Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include <linux/bitfield.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5
   6#include "e1000.h"
   7
   8/**
   9 *  e1000e_get_bus_info_pcie - Get PCIe bus information
  10 *  @hw: pointer to the HW structure
  11 *
  12 *  Determines and stores the system bus information for a particular
  13 *  network interface.  The following bus information is determined and stored:
  14 *  bus speed, bus width, type (PCIe), and PCIe function.
  15 **/
  16s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
  17{
  18	struct pci_dev *pdev = hw->adapter->pdev;
  19	struct e1000_mac_info *mac = &hw->mac;
  20	struct e1000_bus_info *bus = &hw->bus;
  21	u16 pcie_link_status;
 
  22
  23	if (!pci_pcie_cap(pdev)) {
 
  24		bus->width = e1000_bus_width_unknown;
  25	} else {
  26		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &pcie_link_status);
  27		bus->width = (enum e1000_bus_width)FIELD_GET(PCI_EXP_LNKSTA_NLW,
  28							     pcie_link_status);
 
 
 
  29	}
  30
  31	mac->ops.set_lan_id(hw);
  32
  33	return 0;
  34}
  35
  36/**
  37 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
  38 *
  39 *  @hw: pointer to the HW structure
  40 *
  41 *  Determines the LAN function id by reading memory-mapped registers
  42 *  and swaps the port value if requested.
  43 **/
  44void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
  45{
  46	struct e1000_bus_info *bus = &hw->bus;
  47	u32 reg;
  48
  49	/* The status register reports the correct function number
  50	 * for the device regardless of function swap state.
  51	 */
  52	reg = er32(STATUS);
  53	bus->func = FIELD_GET(E1000_STATUS_FUNC_MASK, reg);
  54}
  55
  56/**
  57 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
  58 *  @hw: pointer to the HW structure
  59 *
  60 *  Sets the LAN function id to zero for a single port device.
  61 **/
  62void e1000_set_lan_id_single_port(struct e1000_hw *hw)
  63{
  64	struct e1000_bus_info *bus = &hw->bus;
  65
  66	bus->func = 0;
  67}
  68
  69/**
  70 *  e1000_clear_vfta_generic - Clear VLAN filter table
  71 *  @hw: pointer to the HW structure
  72 *
  73 *  Clears the register array which contains the VLAN filter table by
  74 *  setting all the values to 0.
  75 **/
  76void e1000_clear_vfta_generic(struct e1000_hw *hw)
  77{
  78	u32 offset;
  79
  80	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
  81		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
  82		e1e_flush();
  83	}
  84}
  85
  86/**
  87 *  e1000_write_vfta_generic - Write value to VLAN filter table
  88 *  @hw: pointer to the HW structure
  89 *  @offset: register offset in VLAN filter table
  90 *  @value: register value written to VLAN filter table
  91 *
  92 *  Writes value at the given offset in the register array which stores
  93 *  the VLAN filter table.
  94 **/
  95void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
  96{
  97	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
  98	e1e_flush();
  99}
 100
 101/**
 102 *  e1000e_init_rx_addrs - Initialize receive address's
 103 *  @hw: pointer to the HW structure
 104 *  @rar_count: receive address registers
 105 *
 106 *  Setup the receive address registers by setting the base receive address
 107 *  register to the devices MAC address and clearing all the other receive
 108 *  address registers to 0.
 109 **/
 110void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 111{
 112	u32 i;
 113	u8 mac_addr[ETH_ALEN] = { 0 };
 114
 115	/* Setup the receive address */
 116	e_dbg("Programming MAC Address into RAR[0]\n");
 117
 118	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 119
 120	/* Zero out the other (rar_entry_count - 1) receive addresses */
 121	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
 122	for (i = 1; i < rar_count; i++)
 123		hw->mac.ops.rar_set(hw, mac_addr, i);
 124}
 125
 126/**
 127 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
 128 *  @hw: pointer to the HW structure
 129 *
 130 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 131 *  can be setup by pre-boot software and must be treated like a permanent
 132 *  address and must override the actual permanent MAC address. If an
 133 *  alternate MAC address is found it is programmed into RAR0, replacing
 134 *  the permanent address that was installed into RAR0 by the Si on reset.
 135 *  This function will return SUCCESS unless it encounters an error while
 136 *  reading the EEPROM.
 137 **/
 138s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
 139{
 140	u32 i;
 141	s32 ret_val;
 142	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 143	u8 alt_mac_addr[ETH_ALEN];
 144
 145	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
 146	if (ret_val)
 147		return ret_val;
 148
 149	/* not supported on 82573 */
 150	if (hw->mac.type == e1000_82573)
 151		return 0;
 152
 153	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 154				 &nvm_alt_mac_addr_offset);
 155	if (ret_val) {
 156		e_dbg("NVM Read Error\n");
 157		return ret_val;
 158	}
 159
 160	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 161	    (nvm_alt_mac_addr_offset == 0x0000))
 162		/* There is no Alternate MAC Address */
 163		return 0;
 164
 165	if (hw->bus.func == E1000_FUNC_1)
 166		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 167	for (i = 0; i < ETH_ALEN; i += 2) {
 168		offset = nvm_alt_mac_addr_offset + (i >> 1);
 169		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
 170		if (ret_val) {
 171			e_dbg("NVM Read Error\n");
 172			return ret_val;
 173		}
 174
 175		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 176		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 177	}
 178
 179	/* if multicast bit is set, the alternate address will not be used */
 180	if (is_multicast_ether_addr(alt_mac_addr)) {
 181		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 182		return 0;
 183	}
 184
 185	/* We have a valid alternate MAC address, and we want to treat it the
 186	 * same as the normal permanent MAC address stored by the HW into the
 187	 * RAR. Do this by mapping this address into RAR0.
 188	 */
 189	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 190
 191	return 0;
 192}
 193
 194u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
 195{
 196	return hw->mac.rar_entry_count;
 197}
 198
 199/**
 200 *  e1000e_rar_set_generic - Set receive address register
 201 *  @hw: pointer to the HW structure
 202 *  @addr: pointer to the receive address
 203 *  @index: receive address array register
 204 *
 205 *  Sets the receive address array register at index to the address passed
 206 *  in by addr.
 207 **/
 208int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
 209{
 210	u32 rar_low, rar_high;
 211
 212	/* HW expects these in little endian so we reverse the byte order
 213	 * from network order (big endian) to little endian
 214	 */
 215	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
 216		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
 217
 218	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
 219
 220	/* If MAC address zero, no need to set the AV bit */
 221	if (rar_low || rar_high)
 222		rar_high |= E1000_RAH_AV;
 223
 224	/* Some bridges will combine consecutive 32-bit writes into
 225	 * a single burst write, which will malfunction on some parts.
 226	 * The flushes avoid this.
 227	 */
 228	ew32(RAL(index), rar_low);
 229	e1e_flush();
 230	ew32(RAH(index), rar_high);
 231	e1e_flush();
 232
 233	return 0;
 234}
 235
 236/**
 237 *  e1000_hash_mc_addr - Generate a multicast hash value
 238 *  @hw: pointer to the HW structure
 239 *  @mc_addr: pointer to a multicast address
 240 *
 241 *  Generates a multicast address hash value which is used to determine
 242 *  the multicast filter table array address and new table value.
 243 **/
 244static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 245{
 246	u32 hash_value, hash_mask;
 247	u8 bit_shift = 0;
 248
 249	/* Register count multiplied by bits per register */
 250	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 251
 252	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 253	 * where 0xFF would still fall within the hash mask.
 254	 */
 255	while (hash_mask >> bit_shift != 0xFF)
 256		bit_shift++;
 257
 258	/* The portion of the address that is used for the hash table
 259	 * is determined by the mc_filter_type setting.
 260	 * The algorithm is such that there is a total of 8 bits of shifting.
 261	 * The bit_shift for a mc_filter_type of 0 represents the number of
 262	 * left-shifts where the MSB of mc_addr[5] would still fall within
 263	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
 264	 * of 8 bits of shifting, then mc_addr[4] will shift right the
 265	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 266	 * cases are a variation of this algorithm...essentially raising the
 267	 * number of bits to shift mc_addr[5] left, while still keeping the
 268	 * 8-bit shifting total.
 269	 *
 270	 * For example, given the following Destination MAC Address and an
 271	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 272	 * we can see that the bit_shift for case 0 is 4.  These are the hash
 273	 * values resulting from each mc_filter_type...
 274	 * [0] [1] [2] [3] [4] [5]
 275	 * 01  AA  00  12  34  56
 276	 * LSB           MSB
 277	 *
 278	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 279	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 280	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 281	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 282	 */
 283	switch (hw->mac.mc_filter_type) {
 284	default:
 285	case 0:
 286		break;
 287	case 1:
 288		bit_shift += 1;
 289		break;
 290	case 2:
 291		bit_shift += 2;
 292		break;
 293	case 3:
 294		bit_shift += 4;
 295		break;
 296	}
 297
 298	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 299				   (((u16)mc_addr[5]) << bit_shift)));
 300
 301	return hash_value;
 302}
 303
 304/**
 305 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
 306 *  @hw: pointer to the HW structure
 307 *  @mc_addr_list: array of multicast addresses to program
 308 *  @mc_addr_count: number of multicast addresses to program
 309 *
 310 *  Updates entire Multicast Table Array.
 311 *  The caller must have a packed mc_addr_list of multicast addresses.
 312 **/
 313void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
 314					u8 *mc_addr_list, u32 mc_addr_count)
 315{
 316	u32 hash_value, hash_bit, hash_reg;
 317	int i;
 318
 319	/* clear mta_shadow */
 320	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 321
 322	/* update mta_shadow from mc_addr_list */
 323	for (i = 0; (u32)i < mc_addr_count; i++) {
 324		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
 325
 326		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 327		hash_bit = hash_value & 0x1F;
 328
 329		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
 330		mc_addr_list += (ETH_ALEN);
 331	}
 332
 333	/* replace the entire MTA table */
 334	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 335		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
 336	e1e_flush();
 337}
 338
 339/**
 340 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
 341 *  @hw: pointer to the HW structure
 342 *
 343 *  Clears the base hardware counters by reading the counter registers.
 344 **/
 345void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
 346{
 347	er32(CRCERRS);
 348	er32(SYMERRS);
 349	er32(MPC);
 350	er32(SCC);
 351	er32(ECOL);
 352	er32(MCC);
 353	er32(LATECOL);
 354	er32(COLC);
 355	er32(DC);
 356	er32(SEC);
 357	er32(RLEC);
 358	er32(XONRXC);
 359	er32(XONTXC);
 360	er32(XOFFRXC);
 361	er32(XOFFTXC);
 362	er32(FCRUC);
 363	er32(GPRC);
 364	er32(BPRC);
 365	er32(MPRC);
 366	er32(GPTC);
 367	er32(GORCL);
 368	er32(GORCH);
 369	er32(GOTCL);
 370	er32(GOTCH);
 371	er32(RNBC);
 372	er32(RUC);
 373	er32(RFC);
 374	er32(ROC);
 375	er32(RJC);
 376	er32(TORL);
 377	er32(TORH);
 378	er32(TOTL);
 379	er32(TOTH);
 380	er32(TPR);
 381	er32(TPT);
 382	er32(MPTC);
 383	er32(BPTC);
 384}
 385
 386/**
 387 *  e1000e_check_for_copper_link - Check for link (Copper)
 388 *  @hw: pointer to the HW structure
 389 *
 390 *  Checks to see of the link status of the hardware has changed.  If a
 391 *  change in link status has been detected, then we read the PHY registers
 392 *  to get the current speed/duplex if link exists.
 393 **/
 394s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
 395{
 396	struct e1000_mac_info *mac = &hw->mac;
 397	s32 ret_val;
 398	bool link;
 399
 400	/* We only want to go out to the PHY registers to see if Auto-Neg
 401	 * has completed and/or if our link status has changed.  The
 402	 * get_link_status flag is set upon receiving a Link Status
 403	 * Change or Rx Sequence Error interrupt.
 404	 */
 405	if (!mac->get_link_status)
 406		return 0;
 407	mac->get_link_status = false;
 408
 409	/* First we want to see if the MII Status Register reports
 410	 * link.  If so, then we want to get the current speed/duplex
 411	 * of the PHY.
 412	 */
 413	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 414	if (ret_val || !link)
 415		goto out;
 416
 417	/* Check if there was DownShift, must be checked
 418	 * immediately after link-up
 419	 */
 420	e1000e_check_downshift(hw);
 421
 422	/* If we are forcing speed/duplex, then we simply return since
 423	 * we have already determined whether we have link or not.
 424	 */
 425	if (!mac->autoneg)
 426		return -E1000_ERR_CONFIG;
 427
 428	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 429	 * of MAC speed/duplex configuration.  So we only need to
 430	 * configure Collision Distance in the MAC.
 431	 */
 432	mac->ops.config_collision_dist(hw);
 433
 434	/* Configure Flow Control now that Auto-Neg has completed.
 435	 * First, we need to restore the desired flow control
 436	 * settings because we may have had to re-autoneg with a
 437	 * different link partner.
 438	 */
 439	ret_val = e1000e_config_fc_after_link_up(hw);
 440	if (ret_val)
 441		e_dbg("Error configuring flow control\n");
 442
 443	return ret_val;
 444
 445out:
 446	mac->get_link_status = true;
 447	return ret_val;
 448}
 449
 450/**
 451 *  e1000e_check_for_fiber_link - Check for link (Fiber)
 452 *  @hw: pointer to the HW structure
 453 *
 454 *  Checks for link up on the hardware.  If link is not up and we have
 455 *  a signal, then we need to force link up.
