Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4#include <linux/bitfield.h>
5
6#include "e1000.h"
7
8/**
9 * e1000e_get_bus_info_pcie - Get PCIe bus information
10 * @hw: pointer to the HW structure
11 *
12 * Determines and stores the system bus information for a particular
13 * network interface. The following bus information is determined and stored:
14 * bus speed, bus width, type (PCIe), and PCIe function.
15 **/
16s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
17{
18 struct pci_dev *pdev = hw->adapter->pdev;
19 struct e1000_mac_info *mac = &hw->mac;
20 struct e1000_bus_info *bus = &hw->bus;
21 u16 pcie_link_status;
22
23 if (!pci_pcie_cap(pdev)) {
24 bus->width = e1000_bus_width_unknown;
25 } else {
26 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &pcie_link_status);
27 bus->width = (enum e1000_bus_width)FIELD_GET(PCI_EXP_LNKSTA_NLW,
28 pcie_link_status);
29 }
30
31 mac->ops.set_lan_id(hw);
32
33 return 0;
34}
35
36/**
37 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
38 *
39 * @hw: pointer to the HW structure
40 *
41 * Determines the LAN function id by reading memory-mapped registers
42 * and swaps the port value if requested.
43 **/
44void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
45{
46 struct e1000_bus_info *bus = &hw->bus;
47 u32 reg;
48
49 /* The status register reports the correct function number
50 * for the device regardless of function swap state.
51 */
52 reg = er32(STATUS);
53 bus->func = FIELD_GET(E1000_STATUS_FUNC_MASK, reg);
54}
55
56/**
57 * e1000_set_lan_id_single_port - Set LAN id for a single port device
58 * @hw: pointer to the HW structure
59 *
60 * Sets the LAN function id to zero for a single port device.
61 **/
62void e1000_set_lan_id_single_port(struct e1000_hw *hw)
63{
64 struct e1000_bus_info *bus = &hw->bus;
65
66 bus->func = 0;
67}
68
69/**
70 * e1000_clear_vfta_generic - Clear VLAN filter table
71 * @hw: pointer to the HW structure
72 *
73 * Clears the register array which contains the VLAN filter table by
74 * setting all the values to 0.
75 **/
76void e1000_clear_vfta_generic(struct e1000_hw *hw)
77{
78 u32 offset;
79
80 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
81 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
82 e1e_flush();
83 }
84}
85
86/**
87 * e1000_write_vfta_generic - Write value to VLAN filter table
88 * @hw: pointer to the HW structure
89 * @offset: register offset in VLAN filter table
90 * @value: register value written to VLAN filter table
91 *
92 * Writes value at the given offset in the register array which stores
93 * the VLAN filter table.
94 **/
95void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
96{
97 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
98 e1e_flush();
99}
100
101/**
102 * e1000e_init_rx_addrs - Initialize receive address's
103 * @hw: pointer to the HW structure
104 * @rar_count: receive address registers
105 *
106 * Setup the receive address registers by setting the base receive address
107 * register to the devices MAC address and clearing all the other receive
108 * address registers to 0.
109 **/
110void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
111{
112 u32 i;
113 u8 mac_addr[ETH_ALEN] = { 0 };
114
115 /* Setup the receive address */
116 e_dbg("Programming MAC Address into RAR[0]\n");
117
118 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
119
120 /* Zero out the other (rar_entry_count - 1) receive addresses */
121 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
122 for (i = 1; i < rar_count; i++)
123 hw->mac.ops.rar_set(hw, mac_addr, i);
124}
125
126/**
127 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
128 * @hw: pointer to the HW structure
129 *
130 * Checks the nvm for an alternate MAC address. An alternate MAC address
131 * can be setup by pre-boot software and must be treated like a permanent
132 * address and must override the actual permanent MAC address. If an
133 * alternate MAC address is found it is programmed into RAR0, replacing
134 * the permanent address that was installed into RAR0 by the Si on reset.
135 * This function will return SUCCESS unless it encounters an error while
136 * reading the EEPROM.
137 **/
138s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
139{
140 u32 i;
141 s32 ret_val;
142 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
143 u8 alt_mac_addr[ETH_ALEN];
144
145 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
146 if (ret_val)
147 return ret_val;
148
149 /* not supported on 82573 */
150 if (hw->mac.type == e1000_82573)
151 return 0;
152
153 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
154 &nvm_alt_mac_addr_offset);
155 if (ret_val) {
156 e_dbg("NVM Read Error\n");
157 return ret_val;
158 }
159
160 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
161 (nvm_alt_mac_addr_offset == 0x0000))
162 /* There is no Alternate MAC Address */
163 return 0;
164
165 if (hw->bus.func == E1000_FUNC_1)
166 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
167 for (i = 0; i < ETH_ALEN; i += 2) {
168 offset = nvm_alt_mac_addr_offset + (i >> 1);
169 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
170 if (ret_val) {
171 e_dbg("NVM Read Error\n");
172 return ret_val;
173 }
174
175 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
176 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
177 }
178
179 /* if multicast bit is set, the alternate address will not be used */
180 if (is_multicast_ether_addr(alt_mac_addr)) {
181 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
182 return 0;
183 }
184
185 /* We have a valid alternate MAC address, and we want to treat it the
186 * same as the normal permanent MAC address stored by the HW into the
187 * RAR. Do this by mapping this address into RAR0.
188 */
189 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
190
191 return 0;
192}
193
194u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
195{
196 return hw->mac.rar_entry_count;
197}
198
199/**
200 * e1000e_rar_set_generic - Set receive address register
201 * @hw: pointer to the HW structure
202 * @addr: pointer to the receive address
203 * @index: receive address array register
204 *
205 * Sets the receive address array register at index to the address passed
206 * in by addr.
207 **/
208int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
209{
210 u32 rar_low, rar_high;
211
212 /* HW expects these in little endian so we reverse the byte order
213 * from network order (big endian) to little endian
214 */
215 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
216 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
217
218 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
219
220 /* If MAC address zero, no need to set the AV bit */
221 if (rar_low || rar_high)
222 rar_high |= E1000_RAH_AV;
223
224 /* Some bridges will combine consecutive 32-bit writes into
225 * a single burst write, which will malfunction on some parts.
226 * The flushes avoid this.
227 */
228 ew32(RAL(index), rar_low);
229 e1e_flush();
230 ew32(RAH(index), rar_high);
231 e1e_flush();
232
233 return 0;
234}
235
236/**
237 * e1000_hash_mc_addr - Generate a multicast hash value
238 * @hw: pointer to the HW structure
239 * @mc_addr: pointer to a multicast address
240 *
241 * Generates a multicast address hash value which is used to determine
242 * the multicast filter table array address and new table value.
243 **/
244static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
245{
246 u32 hash_value, hash_mask;
247 u8 bit_shift = 0;
248
249 /* Register count multiplied by bits per register */
250 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
251
252 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
253 * where 0xFF would still fall within the hash mask.
254 */
255 while (hash_mask >> bit_shift != 0xFF)
256 bit_shift++;
257
258 /* The portion of the address that is used for the hash table
259 * is determined by the mc_filter_type setting.
260 * The algorithm is such that there is a total of 8 bits of shifting.
261 * The bit_shift for a mc_filter_type of 0 represents the number of
262 * left-shifts where the MSB of mc_addr[5] would still fall within
263 * the hash_mask. Case 0 does this exactly. Since there are a total
264 * of 8 bits of shifting, then mc_addr[4] will shift right the
265 * remaining number of bits. Thus 8 - bit_shift. The rest of the
266 * cases are a variation of this algorithm...essentially raising the
267 * number of bits to shift mc_addr[5] left, while still keeping the
268 * 8-bit shifting total.
269 *
270 * For example, given the following Destination MAC Address and an
271 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
272 * we can see that the bit_shift for case 0 is 4. These are the hash
273 * values resulting from each mc_filter_type...
274 * [0] [1] [2] [3] [4] [5]
275 * 01 AA 00 12 34 56
276 * LSB MSB
277 *
278 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
279 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
280 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
281 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
282 */
283 switch (hw->mac.mc_filter_type) {
284 default:
285 case 0:
286 break;
287 case 1:
288 bit_shift += 1;
289 break;
290 case 2:
291 bit_shift += 2;
292 break;
293 case 3:
294 bit_shift += 4;
295 break;
296 }
297
298 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
299 (((u16)mc_addr[5]) << bit_shift)));
300
301 return hash_value;
302}
303
304/**
305 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
306 * @hw: pointer to the HW structure
307 * @mc_addr_list: array of multicast addresses to program
308 * @mc_addr_count: number of multicast addresses to program
309 *
310 * Updates entire Multicast Table Array.
311 * The caller must have a packed mc_addr_list of multicast addresses.
312 **/
313void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
314 u8 *mc_addr_list, u32 mc_addr_count)
315{
316 u32 hash_value, hash_bit, hash_reg;
317 int i;
318
319 /* clear mta_shadow */
320 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
321
322 /* update mta_shadow from mc_addr_list */
323 for (i = 0; (u32)i < mc_addr_count; i++) {
324 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
325
326 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
327 hash_bit = hash_value & 0x1F;
328
329 hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
330 mc_addr_list += (ETH_ALEN);
331 }
332
333 /* replace the entire MTA table */
334 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
335 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
336 e1e_flush();
337}
338
339/**
340 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
341 * @hw: pointer to the HW structure
342 *
343 * Clears the base hardware counters by reading the counter registers.
344 **/
345void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
346{
347 er32(CRCERRS);
348 er32(SYMERRS);
349 er32(MPC);
350 er32(SCC);
351 er32(ECOL);
352 er32(MCC);
353 er32(LATECOL);
354 er32(COLC);
355 er32(DC);
356 er32(SEC);
357 er32(RLEC);
358 er32(XONRXC);
359 er32(XONTXC);
360 er32(XOFFRXC);
361 er32(XOFFTXC);
362 er32(FCRUC);
363 er32(GPRC);
364 er32(BPRC);
365 er32(MPRC);
366 er32(GPTC);
367 er32(GORCL);
368 er32(GORCH);
369 er32(GOTCL);
370 er32(GOTCH);
371 er32(RNBC);
372 er32(RUC);
373 er32(RFC);
374 er32(ROC);
375 er32(RJC);
376 er32(TORL);
377 er32(TORH);
378 er32(TOTL);
379 er32(TOTH);
380 er32(TPR);
381 er32(TPT);
382 er32(MPTC);
383 er32(BPTC);
384}
385
386/**
387 * e1000e_check_for_copper_link - Check for link (Copper)
388 * @hw: pointer to the HW structure
389 *
390 * Checks to see of the link status of the hardware has changed. If a
391 * change in link status has been detected, then we read the PHY registers
392 * to get the current speed/duplex if link exists.
393 **/
394s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
395{
396 struct e1000_mac_info *mac = &hw->mac;
397 s32 ret_val;
398 bool link;
399
400 /* We only want to go out to the PHY registers to see if Auto-Neg
401 * has completed and/or if our link status has changed. The
402 * get_link_status flag is set upon receiving a Link Status
403 * Change or Rx Sequence Error interrupt.
404 */
405 if (!mac->get_link_status)
406 return 0;
407 mac->get_link_status = false;
408
409 /* First we want to see if the MII Status Register reports
410 * link. If so, then we want to get the current speed/duplex
411 * of the PHY.
412 */
413 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
414 if (ret_val || !link)
415 goto out;
416
417 /* Check if there was DownShift, must be checked
418 * immediately after link-up
419 */
420 e1000e_check_downshift(hw);
421
422 /* If we are forcing speed/duplex, then we simply return since
423 * we have already determined whether we have link or not.
424 */
425 if (!mac->autoneg)
426 return -E1000_ERR_CONFIG;
427
428 /* Auto-Neg is enabled. Auto Speed Detection takes care
429 * of MAC speed/duplex configuration. So we only need to
430 * configure Collision Distance in the MAC.
431 */
432 mac->ops.config_collision_dist(hw);
433
434 /* Configure Flow Control now that Auto-Neg has completed.
435 * First, we need to restore the desired flow control
436 * settings because we may have had to re-autoneg with a
437 * different link partner.
438 */
439 ret_val = e1000e_config_fc_after_link_up(hw);
440 if (ret_val)
441 e_dbg("Error configuring flow control\n");
442
443 return ret_val;
444
445out:
446 mac->get_link_status = true;
447 return ret_val;
448}
449
450/**
451 * e1000e_check_for_fiber_link - Check for link (Fiber)
452 * @hw: pointer to the HW structure
453 *
454 * Checks for link up on the hardware. If link is not up and we have
455 * a signal, then we need to force link up.
456 **/
457s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
458{
459 struct e1000_mac_info *mac = &hw->mac;
460 u32 rxcw;
461 u32 ctrl;
462 u32 status;
463 s32 ret_val;
464
465 ctrl = er32(CTRL);
466 status = er32(STATUS);
467 rxcw = er32(RXCW);
468
469 /* If we don't have link (auto-negotiation failed or link partner
470 * cannot auto-negotiate), the cable is plugged in (we have signal),
471 * and our link partner is not trying to auto-negotiate with us (we
472 * are receiving idles or data), we need to force link up. We also
473 * need to give auto-negotiation time to complete, in case the cable
474 * was just plugged in. The autoneg_failed flag does this.
