Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225			/* Switching PHY interface always returns MDI error
 226			 * so disable retry mechanism to avoid wasting time
 227			 */
 228			e1000e_disable_phy_retry(hw);
 229
 230			/* Unforce SMBus mode in PHY */
 231			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 232			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 233			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 234
 235			e1000e_enable_phy_retry(hw);
 236
 237			/* Unforce SMBus mode in MAC */
 238			mac_reg = er32(CTRL_EXT);
 239			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 240			ew32(CTRL_EXT, mac_reg);
 241		}
 242	}
 243
 244	return true;
 245}
 246
 247/**
 248 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 249 *  @hw: pointer to the HW structure
 250 *
 251 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 252 *  used to reset the PHY to a quiescent state when necessary.
 253 **/
 254static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 255{
 256	u32 mac_reg;
 257
 258	/* Set Phy Config Counter to 50msec */
 259	mac_reg = er32(FEXTNVM3);
 260	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 261	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 262	ew32(FEXTNVM3, mac_reg);
 263
 264	/* Toggle LANPHYPC Value bit */
 265	mac_reg = er32(CTRL);
 266	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 267	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 268	ew32(CTRL, mac_reg);
 269	e1e_flush();
 270	usleep_range(10, 20);
 271	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 272	ew32(CTRL, mac_reg);
 273	e1e_flush();
 274
 275	if (hw->mac.type < e1000_pch_lpt) {
 276		msleep(50);
 277	} else {
 278		u16 count = 20;
 279
 280		do {
 281			usleep_range(5000, 6000);
 282		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 283
 284		msleep(30);
 285	}
 286}
 287
 288/**
 289 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 290 *  @hw: pointer to the HW structure
 291 *
 292 *  Workarounds/flow necessary for PHY initialization during driver load
 293 *  and resume paths.
 294 **/
 295static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 296{
 297	struct e1000_adapter *adapter = hw->adapter;
 298	u32 mac_reg, fwsm = er32(FWSM);
 299	s32 ret_val;
 300
 301	/* Gate automatic PHY configuration by hardware on managed and
 302	 * non-managed 82579 and newer adapters.
 303	 */
 304	e1000_gate_hw_phy_config_ich8lan(hw, true);
 305
 306	/* It is not possible to be certain of the current state of ULP
 307	 * so forcibly disable it.
 308	 */
 309	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 310	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 311	if (ret_val)
 312		e_warn("Failed to disable ULP\n");
 313
 314	ret_val = hw->phy.ops.acquire(hw);
 315	if (ret_val) {
 316		e_dbg("Failed to initialize PHY flow\n");
 317		goto out;
 318	}
 319
 320	/* There is no guarantee that the PHY is accessible at this time
 321	 * so disable retry mechanism to avoid wasting time
 322	 */
 323	e1000e_disable_phy_retry(hw);
 324
 325	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 326	 * inaccessible and resetting the PHY is not blocked, toggle the
 327	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 328	 */
 329	switch (hw->mac.type) {
 330	case e1000_pch_lpt:
 331	case e1000_pch_spt:
 332	case e1000_pch_cnp:
 333	case e1000_pch_tgp:
 334	case e1000_pch_adp:
 335	case e1000_pch_mtp:
 336	case e1000_pch_lnp:
 337	case e1000_pch_ptp:
 338	case e1000_pch_nvp:
 339		if (e1000_phy_is_accessible_pchlan(hw))
 340			break;
 341
 342		/* Before toggling LANPHYPC, see if PHY is accessible by
 343		 * forcing MAC to SMBus mode first.
 344		 */
 345		mac_reg = er32(CTRL_EXT);
 346		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 347		ew32(CTRL_EXT, mac_reg);
 348
 349		/* Wait 50 milliseconds for MAC to finish any retries
 350		 * that it might be trying to perform from previous
 351		 * attempts to acknowledge any phy read requests.
 352		 */
 353		msleep(50);
 354
 355		fallthrough;
 356	case e1000_pch2lan:
 357		if (e1000_phy_is_accessible_pchlan(hw))
 358			break;
 359
 360		fallthrough;
 361	case e1000_pchlan:
 362		if ((hw->mac.type == e1000_pchlan) &&
 363		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 364			break;
 365
 366		if (hw->phy.ops.check_reset_block(hw)) {
 367			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 368			ret_val = -E1000_ERR_PHY;
 369			break;
 370		}
 371
 372		/* Toggle LANPHYPC Value bit */
 373		e1000_toggle_lanphypc_pch_lpt(hw);
 374		if (hw->mac.type >= e1000_pch_lpt) {
 375			if (e1000_phy_is_accessible_pchlan(hw))
 376				break;
 377
 378			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 379			 * so ensure that the MAC is also out of SMBus mode
 380			 */
 381			mac_reg = er32(CTRL_EXT);
 382			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 383			ew32(CTRL_EXT, mac_reg);
 384
 385			if (e1000_phy_is_accessible_pchlan(hw))
 386				break;
 387
 388			ret_val = -E1000_ERR_PHY;
 389		}
 390		break;
 391	default:
 392		break;
 393	}
 394
 395	e1000e_enable_phy_retry(hw);
 396
 397	hw->phy.ops.release(hw);
 398	if (!ret_val) {
 399
 400		/* Check to see if able to reset PHY.  Print error if not */
 401		if (hw->phy.ops.check_reset_block(hw)) {
 402			e_err("Reset blocked by ME\n");
 403			goto out;
 404		}
 405
 406		/* Reset the PHY before any access to it.  Doing so, ensures
 407		 * that the PHY is in a known good state before we read/write
 408		 * PHY registers.  The generic reset is sufficient here,
 409		 * because we haven't determined the PHY type yet.
 410		 */
 411		ret_val = e1000e_phy_hw_reset_generic(hw);
 412		if (ret_val)
 413			goto out;
 414
 415		/* On a successful reset, possibly need to wait for the PHY
 416		 * to quiesce to an accessible state before returning control
 417		 * to the calling function.  If the PHY does not quiesce, then
 418		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 419		 *  the PHY is in.
 420		 */
 421		ret_val = hw->phy.ops.check_reset_block(hw);
 422		if (ret_val)
 423			e_err("ME blocked access to PHY after reset\n");
 424	}
 425
 426out:
 427	/* Ungate automatic PHY configuration on non-managed 82579 */
 428	if ((hw->mac.type == e1000_pch2lan) &&
 429	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 430		usleep_range(10000, 11000);
 431		e1000_gate_hw_phy_config_ich8lan(hw, false);
 432	}
 433
 434	return ret_val;
 435}
 436
 437/**
 438 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 439 *  @hw: pointer to the HW structure
 440 *
 441 *  Initialize family-specific PHY parameters and function pointers.
 442 **/
 443static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 444{
 445	struct e1000_phy_info *phy = &hw->phy;
 446	s32 ret_val;
 447
 448	phy->addr = 1;
 449	phy->reset_delay_us = 100;
 450
 451	phy->ops.set_page = e1000_set_page_igp;
 452	phy->ops.read_reg = e1000_read_phy_reg_hv;
 453	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 454	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 455	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 456	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 457	phy->ops.write_reg = e1000_write_phy_reg_hv;
 458	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 459	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 460	phy->ops.power_up = e1000_power_up_phy_copper;
 461	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 462	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 463
 464	phy->id = e1000_phy_unknown;
 465
 466	if (hw->mac.type == e1000_pch_mtp) {
 467		phy->retry_count = 2;
 468		e1000e_enable_phy_retry(hw);
 469	}
 470
 471	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 472	if (ret_val)
 473		return ret_val;
 474
 475	if (phy->id == e1000_phy_unknown)
 476		switch (hw->mac.type) {
 477		default:
 478			ret_val = e1000e_get_phy_id(hw);
 479			if (ret_val)
 480				return ret_val;
 481			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 482				break;
 483			fallthrough;
 484		case e1000_pch2lan:
 485		case e1000_pch_lpt:
 486		case e1000_pch_spt:
 487		case e1000_pch_cnp:
 488		case e1000_pch_tgp:
 489		case e1000_pch_adp:
 490		case e1000_pch_mtp:
 491		case e1000_pch_lnp:
 492		case e1000_pch_ptp:
 493		case e1000_pch_nvp:
 494			/* In case the PHY needs to be in mdio slow mode,
 495			 * set slow mode and try to get the PHY id again.
 496			 */
 497			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 498			if (ret_val)
 499				return ret_val;
 500			ret_val = e1000e_get_phy_id(hw);
 501			if (ret_val)
 502				return ret_val;
 503			break;
 504		}
 505	phy->type = e1000e_get_phy_type_from_id(phy->id);
 506
 507	switch (phy->type) {
 508	case e1000_phy_82577:
 509	case e1000_phy_82579:
 510	case e1000_phy_i217:
 511		phy->ops.check_polarity = e1000_check_polarity_82577;
 512		phy->ops.force_speed_duplex =
 513		    e1000_phy_force_speed_duplex_82577;
 514		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 515		phy->ops.get_info = e1000_get_phy_info_82577;
 516		phy->ops.commit = e1000e_phy_sw_reset;
 517		break;
 518	case e1000_phy_82578:
 519		phy->ops.check_polarity = e1000_check_polarity_m88;
 520		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 521		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 522		phy->ops.get_info = e1000e_get_phy_info_m88;
 523		break;
 524	default:
 525		ret_val = -E1000_ERR_PHY;
 526		break;
 527	}
 528
 529	return ret_val;
 530}
 531
 532/**
 533 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 534 *  @hw: pointer to the HW structure
 535 *
 536 *  Initialize family-specific PHY parameters and function pointers.
 537 **/
 538static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 539{
 540	struct e1000_phy_info *phy = &hw->phy;
 541	s32 ret_val;
 542	u16 i = 0;
 543
 544	phy->addr = 1;
 545	phy->reset_delay_us = 100;
 546
 547	phy->ops.power_up = e1000_power_up_phy_copper;
 548	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 549
 550	/* We may need to do this twice - once for IGP and if that fails,
 551	 * we'll set BM func pointers and try again
 552	 */
 553	ret_val = e1000e_determine_phy_address(hw);
 554	if (ret_val) {
 555		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 556		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 557		ret_val = e1000e_determine_phy_address(hw);
 558		if (ret_val) {
 559			e_dbg("Cannot determine PHY addr. Erroring out\n");
 560			return ret_val;
 561		}
 562	}
 563
 564	phy->id = 0;
 565	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 566	       (i++ < 100)) {
 567		usleep_range(1000, 1100);
 568		ret_val = e1000e_get_phy_id(hw);
 569		if (ret_val)
 570			return ret_val;
 571	}
 572
 573	/* Verify phy id */
 574	switch (phy->id) {
 575	case IGP03E1000_E_PHY_ID:
 576		phy->type = e1000_phy_igp_3;
 577		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 578		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 579		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 580		phy->ops.get_info = e1000e_get_phy_info_igp;
 581		phy->ops.check_polarity = e1000_check_polarity_igp;
 582		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 583		break;
 584	case IFE_E_PHY_ID:
 585	case IFE_PLUS_E_PHY_ID:
 586	case IFE_C_E_PHY_ID:
 587		phy->type = e1000_phy_ife;
 588		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 589		phy->ops.get_info = e1000_get_phy_info_ife;
 590		phy->ops.check_polarity = e1000_check_polarity_ife;
 591		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 592		break;
 593	case BME1000_E_PHY_ID:
 594		phy->type = e1000_phy_bm;
 595		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 596		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 597		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 598		phy->ops.commit = e1000e_phy_sw_reset;
 599		phy->ops.get_info = e1000e_get_phy_info_m88;
 600		phy->ops.check_polarity = e1000_check_polarity_m88;
 601		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 602		break;
 603	default:
 604		return -E1000_ERR_PHY;
 605	}
 606
 607	return 0;
 608}
 609
 610/**
 611 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 612 *  @hw: pointer to the HW structure
 613 *
 614 *  Initialize family-specific NVM parameters and function
 615 *  pointers.
 616 **/
 617static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 618{
 619	struct e1000_nvm_info *nvm = &hw->nvm;
 620	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 621	u32 gfpreg, sector_base_addr, sector_end_addr;
 622	u16 i;
 623	u32 nvm_size;
 624
 625	nvm->type = e1000_nvm_flash_sw;
 626
 627	if (hw->mac.type >= e1000_pch_spt) {
 628		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 629		 * STRAP register. This is because in SPT the GbE Flash region
 630		 * is no longer accessed through the flash registers. Instead,
 631		 * the mechanism has changed, and the Flash region access
 632		 * registers are now implemented in GbE memory space.
 633		 */
 634		nvm->flash_base_addr = 0;
 635		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 636		    * NVM_SIZE_MULTIPLIER;
 637		nvm->flash_bank_size = nvm_size / 2;
 638		/* Adjust to word count */
 639		nvm->flash_bank_size /= sizeof(u16);
 640		/* Set the base address for flash register access */
 641		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 642	} else {
 643		/* Can't read flash registers if register set isn't mapped. */
 644		if (!hw->flash_address) {
 645			e_dbg("ERROR: Flash registers not mapped\n");
 646			return -E1000_ERR_CONFIG;
 647		}
 648
 649		gfpreg = er32flash(ICH_FLASH_GFPREG);
 650
 651		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 652		 * Add 1 to sector_end_addr since this sector is included in
 653		 * the overall size.
 654		 */
 655		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 656		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 657
 658		/* flash_base_addr is byte-aligned */
 659		nvm->flash_base_addr = sector_base_addr
 660		    << FLASH_SECTOR_ADDR_SHIFT;
 661
 662		/* find total size of the NVM, then cut in half since the total
 663		 * size represents two separate NVM banks.
 664		 */
 665		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 666					<< FLASH_SECTOR_ADDR_SHIFT);
 667		nvm->flash_bank_size /= 2;
 668		/* Adjust to word count */
 669		nvm->flash_bank_size /= sizeof(u16);
 670	}
 671
 672	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 673
 674	/* Clear shadow ram */
 675	for (i = 0; i < nvm->word_size; i++) {
 676		dev_spec->shadow_ram[i].modified = false;
 677		dev_spec->shadow_ram[i].value = 0xFFFF;
 678	}
 679
 680	return 0;
 681}
 682
 683/**
 684 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 685 *  @hw: pointer to the HW structure
 686 *
 687 *  Initialize family-specific MAC parameters and function
 688 *  pointers.
 689 **/
 690static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 691{
 692	struct e1000_mac_info *mac = &hw->mac;
 693
 694	/* Set media type function pointer */
 695	hw->phy.media_type = e1000_media_type_copper;
 696
 697	/* Set mta register count */
 698	mac->mta_reg_count = 32;
 699	/* Set rar entry count */
 700	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 701	if (mac->type == e1000_ich8lan)
 702		mac->rar_entry_count--;
 703	/* FWSM register */
 704	mac->has_fwsm = true;
 705	/* ARC subsystem not supported */
 706	mac->arc_subsystem_valid = false;
 707	/* Adaptive IFS supported */
 708	mac->adaptive_ifs = true;
 709
 710	/* LED and other operations */
 711	switch (mac->type) {
 712	case e1000_ich8lan:
 713	case e1000_ich9lan:
 714	case e1000_ich10lan:
 715		/* check management mode */
 716		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 717		/* ID LED init */
 718		mac->ops.id_led_init = e1000e_id_led_init_generic;
 719		/* blink LED */
 720		mac->ops.blink_led = e1000e_blink_led_generic;
 721		/* setup LED */
 722		mac->ops.setup_led = e1000e_setup_led_generic;
 723		/* cleanup LED */
 724		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 725		/* turn on/off LED */
 726		mac->ops.led_on = e1000_led_on_ich8lan;
 727		mac->ops.led_off = e1000_led_off_ich8lan;
 728		break;
 729	case e1000_pch2lan:
 730		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 731		mac->ops.rar_set = e1000_rar_set_pch2lan;
 732		fallthrough;
 733	case e1000_pch_lpt:
 734	case e1000_pch_spt:
 735	case e1000_pch_cnp:
 736	case e1000_pch_tgp:
 737	case e1000_pch_adp:
 738	case e1000_pch_mtp:
 739	case e1000_pch_lnp:
 740	case e1000_pch_ptp:
 741	case e1000_pch_nvp:
 742	case e1000_pchlan:
 743		/* check management mode */
 744		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 745		/* ID LED init */
 746		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 747		/* setup LED */
 748		mac->ops.setup_led = e1000_setup_led_pchlan;
 749		/* cleanup LED */
 750		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 751		/* turn on/off LED */
 752		mac->ops.led_on = e1000_led_on_pchlan;
 753		mac->ops.led_off = e1000_led_off_pchlan;
 754		break;
 755	default:
 756		break;
 757	}
 758
 759	if (mac->type >= e1000_pch_lpt) {
 760		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 761		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 762		mac->ops.setup_physical_interface =
 763		    e1000_setup_copper_link_pch_lpt;
 764		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 765	}
 766
 767	/* Enable PCS Lock-loss workaround for ICH8 */
 768	if (mac->type == e1000_ich8lan)
 769		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 770
 771	return 0;
 772}
 773
 774/**
 775 *  __e1000_access_emi_reg_locked - Read/write EMI register
 776 *  @hw: pointer to the HW structure
 777 *  @address: EMI address to program
 778 *  @data: pointer to value to read/write from/to the EMI address
 779 *  @read: boolean flag to indicate read or write
 780 *
 781 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 782 **/
 783static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 784					 u16 *data, bool read)
 785{
 786	s32 ret_val;
 787
 788	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 789	if (ret_val)
 790		return ret_val;
 791
 792	if (read)
 793		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 794	else
 795		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 796
 797	return ret_val;
 798}
 799
 800/**
 801 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 802 *  @hw: pointer to the HW structure
 803 *  @addr: EMI address to program
 804 *  @data: value to be read from the EMI address
 805 *
 806 *  Assumes the SW/FW/HW Semaphore is already acquired.
 807 **/
 808s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 809{
 810	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 811}
 812
 813/**
 814 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 815 *  @hw: pointer to the HW structure
 816 *  @addr: EMI address to program
 817 *  @data: value to be written to the EMI address
 818 *
 819 *  Assumes the SW/FW/HW Semaphore is already acquired.
 820 **/
 821s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 822{
 823	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 824}
 825
 826/**
 827 *  e1000_set_eee_pchlan - Enable/disable EEE support
 828 *  @hw: pointer to the HW structure
 829 *
 830 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 831 *  the link and the EEE capabilities of the link partner.  The LPI Control
 832 *  register bits will remain set only if/when link is up.
 833 *
 834 *  EEE LPI must not be asserted earlier than one second after link is up.
 835 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 836 *  can be link issues with some switches.  Other devices can have EEE LPI
 837 *  enabled immediately upon link up since they have a timer in hardware which
 838 *  prevents LPI from being asserted too early.
 839 **/
 840s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 841{
 842	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 843	s32 ret_val;
 844	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 845
 846	switch (hw->phy.type) {
 847	case e1000_phy_82579:
 848		lpa = I82579_EEE_LP_ABILITY;
 849		pcs_status = I82579_EEE_PCS_STATUS;
 850		adv_addr = I82579_EEE_ADVERTISEMENT;
 851		break;
 852	case e1000_phy_i217:
 853		lpa = I217_EEE_LP_ABILITY;
 854		pcs_status = I217_EEE_PCS_STATUS;
 855		adv_addr = I217_EEE_ADVERTISEMENT;
 856		break;
 857	default:
 858		return 0;
 859	}
 860
 861	ret_val = hw->phy.ops.acquire(hw);
 862	if (ret_val)
 863		return ret_val;
 864
 865	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 866	if (ret_val)
 867		goto release;
 868
 869	/* Clear bits that enable EEE in various speeds */
 870	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 871
 872	/* Enable EEE if not disabled by user */
 873	if (!dev_spec->eee_disable) {
 874		/* Save off link partner's EEE ability */
 875		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 876						    &dev_spec->eee_lp_ability);
 877		if (ret_val)
 878			goto release;
 879
 880		/* Read EEE advertisement */
 881		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 882		if (ret_val)
 883			goto release;
 884
 885		/* Enable EEE only for speeds in which the link partner is
 886		 * EEE capable and for which we advertise EEE.
 887		 */
 888		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 889			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 890
 891		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 892			e1e_rphy_locked(hw, MII_LPA, &data);
 893			if (data & LPA_100FULL)
 894				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 895			else
 896				/* EEE is not supported in 100Half, so ignore
 897				 * partner's EEE in 100 ability if full-duplex
 898				 * is not advertised.
 899				 */
 900				dev_spec->eee_lp_ability &=
 901				    ~I82579_EEE_100_SUPPORTED;
 902		}
 903	}
 904
 905	if (hw->phy.type == e1000_phy_82579) {
 906		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 907						    &data);
 908		if (ret_val)
 909			goto release;
 910
 911		data &= ~I82579_LPI_100_PLL_SHUT;
 912		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 913						     data);
 914	}
 915
 916	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 917	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 918	if (ret_val)
 919		goto release;
 920
 921	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 922release:
 923	hw->phy.ops.release(hw);
 924
 925	return ret_val;
 926}
 927
 928/**
 929 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 930 *  @hw:   pointer to the HW structure
 931 *  @link: link up bool flag
 932 *
 933 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 934 *  preventing further DMA write requests.  Workaround the issue by disabling
 935 *  the de-assertion of the clock request when in 1Gpbs mode.
 936 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 937 *  speeds in order to avoid Tx hangs.
 938 **/
 939static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 940{
 941	u32 fextnvm6 = er32(FEXTNVM6);
 942	u32 status = er32(STATUS);
 943	s32 ret_val = 0;
 944	u16 reg;
 945
 946	if (link && (status & E1000_STATUS_SPEED_1000)) {
 947		ret_val = hw->phy.ops.acquire(hw);
 948		if (ret_val)
 949			return ret_val;
 950
 951		ret_val =
 952		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 953						&reg);
 954		if (ret_val)
 955			goto release;
 956
 957		ret_val =
 958		    e1000e_write_kmrn_reg_locked(hw,
 959						 E1000_KMRNCTRLSTA_K1_CONFIG,
 960						 reg &
 961						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 962		if (ret_val)
 963			goto release;
 964
 965		usleep_range(10, 20);
 966
 967		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 968
 969		ret_val =
 970		    e1000e_write_kmrn_reg_locked(hw,
 971						 E1000_KMRNCTRLSTA_K1_CONFIG,
 972						 reg);
 973release:
 974		hw->phy.ops.release(hw);
 975	} else {
 976		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 977		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 978
 979		if ((hw->phy.revision > 5) || !link ||
 980		    ((status & E1000_STATUS_SPEED_100) &&
 981		     (status & E1000_STATUS_FD)))
 982			goto update_fextnvm6;
 983
 984		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 985		if (ret_val)
 986			return ret_val;
 987
 988		/* Clear link status transmit timeout */
 989		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 990
 991		if (status & E1000_STATUS_SPEED_100) {
 992			/* Set inband Tx timeout to 5x10us for 100Half */
 993			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 994
 995			/* Do not extend the K1 entry latency for 100Half */
 996			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 997		} else {
 998			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 999			reg |= 50 <<
1000			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1001
1002			/* Extend the K1 entry latency for 10 Mbps */
1003			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1004		}
1005
1006		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1007		if (ret_val)
1008			return ret_val;
1009
1010update_fextnvm6:
1011		ew32(FEXTNVM6, fextnvm6);
1012	}
1013
1014	return ret_val;
1015}
1016
1017/**
1018 *  e1000_platform_pm_pch_lpt - Set platform power management values
1019 *  @hw: pointer to the HW structure
1020 *  @link: bool indicating link status
1021 *
1022 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024 *  when link is up (which must not exceed the maximum latency supported
1025 *  by the platform), otherwise specify there is no LTR requirement.
1026 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1028 *  Capability register set, on this device LTR is set by writing the
1029 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031 *  message to the PMC.
1032 **/
1033static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1034{
1035	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1036	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1037	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1038	u32 lat_enc_d = 0;	/* latency decoded */
1039	u16 lat_enc = 0;	/* latency encoded */
1040
1041	if (link) {
1042		u16 speed, duplex, scale = 0;
1043		u16 max_snoop, max_nosnoop;
1044		u16 max_ltr_enc;	/* max LTR latency encoded */
1045		u64 value;
1046		u32 rxa;
1047
1048		if (!hw->adapter->max_frame_size) {
1049			e_dbg("max_frame_size not set.\n");
1050			return -E1000_ERR_CONFIG;
1051		}
1052
1053		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1054		if (!speed) {
1055			e_dbg("Speed not set.\n");
1056			return -E1000_ERR_CONFIG;
1057		}
1058
1059		/* Rx Packet Buffer Allocation size (KB) */
1060		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1061
1062		/* Determine the maximum latency tolerated by the device.
1063		 *
1064		 * Per the PCIe spec, the tolerated latencies are encoded as
1065		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1067		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1068		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1069		 */
1070		rxa *= 512;
1071		value = (rxa > hw->adapter->max_frame_size) ?
1072			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1073			0;
1074
1075		while (value > PCI_LTR_VALUE_MASK) {
1076			scale++;
1077			value = DIV_ROUND_UP(value, BIT(5));
1078		}
1079		if (scale > E1000_LTRV_SCALE_MAX) {
1080			e_dbg("Invalid LTR latency scale %d\n", scale);
1081			return -E1000_ERR_CONFIG;
1082		}
1083		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1084
1085		/* Determine the maximum latency tolerated by the platform */
1086		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1087				     &max_snoop);
1088		pci_read_config_word(hw->adapter->pdev,
1089				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1090		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1091
1092		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1093			     (1U << (E1000_LTRV_SCALE_FACTOR *
1094			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1095
1096		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1097			(1U << (E1000_LTRV_SCALE_FACTOR *
1098				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1099
1100		if (lat_enc_d > max_ltr_enc_d)
1101			lat_enc = max_ltr_enc;
1102	}
1103
1104	/* Set Snoop and No-Snoop latencies the same */
1105	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1106	ew32(LTRV, reg);
1107
1108	return 0;
1109}
1110
1111/**
1112 *  e1000e_force_smbus - Force interfaces to transition to SMBUS mode.
1113 *  @hw: pointer to the HW structure
1114 *
1115 *  Force the MAC and the PHY to SMBUS mode. Assumes semaphore already
1116 *  acquired.
1117 *
1118 * Return: 0 on success, negative errno on failure.
1119 **/
1120static s32 e1000e_force_smbus(struct e1000_hw *hw)
1121{
1122	u16 smb_ctrl = 0;
1123	u32 ctrl_ext;
1124	s32 ret_val;
1125
1126	/* Switching PHY interface always returns MDI error
1127	 * so disable retry mechanism to avoid wasting time
1128	 */
1129	e1000e_disable_phy_retry(hw);
1130
1131	/* Force SMBus mode in the PHY */
1132	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &smb_ctrl);
1133	if (ret_val) {
1134		e1000e_enable_phy_retry(hw);
1135		return ret_val;
1136	}
1137
1138	smb_ctrl |= CV_SMB_CTRL_FORCE_SMBUS;
1139	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, smb_ctrl);
1140
1141	e1000e_enable_phy_retry(hw);
1142
1143	/* Force SMBus mode in the MAC */
1144	ctrl_ext = er32(CTRL_EXT);
1145	ctrl_ext |= E1000_CTRL_EXT_FORCE_SMBUS;
1146	ew32(CTRL_EXT, ctrl_ext);
1147
1148	return 0;
1149}
1150
1151/**
1152 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1153 *  @hw: pointer to the HW structure
1154 *  @to_sx: boolean indicating a system power state transition to Sx
1155 *
1156 *  When link is down, configure ULP mode to significantly reduce the power
1157 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1158 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1159 *  system, configure the ULP mode by software.
1160 */
1161s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1162{
1163	u32 mac_reg;
1164	s32 ret_val = 0;
1165	u16 phy_reg;
1166	u16 oem_reg = 0;
1167
1168	if ((hw->mac.type < e1000_pch_lpt) ||
1169	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1170	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1171	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1172	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1173	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1174		return 0;
1175
1176	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1177		/* Request ME configure ULP mode in the PHY */
1178		mac_reg = er32(H2ME);
1179		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1180		ew32(H2ME, mac_reg);
1181
1182		goto out;
1183	}
1184
1185	if (!to_sx) {
1186		int i = 0;
1187
1188		/* Poll up to 5 seconds for Cable Disconnected indication */
1189		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1190			/* Bail if link is re-acquired */
1191			if (er32(STATUS) & E1000_STATUS_LU)
1192				return -E1000_ERR_PHY;
1193
1194			if (i++ == 100)
1195				break;
1196
1197			msleep(50);
1198		}
1199		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1200		      (er32(FEXT) &
1201		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1202	}
1203
1204	ret_val = hw->phy.ops.acquire(hw);
1205	if (ret_val)
1206		goto out;
1207
1208	ret_val = e1000e_force_smbus(hw);
1209	if (ret_val) {
1210		e_dbg("Failed to force SMBUS: %d\n", ret_val);
1211		goto release;
1212	}
 