 456 **/
 457s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
 458{
 459	struct e1000_mac_info *mac = &hw->mac;
 460	u32 rxcw;
 461	u32 ctrl;
 462	u32 status;
 463	s32 ret_val;
 464
 465	ctrl = er32(CTRL);
 466	status = er32(STATUS);
 467	rxcw = er32(RXCW);
 468
 469	/* If we don't have link (auto-negotiation failed or link partner
 470	 * cannot auto-negotiate), the cable is plugged in (we have signal),
 471	 * and our link partner is not trying to auto-negotiate with us (we
 472	 * are receiving idles or data), we need to force link up. We also
 473	 * need to give auto-negotiation time to complete, in case the cable
 474	 * was just plugged in. The autoneg_failed flag does this.
 475	 */
 476	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 477	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
 478	    !(rxcw & E1000_RXCW_C)) {
 479		if (!mac->autoneg_failed) {
 480			mac->autoneg_failed = true;
 481			return 0;
 482		}
 483		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 484
 485		/* Disable auto-negotiation in the TXCW register */
 486		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 487
 488		/* Force link-up and also force full-duplex. */
 489		ctrl = er32(CTRL);
 490		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 491		ew32(CTRL, ctrl);
 492
 493		/* Configure Flow Control after forcing link up. */
 494		ret_val = e1000e_config_fc_after_link_up(hw);
 495		if (ret_val) {
 496			e_dbg("Error configuring flow control\n");
 497			return ret_val;
 498		}
 499	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 500		/* If we are forcing link and we are receiving /C/ ordered
 501		 * sets, re-enable auto-negotiation in the TXCW register
 502		 * and disable forced link in the Device Control register
 503		 * in an attempt to auto-negotiate with our link partner.
 504		 */
 505		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 506		ew32(TXCW, mac->txcw);
 507		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 508
 509		mac->serdes_has_link = true;
 510	}
 511
 512	return 0;
 513}
 514
 515/**
 516 *  e1000e_check_for_serdes_link - Check for link (Serdes)
 517 *  @hw: pointer to the HW structure
 518 *
 519 *  Checks for link up on the hardware.  If link is not up and we have
 520 *  a signal, then we need to force link up.
 521 **/
 522s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
 523{
 524	struct e1000_mac_info *mac = &hw->mac;
 525	u32 rxcw;
 526	u32 ctrl;
 527	u32 status;
 528	s32 ret_val;
 529
 530	ctrl = er32(CTRL);
 531	status = er32(STATUS);
 532	rxcw = er32(RXCW);
 533
 534	/* If we don't have link (auto-negotiation failed or link partner
 535	 * cannot auto-negotiate), and our link partner is not trying to
 536	 * auto-negotiate with us (we are receiving idles or data),
 537	 * we need to force link up. We also need to give auto-negotiation
 538	 * time to complete.
 539	 */
 540	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 541	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
 542		if (!mac->autoneg_failed) {
 543			mac->autoneg_failed = true;
 544			return 0;
 545		}
 546		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 547
 548		/* Disable auto-negotiation in the TXCW register */
 549		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 550
 551		/* Force link-up and also force full-duplex. */
 552		ctrl = er32(CTRL);
 553		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 554		ew32(CTRL, ctrl);
 555
 556		/* Configure Flow Control after forcing link up. */
 557		ret_val = e1000e_config_fc_after_link_up(hw);
 558		if (ret_val) {
 559			e_dbg("Error configuring flow control\n");
 560			return ret_val;
 561		}
 562	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 563		/* If we are forcing link and we are receiving /C/ ordered
 564		 * sets, re-enable auto-negotiation in the TXCW register
 565		 * and disable forced link in the Device Control register
 566		 * in an attempt to auto-negotiate with our link partner.
 567		 */
 568		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 569		ew32(TXCW, mac->txcw);
 570		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 571
 572		mac->serdes_has_link = true;
 573	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
 574		/* If we force link for non-auto-negotiation switch, check
 575		 * link status based on MAC synchronization for internal
 576		 * serdes media type.
 577		 */
 578		/* SYNCH bit and IV bit are sticky. */
 579		usleep_range(10, 20);
 580		rxcw = er32(RXCW);
 581		if (rxcw & E1000_RXCW_SYNCH) {
 582			if (!(rxcw & E1000_RXCW_IV)) {
 583				mac->serdes_has_link = true;
 584				e_dbg("SERDES: Link up - forced.\n");
 585			}
 586		} else {
 587			mac->serdes_has_link = false;
 588			e_dbg("SERDES: Link down - force failed.\n");
 589		}
 590	}
 591
 592	if (E1000_TXCW_ANE & er32(TXCW)) {
 593		status = er32(STATUS);
 594		if (status & E1000_STATUS_LU) {
 595			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
 596			usleep_range(10, 20);
 597			rxcw = er32(RXCW);
 598			if (rxcw & E1000_RXCW_SYNCH) {
 599				if (!(rxcw & E1000_RXCW_IV)) {
 600					mac->serdes_has_link = true;
 601					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
 602				} else {
 603					mac->serdes_has_link = false;
 604					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
 605				}
 606			} else {
 607				mac->serdes_has_link = false;
 608				e_dbg("SERDES: Link down - no sync.\n");
 609			}
 610		} else {
 611			mac->serdes_has_link = false;
 612			e_dbg("SERDES: Link down - autoneg failed\n");
 613		}
 614	}
 615
 616	return 0;
 617}
 618
 619/**
 620 *  e1000_set_default_fc_generic - Set flow control default values
 621 *  @hw: pointer to the HW structure
 622 *
 623 *  Read the EEPROM for the default values for flow control and store the
 624 *  values.
 625 **/
 626static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
 627{
 628	s32 ret_val;
 629	u16 nvm_data;
 630
 631	/* Read and store word 0x0F of the EEPROM. This word contains bits
 632	 * that determine the hardware's default PAUSE (flow control) mode,
 633	 * a bit that determines whether the HW defaults to enabling or
 634	 * disabling auto-negotiation, and the direction of the
 635	 * SW defined pins. If there is no SW over-ride of the flow
 636	 * control setting, then the variable hw->fc will
 637	 * be initialized based on a value in the EEPROM.
 638	 */
 639	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
 640
 641	if (ret_val) {
 642		e_dbg("NVM Read Error\n");
 643		return ret_val;
 644	}
 645
 646	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
 647		hw->fc.requested_mode = e1000_fc_none;
 648	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
 649		hw->fc.requested_mode = e1000_fc_tx_pause;
 650	else
 651		hw->fc.requested_mode = e1000_fc_full;
 652
 653	return 0;
 654}
 655
 656/**
 657 *  e1000e_setup_link_generic - Setup flow control and link settings
 658 *  @hw: pointer to the HW structure
 659 *
 660 *  Determines which flow control settings to use, then configures flow
 661 *  control.  Calls the appropriate media-specific link configuration
 662 *  function.  Assuming the adapter has a valid link partner, a valid link
 663 *  should be established.  Assumes the hardware has previously been reset
 664 *  and the transmitter and receiver are not enabled.
 665 **/
 666s32 e1000e_setup_link_generic(struct e1000_hw *hw)
 667{
 668	s32 ret_val;
 669
 670	/* In the case of the phy reset being blocked, we already have a link.
 671	 * We do not need to set it up again.
 672	 */
 673	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
 674		return 0;
 675
 676	/* If requested flow control is set to default, set flow control
 677	 * based on the EEPROM flow control settings.
 678	 */
 679	if (hw->fc.requested_mode == e1000_fc_default) {
 680		ret_val = e1000_set_default_fc_generic(hw);
 681		if (ret_val)
 682			return ret_val;
 683	}
 684
 685	/* Save off the requested flow control mode for use later.  Depending
 686	 * on the link partner's capabilities, we may or may not use this mode.
 687	 */
 688	hw->fc.current_mode = hw->fc.requested_mode;
 689
 690	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 691
 692	/* Call the necessary media_type subroutine to configure the link. */
 693	ret_val = hw->mac.ops.setup_physical_interface(hw);
 694	if (ret_val)
 695		return ret_val;
 696
 697	/* Initialize the flow control address, type, and PAUSE timer
 698	 * registers to their default values.  This is done even if flow
 699	 * control is disabled, because it does not hurt anything to
 700	 * initialize these registers.
 701	 */
 702	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 703	ew32(FCT, FLOW_CONTROL_TYPE);
 704	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 705	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 706
 707	ew32(FCTTV, hw->fc.pause_time);
 708
 709	return e1000e_set_fc_watermarks(hw);
 710}
 711
 712/**
 713 *  e1000_commit_fc_settings_generic - Configure flow control
 714 *  @hw: pointer to the HW structure
 715 *
 716 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
 717 *  base on the flow control settings in e1000_mac_info.
 718 **/
 719static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
 720{
 721	struct e1000_mac_info *mac = &hw->mac;
 722	u32 txcw;
 723
 724	/* Check for a software override of the flow control settings, and
 725	 * setup the device accordingly.  If auto-negotiation is enabled, then
 726	 * software will have to set the "PAUSE" bits to the correct value in
 727	 * the Transmit Config Word Register (TXCW) and re-start auto-
 728	 * negotiation.  However, if auto-negotiation is disabled, then
 729	 * software will have to manually configure the two flow control enable
 730	 * bits in the CTRL register.
 731	 *
 732	 * The possible values of the "fc" parameter are:
 733	 *      0:  Flow control is completely disabled
 734	 *      1:  Rx flow control is enabled (we can receive pause frames,
 735	 *          but not send pause frames).
 736	 *      2:  Tx flow control is enabled (we can send pause frames but we
 737	 *          do not support receiving pause frames).
 738	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
 739	 */
 740	switch (hw->fc.current_mode) {
 741	case e1000_fc_none:
 742		/* Flow control completely disabled by a software over-ride. */
 743		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 744		break;
 745	case e1000_fc_rx_pause:
 746		/* Rx Flow control is enabled and Tx Flow control is disabled
 747		 * by a software over-ride. Since there really isn't a way to
 748		 * advertise that we are capable of Rx Pause ONLY, we will
 749		 * advertise that we support both symmetric and asymmetric Rx
 750		 * PAUSE.  Later, we will disable the adapter's ability to send
 751		 * PAUSE frames.
 752		 */
 753		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 754		break;
 755	case e1000_fc_tx_pause:
 756		/* Tx Flow control is enabled, and Rx Flow control is disabled,
 757		 * by a software over-ride.
 758		 */
 759		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 760		break;
 761	case e1000_fc_full:
 762		/* Flow control (both Rx and Tx) is enabled by a software
 763		 * over-ride.
 764		 */
 765		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 766		break;
 767	default:
 768		e_dbg("Flow control param set incorrectly\n");
 769		return -E1000_ERR_CONFIG;
 770	}
 771
 772	ew32(TXCW, txcw);
 773	mac->txcw = txcw;
 774
 775	return 0;
 776}
 777
 778/**
 779 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
 780 *  @hw: pointer to the HW structure
 781 *
 782 *  Polls for link up by reading the status register, if link fails to come
 783 *  up with auto-negotiation, then the link is forced if a signal is detected.
 784 **/
 785static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
 786{
 787	struct e1000_mac_info *mac = &hw->mac;
 788	u32 i, status;
 789	s32 ret_val;
 790
 791	/* If we have a signal (the cable is plugged in, or assumed true for
 792	 * serdes media) then poll for a "Link-Up" indication in the Device
 793	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
 794	 * seconds (Auto-negotiation should complete in less than 500
 795	 * milliseconds even if the other end is doing it in SW).
 796	 */
 797	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
 798		usleep_range(10000, 11000);
 799		status = er32(STATUS);
 800		if (status & E1000_STATUS_LU)
 801			break;
 802	}
 803	if (i == FIBER_LINK_UP_LIMIT) {
 804		e_dbg("Never got a valid link from auto-neg!!!\n");
 805		mac->autoneg_failed = true;
 806		/* AutoNeg failed to achieve a link, so we'll call
 807		 * mac->check_for_link. This routine will force the
 808		 * link up if we detect a signal. This will allow us to
 809		 * communicate with non-autonegotiating link partners.
 810		 */
 811		ret_val = mac->ops.check_for_link(hw);
 812		if (ret_val) {
 813			e_dbg("Error while checking for link\n");
 814			return ret_val;
 815		}
 816		mac->autoneg_failed = false;
 817	} else {
 818		mac->autoneg_failed = false;
 819		e_dbg("Valid Link Found\n");
 820	}
 821
 822	return 0;
 823}
 824
 825/**
 826 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
 827 *  @hw: pointer to the HW structure
 828 *
 829 *  Configures collision distance and flow control for fiber and serdes
 830 *  links.  Upon successful setup, poll for link.
 831 **/
 832s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
 833{
 834	u32 ctrl;
 835	s32 ret_val;
 836
 837	ctrl = er32(CTRL);
 838
 839	/* Take the link out of reset */
 840	ctrl &= ~E1000_CTRL_LRST;
 841
 842	hw->mac.ops.config_collision_dist(hw);
 843
 844	ret_val = e1000_commit_fc_settings_generic(hw);
 845	if (ret_val)
 846		return ret_val;
 847
 848	/* Since auto-negotiation is enabled, take the link out of reset (the
 849	 * link will be in reset, because we previously reset the chip). This
 850	 * will restart auto-negotiation.  If auto-negotiation is successful
 851	 * then the link-up status bit will be set and the flow control enable
 852	 * bits (RFCE and TFCE) will be set according to their negotiated value.
 853	 */
 854	e_dbg("Auto-negotiation enabled\n");
 855
 856	ew32(CTRL, ctrl);
 857	e1e_flush();
 858	usleep_range(1000, 2000);
 859
 860	/* For these adapters, the SW definable pin 1 is set when the optics
 861	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
 862	 * indication.
 863	 */
 864	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
 865	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
 866		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
 867	} else {
 868		e_dbg("No signal detected\n");
 869	}
 870
 871	return ret_val;
 872}
 873
 874/**
 875 *  e1000e_config_collision_dist_generic - Configure collision distance
 876 *  @hw: pointer to the HW structure
 877 *
 878 *  Configures the collision distance to the default value and is used
 879 *  during link setup.