475 */
476 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
477 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
478 !(rxcw & E1000_RXCW_C)) {
479 if (!mac->autoneg_failed) {
480 mac->autoneg_failed = true;
481 return 0;
482 }
483 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
484
485 /* Disable auto-negotiation in the TXCW register */
486 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
487
488 /* Force link-up and also force full-duplex. */
489 ctrl = er32(CTRL);
490 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
491 ew32(CTRL, ctrl);
492
493 /* Configure Flow Control after forcing link up. */
494 ret_val = e1000e_config_fc_after_link_up(hw);
495 if (ret_val) {
496 e_dbg("Error configuring flow control\n");
497 return ret_val;
498 }
499 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
500 /* If we are forcing link and we are receiving /C/ ordered
501 * sets, re-enable auto-negotiation in the TXCW register
502 * and disable forced link in the Device Control register
503 * in an attempt to auto-negotiate with our link partner.
504 */
505 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
506 ew32(TXCW, mac->txcw);
507 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
508
509 mac->serdes_has_link = true;
510 }
511
512 return 0;
513}
514
515/**
516 * e1000e_check_for_serdes_link - Check for link (Serdes)
517 * @hw: pointer to the HW structure
518 *
519 * Checks for link up on the hardware. If link is not up and we have
520 * a signal, then we need to force link up.
521 **/
522s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
523{
524 struct e1000_mac_info *mac = &hw->mac;
525 u32 rxcw;
526 u32 ctrl;
527 u32 status;
528 s32 ret_val;
529
530 ctrl = er32(CTRL);
531 status = er32(STATUS);
532 rxcw = er32(RXCW);
533
534 /* If we don't have link (auto-negotiation failed or link partner
535 * cannot auto-negotiate), and our link partner is not trying to
536 * auto-negotiate with us (we are receiving idles or data),
537 * we need to force link up. We also need to give auto-negotiation
538 * time to complete.
539 */
540 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
541 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
542 if (!mac->autoneg_failed) {
543 mac->autoneg_failed = true;
544 return 0;
545 }
546 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
547
548 /* Disable auto-negotiation in the TXCW register */
549 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
550
551 /* Force link-up and also force full-duplex. */
552 ctrl = er32(CTRL);
553 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
554 ew32(CTRL, ctrl);
555
556 /* Configure Flow Control after forcing link up. */
557 ret_val = e1000e_config_fc_after_link_up(hw);
558 if (ret_val) {
559 e_dbg("Error configuring flow control\n");
560 return ret_val;
561 }
562 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
563 /* If we are forcing link and we are receiving /C/ ordered
564 * sets, re-enable auto-negotiation in the TXCW register
565 * and disable forced link in the Device Control register
566 * in an attempt to auto-negotiate with our link partner.
567 */
568 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
569 ew32(TXCW, mac->txcw);
570 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
571
572 mac->serdes_has_link = true;
573 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
574 /* If we force link for non-auto-negotiation switch, check
575 * link status based on MAC synchronization for internal
576 * serdes media type.
577 */
578 /* SYNCH bit and IV bit are sticky. */
579 usleep_range(10, 20);
580 rxcw = er32(RXCW);
581 if (rxcw & E1000_RXCW_SYNCH) {
582 if (!(rxcw & E1000_RXCW_IV)) {
583 mac->serdes_has_link = true;
584 e_dbg("SERDES: Link up - forced.\n");
585 }
586 } else {
587 mac->serdes_has_link = false;
588 e_dbg("SERDES: Link down - force failed.\n");
589 }
590 }
591
592 if (E1000_TXCW_ANE & er32(TXCW)) {
593 status = er32(STATUS);
594 if (status & E1000_STATUS_LU) {
595 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
596 usleep_range(10, 20);
597 rxcw = er32(RXCW);
598 if (rxcw & E1000_RXCW_SYNCH) {
599 if (!(rxcw & E1000_RXCW_IV)) {
600 mac->serdes_has_link = true;
601 e_dbg("SERDES: Link up - autoneg completed successfully.\n");
602 } else {
603 mac->serdes_has_link = false;
604 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
605 }
606 } else {
607 mac->serdes_has_link = false;
608 e_dbg("SERDES: Link down - no sync.\n");
609 }
610 } else {
611 mac->serdes_has_link = false;
612 e_dbg("SERDES: Link down - autoneg failed\n");
613 }
614 }
615
616 return 0;
617}
618
619/**
620 * e1000_set_default_fc_generic - Set flow control default values
621 * @hw: pointer to the HW structure
622 *
623 * Read the EEPROM for the default values for flow control and store the
624 * values.
625 **/
626static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
627{
628 s32 ret_val;
629 u16 nvm_data;
630
631 /* Read and store word 0x0F of the EEPROM. This word contains bits
632 * that determine the hardware's default PAUSE (flow control) mode,
633 * a bit that determines whether the HW defaults to enabling or
634 * disabling auto-negotiation, and the direction of the
635 * SW defined pins. If there is no SW over-ride of the flow
636 * control setting, then the variable hw->fc will
637 * be initialized based on a value in the EEPROM.
638 */
639 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
640
641 if (ret_val) {
642 e_dbg("NVM Read Error\n");
643 return ret_val;
644 }
645
646 if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
647 hw->fc.requested_mode = e1000_fc_none;
648 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
649 hw->fc.requested_mode = e1000_fc_tx_pause;
650 else
651 hw->fc.requested_mode = e1000_fc_full;
652
653 return 0;
654}
655
656/**
657 * e1000e_setup_link_generic - Setup flow control and link settings
658 * @hw: pointer to the HW structure
659 *
660 * Determines which flow control settings to use, then configures flow
661 * control. Calls the appropriate media-specific link configuration
662 * function. Assuming the adapter has a valid link partner, a valid link
663 * should be established. Assumes the hardware has previously been reset
664 * and the transmitter and receiver are not enabled.
665 **/
666s32 e1000e_setup_link_generic(struct e1000_hw *hw)
667{
668 s32 ret_val;
669
670 /* In the case of the phy reset being blocked, we already have a link.
671 * We do not need to set it up again.
672 */
673 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
674 return 0;
675
676 /* If requested flow control is set to default, set flow control
677 * based on the EEPROM flow control settings.
678 */
679 if (hw->fc.requested_mode == e1000_fc_default) {
680 ret_val = e1000_set_default_fc_generic(hw);
681 if (ret_val)
682 return ret_val;
683 }
684
685 /* Save off the requested flow control mode for use later. Depending
686 * on the link partner's capabilities, we may or may not use this mode.
687 */
688 hw->fc.current_mode = hw->fc.requested_mode;
689
690 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
691
692 /* Call the necessary media_type subroutine to configure the link. */
693 ret_val = hw->mac.ops.setup_physical_interface(hw);
694 if (ret_val)
695 return ret_val;
696
697 /* Initialize the flow control address, type, and PAUSE timer
698 * registers to their default values. This is done even if flow
699 * control is disabled, because it does not hurt anything to
700 * initialize these registers.
701 */
702 e_dbg("Initializing the Flow Control address, type and timer regs\n");
703 ew32(FCT, FLOW_CONTROL_TYPE);
704 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
705 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
706
707 ew32(FCTTV, hw->fc.pause_time);
708
709 return e1000e_set_fc_watermarks(hw);
710}
711
712/**
713 * e1000_commit_fc_settings_generic - Configure flow control
714 * @hw: pointer to the HW structure
715 *
716 * Write the flow control settings to the Transmit Config Word Register (TXCW)
717 * base on the flow control settings in e1000_mac_info.
718 **/
719static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
720{
721 struct e1000_mac_info *mac = &hw->mac;
722 u32 txcw;
723
724 /* Check for a software override of the flow control settings, and
725 * setup the device accordingly. If auto-negotiation is enabled, then
726 * software will have to set the "PAUSE" bits to the correct value in
727 * the Transmit Config Word Register (TXCW) and re-start auto-
728 * negotiation. However, if auto-negotiation is disabled, then
729 * software will have to manually configure the two flow control enable
730 * bits in the CTRL register.
731 *
732 * The possible values of the "fc" parameter are:
733 * 0: Flow control is completely disabled
734 * 1: Rx flow control is enabled (we can receive pause frames,
735 * but not send pause frames).
736 * 2: Tx flow control is enabled (we can send pause frames but we
737 * do not support receiving pause frames).
738 * 3: Both Rx and Tx flow control (symmetric) are enabled.
739 */
740 switch (hw->fc.current_mode) {
741 case e1000_fc_none:
742 /* Flow control completely disabled by a software over-ride. */
743 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
744 break;
745 case e1000_fc_rx_pause:
746 /* Rx Flow control is enabled and Tx Flow control is disabled
747 * by a software over-ride. Since there really isn't a way to
748 * advertise that we are capable of Rx Pause ONLY, we will
749 * advertise that we support both symmetric and asymmetric Rx
750 * PAUSE. Later, we will disable the adapter's ability to send
751 * PAUSE frames.
752 */
753 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
754 break;
755 case e1000_fc_tx_pause:
756 /* Tx Flow control is enabled, and Rx Flow control is disabled,
757 * by a software over-ride.
758 */
759 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
760 break;
761 case e1000_fc_full:
762 /* Flow control (both Rx and Tx) is enabled by a software
763 * over-ride.
764 */
765 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
766 break;
767 default:
768 e_dbg("Flow control param set incorrectly\n");
769 return -E1000_ERR_CONFIG;
770 }
771
772 ew32(TXCW, txcw);
773 mac->txcw = txcw;
774
775 return 0;
776}
777
778/**
779 * e1000_poll_fiber_serdes_link_generic - Poll for link up
780 * @hw: pointer to the HW structure
781 *
782 * Polls for link up by reading the status register, if link fails to come
783 * up with auto-negotiation, then the link is forced if a signal is detected.
784 **/
785static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
786{
787 struct e1000_mac_info *mac = &hw->mac;
788 u32 i, status;
789 s32 ret_val;
790
791 /* If we have a signal (the cable is plugged in, or assumed true for
792 * serdes media) then poll for a "Link-Up" indication in the Device
793 * Status Register. Time-out if a link isn't seen in 500 milliseconds
794 * seconds (Auto-negotiation should complete in less than 500
795 * milliseconds even if the other end is doing it in SW).
796 */
797 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
798 usleep_range(10000, 11000);
799 status = er32(STATUS);
800 if (status & E1000_STATUS_LU)
801 break;
802 }
803 if (i == FIBER_LINK_UP_LIMIT) {
804 e_dbg("Never got a valid link from auto-neg!!!\n");
805 mac->autoneg_failed = true;
806 /* AutoNeg failed to achieve a link, so we'll call
807 * mac->check_for_link. This routine will force the
808 * link up if we detect a signal. This will allow us to
809 * communicate with non-autonegotiating link partners.
810 */
811 ret_val = mac->ops.check_for_link(hw);
812 if (ret_val) {
813 e_dbg("Error while checking for link\n");
814 return ret_val;
815 }
816 mac->autoneg_failed = false;
817 } else {
818 mac->autoneg_failed = false;
819 e_dbg("Valid Link Found\n");
820 }
821
822 return 0;
823}
824
825/**
826 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
827 * @hw: pointer to the HW structure
828 *
829 * Configures collision distance and flow control for fiber and serdes
830 * links. Upon successful setup, poll for link.
831 **/
832s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
833{
834 u32 ctrl;
835 s32 ret_val;
836
837 ctrl = er32(CTRL);
838
839 /* Take the link out of reset */
840 ctrl &= ~E1000_CTRL_LRST;
841
842 hw->mac.ops.config_collision_dist(hw);
843
844 ret_val = e1000_commit_fc_settings_generic(hw);
845 if (ret_val)
846 return ret_val;
847
848 /* Since auto-negotiation is enabled, take the link out of reset (the
849 * link will be in reset, because we previously reset the chip). This
850 * will restart auto-negotiation. If auto-negotiation is successful
851 * then the link-up status bit will be set and the flow control enable
852 * bits (RFCE and TFCE) will be set according to their negotiated value.
853 */
854 e_dbg("Auto-negotiation enabled\n");
855
856 ew32(CTRL, ctrl);
857 e1e_flush();
858 usleep_range(1000, 2000);
859
860 /* For these adapters, the SW definable pin 1 is set when the optics
861 * detect a signal. If we have a signal, then poll for a "Link-Up"
862 * indication.
863 */
864 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
865 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
866 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
867 } else {
868 e_dbg("No signal detected\n");
869 }
870
871 return ret_val;
872}
873
874/**
875 * e1000e_config_collision_dist_generic - Configure collision distance
876 * @hw: pointer to the HW structure
877 *
878 * Configures the collision distance to the default value and is used
879 * during link setup.
880 **/
881void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
882{
883 u32 tctl;
884
885 tctl = er32(TCTL);
886
887 tctl &= ~E1000_TCTL_COLD;
888 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
889
890 ew32(TCTL, tctl);
891 e1e_flush();
892}
893
894/**
895 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
896 * @hw: pointer to the HW structure
897 *
898 * Sets the flow control high/low threshold (watermark) registers. If
899 * flow control XON frame transmission is enabled, then set XON frame
900 * transmission as well.
901 **/
902s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
903{
904 u32 fcrtl = 0, fcrth = 0;
905
906 /* Set the flow control receive threshold registers. Normally,
907 * these registers will be set to a default threshold that may be
908 * adjusted later by the driver's runtime code. However, if the
909 * ability to transmit pause frames is not enabled, then these
910 * registers will be set to 0.
911 */
912 if (hw->fc.current_mode & e1000_fc_tx_pause) {
913 /* We need to set up the Receive Threshold high and low water
914 * marks as well as (optionally) enabling the transmission of
915 * XON frames.