 
 
 
 
 
1213
1214	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1215	 * LPLU and disable Gig speed when entering ULP
1216	 */
1217	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1218		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1219						       &oem_reg);
1220		if (ret_val)
1221			goto release;
1222
1223		phy_reg = oem_reg;
1224		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1225
1226		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1227							phy_reg);
1228
1229		if (ret_val)
1230			goto release;
1231	}
1232
1233	/* Set Inband ULP Exit, Reset to SMBus mode and
1234	 * Disable SMBus Release on PERST# in PHY
1235	 */
1236	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1237	if (ret_val)
1238		goto release;
1239	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1240		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1241	if (to_sx) {
1242		if (er32(WUFC) & E1000_WUFC_LNKC)
1243			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1244		else
1245			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1246
1247		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1248		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1249	} else {
1250		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1251		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1252		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1253	}
1254	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1255
1256	/* Set Disable SMBus Release on PERST# in MAC */
1257	mac_reg = er32(FEXTNVM7);
1258	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1259	ew32(FEXTNVM7, mac_reg);
1260
1261	/* Commit ULP changes in PHY by starting auto ULP configuration */
1262	phy_reg |= I218_ULP_CONFIG1_START;
1263	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1264
1265	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1266	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1267		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1268							oem_reg);
1269		if (ret_val)
1270			goto release;
1271	}
1272
1273release:
1274	hw->phy.ops.release(hw);
1275out:
1276	if (ret_val)
1277		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1278	else
1279		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1280
1281	return ret_val;
1282}
1283
1284/**
1285 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1286 *  @hw: pointer to the HW structure
1287 *  @force: boolean indicating whether or not to force disabling ULP
1288 *
1289 *  Un-configure ULP mode when link is up, the system is transitioned from
1290 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1291 *  system, poll for an indication from ME that ULP has been un-configured.
1292 *  If not on an ME enabled system, un-configure the ULP mode by software.
1293 *
1294 *  During nominal operation, this function is called when link is acquired
1295 *  to disable ULP mode (force=false); otherwise, for example when unloading
1296 *  the driver or during Sx->S0 transitions, this is called with force=true
1297 *  to forcibly disable ULP.
1298 */
1299static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1300{
1301	s32 ret_val = 0;
1302	u32 mac_reg;
1303	u16 phy_reg;
1304	int i = 0;
1305
1306	if ((hw->mac.type < e1000_pch_lpt) ||
1307	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1308	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1309	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1310	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1311	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1312		return 0;
1313
1314	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1315		struct e1000_adapter *adapter = hw->adapter;
1316		bool firmware_bug = false;
1317
1318		if (force) {
1319			/* Request ME un-configure ULP mode in the PHY */
1320			mac_reg = er32(H2ME);
1321			mac_reg &= ~E1000_H2ME_ULP;
1322			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1323			ew32(H2ME, mac_reg);
1324		}
1325
1326		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1327		 * If this takes more than 1 second, show a warning indicating a
1328		 * firmware bug
1329		 */
1330		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1331			if (i++ == 250) {
1332				ret_val = -E1000_ERR_PHY;
1333				goto out;
1334			}
1335			if (i > 100 && !firmware_bug)
1336				firmware_bug = true;
1337
1338			usleep_range(10000, 11000);
1339		}
1340		if (firmware_bug)
1341			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1342			       i * 10);
1343		else
1344			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1345			      i * 10);
1346
1347		if (force) {
1348			mac_reg = er32(H2ME);
1349			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1350			ew32(H2ME, mac_reg);
1351		} else {
1352			/* Clear H2ME.ULP after ME ULP configuration */
1353			mac_reg = er32(H2ME);
1354			mac_reg &= ~E1000_H2ME_ULP;
1355			ew32(H2ME, mac_reg);
1356		}
1357
1358		goto out;
1359	}
1360
1361	ret_val = hw->phy.ops.acquire(hw);
1362	if (ret_val)
1363		goto out;
1364
1365	if (force)
1366		/* Toggle LANPHYPC Value bit */
1367		e1000_toggle_lanphypc_pch_lpt(hw);
1368
1369	/* Switching PHY interface always returns MDI error
1370	 * so disable retry mechanism to avoid wasting time
1371	 */
1372	e1000e_disable_phy_retry(hw);
1373
1374	/* Unforce SMBus mode in PHY */
1375	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1376	if (ret_val) {
1377		/* The MAC might be in PCIe mode, so temporarily force to
1378		 * SMBus mode in order to access the PHY.
1379		 */
1380		mac_reg = er32(CTRL_EXT);
1381		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1382		ew32(CTRL_EXT, mac_reg);
1383
1384		msleep(50);
1385
1386		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1387						       &phy_reg);
1388		if (ret_val)
1389			goto release;
1390	}
1391	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1392	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1393
1394	e1000e_enable_phy_retry(hw);
1395
1396	/* Unforce SMBus mode in MAC */
1397	mac_reg = er32(CTRL_EXT);
1398	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1399	ew32(CTRL_EXT, mac_reg);
1400
1401	/* When ULP mode was previously entered, K1 was disabled by the
1402	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1403	 */
1404	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1405	if (ret_val)
1406		goto release;
1407	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1408	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1409
1410	/* Clear ULP enabled configuration */
1411	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1412	if (ret_val)
1413		goto release;
1414	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1415		     I218_ULP_CONFIG1_STICKY_ULP |
1416		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1417		     I218_ULP_CONFIG1_WOL_HOST |
1418		     I218_ULP_CONFIG1_INBAND_EXIT |
1419		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1420		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1421		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1422	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1423
1424	/* Commit ULP changes by starting auto ULP configuration */
1425	phy_reg |= I218_ULP_CONFIG1_START;
1426	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1427
1428	/* Clear Disable SMBus Release on PERST# in MAC */
1429	mac_reg = er32(FEXTNVM7);
1430	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1431	ew32(FEXTNVM7, mac_reg);
1432
1433release:
1434	hw->phy.ops.release(hw);
1435	if (force) {
1436		e1000_phy_hw_reset(hw);
1437		msleep(50);
1438	}
1439out:
1440	if (ret_val)
1441		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1442	else
1443		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1444
1445	return ret_val;
1446}
1447
1448/**
1449 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1450 *  @hw: pointer to the HW structure
1451 *
1452 *  Checks to see of the link status of the hardware has changed.  If a
1453 *  change in link status has been detected, then we read the PHY registers
1454 *  to get the current speed/duplex if link exists.
1455 **/
1456static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1457{
1458	struct e1000_mac_info *mac = &hw->mac;
1459	s32 ret_val, tipg_reg = 0;
1460	u16 emi_addr, emi_val = 0;
1461	bool link;
1462	u16 phy_reg;
1463
1464	/* We only want to go out to the PHY registers to see if Auto-Neg
1465	 * has completed and/or if our link status has changed.  The
1466	 * get_link_status flag is set upon receiving a Link Status
1467	 * Change or Rx Sequence Error interrupt.
1468	 */
1469	if (!mac->get_link_status)
1470		return 0;
1471	mac->get_link_status = false;
1472
1473	/* First we want to see if the MII Status Register reports
1474	 * link.  If so, then we want to get the current speed/duplex
1475	 * of the PHY.
1476	 */
1477	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1478	if (ret_val)
1479		goto out;
1480
1481	if (hw->mac.type == e1000_pchlan) {
1482		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1483		if (ret_val)
1484			goto out;
1485	}
1486
1487	/* When connected at 10Mbps half-duplex, some parts are excessively
1488	 * aggressive resulting in many collisions. To avoid this, increase
1489	 * the IPG and reduce Rx latency in the PHY.
1490	 */
1491	if ((hw->mac.type >= e1000_pch2lan) && link) {
1492		u16 speed, duplex;
1493
1494		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1495		tipg_reg = er32(TIPG);
1496		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1497
1498		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1499			tipg_reg |= 0xFF;
1500			/* Reduce Rx latency in analog PHY */
1501			emi_val = 0;
1502		} else if (hw->mac.type >= e1000_pch_spt &&
1503			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1504			tipg_reg |= 0xC;
1505			emi_val = 1;
1506		} else {
1507
1508			/* Roll back the default values */
1509			tipg_reg |= 0x08;
1510			emi_val = 1;
1511		}
1512
1513		ew32(TIPG, tipg_reg);
1514
1515		ret_val = hw->phy.ops.acquire(hw);
1516		if (ret_val)
1517			goto out;
1518
1519		if (hw->mac.type == e1000_pch2lan)
1520			emi_addr = I82579_RX_CONFIG;
1521		else
1522			emi_addr = I217_RX_CONFIG;
1523		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1524
1525		if (hw->mac.type >= e1000_pch_lpt) {
1526			u16 phy_reg;
1527
1528			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1529			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1530			if (speed == SPEED_100 || speed == SPEED_10)
1531				phy_reg |= 0x3E8;
1532			else
1533				phy_reg |= 0xFA;
1534			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1535
1536			if (speed == SPEED_1000) {
1537				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1538							    &phy_reg);
1539
1540				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1541
1542				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1543							     phy_reg);
1544			}
1545		}
1546		hw->phy.ops.release(hw);
1547
1548		if (ret_val)
1549			goto out;
1550
1551		if (hw->mac.type >= e1000_pch_spt) {
1552			u16 data;
1553			u16 ptr_gap;
1554
1555			if (speed == SPEED_1000) {
1556				ret_val = hw->phy.ops.acquire(hw);
1557				if (ret_val)
1558					goto out;
1559
1560				ret_val = e1e_rphy_locked(hw,
1561							  PHY_REG(776, 20),
1562							  &data);
1563				if (ret_val) {
1564					hw->phy.ops.release(hw);
1565					goto out;
1566				}
1567
1568				ptr_gap = (data & (0x3FF << 2)) >> 2;
1569				if (ptr_gap < 0x18) {
1570					data &= ~(0x3FF << 2);
1571					data |= (0x18 << 2);
1572					ret_val =
1573					    e1e_wphy_locked(hw,
1574							    PHY_REG(776, 20),
1575							    data);
1576				}
1577				hw->phy.ops.release(hw);
1578				if (ret_val)
1579					goto out;
1580			} else {
1581				ret_val = hw->phy.ops.acquire(hw);
1582				if (ret_val)
1583					goto out;
1584
1585				ret_val = e1e_wphy_locked(hw,
1586							  PHY_REG(776, 20),
1587							  0xC023);
1588				hw->phy.ops.release(hw);
1589				if (ret_val)
1590					goto out;
1591
1592			}
1593		}
1594	}
1595
1596	/* I217 Packet Loss issue:
1597	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1598	 * on power up.
1599	 * Set the Beacon Duration for I217 to 8 usec
1600	 */
1601	if (hw->mac.type >= e1000_pch_lpt) {
1602		u32 mac_reg;
1603
1604		mac_reg = er32(FEXTNVM4);
1605		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1606		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1607		ew32(FEXTNVM4, mac_reg);
1608	}
1609
1610	/* Work-around I218 hang issue */
1611	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1612	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1613	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1614	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1615		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1616		if (ret_val)
1617			goto out;
1618	}
1619	if (hw->mac.type >= e1000_pch_lpt) {
1620		/* Set platform power management values for
1621		 * Latency Tolerance Reporting (LTR)
1622		 */
1623		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1624		if (ret_val)
1625			goto out;
1626	}
1627
1628	/* Clear link partner's EEE ability */
1629	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1630
1631	if (hw->mac.type >= e1000_pch_lpt) {
1632		u32 fextnvm6 = er32(FEXTNVM6);
1633
1634		if (hw->mac.type == e1000_pch_spt) {
1635			/* FEXTNVM6 K1-off workaround - for SPT only */
1636			u32 pcieanacfg = er32(PCIEANACFG);
1637
1638			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1639				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1640			else
1641				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1642		}
1643
1644		ew32(FEXTNVM6, fextnvm6);
1645	}
1646
1647	if (!link)
1648		goto out;
1649
1650	switch (hw->mac.type) {
1651	case e1000_pch2lan:
1652		ret_val = e1000_k1_workaround_lv(hw);
1653		if (ret_val)
1654			return ret_val;
1655		fallthrough;
1656	case e1000_pchlan:
1657		if (hw->phy.type == e1000_phy_82578) {
1658			ret_val = e1000_link_stall_workaround_hv(hw);
1659			if (ret_val)
1660				return ret_val;
1661		}
1662
1663		/* Workaround for PCHx parts in half-duplex:
1664		 * Set the number of preambles removed from the packet
1665		 * when it is passed from the PHY to the MAC to prevent
1666		 * the MAC from misinterpreting the packet type.
1667		 */
1668		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1669		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1670
1671		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1672			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1673
1674		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1675		break;
1676	default:
1677		break;
1678	}
1679
1680	/* Check if there was DownShift, must be checked
1681	 * immediately after link-up
1682	 */
1683	e1000e_check_downshift(hw);
1684
1685	/* Enable/Disable EEE after link up */
1686	if (hw->phy.type > e1000_phy_82579) {
1687		ret_val = e1000_set_eee_pchlan(hw);
1688		if (ret_val)
1689			return ret_val;
1690	}
1691
1692	/* If we are forcing speed/duplex, then we simply return since
1693	 * we have already determined whether we have link or not.
1694	 */
1695	if (!mac->autoneg)
1696		return -E1000_ERR_CONFIG;
1697
1698	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1699	 * of MAC speed/duplex configuration.  So we only need to
1700	 * configure Collision Distance in the MAC.
1701	 */
1702	mac->ops.config_collision_dist(hw);
1703
1704	/* Configure Flow Control now that Auto-Neg has completed.
1705	 * First, we need to restore the desired flow control
1706	 * settings because we may have had to re-autoneg with a
1707	 * different link partner.
1708	 */
1709	ret_val = e1000e_config_fc_after_link_up(hw);
1710	if (ret_val)
1711		e_dbg("Error configuring flow control\n");
1712
1713	return ret_val;
1714
1715out:
1716	mac->get_link_status = true;
1717	return ret_val;
1718}
1719
1720static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1721{
1722	struct e1000_hw *hw = &adapter->hw;
1723	s32 rc;
1724
1725	rc = e1000_init_mac_params_ich8lan(hw);
1726	if (rc)
1727		return rc;
1728
1729	rc = e1000_init_nvm_params_ich8lan(hw);
1730	if (rc)
1731		return rc;
1732
1733	switch (hw->mac.type) {
1734	case e1000_ich8lan:
1735	case e1000_ich9lan:
1736	case e1000_ich10lan:
1737		rc = e1000_init_phy_params_ich8lan(hw);
1738		break;
1739	case e1000_pchlan:
1740	case e1000_pch2lan:
1741	case e1000_pch_lpt:
1742	case e1000_pch_spt:
1743	case e1000_pch_cnp:
1744	case e1000_pch_tgp:
1745	case e1000_pch_adp:
1746	case e1000_pch_mtp:
1747	case e1000_pch_lnp:
1748	case e1000_pch_ptp:
1749	case e1000_pch_nvp:
1750		rc = e1000_init_phy_params_pchlan(hw);
1751		break;
1752	default:
1753		break;
1754	}
1755	if (rc)
1756		return rc;
1757
1758	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1759	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1760	 */
1761	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1762	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1763	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1764		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1765		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1766
1767		hw->mac.ops.blink_led = NULL;
1768	}
1769
1770	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1771	    (adapter->hw.phy.type != e1000_phy_ife))
1772		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1773
1774	/* Enable workaround for 82579 w/ ME enabled */
1775	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1776	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1777		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1778
1779	return 0;
1780}
1781
1782static DEFINE_MUTEX(nvm_mutex);
1783
1784/**
1785 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1786 *  @hw: pointer to the HW structure
1787 *
1788 *  Acquires the mutex for performing NVM operations.
1789 **/
1790static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1791{
1792	mutex_lock(&nvm_mutex);
1793
1794	return 0;
1795}
1796
1797/**
1798 *  e1000_release_nvm_ich8lan - Release NVM mutex
1799 *  @hw: pointer to the HW structure
1800 *
1801 *  Releases the mutex used while performing NVM operations.
1802 **/
1803static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1804{
1805	mutex_unlock(&nvm_mutex);
1806}
1807
1808/**
1809 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1810 *  @hw: pointer to the HW structure
1811 *
1812 *  Acquires the software control flag for performing PHY and select
1813 *  MAC CSR accesses.
1814 **/
1815static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1816{
1817	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1818	s32 ret_val = 0;
1819
1820	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1821			     &hw->adapter->state)) {
1822		e_dbg("contention for Phy access\n");
1823		return -E1000_ERR_PHY;
1824	}
1825
1826	while (timeout) {
1827		extcnf_ctrl = er32(EXTCNF_CTRL);
1828		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1829			break;
1830
1831		mdelay(1);
1832		timeout--;
1833	}
1834
1835	if (!timeout) {
1836		e_dbg("SW has already locked the resource.\n");
1837		ret_val = -E1000_ERR_CONFIG;
1838		goto out;
1839	}
1840
1841	timeout = SW_FLAG_TIMEOUT;
1842
1843	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1844	ew32(EXTCNF_CTRL, extcnf_ctrl);
1845
1846	while (timeout) {
1847		extcnf_ctrl = er32(EXTCNF_CTRL);
1848		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1849			break;
1850
1851		mdelay(1);
1852		timeout--;
1853	}
1854
1855	if (!timeout) {
1856		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1857		      er32(FWSM), extcnf_ctrl);
1858		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1859		ew32(EXTCNF_CTRL, extcnf_ctrl);
1860		ret_val = -E1000_ERR_CONFIG;
1861		goto out;
1862	}
1863
1864out:
1865	if (ret_val)
1866		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1867
1868	return ret_val;
1869}
1870
1871/**
1872 *  e1000_release_swflag_ich8lan - Release software control flag
1873 *  @hw: pointer to the HW structure
1874 *
1875 *  Releases the software control flag for performing PHY and select
1876 *  MAC CSR accesses.
1877 **/
1878static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1879{
1880	u32 extcnf_ctrl;
1881
1882	extcnf_ctrl = er32(EXTCNF_CTRL);
1883
1884	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1885		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1886		ew32(EXTCNF_CTRL, extcnf_ctrl);
1887	} else {
1888		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1889	}
1890
1891	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1892}
1893
1894/**
1895 *  e1000_check_mng_mode_ich8lan - Checks management mode
1896 *  @hw: pointer to the HW structure
1897 *
1898 *  This checks if the adapter has any manageability enabled.
1899 *  This is a function pointer entry point only called by read/write
1900 *  routines for the PHY and NVM parts.
1901 **/
1902static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1903{
1904	u32 fwsm;
1905
1906	fwsm = er32(FWSM);
1907	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1908		((fwsm & E1000_FWSM_MODE_MASK) ==
1909		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1910}
1911
1912/**
1913 *  e1000_check_mng_mode_pchlan - Checks management mode
1914 *  @hw: pointer to the HW structure
1915 *
1916 *  This checks if the adapter has iAMT enabled.
1917 *  This is a function pointer entry point only called by read/write
1918 *  routines for the PHY and NVM parts.
1919 **/
1920static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1921{
1922	u32 fwsm;
1923
1924	fwsm = er32(FWSM);
1925	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1926	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1927}
1928
1929/**
1930 *  e1000_rar_set_pch2lan - Set receive address register
1931 *  @hw: pointer to the HW structure
1932 *  @addr: pointer to the receive address
1933 *  @index: receive address array register
1934 *
1935 *  Sets the receive address array register at index to the address passed
1936 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1937 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1938 *  Use SHRA[0-3] in place of those reserved for ME.
1939 **/
1940static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1941{
1942	u32 rar_low, rar_high;
1943
1944	/* HW expects these in little endian so we reverse the byte order
1945	 * from network order (big endian) to little endian
1946	 */
1947	rar_low = ((u32)addr[0] |
1948		   ((u32)addr[1] << 8) |
1949		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1950
1951	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1952
1953	/* If MAC address zero, no need to set the AV bit */
1954	if (rar_low || rar_high)
1955		rar_high |= E1000_RAH_AV;
1956
1957	if (index == 0) {
1958		ew32(RAL(index), rar_low);
1959		e1e_flush();
1960		ew32(RAH(index), rar_high);
1961		e1e_flush();
1962		return 0;
1963	}
1964
1965	/* RAR[1-6] are owned by manageability.  Skip those and program the
1966	 * next address into the SHRA register array.
1967	 */
1968	if (index < (u32)(hw->mac.rar_entry_count)) {
1969		s32 ret_val;
1970
1971		ret_val = e1000_acquire_swflag_ich8lan(hw);
1972		if (ret_val)
1973			goto out;
1974
1975		ew32(SHRAL(index - 1), rar_low);
1976		e1e_flush();
1977		ew32(SHRAH(index - 1), rar_high);
1978		e1e_flush();
1979
1980		e1000_release_swflag_ich8lan(hw);
1981
1982		/* verify the register updates */
1983		if ((er32(SHRAL(index - 1)) == rar_low) &&
1984		    (er32(SHRAH(index - 1)) == rar_high))
1985			return 0;
1986
1987		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1988		      (index - 1), er32(FWSM));
1989	}
1990
1991out:
1992	e_dbg("Failed to write receive address at index %d\n", index);
1993	return -E1000_ERR_CONFIG;
1994}
1995
1996/**
1997 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1998 *  @hw: pointer to the HW structure
1999 *
2000 *  Get the number of available receive registers that the Host can
2001 *  program. SHRA[0-10] are the shared receive address registers
2002 *  that are shared between the Host and manageability engine (ME).
2003 *  ME can reserve any number of addresses and the host needs to be
2004 *  able to tell how many available registers it has access to.
2005 **/
2006static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
2007{
2008	u32 wlock_mac;
2009	u32 num_entries;
2010
2011	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2012	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2013
2014	switch (wlock_mac) {
2015	case 0:
2016		/* All SHRA[0..10] and RAR[0] available */
2017		num_entries = hw->mac.rar_entry_count;
2018		break;
2019	case 1:
2020		/* Only RAR[0] available */
2021		num_entries = 1;
2022		break;
2023	default:
2024		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
2025		num_entries = wlock_mac + 1;
2026		break;
2027	}
2028
2029	return num_entries;
2030}
2031
2032/**
2033 *  e1000_rar_set_pch_lpt - Set receive address registers
2034 *  @hw: pointer to the HW structure
2035 *  @addr: pointer to the receive address
2036 *  @index: receive address array register
2037 *
2038 *  Sets the receive address register array at index to the address passed
2039 *  in by addr. For LPT, RAR[0] is the base address register that is to
2040 *  contain the MAC address. SHRA[0-10] are the shared receive address
2041 *  registers that are shared between the Host and manageability engine (ME).
2042 **/
2043static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2044{
2045	u32 rar_low, rar_high;
2046	u32 wlock_mac;
2047
2048	/* HW expects these in little endian so we reverse the byte order
2049	 * from network order (big endian) to little endian
2050	 */
2051	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2052		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2053
2054	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2055
2056	/* If MAC address zero, no need to set the AV bit */
2057	if (rar_low || rar_high)
2058		rar_high |= E1000_RAH_AV;
2059
2060	if (index == 0) {
2061		ew32(RAL(index), rar_low);
2062		e1e_flush();
2063		ew32(RAH(index), rar_high);
2064		e1e_flush();
2065		return 0;
2066	}
2067
2068	/* The manageability engine (ME) can lock certain SHRAR registers that
2069	 * it is using - those registers are unavailable for use.
2070	 */
2071	if (index < hw->mac.rar_entry_count) {
2072		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2073		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2074
2075		/* Check if all SHRAR registers are locked */
2076		if (wlock_mac == 1)
2077			goto out;
2078
2079		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2080			s32 ret_val;
2081
2082			ret_val = e1000_acquire_swflag_ich8lan(hw);
2083
2084			if (ret_val)
2085				goto out;
2086
2087			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2088			e1e_flush();
2089			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2090			e1e_flush();
2091
2092			e1000_release_swflag_ich8lan(hw);
2093
2094			/* verify the register updates */
2095			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2096			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2097				return 0;
2098		}
2099	}
2100
2101out:
2102	e_dbg("Failed to write receive address at index %d\n", index);
2103	return -E1000_ERR_CONFIG;
2104}
2105
2106/**
2107 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2108 *  @hw: pointer to the HW structure
2109 *
2110 *  Checks if firmware is blocking the reset of the PHY.
2111 *  This is a function pointer entry point only called by
2112 *  reset routines.
2113 **/
2114static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2115{
2116	bool blocked = false;
2117	int i = 0;
2118
2119	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2120	       (i++ < 30))
2121		usleep_range(10000, 11000);
2122	return blocked ? E1000_BLK_PHY_RESET : 0;
2123}
2124
2125/**
2126 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2127 *  @hw: pointer to the HW structure
2128 *
2129 *  Assumes semaphore already acquired.
2130 *
2131 **/
2132static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2133{
2134	u16 phy_data;
2135	u32 strap = er32(STRAP);
2136	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
 