 880 **/
 881void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
 882{
 883	u32 tctl;
 884
 885	tctl = er32(TCTL);
 886
 887	tctl &= ~E1000_TCTL_COLD;
 888	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 889
 890	ew32(TCTL, tctl);
 891	e1e_flush();
 892}
 893
 894/**
 895 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
 896 *  @hw: pointer to the HW structure
 897 *
 898 *  Sets the flow control high/low threshold (watermark) registers.  If
 899 *  flow control XON frame transmission is enabled, then set XON frame
 900 *  transmission as well.
 901 **/
 902s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
 903{
 904	u32 fcrtl = 0, fcrth = 0;
 905
 906	/* Set the flow control receive threshold registers.  Normally,
 907	 * these registers will be set to a default threshold that may be
 908	 * adjusted later by the driver's runtime code.  However, if the
 909	 * ability to transmit pause frames is not enabled, then these
 910	 * registers will be set to 0.
 911	 */
 912	if (hw->fc.current_mode & e1000_fc_tx_pause) {
 913		/* We need to set up the Receive Threshold high and low water
 914		 * marks as well as (optionally) enabling the transmission of
 915		 * XON frames.
 916		 */
 917		fcrtl = hw->fc.low_water;
 918		if (hw->fc.send_xon)
 919			fcrtl |= E1000_FCRTL_XONE;
 920
 921		fcrth = hw->fc.high_water;
 922	}
 923	ew32(FCRTL, fcrtl);
 924	ew32(FCRTH, fcrth);
 925
 926	return 0;
 927}
 928
 929/**
 930 *  e1000e_force_mac_fc - Force the MAC's flow control settings
 931 *  @hw: pointer to the HW structure
 932 *
 933 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 934 *  device control register to reflect the adapter settings.  TFCE and RFCE
 935 *  need to be explicitly set by software when a copper PHY is used because
 936 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 937 *  also configure these bits when link is forced on a fiber connection.
 938 **/
 939s32 e1000e_force_mac_fc(struct e1000_hw *hw)
 940{
 941	u32 ctrl;
 942
 943	ctrl = er32(CTRL);
 944
 945	/* Because we didn't get link via the internal auto-negotiation
 946	 * mechanism (we either forced link or we got link via PHY
 947	 * auto-neg), we have to manually enable/disable transmit an
 948	 * receive flow control.
 949	 *
 950	 * The "Case" statement below enables/disable flow control
 951	 * according to the "hw->fc.current_mode" parameter.
 952	 *
 953	 * The possible values of the "fc" parameter are:
 954	 *      0:  Flow control is completely disabled
 955	 *      1:  Rx flow control is enabled (we can receive pause
 956	 *          frames but not send pause frames).
 957	 *      2:  Tx flow control is enabled (we can send pause frames
 958	 *          but we do not receive pause frames).
 959	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
 960	 *  other:  No other values should be possible at this point.
 961	 */
 962	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 963
 964	switch (hw->fc.current_mode) {
 965	case e1000_fc_none:
 966		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 967		break;
 968	case e1000_fc_rx_pause:
 969		ctrl &= (~E1000_CTRL_TFCE);
 970		ctrl |= E1000_CTRL_RFCE;
 971		break;
 972	case e1000_fc_tx_pause:
 973		ctrl &= (~E1000_CTRL_RFCE);
 974		ctrl |= E1000_CTRL_TFCE;
 975		break;
 976	case e1000_fc_full:
 977		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 978		break;
 979	default:
 980		e_dbg("Flow control param set incorrectly\n");
 981		return -E1000_ERR_CONFIG;
 982	}
 983
 984	ew32(CTRL, ctrl);
 985
 986	return 0;
 987}
 988
 989/**
 990 *  e1000e_config_fc_after_link_up - Configures flow control after link
 991 *  @hw: pointer to the HW structure
 992 *
 993 *  Checks the status of auto-negotiation after link up to ensure that the
 994 *  speed and duplex were not forced.  If the link needed to be forced, then
 995 *  flow control needs to be forced also.  If auto-negotiation is enabled
 996 *  and did not fail, then we configure flow control based on our link
 997 *  partner.
 998 **/
 999s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1000{
1001	struct e1000_mac_info *mac = &hw->mac;
1002	s32 ret_val = 0;
1003	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1004	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1005	u16 speed, duplex;
1006
1007	/* Check for the case where we have fiber media and auto-neg failed
1008	 * so we had to force link.  In this case, we need to force the
1009	 * configuration of the MAC to match the "fc" parameter.
1010	 */
1011	if (mac->autoneg_failed) {
1012		if (hw->phy.media_type == e1000_media_type_fiber ||
1013		    hw->phy.media_type == e1000_media_type_internal_serdes)
1014			ret_val = e1000e_force_mac_fc(hw);
1015	} else {
1016		if (hw->phy.media_type == e1000_media_type_copper)
1017			ret_val = e1000e_force_mac_fc(hw);
1018	}
1019
1020	if (ret_val) {
1021		e_dbg("Error forcing flow control settings\n");
1022		return ret_val;
1023	}
1024
1025	/* Check for the case where we have copper media and auto-neg is
1026	 * enabled.  In this case, we need to check and see if Auto-Neg
1027	 * has completed, and if so, how the PHY and link partner has
1028	 * flow control configured.
1029	 */
1030	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1031		/* Read the MII Status Register and check to see if AutoNeg
1032		 * has completed.  We read this twice because this reg has
1033		 * some "sticky" (latched) bits.
1034		 */
1035		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1036		if (ret_val)
1037			return ret_val;
1038		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1039		if (ret_val)
1040			return ret_val;
1041
1042		if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1043			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1044			return ret_val;
1045		}
1046
1047		/* The AutoNeg process has completed, so we now need to
1048		 * read both the Auto Negotiation Advertisement
1049		 * Register (Address 4) and the Auto_Negotiation Base
1050		 * Page Ability Register (Address 5) to determine how
1051		 * flow control was negotiated.
1052		 */
1053		ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1054		if (ret_val)
1055			return ret_val;
1056		ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1057		if (ret_val)
1058			return ret_val;
1059
1060		/* Two bits in the Auto Negotiation Advertisement Register
1061		 * (Address 4) and two bits in the Auto Negotiation Base
1062		 * Page Ability Register (Address 5) determine flow control
1063		 * for both the PHY and the link partner.  The following
1064		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1065		 * 1999, describes these PAUSE resolution bits and how flow
1066		 * control is determined based upon these settings.
1067		 * NOTE:  DC = Don't Care
1068		 *
1069		 *   LOCAL DEVICE  |   LINK PARTNER
1070		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1071		 *-------|---------|-------|---------|--------------------
1072		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1073		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1074		 *   0   |    1    |   1   |    0    | e1000_fc_none
1075		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1076		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1077		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1078		 *   1   |    1    |   0   |    0    | e1000_fc_none
1079		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1080		 *
1081		 * Are both PAUSE bits set to 1?  If so, this implies
1082		 * Symmetric Flow Control is enabled at both ends.  The
1083		 * ASM_DIR bits are irrelevant per the spec.
1084		 *
1085		 * For Symmetric Flow Control:
1086		 *
1087		 *   LOCAL DEVICE  |   LINK PARTNER
1088		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1089		 *-------|---------|-------|---------|--------------------
1090		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1091		 *
1092		 */
1093		if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1094		    (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1095			/* Now we need to check if the user selected Rx ONLY
1096			 * of pause frames.  In this case, we had to advertise
1097			 * FULL flow control because we could not advertise Rx
1098			 * ONLY. Hence, we must now check to see if we need to
1099			 * turn OFF the TRANSMISSION of PAUSE frames.
1100			 */
1101			if (hw->fc.requested_mode == e1000_fc_full) {
1102				hw->fc.current_mode = e1000_fc_full;
1103				e_dbg("Flow Control = FULL.\n");
1104			} else {
1105				hw->fc.current_mode = e1000_fc_rx_pause;
1106				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1107			}
1108		}
1109		/* For receiving PAUSE frames ONLY.
1110		 *
1111		 *   LOCAL DEVICE  |   LINK PARTNER
1112		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1113		 *-------|---------|-------|---------|--------------------
1114		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1115		 */
1116		else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1117			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1118			 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1119			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1120			hw->fc.current_mode = e1000_fc_tx_pause;
1121			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1122		}
1123		/* For transmitting PAUSE frames ONLY.
1124		 *
1125		 *   LOCAL DEVICE  |   LINK PARTNER
1126		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1127		 *-------|---------|-------|---------|--------------------
1128		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1129		 */
1130		else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1131			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1132			 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1133			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1134			hw->fc.current_mode = e1000_fc_rx_pause;
1135			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1136		} else {
1137			/* Per the IEEE spec, at this point flow control
1138			 * should be disabled.
1139			 */
1140			hw->fc.current_mode = e1000_fc_none;
1141			e_dbg("Flow Control = NONE.\n");
1142		}
1143
1144		/* Now we need to do one last check...  If we auto-
1145		 * negotiated to HALF DUPLEX, flow control should not be
1146		 * enabled per IEEE 802.3 spec.
1147		 */
1148		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1149		if (ret_val) {
1150			e_dbg("Error getting link speed and duplex\n");
1151			return ret_val;
1152		}
1153
1154		if (duplex == HALF_DUPLEX)
1155			hw->fc.current_mode = e1000_fc_none;
1156
1157		/* Now we call a subroutine to actually force the MAC
1158		 * controller to use the correct flow control settings.
1159		 */
1160		ret_val = e1000e_force_mac_fc(hw);
1161		if (ret_val) {
1162			e_dbg("Error forcing flow control settings\n");
1163			return ret_val;
1164		}
1165	}
1166
1167	/* Check for the case where we have SerDes media and auto-neg is
1168	 * enabled.  In this case, we need to check and see if Auto-Neg
1169	 * has completed, and if so, how the PHY and link partner has
1170	 * flow control configured.
1171	 */
1172	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1173	    mac->autoneg) {
1174		/* Read the PCS_LSTS and check to see if AutoNeg
1175		 * has completed.
1176		 */
1177		pcs_status_reg = er32(PCS_LSTAT);
1178
1179		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1180			e_dbg("PCS Auto Neg has not completed.\n");
1181			return ret_val;
1182		}
1183
1184		/* The AutoNeg process has completed, so we now need to
1185		 * read both the Auto Negotiation Advertisement
1186		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1187		 * Page Ability Register (PCS_LPAB) to determine how
1188		 * flow control was negotiated.
1189		 */
1190		pcs_adv_reg = er32(PCS_ANADV);
1191		pcs_lp_ability_reg = er32(PCS_LPAB);
1192
1193		/* Two bits in the Auto Negotiation Advertisement Register
1194		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1195		 * Page Ability Register (PCS_LPAB) determine flow control
1196		 * for both the PHY and the link partner.  The following
1197		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1198		 * 1999, describes these PAUSE resolution bits and how flow
1199		 * control is determined based upon these settings.
1200		 * NOTE:  DC = Don't Care
1201		 *
1202		 *   LOCAL DEVICE  |   LINK PARTNER
1203		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1204		 *-------|---------|-------|---------|--------------------
1205		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1206		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1207		 *   0   |    1    |   1   |    0    | e1000_fc_none
1208		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1209		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1210		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1211		 *   1   |    1    |   0   |    0    | e1000_fc_none
1212		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1213		 *
1214		 * Are both PAUSE bits set to 1?  If so, this implies
1215		 * Symmetric Flow Control is enabled at both ends.  The
1216		 * ASM_DIR bits are irrelevant per the spec.
1217		 *
1218		 * For Symmetric Flow Control:
1219		 *
1220		 *   LOCAL DEVICE  |   LINK PARTNER
1221		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1222		 *-------|---------|-------|---------|--------------------
1223		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1224		 *
1225		 */
1226		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1227		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1228			/* Now we need to check if the user selected Rx ONLY
1229			 * of pause frames.  In this case, we had to advertise
1230			 * FULL flow control because we could not advertise Rx
1231			 * ONLY. Hence, we must now check to see if we need to
1232			 * turn OFF the TRANSMISSION of PAUSE frames.
1233			 */
1234			if (hw->fc.requested_mode == e1000_fc_full) {
1235				hw->fc.current_mode = e1000_fc_full;
1236				e_dbg("Flow Control = FULL.\n");
1237			} else {
1238				hw->fc.current_mode = e1000_fc_rx_pause;
1239				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1240			}
1241		}
1242		/* For receiving PAUSE frames ONLY.
1243		 *
1244		 *   LOCAL DEVICE  |   LINK PARTNER
1245		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1246		 *-------|---------|-------|---------|--------------------
1247		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1248		 */
1249		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1250			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1251			 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1252			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1253			hw->fc.current_mode = e1000_fc_tx_pause;
1254			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1255		}
1256		/* For transmitting PAUSE frames ONLY.
1257		 *
1258		 *   LOCAL DEVICE  |   LINK PARTNER
1259		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1260		 *-------|---------|-------|---------|--------------------
1261		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1262		 */
1263		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1264			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1265			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1266			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1267			hw->fc.current_mode = e1000_fc_rx_pause;
1268			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1269		} else {
1270			/* Per the IEEE spec, at this point flow control
1271			 * should be disabled.
1272			 */
1273			hw->fc.current_mode = e1000_fc_none;
1274			e_dbg("Flow Control = NONE.\n");
1275		}
1276
1277		/* Now we call a subroutine to actually force the MAC
1278		 * controller to use the correct flow control settings.
1279		 */
1280		pcs_ctrl_reg = er32(PCS_LCTL);
1281		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1282		ew32(PCS_LCTL, pcs_ctrl_reg);
1283
1284		ret_val = e1000e_force_mac_fc(hw);
1285		if (ret_val) {
1286			e_dbg("Error forcing flow control settings\n");
1287			return ret_val;
1288		}
1289	}
1290
1291	return 0;
1292}
1293
1294/**
1295 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1296 *  @hw: pointer to the HW structure
1297 *  @speed: stores the current speed
1298 *  @duplex: stores the current duplex
1299 *
1300 *  Read the status register for the current speed/duplex and store the current
1301 *  speed and duplex for copper connections.
