ring->atr_sample_rate)
2667		return;
2668
2669	/* Currently only IPv4/IPv6 with TCP is supported */
2670	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2671		return;
2672
2673	/* snag network header to get L4 type and address */
2674	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2675		      skb_inner_network_header(skb) : skb_network_header(skb);
2676
2677	/* Note: tx_flags gets modified to reflect inner protocols in
2678	 * tx_enable_csum function if encap is enabled.
2679	 */
2680	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2681		/* access ihl as u8 to avoid unaligned access on ia64 */
2682		hlen = (hdr.network[0] & 0x0F) << 2;
2683		l4_proto = hdr.ipv4->protocol;
2684	} else {
2685		/* find the start of the innermost ipv6 header */
2686		unsigned int inner_hlen = hdr.network - skb->data;
2687		unsigned int h_offset = inner_hlen;
2688
2689		/* this function updates h_offset to the end of the header */
2690		l4_proto =
2691		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2692		/* hlen will contain our best estimate of the tcp header */
2693		hlen = h_offset - inner_hlen;
2694	}
2695
2696	if (l4_proto != IPPROTO_TCP)
2697		return;
2698
2699	th = (struct tcphdr *)(hdr.network + hlen);
2700
2701	/* Due to lack of space, no more new filters can be programmed */
2702	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2703		return;
2704	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2705		/* HW ATR eviction will take care of removing filters on FIN
2706		 * and RST packets.
2707		 */
2708		if (th->fin || th->rst)
2709			return;
2710	}
2711
2712	tx_ring->atr_count++;
2713
2714	/* sample on all syn/fin/rst packets or once every atr sample rate */
2715	if (!th->fin &&
2716	    !th->syn &&
2717	    !th->rst &&
2718	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2719		return;
2720
2721	tx_ring->atr_count = 0;
2722
2723	/* grab the next descriptor */
2724	i = tx_ring->next_to_use;
2725	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2726
2727	i++;
2728	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2729
2730	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2731		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2732	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2733		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2734		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2735		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2736		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2737
2738	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2739
2740	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2741
2742	dtype_cmd |= (th->fin || th->rst) ?
2743		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2744		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2745		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2746		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2747
2748	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2749		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2750
2751	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2752		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2753
2754	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2755	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2756		dtype_cmd |=
2757			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2758			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2759			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2760	else
2761		dtype_cmd |=
2762			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2763			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2764			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2765
2766	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2767		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2768
2769	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2770	fdir_desc->rsvd = cpu_to_le32(0);
2771	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2772	fdir_desc->fd_id = cpu_to_le32(0);
2773}
2774
2775/**
2776 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2777 * @skb:     send buffer
2778 * @tx_ring: ring to send buffer on
2779 * @flags:   the tx flags to be set
2780 *
2781 * Checks the skb and set up correspondingly several generic transmit flags
2782 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2783 *
2784 * Returns error code indicate the frame should be dropped upon error and the
2785 * otherwise  returns 0 to indicate the flags has been set properly.
2786 **/
2787static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2788					     struct i40e_ring *tx_ring,
2789					     u32 *flags)
2790{
2791	__be16 protocol = skb->protocol;
2792	u32  tx_flags = 0;
2793
2794	if (protocol == htons(ETH_P_8021Q) &&
2795	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2796		/* When HW VLAN acceleration is turned off by the user the
2797		 * stack sets the protocol to 8021q so that the driver
2798		 * can take any steps required to support the SW only
2799		 * VLAN handling.  In our case the driver doesn't need
2800		 * to take any further steps so just set the protocol
2801		 * to the encapsulated ethertype.
2802		 */
2803		skb->protocol = vlan_get_protocol(skb);
2804		goto out;
2805	}
2806
2807	/* if we have a HW VLAN tag being added, default to the HW one */
2808	if (skb_vlan_tag_present(skb)) {
2809		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2810		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2811	/* else if it is a SW VLAN, check the next protocol and store the tag */
2812	} else if (protocol == htons(ETH_P_8021Q)) {
2813		struct vlan_hdr *vhdr, _vhdr;
2814
2815		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2816		if (!vhdr)
2817			return -EINVAL;
2818
2819		protocol = vhdr->h_vlan_encapsulated_proto;
2820		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2821		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2822	}
2823
2824	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2825		goto out;
2826
2827	/* Insert 802.1p priority into VLAN header */
2828	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2829	    (skb->priority != TC_PRIO_CONTROL)) {
2830		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2831		tx_flags |= (skb->priority & 0x7) <<
2832				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2833		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2834			struct vlan_ethhdr *vhdr;
2835			int rc;
2836
2837			rc = skb_cow_head(skb, 0);
2838			if (rc < 0)
2839				return rc;
2840			vhdr = (struct vlan_ethhdr *)skb->data;
2841			vhdr->h_vlan_TCI = htons(tx_flags >>
2842						 I40E_TX_FLAGS_VLAN_SHIFT);
2843		} else {
2844			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2845		}
2846	}
2847
2848out:
2849	*flags = tx_flags;
2850	return 0;
2851}
2852
2853/**
2854 * i40e_tso - set up the tso context descriptor
2855 * @first:    pointer to first Tx buffer for xmit
2856 * @hdr_len:  ptr to the size of the packet header
2857 * @cd_type_cmd_tso_mss: Quad Word 1
2858 *
2859 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2860 **/
2861static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2862		    u64 *cd_type_cmd_tso_mss)
2863{
2864	struct sk_buff *skb = first->skb;
2865	u64 cd_cmd, cd_tso_len, cd_mss;
 