916 */
917 fcrtl = hw->fc.low_water;
918 if (hw->fc.send_xon)
919 fcrtl |= E1000_FCRTL_XONE;
920
921 fcrth = hw->fc.high_water;
922 }
923 ew32(FCRTL, fcrtl);
924 ew32(FCRTH, fcrth);
925
926 return 0;
927}
928
929/**
930 * e1000e_force_mac_fc - Force the MAC's flow control settings
931 * @hw: pointer to the HW structure
932 *
933 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
934 * device control register to reflect the adapter settings. TFCE and RFCE
935 * need to be explicitly set by software when a copper PHY is used because
936 * autonegotiation is managed by the PHY rather than the MAC. Software must
937 * also configure these bits when link is forced on a fiber connection.
938 **/
939s32 e1000e_force_mac_fc(struct e1000_hw *hw)
940{
941 u32 ctrl;
942
943 ctrl = er32(CTRL);
944
945 /* Because we didn't get link via the internal auto-negotiation
946 * mechanism (we either forced link or we got link via PHY
947 * auto-neg), we have to manually enable/disable transmit an
948 * receive flow control.
949 *
950 * The "Case" statement below enables/disable flow control
951 * according to the "hw->fc.current_mode" parameter.
952 *
953 * The possible values of the "fc" parameter are:
954 * 0: Flow control is completely disabled
955 * 1: Rx flow control is enabled (we can receive pause
956 * frames but not send pause frames).
957 * 2: Tx flow control is enabled (we can send pause frames
958 * but we do not receive pause frames).
959 * 3: Both Rx and Tx flow control (symmetric) is enabled.
960 * other: No other values should be possible at this point.
961 */
962 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
963
964 switch (hw->fc.current_mode) {
965 case e1000_fc_none:
966 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
967 break;
968 case e1000_fc_rx_pause:
969 ctrl &= (~E1000_CTRL_TFCE);
970 ctrl |= E1000_CTRL_RFCE;
971 break;
972 case e1000_fc_tx_pause:
973 ctrl &= (~E1000_CTRL_RFCE);
974 ctrl |= E1000_CTRL_TFCE;
975 break;
976 case e1000_fc_full:
977 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
978 break;
979 default:
980 e_dbg("Flow control param set incorrectly\n");
981 return -E1000_ERR_CONFIG;
982 }
983
984 ew32(CTRL, ctrl);
985
986 return 0;
987}
988
989/**
990 * e1000e_config_fc_after_link_up - Configures flow control after link
991 * @hw: pointer to the HW structure
992 *
993 * Checks the status of auto-negotiation after link up to ensure that the
994 * speed and duplex were not forced. If the link needed to be forced, then
995 * flow control needs to be forced also. If auto-negotiation is enabled
996 * and did not fail, then we configure flow control based on our link
997 * partner.
998 **/
999s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1000{
1001 struct e1000_mac_info *mac = &hw->mac;
1002 s32 ret_val = 0;
1003 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1004 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1005 u16 speed, duplex;
1006
1007 /* Check for the case where we have fiber media and auto-neg failed
1008 * so we had to force link. In this case, we need to force the
1009 * configuration of the MAC to match the "fc" parameter.
1010 */
1011 if (mac->autoneg_failed) {
1012 if (hw->phy.media_type == e1000_media_type_fiber ||
1013 hw->phy.media_type == e1000_media_type_internal_serdes)
1014 ret_val = e1000e_force_mac_fc(hw);
1015 } else {
1016 if (hw->phy.media_type == e1000_media_type_copper)
1017 ret_val = e1000e_force_mac_fc(hw);
1018 }
1019
1020 if (ret_val) {
1021 e_dbg("Error forcing flow control settings\n");
1022 return ret_val;
1023 }
1024
1025 /* Check for the case where we have copper media and auto-neg is
1026 * enabled. In this case, we need to check and see if Auto-Neg
1027 * has completed, and if so, how the PHY and link partner has
1028 * flow control configured.
1029 */
1030 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1031 /* Read the MII Status Register and check to see if AutoNeg
1032 * has completed. We read this twice because this reg has
1033 * some "sticky" (latched) bits.
1034 */
1035 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1036 if (ret_val)
1037 return ret_val;
1038 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1039 if (ret_val)
1040 return ret_val;
1041
1042 if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1043 e_dbg("Copper PHY and Auto Neg has not completed.\n");
1044 return ret_val;
1045 }
1046
1047 /* The AutoNeg process has completed, so we now need to
1048 * read both the Auto Negotiation Advertisement
1049 * Register (Address 4) and the Auto_Negotiation Base
1050 * Page Ability Register (Address 5) to determine how
1051 * flow control was negotiated.
1052 */
1053 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1054 if (ret_val)
1055 return ret_val;
1056 ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1057 if (ret_val)
1058 return ret_val;
1059
1060 /* Two bits in the Auto Negotiation Advertisement Register
1061 * (Address 4) and two bits in the Auto Negotiation Base
1062 * Page Ability Register (Address 5) determine flow control
1063 * for both the PHY and the link partner. The following
1064 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1065 * 1999, describes these PAUSE resolution bits and how flow
1066 * control is determined based upon these settings.
1067 * NOTE: DC = Don't Care
1068 *
1069 * LOCAL DEVICE | LINK PARTNER
1070 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1071 *-------|---------|-------|---------|--------------------
1072 * 0 | 0 | DC | DC | e1000_fc_none
1073 * 0 | 1 | 0 | DC | e1000_fc_none
1074 * 0 | 1 | 1 | 0 | e1000_fc_none
1075 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1076 * 1 | 0 | 0 | DC | e1000_fc_none
1077 * 1 | DC | 1 | DC | e1000_fc_full
1078 * 1 | 1 | 0 | 0 | e1000_fc_none
1079 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1080 *
1081 * Are both PAUSE bits set to 1? If so, this implies
1082 * Symmetric Flow Control is enabled at both ends. The
1083 * ASM_DIR bits are irrelevant per the spec.
1084 *
1085 * For Symmetric Flow Control:
1086 *
1087 * LOCAL DEVICE | LINK PARTNER
1088 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1089 *-------|---------|-------|---------|--------------------
1090 * 1 | DC | 1 | DC | E1000_fc_full
1091 *
1092 */
1093 if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1094 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1095 /* Now we need to check if the user selected Rx ONLY
1096 * of pause frames. In this case, we had to advertise
1097 * FULL flow control because we could not advertise Rx
1098 * ONLY. Hence, we must now check to see if we need to
1099 * turn OFF the TRANSMISSION of PAUSE frames.
1100 */
1101 if (hw->fc.requested_mode == e1000_fc_full) {
1102 hw->fc.current_mode = e1000_fc_full;
1103 e_dbg("Flow Control = FULL.\n");
1104 } else {
1105 hw->fc.current_mode = e1000_fc_rx_pause;
1106 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1107 }
1108 }
1109 /* For receiving PAUSE frames ONLY.
1110 *
1111 * LOCAL DEVICE | LINK PARTNER
1112 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1113 *-------|---------|-------|---------|--------------------
1114 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1115 */
1116 else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1117 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1118 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1119 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1120 hw->fc.current_mode = e1000_fc_tx_pause;
1121 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1122 }
1123 /* For transmitting PAUSE frames ONLY.
1124 *
1125 * LOCAL DEVICE | LINK PARTNER
1126 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1127 *-------|---------|-------|---------|--------------------
1128 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1129 */
1130 else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1131 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1132 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1133 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1134 hw->fc.current_mode = e1000_fc_rx_pause;
1135 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1136 } else {
1137 /* Per the IEEE spec, at this point flow control
1138 * should be disabled.
1139 */
1140 hw->fc.current_mode = e1000_fc_none;
1141 e_dbg("Flow Control = NONE.\n");
1142 }
1143
1144 /* Now we need to do one last check... If we auto-
1145 * negotiated to HALF DUPLEX, flow control should not be
1146 * enabled per IEEE 802.3 spec.
1147 */
1148 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1149 if (ret_val) {
1150 e_dbg("Error getting link speed and duplex\n");
1151 return ret_val;
1152 }
1153
1154 if (duplex == HALF_DUPLEX)
1155 hw->fc.current_mode = e1000_fc_none;
1156
1157 /* Now we call a subroutine to actually force the MAC
1158 * controller to use the correct flow control settings.
1159 */
1160 ret_val = e1000e_force_mac_fc(hw);
1161 if (ret_val) {
1162 e_dbg("Error forcing flow control settings\n");
1163 return ret_val;
1164 }
1165 }
1166
1167 /* Check for the case where we have SerDes media and auto-neg is
1168 * enabled. In this case, we need to check and see if Auto-Neg
1169 * has completed, and if so, how the PHY and link partner has
1170 * flow control configured.
1171 */
1172 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1173 mac->autoneg) {
1174 /* Read the PCS_LSTS and check to see if AutoNeg
1175 * has completed.
1176 */
1177 pcs_status_reg = er32(PCS_LSTAT);
1178
1179 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1180 e_dbg("PCS Auto Neg has not completed.\n");
1181 return ret_val;
1182 }
1183
1184 /* The AutoNeg process has completed, so we now need to
1185 * read both the Auto Negotiation Advertisement
1186 * Register (PCS_ANADV) and the Auto_Negotiation Base
1187 * Page Ability Register (PCS_LPAB) to determine how
1188 * flow control was negotiated.
1189 */
1190 pcs_adv_reg = er32(PCS_ANADV);
1191 pcs_lp_ability_reg = er32(PCS_LPAB);
1192
1193 /* Two bits in the Auto Negotiation Advertisement Register
1194 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1195 * Page Ability Register (PCS_LPAB) determine flow control
1196 * for both the PHY and the link partner. The following
1197 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1198 * 1999, describes these PAUSE resolution bits and how flow
1199 * control is determined based upon these settings.
1200 * NOTE: DC = Don't Care
1201 *
1202 * LOCAL DEVICE | LINK PARTNER
1203 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1204 *-------|---------|-------|---------|--------------------
1205 * 0 | 0 | DC | DC | e1000_fc_none
1206 * 0 | 1 | 0 | DC | e1000_fc_none
1207 * 0 | 1 | 1 | 0 | e1000_fc_none
1208 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1209 * 1 | 0 | 0 | DC | e1000_fc_none
1210 * 1 | DC | 1 | DC | e1000_fc_full
1211 * 1 | 1 | 0 | 0 | e1000_fc_none
1212 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1213 *
1214 * Are both PAUSE bits set to 1? If so, this implies
1215 * Symmetric Flow Control is enabled at both ends. The
1216 * ASM_DIR bits are irrelevant per the spec.
1217 *
1218 * For Symmetric Flow Control:
1219 *
1220 * LOCAL DEVICE | LINK PARTNER
1221 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1222 *-------|---------|-------|---------|--------------------
1223 * 1 | DC | 1 | DC | e1000_fc_full
1224 *
1225 */
1226 if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1227 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1228 /* Now we need to check if the user selected Rx ONLY
1229 * of pause frames. In this case, we had to advertise
1230 * FULL flow control because we could not advertise Rx
1231 * ONLY. Hence, we must now check to see if we need to
1232 * turn OFF the TRANSMISSION of PAUSE frames.
1233 */
1234 if (hw->fc.requested_mode == e1000_fc_full) {
1235 hw->fc.current_mode = e1000_fc_full;
1236 e_dbg("Flow Control = FULL.\n");
1237 } else {
1238 hw->fc.current_mode = e1000_fc_rx_pause;
1239 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1240 }
1241 }
1242 /* For receiving PAUSE frames ONLY.
1243 *
1244 * LOCAL DEVICE | LINK PARTNER
1245 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1246 *-------|---------|-------|---------|--------------------
1247 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1248 */
1249 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1250 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1251 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1252 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1253 hw->fc.current_mode = e1000_fc_tx_pause;
1254 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1255 }
1256 /* For transmitting PAUSE frames ONLY.
1257 *
1258 * LOCAL DEVICE | LINK PARTNER
1259 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1260 *-------|---------|-------|---------|--------------------
1261 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1262 */
1263 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1264 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1265 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1266 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1267 hw->fc.current_mode = e1000_fc_rx_pause;
1268 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1269 } else {
1270 /* Per the IEEE spec, at this point flow control
1271 * should be disabled.
1272 */
1273 hw->fc.current_mode = e1000_fc_none;
1274 e_dbg("Flow Control = NONE.\n");
1275 }
1276
1277 /* Now we call a subroutine to actually force the MAC
1278 * controller to use the correct flow control settings.
1279 */
1280 pcs_ctrl_reg = er32(PCS_LCTL);
1281 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1282 ew32(PCS_LCTL, pcs_ctrl_reg);
1283
1284 ret_val = e1000e_force_mac_fc(hw);
1285 if (ret_val) {
1286 e_dbg("Error forcing flow control settings\n");
1287 return ret_val;
1288 }
1289 }
1290
1291 return 0;
1292}
1293
1294/**
1295 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1296 * @hw: pointer to the HW structure
1297 * @speed: stores the current speed
1298 * @duplex: stores the current duplex
1299 *
1300 * Read the status register for the current speed/duplex and store the current
1301 * speed and duplex for copper connections.