2137	s32 ret_val;
2138
2139	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2140
2141	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2142	if (ret_val)
2143		return ret_val;
2144
2145	phy_data &= ~HV_SMB_ADDR_MASK;
2146	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2147	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2148
2149	if (hw->phy.type == e1000_phy_i217) {
2150		/* Restore SMBus frequency */
2151		if (freq--) {
2152			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2153			phy_data |= (freq & BIT(0)) <<
2154			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2155			phy_data |= (freq & BIT(1)) <<
2156			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2157		} else {
2158			e_dbg("Unsupported SMB frequency in PHY\n");
2159		}
2160	}
2161
2162	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2163}
2164
2165/**
2166 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2167 *  @hw:   pointer to the HW structure
2168 *
2169 *  SW should configure the LCD from the NVM extended configuration region
2170 *  as a workaround for certain parts.
2171 **/
2172static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2173{
2174	struct e1000_phy_info *phy = &hw->phy;
2175	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2176	s32 ret_val = 0;
2177	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2178
2179	/* Initialize the PHY from the NVM on ICH platforms.  This
2180	 * is needed due to an issue where the NVM configuration is
2181	 * not properly autoloaded after power transitions.
2182	 * Therefore, after each PHY reset, we will load the
2183	 * configuration data out of the NVM manually.
2184	 */
2185	switch (hw->mac.type) {
2186	case e1000_ich8lan:
2187		if (phy->type != e1000_phy_igp_3)
2188			return ret_val;
2189
2190		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2191		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2192			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2193			break;
2194		}
2195		fallthrough;
2196	case e1000_pchlan:
2197	case e1000_pch2lan:
2198	case e1000_pch_lpt:
2199	case e1000_pch_spt:
2200	case e1000_pch_cnp:
2201	case e1000_pch_tgp:
2202	case e1000_pch_adp:
2203	case e1000_pch_mtp:
2204	case e1000_pch_lnp:
2205	case e1000_pch_ptp:
2206	case e1000_pch_nvp:
2207		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2208		break;
2209	default:
2210		return ret_val;
2211	}
2212
2213	ret_val = hw->phy.ops.acquire(hw);
2214	if (ret_val)
2215		return ret_val;
2216
2217	data = er32(FEXTNVM);
2218	if (!(data & sw_cfg_mask))
2219		goto release;
2220
2221	/* Make sure HW does not configure LCD from PHY
2222	 * extended configuration before SW configuration
2223	 */
2224	data = er32(EXTCNF_CTRL);
2225	if ((hw->mac.type < e1000_pch2lan) &&
2226	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2227		goto release;
2228
2229	cnf_size = er32(EXTCNF_SIZE);
2230	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2231	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2232	if (!cnf_size)
2233		goto release;
2234
2235	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2236	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2237
2238	if (((hw->mac.type == e1000_pchlan) &&
2239	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2240	    (hw->mac.type > e1000_pchlan)) {
2241		/* HW configures the SMBus address and LEDs when the
2242		 * OEM and LCD Write Enable bits are set in the NVM.
2243		 * When both NVM bits are cleared, SW will configure
2244		 * them instead.
2245		 */
2246		ret_val = e1000_write_smbus_addr(hw);
2247		if (ret_val)
2248			goto release;
2249
2250		data = er32(LEDCTL);
2251		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2252							(u16)data);
2253		if (ret_val)
2254			goto release;
2255	}
2256
2257	/* Configure LCD from extended configuration region. */
2258
2259	/* cnf_base_addr is in DWORD */
2260	word_addr = (u16)(cnf_base_addr << 1);
2261
2262	for (i = 0; i < cnf_size; i++) {
2263		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2264		if (ret_val)
2265			goto release;
2266
2267		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2268					 1, &reg_addr);
2269		if (ret_val)
2270			goto release;
2271
2272		/* Save off the PHY page for future writes. */
2273		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2274			phy_page = reg_data;
2275			continue;
2276		}
2277
2278		reg_addr &= PHY_REG_MASK;
2279		reg_addr |= phy_page;
2280
2281		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2282		if (ret_val)
2283			goto release;
2284	}
2285
2286release:
2287	hw->phy.ops.release(hw);
2288	return ret_val;
2289}
2290
2291/**
2292 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2293 *  @hw:   pointer to the HW structure
2294 *  @link: link up bool flag
2295 *
2296 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2297 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2298 *  If link is down, the function will restore the default K1 setting located
2299 *  in the NVM.
2300 **/
2301static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2302{
2303	s32 ret_val = 0;
2304	u16 status_reg = 0;
2305	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2306
2307	if (hw->mac.type != e1000_pchlan)
2308		return 0;
2309
2310	/* Wrap the whole flow with the sw flag */
2311	ret_val = hw->phy.ops.acquire(hw);
2312	if (ret_val)
2313		return ret_val;
2314
2315	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2316	if (link) {
2317		if (hw->phy.type == e1000_phy_82578) {
2318			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2319						  &status_reg);
2320			if (ret_val)
2321				goto release;
2322
2323			status_reg &= (BM_CS_STATUS_LINK_UP |
2324				       BM_CS_STATUS_RESOLVED |
2325				       BM_CS_STATUS_SPEED_MASK);
2326
2327			if (status_reg == (BM_CS_STATUS_LINK_UP |
2328					   BM_CS_STATUS_RESOLVED |
2329					   BM_CS_STATUS_SPEED_1000))
2330				k1_enable = false;
2331		}
2332
2333		if (hw->phy.type == e1000_phy_82577) {
2334			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2335			if (ret_val)
2336				goto release;
2337
2338			status_reg &= (HV_M_STATUS_LINK_UP |
2339				       HV_M_STATUS_AUTONEG_COMPLETE |
2340				       HV_M_STATUS_SPEED_MASK);
2341
2342			if (status_reg == (HV_M_STATUS_LINK_UP |
2343					   HV_M_STATUS_AUTONEG_COMPLETE |
2344					   HV_M_STATUS_SPEED_1000))
2345				k1_enable = false;
2346		}
2347
2348		/* Link stall fix for link up */
2349		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2350		if (ret_val)
2351			goto release;
2352
2353	} else {
2354		/* Link stall fix for link down */
2355		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2356		if (ret_val)
2357			goto release;
2358	}
2359
2360	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2361
2362release:
2363	hw->phy.ops.release(hw);
2364
2365	return ret_val;
2366}
2367
2368/**
2369 *  e1000_configure_k1_ich8lan - Configure K1 power state
2370 *  @hw: pointer to the HW structure
2371 *  @k1_enable: K1 state to configure
2372 *
2373 *  Configure the K1 power state based on the provided parameter.
2374 *  Assumes semaphore already acquired.
2375 *
2376 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2377 **/
2378s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2379{
2380	s32 ret_val;
2381	u32 ctrl_reg = 0;
2382	u32 ctrl_ext = 0;
2383	u32 reg = 0;
2384	u16 kmrn_reg = 0;
2385
2386	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2387					      &kmrn_reg);
2388	if (ret_val)
2389		return ret_val;
2390
2391	if (k1_enable)
2392		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2393	else
2394		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2395
2396	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2397					       kmrn_reg);
2398	if (ret_val)
2399		return ret_val;
2400
2401	usleep_range(20, 40);
2402	ctrl_ext = er32(CTRL_EXT);
2403	ctrl_reg = er32(CTRL);
2404
2405	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2406	reg |= E1000_CTRL_FRCSPD;
2407	ew32(CTRL, reg);
2408
2409	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2410	e1e_flush();
2411	usleep_range(20, 40);
2412	ew32(CTRL, ctrl_reg);
2413	ew32(CTRL_EXT, ctrl_ext);
2414	e1e_flush();
2415	usleep_range(20, 40);
2416
2417	return 0;
2418}
2419
2420/**
2421 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2422 *  @hw:       pointer to the HW structure
2423 *  @d0_state: boolean if entering d0 or d3 device state
2424 *
2425 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2426 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2427 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2428 **/
2429static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2430{
2431	s32 ret_val = 0;
2432	u32 mac_reg;
2433	u16 oem_reg;
2434
2435	if (hw->mac.type < e1000_pchlan)
2436		return ret_val;
2437
2438	ret_val = hw->phy.ops.acquire(hw);
2439	if (ret_val)
2440		return ret_val;
2441
2442	if (hw->mac.type == e1000_pchlan) {
2443		mac_reg = er32(EXTCNF_CTRL);
2444		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2445			goto release;
2446	}
2447
2448	mac_reg = er32(FEXTNVM);
2449	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2450		goto release;
2451
2452	mac_reg = er32(PHY_CTRL);
2453
2454	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2455	if (ret_val)
2456		goto release;
2457
2458	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2459
2460	if (d0_state) {
2461		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2462			oem_reg |= HV_OEM_BITS_GBE_DIS;
2463
2464		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2465			oem_reg |= HV_OEM_BITS_LPLU;
2466	} else {
2467		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2468			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2469			oem_reg |= HV_OEM_BITS_GBE_DIS;
2470
2471		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2472			       E1000_PHY_CTRL_NOND0A_LPLU))
2473			oem_reg |= HV_OEM_BITS_LPLU;
2474	}
2475
2476	/* Set Restart auto-neg to activate the bits */
2477	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2478	    !hw->phy.ops.check_reset_block(hw))
2479		oem_reg |= HV_OEM_BITS_RESTART_AN;
2480
2481	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2482
2483release:
2484	hw->phy.ops.release(hw);
2485
2486	return ret_val;
2487}
2488
2489/**
2490 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2491 *  @hw:   pointer to the HW structure
2492 **/
2493static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2494{
2495	s32 ret_val;
2496	u16 data;
2497
2498	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2499	if (ret_val)
2500		return ret_val;
2501
2502	data |= HV_KMRN_MDIO_SLOW;
2503
2504	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2505
2506	return ret_val;
2507}
2508
2509/**
2510 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2511 *  @hw: pointer to the HW structure
2512 *
2513 *  A series of PHY workarounds to be done after every PHY reset.
2514 **/
2515static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2516{
2517	s32 ret_val = 0;
2518	u16 phy_data;
2519
2520	if (hw->mac.type != e1000_pchlan)
2521		return 0;
2522
2523	/* Set MDIO slow mode before any other MDIO access */
2524	if (hw->phy.type == e1000_phy_82577) {
2525		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2526		if (ret_val)
2527			return ret_val;
2528	}
2529
2530	if (((hw->phy.type == e1000_phy_82577) &&
2531	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2532	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2533		/* Disable generation of early preamble */
2534		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2535		if (ret_val)
2536			return ret_val;
2537
2538		/* Preamble tuning for SSC */
2539		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2540		if (ret_val)
2541			return ret_val;
2542	}
2543
2544	if (hw->phy.type == e1000_phy_82578) {
2545		/* Return registers to default by doing a soft reset then
2546		 * writing 0x3140 to the control register.
2547		 */
2548		if (hw->phy.revision < 2) {
2549			e1000e_phy_sw_reset(hw);
2550			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2551			if (ret_val)
2552				return ret_val;
2553		}
2554	}
2555
2556	/* Select page 0 */
2557	ret_val = hw->phy.ops.acquire(hw);
2558	if (ret_val)
2559		return ret_val;
2560
2561	hw->phy.addr = 1;
2562	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2563	hw->phy.ops.release(hw);
2564	if (ret_val)
2565		return ret_val;
2566
2567	/* Configure the K1 Si workaround during phy reset assuming there is
2568	 * link so that it disables K1 if link is in 1Gbps.
2569	 */
2570	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2571	if (ret_val)
2572		return ret_val;
2573
2574	/* Workaround for link disconnects on a busy hub in half duplex */
2575	ret_val = hw->phy.ops.acquire(hw);
2576	if (ret_val)
2577		return ret_val;
2578	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2579	if (ret_val)
2580		goto release;
2581	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2582	if (ret_val)
2583		goto release;
2584
2585	/* set MSE higher to enable link to stay up when noise is high */
2586	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2587release:
2588	hw->phy.ops.release(hw);
2589
2590	return ret_val;
2591}
2592
2593/**
2594 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2595 *  @hw:   pointer to the HW structure
2596 **/
2597void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2598{
2599	u32 mac_reg;
2600	u16 i, phy_reg = 0;
2601	s32 ret_val;
2602
2603	ret_val = hw->phy.ops.acquire(hw);
2604	if (ret_val)
2605		return;
2606	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2607	if (ret_val)
2608		goto release;
2609
2610	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2611	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2612		mac_reg = er32(RAL(i));
2613		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2614					   (u16)(mac_reg & 0xFFFF));
2615		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2616					   (u16)((mac_reg >> 16) & 0xFFFF));
2617
2618		mac_reg = er32(RAH(i));
2619		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2620					   (u16)(mac_reg & 0xFFFF));
2621		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2622					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
 