2866	union {
2867		struct iphdr *v4;
2868		struct ipv6hdr *v6;
2869		unsigned char *hdr;
2870	} ip;
2871	union {
2872		struct tcphdr *tcp;
2873		struct udphdr *udp;
2874		unsigned char *hdr;
2875	} l4;
2876	u32 paylen, l4_offset;
2877	u16 gso_segs, gso_size;
2878	int err;
2879
2880	if (skb->ip_summed != CHECKSUM_PARTIAL)
2881		return 0;
2882
2883	if (!skb_is_gso(skb))
2884		return 0;
2885
2886	err = skb_cow_head(skb, 0);
2887	if (err < 0)
2888		return err;
2889
2890	ip.hdr = skb_network_header(skb);
2891	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
2892
2893	/* initialize outer IP header fields */
2894	if (ip.v4->version == 4) {
2895		ip.v4->tot_len = 0;
2896		ip.v4->check = 0;
 
 
2897	} else {
2898		ip.v6->payload_len = 0;
 
2899	}
2900
2901	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2902					 SKB_GSO_GRE_CSUM |
2903					 SKB_GSO_IPXIP4 |
2904					 SKB_GSO_IPXIP6 |
2905					 SKB_GSO_UDP_TUNNEL |
2906					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2907		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2908		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2909			l4.udp->len = 0;
2910
2911			/* determine offset of outer transport header */
2912			l4_offset = l4.hdr - skb->data;
2913
2914			/* remove payload length from outer checksum */
2915			paylen = skb->len - l4_offset;
2916			csum_replace_by_diff(&l4.udp->check,
2917					     (__force __wsum)htonl(paylen));
2918		}
2919
2920		/* reset pointers to inner headers */
2921		ip.hdr = skb_inner_network_header(skb);
2922		l4.hdr = skb_inner_transport_header(skb);
2923
2924		/* initialize inner IP header fields */
2925		if (ip.v4->version == 4) {
2926			ip.v4->tot_len = 0;
2927			ip.v4->check = 0;
2928		} else {
2929			ip.v6->payload_len = 0;
2930		}
2931	}
2932
2933	/* determine offset of inner transport header */
2934	l4_offset = l4.hdr - skb->data;
2935
2936	/* remove payload length from inner checksum */
2937	paylen = skb->len - l4_offset;
2938	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2939
2940	/* compute length of segmentation header */
2941	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
 
 
 