1302 **/
1303s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1304				       u16 *duplex)
1305{
1306	u32 status;
1307
1308	status = er32(STATUS);
1309	if (status & E1000_STATUS_SPEED_1000)
1310		*speed = SPEED_1000;
1311	else if (status & E1000_STATUS_SPEED_100)
1312		*speed = SPEED_100;
1313	else
1314		*speed = SPEED_10;
1315
1316	if (status & E1000_STATUS_FD)
1317		*duplex = FULL_DUPLEX;
1318	else
1319		*duplex = HALF_DUPLEX;
1320
1321	e_dbg("%u Mbps, %s Duplex\n",
1322	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1323	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1324
1325	return 0;
1326}
1327
1328/**
1329 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1330 *  @hw: pointer to the HW structure
1331 *  @speed: stores the current speed
1332 *  @duplex: stores the current duplex
1333 *
1334 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1335 *  for fiber/serdes links.
1336 **/
1337s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1338					     *hw, u16 *speed, u16 *duplex)
1339{
1340	*speed = SPEED_1000;
1341	*duplex = FULL_DUPLEX;
1342
1343	return 0;
1344}
1345
1346/**
1347 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1348 *  @hw: pointer to the HW structure
1349 *
1350 *  Acquire the HW semaphore to access the PHY or NVM
1351 **/
1352s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1353{
1354	u32 swsm;
1355	s32 timeout = hw->nvm.word_size + 1;
1356	s32 i = 0;
1357
1358	/* Get the SW semaphore */
1359	while (i < timeout) {
1360		swsm = er32(SWSM);
1361		if (!(swsm & E1000_SWSM_SMBI))
1362			break;
1363
1364		udelay(100);
1365		i++;
1366	}
1367
1368	if (i == timeout) {
1369		e_dbg("Driver can't access device - SMBI bit is set.\n");
1370		return -E1000_ERR_NVM;
1371	}
1372
1373	/* Get the FW semaphore. */
1374	for (i = 0; i < timeout; i++) {
1375		swsm = er32(SWSM);
1376		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1377
1378		/* Semaphore acquired if bit latched */
1379		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1380			break;
1381
1382		udelay(100);
1383	}
1384
1385	if (i == timeout) {
1386		/* Release semaphores */
1387		e1000e_put_hw_semaphore(hw);
1388		e_dbg("Driver can't access the NVM\n");
1389		return -E1000_ERR_NVM;
1390	}
1391
1392	return 0;
1393}
1394
1395/**
1396 *  e1000e_put_hw_semaphore - Release hardware semaphore
1397 *  @hw: pointer to the HW structure
1398 *
1399 *  Release hardware semaphore used to access the PHY or NVM
1400 **/
1401void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1402{
1403	u32 swsm;
1404
1405	swsm = er32(SWSM);
1406	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1407	ew32(SWSM, swsm);
1408}
1409
1410/**
1411 *  e1000e_get_auto_rd_done - Check for auto read completion
1412 *  @hw: pointer to the HW structure
1413 *
1414 *  Check EEPROM for Auto Read done bit.
1415 **/
1416s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1417{
1418	s32 i = 0;
1419
1420	while (i < AUTO_READ_DONE_TIMEOUT) {
1421		if (er32(EECD) & E1000_EECD_AUTO_RD)
1422			break;
1423		usleep_range(1000, 2000);
1424		i++;
1425	}
1426
1427	if (i == AUTO_READ_DONE_TIMEOUT) {
1428		e_dbg("Auto read by HW from NVM has not completed.\n");
1429		return -E1000_ERR_RESET;
1430	}
1431
1432	return 0;
1433}
1434
1435/**
1436 *  e1000e_valid_led_default - Verify a valid default LED config
1437 *  @hw: pointer to the HW structure
1438 *  @data: pointer to the NVM (EEPROM)
1439 *
1440 *  Read the EEPROM for the current default LED configuration.  If the
1441 *  LED configuration is not valid, set to a valid LED configuration.
1442 **/
1443s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1444{
1445	s32 ret_val;
1446
1447	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1448	if (ret_val) {
1449		e_dbg("NVM Read Error\n");
1450		return ret_val;
1451	}
1452
1453	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1454		*data = ID_LED_DEFAULT;
1455
1456	return 0;
1457}
1458
1459/**
1460 *  e1000e_id_led_init_generic -
1461 *  @hw: pointer to the HW structure
1462 *
1463 **/
1464s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1465{
1466	struct e1000_mac_info *mac = &hw->mac;
1467	s32 ret_val;
1468	const u32 ledctl_mask = 0x000000FF;
1469	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1470	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1471	u16 data, i, temp;
1472	const u16 led_mask = 0x0F;
1473
1474	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1475	if (ret_val)
1476		return ret_val;
1477
1478	mac->ledctl_default = er32(LEDCTL);
1479	mac->ledctl_mode1 = mac->ledctl_default;
1480	mac->ledctl_mode2 = mac->ledctl_default;
1481
1482	for (i = 0; i < 4; i++) {
1483		temp = (data >> (i << 2)) & led_mask;
1484		switch (temp) {
1485		case ID_LED_ON1_DEF2:
1486		case ID_LED_ON1_ON2:
1487		case ID_LED_ON1_OFF2:
1488			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1489			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1490			break;
1491		case ID_LED_OFF1_DEF2:
1492		case ID_LED_OFF1_ON2:
1493		case ID_LED_OFF1_OFF2:
1494			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1495			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1496			break;
1497		default:
1498			/* Do nothing */
1499			break;
1500		}
1501		switch (temp) {
1502		case ID_LED_DEF1_ON2:
1503		case ID_LED_ON1_ON2:
1504		case ID_LED_OFF1_ON2:
1505			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1506			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1507			break;
1508		case ID_LED_DEF1_OFF2:
1509		case ID_LED_ON1_OFF2:
1510		case ID_LED_OFF1_OFF2:
1511			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1512			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1513			break;
1514		default:
1515			/* Do nothing */
1516			break;
1517		}
1518	}
1519
1520	return 0;
1521}
1522
1523/**
1524 *  e1000e_setup_led_generic - Configures SW controllable LED
1525 *  @hw: pointer to the HW structure
1526 *
1527 *  This prepares the SW controllable LED for use and saves the current state
1528 *  of the LED so it can be later restored.
1529 **/
1530s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1531{
1532	u32 ledctl;
1533
1534	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1535		return -E1000_ERR_CONFIG;
1536
1537	if (hw->phy.media_type == e1000_media_type_fiber) {
1538		ledctl = er32(LEDCTL);
1539		hw->mac.ledctl_default = ledctl;
1540		/* Turn off LED0 */
1541		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1542			    E1000_LEDCTL_LED0_MODE_MASK);
1543		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1544			   E1000_LEDCTL_LED0_MODE_SHIFT);
1545		ew32(LEDCTL, ledctl);
1546	} else if (hw->phy.media_type == e1000_media_type_copper) {
1547		ew32(LEDCTL, hw->mac.ledctl_mode1);
1548	}
1549
1550	return 0;
1551}
1552
1553/**
1554 *  e1000e_cleanup_led_generic - Set LED config to default operation
1555 *  @hw: pointer to the HW structure
1556 *
1557 *  Remove the current LED configuration and set the LED configuration
1558 *  to the default value, saved from the EEPROM.
1559 **/
1560s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1561{
1562	ew32(LEDCTL, hw->mac.ledctl_default);
1563	return 0;
1564}
1565
1566/**
1567 *  e1000e_blink_led_generic - Blink LED
1568 *  @hw: pointer to the HW structure
1569 *
1570 *  Blink the LEDs which are set to be on.
1571 **/
1572s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1573{
1574	u32 ledctl_blink = 0;
1575	u32 i;
1576
1577	if (hw->phy.media_type == e1000_media_type_fiber) {
1578		/* always blink LED0 for PCI-E fiber */
1579		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1580		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1581	} else {
1582		/* Set the blink bit for each LED that's "on" (0x0E)
1583		 * (or "off" if inverted) in ledctl_mode2.  The blink
1584		 * logic in hardware only works when mode is set to "on"
1585		 * so it must be changed accordingly when the mode is
1586		 * "off" and inverted.
1587		 */
1588		ledctl_blink = hw->mac.ledctl_mode2;
1589		for (i = 0; i < 32; i += 8) {
1590			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1591			    E1000_LEDCTL_LED0_MODE_MASK;
1592			u32 led_default = hw->mac.ledctl_default >> i;
1593
1594			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1595			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1596			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1597			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1598				ledctl_blink &=
1599				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1600				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1601						 E1000_LEDCTL_MODE_LED_ON) << i;
1602			}
1603		}
1604	}
1605
1606	ew32(LEDCTL, ledctl_blink);
1607
1608	return 0;
1609}
1610
1611/**
1612 *  e1000e_led_on_generic - Turn LED on
1613 *  @hw: pointer to the HW structure
1614 *
1615 *  Turn LED on.
1616 **/
1617s32 e1000e_led_on_generic(struct e1000_hw *hw)
1618{
1619	u32 ctrl;
1620
1621	switch (hw->phy.media_type) {
1622	case e1000_media_type_fiber:
1623		ctrl = er32(CTRL);
1624		ctrl &= ~E1000_CTRL_SWDPIN0;
1625		ctrl |= E1000_CTRL_SWDPIO0;
1626		ew32(CTRL, ctrl);
1627		break;
1628	case e1000_media_type_copper:
1629		ew32(LEDCTL, hw->mac.ledctl_mode2);
1630		break;
1631	default:
1632		break;
1633	}
1634
1635	return 0;
1636}
1637
1638/**
1639 *  e1000e_led_off_generic - Turn LED off
1640 *  @hw: pointer to the HW structure
1641 *
1642 *  Turn LED off.
1643 **/
1644s32 e1000e_led_off_generic(struct e1000_hw *hw)
1645{
1646	u32 ctrl;
1647
1648	switch (hw->phy.media_type) {
1649	case e1000_media_type_fiber:
1650		ctrl = er32(CTRL);
1651		ctrl |= E1000_CTRL_SWDPIN0;
1652		ctrl |= E1000_CTRL_SWDPIO0;
1653		ew32(CTRL, ctrl);
1654		break;
1655	case e1000_media_type_copper:
1656		ew32(LEDCTL, hw->mac.ledctl_mode1);
1657		break;
1658	default:
1659		break;
1660	}
1661
1662	return 0;
1663}
1664
1665/**
1666 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1667 *  @hw: pointer to the HW structure
1668 *  @no_snoop: bitmap of snoop events
1669 *
1670 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1671 **/
1672void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1673{
1674	u32 gcr;
1675
1676	if (no_snoop) {
1677		gcr = er32(GCR);
1678		gcr &= ~(PCIE_NO_SNOOP_ALL);
1679		gcr |= no_snoop;
1680		ew32(GCR, gcr);
1681	}
1682}
1683
1684/**
1685 *  e1000e_disable_pcie_master - Disables PCI-express master access
1686 *  @hw: pointer to the HW structure
1687 *
1688 *  Returns 0 if successful, else returns -10
1689 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1690 *  the master requests to be disabled.
1691 *
1692 *  Disables PCI-Express master access and verifies there are no pending
1693 *  requests.
1694 **/
1695s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1696{
1697	u32 ctrl;
1698	s32 timeout = MASTER_DISABLE_TIMEOUT;
1699
1700	ctrl = er32(CTRL);
1701	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1702	ew32(CTRL, ctrl);
1703
1704	while (timeout) {
1705		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1706			break;
1707		usleep_range(100, 200);
1708		timeout--;
1709	}
1710
1711	if (!timeout) {
1712		e_dbg("Master requests are pending.\n");
1713		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1714	}
1715
1716	return 0;
1717}
1718
1719/**
1720 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1721 *  @hw: pointer to the HW structure
1722 *
1723 *  Reset the Adaptive Interframe Spacing throttle to default values.
1724 **/
1725void e1000e_reset_adaptive(struct e1000_hw *hw)
1726{
1727	struct e1000_mac_info *mac = &hw->mac;
1728
1729	if (!mac->adaptive_ifs) {
1730		e_dbg("Not in Adaptive IFS mode!\n");
1731		return;
1732	}
1733
1734	mac->current_ifs_val = 0;
1735	mac->ifs_min_val = IFS_MIN;
1736	mac->ifs_max_val = IFS_MAX;
1737	mac->ifs_step_size = IFS_STEP;
1738	mac->ifs_ratio = IFS_RATIO;
1739
1740	mac->in_ifs_mode = false;
1741	ew32(AIT, 0);
1742}
1743
1744/**
1745 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1746 *  @hw: pointer to the HW structure
1747 *
1748 *  Update the Adaptive Interframe Spacing Throttle value based on the
1749 *  time between transmitted packets and time between collisions.
1750 **/
1751void e1000e_update_adaptive(struct e1000_hw *hw)
1752{
1753	struct e1000_mac_info *mac = &hw->mac;
1754
1755	if (!mac->adaptive_ifs) {
1756		e_dbg("Not in Adaptive IFS mode!\n");
1757		return;
1758	}
1759
1760	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1761		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1762			mac->in_ifs_mode = true;
1763			if (mac->current_ifs_val < mac->ifs_max_val) {
1764				if (!mac->current_ifs_val)
1765					mac->current_ifs_val = mac->ifs_min_val;
1766				else
1767					mac->current_ifs_val +=
1768					    mac->ifs_step_size;
1769				ew32(AIT, mac->current_ifs_val);
1770			}
1771		}
1772	} else {
1773		if (mac->in_ifs_mode &&
1774		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1775			mac->current_ifs_val = 0;
1776			mac->in_ifs_mode = false;
1777			ew32(AIT, 0);
1778		}
1779	}
1780}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
  22
  23#include "e1000.h"
  24
  25/**
  26 *  e1000e_get_bus_info_pcie - Get PCIe bus information
  27 *  @hw: pointer to the HW structure
  28 *
  29 *  Determines and stores the system bus information for a particular
  30 *  network interface.  The following bus information is determined and stored:
  31 *  bus speed, bus width, type (PCIe), and PCIe function.