2623	}
2624
2625	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2626
2627release:
2628	hw->phy.ops.release(hw);
2629}
2630
2631/**
2632 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2633 *  with 82579 PHY
2634 *  @hw: pointer to the HW structure
2635 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2636 **/
2637s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2638{
2639	s32 ret_val = 0;
2640	u16 phy_reg, data;
2641	u32 mac_reg;
2642	u16 i;
2643
2644	if (hw->mac.type < e1000_pch2lan)
2645		return 0;
2646
2647	/* disable Rx path while enabling/disabling workaround */
2648	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2649	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2650	if (ret_val)
2651		return ret_val;
2652
2653	if (enable) {
2654		/* Write Rx addresses (rar_entry_count for RAL/H, and
2655		 * SHRAL/H) and initial CRC values to the MAC
2656		 */
2657		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2658			u8 mac_addr[ETH_ALEN] = { 0 };
2659			u32 addr_high, addr_low;
2660
2661			addr_high = er32(RAH(i));
2662			if (!(addr_high & E1000_RAH_AV))
2663				continue;
2664			addr_low = er32(RAL(i));
2665			mac_addr[0] = (addr_low & 0xFF);
2666			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2667			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2668			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2669			mac_addr[4] = (addr_high & 0xFF);
2670			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2671
2672			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2673		}
2674
2675		/* Write Rx addresses to the PHY */
2676		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2677
2678		/* Enable jumbo frame workaround in the MAC */
2679		mac_reg = er32(FFLT_DBG);
2680		mac_reg &= ~BIT(14);
2681		mac_reg |= (7 << 15);
2682		ew32(FFLT_DBG, mac_reg);
2683
2684		mac_reg = er32(RCTL);
2685		mac_reg |= E1000_RCTL_SECRC;
2686		ew32(RCTL, mac_reg);
2687
2688		ret_val = e1000e_read_kmrn_reg(hw,
2689					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2690					       &data);
2691		if (ret_val)
2692			return ret_val;
2693		ret_val = e1000e_write_kmrn_reg(hw,
2694						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2695						data | BIT(0));
2696		if (ret_val)
2697			return ret_val;
2698		ret_val = e1000e_read_kmrn_reg(hw,
2699					       E1000_KMRNCTRLSTA_HD_CTRL,
2700					       &data);
2701		if (ret_val)
2702			return ret_val;
2703		data &= ~(0xF << 8);
2704		data |= (0xB << 8);
2705		ret_val = e1000e_write_kmrn_reg(hw,
2706						E1000_KMRNCTRLSTA_HD_CTRL,
2707						data);
2708		if (ret_val)
2709			return ret_val;
2710
2711		/* Enable jumbo frame workaround in the PHY */
2712		e1e_rphy(hw, PHY_REG(769, 23), &data);
2713		data &= ~(0x7F << 5);
2714		data |= (0x37 << 5);
2715		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2716		if (ret_val)
2717			return ret_val;
2718		e1e_rphy(hw, PHY_REG(769, 16), &data);
2719		data &= ~BIT(13);
2720		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2721		if (ret_val)
2722			return ret_val;
2723		e1e_rphy(hw, PHY_REG(776, 20), &data);
2724		data &= ~(0x3FF << 2);
2725		data |= (E1000_TX_PTR_GAP << 2);
2726		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2727		if (ret_val)
2728			return ret_val;
2729		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2730		if (ret_val)
2731			return ret_val;
2732		e1e_rphy(hw, HV_PM_CTRL, &data);
2733		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2734		if (ret_val)
2735			return ret_val;
2736	} else {
2737		/* Write MAC register values back to h/w defaults */
2738		mac_reg = er32(FFLT_DBG);
2739		mac_reg &= ~(0xF << 14);
2740		ew32(FFLT_DBG, mac_reg);
2741
2742		mac_reg = er32(RCTL);
2743		mac_reg &= ~E1000_RCTL_SECRC;
2744		ew32(RCTL, mac_reg);
2745
2746		ret_val = e1000e_read_kmrn_reg(hw,
2747					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2748					       &data);
2749		if (ret_val)
2750			return ret_val;
2751		ret_val = e1000e_write_kmrn_reg(hw,
2752						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2753						data & ~BIT(0));
2754		if (ret_val)
2755			return ret_val;
2756		ret_val = e1000e_read_kmrn_reg(hw,
2757					       E1000_KMRNCTRLSTA_HD_CTRL,
2758					       &data);
2759		if (ret_val)
2760			return ret_val;
2761		data &= ~(0xF << 8);
2762		data |= (0xB << 8);
2763		ret_val = e1000e_write_kmrn_reg(hw,
2764						E1000_KMRNCTRLSTA_HD_CTRL,
2765						data);
2766		if (ret_val)
2767			return ret_val;
2768
2769		/* Write PHY register values back to h/w defaults */
2770		e1e_rphy(hw, PHY_REG(769, 23), &data);
2771		data &= ~(0x7F << 5);
2772		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2773		if (ret_val)
2774			return ret_val;
2775		e1e_rphy(hw, PHY_REG(769, 16), &data);
2776		data |= BIT(13);
2777		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2778		if (ret_val)
2779			return ret_val;
2780		e1e_rphy(hw, PHY_REG(776, 20), &data);
2781		data &= ~(0x3FF << 2);
2782		data |= (0x8 << 2);
2783		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2784		if (ret_val)
2785			return ret_val;
2786		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2787		if (ret_val)
2788			return ret_val;
2789		e1e_rphy(hw, HV_PM_CTRL, &data);
2790		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2791		if (ret_val)
2792			return ret_val;
2793	}
2794
2795	/* re-enable Rx path after enabling/disabling workaround */
2796	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2797}
2798
2799/**
2800 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2801 *  @hw: pointer to the HW structure
2802 *
2803 *  A series of PHY workarounds to be done after every PHY reset.
2804 **/
2805static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2806{
2807	s32 ret_val = 0;
2808
2809	if (hw->mac.type != e1000_pch2lan)
2810		return 0;
2811
2812	/* Set MDIO slow mode before any other MDIO access */
2813	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2814	if (ret_val)
2815		return ret_val;
2816
2817	ret_val = hw->phy.ops.acquire(hw);
2818	if (ret_val)
2819		return ret_val;
2820	/* set MSE higher to enable link to stay up when noise is high */
2821	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2822	if (ret_val)
2823		goto release;
2824	/* drop link after 5 times MSE threshold was reached */
2825	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2826release:
2827	hw->phy.ops.release(hw);
2828
2829	return ret_val;
2830}
2831
2832/**
2833 *  e1000_k1_workaround_lv - K1 Si workaround
2834 *  @hw:   pointer to the HW structure
2835 *
2836 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2837 *  Disable K1 in 1000Mbps and 100Mbps
2838 **/
2839static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2840{
2841	s32 ret_val = 0;
2842	u16 status_reg = 0;
2843
2844	if (hw->mac.type != e1000_pch2lan)
2845		return 0;
2846
2847	/* Set K1 beacon duration based on 10Mbs speed */
2848	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2849	if (ret_val)
2850		return ret_val;
2851
2852	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2853	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2854		if (status_reg &
2855		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2856			u16 pm_phy_reg;
2857
2858			/* LV 1G/100 Packet drop issue wa  */
2859			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2860			if (ret_val)
2861				return ret_val;
2862			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2863			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2864			if (ret_val)
2865				return ret_val;
2866		} else {
2867			u32 mac_reg;
2868
2869			mac_reg = er32(FEXTNVM4);
2870			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2871			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2872			ew32(FEXTNVM4, mac_reg);
2873		}
2874	}
2875
2876	return ret_val;
2877}
2878
2879/**
2880 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2881 *  @hw:   pointer to the HW structure
2882 *  @gate: boolean set to true to gate, false to ungate
2883 *
2884 *  Gate/ungate the automatic PHY configuration via hardware; perform
2885 *  the configuration via software instead.
2886 **/
2887static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2888{
2889	u32 extcnf_ctrl;
2890
2891	if (hw->mac.type < e1000_pch2lan)
2892		return;
2893
2894	extcnf_ctrl = er32(EXTCNF_CTRL);
2895
2896	if (gate)
2897		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2898	else
2899		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2900
2901	ew32(EXTCNF_CTRL, extcnf_ctrl);
2902}
2903
2904/**
2905 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2906 *  @hw: pointer to the HW structure
2907 *
2908 *  Check the appropriate indication the MAC has finished configuring the
2909 *  PHY after a software reset.
2910 **/
2911static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2912{
2913	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2914
2915	/* Wait for basic configuration completes before proceeding */
2916	do {
2917		data = er32(STATUS);
2918		data &= E1000_STATUS_LAN_INIT_DONE;
2919		usleep_range(100, 200);
2920	} while ((!data) && --loop);
2921
2922	/* If basic configuration is incomplete before the above loop
2923	 * count reaches 0, loading the configuration from NVM will
2924	 * leave the PHY in a bad state possibly resulting in no link.
2925	 */
2926	if (loop == 0)
2927		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2928
2929	/* Clear the Init Done bit for the next init event */
2930	data = er32(STATUS);
2931	data &= ~E1000_STATUS_LAN_INIT_DONE;
2932	ew32(STATUS, data);
2933}
2934
2935/**
2936 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2937 *  @hw: pointer to the HW structure
2938 **/
2939static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2940{
2941	s32 ret_val = 0;
2942	u16 reg;
2943
2944	if (hw->phy.ops.check_reset_block(hw))
2945		return 0;
2946
2947	/* Allow time for h/w to get to quiescent state after reset */
2948	usleep_range(10000, 11000);
2949
2950	/* Perform any necessary post-reset workarounds */
2951	switch (hw->mac.type) {
2952	case e1000_pchlan:
2953		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2954		if (ret_val)
2955			return ret_val;
2956		break;
2957	case e1000_pch2lan:
2958		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2959		if (ret_val)
2960			return ret_val;
2961		break;
2962	default:
2963		break;
2964	}
2965
2966	/* Clear the host wakeup bit after lcd reset */
2967	if (hw->mac.type >= e1000_pchlan) {
2968		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2969		reg &= ~BM_WUC_HOST_WU_BIT;
2970		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2971	}
2972
2973	/* Configure the LCD with the extended configuration region in NVM */
2974	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2975	if (ret_val)
2976		return ret_val;
2977
2978	/* Configure the LCD with the OEM bits in NVM */
2979	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2980
2981	if (hw->mac.type == e1000_pch2lan) {
2982		/* Ungate automatic PHY configuration on non-managed 82579 */
2983		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2984			usleep_range(10000, 11000);
2985			e1000_gate_hw_phy_config_ich8lan(hw, false);
2986		}
2987
2988		/* Set EEE LPI Update Timer to 200usec */
2989		ret_val = hw->phy.ops.acquire(hw);
2990		if (ret_val)
2991			return ret_val;
2992		ret_val = e1000_write_emi_reg_locked(hw,
2993						     I82579_LPI_UPDATE_TIMER,
2994						     0x1387);
2995		hw->phy.ops.release(hw);
2996	}
2997
2998	return ret_val;
2999}
3000
3001/**
3002 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3003 *  @hw: pointer to the HW structure
3004 *
3005 *  Resets the PHY
3006 *  This is a function pointer entry point called by drivers
3007 *  or other shared routines.
3008 **/
3009static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3010{
3011	s32 ret_val = 0;
3012
3013	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3014	if ((hw->mac.type == e1000_pch2lan) &&
3015	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3016		e1000_gate_hw_phy_config_ich8lan(hw, true);
3017
3018	ret_val = e1000e_phy_hw_reset_generic(hw);
3019	if (ret_val)
3020		return ret_val;
3021
3022	return e1000_post_phy_reset_ich8lan(hw);
3023}
3024
3025/**
3026 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3027 *  @hw: pointer to the HW structure
3028 *  @active: true to enable LPLU, false to disable
3029 *
3030 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3031 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3032 *  the phy speed. This function will manually set the LPLU bit and restart
3033 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3034 *  since it configures the same bit.
3035 **/
3036static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3037{
3038	s32 ret_val;
3039	u16 oem_reg;
3040
3041	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
3042	if (ret_val)
3043		return ret_val;
3044
3045	if (active)
3046		oem_reg |= HV_OEM_BITS_LPLU;
3047	else
3048		oem_reg &= ~HV_OEM_BITS_LPLU;
3049
3050	if (!hw->phy.ops.check_reset_block(hw))
3051		oem_reg |= HV_OEM_BITS_RESTART_AN;
3052
3053	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3054}
3055
3056/**
3057 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3058 *  @hw: pointer to the HW structure
3059 *  @active: true to enable LPLU, false to disable
3060 *
3061 *  Sets the LPLU D0 state according to the active flag.  When
3062 *  activating LPLU this function also disables smart speed
3063 *  and vice versa.  LPLU will not be activated unless the
3064 *  device autonegotiation advertisement meets standards of
3065 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3066 *  This is a function pointer entry point only called by
3067 *  PHY setup routines.
3068 **/
3069static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3070{
3071	struct e1000_phy_info *phy = &hw->phy;
3072	u32 phy_ctrl;
3073	s32 ret_val = 0;
3074	u16 data;
3075
3076	if (phy->type == e1000_phy_ife)
3077		return 0;
3078
3079	phy_ctrl = er32(PHY_CTRL);
3080
3081	if (active) {
3082		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3083		ew32(PHY_CTRL, phy_ctrl);
3084
3085		if (phy->type != e1000_phy_igp_3)
3086			return 0;
3087
3088		/* Call gig speed drop workaround on LPLU before accessing
3089		 * any PHY registers
3090		 */
3091		if (hw->mac.type == e1000_ich8lan)
3092			e1000e_gig_downshift_workaround_ich8lan(hw);
3093
3094		/* When LPLU is enabled, we should disable SmartSpeed */
3095		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3096		if (ret_val)
3097			return ret_val;
3098		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3099		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3100		if (ret_val)
3101			return ret_val;
3102	} else {
3103		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3104		ew32(PHY_CTRL, phy_ctrl);
3105
3106		if (phy->type != e1000_phy_igp_3)
3107			return 0;
3108
3109		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3110		 * during Dx states where the power conservation is most
3111		 * important.  During driver activity we should enable
3112		 * SmartSpeed, so performance is maintained.
3113		 */
3114		if (phy->smart_speed == e1000_smart_speed_on) {
3115			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3116					   &data);
3117			if (ret_val)
3118				return ret_val;
3119
3120			data |= IGP01E1000_PSCFR_SMART_SPEED;
3121			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122					   data);
3123			if (ret_val)
3124				return ret_val;
3125		} else if (phy->smart_speed == e1000_smart_speed_off) {
3126			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3127					   &data);
3128			if (ret_val)
3129				return ret_val;
3130
3131			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3132			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3133					   data);
3134			if (ret_val)
3135				return ret_val;
3136		}
3137	}
3138
3139	return 0;
3140}
3141
3142/**
3143 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3144 *  @hw: pointer to the HW structure
3145 *  @active: true to enable LPLU, false to disable
3146 *
3147 *  Sets the LPLU D3 state according to the active flag.  When
3148 *  activating LPLU this function also disables smart speed
3149 *  and vice versa.  LPLU will not be activated unless the
3150 *  device autonegotiation advertisement meets standards of
3151 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3152 *  This is a function pointer entry point only called by
3153 *  PHY setup routines.
3154 **/
3155static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3156{
3157	struct e1000_phy_info *phy = &hw->phy;
3158	u32 phy_ctrl;
3159	s32 ret_val = 0;
3160	u16 data;
3161
3162	phy_ctrl = er32(PHY_CTRL);
3163
3164	if (!active) {
3165		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3166		ew32(PHY_CTRL, phy_ctrl);
3167
3168		if (phy->type != e1000_phy_igp_3)
3169			return 0;
3170
3171		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3172		 * during Dx states where the power conservation is most
3173		 * important.  During driver activity we should enable
3174		 * SmartSpeed, so performance is maintained.
3175		 */
3176		if (phy->smart_speed == e1000_smart_speed_on) {
3177			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3178					   &data);
3179			if (ret_val)
3180				return ret_val;
3181
3182			data |= IGP01E1000_PSCFR_SMART_SPEED;
3183			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3184					   data);
3185			if (ret_val)
3186				return ret_val;
3187		} else if (phy->smart_speed == e1000_smart_speed_off) {
3188			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3189					   &data);
3190			if (ret_val)
3191				return ret_val;
3192
3193			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3194			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3195					   data);
3196			if (ret_val)
3197				return ret_val;
3198		}
3199	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3200		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3201		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3202		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3203		ew32(PHY_CTRL, phy_ctrl);
3204
3205		if (phy->type != e1000_phy_igp_3)
3206			return 0;
3207
3208		/* Call gig speed drop workaround on LPLU before accessing
3209		 * any PHY registers
3210		 */
3211		if (hw->mac.type == e1000_ich8lan)
3212			e1000e_gig_downshift_workaround_ich8lan(hw);
3213
3214		/* When LPLU is enabled, we should disable SmartSpeed */
3215		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3216		if (ret_val)
3217			return ret_val;
3218
3219		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3220		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3221	}
3222
3223	return ret_val;
3224}
3225
3226/**
3227 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3228 *  @hw: pointer to the HW structure
3229 *  @bank:  pointer to the variable that returns the active bank
3230 *
3231 *  Reads signature byte from the NVM using the flash access registers.
3232 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3233 **/
3234static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3235{
3236	u32 eecd;
3237	struct e1000_nvm_info *nvm = &hw->nvm;
3238	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3239	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3240	u32 nvm_dword = 0;
3241	u8 sig_byte = 0;
3242	s32 ret_val;
3243
3244	switch (hw->mac.type) {
3245	case e1000_pch_spt:
3246	case e1000_pch_cnp:
3247	case e1000_pch_tgp:
3248	case e1000_pch_adp:
3249	case e1000_pch_mtp:
3250	case e1000_pch_lnp:
3251	case e1000_pch_ptp:
3252	case e1000_pch_nvp:
3253		bank1_offset = nvm->flash_bank_size;
3254		act_offset = E1000_ICH_NVM_SIG_WORD;
3255
3256		/* set bank to 0 in case flash read fails */
3257		*bank = 0;
3258
3259		/* Check bank 0 */
3260		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3261							 &nvm_dword);
3262		if (ret_val)
3263			return ret_val;
3264		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3265		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3266		    E1000_ICH_NVM_SIG_VALUE) {
3267			*bank = 0;
3268			return 0;
3269		}
3270
3271		/* Check bank 1 */
3272		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3273							 bank1_offset,
3274							 &nvm_dword);
3275		if (ret_val)
3276			return ret_val;
3277		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3278		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3279		    E1000_ICH_NVM_SIG_VALUE) {
3280			*bank = 1;
3281			return 0;
3282		}
3283
3284		e_dbg("ERROR: No valid NVM bank present\n");
3285		return -E1000_ERR_NVM;
3286	case e1000_ich8lan:
3287	case e1000_ich9lan:
3288		eecd = er32(EECD);
3289		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3290		    E1000_EECD_SEC1VAL_VALID_MASK) {
3291			if (eecd & E1000_EECD_SEC1VAL)
3292				*bank = 1;
3293			else
3294				*bank = 0;
3295
3296			return 0;
3297		}
3298		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3299		fallthrough;
3300	default:
3301		/* set bank to 0 in case flash read fails */
3302		*bank = 0;
3303
3304		/* Check bank 0 */
3305		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3306							&sig_byte);
3307		if (ret_val)
3308			return ret_val;
3309		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3310		    E1000_ICH_NVM_SIG_VALUE) {
3311			*bank = 0;
3312			return 0;
3313		}
3314
3315		/* Check bank 1 */
3316		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3317							bank1_offset,
3318							&sig_byte);
3319		if (ret_val)
3320			return ret_val;
3321		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3322		    E1000_ICH_NVM_SIG_VALUE) {
3323			*bank = 1;
3324			return 0;
3325		}
3326
3327		e_dbg("ERROR: No valid NVM bank present\n");
3328		return -E1000_ERR_NVM;
3329	}
3330}
3331
3332/**
3333 *  e1000_read_nvm_spt - NVM access for SPT
3334 *  @hw: pointer to the HW structure
3335 *  @offset: The offset (in bytes) of the word(s) to read.
3336 *  @words: Size of data to read in words.
3337 *  @data: pointer to the word(s) to read at offset.
3338 *
3339 *  Reads a word(s) from the NVM
3340 **/
3341static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3342			      u16 *data)
3343{
3344	struct e1000_nvm_info *nvm = &hw->nvm;
3345	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3346	u32 act_offset;
3347	s32 ret_val = 0;
3348	u32 bank = 0;
3349	u32 dword = 0;
3350	u16 offset_to_read;
3351	u16 i;
3352
3353	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3354	    (words == 0)) {
3355		e_dbg("nvm parameter(s) out of bounds\n");
3356		ret_val = -E1000_ERR_NVM;
3357		goto out;
3358	}
3359
3360	nvm->ops.acquire(hw);
3361
3362	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3363	if (ret_val) {
3364		e_dbg("Could not detect valid bank, assuming bank 0\n");
3365		bank = 0;
3366	}
3367
3368	act_offset = (bank) ? nvm->flash_bank_size : 0;
3369	act_offset += offset;
3370
3371	ret_val = 0;
3372
3373	for (i = 0; i < words; i += 2) {
3374		if (words - i == 1) {
3375			if (dev_spec->shadow_ram[offset + i].modified) {
3376				data[i] =
3377				    dev_spec->shadow_ram[offset + i].value;
3378			} else {
3379				offset_to_read = act_offset + i -
3380				    ((act_offset + i) % 2);
3381				ret_val =
3382				  e1000_read_flash_dword_ich8lan(hw,
3383								 offset_to_read,
3384								 &dword);
3385				if (ret_val)
3386					break;
3387				if ((act_offset + i) % 2 == 0)
3388					data[i] = (u16)(dword & 0xFFFF);
3389				else
3390					data[i] = (u16)((dword >> 16) & 0xFFFF);
3391			}
3392		} else {
3393			offset_to_read = act_offset + i;
3394			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3395			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3396				ret_val =
3397				  e1000_read_flash_dword_ich8lan(hw,
3398								 offset_to_read,
3399								 &dword);
3400				if (ret_val)
3401					break;
3402			}
3403			if (dev_spec->shadow_ram[offset + i].modified)
3404				data[i] =
3405				    dev_spec->shadow_ram[offset + i].value;
3406			else
3407				data[i] = (u16)(dword & 0xFFFF);
3408			if (dev_spec->shadow_ram[offset + i].modified)
3409				data[i + 1] =
3410				    dev_spec->shadow_ram[offset + i + 1].value;
3411			else
3412				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3413		}
3414	}
3415
3416	nvm->ops.release(hw);
3417
3418out:
3419	if (ret_val)
3420		e_dbg("NVM read error: %d\n", ret_val);
3421
3422	return ret_val;
3423}
3424
3425/**
3426 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3427 *  @hw: pointer to the HW structure
3428 *  @offset: The offset (in bytes) of the word(s) to read.
3429 *  @words: Size of data to read in words
3430 *  @data: Pointer to the word(s) to read at offset.
3431 *
3432 *  Reads a word(s) from the NVM using the flash access registers.
3433 **/
3434static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3435				  u16 *data)
3436{
3437	struct e1000_nvm_info *nvm = &hw->nvm;
3438	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3439	u32 act_offset;
3440	s32 ret_val = 0;
3441	u32 bank = 0;
3442	u16 i, word;
3443
3444	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3445	    (words == 0)) {
3446		e_dbg("nvm parameter(s) out of bounds\n");
3447		ret_val = -E1000_ERR_NVM;
3448		goto out;
3449	}
3450
3451	nvm->ops.acquire(hw);
3452
3453	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3454	if (ret_val) {
3455		e_dbg("Could not detect valid bank, assuming bank 0\n");
3456		bank = 0;
3457	}
3458
3459	act_offset = (bank) ? nvm->flash_bank_size : 0;
3460	act_offset += offset;
3461
3462	ret_val = 0;
3463	for (i = 0; i < words; i++) {
3464		if (dev_spec->shadow_ram[offset + i].modified) {
3465			data[i] = dev_spec->shadow_ram[offset + i].value;
3466		} else {
3467			ret_val = e1000_read_flash_word_ich8lan(hw,
3468								act_offset + i,
3469								&word);
3470			if (ret_val)
3471				break;
3472			data[i] = word;
3473		}
3474	}
3475
3476	nvm->ops.release(hw);
3477
3478out:
3479	if (ret_val)
3480		e_dbg("NVM read error: %d\n", ret_val);
3481
3482	return ret_val;
3483}
3484
3485/**
3486 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3487 *  @hw: pointer to the HW structure
3488 *
3489 *  This function does initial flash setup so that a new read/write/erase cycle
3490 *  can be started.
3491 **/
3492static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3493{
3494	union ich8_hws_flash_status hsfsts;
3495	s32 ret_val = -E1000_ERR_NVM;
3496
3497	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3498
3499	/* Check if the flash descriptor is valid */
3500	if (!hsfsts.hsf_status.fldesvalid) {
3501		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3502		return -E1000_ERR_NVM;
3503	}
3504
3505	/* Clear FCERR and DAEL in hw status by writing 1 */
3506	hsfsts.hsf_status.flcerr = 1;
3507	hsfsts.hsf_status.dael = 1;
3508	if (hw->mac.type >= e1000_pch_spt)
3509		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3510	else
3511		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3512
3513	/* Either we should have a hardware SPI cycle in progress
3514	 * bit to check against, in order to start a new cycle or
3515	 * FDONE bit should be changed in the hardware so that it
3516	 * is 1 after hardware reset, which can then be used as an
3517	 * indication whether a cycle is in progress or has been
3518	 * completed.
3519	 */
3520
3521	if (!hsfsts.hsf_status.flcinprog) {
3522		/* There is no cycle running at present,
3523		 * so we can start a cycle.
3524		 * Begin by setting Flash Cycle Done.
3525		 */
3526		hsfsts.hsf_status.flcdone = 1;
3527		if (hw->mac.type >= e1000_pch_spt)
3528			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3529		else
3530			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3531		ret_val = 0;
3532	} else {
3533		s32 i;
3534
3535		/* Otherwise poll for sometime so the current
3536		 * cycle has a chance to end before giving up.
3537		 */
3538		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3539			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3540			if (!hsfsts.hsf_status.flcinprog) {
3541				ret_val = 0;
3542				break;
3543			}
3544			udelay(1);
3545		}
3546		if (!ret_val) {
3547			/* Successful in waiting for previous cycle to timeout,
3548			 * now set the Flash Cycle Done.
3549			 */
3550			hsfsts.hsf_status.flcdone = 1;
3551			if (hw->mac.type >= e1000_pch_spt)
3552				ew32flash(ICH_FLASH_HSFSTS,
3553					  hsfsts.regval & 0xFFFF);
3554			else
3555				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3556		} else {
3557			e_dbg("Flash controller busy, cannot get access\n");
3558		}
3559	}
3560
3561	return ret_val;
3562}
3563
3564/**
3565 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3566 *  @hw: pointer to the HW structure
3567 *  @timeout: maximum time to wait for completion
3568 *
3569 *  This function starts a flash cycle and waits for its completion.
3570 **/
3571static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3572{
3573	union ich8_hws_flash_ctrl hsflctl;
3574	union ich8_hws_flash_status hsfsts;
3575	u32 i = 0;
3576
3577	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3578	if (hw->mac.type >= e1000_pch_spt)
3579		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3580	else
3581		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3582	hsflctl.hsf_ctrl.flcgo = 1;
3583
3584	if (hw->mac.type >= e1000_pch_spt)
3585		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3586	else
3587		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3588
3589	/* wait till FDONE bit is set to 1 */
3590	do {
3591		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3592		if (hsfsts.hsf_status.flcdone)
3593			break;
3594		udelay(1);
3595	} while (i++ < timeout);
3596
3597	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3598		return 0;
3599
3600	return -E1000_ERR_NVM;
3601}
3602
3603/**
3604 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3605 *  @hw: pointer to the HW structure
3606 *  @offset: offset to data location
3607 *  @data: pointer to the location for storing the data
3608 *
3609 *  Reads the flash dword at offset into data.  Offset is converted
3610 *  to bytes before read.
3611 **/
3612static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3613					  u32 *data)
3614{
3615	/* Must convert word offset into bytes. */
3616	offset <<= 1;
3617	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3618}
3619
3620/**
3621 *  e1000_read_flash_word_ich8lan - Read word from flash
3622 *  @hw: pointer to the HW structure
3623 *  @offset: offset to data location
3624 *  @data: pointer to the location for storing the data
3625 *
3626 *  Reads the flash word at offset into data.  Offset is converted
3627 *  to bytes before read.
3628 **/
3629static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3630					 u16 *data)
3631{
3632	/* Must convert offset into bytes. */
3633	offset <<= 1;
3634
3635	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3636}
3637
3638/**
3639 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3640 *  @hw: pointer to the HW structure
3641 *  @offset: The offset of the byte to read.
3642 *  @data: Pointer to a byte to store the value read.
3643 *
3644 *  Reads a single byte from the NVM using the flash access registers.
3645 **/
3646static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3647					 u8 *data)
3648{
3649	s32 ret_val;
3650	u16 word = 0;
3651
3652	/* In SPT, only 32 bits access is supported,
3653	 * so this function should not be called.
3654	 */
3655	if (hw->mac.type >= e1000_pch_spt)
3656		return -E1000_ERR_NVM;
3657	else
3658		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3659
3660	if (ret_val)
3661		return ret_val;
3662
3663	*data = (u8)word;
3664
3665	return 0;
3666}
3667
3668/**
3669 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3670 *  @hw: pointer to the HW structure
3671 *  @offset: The offset (in bytes) of the byte or word to read.
3672 *  @size: Size of data to read, 1=byte 2=word
3673 *  @data: Pointer to the word to store the value read.
3674 *
3675 *  Reads a byte or word from the NVM using the flash access registers.
3676 **/
3677static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3678					 u8 size, u16 *data)
3679{
3680	union ich8_hws_flash_status hsfsts;
3681	union ich8_hws_flash_ctrl hsflctl;
3682	u32 flash_linear_addr;
3683	u32 flash_data = 0;
3684	s32 ret_val = -E1000_ERR_NVM;
3685	u8 count = 0;
3686
3687	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3688		return -E1000_ERR_NVM;
3689
3690	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3691			     hw->nvm.flash_base_addr);
3692
3693	do {
3694		udelay(1);
3695		/* Steps */
3696		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3697		if (ret_val)
3698			break;
3699
3700		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3701		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3702		hsflctl.hsf_ctrl.fldbcount = size - 1;
3703		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3704		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3705
3706		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3707
3708		ret_val =
3709		    e1000_flash_cycle_ich8lan(hw,
3710					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3711
3712		/* Check if FCERR is set to 1, if set to 1, clear it
3713		 * and try the whole sequence a few more times, else
3714		 * read in (shift in) the Flash Data0, the order is
3715		 * least significant byte first msb to lsb
3716		 */
3717		if (!ret_val) {
3718			flash_data = er32flash(ICH_FLASH_FDATA0);
3719			if (size == 1)
3720				*data = (u8)(flash_data & 0x000000FF);
3721			else if (size == 2)
3722				*data = (u16)(flash_data & 0x0000FFFF);
3723			break;
3724		} else {
3725			/* If we've gotten here, then things are probably
3726			 * completely hosed, but if the error condition is
3727			 * detected, it won't hurt to give it another try...
3728			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3729			 */
3730			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3731			if (hsfsts.hsf_status.flcerr) {
3732				/* Repeat for some time before giving up. */
3733				continue;
3734			} else if (!hsfsts.hsf_status.flcdone) {
3735				e_dbg("Timeout error - flash cycle did not complete.\n");
3736				break;
3737			}
3738		}
3739	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3740
3741	return ret_val;
3742}
3743
3744/**
3745 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3746 *  @hw: pointer to the HW structure
3747 *  @offset: The offset (in bytes) of the dword to read.
3748 *  @data: Pointer to the dword to store the value read.
3749 *
3750 *  Reads a byte or word from the NVM using the flash access registers.
3751 **/
3752
3753static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3754					   u32 *data)
3755{
3756	union ich8_hws_flash_status hsfsts;
3757	union ich8_hws_flash_ctrl hsflctl;
3758	u32 flash_linear_addr;
3759	s32 ret_val = -E1000_ERR_NVM;
3760	u8 count = 0;
3761
3762	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3763		return -E1000_ERR_NVM;
3764	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3765			     hw->nvm.flash_base_addr);
3766
3767	do {
3768		udelay(1);
3769		/* Steps */
3770		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3771		if (ret_val)
3772			break;
3773		/* In SPT, This register is in Lan memory space, not flash.
3774		 * Therefore, only 32 bit access is supported
3775		 */
3776		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3777
3778		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3779		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3780		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3781		/* In SPT, This register is in Lan memory space, not flash.
3782		 * Therefore, only 32 bit access is supported
3783		 */
3784		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3785		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3786
3787		ret_val =
3788		   e1000_flash_cycle_ich8lan(hw,
3789					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3790
3791		/* Check if FCERR is set to 1, if set to 1, clear it
3792		 * and try the whole sequence a few more times, else
3793		 * read in (shift in) the Flash Data0, the order is
3794		 * least significant byte first msb to lsb
3795		 */
3796		if (!ret_val) {
3797			*data = er32flash(ICH_FLASH_FDATA0);
3798			break;
3799		} else {
3800			/* If we've gotten here, then things are probably
3801			 * completely hosed, but if the error condition is
3802			 * detected, it won't hurt to give it another try...
3803			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3804			 */
3805			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3806			if (hsfsts.hsf_status.flcerr) {
3807				/* Repeat for some time before giving up. */
3808				continue;
3809			} else if (!hsfsts.hsf_status.flcdone) {
3810				e_dbg("Timeout error - flash cycle did not complete.\n");
3811				break;
3812			}
3813		}
3814	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3815
3816	return ret_val;
3817}
3818
3819/**
3820 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3821 *  @hw: pointer to the HW structure
3822 *  @offset: The offset (in bytes) of the word(s) to write.
3823 *  @words: Size of data to write in words
3824 *  @data: Pointer to the word(s) to write at offset.
3825 *
3826 *  Writes a byte or word to the NVM using the flash access registers.
3827 **/
3828static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3829				   u16 *data)
3830{
3831	struct e1000_nvm_info *nvm = &hw->nvm;
3832	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3833	u16 i;
3834
3835	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3836	    (words == 0)) {
3837		e_dbg("nvm parameter(s) out of bounds\n");
3838		return -E1000_ERR_NVM;
3839	}
3840
3841	nvm->ops.acquire(hw);
3842
3843	for (i = 0; i < words; i++) {
3844		dev_spec->shadow_ram[offset + i].modified = true;
3845		dev_spec->shadow_ram[offset + i].value = data[i];
3846	}
3847
3848	nvm->ops.release(hw);
3849
3850	return 0;
3851}
3852
3853/**
3854 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3855 *  @hw: pointer to the HW structure
3856 *
3857 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3858 *  which writes the checksum to the shadow ram.  The changes in the shadow
3859 *  ram are then committed to the EEPROM by processing each bank at a time
3860 *  checking for the modified bit and writing only the pending changes.
3861 *  After a successful commit, the shadow ram is cleared and is ready for
3862 *  future writes.
3863 **/
3864static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3865{
3866	struct e1000_nvm_info *nvm = &hw->nvm;
3867	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3868	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3869	s32 ret_val;
3870	u32 dword = 0;
3871
3872	ret_val = e1000e_update_nvm_checksum_generic(hw);
3873	if (ret_val)
3874		goto out;
3875
3876	if (nvm->type != e1000_nvm_flash_sw)
3877		goto out;
3878
3879	nvm->ops.acquire(hw);
3880
3881	/* We're writing to the opposite bank so if we're on bank 1,
3882	 * write to bank 0 etc.  We also need to erase the segment that
3883	 * is going to be written
3884	 */
3885	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3886	if (ret_val) {
3887		e_dbg("Could not detect valid bank, assuming bank 0\n");
3888		bank = 0;
3889	}
3890
3891	if (bank == 0) {
3892		new_bank_offset = nvm->flash_bank_size;
3893		old_bank_offset = 0;
3894		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3895		if (ret_val)
3896			goto release;
3897	} else {
3898		old_bank_offset = nvm->flash_bank_size;
3899		new_bank_offset = 0;
3900		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3901		if (ret_val)
3902			goto release;
3903	}
3904	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3905		/* Determine whether to write the value stored
3906		 * in the other NVM bank or a modified value stored
3907		 * in the shadow RAM
3908		 */
3909		ret_val = e1000_read_flash_dword_ich8lan(hw,
3910							 i + old_bank_offset,
3911							 &dword);
3912
3913		if (dev_spec->shadow_ram[i].modified) {
3914			dword &= 0xffff0000;
3915			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3916		}
3917		if (dev_spec->shadow_ram[i + 1].modified) {
3918			dword &= 0x0000ffff;
3919			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3920				  << 16);
3921		}
3922		if (ret_val)
3923			break;
3924
3925		/* If the word is 0x13, then make sure the signature bits
3926		 * (15:14) are 11b until the commit has completed.
3927		 * This will allow us to write 10b which indicates the
3928		 * signature is valid.  We want to do this after the write
3929		 * has completed so that we don't mark the segment valid
3930		 * while the write is still in progress
3931		 */
3932		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3933			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3934
3935		/* Convert offset to bytes. */
3936		act_offset = (i + new_bank_offset) << 1;
3937
3938		usleep_range(100, 200);
3939
3940		/* Write the data to the new bank. Offset in words */
3941		act_offset = i + new_bank_offset;
3942		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3943								dword);
3944		if (ret_val)
3945			break;
3946	}
3947
3948	/* Don't bother writing the segment valid bits if sector
3949	 * programming failed.
3950	 */
3951	if (ret_val) {
3952		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3953		e_dbg("Flash commit failed.\n");
3954		goto release;
3955	}
3956
3957	/* Finally validate the new segment by setting bit 15:14
3958	 * to 10b in word 0x13 , this can be done without an
3959	 * erase as well since these bits are 11 to start with
3960	 * and we need to change bit 14 to 0b
3961	 */
3962	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3963
3964	/*offset in words but we read dword */
3965	--act_offset;
3966	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3967
3968	if (ret_val)
3969		goto release;
3970
3971	dword &= 0xBFFFFFFF;
3972	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3973
3974	if (ret_val)
3975		goto release;
3976
 
 
 
 
 
 
 