 
 
 
 
2942
2943	/* pull values out of skb_shinfo */
2944	gso_size = skb_shinfo(skb)->gso_size;
2945	gso_segs = skb_shinfo(skb)->gso_segs;
2946
2947	/* update GSO size and bytecount with header size */
2948	first->gso_segs = gso_segs;
2949	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2950
2951	/* find the field values */
2952	cd_cmd = I40E_TX_CTX_DESC_TSO;
2953	cd_tso_len = skb->len - *hdr_len;
2954	cd_mss = gso_size;
2955	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2956				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2957				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2958	return 1;
2959}
2960
2961/**
2962 * i40e_tsyn - set up the tsyn context descriptor
2963 * @tx_ring:  ptr to the ring to send
2964 * @skb:      ptr to the skb we're sending
2965 * @tx_flags: the collected send information
2966 * @cd_type_cmd_tso_mss: Quad Word 1
2967 *
2968 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2969 **/
2970static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2971		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2972{
2973	struct i40e_pf *pf;
2974
2975	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2976		return 0;
2977
2978	/* Tx timestamps cannot be sampled when doing TSO */
2979	if (tx_flags & I40E_TX_FLAGS_TSO)
2980		return 0;
2981
2982	/* only timestamp the outbound packet if the user has requested it and
2983	 * we are not already transmitting a packet to be timestamped
2984	 */
2985	pf = i40e_netdev_to_pf(tx_ring->netdev);
2986	if (!(pf->flags & I40E_FLAG_PTP))
2987		return 0;
2988
2989	if (pf->ptp_tx &&
2990	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
2991		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2992		pf->ptp_tx_start = jiffies;
2993		pf->ptp_tx_skb = skb_get(skb);
2994	} else {
2995		pf->tx_hwtstamp_skipped++;
2996		return 0;
2997	}
2998
2999	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3000				I40E_TXD_CTX_QW1_CMD_SHIFT;
3001
3002	return 1;
3003}
3004
3005/**
3006 * i40e_tx_enable_csum - Enable Tx checksum offloads
3007 * @skb: send buffer
3008 * @tx_flags: pointer to Tx flags currently set
3009 * @td_cmd: Tx descriptor command bits to set
3010 * @td_offset: Tx descriptor header offsets to set
3011 * @tx_ring: Tx descriptor ring
3012 * @cd_tunneling: ptr to context desc bits
3013 **/
3014static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3015			       u32 *td_cmd, u32 *td_offset,
3016			       struct i40e_ring *tx_ring,
3017			       u32 *cd_tunneling)
3018{
3019	union {
3020		struct iphdr *v4;
3021		struct ipv6hdr *v6;
3022		unsigned char *hdr;
3023	} ip;
3024	union {
3025		struct tcphdr *tcp;
3026		struct udphdr *udp;
3027		unsigned char *hdr;
3028	} l4;
3029	unsigned char *exthdr;
3030	u32 offset, cmd = 0;
3031	__be16 frag_off;
 
3032	u8 l4_proto = 0;
3033
3034	if (skb->ip_summed != CHECKSUM_PARTIAL)
3035		return 0;
3036
3037	ip.hdr = skb_network_header(skb);
3038	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3039
3040	/* compute outer L2 header size */
3041	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3042
3043	if (skb->encapsulation) {
3044		u32 tunnel = 0;
3045		/* define outer network header type */
3046		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3047			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3048				  I40E_TX_CTX_EXT_IP_IPV4 :
3049				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3050
3051			l4_proto = ip.v4->protocol;
3052		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
 
 
3053			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3054
3055			exthdr = ip.hdr + sizeof(*ip.v6);
3056			l4_proto = ip.v6->nexthdr;
3057			if (l4.hdr != exthdr)
3058				ipv6_skip_exthdr(skb, exthdr - skb->data,
3059						 &l4_proto, &frag_off);
 