  32 **/
  33s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
  34{
 
  35	struct e1000_mac_info *mac = &hw->mac;
  36	struct e1000_bus_info *bus = &hw->bus;
  37	struct e1000_adapter *adapter = hw->adapter;
  38	u16 pcie_link_status, cap_offset;
  39
  40	cap_offset = adapter->pdev->pcie_cap;
  41	if (!cap_offset) {
  42		bus->width = e1000_bus_width_unknown;
  43	} else {
  44		pci_read_config_word(adapter->pdev,
  45				     cap_offset + PCIE_LINK_STATUS,
  46				     &pcie_link_status);
  47		bus->width = (enum e1000_bus_width)((pcie_link_status &
  48						     PCIE_LINK_WIDTH_MASK) >>
  49						    PCIE_LINK_WIDTH_SHIFT);
  50	}
  51
  52	mac->ops.set_lan_id(hw);
  53
  54	return 0;
  55}
  56
  57/**
  58 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
  59 *
  60 *  @hw: pointer to the HW structure
  61 *
  62 *  Determines the LAN function id by reading memory-mapped registers
  63 *  and swaps the port value if requested.
  64 **/
  65void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
  66{
  67	struct e1000_bus_info *bus = &hw->bus;
  68	u32 reg;
  69
  70	/* The status register reports the correct function number
  71	 * for the device regardless of function swap state.
  72	 */
  73	reg = er32(STATUS);
  74	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  75}
  76
  77/**
  78 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
  79 *  @hw: pointer to the HW structure
  80 *
  81 *  Sets the LAN function id to zero for a single port device.
  82 **/
  83void e1000_set_lan_id_single_port(struct e1000_hw *hw)
  84{
  85	struct e1000_bus_info *bus = &hw->bus;
  86
  87	bus->func = 0;
  88}
  89
  90/**
  91 *  e1000_clear_vfta_generic - Clear VLAN filter table
  92 *  @hw: pointer to the HW structure
  93 *
  94 *  Clears the register array which contains the VLAN filter table by
  95 *  setting all the values to 0.
  96 **/
  97void e1000_clear_vfta_generic(struct e1000_hw *hw)
  98{
  99	u32 offset;
 100
 101	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
 102		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
 103		e1e_flush();
 104	}
 105}
 106
 107/**
 108 *  e1000_write_vfta_generic - Write value to VLAN filter table
 109 *  @hw: pointer to the HW structure
 110 *  @offset: register offset in VLAN filter table
 111 *  @value: register value written to VLAN filter table
 112 *
 113 *  Writes value at the given offset in the register array which stores
 114 *  the VLAN filter table.
 115 **/
 116void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
 117{
 118	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
 119	e1e_flush();
 120}
 121
 122/**
 123 *  e1000e_init_rx_addrs - Initialize receive address's
 124 *  @hw: pointer to the HW structure
 125 *  @rar_count: receive address registers
 126 *
 127 *  Setup the receive address registers by setting the base receive address
 128 *  register to the devices MAC address and clearing all the other receive
 129 *  address registers to 0.
 130 **/
 131void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 132{
 133	u32 i;
 134	u8 mac_addr[ETH_ALEN] = { 0 };
 135
 136	/* Setup the receive address */
 137	e_dbg("Programming MAC Address into RAR[0]\n");
 138
 139	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 140
 141	/* Zero out the other (rar_entry_count - 1) receive addresses */
 142	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
 143	for (i = 1; i < rar_count; i++)
 144		hw->mac.ops.rar_set(hw, mac_addr, i);
 145}
 146
 147/**
 148 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
 149 *  @hw: pointer to the HW structure
 150 *
 151 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 152 *  can be setup by pre-boot software and must be treated like a permanent
 153 *  address and must override the actual permanent MAC address. If an
 154 *  alternate MAC address is found it is programmed into RAR0, replacing
 155 *  the permanent address that was installed into RAR0 by the Si on reset.
 156 *  This function will return SUCCESS unless it encounters an error while
 157 *  reading the EEPROM.
 158 **/
 159s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
 160{
 161	u32 i;
 162	s32 ret_val;
 163	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 164	u8 alt_mac_addr[ETH_ALEN];
 165
 166	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
 167	if (ret_val)
 168		return ret_val;
 169
 170	/* not supported on 82573 */
 171	if (hw->mac.type == e1000_82573)
 172		return 0;
 173
 174	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 175				 &nvm_alt_mac_addr_offset);
 176	if (ret_val) {
 177		e_dbg("NVM Read Error\n");
 178		return ret_val;
 179	}
 180
 181	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 182	    (nvm_alt_mac_addr_offset == 0x0000))
 183		/* There is no Alternate MAC Address */
 184		return 0;
 185
 186	if (hw->bus.func == E1000_FUNC_1)
 187		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 188	for (i = 0; i < ETH_ALEN; i += 2) {
 189		offset = nvm_alt_mac_addr_offset + (i >> 1);
 190		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
 191		if (ret_val) {
 192			e_dbg("NVM Read Error\n");
 193			return ret_val;
 194		}
 195
 196		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 197		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 198	}
 199
 200	/* if multicast bit is set, the alternate address will not be used */
 201	if (is_multicast_ether_addr(alt_mac_addr)) {
 202		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 203		return 0;
 204	}
 205
 206	/* We have a valid alternate MAC address, and we want to treat it the
 207	 * same as the normal permanent MAC address stored by the HW into the
 208	 * RAR. Do this by mapping this address into RAR0.
 209	 */
 210	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 211
 212	return 0;
 213}
 214
 215u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
 216{
 217	return hw->mac.rar_entry_count;
 218}
 219
 220/**
 221 *  e1000e_rar_set_generic - Set receive address register
 222 *  @hw: pointer to the HW structure
 223 *  @addr: pointer to the receive address
 224 *  @index: receive address array register
 225 *
 226 *  Sets the receive address array register at index to the address passed
 227 *  in by addr.
 228 **/
 229int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
 230{
 231	u32 rar_low, rar_high;
 232
 233	/* HW expects these in little endian so we reverse the byte order
 234	 * from network order (big endian) to little endian
 235	 */
 236	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
 237		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
 238
 239	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
 240
 241	/* If MAC address zero, no need to set the AV bit */
 242	if (rar_low || rar_high)
 243		rar_high |= E1000_RAH_AV;
 244
 245	/* Some bridges will combine consecutive 32-bit writes into
 246	 * a single burst write, which will malfunction on some parts.
 247	 * The flushes avoid this.
 248	 */
 249	ew32(RAL(index), rar_low);
 250	e1e_flush();
 251	ew32(RAH(index), rar_high);
 252	e1e_flush();
 253
 254	return 0;
 255}
 256
 257/**
 258 *  e1000_hash_mc_addr - Generate a multicast hash value
 259 *  @hw: pointer to the HW structure
 260 *  @mc_addr: pointer to a multicast address
 261 *
 262 *  Generates a multicast address hash value which is used to determine
 263 *  the multicast filter table array address and new table value.
 264 **/
 265static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 266{
 267	u32 hash_value, hash_mask;
 268	u8 bit_shift = 0;
 269
 270	/* Register count multiplied by bits per register */
 271	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 272
 273	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 274	 * where 0xFF would still fall within the hash mask.
 275	 */
 276	while (hash_mask >> bit_shift != 0xFF)
 277		bit_shift++;
 278
 279	/* The portion of the address that is used for the hash table
 280	 * is determined by the mc_filter_type setting.
 281	 * The algorithm is such that there is a total of 8 bits of shifting.
 282	 * The bit_shift for a mc_filter_type of 0 represents the number of
 283	 * left-shifts where the MSB of mc_addr[5] would still fall within
 284	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
 285	 * of 8 bits of shifting, then mc_addr[4] will shift right the
 286	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 287	 * cases are a variation of this algorithm...essentially raising the
 288	 * number of bits to shift mc_addr[5] left, while still keeping the
 289	 * 8-bit shifting total.
 290	 *
 291	 * For example, given the following Destination MAC Address and an
 292	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 293	 * we can see that the bit_shift for case 0 is 4.  These are the hash
 294	 * values resulting from each mc_filter_type...
 295	 * [0] [1] [2] [3] [4] [5]
 296	 * 01  AA  00  12  34  56
 297	 * LSB           MSB
 298	 *
 299	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 300	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 301	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 302	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 303	 */
 304	switch (hw->mac.mc_filter_type) {
 305	default:
 306	case 0:
 307		break;
 308	case 1:
 309		bit_shift += 1;
 310		break;
 311	case 2:
 312		bit_shift += 2;
 313		break;
 314	case 3:
 315		bit_shift += 4;
 316		break;
 317	}
 318
 319	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 320				   (((u16)mc_addr[5]) << bit_shift)));
 321
 322	return hash_value;
 323}
 324
 325/**
 326 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
 327 *  @hw: pointer to the HW structure
 328 *  @mc_addr_list: array of multicast addresses to program
 329 *  @mc_addr_count: number of multicast addresses to program
 330 *
 331 *  Updates entire Multicast Table Array.
 332 *  The caller must have a packed mc_addr_list of multicast addresses.
 333 **/
 334void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
 335					u8 *mc_addr_list, u32 mc_addr_count)
 336{
 337	u32 hash_value, hash_bit, hash_reg;
 338	int i;
 339
 340	/* clear mta_shadow */
 341	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 342
 343	/* update mta_shadow from mc_addr_list */
 344	for (i = 0; (u32)i < mc_addr_count; i++) {
 345		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
 346
 347		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 348		hash_bit = hash_value & 0x1F;
 349
 350		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
 351		mc_addr_list += (ETH_ALEN);
 352	}
 353
 354	/* replace the entire MTA table */
 355	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 356		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
 357	e1e_flush();
 358}
 359
 360/**
 361 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
 362 *  @hw: pointer to the HW structure
 363 *
 364 *  Clears the base hardware counters by reading the counter registers.
 365 **/
 366void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
 367{
 368	er32(CRCERRS);
 369	er32(SYMERRS);
 370	er32(MPC);
 371	er32(SCC);
 372	er32(ECOL);
 373	er32(MCC);
 374	er32(LATECOL);
 375	er32(COLC);
 376	er32(DC);
 377	er32(SEC);
 378	er32(RLEC);
 379	er32(XONRXC);
 380	er32(XONTXC);
 381	er32(XOFFRXC);
 382	er32(XOFFTXC);
 383	er32(FCRUC);
 384	er32(GPRC);
 385	er32(BPRC);
 386	er32(MPRC);
 387	er32(GPTC);
 388	er32(GORCL);
 389	er32(GORCH);
 390	er32(GOTCL);
 391	er32(GOTCH);
 392	er32(RNBC);
 393	er32(RUC);
 394	er32(RFC);
 395	er32(ROC);
 396	er32(RJC);
 397	er32(TORL);
 398	er32(TORH);
 399	er32(TOTL);
 400	er32(TOTH);
 401	er32(TPR);
 402	er32(TPT);
 403	er32(MPTC);
 404	er32(BPTC);
 405}
 406
 407/**
 408 *  e1000e_check_for_copper_link - Check for link (Copper)
 409 *  @hw: pointer to the HW structure
 410 *
 411 *  Checks to see of the link status of the hardware has changed.  If a
 412 *  change in link status has been detected, then we read the PHY registers
 413 *  to get the current speed/duplex if link exists.
 414 **/
 415s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
 416{
 417	struct e1000_mac_info *mac = &hw->mac;
 418	s32 ret_val;
 419	bool link;
 420
 421	/* We only want to go out to the PHY registers to see if Auto-Neg
 422	 * has completed and/or if our link status has changed.  The
 423	 * get_link_status flag is set upon receiving a Link Status
 424	 * Change or Rx Sequence Error interrupt.
 425	 */
 426	if (!mac->get_link_status)
 427		return 0;
 428	mac->get_link_status = false;
 429
 430	/* First we want to see if the MII Status Register reports
 431	 * link.  If so, then we want to get the current speed/duplex
 432	 * of the PHY.
 433	 */
 434	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 435	if (ret_val || !link)
 436		goto out;
 437
 438	/* Check if there was DownShift, must be checked
 439	 * immediately after link-up
 440	 */
 441	e1000e_check_downshift(hw);
 442
 443	/* If we are forcing speed/duplex, then we simply return since
 444	 * we have already determined whether we have link or not.
 445	 */
 446	if (!mac->autoneg)
 447		return -E1000_ERR_CONFIG;
 448
 449	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 450	 * of MAC speed/duplex configuration.  So we only need to
 451	 * configure Collision Distance in the MAC.
 452	 */
 453	mac->ops.config_collision_dist(hw);
 454
 455	/* Configure Flow Control now that Auto-Neg has completed.
 456	 * First, we need to restore the desired flow control
 457	 * settings because we may have had to re-autoneg with a
 458	 * different link partner.
 459	 */
 460	ret_val = e1000e_config_fc_after_link_up(hw);
 461	if (ret_val)
 462		e_dbg("Error configuring flow control\n");
 463
 464	return ret_val;
 465
 466out:
 467	mac->get_link_status = true;
 468	return ret_val;
 469}
 470
 471/**
 472 *  e1000e_check_for_fiber_link - Check for link (Fiber)
 473 *  @hw: pointer to the HW structure
 474 *
 475 *  Checks for link up on the hardware.  If link is not up and we have
 476 *  a signal, then we need to force link up.