1302 **/
1303s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1304 u16 *duplex)
1305{
1306 u32 status;
1307
1308 status = er32(STATUS);
1309 if (status & E1000_STATUS_SPEED_1000)
1310 *speed = SPEED_1000;
1311 else if (status & E1000_STATUS_SPEED_100)
1312 *speed = SPEED_100;
1313 else
1314 *speed = SPEED_10;
1315
1316 if (status & E1000_STATUS_FD)
1317 *duplex = FULL_DUPLEX;
1318 else
1319 *duplex = HALF_DUPLEX;
1320
1321 e_dbg("%u Mbps, %s Duplex\n",
1322 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1323 *duplex == FULL_DUPLEX ? "Full" : "Half");
1324
1325 return 0;
1326}
1327
1328/**
1329 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1330 * @hw: pointer to the HW structure
1331 * @speed: stores the current speed
1332 * @duplex: stores the current duplex
1333 *
1334 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1335 * for fiber/serdes links.
1336 **/
1337s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1338 *hw, u16 *speed, u16 *duplex)
1339{
1340 *speed = SPEED_1000;
1341 *duplex = FULL_DUPLEX;
1342
1343 return 0;
1344}
1345
1346/**
1347 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1348 * @hw: pointer to the HW structure
1349 *
1350 * Acquire the HW semaphore to access the PHY or NVM
1351 **/
1352s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1353{
1354 u32 swsm;
1355 s32 timeout = hw->nvm.word_size + 1;
1356 s32 i = 0;
1357
1358 /* Get the SW semaphore */
1359 while (i < timeout) {
1360 swsm = er32(SWSM);
1361 if (!(swsm & E1000_SWSM_SMBI))
1362 break;
1363
1364 udelay(100);
1365 i++;
1366 }
1367
1368 if (i == timeout) {
1369 e_dbg("Driver can't access device - SMBI bit is set.\n");
1370 return -E1000_ERR_NVM;
1371 }
1372
1373 /* Get the FW semaphore. */
1374 for (i = 0; i < timeout; i++) {
1375 swsm = er32(SWSM);
1376 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1377
1378 /* Semaphore acquired if bit latched */
1379 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1380 break;
1381
1382 udelay(100);
1383 }
1384
1385 if (i == timeout) {
1386 /* Release semaphores */
1387 e1000e_put_hw_semaphore(hw);
1388 e_dbg("Driver can't access the NVM\n");
1389 return -E1000_ERR_NVM;
1390 }
1391
1392 return 0;
1393}
1394
1395/**
1396 * e1000e_put_hw_semaphore - Release hardware semaphore
1397 * @hw: pointer to the HW structure
1398 *
1399 * Release hardware semaphore used to access the PHY or NVM
1400 **/
1401void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1402{
1403 u32 swsm;
1404
1405 swsm = er32(SWSM);
1406 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1407 ew32(SWSM, swsm);
1408}
1409
1410/**
1411 * e1000e_get_auto_rd_done - Check for auto read completion
1412 * @hw: pointer to the HW structure
1413 *
1414 * Check EEPROM for Auto Read done bit.
1415 **/
1416s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1417{
1418 s32 i = 0;
1419
1420 while (i < AUTO_READ_DONE_TIMEOUT) {
1421 if (er32(EECD) & E1000_EECD_AUTO_RD)
1422 break;
1423 usleep_range(1000, 2000);
1424 i++;
1425 }
1426
1427 if (i == AUTO_READ_DONE_TIMEOUT) {
1428 e_dbg("Auto read by HW from NVM has not completed.\n");
1429 return -E1000_ERR_RESET;
1430 }
1431
1432 return 0;
1433}
1434
1435/**
1436 * e1000e_valid_led_default - Verify a valid default LED config
1437 * @hw: pointer to the HW structure
1438 * @data: pointer to the NVM (EEPROM)
1439 *
1440 * Read the EEPROM for the current default LED configuration. If the
1441 * LED configuration is not valid, set to a valid LED configuration.
1442 **/
1443s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1444{
1445 s32 ret_val;
1446
1447 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1448 if (ret_val) {
1449 e_dbg("NVM Read Error\n");
1450 return ret_val;
1451 }
1452
1453 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1454 *data = ID_LED_DEFAULT;
1455
1456 return 0;
1457}
1458
1459/**
1460 * e1000e_id_led_init_generic -
1461 * @hw: pointer to the HW structure
1462 *
1463 **/
1464s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1465{
1466 struct e1000_mac_info *mac = &hw->mac;
1467 s32 ret_val;
1468 const u32 ledctl_mask = 0x000000FF;
1469 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1470 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1471 u16 data, i, temp;
1472 const u16 led_mask = 0x0F;
1473
1474 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1475 if (ret_val)
1476 return ret_val;
1477
1478 mac->ledctl_default = er32(LEDCTL);
1479 mac->ledctl_mode1 = mac->ledctl_default;
1480 mac->ledctl_mode2 = mac->ledctl_default;
1481
1482 for (i = 0; i < 4; i++) {
1483 temp = (data >> (i << 2)) & led_mask;
1484 switch (temp) {
1485 case ID_LED_ON1_DEF2:
1486 case ID_LED_ON1_ON2:
1487 case ID_LED_ON1_OFF2:
1488 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1489 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1490 break;
1491 case ID_LED_OFF1_DEF2:
1492 case ID_LED_OFF1_ON2:
1493 case ID_LED_OFF1_OFF2:
1494 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1495 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1496 break;
1497 default:
1498 /* Do nothing */
1499 break;
1500 }
1501 switch (temp) {
1502 case ID_LED_DEF1_ON2:
1503 case ID_LED_ON1_ON2:
1504 case ID_LED_OFF1_ON2:
1505 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1506 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1507 break;
1508 case ID_LED_DEF1_OFF2:
1509 case ID_LED_ON1_OFF2:
1510 case ID_LED_OFF1_OFF2:
1511 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1512 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1513 break;
1514 default:
1515 /* Do nothing */
1516 break;
1517 }
1518 }
1519
1520 return 0;
1521}
1522
1523/**
1524 * e1000e_setup_led_generic - Configures SW controllable LED
1525 * @hw: pointer to the HW structure
1526 *
1527 * This prepares the SW controllable LED for use and saves the current state
1528 * of the LED so it can be later restored.
1529 **/
1530s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1531{
1532 u32 ledctl;
1533
1534 if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1535 return -E1000_ERR_CONFIG;
1536
1537 if (hw->phy.media_type == e1000_media_type_fiber) {
1538 ledctl = er32(LEDCTL);
1539 hw->mac.ledctl_default = ledctl;
1540 /* Turn off LED0 */
1541 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1542 E1000_LEDCTL_LED0_MODE_MASK);
1543 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1544 E1000_LEDCTL_LED0_MODE_SHIFT);
1545 ew32(LEDCTL, ledctl);
1546 } else if (hw->phy.media_type == e1000_media_type_copper) {
1547 ew32(LEDCTL, hw->mac.ledctl_mode1);
1548 }
1549
1550 return 0;
1551}
1552
1553/**
1554 * e1000e_cleanup_led_generic - Set LED config to default operation
1555 * @hw: pointer to the HW structure
1556 *
1557 * Remove the current LED configuration and set the LED configuration
1558 * to the default value, saved from the EEPROM.
1559 **/
1560s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1561{
1562 ew32(LEDCTL, hw->mac.ledctl_default);
1563 return 0;
1564}
1565
1566/**
1567 * e1000e_blink_led_generic - Blink LED
1568 * @hw: pointer to the HW structure
1569 *
1570 * Blink the LEDs which are set to be on.
1571 **/
1572s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1573{
1574 u32 ledctl_blink = 0;
1575 u32 i;
1576
1577 if (hw->phy.media_type == e1000_media_type_fiber) {
1578 /* always blink LED0 for PCI-E fiber */
1579 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1580 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1581 } else {
1582 /* Set the blink bit for each LED that's "on" (0x0E)
1583 * (or "off" if inverted) in ledctl_mode2. The blink
1584 * logic in hardware only works when mode is set to "on"
1585 * so it must be changed accordingly when the mode is
1586 * "off" and inverted.
1587 */
1588 ledctl_blink = hw->mac.ledctl_mode2;
1589 for (i = 0; i < 32; i += 8) {
1590 u32 mode = (hw->mac.ledctl_mode2 >> i) &
1591 E1000_LEDCTL_LED0_MODE_MASK;
1592 u32 led_default = hw->mac.ledctl_default >> i;
1593
1594 if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1595 (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1596 ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1597 (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1598 ledctl_blink &=
1599 ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1600 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1601 E1000_LEDCTL_MODE_LED_ON) << i;
1602 }
1603 }
1604 }
1605
1606 ew32(LEDCTL, ledctl_blink);
1607
1608 return 0;
1609}
1610
1611/**
1612 * e1000e_led_on_generic - Turn LED on
1613 * @hw: pointer to the HW structure
1614 *
1615 * Turn LED on.
1616 **/
1617s32 e1000e_led_on_generic(struct e1000_hw *hw)
1618{
1619 u32 ctrl;
1620
1621 switch (hw->phy.media_type) {
1622 case e1000_media_type_fiber:
1623 ctrl = er32(CTRL);
1624 ctrl &= ~E1000_CTRL_SWDPIN0;
1625 ctrl |= E1000_CTRL_SWDPIO0;
1626 ew32(CTRL, ctrl);
1627 break;
1628 case e1000_media_type_copper:
1629 ew32(LEDCTL, hw->mac.ledctl_mode2);
1630 break;
1631 default:
1632 break;
1633 }
1634
1635 return 0;
1636}
1637
1638/**
1639 * e1000e_led_off_generic - Turn LED off
1640 * @hw: pointer to the HW structure
1641 *
1642 * Turn LED off.
1643 **/
1644s32 e1000e_led_off_generic(struct e1000_hw *hw)
1645{
1646 u32 ctrl;
1647
1648 switch (hw->phy.media_type) {
1649 case e1000_media_type_fiber:
1650 ctrl = er32(CTRL);
1651 ctrl |= E1000_CTRL_SWDPIN0;
1652 ctrl |= E1000_CTRL_SWDPIO0;
1653 ew32(CTRL, ctrl);
1654 break;
1655 case e1000_media_type_copper:
1656 ew32(LEDCTL, hw->mac.ledctl_mode1);
1657 break;
1658 default:
1659 break;
1660 }
1661
1662 return 0;
1663}
1664
1665/**
1666 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1667 * @hw: pointer to the HW structure
1668 * @no_snoop: bitmap of snoop events
1669 *
1670 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1671 **/
1672void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1673{
1674 u32 gcr;
1675
1676 if (no_snoop) {
1677 gcr = er32(GCR);
1678 gcr &= ~(PCIE_NO_SNOOP_ALL);
1679 gcr |= no_snoop;
1680 ew32(GCR, gcr);
1681 }
1682}
1683
1684/**
1685 * e1000e_disable_pcie_master - Disables PCI-express master access
1686 * @hw: pointer to the HW structure
1687 *
1688 * Returns 0 if successful, else returns -10
1689 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1690 * the master requests to be disabled.
1691 *
1692 * Disables PCI-Express master access and verifies there are no pending
1693 * requests.
1694 **/
1695s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1696{
1697 u32 ctrl;
1698 s32 timeout = MASTER_DISABLE_TIMEOUT;
1699
1700 ctrl = er32(CTRL);
1701 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1702 ew32(CTRL, ctrl);
1703
1704 while (timeout) {
1705 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1706 break;
1707 usleep_range(100, 200);
1708 timeout--;
1709 }
1710
1711 if (!timeout) {
1712 e_dbg("Master requests are pending.\n");
1713 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1714 }
1715
1716 return 0;
1717}
1718
1719/**
1720 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1721 * @hw: pointer to the HW structure
1722 *
1723 * Reset the Adaptive Interframe Spacing throttle to default values.
1724 **/
1725void e1000e_reset_adaptive(struct e1000_hw *hw)
1726{
1727 struct e1000_mac_info *mac = &hw->mac;
1728
1729 if (!mac->adaptive_ifs) {
1730 e_dbg("Not in Adaptive IFS mode!\n");
1731 return;
1732 }
1733
1734 mac->current_ifs_val = 0;
1735 mac->ifs_min_val = IFS_MIN;
1736 mac->ifs_max_val = IFS_MAX;
1737 mac->ifs_step_size = IFS_STEP;
1738 mac->ifs_ratio = IFS_RATIO;
1739
1740 mac->in_ifs_mode = false;
1741 ew32(AIT, 0);
1742}
1743
1744/**
1745 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1746 * @hw: pointer to the HW structure
1747 *
1748 * Update the Adaptive Interframe Spacing Throttle value based on the
1749 * time between transmitted packets and time between collisions.
1750 **/
1751void e1000e_update_adaptive(struct e1000_hw *hw)
1752{
1753 struct e1000_mac_info *mac = &hw->mac;
1754
1755 if (!mac->adaptive_ifs) {
1756 e_dbg("Not in Adaptive IFS mode!\n");
1757 return;
1758 }
1759
1760 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1761 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1762 mac->in_ifs_mode = true;
1763 if (mac->current_ifs_val < mac->ifs_max_val) {
1764 if (!mac->current_ifs_val)
1765 mac->current_ifs_val = mac->ifs_min_val;
1766 else
1767 mac->current_ifs_val +=
1768 mac->ifs_step_size;
1769 ew32(AIT, mac->current_ifs_val);
1770 }
1771 }
1772 } else {
1773 if (mac->in_ifs_mode &&
1774 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1775 mac->current_ifs_val = 0;
1776 mac->in_ifs_mode = false;
1777 ew32(AIT, 0);
1778 }
1779 }
1780}
1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22#include "e1000.h"
23
24/**
25 * e1000e_get_bus_info_pcie - Get PCIe bus information
26 * @hw: pointer to the HW structure
27 *
28 * Determines and stores the system bus information for a particular
29 * network interface. The following bus information is determined and stored:
30 * bus speed, bus width, type (PCIe), and PCIe function.