3060		}
3061
3062		/* define outer transport */
3063		switch (l4_proto) {
3064		case IPPROTO_UDP:
3065			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3066			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3067			break;
3068		case IPPROTO_GRE:
3069			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3070			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3071			break;
3072		case IPPROTO_IPIP:
3073		case IPPROTO_IPV6:
3074			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3075			l4.hdr = skb_inner_network_header(skb);
3076			break;
3077		default:
3078			if (*tx_flags & I40E_TX_FLAGS_TSO)
3079				return -1;
3080
3081			skb_checksum_help(skb);
3082			return 0;
3083		}
3084
3085		/* compute outer L3 header size */
3086		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3087			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3088
3089		/* switch IP header pointer from outer to inner header */
3090		ip.hdr = skb_inner_network_header(skb);
3091
3092		/* compute tunnel header size */
3093		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3094			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3095
3096		/* indicate if we need to offload outer UDP header */
3097		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3098		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3099		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3100			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3101
3102		/* record tunnel offload values */
3103		*cd_tunneling |= tunnel;
3104
3105		/* switch L4 header pointer from outer to inner */
3106		l4.hdr = skb_inner_transport_header(skb);
3107		l4_proto = 0;
3108
3109		/* reset type as we transition from outer to inner headers */
3110		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3111		if (ip.v4->version == 4)
3112			*tx_flags |= I40E_TX_FLAGS_IPV4;
3113		if (ip.v6->version == 6)
3114			*tx_flags |= I40E_TX_FLAGS_IPV6;
3115	}
3116
3117	/* Enable IP checksum offloads */
3118	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3119		l4_proto = ip.v4->protocol;
3120		/* the stack computes the IP header already, the only time we
3121		 * need the hardware to recompute it is in the case of TSO.
3122		 */
3123		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3124		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3125		       I40E_TX_DESC_CMD_IIPT_IPV4;
3126	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3127		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3128
3129		exthdr = ip.hdr + sizeof(*ip.v6);
3130		l4_proto = ip.v6->nexthdr;
3131		if (l4.hdr != exthdr)
3132			ipv6_skip_exthdr(skb, exthdr - skb->data,
3133					 &l4_proto, &frag_off);
3134	}
3135
3136	/* compute inner L3 header size */
3137	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3138
3139	/* Enable L4 checksum offloads */
3140	switch (l4_proto) {
3141	case IPPROTO_TCP:
3142		/* enable checksum offloads */
3143		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3144		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3145		break;
3146	case IPPROTO_SCTP:
3147		/* enable SCTP checksum offload */
3148		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3149		offset |= (sizeof(struct sctphdr) >> 2) <<
3150			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3151		break;
3152	case IPPROTO_UDP:
3153		/* enable UDP checksum offload */
3154		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3155		offset |= (sizeof(struct udphdr) >> 2) <<
3156			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3157		break;
3158	default:
3159		if (*tx_flags & I40E_TX_FLAGS_TSO)
3160			return -1;
3161		skb_checksum_help(skb);
3162		return 0;
3163	}
3164
3165	*td_cmd |= cmd;
3166	*td_offset |= offset;
3167
3168	return 1;
3169}
3170
3171/**
3172 * i40e_create_tx_ctx Build the Tx context descriptor
3173 * @tx_ring:  ring to create the descriptor on
3174 * @cd_type_cmd_tso_mss: Quad Word 1
3175 * @cd_tunneling: Quad Word 0 - bits 0-31
3176 * @cd_l2tag2: Quad Word 0 - bits 32-63
3177 **/
3178static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3179			       const u64 cd_type_cmd_tso_mss,
3180			       const u32 cd_tunneling, const u32 cd_l2tag2)
3181{
3182	struct i40e_tx_context_desc *context_desc;
3183	int i = tx_ring->next_to_use;
3184
3185	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3186	    !cd_tunneling && !cd_l2tag2)
3187		return;
3188
3189	/* grab the next descriptor */
3190	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3191
3192	i++;
3193	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3194
3195	/* cpu_to_le32 and assign to struct fields */
3196	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3197	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3198	context_desc->rsvd = cpu_to_le16(0);
3199	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3200}
3201
3202/**
3203 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3204 * @tx_ring: the ring to be checked
3205 * @size:    the size buffer we want to assure is available
3206 *
3207 * Returns -EBUSY if a stop is needed, else 0
3208 **/
3209int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3210{
3211	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3212	/* Memory barrier before checking head and tail */
3213	smp_mb();
3214
 