3977	/* offset in words but we read dword */
3978	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3979	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3980
3981	if (ret_val)
3982		goto release;
3983
3984	dword &= 0x00FFFFFF;
3985	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3986
3987	if (ret_val)
3988		goto release;
3989
3990	/* Great!  Everything worked, we can now clear the cached entries. */
3991	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3992		dev_spec->shadow_ram[i].modified = false;
3993		dev_spec->shadow_ram[i].value = 0xFFFF;
3994	}
3995
3996release:
3997	nvm->ops.release(hw);
3998
3999	/* Reload the EEPROM, or else modifications will not appear
4000	 * until after the next adapter reset.
4001	 */
4002	if (!ret_val) {
4003		nvm->ops.reload(hw);
4004		usleep_range(10000, 11000);
4005	}
4006
4007out:
4008	if (ret_val)
4009		e_dbg("NVM update error: %d\n", ret_val);
4010
4011	return ret_val;
4012}
4013
4014/**
4015 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4016 *  @hw: pointer to the HW structure
4017 *
4018 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4019 *  which writes the checksum to the shadow ram.  The changes in the shadow
4020 *  ram are then committed to the EEPROM by processing each bank at a time
4021 *  checking for the modified bit and writing only the pending changes.
4022 *  After a successful commit, the shadow ram is cleared and is ready for
4023 *  future writes.
4024 **/
4025static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4026{
4027	struct e1000_nvm_info *nvm = &hw->nvm;
4028	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4029	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4030	s32 ret_val;
4031	u16 data = 0;
4032
4033	ret_val = e1000e_update_nvm_checksum_generic(hw);
4034	if (ret_val)
4035		goto out;
4036
4037	if (nvm->type != e1000_nvm_flash_sw)
4038		goto out;
4039
4040	nvm->ops.acquire(hw);
4041
4042	/* We're writing to the opposite bank so if we're on bank 1,
4043	 * write to bank 0 etc.  We also need to erase the segment that
4044	 * is going to be written
4045	 */
4046	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4047	if (ret_val) {
4048		e_dbg("Could not detect valid bank, assuming bank 0\n");
4049		bank = 0;
4050	}
4051
4052	if (bank == 0) {
4053		new_bank_offset = nvm->flash_bank_size;
4054		old_bank_offset = 0;
4055		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4056		if (ret_val)
4057			goto release;
4058	} else {
4059		old_bank_offset = nvm->flash_bank_size;
4060		new_bank_offset = 0;
4061		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4062		if (ret_val)
4063			goto release;
4064	}
4065	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4066		if (dev_spec->shadow_ram[i].modified) {
4067			data = dev_spec->shadow_ram[i].value;
4068		} else {
4069			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4070								old_bank_offset,
4071								&data);
4072			if (ret_val)
4073				break;
4074		}
4075
4076		/* If the word is 0x13, then make sure the signature bits
4077		 * (15:14) are 11b until the commit has completed.
4078		 * This will allow us to write 10b which indicates the
4079		 * signature is valid.  We want to do this after the write
4080		 * has completed so that we don't mark the segment valid
4081		 * while the write is still in progress
4082		 */
4083		if (i == E1000_ICH_NVM_SIG_WORD)
4084			data |= E1000_ICH_NVM_SIG_MASK;
4085
4086		/* Convert offset to bytes. */
4087		act_offset = (i + new_bank_offset) << 1;
4088
4089		usleep_range(100, 200);
4090		/* Write the bytes to the new bank. */
4091		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4092							       act_offset,
4093							       (u8)data);
4094		if (ret_val)
4095			break;
4096
4097		usleep_range(100, 200);
4098		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4099							       act_offset + 1,
4100							       (u8)(data >> 8));
4101		if (ret_val)
4102			break;
4103	}
4104
4105	/* Don't bother writing the segment valid bits if sector
4106	 * programming failed.
4107	 */
4108	if (ret_val) {
4109		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4110		e_dbg("Flash commit failed.\n");
4111		goto release;
4112	}
4113
4114	/* Finally validate the new segment by setting bit 15:14
4115	 * to 10b in word 0x13 , this can be done without an
4116	 * erase as well since these bits are 11 to start with
4117	 * and we need to change bit 14 to 0b
4118	 */
4119	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4120	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4121	if (ret_val)
4122		goto release;
4123
4124	data &= 0xBFFF;
4125	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4126						       act_offset * 2 + 1,
4127						       (u8)(data >> 8));
4128	if (ret_val)
4129		goto release;
4130
4131	/* And invalidate the previously valid segment by setting
4132	 * its signature word (0x13) high_byte to 0b. This can be
4133	 * done without an erase because flash erase sets all bits
4134	 * to 1's. We can write 1's to 0's without an erase
4135	 */
4136	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4137	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4138	if (ret_val)
4139		goto release;
4140
4141	/* Great!  Everything worked, we can now clear the cached entries. */
4142	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4143		dev_spec->shadow_ram[i].modified = false;
4144		dev_spec->shadow_ram[i].value = 0xFFFF;
4145	}
4146
4147release:
4148	nvm->ops.release(hw);
4149
4150	/* Reload the EEPROM, or else modifications will not appear
4151	 * until after the next adapter reset.
4152	 */
4153	if (!ret_val) {
4154		nvm->ops.reload(hw);
4155		usleep_range(10000, 11000);
4156	}
4157
4158out:
4159	if (ret_val)
4160		e_dbg("NVM update error: %d\n", ret_val);
4161
4162	return ret_val;
4163}
4164
4165/**
4166 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4167 *  @hw: pointer to the HW structure
4168 *
4169 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4170 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4171 *  calculated, in which case we need to calculate the checksum and set bit 6.
4172 **/
4173static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4174{
4175	s32 ret_val;
4176	u16 data;
4177	u16 word;
4178	u16 valid_csum_mask;
4179
4180	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4181	 * the checksum needs to be fixed.  This bit is an indication that
4182	 * the NVM was prepared by OEM software and did not calculate
4183	 * the checksum...a likely scenario.
4184	 */
4185	switch (hw->mac.type) {
4186	case e1000_pch_lpt:
4187	case e1000_pch_spt:
4188	case e1000_pch_cnp:
4189	case e1000_pch_tgp:
4190	case e1000_pch_adp:
4191	case e1000_pch_mtp:
4192	case e1000_pch_lnp:
4193	case e1000_pch_ptp:
4194	case e1000_pch_nvp:
4195		word = NVM_COMPAT;
4196		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4197		break;
4198	default:
4199		word = NVM_FUTURE_INIT_WORD1;
4200		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4201		break;
4202	}
4203
4204	ret_val = e1000_read_nvm(hw, word, 1, &data);
4205	if (ret_val)
4206		return ret_val;
4207
4208	if (!(data & valid_csum_mask)) {
4209		e_dbg("NVM Checksum valid bit not set\n");
4210
4211		if (hw->mac.type < e1000_pch_tgp) {
4212			data |= valid_csum_mask;
4213			ret_val = e1000_write_nvm(hw, word, 1, &data);
4214			if (ret_val)
4215				return ret_val;
4216			ret_val = e1000e_update_nvm_checksum(hw);
4217			if (ret_val)
4218				return ret_val;
4219		}
4220	}
4221
4222	return e1000e_validate_nvm_checksum_generic(hw);
4223}
4224
4225/**
4226 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4227 *  @hw: pointer to the HW structure
4228 *
4229 *  To prevent malicious write/erase of the NVM, set it to be read-only
4230 *  so that the hardware ignores all write/erase cycles of the NVM via
4231 *  the flash control registers.  The shadow-ram copy of the NVM will
4232 *  still be updated, however any updates to this copy will not stick
4233 *  across driver reloads.
4234 **/
4235void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4236{
4237	struct e1000_nvm_info *nvm = &hw->nvm;
4238	union ich8_flash_protected_range pr0;
4239	union ich8_hws_flash_status hsfsts;
4240	u32 gfpreg;
4241
4242	nvm->ops.acquire(hw);
4243
4244	gfpreg = er32flash(ICH_FLASH_GFPREG);
4245
4246	/* Write-protect GbE Sector of NVM */
4247	pr0.regval = er32flash(ICH_FLASH_PR0);
4248	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4249	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4250	pr0.range.wpe = true;
4251	ew32flash(ICH_FLASH_PR0, pr0.regval);
4252
4253	/* Lock down a subset of GbE Flash Control Registers, e.g.
4254	 * PR0 to prevent the write-protection from being lifted.
4255	 * Once FLOCKDN is set, the registers protected by it cannot
4256	 * be written until FLOCKDN is cleared by a hardware reset.
4257	 */
4258	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4259	hsfsts.hsf_status.flockdn = true;
4260	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4261
4262	nvm->ops.release(hw);
4263}
4264
4265/**
4266 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4267 *  @hw: pointer to the HW structure
4268 *  @offset: The offset (in bytes) of the byte/word to read.
4269 *  @size: Size of data to read, 1=byte 2=word
4270 *  @data: The byte(s) to write to the NVM.
4271 *
4272 *  Writes one/two bytes to the NVM using the flash access registers.
4273 **/
4274static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4275					  u8 size, u16 data)
4276{
4277	union ich8_hws_flash_status hsfsts;
4278	union ich8_hws_flash_ctrl hsflctl;
4279	u32 flash_linear_addr;
4280	u32 flash_data = 0;
4281	s32 ret_val;
4282	u8 count = 0;
4283
4284	if (hw->mac.type >= e1000_pch_spt) {
4285		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4286			return -E1000_ERR_NVM;
4287	} else {
4288		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4289			return -E1000_ERR_NVM;
4290	}
4291
4292	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4293			     hw->nvm.flash_base_addr);
4294
4295	do {
4296		udelay(1);
4297		/* Steps */
4298		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4299		if (ret_val)
4300			break;
4301		/* In SPT, This register is in Lan memory space, not
4302		 * flash.  Therefore, only 32 bit access is supported
4303		 */
4304		if (hw->mac.type >= e1000_pch_spt)
4305			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4306		else
4307			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4308
4309		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4310		hsflctl.hsf_ctrl.fldbcount = size - 1;
4311		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4312		/* In SPT, This register is in Lan memory space,
4313		 * not flash.  Therefore, only 32 bit access is
4314		 * supported
4315		 */
4316		if (hw->mac.type >= e1000_pch_spt)
4317			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4318		else
4319			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4320
4321		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4322
4323		if (size == 1)
4324			flash_data = (u32)data & 0x00FF;
4325		else
4326			flash_data = (u32)data;
4327
4328		ew32flash(ICH_FLASH_FDATA0, flash_data);
4329
4330		/* check if FCERR is set to 1 , if set to 1, clear it
4331		 * and try the whole sequence a few more times else done
4332		 */
4333		ret_val =
4334		    e1000_flash_cycle_ich8lan(hw,
4335					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4336		if (!ret_val)
4337			break;
4338
4339		/* If we're here, then things are most likely
4340		 * completely hosed, but if the error condition
4341		 * is detected, it won't hurt to give it another
4342		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4343		 */
4344		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4345		if (hsfsts.hsf_status.flcerr)
4346			/* Repeat for some time before giving up. */
4347			continue;
4348		if (!hsfsts.hsf_status.flcdone) {
4349			e_dbg("Timeout error - flash cycle did not complete.\n");
4350			break;
4351		}
4352	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4353
4354	return ret_val;
4355}
4356
4357/**
4358*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4359*  @hw: pointer to the HW structure
4360*  @offset: The offset (in bytes) of the dwords to read.
4361*  @data: The 4 bytes to write to the NVM.
4362*
4363*  Writes one/two/four bytes to the NVM using the flash access registers.
4364**/
4365static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4366					    u32 data)
4367{
4368	union ich8_hws_flash_status hsfsts;
4369	union ich8_hws_flash_ctrl hsflctl;
4370	u32 flash_linear_addr;
4371	s32 ret_val;
4372	u8 count = 0;
4373
4374	if (hw->mac.type >= e1000_pch_spt) {
4375		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4376			return -E1000_ERR_NVM;
4377	}
4378	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4379			     hw->nvm.flash_base_addr);
4380	do {
4381		udelay(1);
4382		/* Steps */
4383		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4384		if (ret_val)
4385			break;
4386
4387		/* In SPT, This register is in Lan memory space, not
4388		 * flash.  Therefore, only 32 bit access is supported
4389		 */
4390		if (hw->mac.type >= e1000_pch_spt)
4391			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4392			    >> 16;
4393		else
4394			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4395
4396		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4397		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4398
4399		/* In SPT, This register is in Lan memory space,
4400		 * not flash.  Therefore, only 32 bit access is
4401		 * supported
4402		 */
4403		if (hw->mac.type >= e1000_pch_spt)
4404			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4405		else
4406			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4407
4408		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4409
4410		ew32flash(ICH_FLASH_FDATA0, data);
4411
4412		/* check if FCERR is set to 1 , if set to 1, clear it
4413		 * and try the whole sequence a few more times else done
4414		 */
4415		ret_val =
4416		   e1000_flash_cycle_ich8lan(hw,
4417					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4418
4419		if (!ret_val)
4420			break;
4421
4422		/* If we're here, then things are most likely
4423		 * completely hosed, but if the error condition
4424		 * is detected, it won't hurt to give it another
4425		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4426		 */
4427		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4428
4429		if (hsfsts.hsf_status.flcerr)
4430			/* Repeat for some time before giving up. */
4431			continue;
4432		if (!hsfsts.hsf_status.flcdone) {
4433			e_dbg("Timeout error - flash cycle did not complete.\n");
4434			break;
4435		}
4436	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4437
4438	return ret_val;
4439}
4440
4441/**
4442 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4443 *  @hw: pointer to the HW structure
4444 *  @offset: The index of the byte to read.
4445 *  @data: The byte to write to the NVM.
4446 *
4447 *  Writes a single byte to the NVM using the flash access registers.
4448 **/
4449static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4450					  u8 data)
4451{
4452	u16 word = (u16)data;
4453
4454	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4455}
4456
4457/**
4458*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4459*  @hw: pointer to the HW structure
4460*  @offset: The offset of the word to write.
4461*  @dword: The dword to write to the NVM.
4462*
4463*  Writes a single dword to the NVM using the flash access registers.
4464*  Goes through a retry algorithm before giving up.
4465**/
4466static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4467						 u32 offset, u32 dword)
4468{
4469	s32 ret_val;
4470	u16 program_retries;
4471
4472	/* Must convert word offset into bytes. */
4473	offset <<= 1;
4474	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4475
4476	if (!ret_val)
4477		return ret_val;
4478	for (program_retries = 0; program_retries < 100; program_retries++) {
4479		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4480		usleep_range(100, 200);
4481		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4482		if (!ret_val)
4483			break;
4484	}
4485	if (program_retries == 100)
4486		return -E1000_ERR_NVM;
4487
4488	return 0;
4489}
4490
4491/**
4492 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4493 *  @hw: pointer to the HW structure
4494 *  @offset: The offset of the byte to write.
4495 *  @byte: The byte to write to the NVM.
4496 *
4497 *  Writes a single byte to the NVM using the flash access registers.
4498 *  Goes through a retry algorithm before giving up.
4499 **/
4500static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4501						u32 offset, u8 byte)
4502{
4503	s32 ret_val;
4504	u16 program_retries;
4505
4506	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4507	if (!ret_val)
4508		return ret_val;
4509
4510	for (program_retries = 0; program_retries < 100; program_retries++) {
4511		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4512		usleep_range(100, 200);
4513		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4514		if (!ret_val)
4515			break;
4516	}
4517	if (program_retries == 100)
4518		return -E1000_ERR_NVM;
4519
4520	return 0;
4521}
4522
4523/**
4524 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4525 *  @hw: pointer to the HW structure
4526 *  @bank: 0 for first bank, 1 for second bank, etc.
4527 *
4528 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4529 *  bank N is 4096 * N + flash_reg_addr.
4530 **/
4531static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4532{
4533	struct e1000_nvm_info *nvm = &hw->nvm;
4534	union ich8_hws_flash_status hsfsts;
4535	union ich8_hws_flash_ctrl hsflctl;
4536	u32 flash_linear_addr;
4537	/* bank size is in 16bit words - adjust to bytes */
4538	u32 flash_bank_size = nvm->flash_bank_size * 2;
4539	s32 ret_val;
4540	s32 count = 0;
4541	s32 j, iteration, sector_size;
4542
4543	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4544
4545	/* Determine HW Sector size: Read BERASE bits of hw flash status
4546	 * register
4547	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4548	 *     consecutive sectors.  The start index for the nth Hw sector
4549	 *     can be calculated as = bank * 4096 + n * 256
4550	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4551	 *     The start index for the nth Hw sector can be calculated
4552	 *     as = bank * 4096
4553	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4554	 *     (ich9 only, otherwise error condition)
4555	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4556	 */
4557	switch (hsfsts.hsf_status.berasesz) {
4558	case 0:
4559		/* Hw sector size 256 */
4560		sector_size = ICH_FLASH_SEG_SIZE_256;
4561		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4562		break;
4563	case 1:
4564		sector_size = ICH_FLASH_SEG_SIZE_4K;
4565		iteration = 1;
4566		break;
4567	case 2:
4568		sector_size = ICH_FLASH_SEG_SIZE_8K;
4569		iteration = 1;
4570		break;
4571	case 3:
4572		sector_size = ICH_FLASH_SEG_SIZE_64K;
4573		iteration = 1;
4574		break;
4575	default:
4576		return -E1000_ERR_NVM;
4577	}
4578
4579	/* Start with the base address, then add the sector offset. */
4580	flash_linear_addr = hw->nvm.flash_base_addr;
4581	flash_linear_addr += (bank) ? flash_bank_size : 0;
4582
4583	for (j = 0; j < iteration; j++) {
4584		do {
4585			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4586
4587			/* Steps */
4588			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4589			if (ret_val)
4590				return ret_val;
4591
4592			/* Write a value 11 (block Erase) in Flash
4593			 * Cycle field in hw flash control
4594			 */
4595			if (hw->mac.type >= e1000_pch_spt)
4596				hsflctl.regval =
4597				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4598			else
4599				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4600
4601			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4602			if (hw->mac.type >= e1000_pch_spt)
4603				ew32flash(ICH_FLASH_HSFSTS,
4604					  hsflctl.regval << 16);
4605			else
4606				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4607
4608			/* Write the last 24 bits of an index within the
4609			 * block into Flash Linear address field in Flash
4610			 * Address.
4611			 */
4612			flash_linear_addr += (j * sector_size);
4613			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4614
4615			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4616			if (!ret_val)
4617				break;
4618
4619			/* Check if FCERR is set to 1.  If 1,
4620			 * clear it and try the whole sequence
4621			 * a few more times else Done
4622			 */
4623			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4624			if (hsfsts.hsf_status.flcerr)
4625				/* repeat for some time before giving up */
4626				continue;
4627			else if (!hsfsts.hsf_status.flcdone)
4628				return ret_val;
4629		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4630	}
4631
4632	return 0;
4633}
4634
4635/**
4636 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4637 *  @hw: pointer to the HW structure
4638 *  @data: Pointer to the LED settings
4639 *
4640 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4641 *  settings is all 0's or F's, set the LED default to a valid LED default
4642 *  setting.
4643 **/
4644static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4645{
4646	s32 ret_val;
4647
4648	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4649	if (ret_val) {
4650		e_dbg("NVM Read Error\n");
4651		return ret_val;
4652	}
4653
4654	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4655		*data = ID_LED_DEFAULT_ICH8LAN;
4656
4657	return 0;
4658}
4659
4660/**
4661 *  e1000_id_led_init_pchlan - store LED configurations
4662 *  @hw: pointer to the HW structure
4663 *
4664 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4665 *  the PHY LED configuration register.
4666 *
4667 *  PCH also does not have an "always on" or "always off" mode which
4668 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4669 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4670 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4671 *  link based on logic in e1000_led_[on|off]_pchlan().
4672 **/
4673static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4674{
4675	struct e1000_mac_info *mac = &hw->mac;
4676	s32 ret_val;
4677	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4678	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4679	u16 data, i, temp, shift;
4680
4681	/* Get default ID LED modes */
4682	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4683	if (ret_val)
4684		return ret_val;
4685
4686	mac->ledctl_default = er32(LEDCTL);
4687	mac->ledctl_mode1 = mac->ledctl_default;
4688	mac->ledctl_mode2 = mac->ledctl_default;
4689
4690	for (i = 0; i < 4; i++) {
4691		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4692		shift = (i * 5);
4693		switch (temp) {
4694		case ID_LED_ON1_DEF2:
4695		case ID_LED_ON1_ON2:
4696		case ID_LED_ON1_OFF2:
4697			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4698			mac->ledctl_mode1 |= (ledctl_on << shift);
4699			break;
4700		case ID_LED_OFF1_DEF2:
4701		case ID_LED_OFF1_ON2:
4702		case ID_LED_OFF1_OFF2:
4703			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4704			mac->ledctl_mode1 |= (ledctl_off << shift);
4705			break;
4706		default:
4707			/* Do nothing */
4708			break;
4709		}
4710		switch (temp) {
4711		case ID_LED_DEF1_ON2:
4712		case ID_LED_ON1_ON2:
4713		case ID_LED_OFF1_ON2:
4714			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4715			mac->ledctl_mode2 |= (ledctl_on << shift);
4716			break;
4717		case ID_LED_DEF1_OFF2:
4718		case ID_LED_ON1_OFF2:
4719		case ID_LED_OFF1_OFF2:
4720			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4721			mac->ledctl_mode2 |= (ledctl_off << shift);
4722			break;
4723		default:
4724			/* Do nothing */
4725			break;
4726		}
4727	}
4728
4729	return 0;
4730}
4731
4732/**
4733 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4734 *  @hw: pointer to the HW structure
4735 *
4736 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4737 *  register, so the bus width is hard coded.
4738 **/
4739static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4740{
4741	struct e1000_bus_info *bus = &hw->bus;
4742	s32 ret_val;
4743
4744	ret_val = e1000e_get_bus_info_pcie(hw);
4745
4746	/* ICH devices are "PCI Express"-ish.  They have
4747	 * a configuration space, but do not contain
4748	 * PCI Express Capability registers, so bus width
4749	 * must be hardcoded.
4750	 */
4751	if (bus->width == e1000_bus_width_unknown)
4752		bus->width = e1000_bus_width_pcie_x1;
4753
4754	return ret_val;
4755}
4756
4757/**
4758 *  e1000_reset_hw_ich8lan - Reset the hardware
4759 *  @hw: pointer to the HW structure
4760 *
4761 *  Does a full reset of the hardware which includes a reset of the PHY and
4762 *  MAC.
4763 **/
4764static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4765{
4766	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4767	u16 kum_cfg;
4768	u32 ctrl, reg;
4769	s32 ret_val;
4770
4771	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4772	 * on the last TLP read/write transaction when MAC is reset.
4773	 */
4774	ret_val = e1000e_disable_pcie_master(hw);
4775	if (ret_val)
4776		e_dbg("PCI-E Master disable polling has failed.\n");
4777
4778	e_dbg("Masking off all interrupts\n");
4779	ew32(IMC, 0xffffffff);
4780
4781	/* Disable the Transmit and Receive units.  Then delay to allow
4782	 * any pending transactions to complete before we hit the MAC
4783	 * with the global reset.
4784	 */
4785	ew32(RCTL, 0);
4786	ew32(TCTL, E1000_TCTL_PSP);
4787	e1e_flush();
4788
4789	usleep_range(10000, 11000);
4790
4791	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4792	if (hw->mac.type == e1000_ich8lan) {
4793		/* Set Tx and Rx buffer allocation to 8k apiece. */
4794		ew32(PBA, E1000_PBA_8K);
4795		/* Set Packet Buffer Size to 16k. */
4796		ew32(PBS, E1000_PBS_16K);
4797	}
4798
4799	if (hw->mac.type == e1000_pchlan) {
4800		/* Save the NVM K1 bit setting */
4801		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4802		if (ret_val)
4803			return ret_val;
4804
4805		if (kum_cfg & E1000_NVM_K1_ENABLE)
4806			dev_spec->nvm_k1_enabled = true;
4807		else
4808			dev_spec->nvm_k1_enabled = false;
4809	}
4810
4811	ctrl = er32(CTRL);
4812
4813	if (!hw->phy.ops.check_reset_block(hw)) {
4814		/* Full-chip reset requires MAC and PHY reset at the same
4815		 * time to make sure the interface between MAC and the
4816		 * external PHY is reset.
4817		 */
4818		ctrl |= E1000_CTRL_PHY_RST;
4819
4820		/* Gate automatic PHY configuration by hardware on
4821		 * non-managed 82579
4822		 */
4823		if ((hw->mac.type == e1000_pch2lan) &&
4824		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4825			e1000_gate_hw_phy_config_ich8lan(hw, true);
4826	}
4827	ret_val = e1000_acquire_swflag_ich8lan(hw);
4828	e_dbg("Issuing a global reset to ich8lan\n");
4829	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4830	/* cannot issue a flush here because it hangs the hardware */
4831	msleep(20);
4832
4833	/* Set Phy Config Counter to 50msec */
4834	if (hw->mac.type == e1000_pch2lan) {
4835		reg = er32(FEXTNVM3);
4836		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4837		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4838		ew32(FEXTNVM3, reg);
4839	}
4840
4841	if (!ret_val)
4842		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4843
4844	if (ctrl & E1000_CTRL_PHY_RST) {
4845		ret_val = hw->phy.ops.get_cfg_done(hw);
4846		if (ret_val)
4847			return ret_val;
4848
4849		ret_val = e1000_post_phy_reset_ich8lan(hw);
4850		if (ret_val)
4851			return ret_val;
4852	}
4853
4854	/* For PCH, this write will make sure that any noise
4855	 * will be detected as a CRC error and be dropped rather than show up
4856	 * as a bad packet to the DMA engine.
4857	 */
4858	if (hw->mac.type == e1000_pchlan)
4859		ew32(CRC_OFFSET, 0x65656565);
4860
4861	ew32(IMC, 0xffffffff);
4862	er32(ICR);
4863
4864	reg = er32(KABGTXD);
4865	reg |= E1000_KABGTXD_BGSQLBIAS;
4866	ew32(KABGTXD, reg);
4867
4868	return 0;
4869}
4870
4871/**
4872 *  e1000_init_hw_ich8lan - Initialize the hardware
4873 *  @hw: pointer to the HW structure
4874 *
4875 *  Prepares the hardware for transmit and receive by doing the following:
4876 *   - initialize hardware bits
4877 *   - initialize LED identification
4878 *   - setup receive address registers
4879 *   - setup flow control
4880 *   - setup transmit descriptors
4881 *   - clear statistics
4882 **/
4883static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4884{
4885	struct e1000_mac_info *mac = &hw->mac;
4886	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4887	s32 ret_val;
4888	u16 i;
4889
4890	e1000_initialize_hw_bits_ich8lan(hw);
4891
4892	/* Initialize identification LED */
4893	ret_val = mac->ops.id_led_init(hw);
4894	/* An error is not fatal and we should not stop init due to this */
4895	if (ret_val)
4896		e_dbg("Error initializing identification LED\n");
4897
4898	/* Setup the receive address. */
4899	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4900
4901	/* Zero out the Multicast HASH table */
4902	e_dbg("Zeroing the MTA\n");
4903	for (i = 0; i < mac->mta_reg_count; i++)
4904		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4905
4906	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4907	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4908	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4909	 */
4910	if (hw->phy.type == e1000_phy_82578) {
4911		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4912		i &= ~BM_WUC_HOST_WU_BIT;
4913		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4914		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4915		if (ret_val)
4916			return ret_val;
4917	}
4918
4919	/* Setup link and flow control */
4920	ret_val = mac->ops.setup_link(hw);
4921
4922	/* Set the transmit descriptor write-back policy for both queues */
4923	txdctl = er32(TXDCTL(0));
4924	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4925		  E1000_TXDCTL_FULL_TX_DESC_WB);
4926	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4927		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4928	ew32(TXDCTL(0), txdctl);
4929	txdctl = er32(TXDCTL(1));
4930	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4931		  E1000_TXDCTL_FULL_TX_DESC_WB);
4932	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4933		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4934	ew32(TXDCTL(1), txdctl);
4935
4936	/* ICH8 has opposite polarity of no_snoop bits.
4937	 * By default, we should use snoop behavior.
4938	 */
4939	if (mac->type == e1000_ich8lan)
4940		snoop = PCIE_ICH8_SNOOP_ALL;
4941	else
4942		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4943	e1000e_set_pcie_no_snoop(hw, snoop);
4944
4945	/* Enable workaround for packet loss issue on TGP PCH
4946	 * Do not gate DMA clock from the modPHY block
4947	 */
4948	if (mac->type >= e1000_pch_tgp) {
4949		fflt_dbg = er32(FFLT_DBG);
4950		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4951		ew32(FFLT_DBG, fflt_dbg);
4952	}
4953
4954	ctrl_ext = er32(CTRL_EXT);
4955	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4956	ew32(CTRL_EXT, ctrl_ext);
4957
4958	/* Clear all of the statistics registers (clear on read).  It is
4959	 * important that we do this after we have tried to establish link
4960	 * because the symbol error count will increment wildly if there
4961	 * is no link.
4962	 */
4963	e1000_clear_hw_cntrs_ich8lan(hw);
4964
4965	return ret_val;
4966}
4967
4968/**
4969 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4970 *  @hw: pointer to the HW structure
4971 *
4972 *  Sets/Clears required hardware bits necessary for correctly setting up the
4973 *  hardware for transmit and receive.
4974 **/
4975static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4976{
4977	u32 reg;
4978
4979	/* Extended Device Control */
4980	reg = er32(CTRL_EXT);
4981	reg |= BIT(22);
4982	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4983	if (hw->mac.type >= e1000_pchlan)
4984		reg |= E1000_CTRL_EXT_PHYPDEN;
4985	ew32(CTRL_EXT, reg);
4986
4987	/* Transmit Descriptor Control 0 */
4988	reg = er32(TXDCTL(0));
4989	reg |= BIT(22);
4990	ew32(TXDCTL(0), reg);
4991
4992	/* Transmit Descriptor Control 1 */
4993	reg = er32(TXDCTL(1));
4994	reg |= BIT(22);
4995	ew32(TXDCTL(1), reg);
4996
4997	/* Transmit Arbitration Control 0 */
4998	reg = er32(TARC(0));
4999	if (hw->mac.type == e1000_ich8lan)
5000		reg |= BIT(28) | BIT(29);
5001	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
5002	ew32(TARC(0), reg);
5003
5004	/* Transmit Arbitration Control 1 */
5005	reg = er32(TARC(1));
5006	if (er32(TCTL) & E1000_TCTL_MULR)
5007		reg &= ~BIT(28);
5008	else
5009		reg |= BIT(28);
5010	reg |= BIT(24) | BIT(26) | BIT(30);
5011	ew32(TARC(1), reg);
5012
5013	/* Device Status */
5014	if (hw->mac.type == e1000_ich8lan) {
5015		reg = er32(STATUS);
5016		reg &= ~BIT(31);
5017		ew32(STATUS, reg);
5018	}
5019
5020	/* work-around descriptor data corruption issue during nfs v2 udp
5021	 * traffic, just disable the nfs filtering capability
5022	 */
5023	reg = er32(RFCTL);
5024	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5025
5026	/* Disable IPv6 extension header parsing because some malformed
5027	 * IPv6 headers can hang the Rx.
5028	 */
5029	if (hw->mac.type == e1000_ich8lan)
5030		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5031	ew32(RFCTL, reg);
5032
5033	/* Enable ECC on Lynxpoint */
5034	if (hw->mac.type >= e1000_pch_lpt) {
5035		reg = er32(PBECCSTS);
5036		reg |= E1000_PBECCSTS_ECC_ENABLE;
5037		ew32(PBECCSTS, reg);
5038
5039		reg = er32(CTRL);
5040		reg |= E1000_CTRL_MEHE;
5041		ew32(CTRL, reg);
5042	}
5043}
5044
5045/**
5046 *  e1000_setup_link_ich8lan - Setup flow control and link settings
5047 *  @hw: pointer to the HW structure
5048 *
5049 *  Determines which flow control settings to use, then configures flow
5050 *  control.  Calls the appropriate media-specific link configuration
5051 *  function.  Assuming the adapter has a valid link partner, a valid link
5052 *  should be established.  Assumes the hardware has previously been reset
5053 *  and the transmitter and receiver are not enabled.
5054 **/
5055static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5056{
5057	s32 ret_val;
5058
5059	if (hw->phy.ops.check_reset_block(hw))
5060		return 0;
5061
5062	/* ICH parts do not have a word in the NVM to determine
5063	 * the default flow control setting, so we explicitly
5064	 * set it to full.
5065	 */
5066	if (hw->fc.requested_mode == e1000_fc_default) {
5067		/* Workaround h/w hang when Tx flow control enabled */
5068		if (hw->mac.type == e1000_pchlan)
5069			hw->fc.requested_mode = e1000_fc_rx_pause;
5070		else
5071			hw->fc.requested_mode = e1000_fc_full;
5072	}
5073
5074	/* Save off the requested flow control mode for use later.  Depending
5075	 * on the link partner's capabilities, we may or may not use this mode.
5076	 */
5077	hw->fc.current_mode = hw->fc.requested_mode;
5078
5079	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5080
5081	/* Continue to configure the copper link. */
5082	ret_val = hw->mac.ops.setup_physical_interface(hw);
5083	if (ret_val)
5084		return ret_val;
5085
5086	ew32(FCTTV, hw->fc.pause_time);
5087	if ((hw->phy.type == e1000_phy_82578) ||
5088	    (hw->phy.type == e1000_phy_82579) ||
5089	    (hw->phy.type == e1000_phy_i217) ||
5090	    (hw->phy.type == e1000_phy_82577)) {
5091		ew32(FCRTV_PCH, hw->fc.refresh_time);
5092
5093		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5094				   hw->fc.pause_time);
5095		if (ret_val)
5096			return ret_val;
5097	}
5098
5099	return e1000e_set_fc_watermarks(hw);
5100}
5101
5102/**
5103 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5104 *  @hw: pointer to the HW structure
5105 *
5106 *  Configures the kumeran interface to the PHY to wait the appropriate time
5107 *  when polling the PHY, then call the generic setup_copper_link to finish
5108 *  configuring the copper link.
5109 **/
5110static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5111{
5112	u32 ctrl;
5113	s32 ret_val;
5114	u16 reg_data;
5115
5116	ctrl = er32(CTRL);
5117	ctrl |= E1000_CTRL_SLU;
5118	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5119	ew32(CTRL, ctrl);
5120
5121	/* Set the mac to wait the maximum time between each iteration
5122	 * and increase the max iterations when polling the phy;
5123	 * this fixes erroneous timeouts at 10Mbps.
5124	 */
5125	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5126	if (ret_val)
5127		return ret_val;
5128	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5129				       &reg_data);
5130	if (ret_val)
5131		return ret_val;
5132	reg_data |= 0x3F;
5133	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5134					reg_data);
5135	if (ret_val)
5136		return ret_val;
5137
5138	switch (hw->phy.type) {
5139	case e1000_phy_igp_3:
5140		ret_val = e1000e_copper_link_setup_igp(hw);
5141		if (ret_val)
5142			return ret_val;
5143		break;
5144	case e1000_phy_bm:
5145	case e1000_phy_82578:
5146		ret_val = e1000e_copper_link_setup_m88(hw);
5147		if (ret_val)
5148			return ret_val;
5149		break;
5150	case e1000_phy_82577:
5151	case e1000_phy_82579:
5152		ret_val = e1000_copper_link_setup_82577(hw);
5153		if (ret_val)
5154			return ret_val;
5155		break;
5156	case e1000_phy_ife:
5157		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5158		if (ret_val)
5159			return ret_val;
5160
5161		reg_data &= ~IFE_PMC_AUTO_MDIX;
5162
5163		switch (hw->phy.mdix) {
5164		case 1:
5165			reg_data &= ~IFE_PMC_FORCE_MDIX;
5166			break;
5167		case 2:
5168			reg_data |= IFE_PMC_FORCE_MDIX;
5169			break;
5170		case 0:
5171		default:
5172			reg_data |= IFE_PMC_AUTO_MDIX;
5173			break;
5174		}
5175		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5176		if (ret_val)
5177			return ret_val;
5178		break;
5179	default:
5180		break;
5181	}
5182
5183	return e1000e_setup_copper_link(hw);
5184}
5185
5186/**
5187 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5188 *  @hw: pointer to the HW structure
5189 *
5190 *  Calls the PHY specific link setup function and then calls the
5191 *  generic setup_copper_link to finish configuring the link for
5192 *  Lynxpoint PCH devices
5193 **/
5194static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5195{
5196	u32 ctrl;
5197	s32 ret_val;
5198
5199	ctrl = er32(CTRL);
5200	ctrl |= E1000_CTRL_SLU;
5201	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5202	ew32(CTRL, ctrl);
5203
5204	ret_val = e1000_copper_link_setup_82577(hw);
5205	if (ret_val)
5206		return ret_val;
5207
5208	return e1000e_setup_copper_link(hw);