 477 **/
 478s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
 479{
 480	struct e1000_mac_info *mac = &hw->mac;
 481	u32 rxcw;
 482	u32 ctrl;
 483	u32 status;
 484	s32 ret_val;
 485
 486	ctrl = er32(CTRL);
 487	status = er32(STATUS);
 488	rxcw = er32(RXCW);
 489
 490	/* If we don't have link (auto-negotiation failed or link partner
 491	 * cannot auto-negotiate), the cable is plugged in (we have signal),
 492	 * and our link partner is not trying to auto-negotiate with us (we
 493	 * are receiving idles or data), we need to force link up. We also
 494	 * need to give auto-negotiation time to complete, in case the cable
 495	 * was just plugged in. The autoneg_failed flag does this.
 496	 */
 497	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 498	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
 499	    !(rxcw & E1000_RXCW_C)) {
 500		if (!mac->autoneg_failed) {
 501			mac->autoneg_failed = true;
 502			return 0;
 503		}
 504		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 505
 506		/* Disable auto-negotiation in the TXCW register */
 507		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 508
 509		/* Force link-up and also force full-duplex. */
 510		ctrl = er32(CTRL);
 511		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 512		ew32(CTRL, ctrl);
 513
 514		/* Configure Flow Control after forcing link up. */
 515		ret_val = e1000e_config_fc_after_link_up(hw);
 516		if (ret_val) {
 517			e_dbg("Error configuring flow control\n");
 518			return ret_val;
 519		}
 520	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 521		/* If we are forcing link and we are receiving /C/ ordered
 522		 * sets, re-enable auto-negotiation in the TXCW register
 523		 * and disable forced link in the Device Control register
 524		 * in an attempt to auto-negotiate with our link partner.
 525		 */
 526		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 527		ew32(TXCW, mac->txcw);
 528		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 529
 530		mac->serdes_has_link = true;
 531	}
 532
 533	return 0;
 534}
 535
 536/**
 537 *  e1000e_check_for_serdes_link - Check for link (Serdes)
 538 *  @hw: pointer to the HW structure
 539 *
 540 *  Checks for link up on the hardware.  If link is not up and we have
 541 *  a signal, then we need to force link up.
 542 **/
 543s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
 544{
 545	struct e1000_mac_info *mac = &hw->mac;
 546	u32 rxcw;
 547	u32 ctrl;
 548	u32 status;
 549	s32 ret_val;
 550
 551	ctrl = er32(CTRL);
 552	status = er32(STATUS);
 553	rxcw = er32(RXCW);
 554
 555	/* If we don't have link (auto-negotiation failed or link partner
 556	 * cannot auto-negotiate), and our link partner is not trying to
 557	 * auto-negotiate with us (we are receiving idles or data),
 558	 * we need to force link up. We also need to give auto-negotiation
 559	 * time to complete.
 560	 */
 561	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 562	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
 563		if (!mac->autoneg_failed) {
 564			mac->autoneg_failed = true;
 565			return 0;
 566		}
 567		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 568
 569		/* Disable auto-negotiation in the TXCW register */
 570		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 571
 572		/* Force link-up and also force full-duplex. */
 573		ctrl = er32(CTRL);
 574		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 575		ew32(CTRL, ctrl);
 576
 577		/* Configure Flow Control after forcing link up. */
 578		ret_val = e1000e_config_fc_after_link_up(hw);
 579		if (ret_val) {
 580			e_dbg("Error configuring flow control\n");
 581			return ret_val;
 582		}
 583	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 584		/* If we are forcing link and we are receiving /C/ ordered
 585		 * sets, re-enable auto-negotiation in the TXCW register
 586		 * and disable forced link in the Device Control register
 587		 * in an attempt to auto-negotiate with our link partner.
 588		 */
 589		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 590		ew32(TXCW, mac->txcw);
 591		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 592
 593		mac->serdes_has_link = true;
 594	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
 595		/* If we force link for non-auto-negotiation switch, check
 596		 * link status based on MAC synchronization for internal
 597		 * serdes media type.
 598		 */
 599		/* SYNCH bit and IV bit are sticky. */
 600		usleep_range(10, 20);
 601		rxcw = er32(RXCW);
 602		if (rxcw & E1000_RXCW_SYNCH) {
 603			if (!(rxcw & E1000_RXCW_IV)) {
 604				mac->serdes_has_link = true;
 605				e_dbg("SERDES: Link up - forced.\n");
 606			}
 607		} else {
 608			mac->serdes_has_link = false;
 609			e_dbg("SERDES: Link down - force failed.\n");
 610		}
 611	}
 612
 613	if (E1000_TXCW_ANE & er32(TXCW)) {
 614		status = er32(STATUS);
 615		if (status & E1000_STATUS_LU) {
 616			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
 617			usleep_range(10, 20);
 618			rxcw = er32(RXCW);
 619			if (rxcw & E1000_RXCW_SYNCH) {
 620				if (!(rxcw & E1000_RXCW_IV)) {
 621					mac->serdes_has_link = true;
 622					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
 623				} else {
 624					mac->serdes_has_link = false;
 625					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
 626				}
 627			} else {
 628				mac->serdes_has_link = false;
 629				e_dbg("SERDES: Link down - no sync.\n");
 630			}
 631		} else {
 632			mac->serdes_has_link = false;
 633			e_dbg("SERDES: Link down - autoneg failed\n");
 634		}
 635	}
 636
 637	return 0;
 638}
 639
 640/**
 641 *  e1000_set_default_fc_generic - Set flow control default values
 642 *  @hw: pointer to the HW structure
 643 *
 644 *  Read the EEPROM for the default values for flow control and store the
 645 *  values.
 646 **/
 647static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
 648{
 649	s32 ret_val;
 650	u16 nvm_data;
 651
 652	/* Read and store word 0x0F of the EEPROM. This word contains bits
 653	 * that determine the hardware's default PAUSE (flow control) mode,
 654	 * a bit that determines whether the HW defaults to enabling or
 655	 * disabling auto-negotiation, and the direction of the
 656	 * SW defined pins. If there is no SW over-ride of the flow
 657	 * control setting, then the variable hw->fc will
 658	 * be initialized based on a value in the EEPROM.
 659	 */
 660	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
 661
 662	if (ret_val) {
 663		e_dbg("NVM Read Error\n");
 664		return ret_val;
 665	}
 666
 667	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
 668		hw->fc.requested_mode = e1000_fc_none;
 669	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
 670		hw->fc.requested_mode = e1000_fc_tx_pause;
 671	else
 672		hw->fc.requested_mode = e1000_fc_full;
 673
 674	return 0;
 675}
 676
 677/**
 678 *  e1000e_setup_link_generic - Setup flow control and link settings
 679 *  @hw: pointer to the HW structure
 680 *
 681 *  Determines which flow control settings to use, then configures flow
 682 *  control.  Calls the appropriate media-specific link configuration
 683 *  function.  Assuming the adapter has a valid link partner, a valid link
 684 *  should be established.  Assumes the hardware has previously been reset
 685 *  and the transmitter and receiver are not enabled.
 686 **/
 687s32 e1000e_setup_link_generic(struct e1000_hw *hw)
 688{
 689	s32 ret_val;
 690
 691	/* In the case of the phy reset being blocked, we already have a link.
 692	 * We do not need to set it up again.
 693	 */
 694	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
 695		return 0;
 696
 697	/* If requested flow control is set to default, set flow control
 698	 * based on the EEPROM flow control settings.
 699	 */
 700	if (hw->fc.requested_mode == e1000_fc_default) {
 701		ret_val = e1000_set_default_fc_generic(hw);
 702		if (ret_val)
 703			return ret_val;
 704	}
 705
 706	/* Save off the requested flow control mode for use later.  Depending
 707	 * on the link partner's capabilities, we may or may not use this mode.
 708	 */
 709	hw->fc.current_mode = hw->fc.requested_mode;
 710
 711	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 712
 713	/* Call the necessary media_type subroutine to configure the link. */
 714	ret_val = hw->mac.ops.setup_physical_interface(hw);
 715	if (ret_val)
 716		return ret_val;
 717
 718	/* Initialize the flow control address, type, and PAUSE timer
 719	 * registers to their default values.  This is done even if flow
 720	 * control is disabled, because it does not hurt anything to
 721	 * initialize these registers.
 722	 */
 723	e_dbg("Initializing the Flow Control address, type and timer regs\n");
 724	ew32(FCT, FLOW_CONTROL_TYPE);
 725	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 726	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 727
 728	ew32(FCTTV, hw->fc.pause_time);
 729
 730	return e1000e_set_fc_watermarks(hw);
 731}
 732
 733/**
 734 *  e1000_commit_fc_settings_generic - Configure flow control
 735 *  @hw: pointer to the HW structure
 736 *
 737 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
 738 *  base on the flow control settings in e1000_mac_info.
 739 **/
 740static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
 741{
 742	struct e1000_mac_info *mac = &hw->mac;
 743	u32 txcw;
 744
 745	/* Check for a software override of the flow control settings, and
 746	 * setup the device accordingly.  If auto-negotiation is enabled, then
 747	 * software will have to set the "PAUSE" bits to the correct value in
 748	 * the Transmit Config Word Register (TXCW) and re-start auto-
 749	 * negotiation.  However, if auto-negotiation is disabled, then
 750	 * software will have to manually configure the two flow control enable
 751	 * bits in the CTRL register.
 752	 *
 753	 * The possible values of the "fc" parameter are:
 754	 *      0:  Flow control is completely disabled
 755	 *      1:  Rx flow control is enabled (we can receive pause frames,
 756	 *          but not send pause frames).
 757	 *      2:  Tx flow control is enabled (we can send pause frames but we
 758	 *          do not support receiving pause frames).
 759	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
 760	 */
 761	switch (hw->fc.current_mode) {
 762	case e1000_fc_none:
 763		/* Flow control completely disabled by a software over-ride. */
 764		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 765		break;
 766	case e1000_fc_rx_pause:
 767		/* Rx Flow control is enabled and Tx Flow control is disabled
 768		 * by a software over-ride. Since there really isn't a way to
 769		 * advertise that we are capable of Rx Pause ONLY, we will
 770		 * advertise that we support both symmetric and asymmetric Rx
 771		 * PAUSE.  Later, we will disable the adapter's ability to send
 772		 * PAUSE frames.
 773		 */
 774		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 775		break;
 776	case e1000_fc_tx_pause:
 777		/* Tx Flow control is enabled, and Rx Flow control is disabled,
 778		 * by a software over-ride.
 779		 */
 780		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 781		break;
 782	case e1000_fc_full:
 783		/* Flow control (both Rx and Tx) is enabled by a software
 784		 * over-ride.
 785		 */
 786		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 787		break;
 788	default:
 789		e_dbg("Flow control param set incorrectly\n");
 790		return -E1000_ERR_CONFIG;
 791	}
 792
 793	ew32(TXCW, txcw);
 794	mac->txcw = txcw;
 795
 796	return 0;
 797}
 798
 799/**
 800 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
 801 *  @hw: pointer to the HW structure
 802 *
 803 *  Polls for link up by reading the status register, if link fails to come
 804 *  up with auto-negotiation, then the link is forced if a signal is detected.
 805 **/
 806static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
 807{
 808	struct e1000_mac_info *mac = &hw->mac;
 809	u32 i, status;
 810	s32 ret_val;
 811
 812	/* If we have a signal (the cable is plugged in, or assumed true for
 813	 * serdes media) then poll for a "Link-Up" indication in the Device
 814	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
 815	 * seconds (Auto-negotiation should complete in less than 500
 816	 * milliseconds even if the other end is doing it in SW).
 817	 */
 818	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
 819		usleep_range(10000, 20000);
 820		status = er32(STATUS);
 821		if (status & E1000_STATUS_LU)
 822			break;
 823	}
 824	if (i == FIBER_LINK_UP_LIMIT) {
 825		e_dbg("Never got a valid link from auto-neg!!!\n");
 826		mac->autoneg_failed = true;
 827		/* AutoNeg failed to achieve a link, so we'll call
 828		 * mac->check_for_link. This routine will force the
 829		 * link up if we detect a signal. This will allow us to
 830		 * communicate with non-autonegotiating link partners.
 831		 */
 832		ret_val = mac->ops.check_for_link(hw);
 833		if (ret_val) {
 834			e_dbg("Error while checking for link\n");
 835			return ret_val;
 836		}
 837		mac->autoneg_failed = false;
 838	} else {
 839		mac->autoneg_failed = false;
 840		e_dbg("Valid Link Found\n");
 841	}
 842
 843	return 0;
 844}
 845
 846/**
 847 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
 848 *  @hw: pointer to the HW structure
 849 *
 850 *  Configures collision distance and flow control for fiber and serdes
 851 *  links.  Upon successful setup, poll for link.
 852 **/
 853s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
 854{
 855	u32 ctrl;
 856	s32 ret_val;
 857
 858	ctrl = er32(CTRL);
 859
 860	/* Take the link out of reset */
 861	ctrl &= ~E1000_CTRL_LRST;
 862
 863	hw->mac.ops.config_collision_dist(hw);
 864
 865	ret_val = e1000_commit_fc_settings_generic(hw);
 866	if (ret_val)
 867		return ret_val;
 868
 869	/* Since auto-negotiation is enabled, take the link out of reset (the
 870	 * link will be in reset, because we previously reset the chip). This
 871	 * will restart auto-negotiation.  If auto-negotiation is successful
 872	 * then the link-up status bit will be set and the flow control enable
 873	 * bits (RFCE and TFCE) will be set according to their negotiated value.
 874	 */
 875	e_dbg("Auto-negotiation enabled\n");
 876
 877	ew32(CTRL, ctrl);
 878	e1e_flush();
 879	usleep_range(1000, 2000);
 880
 881	/* For these adapters, the SW definable pin 1 is set when the optics
 882	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
 883	 * indication.
 884	 */
 885	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
 886	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
 887		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
 888	} else {
 889		e_dbg("No signal detected\n");
 890	}
 891
 892	return ret_val;
 893}
 894
 895/**
 896 *  e1000e_config_collision_dist_generic - Configure collision distance
 897 *  @hw: pointer to the HW structure
 898 *
 899 *  Configures the collision distance to the default value and is used
 900 *  during link setup.