 
3215	/* Check again in a case another CPU has just made room available. */
3216	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3217		return -EBUSY;
3218
3219	/* A reprieve! - use start_queue because it doesn't call schedule */
3220	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3221	++tx_ring->tx_stats.restart_queue;
3222	return 0;
3223}
3224
3225/**
3226 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3227 * @skb:      send buffer
3228 *
3229 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3230 * and so we need to figure out the cases where we need to linearize the skb.
3231 *
3232 * For TSO we need to count the TSO header and segment payload separately.
3233 * As such we need to check cases where we have 7 fragments or more as we
3234 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3235 * the segment payload in the first descriptor, and another 7 for the
3236 * fragments.
3237 **/
3238bool __i40e_chk_linearize(struct sk_buff *skb)
3239{
3240	const struct skb_frag_struct *frag, *stale;
3241	int nr_frags, sum;
3242
3243	/* no need to check if number of frags is less than 7 */
3244	nr_frags = skb_shinfo(skb)->nr_frags;
3245	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3246		return false;
3247
3248	/* We need to walk through the list and validate that each group
3249	 * of 6 fragments totals at least gso_size.
3250	 */
3251	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3252	frag = &skb_shinfo(skb)->frags[0];
3253
3254	/* Initialize size to the negative value of gso_size minus 1.  We
3255	 * use this as the worst case scenerio in which the frag ahead
3256	 * of us only provides one byte which is why we are limited to 6
3257	 * descriptors for a single transmit as the header and previous
3258	 * fragment are already consuming 2 descriptors.
3259	 */
3260	sum = 1 - skb_shinfo(skb)->gso_size;
3261
3262	/* Add size of frags 0 through 4 to create our initial sum */
3263	sum += skb_frag_size(frag++);
3264	sum += skb_frag_size(frag++);
3265	sum += skb_frag_size(frag++);
3266	sum += skb_frag_size(frag++);
3267	sum += skb_frag_size(frag++);
3268
3269	/* Walk through fragments adding latest fragment, testing it, and
3270	 * then removing stale fragments from the sum.
3271	 */
3272	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3273		int stale_size = skb_frag_size(stale);
3274
3275		sum += skb_frag_size(frag++);
3276
3277		/* The stale fragment may present us with a smaller
3278		 * descriptor than the actual fragment size. To account
3279		 * for that we need to remove all the data on the front and
3280		 * figure out what the remainder would be in the last
3281		 * descriptor associated with the fragment.
3282		 */
3283		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3284			int align_pad = -(stale->page_offset) &
3285					(I40E_MAX_READ_REQ_SIZE - 1);
3286
3287			sum -= align_pad;
3288			stale_size -= align_pad;
3289
3290			do {
3291				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3292				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3293			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3294		}
3295
3296		/* if sum is negative we failed to make sufficient progress */
3297		if (sum < 0)
3298			return true;
3299
3300		if (!nr_frags--)
3301			break;
3302
3303		sum -= stale_size;
3304	}
3305
3306	return false;
3307}
3308
3309/**
3310 * i40e_tx_map - Build the Tx descriptor
3311 * @tx_ring:  ring to send buffer on
3312 * @skb:      send buffer
3313 * @first:    first buffer info buffer to use
3314 * @tx_flags: collected send information
3315 * @hdr_len:  size of the packet header
3316 * @td_cmd:   the command field in the descriptor
3317 * @td_offset: offset for checksum or crc
3318 *
3319 * Returns 0 on success, -1 on failure to DMA
3320 **/
3321static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3322			      struct i40e_tx_buffer *first, u32 tx_flags,
3323			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3324{
3325	unsigned int data_len = skb->data_len;
3326	unsigned int size = skb_headlen(skb);
3327	struct skb_frag_struct *frag;
3328	struct i40e_tx_buffer *tx_bi;
3329	struct i40e_tx_desc *tx_desc;
3330	u16 i = tx_ring->next_to_use;
3331	u32 td_tag = 0;
3332	dma_addr_t dma;
3333	u16 desc_count = 1;
3334
3335	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3336		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3337		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3338			 I40E_TX_FLAGS_VLAN_SHIFT;
3339	}
3340
3341	first->tx_flags = tx_flags;
3342
3343	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3344
3345	tx_desc = I40E_TX_DESC(tx_ring, i);
3346	tx_bi = first;
3347
3348	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3349		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3350
3351		if (dma_mapping_error(tx_ring->dev, dma))
3352			goto dma_error;
3353
3354		/* record length, and DMA address */
3355		dma_unmap_len_set(tx_bi, len, size);
3356		dma_unmap_addr_set(tx_bi, dma, dma);
3357
3358		/* align size to end of page */
3359		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3360		tx_desc->buffer_addr = cpu_to_le64(dma);
3361
3362		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3363			tx_desc->cmd_type_offset_bsz =
3364				build_ctob(td_cmd, td_offset,
3365					   max_data, td_tag);
3366
3367			tx_desc++;
3368			i++;
3369			desc_count++;
3370
3371			if (i == tx_ring->count) {
3372				tx_desc = I40E_TX_DESC(tx_ring, 0);
3373				i = 0;
3374			}
3375
3376			dma += max_data;
3377			size -= max_data;
3378
3379			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3380			tx_desc->buffer_addr = cpu_to_le64(dma);
3381		}
3382
3383		if (likely(!data_len))
3384			break;
3385
3386		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3387							  size, td_tag);
3388
3389		tx_desc++;
3390		i++;
3391		desc_count++;
3392
3393		if (i == tx_ring->count) {
3394			tx_desc = I40E_TX_DESC(tx_ring, 0);
3395			i = 0;
3396		}
3397
3398		size = skb_frag_size(frag);
3399		data_len -= size;
3400
3401		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3402				       DMA_TO_DEVICE);
3403
3404		tx_bi = &tx_ring->tx_bi[i];
3405	}
3406
3407	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3408
3409	i++;
3410	if (i == tx_ring->count)
3411		i = 0;
3412
3413	tx_ring->next_to_use = i;
3414
3415	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3416
3417	/* write last descriptor with EOP bit */
3418	td_cmd |= I40E_TX_DESC_CMD_EOP;
3419
3420	/* We OR these values together to check both against 4 (WB_STRIDE)
3421	 * below. This is safe since we don't re-use desc_count afterwards.
3422	 */
3423	desc_count |= ++tx_ring->packet_stride;
3424
3425	if (desc_count >= WB_STRIDE) {
3426		/* write last descriptor with RS bit set */
3427		td_cmd |= I40E_TX_DESC_CMD_RS;
3428		tx_ring->packet_stride = 0;
3429	}
3430
3431	tx_desc->cmd_type_offset_bsz =
3432			build_ctob(td_cmd, td_offset, size, td_tag);
3433
 