5209}
5210
5211/**
5212 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5213 *  @hw: pointer to the HW structure
5214 *  @speed: pointer to store current link speed
5215 *  @duplex: pointer to store the current link duplex
5216 *
5217 *  Calls the generic get_speed_and_duplex to retrieve the current link
5218 *  information and then calls the Kumeran lock loss workaround for links at
5219 *  gigabit speeds.
5220 **/
5221static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5222					  u16 *duplex)
5223{
5224	s32 ret_val;
5225
5226	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5227	if (ret_val)
5228		return ret_val;
5229
5230	if ((hw->mac.type == e1000_ich8lan) &&
5231	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5232		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5233	}
5234
5235	return ret_val;
5236}
5237
5238/**
5239 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5240 *  @hw: pointer to the HW structure
5241 *
5242 *  Work-around for 82566 Kumeran PCS lock loss:
5243 *  On link status change (i.e. PCI reset, speed change) and link is up and
5244 *  speed is gigabit-
5245 *    0) if workaround is optionally disabled do nothing
5246 *    1) wait 1ms for Kumeran link to come up
5247 *    2) check Kumeran Diagnostic register PCS lock loss bit
5248 *    3) if not set the link is locked (all is good), otherwise...
5249 *    4) reset the PHY
5250 *    5) repeat up to 10 times
5251 *  Note: this is only called for IGP3 copper when speed is 1gb.
5252 **/
5253static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5254{
5255	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5256	u32 phy_ctrl;
5257	s32 ret_val;
5258	u16 i, data;
5259	bool link;
5260
5261	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5262		return 0;
5263
5264	/* Make sure link is up before proceeding.  If not just return.
5265	 * Attempting this while link is negotiating fouled up link
5266	 * stability
5267	 */
5268	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5269	if (!link)
5270		return 0;
5271
5272	for (i = 0; i < 10; i++) {
5273		/* read once to clear */
5274		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5275		if (ret_val)
5276			return ret_val;
5277		/* and again to get new status */
5278		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5279		if (ret_val)
5280			return ret_val;
5281
5282		/* check for PCS lock */
5283		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5284			return 0;
5285
5286		/* Issue PHY reset */
5287		e1000_phy_hw_reset(hw);
5288		mdelay(5);
5289	}
5290	/* Disable GigE link negotiation */
5291	phy_ctrl = er32(PHY_CTRL);
5292	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5293		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5294	ew32(PHY_CTRL, phy_ctrl);
5295
5296	/* Call gig speed drop workaround on Gig disable before accessing
5297	 * any PHY registers
5298	 */
5299	e1000e_gig_downshift_workaround_ich8lan(hw);
5300
5301	/* unable to acquire PCS lock */
5302	return -E1000_ERR_PHY;
5303}
5304
5305/**
5306 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5307 *  @hw: pointer to the HW structure
5308 *  @state: boolean value used to set the current Kumeran workaround state
5309 *
5310 *  If ICH8, set the current Kumeran workaround state (enabled - true
5311 *  /disabled - false).
5312 **/
5313void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5314						  bool state)
5315{
5316	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5317
5318	if (hw->mac.type != e1000_ich8lan) {
5319		e_dbg("Workaround applies to ICH8 only.\n");
5320		return;
5321	}
5322
5323	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5324}
5325
5326/**
5327 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5328 *  @hw: pointer to the HW structure
5329 *
5330 *  Workaround for 82566 power-down on D3 entry:
5331 *    1) disable gigabit link
5332 *    2) write VR power-down enable
5333 *    3) read it back
5334 *  Continue if successful, else issue LCD reset and repeat
5335 **/
5336void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5337{
5338	u32 reg;
5339	u16 data;
5340	u8 retry = 0;
5341
5342	if (hw->phy.type != e1000_phy_igp_3)
5343		return;
5344
5345	/* Try the workaround twice (if needed) */
5346	do {
5347		/* Disable link */
5348		reg = er32(PHY_CTRL);
5349		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5350			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5351		ew32(PHY_CTRL, reg);
5352
5353		/* Call gig speed drop workaround on Gig disable before
5354		 * accessing any PHY registers
5355		 */
5356		if (hw->mac.type == e1000_ich8lan)
5357			e1000e_gig_downshift_workaround_ich8lan(hw);
5358
5359		/* Write VR power-down enable */
5360		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5361		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5362		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5363
5364		/* Read it back and test */
5365		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5366		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5367		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5368			break;
5369
5370		/* Issue PHY reset and repeat at most one more time */
5371		reg = er32(CTRL);
5372		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5373		retry++;
5374	} while (retry);
5375}
5376
5377/**
5378 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5379 *  @hw: pointer to the HW structure
5380 *
5381 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5382 *  LPLU, Gig disable, MDIC PHY reset):
5383 *    1) Set Kumeran Near-end loopback
5384 *    2) Clear Kumeran Near-end loopback
5385 *  Should only be called for ICH8[m] devices with any 1G Phy.
5386 **/
5387void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5388{
5389	s32 ret_val;
5390	u16 reg_data;
5391
5392	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5393		return;
5394
5395	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5396				       &reg_data);
5397	if (ret_val)
5398		return;
5399	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5400	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5401					reg_data);
5402	if (ret_val)
5403		return;
5404	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5405	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5406}
5407
5408/**
5409 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5410 *  @hw: pointer to the HW structure
5411 *
5412 *  During S0 to Sx transition, it is possible the link remains at gig
5413 *  instead of negotiating to a lower speed.  Before going to Sx, set
5414 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5415 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5416 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5417 *  needs to be written.
5418 *  Parts that support (and are linked to a partner which support) EEE in
5419 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5420 *  than 10Mbps w/o EEE.
5421 **/
5422void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5423{
5424	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5425	u32 phy_ctrl;
5426	s32 ret_val;
5427
5428	phy_ctrl = er32(PHY_CTRL);
5429	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5430
5431	if (hw->phy.type == e1000_phy_i217) {
5432		u16 phy_reg, device_id = hw->adapter->pdev->device;
5433
5434		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5435		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5436		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5437		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5438		    (hw->mac.type >= e1000_pch_spt)) {
5439			u32 fextnvm6 = er32(FEXTNVM6);
5440
5441			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5442		}
5443
5444		ret_val = hw->phy.ops.acquire(hw);
5445		if (ret_val)
5446			goto out;
5447
5448		if (!dev_spec->eee_disable) {
5449			u16 eee_advert;
5450
5451			ret_val =
5452			    e1000_read_emi_reg_locked(hw,
5453						      I217_EEE_ADVERTISEMENT,
5454						      &eee_advert);
5455			if (ret_val)
5456				goto release;
5457
5458			/* Disable LPLU if both link partners support 100BaseT
5459			 * EEE and 100Full is advertised on both ends of the
5460			 * link, and enable Auto Enable LPI since there will
5461			 * be no driver to enable LPI while in Sx.
5462			 */
5463			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5464			    (dev_spec->eee_lp_ability &
5465			     I82579_EEE_100_SUPPORTED) &&
5466			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5467				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5468					      E1000_PHY_CTRL_NOND0A_LPLU);
5469
5470				/* Set Auto Enable LPI after link up */
5471				e1e_rphy_locked(hw,
5472						I217_LPI_GPIO_CTRL, &phy_reg);
5473				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5474				e1e_wphy_locked(hw,
5475						I217_LPI_GPIO_CTRL, phy_reg);
5476			}
5477		}
5478
5479		/* For i217 Intel Rapid Start Technology support,
5480		 * when the system is going into Sx and no manageability engine
5481		 * is present, the driver must configure proxy to reset only on
5482		 * power good.  LPI (Low Power Idle) state must also reset only
5483		 * on power good, as well as the MTA (Multicast table array).
5484		 * The SMBus release must also be disabled on LCD reset.
5485		 */
5486		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5487			/* Enable proxy to reset only on power good. */
5488			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5489			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5490			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5491
5492			/* Set bit enable LPI (EEE) to reset only on
5493			 * power good.
5494			 */
5495			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5496			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5497			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5498
5499			/* Disable the SMB release on LCD reset. */
5500			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5501			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5502			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5503		}
5504
5505		/* Enable MTA to reset for Intel Rapid Start Technology
5506		 * Support
5507		 */
5508		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5509		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5510		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5511
5512release:
5513		hw->phy.ops.release(hw);
5514	}
5515out:
5516	ew32(PHY_CTRL, phy_ctrl);
5517
5518	if (hw->mac.type == e1000_ich8lan)
5519		e1000e_gig_downshift_workaround_ich8lan(hw);
5520
5521	if (hw->mac.type >= e1000_pchlan) {
5522		e1000_oem_bits_config_ich8lan(hw, false);
5523
5524		/* Reset PHY to activate OEM bits on 82577/8 */
5525		if (hw->mac.type == e1000_pchlan)
5526			e1000e_phy_hw_reset_generic(hw);
5527
5528		ret_val = hw->phy.ops.acquire(hw);
5529		if (ret_val)
5530			return;
5531		e1000_write_smbus_addr(hw);
5532		hw->phy.ops.release(hw);
5533	}
5534}
5535
5536/**
5537 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5538 *  @hw: pointer to the HW structure
5539 *
5540 *  During Sx to S0 transitions on non-managed devices or managed devices
5541 *  on which PHY resets are not blocked, if the PHY registers cannot be
5542 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5543 *  the PHY.
5544 *  On i217, setup Intel Rapid Start Technology.
5545 **/
5546void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5547{
5548	s32 ret_val;
5549
5550	if (hw->mac.type < e1000_pch2lan)
5551		return;
5552
5553	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5554	if (ret_val) {
5555		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5556		return;
5557	}
5558
5559	/* For i217 Intel Rapid Start Technology support when the system
5560	 * is transitioning from Sx and no manageability engine is present
5561	 * configure SMBus to restore on reset, disable proxy, and enable
5562	 * the reset on MTA (Multicast table array).
5563	 */
5564	if (hw->phy.type == e1000_phy_i217) {
5565		u16 phy_reg;
5566
5567		ret_val = hw->phy.ops.acquire(hw);
5568		if (ret_val) {
5569			e_dbg("Failed to setup iRST\n");
5570			return;
5571		}
5572
5573		/* Clear Auto Enable LPI after link up */
5574		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5575		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5576		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5577
5578		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5579			/* Restore clear on SMB if no manageability engine
5580			 * is present
5581			 */
5582			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5583			if (ret_val)
5584				goto release;
5585			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5586			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5587
5588			/* Disable Proxy */
5589			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5590		}
5591		/* Enable reset on MTA */
5592		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5593		if (ret_val)
5594			goto release;
5595		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5596		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5597release:
5598		if (ret_val)
5599			e_dbg("Error %d in resume workarounds\n", ret_val);
5600		hw->phy.ops.release(hw);
5601	}
5602}
5603
5604/**
5605 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5606 *  @hw: pointer to the HW structure
5607 *
5608 *  Return the LED back to the default configuration.
5609 **/
5610static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5611{
5612	if (hw->phy.type == e1000_phy_ife)
5613		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5614
5615	ew32(LEDCTL, hw->mac.ledctl_default);
5616	return 0;
5617}
5618
5619/**
5620 *  e1000_led_on_ich8lan - Turn LEDs on
5621 *  @hw: pointer to the HW structure
5622 *
5623 *  Turn on the LEDs.
5624 **/
5625static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5626{
5627	if (hw->phy.type == e1000_phy_ife)
5628		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5629				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5630
5631	ew32(LEDCTL, hw->mac.ledctl_mode2);
5632	return 0;
5633}
5634
5635/**
5636 *  e1000_led_off_ich8lan - Turn LEDs off
5637 *  @hw: pointer to the HW structure
5638 *
5639 *  Turn off the LEDs.
5640 **/
5641static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5642{
5643	if (hw->phy.type == e1000_phy_ife)
5644		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5645				(IFE_PSCL_PROBE_MODE |
5646				 IFE_PSCL_PROBE_LEDS_OFF));
5647
5648	ew32(LEDCTL, hw->mac.ledctl_mode1);
5649	return 0;
5650}
5651
5652/**
5653 *  e1000_setup_led_pchlan - Configures SW controllable LED
5654 *  @hw: pointer to the HW structure
5655 *
5656 *  This prepares the SW controllable LED for use.
5657 **/
5658static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5659{
5660	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5661}
5662
5663/**
5664 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5665 *  @hw: pointer to the HW structure
5666 *
5667 *  Return the LED back to the default configuration.
5668 **/
5669static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5670{
5671	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5672}
5673
5674/**
5675 *  e1000_led_on_pchlan - Turn LEDs on
5676 *  @hw: pointer to the HW structure
5677 *
5678 *  Turn on the LEDs.
5679 **/
5680static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5681{
5682	u16 data = (u16)hw->mac.ledctl_mode2;
5683	u32 i, led;
5684
5685	/* If no link, then turn LED on by setting the invert bit
5686	 * for each LED that's mode is "link_up" in ledctl_mode2.
5687	 */
5688	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5689		for (i = 0; i < 3; i++) {
5690			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5691			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5692			    E1000_LEDCTL_MODE_LINK_UP)
5693				continue;
5694			if (led & E1000_PHY_LED0_IVRT)
5695				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5696			else
5697				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5698		}
5699	}
5700
5701	return e1e_wphy(hw, HV_LED_CONFIG, data);
5702}
5703
5704/**
5705 *  e1000_led_off_pchlan - Turn LEDs off
5706 *  @hw: pointer to the HW structure
5707 *
5708 *  Turn off the LEDs.
5709 **/
5710static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5711{
5712	u16 data = (u16)hw->mac.ledctl_mode1;
5713	u32 i, led;
5714
5715	/* If no link, then turn LED off by clearing the invert bit
5716	 * for each LED that's mode is "link_up" in ledctl_mode1.
5717	 */
5718	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5719		for (i = 0; i < 3; i++) {
5720			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5721			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5722			    E1000_LEDCTL_MODE_LINK_UP)
5723				continue;
5724			if (led & E1000_PHY_LED0_IVRT)
5725				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5726			else
5727				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5728		}
5729	}
5730
5731	return e1e_wphy(hw, HV_LED_CONFIG, data);
5732}
5733
5734/**
5735 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5736 *  @hw: pointer to the HW structure
5737 *
5738 *  Read appropriate register for the config done bit for completion status
5739 *  and configure the PHY through s/w for EEPROM-less parts.
5740 *
5741 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5742 *  config done bit, so only an error is logged and continues.  If we were
5743 *  to return with error, EEPROM-less silicon would not be able to be reset
5744 *  or change link.
5745 **/
5746static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5747{
5748	s32 ret_val = 0;
5749	u32 bank = 0;
5750	u32 status;
5751
5752	e1000e_get_cfg_done_generic(hw);
5753
5754	/* Wait for indication from h/w that it has completed basic config */
5755	if (hw->mac.type >= e1000_ich10lan) {
5756		e1000_lan_init_done_ich8lan(hw);
5757	} else {
5758		ret_val = e1000e_get_auto_rd_done(hw);
5759		if (ret_val) {
5760			/* When auto config read does not complete, do not
5761			 * return with an error. This can happen in situations
5762			 * where there is no eeprom and prevents getting link.
5763			 */
5764			e_dbg("Auto Read Done did not complete\n");
5765			ret_val = 0;
5766		}
5767	}
5768
5769	/* Clear PHY Reset Asserted bit */
5770	status = er32(STATUS);
5771	if (status & E1000_STATUS_PHYRA)
5772		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5773	else
5774		e_dbg("PHY Reset Asserted not set - needs delay\n");
5775
5776	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5777	if (hw->mac.type <= e1000_ich9lan) {
5778		if (!(er32(EECD) & E1000_EECD_PRES) &&
5779		    (hw->phy.type == e1000_phy_igp_3)) {
5780			e1000e_phy_init_script_igp3(hw);
5781		}
5782	} else {
5783		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5784			/* Maybe we should do a basic PHY config */
5785			e_dbg("EEPROM not present\n");
5786			ret_val = -E1000_ERR_CONFIG;
5787		}
5788	}
5789
5790	return ret_val;
5791}
5792
5793/**
5794 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5795 * @hw: pointer to the HW structure
5796 *
5797 * In the case of a PHY power down to save power, or to turn off link during a
5798 * driver unload, or wake on lan is not enabled, remove the link.
5799 **/
5800static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5801{
5802	/* If the management interface is not enabled, then power down */
5803	if (!(hw->mac.ops.check_mng_mode(hw) ||
5804	      hw->phy.ops.check_reset_block(hw)))
5805		e1000_power_down_phy_copper(hw);
5806}
5807
5808/**
5809 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5810 *  @hw: pointer to the HW structure
5811 *
5812 *  Clears hardware counters specific to the silicon family and calls
5813 *  clear_hw_cntrs_generic to clear all general purpose counters.
5814 **/
5815static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5816{
5817	u16 phy_data;
5818	s32 ret_val;
5819
5820	e1000e_clear_hw_cntrs_base(hw);
5821
5822	er32(ALGNERRC);
5823	er32(RXERRC);
5824	er32(TNCRS);
5825	er32(CEXTERR);
5826	er32(TSCTC);
5827	er32(TSCTFC);
5828
5829	er32(MGTPRC);
5830	er32(MGTPDC);
5831	er32(MGTPTC);
5832
5833	er32(IAC);
5834	er32(ICRXOC);
5835
5836	/* Clear PHY statistics registers */
5837	if ((hw->phy.type == e1000_phy_82578) ||
5838	    (hw->phy.type == e1000_phy_82579) ||
5839	    (hw->phy.type == e1000_phy_i217) ||
5840	    (hw->phy.type == e1000_phy_82577)) {
5841		ret_val = hw->phy.ops.acquire(hw);
5842		if (ret_val)
5843			return;
5844		ret_val = hw->phy.ops.set_page(hw,
5845					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5846		if (ret_val)
5847			goto release;
5848		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5849		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5850		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5851		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5852		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5853		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5854		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5855		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5856		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5857		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5858		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5859		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5860		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5861		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5862release:
5863		hw->phy.ops.release(hw);
5864	}
5865}
5866
5867static const struct e1000_mac_operations ich8_mac_ops = {
5868	/* check_mng_mode dependent on mac type */
5869	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5870	/* cleanup_led dependent on mac type */
5871	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5872	.get_bus_info		= e1000_get_bus_info_ich8lan,
5873	.set_lan_id		= e1000_set_lan_id_single_port,
5874	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5875	/* led_on dependent on mac type */
5876	/* led_off dependent on mac type */
5877	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5878	.reset_hw		= e1000_reset_hw_ich8lan,
5879	.init_hw		= e1000_init_hw_ich8lan,
5880	.setup_link		= e1000_setup_link_ich8lan,
5881	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5882	/* id_led_init dependent on mac type */
5883	.config_collision_dist	= e1000e_config_collision_dist_generic,
5884	.rar_set		= e1000e_rar_set_generic,
5885	.rar_get_count		= e1000e_rar_get_count_generic,
5886};
5887
5888static const struct e1000_phy_operations ich8_phy_ops = {
5889	.acquire		= e1000_acquire_swflag_ich8lan,
5890	.check_reset_block	= e1000_check_reset_block_ich8lan,
5891	.commit			= NULL,
5892	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5893	.get_cable_length	= e1000e_get_cable_length_igp_2,
5894	.read_reg		= e1000e_read_phy_reg_igp,
5895	.release		= e1000_release_swflag_ich8lan,
5896	.reset			= e1000_phy_hw_reset_ich8lan,
5897	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5898	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5899	.write_reg		= e1000e_write_phy_reg_igp,
5900};
5901
5902static const struct e1000_nvm_operations ich8_nvm_ops = {
5903	.acquire		= e1000_acquire_nvm_ich8lan,
5904	.read			= e1000_read_nvm_ich8lan,
5905	.release		= e1000_release_nvm_ich8lan,
5906	.reload			= e1000e_reload_nvm_generic,
5907	.update			= e1000_update_nvm_checksum_ich8lan,
5908	.valid_led_default	= e1000_valid_led_default_ich8lan,
5909	.validate		= e1000_validate_nvm_checksum_ich8lan,
5910	.write			= e1000_write_nvm_ich8lan,
5911};
5912
5913static const struct e1000_nvm_operations spt_nvm_ops = {
5914	.acquire		= e1000_acquire_nvm_ich8lan,
5915	.release		= e1000_release_nvm_ich8lan,
5916	.read			= e1000_read_nvm_spt,
5917	.update			= e1000_update_nvm_checksum_spt,
5918	.reload			= e1000e_reload_nvm_generic,
5919	.valid_led_default	= e1000_valid_led_default_ich8lan,
5920	.validate		= e1000_validate_nvm_checksum_ich8lan,
5921	.write			= e1000_write_nvm_ich8lan,
5922};
5923
5924const struct e1000_info e1000_ich8_info = {
5925	.mac			= e1000_ich8lan,
5926	.flags			= FLAG_HAS_WOL
5927				  | FLAG_IS_ICH
5928				  | FLAG_HAS_CTRLEXT_ON_LOAD
5929				  | FLAG_HAS_AMT
5930				  | FLAG_HAS_FLASH
5931				  | FLAG_APME_IN_WUC,
5932	.pba			= 8,
5933	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5934	.get_variants		= e1000_get_variants_ich8lan,
5935	.mac_ops		= &ich8_mac_ops,
5936	.phy_ops		= &ich8_phy_ops,
5937	.nvm_ops		= &ich8_nvm_ops,
5938};
5939
5940const struct e1000_info e1000_ich9_info = {
5941	.mac			= e1000_ich9lan,
5942	.flags			= FLAG_HAS_JUMBO_FRAMES
5943				  | FLAG_IS_ICH
5944				  | FLAG_HAS_WOL
5945				  | FLAG_HAS_CTRLEXT_ON_LOAD
5946				  | FLAG_HAS_AMT
5947				  | FLAG_HAS_FLASH
5948				  | FLAG_APME_IN_WUC,
5949	.pba			= 18,
5950	.max_hw_frame_size	= DEFAULT_JUMBO,
5951	.get_variants		= e1000_get_variants_ich8lan,
5952	.mac_ops		= &ich8_mac_ops,
5953	.phy_ops		= &ich8_phy_ops,
5954	.nvm_ops		= &ich8_nvm_ops,
5955};
5956
5957const struct e1000_info e1000_ich10_info = {
5958	.mac			= e1000_ich10lan,
5959	.flags			= FLAG_HAS_JUMBO_FRAMES
5960				  | FLAG_IS_ICH
5961				  | FLAG_HAS_WOL
5962				  | FLAG_HAS_CTRLEXT_ON_LOAD
5963				  | FLAG_HAS_AMT
5964				  | FLAG_HAS_FLASH
5965				  | FLAG_APME_IN_WUC,
5966	.pba			= 18,
5967	.max_hw_frame_size	= DEFAULT_JUMBO,
5968	.get_variants		= e1000_get_variants_ich8lan,
5969	.mac_ops		= &ich8_mac_ops,
5970	.phy_ops		= &ich8_phy_ops,
5971	.nvm_ops		= &ich8_nvm_ops,
5972};
5973
5974const struct e1000_info e1000_pch_info = {
5975	.mac			= e1000_pchlan,
5976	.flags			= FLAG_IS_ICH
5977				  | FLAG_HAS_WOL
5978				  | FLAG_HAS_CTRLEXT_ON_LOAD
5979				  | FLAG_HAS_AMT
5980				  | FLAG_HAS_FLASH
5981				  | FLAG_HAS_JUMBO_FRAMES
5982				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5983				  | FLAG_APME_IN_WUC,
5984	.flags2			= FLAG2_HAS_PHY_STATS,
5985	.pba			= 26,
5986	.max_hw_frame_size	= 4096,
5987	.get_variants		= e1000_get_variants_ich8lan,
5988	.mac_ops		= &ich8_mac_ops,
5989	.phy_ops		= &ich8_phy_ops,
5990	.nvm_ops		= &ich8_nvm_ops,
5991};
5992
5993const struct e1000_info e1000_pch2_info = {
5994	.mac			= e1000_pch2lan,
5995	.flags			= FLAG_IS_ICH
5996				  | FLAG_HAS_WOL
5997				  | FLAG_HAS_HW_TIMESTAMP
5998				  | FLAG_HAS_CTRLEXT_ON_LOAD
5999				  | FLAG_HAS_AMT
6000				  | FLAG_HAS_FLASH
6001				  | FLAG_HAS_JUMBO_FRAMES
6002				  | FLAG_APME_IN_WUC,
6003	.flags2			= FLAG2_HAS_PHY_STATS
6004				  | FLAG2_HAS_EEE
6005				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6006	.pba			= 26,
6007	.max_hw_frame_size	= 9022,
6008	.get_variants		= e1000_get_variants_ich8lan,
6009	.mac_ops		= &ich8_mac_ops,
6010	.phy_ops		= &ich8_phy_ops,
6011	.nvm_ops		= &ich8_nvm_ops,
6012};
6013
6014const struct e1000_info e1000_pch_lpt_info = {
6015	.mac			= e1000_pch_lpt,
6016	.flags			= FLAG_IS_ICH
6017				  | FLAG_HAS_WOL
6018				  | FLAG_HAS_HW_TIMESTAMP
6019				  | FLAG_HAS_CTRLEXT_ON_LOAD
6020				  | FLAG_HAS_AMT
6021				  | FLAG_HAS_FLASH
6022				  | FLAG_HAS_JUMBO_FRAMES
6023				  | FLAG_APME_IN_WUC,
6024	.flags2			= FLAG2_HAS_PHY_STATS
6025				  | FLAG2_HAS_EEE
6026				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6027	.pba			= 26,
6028	.max_hw_frame_size	= 9022,
6029	.get_variants		= e1000_get_variants_ich8lan,
6030	.mac_ops		= &ich8_mac_ops,
6031	.phy_ops		= &ich8_phy_ops,
6032	.nvm_ops		= &ich8_nvm_ops,
6033};
6034
6035const struct e1000_info e1000_pch_spt_info = {
6036	.mac			= e1000_pch_spt,
6037	.flags			= FLAG_IS_ICH
6038				  | FLAG_HAS_WOL
6039				  | FLAG_HAS_HW_TIMESTAMP
6040				  | FLAG_HAS_CTRLEXT_ON_LOAD
6041				  | FLAG_HAS_AMT
6042				  | FLAG_HAS_FLASH
6043				  | FLAG_HAS_JUMBO_FRAMES
6044				  | FLAG_APME_IN_WUC,
6045	.flags2			= FLAG2_HAS_PHY_STATS
6046				  | FLAG2_HAS_EEE,
6047	.pba			= 26,
6048	.max_hw_frame_size	= 9022,
6049	.get_variants		= e1000_get_variants_ich8lan,
6050	.mac_ops		= &ich8_mac_ops,
6051	.phy_ops		= &ich8_phy_ops,
6052	.nvm_ops		= &spt_nvm_ops,
6053};
6054
6055const struct e1000_info e1000_pch_cnp_info = {
6056	.mac			= e1000_pch_cnp,
6057	.flags			= FLAG_IS_ICH
6058				  | FLAG_HAS_WOL
6059				  | FLAG_HAS_HW_TIMESTAMP
6060				  | FLAG_HAS_CTRLEXT_ON_LOAD
6061				  | FLAG_HAS_AMT
6062				  | FLAG_HAS_FLASH
6063				  | FLAG_HAS_JUMBO_FRAMES
6064				  | FLAG_APME_IN_WUC,
6065	.flags2			= FLAG2_HAS_PHY_STATS
6066				  | FLAG2_HAS_EEE,
6067	.pba			= 26,
6068	.max_hw_frame_size	= 9022,
6069	.get_variants		= e1000_get_variants_ich8lan,
6070	.mac_ops		= &ich8_mac_ops,
6071	.phy_ops		= &ich8_phy_ops,
6072	.nvm_ops		= &spt_nvm_ops,
6073};
6074
6075const struct e1000_info e1000_pch_tgp_info = {
6076	.mac			= e1000_pch_tgp,
6077	.flags			= FLAG_IS_ICH
6078				  | FLAG_HAS_WOL
6079				  | FLAG_HAS_HW_TIMESTAMP
6080				  | FLAG_HAS_CTRLEXT_ON_LOAD
6081				  | FLAG_HAS_AMT
6082				  | FLAG_HAS_FLASH
6083				  | FLAG_HAS_JUMBO_FRAMES
6084				  | FLAG_APME_IN_WUC,
6085	.flags2			= FLAG2_HAS_PHY_STATS
6086				  | FLAG2_HAS_EEE,
6087	.pba			= 26,
6088	.max_hw_frame_size	= 9022,
6089	.get_variants		= e1000_get_variants_ich8lan,
6090	.mac_ops		= &ich8_mac_ops,
6091	.phy_ops		= &ich8_phy_ops,
6092	.nvm_ops		= &spt_nvm_ops,
6093};
6094
6095const struct e1000_info e1000_pch_adp_info = {
6096	.mac			= e1000_pch_adp,
6097	.flags			= FLAG_IS_ICH
6098				  | FLAG_HAS_WOL
6099				  | FLAG_HAS_HW_TIMESTAMP
6100				  | FLAG_HAS_CTRLEXT_ON_LOAD
6101				  | FLAG_HAS_AMT
6102				  | FLAG_HAS_FLASH
6103				  | FLAG_HAS_JUMBO_FRAMES
6104				  | FLAG_APME_IN_WUC,
6105	.flags2			= FLAG2_HAS_PHY_STATS
6106				  | FLAG2_HAS_EEE,
6107	.pba			= 26,
6108	.max_hw_frame_size	= 9022,
6109	.get_variants		= e1000_get_variants_ich8lan,
6110	.mac_ops		= &ich8_mac_ops,
6111	.phy_ops		= &ich8_phy_ops,
6112	.nvm_ops		= &spt_nvm_ops,
6113};
6114
6115const struct e1000_info e1000_pch_mtp_info = {
6116	.mac			= e1000_pch_mtp,
6117	.flags			= FLAG_IS_ICH
6118				  | FLAG_HAS_WOL
6119				  | FLAG_HAS_HW_TIMESTAMP
6120				  | FLAG_HAS_CTRLEXT_ON_LOAD
6121				  | FLAG_HAS_AMT
6122				  | FLAG_HAS_FLASH
6123				  | FLAG_HAS_JUMBO_FRAMES
6124				  | FLAG_APME_IN_WUC,
6125	.flags2			= FLAG2_HAS_PHY_STATS
6126				  | FLAG2_HAS_EEE,
6127	.pba			= 26,
6128	.max_hw_frame_size	= 9022,
6129	.get_variants		= e1000_get_variants_ich8lan,
6130	.mac_ops		= &ich8_mac_ops,
6131	.phy_ops		= &ich8_phy_ops,
6132	.nvm_ops		= &spt_nvm_ops,
6133};
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
  22
  23/* 82562G 10/100 Network Connection
  24 * 82562G-2 10/100 Network Connection
  25 * 82562GT 10/100 Network Connection
  26 * 82562GT-2 10/100 Network Connection
  27 * 82562V 10/100 Network Connection
  28 * 82562V-2 10/100 Network Connection
  29 * 82566DC-2 Gigabit Network Connection
  30 * 82566DC Gigabit Network Connection
  31 * 82566DM-2 Gigabit Network Connection
  32 * 82566DM Gigabit Network Connection
  33 * 82566MC Gigabit Network Connection
  34 * 82566MM Gigabit Network Connection
  35 * 82567LM Gigabit Network Connection
  36 * 82567LF Gigabit Network Connection
  37 * 82567V Gigabit Network Connection
  38 * 82567LM-2 Gigabit Network Connection
  39 * 82567LF-2 Gigabit Network Connection
  40 * 82567V-2 Gigabit Network Connection
  41 * 82567LF-3 Gigabit Network Connection
  42 * 82567LM-3 Gigabit Network Connection
  43 * 82567LM-4 Gigabit Network Connection
  44 * 82577LM Gigabit Network Connection
  45 * 82577LC Gigabit Network Connection
  46 * 82578DM Gigabit Network Connection
  47 * 82578DC Gigabit Network Connection
  48 * 82579LM Gigabit Network Connection
  49 * 82579V Gigabit Network Connection
  50 * Ethernet Connection I217-LM
  51 * Ethernet Connection I217-V
  52 * Ethernet Connection I218-V
  53 * Ethernet Connection I218-LM
  54 * Ethernet Connection (2) I218-LM
  55 * Ethernet Connection (2) I218-V
  56 * Ethernet Connection (3) I218-LM
  57 * Ethernet Connection (3) I218-V
  58 */
  59
  60#include "e1000.h"
  61
  62/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  63/* Offset 04h HSFSTS */
  64union ich8_hws_flash_status {
  65	struct ich8_hsfsts {
  66		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  67		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  68		u16 dael:1;	/* bit 2 Direct Access error Log */
  69		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  70		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  71		u16 reserved1:2;	/* bit 13:6 Reserved */
  72		u16 reserved2:6;	/* bit 13:6 Reserved */
  73		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  74		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  75	} hsf_status;
  76	u16 regval;
  77};
  78
  79/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  80/* Offset 06h FLCTL */
  81union ich8_hws_flash_ctrl {
  82	struct ich8_hsflctl {
  83		u16 flcgo:1;	/* 0 Flash Cycle Go */
  84		u16 flcycle:2;	/* 2:1 Flash Cycle */
  85		u16 reserved:5;	/* 7:3 Reserved  */
  86		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  87		u16 flockdn:6;	/* 15:10 Reserved */
  88	} hsf_ctrl;
  89	u16 regval;
  90};
  91
  92/* ICH Flash Region Access Permissions */
  93union ich8_hws_flash_regacc {
  94	struct ich8_flracc {
  95		u32 grra:8;	/* 0:7 GbE region Read Access */
  96		u32 grwa:8;	/* 8:15 GbE region Write Access */
  97		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  98		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  99	} hsf_flregacc;
 100	u16 regval;
 101};
 102
 103/* ICH Flash Protected Region */
 104union ich8_flash_protected_range {
 105	struct ich8_pr {
 106		u32 base:13;	/* 0:12 Protected Range Base */
 107		u32 reserved1:2;	/* 13:14 Reserved */
 108		u32 rpe:1;	/* 15 Read Protection Enable */
 109		u32 limit:13;	/* 16:28 Protected Range Limit */
 110		u32 reserved2:2;	/* 29:30 Reserved */
 111		u32 wpe:1;	/* 31 Write Protection Enable */
 112	} range;
 113	u32 regval;
 114};
 115
 116static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 117static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 119static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 120						u32 offset, u8 byte);
 121static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 122					 u8 *data);
 123static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 124					 u16 *data);
 125static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 126					 u8 size, u16 *data);
 127static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 128					   u32 *data);
 129static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 130					  u32 offset, u32 *data);
 131static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 132					    u32 offset, u32 data);
 133static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 134						 u32 offset, u32 dword);
 135static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 136static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 137static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 138static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 139static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 140static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 141static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 142static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 143static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 144static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 145static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 146static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 147static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 148static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 149static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 150static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 151static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 152static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 153static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 154static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 155static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 156static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 157static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 158static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 159
 160static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 161{
 162	return readw(hw->flash_address + reg);
 163}
 164
 165static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 166{
 167	return readl(hw->flash_address + reg);
 168}
 169
 170static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 171{
 172	writew(val, hw->flash_address + reg);
 173}
 174
 175static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 176{
 177	writel(val, hw->flash_address + reg);
 178}
 179
 180#define er16flash(reg)		__er16flash(hw, (reg))
 181#define er32flash(reg)		__er32flash(hw, (reg))
 182#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 183#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 184
 185/**
 186 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 187 *  @hw: pointer to the HW structure
 188 *
 189 *  Test access to the PHY registers by reading the PHY ID registers.  If
 190 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 191 *  otherwise assume the read PHY ID is correct if it is valid.
 192 *
 193 *  Assumes the sw/fw/hw semaphore is already acquired.
 194 **/
 195static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 196{
 197	u16 phy_reg = 0;
 198	u32 phy_id = 0;
 199	s32 ret_val = 0;
 200	u16 retry_count;
 201	u32 mac_reg = 0;
 202
 203	for (retry_count = 0; retry_count < 2; retry_count++) {
 204		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 205		if (ret_val || (phy_reg == 0xFFFF))
 206			continue;
 207		phy_id = (u32)(phy_reg << 16);
 208
 209		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 210		if (ret_val || (phy_reg == 0xFFFF)) {
 211			phy_id = 0;
 212			continue;
 213		}
 214		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 215		break;
 216	}
 217
 218	if (hw->phy.id) {
 219		if (hw->phy.id == phy_id)
 220			goto out;
 221	} else if (phy_id) {
 222		hw->phy.id = phy_id;
 223		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 224		goto out;
 225	}
 226
 227	/* In case the PHY needs to be in mdio slow mode,
 228	 * set slow mode and try to get the PHY id again.
 229	 */
 230	if (hw->mac.type < e1000_pch_lpt) {
 231		hw->phy.ops.release(hw);
 232		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 233		if (!ret_val)
 234			ret_val = e1000e_get_phy_id(hw);
 235		hw->phy.ops.acquire(hw);
 236	}
 237
 238	if (ret_val)
 239		return false;
 240out:
 241	if (hw->mac.type >= e1000_pch_lpt) {
 242		/* Only unforce SMBus if ME is not active */
 243		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 
 