 901 **/
 902void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
 903{
 904	u32 tctl;
 905
 906	tctl = er32(TCTL);
 907
 908	tctl &= ~E1000_TCTL_COLD;
 909	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 910
 911	ew32(TCTL, tctl);
 912	e1e_flush();
 913}
 914
 915/**
 916 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
 917 *  @hw: pointer to the HW structure
 918 *
 919 *  Sets the flow control high/low threshold (watermark) registers.  If
 920 *  flow control XON frame transmission is enabled, then set XON frame
 921 *  transmission as well.
 922 **/
 923s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
 924{
 925	u32 fcrtl = 0, fcrth = 0;
 926
 927	/* Set the flow control receive threshold registers.  Normally,
 928	 * these registers will be set to a default threshold that may be
 929	 * adjusted later by the driver's runtime code.  However, if the
 930	 * ability to transmit pause frames is not enabled, then these
 931	 * registers will be set to 0.
 932	 */
 933	if (hw->fc.current_mode & e1000_fc_tx_pause) {
 934		/* We need to set up the Receive Threshold high and low water
 935		 * marks as well as (optionally) enabling the transmission of
 936		 * XON frames.
 937		 */
 938		fcrtl = hw->fc.low_water;
 939		if (hw->fc.send_xon)
 940			fcrtl |= E1000_FCRTL_XONE;
 941
 942		fcrth = hw->fc.high_water;
 943	}
 944	ew32(FCRTL, fcrtl);
 945	ew32(FCRTH, fcrth);
 946
 947	return 0;
 948}
 949
 950/**
 951 *  e1000e_force_mac_fc - Force the MAC's flow control settings
 952 *  @hw: pointer to the HW structure
 953 *
 954 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 955 *  device control register to reflect the adapter settings.  TFCE and RFCE
 956 *  need to be explicitly set by software when a copper PHY is used because
 957 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 958 *  also configure these bits when link is forced on a fiber connection.
 959 **/
 960s32 e1000e_force_mac_fc(struct e1000_hw *hw)
 961{
 962	u32 ctrl;
 963
 964	ctrl = er32(CTRL);
 965
 966	/* Because we didn't get link via the internal auto-negotiation
 967	 * mechanism (we either forced link or we got link via PHY
 968	 * auto-neg), we have to manually enable/disable transmit an
 969	 * receive flow control.
 970	 *
 971	 * The "Case" statement below enables/disable flow control
 972	 * according to the "hw->fc.current_mode" parameter.
 973	 *
 974	 * The possible values of the "fc" parameter are:
 975	 *      0:  Flow control is completely disabled
 976	 *      1:  Rx flow control is enabled (we can receive pause
 977	 *          frames but not send pause frames).
 978	 *      2:  Tx flow control is enabled (we can send pause frames
 979	 *          frames but we do not receive pause frames).
 980	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
 981	 *  other:  No other values should be possible at this point.
 982	 */
 983	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 984
 985	switch (hw->fc.current_mode) {
 986	case e1000_fc_none:
 987		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 988		break;
 989	case e1000_fc_rx_pause:
 990		ctrl &= (~E1000_CTRL_TFCE);
 991		ctrl |= E1000_CTRL_RFCE;
 992		break;
 993	case e1000_fc_tx_pause:
 994		ctrl &= (~E1000_CTRL_RFCE);
 995		ctrl |= E1000_CTRL_TFCE;
 996		break;
 997	case e1000_fc_full:
 998		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 999		break;
1000	default:
1001		e_dbg("Flow control param set incorrectly\n");
1002		return -E1000_ERR_CONFIG;
1003	}
1004
1005	ew32(CTRL, ctrl);
1006
1007	return 0;
1008}
1009
1010/**
1011 *  e1000e_config_fc_after_link_up - Configures flow control after link
1012 *  @hw: pointer to the HW structure
1013 *
1014 *  Checks the status of auto-negotiation after link up to ensure that the
1015 *  speed and duplex were not forced.  If the link needed to be forced, then
1016 *  flow control needs to be forced also.  If auto-negotiation is enabled
1017 *  and did not fail, then we configure flow control based on our link
1018 *  partner.
1019 **/
1020s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1021{
1022	struct e1000_mac_info *mac = &hw->mac;
1023	s32 ret_val = 0;
1024	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1025	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1026	u16 speed, duplex;
1027
1028	/* Check for the case where we have fiber media and auto-neg failed
1029	 * so we had to force link.  In this case, we need to force the
1030	 * configuration of the MAC to match the "fc" parameter.
1031	 */
1032	if (mac->autoneg_failed) {
1033		if (hw->phy.media_type == e1000_media_type_fiber ||
1034		    hw->phy.media_type == e1000_media_type_internal_serdes)
1035			ret_val = e1000e_force_mac_fc(hw);
1036	} else {
1037		if (hw->phy.media_type == e1000_media_type_copper)
1038			ret_val = e1000e_force_mac_fc(hw);
1039	}
1040
1041	if (ret_val) {
1042		e_dbg("Error forcing flow control settings\n");
1043		return ret_val;
1044	}
1045
1046	/* Check for the case where we have copper media and auto-neg is
1047	 * enabled.  In this case, we need to check and see if Auto-Neg
1048	 * has completed, and if so, how the PHY and link partner has
1049	 * flow control configured.
1050	 */
1051	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1052		/* Read the MII Status Register and check to see if AutoNeg
1053		 * has completed.  We read this twice because this reg has
1054		 * some "sticky" (latched) bits.
1055		 */
1056		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1057		if (ret_val)
1058			return ret_val;
1059		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1060		if (ret_val)
1061			return ret_val;
1062
1063		if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1064			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1065			return ret_val;
1066		}
1067
1068		/* The AutoNeg process has completed, so we now need to
1069		 * read both the Auto Negotiation Advertisement
1070		 * Register (Address 4) and the Auto_Negotiation Base
1071		 * Page Ability Register (Address 5) to determine how
1072		 * flow control was negotiated.
1073		 */
1074		ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1075		if (ret_val)
1076			return ret_val;
1077		ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1078		if (ret_val)
1079			return ret_val;
1080
1081		/* Two bits in the Auto Negotiation Advertisement Register
1082		 * (Address 4) and two bits in the Auto Negotiation Base
1083		 * Page Ability Register (Address 5) determine flow control
1084		 * for both the PHY and the link partner.  The following
1085		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1086		 * 1999, describes these PAUSE resolution bits and how flow
1087		 * control is determined based upon these settings.
1088		 * NOTE:  DC = Don't Care
1089		 *
1090		 *   LOCAL DEVICE  |   LINK PARTNER
1091		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1092		 *-------|---------|-------|---------|--------------------
1093		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1094		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1095		 *   0   |    1    |   1   |    0    | e1000_fc_none
1096		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1097		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1098		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1099		 *   1   |    1    |   0   |    0    | e1000_fc_none
1100		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1101		 *
1102		 * Are both PAUSE bits set to 1?  If so, this implies
1103		 * Symmetric Flow Control is enabled at both ends.  The
1104		 * ASM_DIR bits are irrelevant per the spec.
1105		 *
1106		 * For Symmetric Flow Control:
1107		 *
1108		 *   LOCAL DEVICE  |   LINK PARTNER
1109		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1110		 *-------|---------|-------|---------|--------------------
1111		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1112		 *
1113		 */
1114		if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1115		    (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1116			/* Now we need to check if the user selected Rx ONLY
1117			 * of pause frames.  In this case, we had to advertise
1118			 * FULL flow control because we could not advertise Rx
1119			 * ONLY. Hence, we must now check to see if we need to
1120			 * turn OFF the TRANSMISSION of PAUSE frames.
1121			 */
1122			if (hw->fc.requested_mode == e1000_fc_full) {
1123				hw->fc.current_mode = e1000_fc_full;
1124				e_dbg("Flow Control = FULL.\n");
1125			} else {
1126				hw->fc.current_mode = e1000_fc_rx_pause;
1127				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1128			}
1129		}
1130		/* For receiving PAUSE frames ONLY.
1131		 *
1132		 *   LOCAL DEVICE  |   LINK PARTNER
1133		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1134		 *-------|---------|-------|---------|--------------------
1135		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1136		 */
1137		else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1138			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1139			 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1140			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1141			hw->fc.current_mode = e1000_fc_tx_pause;
1142			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1143		}
1144		/* For transmitting PAUSE frames ONLY.
1145		 *
1146		 *   LOCAL DEVICE  |   LINK PARTNER
1147		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1148		 *-------|---------|-------|---------|--------------------
1149		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1150		 */
1151		else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1152			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1153			 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1154			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1155			hw->fc.current_mode = e1000_fc_rx_pause;
1156			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1157		} else {
1158			/* Per the IEEE spec, at this point flow control
1159			 * should be disabled.
1160			 */
1161			hw->fc.current_mode = e1000_fc_none;
1162			e_dbg("Flow Control = NONE.\n");
1163		}
1164
1165		/* Now we need to do one last check...  If we auto-
1166		 * negotiated to HALF DUPLEX, flow control should not be
1167		 * enabled per IEEE 802.3 spec.
1168		 */
1169		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1170		if (ret_val) {
1171			e_dbg("Error getting link speed and duplex\n");
1172			return ret_val;
1173		}
1174
1175		if (duplex == HALF_DUPLEX)
1176			hw->fc.current_mode = e1000_fc_none;
1177
1178		/* Now we call a subroutine to actually force the MAC
1179		 * controller to use the correct flow control settings.
1180		 */
1181		ret_val = e1000e_force_mac_fc(hw);
1182		if (ret_val) {
1183			e_dbg("Error forcing flow control settings\n");
1184			return ret_val;
1185		}
1186	}
1187
1188	/* Check for the case where we have SerDes media and auto-neg is
1189	 * enabled.  In this case, we need to check and see if Auto-Neg
1190	 * has completed, and if so, how the PHY and link partner has
1191	 * flow control configured.
1192	 */
1193	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1194	    mac->autoneg) {
1195		/* Read the PCS_LSTS and check to see if AutoNeg
1196		 * has completed.
1197		 */
1198		pcs_status_reg = er32(PCS_LSTAT);
1199
1200		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1201			e_dbg("PCS Auto Neg has not completed.\n");
1202			return ret_val;
1203		}
1204
1205		/* The AutoNeg process has completed, so we now need to
1206		 * read both the Auto Negotiation Advertisement
1207		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1208		 * Page Ability Register (PCS_LPAB) to determine how
1209		 * flow control was negotiated.
1210		 */
1211		pcs_adv_reg = er32(PCS_ANADV);
1212		pcs_lp_ability_reg = er32(PCS_LPAB);
1213
1214		/* Two bits in the Auto Negotiation Advertisement Register
1215		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1216		 * Page Ability Register (PCS_LPAB) determine flow control
1217		 * for both the PHY and the link partner.  The following
1218		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1219		 * 1999, describes these PAUSE resolution bits and how flow
1220		 * control is determined based upon these settings.
1221		 * NOTE:  DC = Don't Care
1222		 *
1223		 *   LOCAL DEVICE  |   LINK PARTNER
1224		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1225		 *-------|---------|-------|---------|--------------------
1226		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1227		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1228		 *   0   |    1    |   1   |    0    | e1000_fc_none
1229		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1230		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1231		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1232		 *   1   |    1    |   0   |    0    | e1000_fc_none
1233		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1234		 *
1235		 * Are both PAUSE bits set to 1?  If so, this implies
1236		 * Symmetric Flow Control is enabled at both ends.  The
1237		 * ASM_DIR bits are irrelevant per the spec.
1238		 *
1239		 * For Symmetric Flow Control:
1240		 *
1241		 *   LOCAL DEVICE  |   LINK PARTNER
1242		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1243		 *-------|---------|-------|---------|--------------------
1244		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1245		 *
1246		 */
1247		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1248		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1249			/* Now we need to check if the user selected Rx ONLY
1250			 * of pause frames.  In this case, we had to advertise
1251			 * FULL flow control because we could not advertise Rx
1252			 * ONLY. Hence, we must now check to see if we need to
1253			 * turn OFF the TRANSMISSION of PAUSE frames.
1254			 */
1255			if (hw->fc.requested_mode == e1000_fc_full) {
1256				hw->fc.current_mode = e1000_fc_full;
1257				e_dbg("Flow Control = FULL.\n");
1258			} else {
1259				hw->fc.current_mode = e1000_fc_rx_pause;
1260				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1261			}
1262		}
1263		/* For receiving PAUSE frames ONLY.
1264		 *
1265		 *   LOCAL DEVICE  |   LINK PARTNER
1266		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1267		 *-------|---------|-------|---------|--------------------
1268		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1269		 */
1270		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1271			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1272			 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1273			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1274			hw->fc.current_mode = e1000_fc_tx_pause;
1275			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1276		}
1277		/* For transmitting PAUSE frames ONLY.
1278		 *
1279		 *   LOCAL DEVICE  |   LINK PARTNER
1280		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1281		 *-------|---------|-------|---------|--------------------
1282		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1283		 */
1284		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1285			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1286			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1287			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1288			hw->fc.current_mode = e1000_fc_rx_pause;
1289			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1290		} else {
1291			/* Per the IEEE spec, at this point flow control
1292			 * should be disabled.
1293			 */
1294			hw->fc.current_mode = e1000_fc_none;
1295			e_dbg("Flow Control = NONE.\n");
1296		}
1297
1298		/* Now we call a subroutine to actually force the MAC
1299		 * controller to use the correct flow control settings.
1300		 */
1301		pcs_ctrl_reg = er32(PCS_LCTL);
1302		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1303		ew32(PCS_LCTL, pcs_ctrl_reg);
1304
1305		ret_val = e1000e_force_mac_fc(hw);
1306		if (ret_val) {
1307			e_dbg("Error forcing flow control settings\n");
1308			return ret_val;
1309		}
1310	}
1311
1312	return 0;
1313}
1314
1315/**
1316 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1317 *  @hw: pointer to the HW structure
1318 *  @speed: stores the current speed
1319 *  @duplex: stores the current duplex
1320 *
1321 *  Read the status register for the current speed/duplex and store the current
1322 *  speed and duplex for copper connections.