 
3434	/* Force memory writes to complete before letting h/w know there
3435	 * are new descriptors to fetch.
3436	 *
3437	 * We also use this memory barrier to make certain all of the
3438	 * status bits have been updated before next_to_watch is written.
3439	 */
3440	wmb();
3441
3442	/* set next_to_watch value indicating a packet is present */
3443	first->next_to_watch = tx_desc;
3444
3445	/* notify HW of packet */
3446	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3447		writel(i, tx_ring->tail);
3448
3449		/* we need this if more than one processor can write to our tail
3450		 * at a time, it synchronizes IO on IA64/Altix systems
3451		 */
3452		mmiowb();
3453	}
3454
3455	return 0;
3456
3457dma_error:
3458	dev_info(tx_ring->dev, "TX DMA map failed\n");
3459
3460	/* clear dma mappings for failed tx_bi map */
3461	for (;;) {
3462		tx_bi = &tx_ring->tx_bi[i];
3463		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3464		if (tx_bi == first)
3465			break;
3466		if (i == 0)
3467			i = tx_ring->count;
3468		i--;
3469	}
3470
3471	tx_ring->next_to_use = i;
3472
3473	return -1;
3474}
3475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3476/**
3477 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3478 * @xdp: data to transmit
3479 * @xdp_ring: XDP Tx ring
3480 **/
3481static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
3482			      struct i40e_ring *xdp_ring)
3483{
3484	u32 size = xdp->data_end - xdp->data;
3485	u16 i = xdp_ring->next_to_use;
3486	struct i40e_tx_buffer *tx_bi;
3487	struct i40e_tx_desc *tx_desc;
3488	dma_addr_t dma;
 