31 **/
32s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
33{
34 struct e1000_mac_info *mac = &hw->mac;
35 struct e1000_bus_info *bus = &hw->bus;
36 struct e1000_adapter *adapter = hw->adapter;
37 u16 pcie_link_status, cap_offset;
38
39 cap_offset = adapter->pdev->pcie_cap;
40 if (!cap_offset) {
41 bus->width = e1000_bus_width_unknown;
42 } else {
43 pci_read_config_word(adapter->pdev,
44 cap_offset + PCIE_LINK_STATUS,
45 &pcie_link_status);
46 bus->width = (enum e1000_bus_width)((pcie_link_status &
47 PCIE_LINK_WIDTH_MASK) >>
48 PCIE_LINK_WIDTH_SHIFT);
49 }
50
51 mac->ops.set_lan_id(hw);
52
53 return 0;
54}
55
56/**
57 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
58 *
59 * @hw: pointer to the HW structure
60 *
61 * Determines the LAN function id by reading memory-mapped registers
62 * and swaps the port value if requested.
63 **/
64void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
65{
66 struct e1000_bus_info *bus = &hw->bus;
67 u32 reg;
68
69 /* The status register reports the correct function number
70 * for the device regardless of function swap state.
71 */
72 reg = er32(STATUS);
73 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
74}
75
76/**
77 * e1000_set_lan_id_single_port - Set LAN id for a single port device
78 * @hw: pointer to the HW structure
79 *
80 * Sets the LAN function id to zero for a single port device.
81 **/
82void e1000_set_lan_id_single_port(struct e1000_hw *hw)
83{
84 struct e1000_bus_info *bus = &hw->bus;
85
86 bus->func = 0;
87}
88
89/**
90 * e1000_clear_vfta_generic - Clear VLAN filter table
91 * @hw: pointer to the HW structure
92 *
93 * Clears the register array which contains the VLAN filter table by
94 * setting all the values to 0.
95 **/
96void e1000_clear_vfta_generic(struct e1000_hw *hw)
97{
98 u32 offset;
99
100 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
101 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
102 e1e_flush();
103 }
104}
105
106/**
107 * e1000_write_vfta_generic - Write value to VLAN filter table
108 * @hw: pointer to the HW structure
109 * @offset: register offset in VLAN filter table
110 * @value: register value written to VLAN filter table
111 *
112 * Writes value at the given offset in the register array which stores
113 * the VLAN filter table.
114 **/
115void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
116{
117 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
118 e1e_flush();
119}
120
121/**
122 * e1000e_init_rx_addrs - Initialize receive address's
123 * @hw: pointer to the HW structure
124 * @rar_count: receive address registers
125 *
126 * Setup the receive address registers by setting the base receive address
127 * register to the devices MAC address and clearing all the other receive
128 * address registers to 0.
129 **/
130void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
131{
132 u32 i;
133 u8 mac_addr[ETH_ALEN] = { 0 };
134
135 /* Setup the receive address */
136 e_dbg("Programming MAC Address into RAR[0]\n");
137
138 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
139
140 /* Zero out the other (rar_entry_count - 1) receive addresses */
141 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
142 for (i = 1; i < rar_count; i++)
143 hw->mac.ops.rar_set(hw, mac_addr, i);
144}
145
146/**
147 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
148 * @hw: pointer to the HW structure
149 *
150 * Checks the nvm for an alternate MAC address. An alternate MAC address
151 * can be setup by pre-boot software and must be treated like a permanent
152 * address and must override the actual permanent MAC address. If an
153 * alternate MAC address is found it is programmed into RAR0, replacing
154 * the permanent address that was installed into RAR0 by the Si on reset.
155 * This function will return SUCCESS unless it encounters an error while
156 * reading the EEPROM.
157 **/
158s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
159{
160 u32 i;
161 s32 ret_val;
162 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
163 u8 alt_mac_addr[ETH_ALEN];
164
165 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
166 if (ret_val)
167 return ret_val;
168
169 /* not supported on 82573 */
170 if (hw->mac.type == e1000_82573)
171 return 0;
172
173 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
174 &nvm_alt_mac_addr_offset);
175 if (ret_val) {
176 e_dbg("NVM Read Error\n");
177 return ret_val;
178 }
179
180 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
181 (nvm_alt_mac_addr_offset == 0x0000))
182 /* There is no Alternate MAC Address */
183 return 0;
184
185 if (hw->bus.func == E1000_FUNC_1)
186 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
187 for (i = 0; i < ETH_ALEN; i += 2) {
188 offset = nvm_alt_mac_addr_offset + (i >> 1);
189 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
190 if (ret_val) {
191 e_dbg("NVM Read Error\n");
192 return ret_val;
193 }
194
195 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
196 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
197 }
198
199 /* if multicast bit is set, the alternate address will not be used */
200 if (is_multicast_ether_addr(alt_mac_addr)) {
201 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
202 return 0;
203 }
204
205 /* We have a valid alternate MAC address, and we want to treat it the
206 * same as the normal permanent MAC address stored by the HW into the
207 * RAR. Do this by mapping this address into RAR0.
208 */
209 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
210
211 return 0;
212}
213
214u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
215{
216 return hw->mac.rar_entry_count;
217}
218
219/**
220 * e1000e_rar_set_generic - Set receive address register
221 * @hw: pointer to the HW structure
222 * @addr: pointer to the receive address
223 * @index: receive address array register
224 *
225 * Sets the receive address array register at index to the address passed
226 * in by addr.
227 **/
228int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
229{
230 u32 rar_low, rar_high;
231
232 /* HW expects these in little endian so we reverse the byte order
233 * from network order (big endian) to little endian
234 */
235 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
236 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
237
238 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
239
240 /* If MAC address zero, no need to set the AV bit */
241 if (rar_low || rar_high)
242 rar_high |= E1000_RAH_AV;
243
244 /* Some bridges will combine consecutive 32-bit writes into
245 * a single burst write, which will malfunction on some parts.
246 * The flushes avoid this.
247 */
248 ew32(RAL(index), rar_low);
249 e1e_flush();
250 ew32(RAH(index), rar_high);
251 e1e_flush();
252
253 return 0;
254}
255
256/**
257 * e1000_hash_mc_addr - Generate a multicast hash value
258 * @hw: pointer to the HW structure
259 * @mc_addr: pointer to a multicast address
260 *
261 * Generates a multicast address hash value which is used to determine
262 * the multicast filter table array address and new table value.
263 **/
264static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
265{
266 u32 hash_value, hash_mask;
267 u8 bit_shift = 0;
268
269 /* Register count multiplied by bits per register */
270 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
271
272 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
273 * where 0xFF would still fall within the hash mask.
274 */
275 while (hash_mask >> bit_shift != 0xFF)
276 bit_shift++;
277
278 /* The portion of the address that is used for the hash table
279 * is determined by the mc_filter_type setting.
280 * The algorithm is such that there is a total of 8 bits of shifting.
281 * The bit_shift for a mc_filter_type of 0 represents the number of
282 * left-shifts where the MSB of mc_addr[5] would still fall within
283 * the hash_mask. Case 0 does this exactly. Since there are a total
284 * of 8 bits of shifting, then mc_addr[4] will shift right the
285 * remaining number of bits. Thus 8 - bit_shift. The rest of the
286 * cases are a variation of this algorithm...essentially raising the
287 * number of bits to shift mc_addr[5] left, while still keeping the
288 * 8-bit shifting total.
289 *
290 * For example, given the following Destination MAC Address and an
291 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
292 * we can see that the bit_shift for case 0 is 4. These are the hash
293 * values resulting from each mc_filter_type...
294 * [0] [1] [2] [3] [4] [5]
295 * 01 AA 00 12 34 56
296 * LSB MSB
297 *
298 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
299 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
300 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
301 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
302 */
303 switch (hw->mac.mc_filter_type) {
304 default:
305 case 0:
306 break;
307 case 1:
308 bit_shift += 1;
309 break;
310 case 2:
311 bit_shift += 2;
312 break;
313 case 3:
314 bit_shift += 4;
315 break;
316 }
317
318 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
319 (((u16)mc_addr[5]) << bit_shift)));
320
321 return hash_value;
322}
323
324/**
325 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
326 * @hw: pointer to the HW structure
327 * @mc_addr_list: array of multicast addresses to program
328 * @mc_addr_count: number of multicast addresses to program
329 *
330 * Updates entire Multicast Table Array.
331 * The caller must have a packed mc_addr_list of multicast addresses.
332 **/
333void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
334 u8 *mc_addr_list, u32 mc_addr_count)
335{
336 u32 hash_value, hash_bit, hash_reg;
337 int i;
338
339 /* clear mta_shadow */
340 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
341
342 /* update mta_shadow from mc_addr_list */
343 for (i = 0; (u32)i < mc_addr_count; i++) {
344 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
345
346 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
347 hash_bit = hash_value & 0x1F;
348
349 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
350 mc_addr_list += (ETH_ALEN);
351 }
352
353 /* replace the entire MTA table */
354 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
355 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
356 e1e_flush();
357}
358
359/**
360 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
361 * @hw: pointer to the HW structure
362 *
363 * Clears the base hardware counters by reading the counter registers.
364 **/
365void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
366{
367 er32(CRCERRS);
368 er32(SYMERRS);
369 er32(MPC);
370 er32(SCC);
371 er32(ECOL);
372 er32(MCC);
373 er32(LATECOL);
374 er32(COLC);
375 er32(DC);
376 er32(SEC);
377 er32(RLEC);
378 er32(XONRXC);
379 er32(XONTXC);
380 er32(XOFFRXC);
381 er32(XOFFTXC);
382 er32(FCRUC);
383 er32(GPRC);
384 er32(BPRC);
385 er32(MPRC);
386 er32(GPTC);
387 er32(GORCL);
388 er32(GORCH);
389 er32(GOTCL);
390 er32(GOTCH);
391 er32(RNBC);
392 er32(RUC);
393 er32(RFC);
394 er32(ROC);
395 er32(RJC);
396 er32(TORL);
397 er32(TORH);
398 er32(TOTL);
399 er32(TOTH);
400 er32(TPR);
401 er32(TPT);
402 er32(MPTC);
403 er32(BPTC);
404}
405
406/**
407 * e1000e_check_for_copper_link - Check for link (Copper)
408 * @hw: pointer to the HW structure
409 *
410 * Checks to see of the link status of the hardware has changed. If a
411 * change in link status has been detected, then we read the PHY registers
412 * to get the current speed/duplex if link exists.
413 **/
414s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
415{
416 struct e1000_mac_info *mac = &hw->mac;
417 s32 ret_val;
418 bool link;
419
420 /* We only want to go out to the PHY registers to see if Auto-Neg
421 * has completed and/or if our link status has changed. The
422 * get_link_status flag is set upon receiving a Link Status
423 * Change or Rx Sequence Error interrupt.
424 */
425 if (!mac->get_link_status)
426 return 0;
427
428 /* First we want to see if the MII Status Register reports
429 * link. If so, then we want to get the current speed/duplex
430 * of the PHY.
431 */
432 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
433 if (ret_val)
434 return ret_val;
435
436 if (!link)
437 return 0; /* No link detected */
438
439 mac->get_link_status = false;
440
441 /* Check if there was DownShift, must be checked
442 * immediately after link-up
443 */
444 e1000e_check_downshift(hw);
445
446 /* If we are forcing speed/duplex, then we simply return since
447 * we have already determined whether we have link or not.
448 */
449 if (!mac->autoneg)
450 return -E1000_ERR_CONFIG;
451
452 /* Auto-Neg is enabled. Auto Speed Detection takes care
453 * of MAC speed/duplex configuration. So we only need to
454 * configure Collision Distance in the MAC.
455 */
456 mac->ops.config_collision_dist(hw);
457
458 /* Configure Flow Control now that Auto-Neg has completed.
459 * First, we need to restore the desired flow control
460 * settings because we may have had to re-autoneg with a
461 * different link partner.
462 */
463 ret_val = e1000e_config_fc_after_link_up(hw);
464 if (ret_val)
465 e_dbg("Error configuring flow control\n");
466
467 return ret_val;
468}
469
470/**
471 * e1000e_check_for_fiber_link - Check for link (Fiber)
472 * @hw: pointer to the HW structure
473 *
474 * Checks for link up on the hardware. If link is not up and we have
475 * a signal, then we need to force link up.
476 **/
477s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
478{
479 struct e1000_mac_info *mac = &hw->mac;
480 u32 rxcw;
481 u32 ctrl;
482 u32 status;
483 s32 ret_val;
484
485 ctrl = er32(CTRL);
486 status = er32(STATUS);
487 rxcw = er32(RXCW);
488
489 /* If we don't have link (auto-negotiation failed or link partner
490 * cannot auto-negotiate), the cable is plugged in (we have signal),
491 * and our link partner is not trying to auto-negotiate with us (we
492 * are receiving idles or data), we need to force link up. We also
493 * need to give auto-negotiation time to complete, in case the cable
494 * was just plugged in. The autoneg_failed flag does this.