1323 **/
1324s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1325				       u16 *duplex)
1326{
1327	u32 status;
1328
1329	status = er32(STATUS);
1330	if (status & E1000_STATUS_SPEED_1000)
1331		*speed = SPEED_1000;
1332	else if (status & E1000_STATUS_SPEED_100)
1333		*speed = SPEED_100;
1334	else
1335		*speed = SPEED_10;
1336
1337	if (status & E1000_STATUS_FD)
1338		*duplex = FULL_DUPLEX;
1339	else
1340		*duplex = HALF_DUPLEX;
1341
1342	e_dbg("%u Mbps, %s Duplex\n",
1343	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1344	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1345
1346	return 0;
1347}
1348
1349/**
1350 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1351 *  @hw: pointer to the HW structure
1352 *  @speed: stores the current speed
1353 *  @duplex: stores the current duplex
1354 *
1355 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1356 *  for fiber/serdes links.
1357 **/
1358s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1359					     *hw, u16 *speed, u16 *duplex)
1360{
1361	*speed = SPEED_1000;
1362	*duplex = FULL_DUPLEX;
1363
1364	return 0;
1365}
1366
1367/**
1368 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1369 *  @hw: pointer to the HW structure
1370 *
1371 *  Acquire the HW semaphore to access the PHY or NVM
1372 **/
1373s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1374{
1375	u32 swsm;
1376	s32 timeout = hw->nvm.word_size + 1;
1377	s32 i = 0;
1378
1379	/* Get the SW semaphore */
1380	while (i < timeout) {
1381		swsm = er32(SWSM);
1382		if (!(swsm & E1000_SWSM_SMBI))
1383			break;
1384
1385		usleep_range(50, 100);
1386		i++;
1387	}
1388
1389	if (i == timeout) {
1390		e_dbg("Driver can't access device - SMBI bit is set.\n");
1391		return -E1000_ERR_NVM;
1392	}
1393
1394	/* Get the FW semaphore. */
1395	for (i = 0; i < timeout; i++) {
1396		swsm = er32(SWSM);
1397		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1398
1399		/* Semaphore acquired if bit latched */
1400		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1401			break;
1402
1403		usleep_range(50, 100);
1404	}
1405
1406	if (i == timeout) {
1407		/* Release semaphores */
1408		e1000e_put_hw_semaphore(hw);
1409		e_dbg("Driver can't access the NVM\n");
1410		return -E1000_ERR_NVM;
1411	}
1412
1413	return 0;
1414}
1415
1416/**
1417 *  e1000e_put_hw_semaphore - Release hardware semaphore
1418 *  @hw: pointer to the HW structure
1419 *
1420 *  Release hardware semaphore used to access the PHY or NVM
1421 **/
1422void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1423{
1424	u32 swsm;
1425
1426	swsm = er32(SWSM);
1427	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1428	ew32(SWSM, swsm);
1429}
1430
1431/**
1432 *  e1000e_get_auto_rd_done - Check for auto read completion
1433 *  @hw: pointer to the HW structure
1434 *
1435 *  Check EEPROM for Auto Read done bit.
1436 **/
1437s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1438{
1439	s32 i = 0;
1440
1441	while (i < AUTO_READ_DONE_TIMEOUT) {
1442		if (er32(EECD) & E1000_EECD_AUTO_RD)
1443			break;
1444		usleep_range(1000, 2000);
1445		i++;
1446	}
1447
1448	if (i == AUTO_READ_DONE_TIMEOUT) {
1449		e_dbg("Auto read by HW from NVM has not completed.\n");
1450		return -E1000_ERR_RESET;
1451	}
1452
1453	return 0;
1454}
1455
1456/**
1457 *  e1000e_valid_led_default - Verify a valid default LED config
1458 *  @hw: pointer to the HW structure
1459 *  @data: pointer to the NVM (EEPROM)
1460 *
1461 *  Read the EEPROM for the current default LED configuration.  If the
1462 *  LED configuration is not valid, set to a valid LED configuration.
1463 **/
1464s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1465{
1466	s32 ret_val;
1467
1468	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1469	if (ret_val) {
1470		e_dbg("NVM Read Error\n");
1471		return ret_val;
1472	}
1473
1474	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1475		*data = ID_LED_DEFAULT;
1476
1477	return 0;
1478}
1479
1480/**
1481 *  e1000e_id_led_init_generic -
1482 *  @hw: pointer to the HW structure
1483 *
1484 **/
1485s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1486{
1487	struct e1000_mac_info *mac = &hw->mac;
1488	s32 ret_val;
1489	const u32 ledctl_mask = 0x000000FF;
1490	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1491	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1492	u16 data, i, temp;
1493	const u16 led_mask = 0x0F;
1494
1495	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1496	if (ret_val)
1497		return ret_val;
1498
1499	mac->ledctl_default = er32(LEDCTL);
1500	mac->ledctl_mode1 = mac->ledctl_default;
1501	mac->ledctl_mode2 = mac->ledctl_default;
1502
1503	for (i = 0; i < 4; i++) {
1504		temp = (data >> (i << 2)) & led_mask;
1505		switch (temp) {
1506		case ID_LED_ON1_DEF2:
1507		case ID_LED_ON1_ON2:
1508		case ID_LED_ON1_OFF2:
1509			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1510			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1511			break;
1512		case ID_LED_OFF1_DEF2:
1513		case ID_LED_OFF1_ON2:
1514		case ID_LED_OFF1_OFF2:
1515			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1516			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1517			break;
1518		default:
1519			/* Do nothing */
1520			break;
1521		}
1522		switch (temp) {
1523		case ID_LED_DEF1_ON2:
1524		case ID_LED_ON1_ON2:
1525		case ID_LED_OFF1_ON2:
1526			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1527			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1528			break;
1529		case ID_LED_DEF1_OFF2:
1530		case ID_LED_ON1_OFF2:
1531		case ID_LED_OFF1_OFF2:
1532			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1533			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1534			break;
1535		default:
1536			/* Do nothing */
1537			break;
1538		}
1539	}
1540
1541	return 0;
1542}
1543
1544/**
1545 *  e1000e_setup_led_generic - Configures SW controllable LED
1546 *  @hw: pointer to the HW structure
1547 *
1548 *  This prepares the SW controllable LED for use and saves the current state
1549 *  of the LED so it can be later restored.
1550 **/
1551s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1552{
1553	u32 ledctl;
1554
1555	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1556		return -E1000_ERR_CONFIG;
1557
1558	if (hw->phy.media_type == e1000_media_type_fiber) {
1559		ledctl = er32(LEDCTL);
1560		hw->mac.ledctl_default = ledctl;
1561		/* Turn off LED0 */
1562		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1563			    E1000_LEDCTL_LED0_MODE_MASK);
1564		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1565			   E1000_LEDCTL_LED0_MODE_SHIFT);
1566		ew32(LEDCTL, ledctl);
1567	} else if (hw->phy.media_type == e1000_media_type_copper) {
1568		ew32(LEDCTL, hw->mac.ledctl_mode1);
1569	}
1570
1571	return 0;
1572}
1573
1574/**
1575 *  e1000e_cleanup_led_generic - Set LED config to default operation
1576 *  @hw: pointer to the HW structure
1577 *
1578 *  Remove the current LED configuration and set the LED configuration
1579 *  to the default value, saved from the EEPROM.
1580 **/
1581s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1582{
1583	ew32(LEDCTL, hw->mac.ledctl_default);
1584	return 0;
1585}
1586
1587/**
1588 *  e1000e_blink_led_generic - Blink LED
1589 *  @hw: pointer to the HW structure
1590 *
1591 *  Blink the LEDs which are set to be on.
1592 **/
1593s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1594{
1595	u32 ledctl_blink = 0;
1596	u32 i;
1597
1598	if (hw->phy.media_type == e1000_media_type_fiber) {
1599		/* always blink LED0 for PCI-E fiber */
1600		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1601		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1602	} else {
1603		/* Set the blink bit for each LED that's "on" (0x0E)
1604		 * (or "off" if inverted) in ledctl_mode2.  The blink
1605		 * logic in hardware only works when mode is set to "on"
1606		 * so it must be changed accordingly when the mode is
1607		 * "off" and inverted.
1608		 */
1609		ledctl_blink = hw->mac.ledctl_mode2;
1610		for (i = 0; i < 32; i += 8) {
1611			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1612			    E1000_LEDCTL_LED0_MODE_MASK;
1613			u32 led_default = hw->mac.ledctl_default >> i;
1614
1615			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1616			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1617			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1618			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1619				ledctl_blink &=
1620				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1621				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1622						 E1000_LEDCTL_MODE_LED_ON) << i;
1623			}
1624		}
1625	}
1626
1627	ew32(LEDCTL, ledctl_blink);
1628
1629	return 0;
1630}
1631
1632/**
1633 *  e1000e_led_on_generic - Turn LED on
1634 *  @hw: pointer to the HW structure
1635 *
1636 *  Turn LED on.
1637 **/
1638s32 e1000e_led_on_generic(struct e1000_hw *hw)
1639{
1640	u32 ctrl;
1641
1642	switch (hw->phy.media_type) {
1643	case e1000_media_type_fiber:
1644		ctrl = er32(CTRL);
1645		ctrl &= ~E1000_CTRL_SWDPIN0;
1646		ctrl |= E1000_CTRL_SWDPIO0;
1647		ew32(CTRL, ctrl);
1648		break;
1649	case e1000_media_type_copper:
1650		ew32(LEDCTL, hw->mac.ledctl_mode2);
1651		break;
1652	default:
1653		break;
1654	}
1655
1656	return 0;
1657}
1658
1659/**
1660 *  e1000e_led_off_generic - Turn LED off
1661 *  @hw: pointer to the HW structure
1662 *
1663 *  Turn LED off.
1664 **/
1665s32 e1000e_led_off_generic(struct e1000_hw *hw)
1666{
1667	u32 ctrl;
1668
1669	switch (hw->phy.media_type) {
1670	case e1000_media_type_fiber:
1671		ctrl = er32(CTRL);
1672		ctrl |= E1000_CTRL_SWDPIN0;
1673		ctrl |= E1000_CTRL_SWDPIO0;
1674		ew32(CTRL, ctrl);
1675		break;
1676	case e1000_media_type_copper:
1677		ew32(LEDCTL, hw->mac.ledctl_mode1);
1678		break;
1679	default:
1680		break;
1681	}
1682
1683	return 0;
1684}
1685
1686/**
1687 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1688 *  @hw: pointer to the HW structure
1689 *  @no_snoop: bitmap of snoop events
1690 *
1691 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1692 **/
1693void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1694{
1695	u32 gcr;
1696
1697	if (no_snoop) {
1698		gcr = er32(GCR);
1699		gcr &= ~(PCIE_NO_SNOOP_ALL);
1700		gcr |= no_snoop;
1701		ew32(GCR, gcr);
1702	}
1703}
1704
1705/**
1706 *  e1000e_disable_pcie_master - Disables PCI-express master access
1707 *  @hw: pointer to the HW structure
1708 *
1709 *  Returns 0 if successful, else returns -10
1710 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1711 *  the master requests to be disabled.
1712 *
1713 *  Disables PCI-Express master access and verifies there are no pending
1714 *  requests.
1715 **/
1716s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1717{
1718	u32 ctrl;
1719	s32 timeout = MASTER_DISABLE_TIMEOUT;
1720
1721	ctrl = er32(CTRL);
1722	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1723	ew32(CTRL, ctrl);
1724
1725	while (timeout) {
1726		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1727			break;
1728		usleep_range(100, 200);
1729		timeout--;
1730	}
1731
1732	if (!timeout) {
1733		e_dbg("Master requests are pending.\n");
1734		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1735	}
1736
1737	return 0;
1738}
1739
1740/**
1741 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1742 *  @hw: pointer to the HW structure
1743 *
1744 *  Reset the Adaptive Interframe Spacing throttle to default values.
1745 **/
1746void e1000e_reset_adaptive(struct e1000_hw *hw)
1747{
1748	struct e1000_mac_info *mac = &hw->mac;
1749
1750	if (!mac->adaptive_ifs) {
1751		e_dbg("Not in Adaptive IFS mode!\n");
1752		return;
1753	}
1754
1755	mac->current_ifs_val = 0;
1756	mac->ifs_min_val = IFS_MIN;
1757	mac->ifs_max_val = IFS_MAX;
1758	mac->ifs_step_size = IFS_STEP;
1759	mac->ifs_ratio = IFS_RATIO;
1760
1761	mac->in_ifs_mode = false;
1762	ew32(AIT, 0);
1763}
1764
1765/**
1766 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1767 *  @hw: pointer to the HW structure
1768 *
1769 *  Update the Adaptive Interframe Spacing Throttle value based on the
1770 *  time between transmitted packets and time between collisions.
1771 **/
1772void e1000e_update_adaptive(struct e1000_hw *hw)
1773{
1774	struct e1000_mac_info *mac = &hw->mac;
1775
1776	if (!mac->adaptive_ifs) {
1777		e_dbg("Not in Adaptive IFS mode!\n");
1778		return;
1779	}
1780
1781	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1782		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1783			mac->in_ifs_mode = true;
1784			if (mac->current_ifs_val < mac->ifs_max_val) {
1785				if (!mac->current_ifs_val)
1786					mac->current_ifs_val = mac->ifs_min_val;
1787				else
1788					mac->current_ifs_val +=
1789					    mac->ifs_step_size;
1790				ew32(AIT, mac->current_ifs_val);
1791			}
1792		}
1793	} else {
1794		if (mac->in_ifs_mode &&
1795		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1796			mac->current_ifs_val = 0;
1797			mac->in_ifs_mode = false;
1798			ew32(AIT, 0);
1799		}
1800	}
1801}