 
 
3489
3490	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3491		xdp_ring->tx_stats.tx_busy++;
3492		return I40E_XDP_CONSUMED;
3493	}
3494
3495	dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE);
3496	if (dma_mapping_error(xdp_ring->dev, dma))
3497		return I40E_XDP_CONSUMED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3498
3499	tx_bi = &xdp_ring->tx_bi[i];
3500	tx_bi->bytecount = size;
3501	tx_bi->gso_segs = 1;
3502	tx_bi->raw_buf = xdp->data;
3503
3504	/* record length, and DMA address */
3505	dma_unmap_len_set(tx_bi, len, size);
3506	dma_unmap_addr_set(tx_bi, dma, dma);
 
3507
3508	tx_desc = I40E_TX_DESC(xdp_ring, i);
3509	tx_desc->buffer_addr = cpu_to_le64(dma);
3510	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3511						  | I40E_TXD_CMD,
3512						  0, size, 0);
3513
3514	/* Make certain all of the status bits have been updated
3515	 * before next_to_watch is written.
3516	 */
3517	smp_wmb();
3518
3519	i++;
3520	if (i == xdp_ring->count)
3521		i = 0;
3522
3523	tx_bi->next_to_watch = tx_desc;
3524	xdp_ring->next_to_use = i;
3525
3526	return I40E_XDP_TX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527}
3528
3529/**
3530 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3531 * @skb:     send buffer
3532 * @tx_ring: ring to send buffer on
3533 *
3534 * Returns NETDEV_TX_OK if sent, else an error code
3535 **/
3536static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3537					struct i40e_ring *tx_ring)
3538{
3539	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3540	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3541	struct i40e_tx_buffer *first;
3542	u32 td_offset = 0;
3543	u32 tx_flags = 0;
3544	__be16 protocol;
3545	u32 td_cmd = 0;
3546	u8 hdr_len = 0;
3547	int tso, count;
3548	int tsyn;
3549
3550	/* prefetch the data, we'll need it later */
3551	prefetch(skb->data);
3552
3553	i40e_trace(xmit_frame_ring, skb, tx_ring);
3554
3555	count = i40e_xmit_descriptor_count(skb);
3556	if (i40e_chk_linearize(skb, count)) {
3557		if (__skb_linearize(skb)) {
3558			dev_kfree_skb_any(skb);
3559			return NETDEV_TX_OK;
3560		}
3561		count = i40e_txd_use_count(skb->len);
3562		tx_ring->tx_stats.tx_linearize++;
3563	}
3564
3565	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3566	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3567	 *       + 4 desc gap to avoid the cache line where head is,
3568	 *       + 1 desc for context descriptor,
3569	 * otherwise try next time
3570	 */
3571	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3572		tx_ring->tx_stats.tx_busy++;
3573		return NETDEV_TX_BUSY;
3574	}
3575
3576	/* record the location of the first descriptor for this packet */
3577	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3578	first->skb = skb;
3579	first->bytecount = skb->len;
3580	first->gso_segs = 1;
3581
3582	/* prepare the xmit flags */
3583	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3584		goto out_drop;
3585
3586	/* obtain protocol of skb */
3587	protocol = vlan_get_protocol(skb);
3588
3589	/* setup IPv4/IPv6 offloads */
3590	if (protocol == htons(ETH_P_IP))
3591		tx_flags |= I40E_TX_FLAGS_IPV4;
3592	else if (protocol == htons(ETH_P_IPV6))
3593		tx_flags |= I40E_TX_FLAGS_IPV6;
3594
3595	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3596
3597	if (tso < 0)
3598		goto out_drop;
3599	else if (tso)