495 */
496 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
497 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
498 !(rxcw & E1000_RXCW_C)) {
499 if (!mac->autoneg_failed) {
500 mac->autoneg_failed = true;
501 return 0;
502 }
503 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
504
505 /* Disable auto-negotiation in the TXCW register */
506 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
507
508 /* Force link-up and also force full-duplex. */
509 ctrl = er32(CTRL);
510 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
511 ew32(CTRL, ctrl);
512
513 /* Configure Flow Control after forcing link up. */
514 ret_val = e1000e_config_fc_after_link_up(hw);
515 if (ret_val) {
516 e_dbg("Error configuring flow control\n");
517 return ret_val;
518 }
519 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
520 /* If we are forcing link and we are receiving /C/ ordered
521 * sets, re-enable auto-negotiation in the TXCW register
522 * and disable forced link in the Device Control register
523 * in an attempt to auto-negotiate with our link partner.
524 */
525 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
526 ew32(TXCW, mac->txcw);
527 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
528
529 mac->serdes_has_link = true;
530 }
531
532 return 0;
533}
534
535/**
536 * e1000e_check_for_serdes_link - Check for link (Serdes)
537 * @hw: pointer to the HW structure
538 *
539 * Checks for link up on the hardware. If link is not up and we have
540 * a signal, then we need to force link up.
541 **/
542s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
543{
544 struct e1000_mac_info *mac = &hw->mac;
545 u32 rxcw;
546 u32 ctrl;
547 u32 status;
548 s32 ret_val;
549
550 ctrl = er32(CTRL);
551 status = er32(STATUS);
552 rxcw = er32(RXCW);
553
554 /* If we don't have link (auto-negotiation failed or link partner
555 * cannot auto-negotiate), and our link partner is not trying to
556 * auto-negotiate with us (we are receiving idles or data),
557 * we need to force link up. We also need to give auto-negotiation
558 * time to complete.
559 */
560 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
561 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
562 if (!mac->autoneg_failed) {
563 mac->autoneg_failed = true;
564 return 0;
565 }
566 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
567
568 /* Disable auto-negotiation in the TXCW register */
569 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
570
571 /* Force link-up and also force full-duplex. */
572 ctrl = er32(CTRL);
573 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
574 ew32(CTRL, ctrl);
575
576 /* Configure Flow Control after forcing link up. */
577 ret_val = e1000e_config_fc_after_link_up(hw);
578 if (ret_val) {
579 e_dbg("Error configuring flow control\n");
580 return ret_val;
581 }
582 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
583 /* If we are forcing link and we are receiving /C/ ordered
584 * sets, re-enable auto-negotiation in the TXCW register
585 * and disable forced link in the Device Control register
586 * in an attempt to auto-negotiate with our link partner.
587 */
588 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
589 ew32(TXCW, mac->txcw);
590 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
591
592 mac->serdes_has_link = true;
593 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
594 /* If we force link for non-auto-negotiation switch, check
595 * link status based on MAC synchronization for internal
596 * serdes media type.
597 */
598 /* SYNCH bit and IV bit are sticky. */
599 usleep_range(10, 20);
600 rxcw = er32(RXCW);
601 if (rxcw & E1000_RXCW_SYNCH) {
602 if (!(rxcw & E1000_RXCW_IV)) {
603 mac->serdes_has_link = true;
604 e_dbg("SERDES: Link up - forced.\n");
605 }
606 } else {
607 mac->serdes_has_link = false;
608 e_dbg("SERDES: Link down - force failed.\n");
609 }
610 }
611
612 if (E1000_TXCW_ANE & er32(TXCW)) {
613 status = er32(STATUS);
614 if (status & E1000_STATUS_LU) {
615 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
616 usleep_range(10, 20);
617 rxcw = er32(RXCW);
618 if (rxcw & E1000_RXCW_SYNCH) {
619 if (!(rxcw & E1000_RXCW_IV)) {
620 mac->serdes_has_link = true;
621 e_dbg("SERDES: Link up - autoneg completed successfully.\n");
622 } else {
623 mac->serdes_has_link = false;
624 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
625 }
626 } else {
627 mac->serdes_has_link = false;
628 e_dbg("SERDES: Link down - no sync.\n");
629 }
630 } else {
631 mac->serdes_has_link = false;
632 e_dbg("SERDES: Link down - autoneg failed\n");
633 }
634 }
635
636 return 0;
637}
638
639/**
640 * e1000_set_default_fc_generic - Set flow control default values
641 * @hw: pointer to the HW structure
642 *
643 * Read the EEPROM for the default values for flow control and store the
644 * values.
645 **/
646static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
647{
648 s32 ret_val;
649 u16 nvm_data;
650
651 /* Read and store word 0x0F of the EEPROM. This word contains bits
652 * that determine the hardware's default PAUSE (flow control) mode,
653 * a bit that determines whether the HW defaults to enabling or
654 * disabling auto-negotiation, and the direction of the
655 * SW defined pins. If there is no SW over-ride of the flow
656 * control setting, then the variable hw->fc will
657 * be initialized based on a value in the EEPROM.
658 */
659 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
660
661 if (ret_val) {
662 e_dbg("NVM Read Error\n");
663 return ret_val;
664 }
665
666 if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
667 hw->fc.requested_mode = e1000_fc_none;
668 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
669 hw->fc.requested_mode = e1000_fc_tx_pause;
670 else
671 hw->fc.requested_mode = e1000_fc_full;
672
673 return 0;
674}
675
676/**
677 * e1000e_setup_link_generic - Setup flow control and link settings
678 * @hw: pointer to the HW structure
679 *
680 * Determines which flow control settings to use, then configures flow
681 * control. Calls the appropriate media-specific link configuration
682 * function. Assuming the adapter has a valid link partner, a valid link
683 * should be established. Assumes the hardware has previously been reset
684 * and the transmitter and receiver are not enabled.
685 **/
686s32 e1000e_setup_link_generic(struct e1000_hw *hw)
687{
688 s32 ret_val;
689
690 /* In the case of the phy reset being blocked, we already have a link.
691 * We do not need to set it up again.
692 */
693 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
694 return 0;
695
696 /* If requested flow control is set to default, set flow control
697 * based on the EEPROM flow control settings.
698 */
699 if (hw->fc.requested_mode == e1000_fc_default) {
700 ret_val = e1000_set_default_fc_generic(hw);
701 if (ret_val)
702 return ret_val;
703 }
704
705 /* Save off the requested flow control mode for use later. Depending
706 * on the link partner's capabilities, we may or may not use this mode.
707 */
708 hw->fc.current_mode = hw->fc.requested_mode;
709
710 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
711
712 /* Call the necessary media_type subroutine to configure the link. */
713 ret_val = hw->mac.ops.setup_physical_interface(hw);
714 if (ret_val)
715 return ret_val;
716
717 /* Initialize the flow control address, type, and PAUSE timer
718 * registers to their default values. This is done even if flow
719 * control is disabled, because it does not hurt anything to
720 * initialize these registers.
721 */
722 e_dbg("Initializing the Flow Control address, type and timer regs\n");
723 ew32(FCT, FLOW_CONTROL_TYPE);
724 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
725 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
726
727 ew32(FCTTV, hw->fc.pause_time);
728
729 return e1000e_set_fc_watermarks(hw);
730}
731
732/**
733 * e1000_commit_fc_settings_generic - Configure flow control
734 * @hw: pointer to the HW structure
735 *
736 * Write the flow control settings to the Transmit Config Word Register (TXCW)
737 * base on the flow control settings in e1000_mac_info.
738 **/
739static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
740{
741 struct e1000_mac_info *mac = &hw->mac;
742 u32 txcw;
743
744 /* Check for a software override of the flow control settings, and
745 * setup the device accordingly. If auto-negotiation is enabled, then
746 * software will have to set the "PAUSE" bits to the correct value in
747 * the Transmit Config Word Register (TXCW) and re-start auto-
748 * negotiation. However, if auto-negotiation is disabled, then
749 * software will have to manually configure the two flow control enable
750 * bits in the CTRL register.
751 *
752 * The possible values of the "fc" parameter are:
753 * 0: Flow control is completely disabled
754 * 1: Rx flow control is enabled (we can receive pause frames,
755 * but not send pause frames).
756 * 2: Tx flow control is enabled (we can send pause frames but we
757 * do not support receiving pause frames).
758 * 3: Both Rx and Tx flow control (symmetric) are enabled.
759 */
760 switch (hw->fc.current_mode) {
761 case e1000_fc_none:
762 /* Flow control completely disabled by a software over-ride. */
763 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
764 break;
765 case e1000_fc_rx_pause:
766 /* Rx Flow control is enabled and Tx Flow control is disabled
767 * by a software over-ride. Since there really isn't a way to
768 * advertise that we are capable of Rx Pause ONLY, we will
769 * advertise that we support both symmetric and asymmetric Rx
770 * PAUSE. Later, we will disable the adapter's ability to send
771 * PAUSE frames.
772 */
773 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
774 break;
775 case e1000_fc_tx_pause:
776 /* Tx Flow control is enabled, and Rx Flow control is disabled,
777 * by a software over-ride.
778 */
779 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
780 break;
781 case e1000_fc_full:
782 /* Flow control (both Rx and Tx) is enabled by a software
783 * over-ride.
784 */
785 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
786 break;
787 default:
788 e_dbg("Flow control param set incorrectly\n");
789 return -E1000_ERR_CONFIG;
790 }
791
792 ew32(TXCW, txcw);
793 mac->txcw = txcw;
794
795 return 0;
796}
797
798/**
799 * e1000_poll_fiber_serdes_link_generic - Poll for link up
800 * @hw: pointer to the HW structure
801 *
802 * Polls for link up by reading the status register, if link fails to come
803 * up with auto-negotiation, then the link is forced if a signal is detected.
804 **/
805static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
806{
807 struct e1000_mac_info *mac = &hw->mac;
808 u32 i, status;
809 s32 ret_val;
810
811 /* If we have a signal (the cable is plugged in, or assumed true for
812 * serdes media) then poll for a "Link-Up" indication in the Device
813 * Status Register. Time-out if a link isn't seen in 500 milliseconds
814 * seconds (Auto-negotiation should complete in less than 500
815 * milliseconds even if the other end is doing it in SW).
816 */
817 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
818 usleep_range(10000, 20000);
819 status = er32(STATUS);
820 if (status & E1000_STATUS_LU)
821 break;
822 }
823 if (i == FIBER_LINK_UP_LIMIT) {
824 e_dbg("Never got a valid link from auto-neg!!!\n");
825 mac->autoneg_failed = true;
826 /* AutoNeg failed to achieve a link, so we'll call
827 * mac->check_for_link. This routine will force the
828 * link up if we detect a signal. This will allow us to
829 * communicate with non-autonegotiating link partners.
830 */
831 ret_val = mac->ops.check_for_link(hw);
832 if (ret_val) {
833 e_dbg("Error while checking for link\n");
834 return ret_val;
835 }
836 mac->autoneg_failed = false;
837 } else {
838 mac->autoneg_failed = false;
839 e_dbg("Valid Link Found\n");
840 }
841
842 return 0;
843}
844
845/**
846 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
847 * @hw: pointer to the HW structure
848 *
849 * Configures collision distance and flow control for fiber and serdes
850 * links. Upon successful setup, poll for link.
851 **/
852s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
853{
854 u32 ctrl;
855 s32 ret_val;
856
857 ctrl = er32(CTRL);
858
859 /* Take the link out of reset */
860 ctrl &= ~E1000_CTRL_LRST;
861
862 hw->mac.ops.config_collision_dist(hw);
863
864 ret_val = e1000_commit_fc_settings_generic(hw);
865 if (ret_val)
866 return ret_val;
867
868 /* Since auto-negotiation is enabled, take the link out of reset (the
869 * link will be in reset, because we previously reset the chip). This
870 * will restart auto-negotiation. If auto-negotiation is successful
871 * then the link-up status bit will be set and the flow control enable
872 * bits (RFCE and TFCE) will be set according to their negotiated value.
873 */
874 e_dbg("Auto-negotiation enabled\n");
875
876 ew32(CTRL, ctrl);
877 e1e_flush();
878 usleep_range(1000, 2000);
879
880 /* For these adapters, the SW definable pin 1 is set when the optics
881 * detect a signal. If we have a signal, then poll for a "Link-Up"
882 * indication.
883 */
884 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
885 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
886 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
887 } else {
888 e_dbg("No signal detected\n");
889 }
890
891 return ret_val;
892}
893
894/**
895 * e1000e_config_collision_dist_generic - Configure collision distance
896 * @hw: pointer to the HW structure
897 *
898 * Configures the collision distance to the default value and is used
899 * during link setup.
900 **/
901void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
902{
903 u32 tctl;
904
905 tctl = er32(TCTL);
906
907 tctl &= ~E1000_TCTL_COLD;
908 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
909
910 ew32(TCTL, tctl);
911 e1e_flush();
912}
913
914/**
915 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
916 * @hw: pointer to the HW structure
917 *
918 * Sets the flow control high/low threshold (watermark) registers. If
919 * flow control XON frame transmission is enabled, then set XON frame
920 * transmission as well.
921 **/
922s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
923{
924 u32 fcrtl = 0, fcrth = 0;
925
926 /* Set the flow control receive threshold registers. Normally,
927 * these registers will be set to a default threshold that may be
928 * adjusted later by the driver's runtime code. However, if the
929 * ability to transmit pause frames is not enabled, then these
930 * registers will be set to 0.
931 */
932 if (hw->fc.current_mode & e1000_fc_tx_pause) {
933 /* We need to set up the Receive Threshold high and low water
934 * marks as well as (optionally) enabling the transmission of
935 * XON frames.