 
 
 
 244			/* Unforce SMBus mode in PHY */
 245			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 246			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 247			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 248
 
 
 249			/* Unforce SMBus mode in MAC */
 250			mac_reg = er32(CTRL_EXT);
 251			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 252			ew32(CTRL_EXT, mac_reg);
 253		}
 254	}
 255
 256	return true;
 257}
 258
 259/**
 260 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 261 *  @hw: pointer to the HW structure
 262 *
 263 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 264 *  used to reset the PHY to a quiescent state when necessary.
 265 **/
 266static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 267{
 268	u32 mac_reg;
 269
 270	/* Set Phy Config Counter to 50msec */
 271	mac_reg = er32(FEXTNVM3);
 272	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 273	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 274	ew32(FEXTNVM3, mac_reg);
 275
 276	/* Toggle LANPHYPC Value bit */
 277	mac_reg = er32(CTRL);
 278	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 279	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 280	ew32(CTRL, mac_reg);
 281	e1e_flush();
 282	usleep_range(10, 20);
 283	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 284	ew32(CTRL, mac_reg);
 285	e1e_flush();
 286
 287	if (hw->mac.type < e1000_pch_lpt) {
 288		msleep(50);
 289	} else {
 290		u16 count = 20;
 291
 292		do {
 293			usleep_range(5000, 10000);
 294		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 295
 296		msleep(30);
 297	}
 298}
 299
 300/**
 301 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 302 *  @hw: pointer to the HW structure
 303 *
 304 *  Workarounds/flow necessary for PHY initialization during driver load
 305 *  and resume paths.
 306 **/
 307static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 308{
 309	struct e1000_adapter *adapter = hw->adapter;
 310	u32 mac_reg, fwsm = er32(FWSM);
 311	s32 ret_val;
 312
 313	/* Gate automatic PHY configuration by hardware on managed and
 314	 * non-managed 82579 and newer adapters.
 315	 */
 316	e1000_gate_hw_phy_config_ich8lan(hw, true);
 317
 318	/* It is not possible to be certain of the current state of ULP
 319	 * so forcibly disable it.
 320	 */
 321	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 322	e1000_disable_ulp_lpt_lp(hw, true);
 
 
 323
 324	ret_val = hw->phy.ops.acquire(hw);
 325	if (ret_val) {
 326		e_dbg("Failed to initialize PHY flow\n");
 327		goto out;
 328	}
 329
 
 
 
 
 
 330	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 331	 * inaccessible and resetting the PHY is not blocked, toggle the
 332	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 333	 */
 334	switch (hw->mac.type) {
 335	case e1000_pch_lpt:
 336	case e1000_pch_spt:
 337	case e1000_pch_cnp:
 
 
 
 
 
 
 338		if (e1000_phy_is_accessible_pchlan(hw))
 339			break;
 340
 341		/* Before toggling LANPHYPC, see if PHY is accessible by
 342		 * forcing MAC to SMBus mode first.
 343		 */
 344		mac_reg = er32(CTRL_EXT);
 345		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 346		ew32(CTRL_EXT, mac_reg);
 347
 348		/* Wait 50 milliseconds for MAC to finish any retries
 349		 * that it might be trying to perform from previous
 350		 * attempts to acknowledge any phy read requests.
 351		 */
 352		msleep(50);
 353
 354		/* fall-through */
 355	case e1000_pch2lan:
 356		if (e1000_phy_is_accessible_pchlan(hw))
 357			break;
 358
 359		/* fall-through */
 360	case e1000_pchlan:
 361		if ((hw->mac.type == e1000_pchlan) &&
 362		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 363			break;
 364
 365		if (hw->phy.ops.check_reset_block(hw)) {
 366			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 367			ret_val = -E1000_ERR_PHY;
 368			break;
 369		}
 370
 371		/* Toggle LANPHYPC Value bit */
 372		e1000_toggle_lanphypc_pch_lpt(hw);
 373		if (hw->mac.type >= e1000_pch_lpt) {
 374			if (e1000_phy_is_accessible_pchlan(hw))
 375				break;
 376
 377			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 378			 * so ensure that the MAC is also out of SMBus mode
 379			 */
 380			mac_reg = er32(CTRL_EXT);
 381			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 382			ew32(CTRL_EXT, mac_reg);
 383
 384			if (e1000_phy_is_accessible_pchlan(hw))
 385				break;
 386
 387			ret_val = -E1000_ERR_PHY;
 388		}
 389		break;
 390	default:
 391		break;
 392	}
 393
 
 
 394	hw->phy.ops.release(hw);
 395	if (!ret_val) {
 396
 397		/* Check to see if able to reset PHY.  Print error if not */
 398		if (hw->phy.ops.check_reset_block(hw)) {
 399			e_err("Reset blocked by ME\n");
 400			goto out;
 401		}
 402
 403		/* Reset the PHY before any access to it.  Doing so, ensures
 404		 * that the PHY is in a known good state before we read/write
 405		 * PHY registers.  The generic reset is sufficient here,
 406		 * because we haven't determined the PHY type yet.
 407		 */
 408		ret_val = e1000e_phy_hw_reset_generic(hw);
 409		if (ret_val)
 410			goto out;
 411
 412		/* On a successful reset, possibly need to wait for the PHY
 413		 * to quiesce to an accessible state before returning control
 414		 * to the calling function.  If the PHY does not quiesce, then
 415		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 416		 *  the PHY is in.
 417		 */
 418		ret_val = hw->phy.ops.check_reset_block(hw);
 419		if (ret_val)
 420			e_err("ME blocked access to PHY after reset\n");
 421	}
 422
 423out:
 424	/* Ungate automatic PHY configuration on non-managed 82579 */
 425	if ((hw->mac.type == e1000_pch2lan) &&
 426	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 427		usleep_range(10000, 20000);
 428		e1000_gate_hw_phy_config_ich8lan(hw, false);
 429	}
 430
 431	return ret_val;
 432}
 433
 434/**
 435 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 436 *  @hw: pointer to the HW structure
 437 *
 438 *  Initialize family-specific PHY parameters and function pointers.
 439 **/
 440static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 441{
 442	struct e1000_phy_info *phy = &hw->phy;
 443	s32 ret_val;
 444
 445	phy->addr = 1;
 446	phy->reset_delay_us = 100;
 447
 448	phy->ops.set_page = e1000_set_page_igp;
 449	phy->ops.read_reg = e1000_read_phy_reg_hv;
 450	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 451	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 452	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 453	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 454	phy->ops.write_reg = e1000_write_phy_reg_hv;
 455	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 456	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 457	phy->ops.power_up = e1000_power_up_phy_copper;
 458	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 459	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 460
 461	phy->id = e1000_phy_unknown;
 462
 
 
 
 
 
 463	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 464	if (ret_val)
 465		return ret_val;
 466
 467	if (phy->id == e1000_phy_unknown)
 468		switch (hw->mac.type) {
 469		default:
 470			ret_val = e1000e_get_phy_id(hw);
 471			if (ret_val)
 472				return ret_val;
 473			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 474				break;
 475			/* fall-through */
 476		case e1000_pch2lan:
 477		case e1000_pch_lpt:
 478		case e1000_pch_spt:
 479		case e1000_pch_cnp:
 
 
 
 
 