3600		tx_flags |= I40E_TX_FLAGS_TSO;
3601
3602	/* Always offload the checksum, since it's in the data descriptor */
3603	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3604				  tx_ring, &cd_tunneling);
3605	if (tso < 0)
3606		goto out_drop;
3607
3608	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3609
3610	if (tsyn)
3611		tx_flags |= I40E_TX_FLAGS_TSYN;
3612
3613	skb_tx_timestamp(skb);
3614
3615	/* always enable CRC insertion offload */
3616	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3617
3618	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3619			   cd_tunneling, cd_l2tag2);
3620
3621	/* Add Flow Director ATR if it's enabled.
3622	 *
3623	 * NOTE: this must always be directly before the data descriptor.
3624	 */
3625	i40e_atr(tx_ring, skb, tx_flags);
3626
3627	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3628			td_cmd, td_offset))
3629		goto cleanup_tx_tstamp;
3630
3631	return NETDEV_TX_OK;
3632
3633out_drop:
3634	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3635	dev_kfree_skb_any(first->skb);
3636	first->skb = NULL;
3637cleanup_tx_tstamp:
3638	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3639		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3640
3641		dev_kfree_skb_any(pf->ptp_tx_skb);
3642		pf->ptp_tx_skb = NULL;
3643		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3644	}
3645
3646	return NETDEV_TX_OK;
3647}
3648
3649/**
3650 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3651 * @skb:    send buffer
3652 * @netdev: network interface device structure
3653 *
3654 * Returns NETDEV_TX_OK if sent, else an error code
3655 **/
3656netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3657{
3658	struct i40e_netdev_priv *np = netdev_priv(netdev);
3659	struct i40e_vsi *vsi = np->vsi;
3660	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3661
3662	/* hardware can't handle really short frames, hardware padding works
3663	 * beyond this point
3664	 */
3665	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3666		return NETDEV_TX_OK;
3667
3668	return i40e_xmit_frame_ring(skb, tx_ring);
3669}
3670
3671/**
3672 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3673 * @dev: netdev
3674 * @xdp: XDP buffer
 
 
3675 *
3676 * Returns Zero if sent, else an error code
 
 
 
 
3677 **/
3678int i40e_xdp_xmit(struct net_device *dev, struct xdp_buff *xdp)
 
3679{
3680	struct i40e_netdev_priv *np = netdev_priv(dev);
3681	unsigned int queue_index = smp_processor_id();
3682	struct i40e_vsi *vsi = np->vsi;
3683	int err;
 
 
 
3684
3685	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3686		return -ENETDOWN;
3687
3688	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs)
 
3689		return -ENXIO;
3690
3691	err = i40e_xmit_xdp_ring(xdp, vsi->xdp_rings[queue_index]);
3692	if (err != I40E_XDP_TX)
3693		return -ENOSPC;
3694
3695	return 0;
3696}
3697
3698/**
3699 * i40e_xdp_flush - Implements ndo_xdp_flush
3700 * @dev: netdev
3701 **/
3702void i40e_xdp_flush(struct net_device *dev)
3703{
3704	struct i40e_netdev_priv *np = netdev_priv(dev);
3705	unsigned int queue_index = smp_processor_id();
3706	struct i40e_vsi *vsi = np->vsi;
3707
3708	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3709		return;
 
 
 
3710
3711	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs)
3712		return;
3713
3714	i40e_xdp_ring_update_tail(vsi->xdp_rings[queue_index]);
3715}