936 */
937 fcrtl = hw->fc.low_water;
938 if (hw->fc.send_xon)
939 fcrtl |= E1000_FCRTL_XONE;
940
941 fcrth = hw->fc.high_water;
942 }
943 ew32(FCRTL, fcrtl);
944 ew32(FCRTH, fcrth);
945
946 return 0;
947}
948
949/**
950 * e1000e_force_mac_fc - Force the MAC's flow control settings
951 * @hw: pointer to the HW structure
952 *
953 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
954 * device control register to reflect the adapter settings. TFCE and RFCE
955 * need to be explicitly set by software when a copper PHY is used because
956 * autonegotiation is managed by the PHY rather than the MAC. Software must
957 * also configure these bits when link is forced on a fiber connection.
958 **/
959s32 e1000e_force_mac_fc(struct e1000_hw *hw)
960{
961 u32 ctrl;
962
963 ctrl = er32(CTRL);
964
965 /* Because we didn't get link via the internal auto-negotiation
966 * mechanism (we either forced link or we got link via PHY
967 * auto-neg), we have to manually enable/disable transmit an
968 * receive flow control.
969 *
970 * The "Case" statement below enables/disable flow control
971 * according to the "hw->fc.current_mode" parameter.
972 *
973 * The possible values of the "fc" parameter are:
974 * 0: Flow control is completely disabled
975 * 1: Rx flow control is enabled (we can receive pause
976 * frames but not send pause frames).
977 * 2: Tx flow control is enabled (we can send pause frames
978 * frames but we do not receive pause frames).
979 * 3: Both Rx and Tx flow control (symmetric) is enabled.
980 * other: No other values should be possible at this point.
981 */
982 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
983
984 switch (hw->fc.current_mode) {
985 case e1000_fc_none:
986 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
987 break;
988 case e1000_fc_rx_pause:
989 ctrl &= (~E1000_CTRL_TFCE);
990 ctrl |= E1000_CTRL_RFCE;
991 break;
992 case e1000_fc_tx_pause:
993 ctrl &= (~E1000_CTRL_RFCE);
994 ctrl |= E1000_CTRL_TFCE;
995 break;
996 case e1000_fc_full:
997 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
998 break;
999 default:
1000 e_dbg("Flow control param set incorrectly\n");
1001 return -E1000_ERR_CONFIG;
1002 }
1003
1004 ew32(CTRL, ctrl);
1005
1006 return 0;
1007}
1008
1009/**
1010 * e1000e_config_fc_after_link_up - Configures flow control after link
1011 * @hw: pointer to the HW structure
1012 *
1013 * Checks the status of auto-negotiation after link up to ensure that the
1014 * speed and duplex were not forced. If the link needed to be forced, then
1015 * flow control needs to be forced also. If auto-negotiation is enabled
1016 * and did not fail, then we configure flow control based on our link
1017 * partner.
1018 **/
1019s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1020{
1021 struct e1000_mac_info *mac = &hw->mac;
1022 s32 ret_val = 0;
1023 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1024 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1025 u16 speed, duplex;
1026
1027 /* Check for the case where we have fiber media and auto-neg failed
1028 * so we had to force link. In this case, we need to force the
1029 * configuration of the MAC to match the "fc" parameter.
1030 */
1031 if (mac->autoneg_failed) {
1032 if (hw->phy.media_type == e1000_media_type_fiber ||
1033 hw->phy.media_type == e1000_media_type_internal_serdes)
1034 ret_val = e1000e_force_mac_fc(hw);
1035 } else {
1036 if (hw->phy.media_type == e1000_media_type_copper)
1037 ret_val = e1000e_force_mac_fc(hw);
1038 }
1039
1040 if (ret_val) {
1041 e_dbg("Error forcing flow control settings\n");
1042 return ret_val;
1043 }
1044
1045 /* Check for the case where we have copper media and auto-neg is
1046 * enabled. In this case, we need to check and see if Auto-Neg
1047 * has completed, and if so, how the PHY and link partner has
1048 * flow control configured.
1049 */
1050 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1051 /* Read the MII Status Register and check to see if AutoNeg
1052 * has completed. We read this twice because this reg has
1053 * some "sticky" (latched) bits.
1054 */
1055 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1056 if (ret_val)
1057 return ret_val;
1058 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1059 if (ret_val)
1060 return ret_val;
1061
1062 if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1063 e_dbg("Copper PHY and Auto Neg has not completed.\n");
1064 return ret_val;
1065 }
1066
1067 /* The AutoNeg process has completed, so we now need to
1068 * read both the Auto Negotiation Advertisement
1069 * Register (Address 4) and the Auto_Negotiation Base
1070 * Page Ability Register (Address 5) to determine how
1071 * flow control was negotiated.
1072 */
1073 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1074 if (ret_val)
1075 return ret_val;
1076 ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1077 if (ret_val)
1078 return ret_val;
1079
1080 /* Two bits in the Auto Negotiation Advertisement Register
1081 * (Address 4) and two bits in the Auto Negotiation Base
1082 * Page Ability Register (Address 5) determine flow control
1083 * for both the PHY and the link partner. The following
1084 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1085 * 1999, describes these PAUSE resolution bits and how flow
1086 * control is determined based upon these settings.
1087 * NOTE: DC = Don't Care
1088 *
1089 * LOCAL DEVICE | LINK PARTNER
1090 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1091 *-------|---------|-------|---------|--------------------
1092 * 0 | 0 | DC | DC | e1000_fc_none
1093 * 0 | 1 | 0 | DC | e1000_fc_none
1094 * 0 | 1 | 1 | 0 | e1000_fc_none
1095 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1096 * 1 | 0 | 0 | DC | e1000_fc_none
1097 * 1 | DC | 1 | DC | e1000_fc_full
1098 * 1 | 1 | 0 | 0 | e1000_fc_none
1099 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1100 *
1101 * Are both PAUSE bits set to 1? If so, this implies
1102 * Symmetric Flow Control is enabled at both ends. The
1103 * ASM_DIR bits are irrelevant per the spec.
1104 *
1105 * For Symmetric Flow Control:
1106 *
1107 * LOCAL DEVICE | LINK PARTNER
1108 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1109 *-------|---------|-------|---------|--------------------
1110 * 1 | DC | 1 | DC | E1000_fc_full
1111 *
1112 */
1113 if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1114 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1115 /* Now we need to check if the user selected Rx ONLY
1116 * of pause frames. In this case, we had to advertise
1117 * FULL flow control because we could not advertise Rx
1118 * ONLY. Hence, we must now check to see if we need to
1119 * turn OFF the TRANSMISSION of PAUSE frames.
1120 */
1121 if (hw->fc.requested_mode == e1000_fc_full) {
1122 hw->fc.current_mode = e1000_fc_full;
1123 e_dbg("Flow Control = FULL.\n");
1124 } else {
1125 hw->fc.current_mode = e1000_fc_rx_pause;
1126 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1127 }
1128 }
1129 /* For receiving PAUSE frames ONLY.
1130 *
1131 * LOCAL DEVICE | LINK PARTNER
1132 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1133 *-------|---------|-------|---------|--------------------
1134 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1135 */
1136 else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1137 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1138 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1139 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1140 hw->fc.current_mode = e1000_fc_tx_pause;
1141 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1142 }
1143 /* For transmitting PAUSE frames ONLY.
1144 *
1145 * LOCAL DEVICE | LINK PARTNER
1146 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1147 *-------|---------|-------|---------|--------------------
1148 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1149 */
1150 else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1151 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1152 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1153 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1154 hw->fc.current_mode = e1000_fc_rx_pause;
1155 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1156 } else {
1157 /* Per the IEEE spec, at this point flow control
1158 * should be disabled.
1159 */
1160 hw->fc.current_mode = e1000_fc_none;
1161 e_dbg("Flow Control = NONE.\n");
1162 }
1163
1164 /* Now we need to do one last check... If we auto-
1165 * negotiated to HALF DUPLEX, flow control should not be
1166 * enabled per IEEE 802.3 spec.
1167 */
1168 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1169 if (ret_val) {
1170 e_dbg("Error getting link speed and duplex\n");
1171 return ret_val;
1172 }
1173
1174 if (duplex == HALF_DUPLEX)
1175 hw->fc.current_mode = e1000_fc_none;
1176
1177 /* Now we call a subroutine to actually force the MAC
1178 * controller to use the correct flow control settings.
1179 */
1180 ret_val = e1000e_force_mac_fc(hw);
1181 if (ret_val) {
1182 e_dbg("Error forcing flow control settings\n");
1183 return ret_val;
1184 }
1185 }
1186
1187 /* Check for the case where we have SerDes media and auto-neg is
1188 * enabled. In this case, we need to check and see if Auto-Neg
1189 * has completed, and if so, how the PHY and link partner has
1190 * flow control configured.
1191 */
1192 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1193 mac->autoneg) {
1194 /* Read the PCS_LSTS and check to see if AutoNeg
1195 * has completed.
1196 */
1197 pcs_status_reg = er32(PCS_LSTAT);
1198
1199 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1200 e_dbg("PCS Auto Neg has not completed.\n");
1201 return ret_val;
1202 }
1203
1204 /* The AutoNeg process has completed, so we now need to
1205 * read both the Auto Negotiation Advertisement
1206 * Register (PCS_ANADV) and the Auto_Negotiation Base
1207 * Page Ability Register (PCS_LPAB) to determine how
1208 * flow control was negotiated.
1209 */
1210 pcs_adv_reg = er32(PCS_ANADV);
1211 pcs_lp_ability_reg = er32(PCS_LPAB);
1212
1213 /* Two bits in the Auto Negotiation Advertisement Register
1214 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1215 * Page Ability Register (PCS_LPAB) determine flow control
1216 * for both the PHY and the link partner. The following
1217 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1218 * 1999, describes these PAUSE resolution bits and how flow
1219 * control is determined based upon these settings.
1220 * NOTE: DC = Don't Care
1221 *
1222 * LOCAL DEVICE | LINK PARTNER
1223 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1224 *-------|---------|-------|---------|--------------------
1225 * 0 | 0 | DC | DC | e1000_fc_none
1226 * 0 | 1 | 0 | DC | e1000_fc_none
1227 * 0 | 1 | 1 | 0 | e1000_fc_none
1228 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1229 * 1 | 0 | 0 | DC | e1000_fc_none
1230 * 1 | DC | 1 | DC | e1000_fc_full
1231 * 1 | 1 | 0 | 0 | e1000_fc_none
1232 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1233 *
1234 * Are both PAUSE bits set to 1? If so, this implies
1235 * Symmetric Flow Control is enabled at both ends. The
1236 * ASM_DIR bits are irrelevant per the spec.
1237 *
1238 * For Symmetric Flow Control:
1239 *
1240 * LOCAL DEVICE | LINK PARTNER
1241 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1242 *-------|---------|-------|---------|--------------------
1243 * 1 | DC | 1 | DC | e1000_fc_full
1244 *
1245 */
1246 if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1247 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1248 /* Now we need to check if the user selected Rx ONLY
1249 * of pause frames. In this case, we had to advertise
1250 * FULL flow control because we could not advertise Rx
1251 * ONLY. Hence, we must now check to see if we need to
1252 * turn OFF the TRANSMISSION of PAUSE frames.
1253 */
1254 if (hw->fc.requested_mode == e1000_fc_full) {
1255 hw->fc.current_mode = e1000_fc_full;
1256 e_dbg("Flow Control = FULL.\n");
1257 } else {
1258 hw->fc.current_mode = e1000_fc_rx_pause;
1259 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1260 }
1261 }
1262 /* For receiving PAUSE frames ONLY.
1263 *
1264 * LOCAL DEVICE | LINK PARTNER
1265 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1266 *-------|---------|-------|---------|--------------------
1267 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1268 */
1269 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1270 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1271 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1272 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1273 hw->fc.current_mode = e1000_fc_tx_pause;
1274 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1275 }
1276 /* For transmitting PAUSE frames ONLY.
1277 *
1278 * LOCAL DEVICE | LINK PARTNER
1279 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1280 *-------|---------|-------|---------|--------------------
1281 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1282 */
1283 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1284 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1285 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1286 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1287 hw->fc.current_mode = e1000_fc_rx_pause;
1288 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1289 } else {
1290 /* Per the IEEE spec, at this point flow control
1291 * should be disabled.
1292 */
1293 hw->fc.current_mode = e1000_fc_none;
1294 e_dbg("Flow Control = NONE.\n");
1295 }
1296
1297 /* Now we call a subroutine to actually force the MAC
1298 * controller to use the correct flow control settings.
1299 */
1300 pcs_ctrl_reg = er32(PCS_LCTL);
1301 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1302 ew32(PCS_LCTL, pcs_ctrl_reg);
1303
1304 ret_val = e1000e_force_mac_fc(hw);
1305 if (ret_val) {
1306 e_dbg("Error forcing flow control settings\n");
1307 return ret_val;
1308 }
1309 }
1310
1311 return 0;
1312}
1313
1314/**
1315 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1316 * @hw: pointer to the HW structure
1317 * @speed: stores the current speed
1318 * @duplex: stores the current duplex
1319 *
1320 * Read the status register for the current speed/duplex and store the current
1321 * speed and duplex for copper connections.
1322 **/
1323s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1324 u16 *duplex)
1325{
1326 u32 status;
1327
1328 status = er32(STATUS);
1329 if (status & E1000_STATUS_SPEED_1000)
1330 *speed = SPEED_1000;
1331 else if (status & E1000_STATUS_SPEED_100)
1332 *speed = SPEED_100;
1333 else
1334 *speed = SPEED_10;
1335
1336 if (status & E1000_STATUS_FD)
1337 *duplex = FULL_DUPLEX;
1338 else
1339 *duplex = HALF_DUPLEX;
1340
1341 e_dbg("%u Mbps, %s Duplex\n",
1342 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1343 *duplex == FULL_DUPLEX ? "Full" : "Half");
1344
1345 return 0;
1346}
1347
1348/**
1349 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1350 * @hw: pointer to the HW structure
1351 * @speed: stores the current speed
1352 * @duplex: stores the current duplex
1353 *
1354 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1355 * for fiber/serdes links.
1356 **/
1357s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1358 *hw, u16 *speed, u16 *duplex)
1359{
1360 *speed = SPEED_1000;
1361 *duplex = FULL_DUPLEX;
1362
1363 return 0;
1364}
1365
1366/**
1367 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1368 * @hw: pointer to the HW structure
1369 *
1370 * Acquire the HW semaphore to access the PHY or NVM
1371 **/
1372s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1373{
1374 u32 swsm;
1375 s32 timeout = hw->nvm.word_size + 1;
1376 s32 i = 0;
1377
1378 /* Get the SW semaphore */
1379 while (i < timeout) {
1380 swsm = er32(SWSM);
1381 if (!(swsm & E1000_SWSM_SMBI))
1382 break;
1383
1384 usleep_range(50, 100);
1385 i++;
1386 }
1387
1388 if (i == timeout) {
1389 e_dbg("Driver can't access device - SMBI bit is set.\n");
1390 return -E1000_ERR_NVM;
1391 }
1392
1393 /* Get the FW semaphore. */
1394 for (i = 0; i < timeout; i++) {
1395 swsm = er32(SWSM);
1396 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1397
1398 /* Semaphore acquired if bit latched */
1399 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1400 break;
1401
1402 usleep_range(50, 100);
1403 }
1404
1405 if (i == timeout) {
1406 /* Release semaphores */
1407 e1000e_put_hw_semaphore(hw);
1408 e_dbg("Driver can't access the NVM\n");
1409 return -E1000_ERR_NVM;
1410 }
1411
1412 return 0;
1413}
1414
1415/**
1416 * e1000e_put_hw_semaphore - Release hardware semaphore
1417 * @hw: pointer to the HW structure
1418 *
1419 * Release hardware semaphore used to access the PHY or NVM
1420 **/
1421void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1422{
1423 u32 swsm;
1424
1425 swsm = er32(SWSM);
1426 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1427 ew32(SWSM, swsm);
1428}
1429
1430/**
1431 * e1000e_get_auto_rd_done - Check for auto read completion
1432 * @hw: pointer to the HW structure
1433 *
1434 * Check EEPROM for Auto Read done bit.
1435 **/
1436s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1437{
1438 s32 i = 0;
1439
1440 while (i < AUTO_READ_DONE_TIMEOUT) {
1441 if (er32(EECD) & E1000_EECD_AUTO_RD)
1442 break;
1443 usleep_range(1000, 2000);
1444 i++;
1445 }
1446
1447 if (i == AUTO_READ_DONE_TIMEOUT) {
1448 e_dbg("Auto read by HW from NVM has not completed.\n");
1449 return -E1000_ERR_RESET;
1450 }
1451
1452 return 0;
1453}
1454
1455/**
1456 * e1000e_valid_led_default - Verify a valid default LED config
1457 * @hw: pointer to the HW structure
1458 * @data: pointer to the NVM (EEPROM)
1459 *
1460 * Read the EEPROM for the current default LED configuration. If the
1461 * LED configuration is not valid, set to a valid LED configuration.
1462 **/
1463s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1464{
1465 s32 ret_val;
1466
1467 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1468 if (ret_val) {
1469 e_dbg("NVM Read Error\n");
1470 return ret_val;
1471 }
1472
1473 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1474 *data = ID_LED_DEFAULT;
1475
1476 return 0;
1477}
1478
1479/**
1480 * e1000e_id_led_init_generic -
1481 * @hw: pointer to the HW structure
1482 *
1483 **/
1484s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1485{
1486 struct e1000_mac_info *mac = &hw->mac;
1487 s32 ret_val;
1488 const u32 ledctl_mask = 0x000000FF;
1489 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1490 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1491 u16 data, i, temp;
1492 const u16 led_mask = 0x0F;
1493
1494 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1495 if (ret_val)
1496 return ret_val;
1497
1498 mac->ledctl_default = er32(LEDCTL);
1499 mac->ledctl_mode1 = mac->ledctl_default;
1500 mac->ledctl_mode2 = mac->ledctl_default;
1501
1502 for (i = 0; i < 4; i++) {
1503 temp = (data >> (i << 2)) & led_mask;
1504 switch (temp) {
1505 case ID_LED_ON1_DEF2:
1506 case ID_LED_ON1_ON2:
1507 case ID_LED_ON1_OFF2:
1508 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1509 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1510 break;
1511 case ID_LED_OFF1_DEF2:
1512 case ID_LED_OFF1_ON2:
1513 case ID_LED_OFF1_OFF2:
1514 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1515 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1516 break;
1517 default:
1518 /* Do nothing */
1519 break;
1520 }
1521 switch (temp) {
1522 case ID_LED_DEF1_ON2:
1523 case ID_LED_ON1_ON2:
1524 case ID_LED_OFF1_ON2:
1525 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1526 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1527 break;
1528 case ID_LED_DEF1_OFF2:
1529 case ID_LED_ON1_OFF2:
1530 case ID_LED_OFF1_OFF2:
1531 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1532 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1533 break;
1534 default:
1535 /* Do nothing */
1536 break;
1537 }
1538 }
1539
1540 return 0;
1541}
1542
1543/**
1544 * e1000e_setup_led_generic - Configures SW controllable LED
1545 * @hw: pointer to the HW structure
1546 *
1547 * This prepares the SW controllable LED for use and saves the current state
1548 * of the LED so it can be later restored.
1549 **/
1550s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1551{
1552 u32 ledctl;
1553
1554 if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1555 return -E1000_ERR_CONFIG;
1556
1557 if (hw->phy.media_type == e1000_media_type_fiber) {
1558 ledctl = er32(LEDCTL);
1559 hw->mac.ledctl_default = ledctl;
1560 /* Turn off LED0 */
1561 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1562 E1000_LEDCTL_LED0_MODE_MASK);
1563 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1564 E1000_LEDCTL_LED0_MODE_SHIFT);
1565 ew32(LEDCTL, ledctl);
1566 } else if (hw->phy.media_type == e1000_media_type_copper) {
1567 ew32(LEDCTL, hw->mac.ledctl_mode1);
1568 }
1569
1570 return 0;
1571}
1572
1573/**
1574 * e1000e_cleanup_led_generic - Set LED config to default operation
1575 * @hw: pointer to the HW structure
1576 *
1577 * Remove the current LED configuration and set the LED configuration
1578 * to the default value, saved from the EEPROM.
1579 **/
1580s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1581{
1582 ew32(LEDCTL, hw->mac.ledctl_default);
1583 return 0;
1584}
1585
1586/**
1587 * e1000e_blink_led_generic - Blink LED
1588 * @hw: pointer to the HW structure
1589 *
1590 * Blink the LEDs which are set to be on.
1591 **/
1592s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1593{
1594 u32 ledctl_blink = 0;
1595 u32 i;
1596
1597 if (hw->phy.media_type == e1000_media_type_fiber) {
1598 /* always blink LED0 for PCI-E fiber */
1599 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1600 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1601 } else {
1602 /* Set the blink bit for each LED that's "on" (0x0E)
1603 * (or "off" if inverted) in ledctl_mode2. The blink
1604 * logic in hardware only works when mode is set to "on"
1605 * so it must be changed accordingly when the mode is
1606 * "off" and inverted.
1607 */
1608 ledctl_blink = hw->mac.ledctl_mode2;
1609 for (i = 0; i < 32; i += 8) {
1610 u32 mode = (hw->mac.ledctl_mode2 >> i) &
1611 E1000_LEDCTL_LED0_MODE_MASK;
1612 u32 led_default = hw->mac.ledctl_default >> i;
1613
1614 if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1615 (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1616 ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1617 (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1618 ledctl_blink &=
1619 ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1620 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1621 E1000_LEDCTL_MODE_LED_ON) << i;
1622 }
1623 }
1624 }
1625
1626 ew32(LEDCTL, ledctl_blink);
1627
1628 return 0;
1629}
1630
1631/**
1632 * e1000e_led_on_generic - Turn LED on
1633 * @hw: pointer to the HW structure
1634 *
1635 * Turn LED on.
1636 **/
1637s32 e1000e_led_on_generic(struct e1000_hw *hw)
1638{
1639 u32 ctrl;
1640
1641 switch (hw->phy.media_type) {
1642 case e1000_media_type_fiber:
1643 ctrl = er32(CTRL);
1644 ctrl &= ~E1000_CTRL_SWDPIN0;
1645 ctrl |= E1000_CTRL_SWDPIO0;
1646 ew32(CTRL, ctrl);
1647 break;
1648 case e1000_media_type_copper:
1649 ew32(LEDCTL, hw->mac.ledctl_mode2);
1650 break;
1651 default:
1652 break;
1653 }
1654
1655 return 0;
1656}
1657
1658/**
1659 * e1000e_led_off_generic - Turn LED off
1660 * @hw: pointer to the HW structure
1661 *
1662 * Turn LED off.
1663 **/
1664s32 e1000e_led_off_generic(struct e1000_hw *hw)
1665{
1666 u32 ctrl;
1667
1668 switch (hw->phy.media_type) {
1669 case e1000_media_type_fiber:
1670 ctrl = er32(CTRL);
1671 ctrl |= E1000_CTRL_SWDPIN0;
1672 ctrl |= E1000_CTRL_SWDPIO0;
1673 ew32(CTRL, ctrl);
1674 break;
1675 case e1000_media_type_copper:
1676 ew32(LEDCTL, hw->mac.ledctl_mode1);
1677 break;
1678 default:
1679 break;
1680 }
1681
1682 return 0;
1683}
1684
1685/**
1686 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1687 * @hw: pointer to the HW structure
1688 * @no_snoop: bitmap of snoop events
1689 *
1690 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1691 **/
1692void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1693{
1694 u32 gcr;
1695
1696 if (no_snoop) {
1697 gcr = er32(GCR);
1698 gcr &= ~(PCIE_NO_SNOOP_ALL);
1699 gcr |= no_snoop;
1700 ew32(GCR, gcr);
1701 }
1702}
1703
1704/**
1705 * e1000e_disable_pcie_master - Disables PCI-express master access
1706 * @hw: pointer to the HW structure
1707 *
1708 * Returns 0 if successful, else returns -10
1709 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1710 * the master requests to be disabled.
1711 *
1712 * Disables PCI-Express master access and verifies there are no pending
1713 * requests.
1714 **/
1715s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1716{
1717 u32 ctrl;
1718 s32 timeout = MASTER_DISABLE_TIMEOUT;
1719
1720 ctrl = er32(CTRL);
1721 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1722 ew32(CTRL, ctrl);
1723
1724 while (timeout) {
1725 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1726 break;
1727 usleep_range(100, 200);
1728 timeout--;
1729 }
1730
1731 if (!timeout) {
1732 e_dbg("Master requests are pending.\n");
1733 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1734 }
1735
1736 return 0;
1737}
1738
1739/**
1740 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1741 * @hw: pointer to the HW structure
1742 *
1743 * Reset the Adaptive Interframe Spacing throttle to default values.
1744 **/
1745void e1000e_reset_adaptive(struct e1000_hw *hw)
1746{
1747 struct e1000_mac_info *mac = &hw->mac;
1748
1749 if (!mac->adaptive_ifs) {
1750 e_dbg("Not in Adaptive IFS mode!\n");
1751 return;
1752 }
1753
1754 mac->current_ifs_val = 0;
1755 mac->ifs_min_val = IFS_MIN;
1756 mac->ifs_max_val = IFS_MAX;
1757 mac->ifs_step_size = IFS_STEP;
1758 mac->ifs_ratio = IFS_RATIO;
1759
1760 mac->in_ifs_mode = false;
1761 ew32(AIT, 0);
1762}
1763
1764/**
1765 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1766 * @hw: pointer to the HW structure
1767 *
1768 * Update the Adaptive Interframe Spacing Throttle value based on the
1769 * time between transmitted packets and time between collisions.
1770 **/
1771void e1000e_update_adaptive(struct e1000_hw *hw)
1772{
1773 struct e1000_mac_info *mac = &hw->mac;
1774
1775 if (!mac->adaptive_ifs) {
1776 e_dbg("Not in Adaptive IFS mode!\n");
1777 return;
1778 }
1779
1780 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1781 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1782 mac->in_ifs_mode = true;
1783 if (mac->current_ifs_val < mac->ifs_max_val) {
1784 if (!mac->current_ifs_val)
1785 mac->current_ifs_val = mac->ifs_min_val;
1786 else
1787 mac->current_ifs_val +=
1788 mac->ifs_step_size;
1789 ew32(AIT, mac->current_ifs_val);
1790 }
1791 }
1792 } else {
1793 if (mac->in_ifs_mode &&
1794 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1795 mac->current_ifs_val = 0;
1796 mac->in_ifs_mode = false;
1797 ew32(AIT, 0);
1798 }
1799 }
1800}