 
 480			/* In case the PHY needs to be in mdio slow mode,
 481			 * set slow mode and try to get the PHY id again.
 482			 */
 483			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 484			if (ret_val)
 485				return ret_val;
 486			ret_val = e1000e_get_phy_id(hw);
 487			if (ret_val)
 488				return ret_val;
 489			break;
 490		}
 491	phy->type = e1000e_get_phy_type_from_id(phy->id);
 492
 493	switch (phy->type) {
 494	case e1000_phy_82577:
 495	case e1000_phy_82579:
 496	case e1000_phy_i217:
 497		phy->ops.check_polarity = e1000_check_polarity_82577;
 498		phy->ops.force_speed_duplex =
 499		    e1000_phy_force_speed_duplex_82577;
 500		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 501		phy->ops.get_info = e1000_get_phy_info_82577;
 502		phy->ops.commit = e1000e_phy_sw_reset;
 503		break;
 504	case e1000_phy_82578:
 505		phy->ops.check_polarity = e1000_check_polarity_m88;
 506		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 507		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 508		phy->ops.get_info = e1000e_get_phy_info_m88;
 509		break;
 510	default:
 511		ret_val = -E1000_ERR_PHY;
 512		break;
 513	}
 514
 515	return ret_val;
 516}
 517
 518/**
 519 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 520 *  @hw: pointer to the HW structure
 521 *
 522 *  Initialize family-specific PHY parameters and function pointers.
 523 **/
 524static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 525{
 526	struct e1000_phy_info *phy = &hw->phy;
 527	s32 ret_val;
 528	u16 i = 0;
 529
 530	phy->addr = 1;
 531	phy->reset_delay_us = 100;
 532
 533	phy->ops.power_up = e1000_power_up_phy_copper;
 534	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 535
 536	/* We may need to do this twice - once for IGP and if that fails,
 537	 * we'll set BM func pointers and try again
 538	 */
 539	ret_val = e1000e_determine_phy_address(hw);
 540	if (ret_val) {
 541		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 542		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 543		ret_val = e1000e_determine_phy_address(hw);
 544		if (ret_val) {
 545			e_dbg("Cannot determine PHY addr. Erroring out\n");
 546			return ret_val;
 547		}
 548	}
 549
 550	phy->id = 0;
 551	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 552	       (i++ < 100)) {
 553		usleep_range(1000, 2000);
 554		ret_val = e1000e_get_phy_id(hw);
 555		if (ret_val)
 556			return ret_val;
 557	}
 558
 559	/* Verify phy id */
 560	switch (phy->id) {
 561	case IGP03E1000_E_PHY_ID:
 562		phy->type = e1000_phy_igp_3;
 563		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 564		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 565		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 566		phy->ops.get_info = e1000e_get_phy_info_igp;
 567		phy->ops.check_polarity = e1000_check_polarity_igp;
 568		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 569		break;
 570	case IFE_E_PHY_ID:
 571	case IFE_PLUS_E_PHY_ID:
 572	case IFE_C_E_PHY_ID:
 573		phy->type = e1000_phy_ife;
 574		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 575		phy->ops.get_info = e1000_get_phy_info_ife;
 576		phy->ops.check_polarity = e1000_check_polarity_ife;
 577		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 578		break;
 579	case BME1000_E_PHY_ID:
 580		phy->type = e1000_phy_bm;
 581		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 582		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 583		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 584		phy->ops.commit = e1000e_phy_sw_reset;
 585		phy->ops.get_info = e1000e_get_phy_info_m88;
 586		phy->ops.check_polarity = e1000_check_polarity_m88;
 587		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 588		break;
 589	default:
 590		return -E1000_ERR_PHY;
 591	}
 592
 593	return 0;
 594}
 595
 596/**
 597 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 598 *  @hw: pointer to the HW structure
 599 *
 600 *  Initialize family-specific NVM parameters and function
 601 *  pointers.
 602 **/
 603static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 604{
 605	struct e1000_nvm_info *nvm = &hw->nvm;
 606	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 607	u32 gfpreg, sector_base_addr, sector_end_addr;
 608	u16 i;
 609	u32 nvm_size;
 610
 611	nvm->type = e1000_nvm_flash_sw;
 612
 613	if (hw->mac.type >= e1000_pch_spt) {
 614		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 615		 * STRAP register. This is because in SPT the GbE Flash region
 616		 * is no longer accessed through the flash registers. Instead,
 617		 * the mechanism has changed, and the Flash region access
 618		 * registers are now implemented in GbE memory space.
 619		 */
 620		nvm->flash_base_addr = 0;
 621		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 622		    * NVM_SIZE_MULTIPLIER;
 623		nvm->flash_bank_size = nvm_size / 2;
 624		/* Adjust to word count */
 625		nvm->flash_bank_size /= sizeof(u16);
 626		/* Set the base address for flash register access */
 627		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 628	} else {
 629		/* Can't read flash registers if register set isn't mapped. */
 630		if (!hw->flash_address) {
 631			e_dbg("ERROR: Flash registers not mapped\n");
 632			return -E1000_ERR_CONFIG;
 633		}
 634
 635		gfpreg = er32flash(ICH_FLASH_GFPREG);
 636
 637		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 638		 * Add 1 to sector_end_addr since this sector is included in
 639		 * the overall size.
 640		 */
 641		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 642		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 643
 644		/* flash_base_addr is byte-aligned */
 645		nvm->flash_base_addr = sector_base_addr
 646		    << FLASH_SECTOR_ADDR_SHIFT;
 647
 648		/* find total size of the NVM, then cut in half since the total
 649		 * size represents two separate NVM banks.
 650		 */
 651		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 652					<< FLASH_SECTOR_ADDR_SHIFT);
 653		nvm->flash_bank_size /= 2;
 654		/* Adjust to word count */
 655		nvm->flash_bank_size /= sizeof(u16);
 656	}
 657
 658	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 659
 660	/* Clear shadow ram */
 661	for (i = 0; i < nvm->word_size; i++) {
 662		dev_spec->shadow_ram[i].modified = false;
 663		dev_spec->shadow_ram[i].value = 0xFFFF;
 664	}
 665
 666	return 0;
 667}
 668
 669/**
 670 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 671 *  @hw: pointer to the HW structure
 672 *
 673 *  Initialize family-specific MAC parameters and function
 674 *  pointers.
 675 **/
 676static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 677{
 678	struct e1000_mac_info *mac = &hw->mac;
 679
 680	/* Set media type function pointer */
 681	hw->phy.media_type = e1000_media_type_copper;
 682
 683	/* Set mta register count */
 684	mac->mta_reg_count = 32;
 685	/* Set rar entry count */
 686	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 687	if (mac->type == e1000_ich8lan)
 688		mac->rar_entry_count--;
 689	/* FWSM register */
 690	mac->has_fwsm = true;
 691	/* ARC subsystem not supported */
 692	mac->arc_subsystem_valid = false;
 693	/* Adaptive IFS supported */
 694	mac->adaptive_ifs = true;
 695
 696	/* LED and other operations */
 697	switch (mac->type) {
 698	case e1000_ich8lan:
 699	case e1000_ich9lan:
 700	case e1000_ich10lan:
 701		/* check management mode */
 702		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 703		/* ID LED init */
 704		mac->ops.id_led_init = e1000e_id_led_init_generic;
 705		/* blink LED */
 706		mac->ops.blink_led = e1000e_blink_led_generic;
 707		/* setup LED */
 708		mac->ops.setup_led = e1000e_setup_led_generic;
 709		/* cleanup LED */
 710		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 711		/* turn on/off LED */
 712		mac->ops.led_on = e1000_led_on_ich8lan;
 713		mac->ops.led_off = e1000_led_off_ich8lan;
 714		break;
 715	case e1000_pch2lan:
 716		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 717		mac->ops.rar_set = e1000_rar_set_pch2lan;
 718		/* fall-through */
 719	case e1000_pch_lpt:
 720	case e1000_pch_spt:
 721	case e1000_pch_cnp:
 
 
 
 
 
 
 722	case e1000_pchlan:
 723		/* check management mode */
 724		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 725		/* ID LED init */
 726		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 727		/* setup LED */
 728		mac->ops.setup_led = e1000_setup_led_pchlan;
 729		/* cleanup LED */
 730		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 731		/* turn on/off LED */
 732		mac->ops.led_on = e1000_led_on_pchlan;
 733		mac->ops.led_off = e1000_led_off_pchlan;
 734		break;
 735	default:
 736		break;
 737	}
 738
 739	if (mac->type >= e1000_pch_lpt) {
 740		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 741		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 742		mac->ops.setup_physical_interface =
 743		    e1000_setup_copper_link_pch_lpt;
 744		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 745	}
 746
 747	/* Enable PCS Lock-loss workaround for ICH8 */
 748	if (mac->type == e1000_ich8lan)
 749		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 750
 751	return 0;
 752}
 753
 754/**
 755 *  __e1000_access_emi_reg_locked - Read/write EMI register
 756 *  @hw: pointer to the HW structure
 757 *  @addr: EMI address to program
 758 *  @data: pointer to value to read/write from/to the EMI address
 759 *  @read: boolean flag to indicate read or write
 760 *
 761 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 762 **/
 763static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 764					 u16 *data, bool read)
 765{
 766	s32 ret_val;
 767
 768	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 769	if (ret_val)
 770		return ret_val;
 771
 772	if (read)
 773		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 774	else
 775		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 776
 777	return ret_val;
 778}
 779
 780/**
 781 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 782 *  @hw: pointer to the HW structure
 783 *  @addr: EMI address to program
 784 *  @data: value to be read from the EMI address
 785 *
 786 *  Assumes the SW/FW/HW Semaphore is already acquired.
 787 **/
 788s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 789{
 790	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 791}
 792
 793/**
 794 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 795 *  @hw: pointer to the HW structure
 796 *  @addr: EMI address to program
 797 *  @data: value to be written to the EMI address
 798 *
 799 *  Assumes the SW/FW/HW Semaphore is already acquired.
 800 **/
 801s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 802{
 803	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 804}
 805
 806/**
 807 *  e1000_set_eee_pchlan - Enable/disable EEE support
 808 *  @hw: pointer to the HW structure
 809 *
 810 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 811 *  the link and the EEE capabilities of the link partner.  The LPI Control
 812 *  register bits will remain set only if/when link is up.
 813 *
 814 *  EEE LPI must not be asserted earlier than one second after link is up.
 815 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 816 *  can be link issues with some switches.  Other devices can have EEE LPI
 817 *  enabled immediately upon link up since they have a timer in hardware which
 818 *  prevents LPI from being asserted too early.
 819 **/
 820s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 821{
 822	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 823	s32 ret_val;
 824	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 825
 826	switch (hw->phy.type) {
 827	case e1000_phy_82579:
 828		lpa = I82579_EEE_LP_ABILITY;
 829		pcs_status = I82579_EEE_PCS_STATUS;
 830		adv_addr = I82579_EEE_ADVERTISEMENT;
 831		break;
 832	case e1000_phy_i217:
 833		lpa = I217_EEE_LP_ABILITY;
 834		pcs_status = I217_EEE_PCS_STATUS;
 835		adv_addr = I217_EEE_ADVERTISEMENT;
 836		break;
 837	default:
 838		return 0;
 839	}
 840
 841	ret_val = hw->phy.ops.acquire(hw);
 842	if (ret_val)
 843		return ret_val;
 844
 845	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 846	if (ret_val)
 847		goto release;
 848
 849	/* Clear bits that enable EEE in various speeds */
 850	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 851
 852	/* Enable EEE if not disabled by user */
 853	if (!dev_spec->eee_disable) {
 854		/* Save off link partner's EEE ability */
 855		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 856						    &dev_spec->eee_lp_ability);
 857		if (ret_val)
 858			goto release;
 859
 860		/* Read EEE advertisement */
 861		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 862		if (ret_val)
 863			goto release;
 864
 865		/* Enable EEE only for speeds in which the link partner is
 866		 * EEE capable and for which we advertise EEE.
 867		 */
 868		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 869			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 870
 871		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 872			e1e_rphy_locked(hw, MII_LPA, &data);
 873			if (data & LPA_100FULL)
 874				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 875			else
 876				/* EEE is not supported in 100Half, so ignore
 877				 * partner's EEE in 100 ability if full-duplex
 878				 * is not advertised.
 879				 */
 880				dev_spec->eee_lp_ability &=
 881				    ~I82579_EEE_100_SUPPORTED;
 882		}
 883	}
 884
 885	if (hw->phy.type == e1000_phy_82579) {
 886		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 887						    &data);
 888		if (ret_val)
 889			goto release;
 890
 891		data &= ~I82579_LPI_100_PLL_SHUT;
 892		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 893						     data);
 894	}
 895
 896	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 897	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 898	if (ret_val)
 899		goto release;
 900
 901	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 902release:
 903	hw->phy.ops.release(hw);
 904
 905	return ret_val;
 906}
 907
 908/**
 909 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 910 *  @hw:   pointer to the HW structure
 911 *  @link: link up bool flag
 912 *
 913 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 914 *  preventing further DMA write requests.  Workaround the issue by disabling
 915 *  the de-assertion of the clock request when in 1Gpbs mode.
 916 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 917 *  speeds in order to avoid Tx hangs.
 918 **/
 919static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 920{
 921	u32 fextnvm6 = er32(FEXTNVM6);
 922	u32 status = er32(STATUS);
 923	s32 ret_val = 0;
 924	u16 reg;
 925
 926	if (link && (status & E1000_STATUS_SPEED_1000)) {
 927		ret_val = hw->phy.ops.acquire(hw);
 928		if (ret_val)
 929			return ret_val;
 930
 931		ret_val =
 932		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 933						&reg);
 934		if (ret_val)
 935			goto release;
 936
 937		ret_val =
 938		    e1000e_write_kmrn_reg_locked(hw,
 939						 E1000_KMRNCTRLSTA_K1_CONFIG,
 940						 reg &
 941						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 942		if (ret_val)
 943			goto release;
 944
 945		usleep_range(10, 20);
 946
 947		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 948
 949		ret_val =
 950		    e1000e_write_kmrn_reg_locked(hw,
 951						 E1000_KMRNCTRLSTA_K1_CONFIG,
 952						 reg);
 953release:
 954		hw->phy.ops.release(hw);
 955	} else {
 956		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 957		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 958
 959		if ((hw->phy.revision > 5) || !link ||
 960		    ((status & E1000_STATUS_SPEED_100) &&
 961		     (status & E1000_STATUS_FD)))
 962			goto update_fextnvm6;
 963
 964		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 965		if (ret_val)
 966			return ret_val;
 967
 968		/* Clear link status transmit timeout */
 969		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 970
 971		if (status & E1000_STATUS_SPEED_100) {
 972			/* Set inband Tx timeout to 5x10us for 100Half */
 973			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 974
 975			/* Do not extend the K1 entry latency for 100Half */
 976			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 977		} else {
 978			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 979			reg |= 50 <<
 980			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 981
 982			/* Extend the K1 entry latency for 10 Mbps */
 983			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 984		}
 985
 986		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 987		if (ret_val)
 988			return ret_val;
 989
 990update_fextnvm6:
 991		ew32(FEXTNVM6, fextnvm6);
 992	}
 993
 994	return ret_val;
 995}
 996
 997/**
 998 *  e1000_platform_pm_pch_lpt - Set platform power management values
 999 *  @hw: pointer to the HW structure
1000 *  @link: bool indicating link status
1001 *
1002 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1003 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1004 *  when link is up (which must not exceed the maximum latency supported
1005 *  by the platform), otherwise specify there is no LTR requirement.
1006 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1007 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1008 *  Capability register set, on this device LTR is set by writing the
1009 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1010 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1011 *  message to the PMC.
1012 **/
1013static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1014{
1015	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1016	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
 
 
1017	u16 lat_enc = 0;	/* latency encoded */
1018
1019	if (link) {
1020		u16 speed, duplex, scale = 0;
1021		u16 max_snoop, max_nosnoop;
1022		u16 max_ltr_enc;	/* max LTR latency encoded */
1023		u64 value;
1024		u32 rxa;
1025
1026		if (!hw->adapter->max_frame_size) {
1027			e_dbg("max_frame_size not set.\n");
1028			return -E1000_ERR_CONFIG;
1029		}
1030
1031		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1032		if (!speed) {
1033			e_dbg("Speed not set.\n");
1034			return -E1000_ERR_CONFIG;
1035		}
1036
1037		/* Rx Packet Buffer Allocation size (KB) */
1038		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1039
1040		/* Determine the maximum latency tolerated by the device.
1041		 *
1042		 * Per the PCIe spec, the tolerated latencies are encoded as
1043		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1044		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1045		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1046		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1047		 */
1048		rxa *= 512;
1049		value = (rxa > hw->adapter->max_frame_size) ?
1050			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1051			0;
1052
1053		while (value > PCI_LTR_VALUE_MASK) {
1054			scale++;
1055			value = DIV_ROUND_UP(value, BIT(5));
1056		}
1057		if (scale > E1000_LTRV_SCALE_MAX) {
1058			e_dbg("Invalid LTR latency scale %d\n", scale);
1059			return -E1000_ERR_CONFIG;
1060		}
1061		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1062
1063		/* Determine the maximum latency tolerated by the platform */
1064		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1065				     &max_snoop);
1066		pci_read_config_word(hw->adapter->pdev,
1067				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1068		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1069
1070		if (lat_enc > max_ltr_enc)
 
 
 
 
 
 
 
 
1071			lat_enc = max_ltr_enc;
1072	}
1073
1074	/* Set Snoop and No-Snoop latencies the same */
1075	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1076	ew32(LTRV, reg);
1077
1078	return 0;
1079}
1080
1081/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1083 *  @hw: pointer to the HW structure
1084 *  @to_sx: boolean indicating a system power state transition to Sx
1085 *
1086 *  When link is down, configure ULP mode to significantly reduce the power
1087 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1088 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1089 *  system, configure the ULP mode by software.
1090 */
1091s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1092{
1093	u32 mac_reg;
1094	s32 ret_val = 0;
1095	u16 phy_reg;
1096	u16 oem_reg = 0;
1097
1098	if ((hw->mac.type < e1000_pch_lpt) ||
1099	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1100	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1101	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1102	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1103	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1104		return 0;
1105
1106	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1107		/* Request ME configure ULP mode in the PHY */
1108		mac_reg = er32(H2ME);
1109		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1110		ew32(H2ME, mac_reg);
1111
1112		goto out;
1113	}
1114
1115	if (!to_sx) {
1116		int i = 0;
1117
1118		/* Poll up to 5 seconds for Cable Disconnected indication */
1119		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1120			/* Bail if link is re-acquired */
1121			if (er32(STATUS) & E1000_STATUS_LU)
1122				return -E1000_ERR_PHY;
1123
1124			if (i++ == 100)
1125				break;
1126
1127			msleep(50);
1128		}
1129		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1130		      (er32(FEXT) &
1131		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1132	}
1133
1134	ret_val = hw->phy.ops.acquire(hw);
1135	if (ret_val)
1136		goto out;
1137
1138	/* Force SMBus mode in PHY */
1139	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1140	if (ret_val)
1141		goto release;
1142	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1143	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1144
1145	/* Force SMBus mode in MAC */
1146	mac_reg = er32(CTRL_EXT);
1147	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1148	ew32(CTRL_EXT, mac_reg);
1149
1150	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1151	 * LPLU and disable Gig speed when entering ULP
1152	 */
1153	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1154		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1155						       &oem_reg);
1156		if (ret_val)
1157			goto release;
1158
1159		phy_reg = oem_reg;
1160		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1161
1162		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1163							phy_reg);
1164
1165		if (ret_val)
1166			goto release;
1167	}
1168
1169	/* Set Inband ULP Exit, Reset to SMBus mode and
1170	 * Disable SMBus Release on PERST# in PHY
1171	 */
1172	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1173	if (ret_val)
1174		goto release;
1175	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1176		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1177	if (to_sx) {
1178		if (er32(WUFC) & E1000_WUFC_LNKC)
1179			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1180		else
1181			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1182
1183		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1184		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1185	} else {
1186		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1187		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1188		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1189	}
1190	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1191
1192	/* Set Disable SMBus Release on PERST# in MAC */
1193	mac_reg = er32(FEXTNVM7);
1194	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1195	ew32(FEXTNVM7, mac_reg);
1196
1197	/* Commit ULP changes in PHY by starting auto ULP configuration */
1198	phy_reg |= I218_ULP_CONFIG1_START;
1199	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1200
1201	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1202	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1203		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1204							oem_reg);
1205		if (ret_val)
1206			goto release;
1207	}
1208
1209release:
1210	hw->phy.ops.release(hw);
1211out:
1212	if (ret_val)
1213		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1214	else
1215		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1216
1217	return ret_val;
1218}
1219
1220/**
1221 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1222 *  @hw: pointer to the HW structure
1223 *  @force: boolean indicating whether or not to force disabling ULP
1224 *
1225 *  Un-configure ULP mode when link is up, the system is transitioned from
1226 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1227 *  system, poll for an indication from ME that ULP has been un-configured.
1228 *  If not on an ME enabled system, un-configure the ULP mode by software.
1229 *
1230 *  During nominal operation, this function is called when link is acquired
1231 *  to disable ULP mode (force=false); otherwise, for example when unloading
1232 *  the driver or during Sx->S0 transitions, this is called with force=true
1233 *  to forcibly disable ULP.
1234 */
1235static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1236{
1237	s32 ret_val = 0;
1238	u32 mac_reg;
1239	u16 phy_reg;
1240	int i = 0;
1241
1242	if ((hw->mac.type < e1000_pch_lpt) ||
1243	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1244	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1245	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1246	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1247	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1248		return 0;
1249
1250	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
 
 
 
1251		if (force) {
1252			/* Request ME un-configure ULP mode in the PHY */
1253			mac_reg = er32(H2ME);
1254			mac_reg &= ~E1000_H2ME_ULP;
1255			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1256			ew32(H2ME, mac_reg);
1257		}
1258
1259		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
 
 
 
1260		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1261			if (i++ == 30) {
1262				ret_val = -E1000_ERR_PHY;
1263				goto out;
1264			}
 
 
1265
1266			usleep_range(10000, 20000);
1267		}
1268		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
 
 
 
 
 
1269
1270		if (force) {
1271			mac_reg = er32(H2ME);
1272			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1273			ew32(H2ME, mac_reg);
1274		} else {
1275			/* Clear H2ME.ULP after ME ULP configuration */
1276			mac_reg = er32(H2ME);
1277			mac_reg &= ~E1000_H2ME_ULP;
1278			ew32(H2ME, mac_reg);
1279		}
1280
1281		goto out;
1282	}
1283
1284	ret_val = hw->phy.ops.acquire(hw);
1285	if (ret_val)
1286		goto out;
1287
1288	if (force)
1289		/* Toggle LANPHYPC Value bit */
1290		e1000_toggle_lanphypc_pch_lpt(hw);
1291
 
 
 
 
 
1292	/* Unforce SMBus mode in PHY */
1293	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1294	if (ret_val) {
1295		/* The MAC might be in PCIe mode, so temporarily force to
1296		 * SMBus mode in order to access the PHY.
1297		 */
1298		mac_reg = er32(CTRL_EXT);
1299		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1300		ew32(CTRL_EXT, mac_reg);
1301
1302		msleep(50);
1303
1304		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1305						       &phy_reg);
1306		if (ret_val)
1307			goto release;
1308	}
1309	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1310	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1311
 
 
1312	/* Unforce SMBus mode in MAC */
1313	mac_reg = er32(CTRL_EXT);
1314	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1315	ew32(CTRL_EXT, mac_reg);
1316
1317	/* When ULP mode was previously entered, K1 was disabled by the
1318	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1319	 */
1320	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1321	if (ret_val)
1322		goto release;
1323	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1324	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1325
1326	/* Clear ULP enabled configuration */
1327	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1328	if (ret_val)
1329		goto release;
1330	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1331		     I218_ULP_CONFIG1_STICKY_ULP |
1332		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1333		     I218_ULP_CONFIG1_WOL_HOST |
1334		     I218_ULP_CONFIG1_INBAND_EXIT |
1335		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1336		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1337		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1338	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1339
1340	/* Commit ULP changes by starting auto ULP configuration */
1341	phy_reg |= I218_ULP_CONFIG1_START;
1342	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1343
1344	/* Clear Disable SMBus Release on PERST# in MAC */
1345	mac_reg = er32(FEXTNVM7);
1346	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1347	ew32(FEXTNVM7, mac_reg);
1348
1349release:
1350	hw->phy.ops.release(hw);
1351	if (force) {
1352		e1000_phy_hw_reset(hw);
1353		msleep(50);
1354	}
1355out:
1356	if (ret_val)
1357		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1358	else
1359		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1360
1361	return ret_val;
1362}
1363
1364/**
1365 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1366 *  @hw: pointer to the HW structure
1367 *
1368 *  Checks to see of the link status of the hardware has changed.  If a
1369 *  change in link status has been detected, then we read the PHY registers
1370 *  to get the current speed/duplex if link exists.
1371 **/
1372static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1373{
1374	struct e1000_mac_info *mac = &hw->mac;
1375	s32 ret_val, tipg_reg = 0;
1376	u16 emi_addr, emi_val = 0;
1377	bool link;
1378	u16 phy_reg;
1379
1380	/* We only want to go out to the PHY registers to see if Auto-Neg
1381	 * has completed and/or if our link status has changed.  The
1382	 * get_link_status flag is set upon receiving a Link Status
1383	 * Change or Rx Sequence Error interrupt.
1384	 */
1385	if (!mac->get_link_status)
1386		return 0;
1387	mac->get_link_status = false;
1388
1389	/* First we want to see if the MII Status Register reports
1390	 * link.  If so, then we want to get the current speed/duplex
1391	 * of the PHY.
1392	 */
1393	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1394	if (ret_val)
1395		goto out;
1396
1397	if (hw->mac.type == e1000_pchlan) {
1398		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1399		if (ret_val)
1400			goto out;
1401	}
1402
1403	/* When connected at 10Mbps half-duplex, some parts are excessively
1404	 * aggressive resulting in many collisions. To avoid this, increase
1405	 * the IPG and reduce Rx latency in the PHY.
1406	 */
1407	if ((hw->mac.type >= e1000_pch2lan) && link) {
1408		u16 speed, duplex;
1409
1410		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1411		tipg_reg = er32(TIPG);
1412		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1413
1414		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1415			tipg_reg |= 0xFF;
1416			/* Reduce Rx latency in analog PHY */
1417			emi_val = 0;
1418		} else if (hw->mac.type >= e1000_pch_spt &&
1419			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1420			tipg_reg |= 0xC;
1421			emi_val = 1;
1422		} else {
1423
1424			/* Roll back the default values */
1425			tipg_reg |= 0x08;
1426			emi_val = 1;
1427		}
1428
1429		ew32(TIPG, tipg_reg);
1430
1431		ret_val = hw->phy.ops.acquire(hw);
1432		if (ret_val)
1433			goto out;
1434
1435		if (hw->mac.type == e1000_pch2lan)
1436			emi_addr = I82579_RX_CONFIG;
1437		else
1438			emi_addr = I217_RX_CONFIG;
1439		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1440
1441		if (hw->mac.type >= e1000_pch_lpt) {
1442			u16 phy_reg;
1443
1444			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1445			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1446			if (speed == SPEED_100 || speed == SPEED_10)
1447				phy_reg |= 0x3E8;
1448			else
1449				phy_reg |= 0xFA;
1450			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
 
 
 
 
 
 
 
 
 
 
1451		}
1452		hw->phy.ops.release(hw);
1453
1454		if (ret_val)
1455			goto out;
1456
1457		if (hw->mac.type >= e1000_pch_spt) {
1458			u16 data;
1459			u16 ptr_gap;
1460
1461			if (speed == SPEED_1000) {
1462				ret_val = hw->phy.ops.acquire(hw);
1463				if (ret_val)
1464					goto out;
1465
1466				ret_val = e1e_rphy_locked(hw,
1467							  PHY_REG(776, 20),
1468							  &data);
1469				if (ret_val) {
1470					hw->phy.ops.release(hw);
1471					goto out;
1472				}
1473
1474				ptr_gap = (data & (0x3FF << 2)) >> 2;
1475				if (ptr_gap < 0x18) {
1476					data &= ~(0x3FF << 2);
1477					data |= (0x18 << 2);
1478					ret_val =
1479					    e1e_wphy_locked(hw,
1480							    PHY_REG(776, 20),
1481							    data);
1482				}
1483				hw->phy.ops.release(hw);
1484				if (ret_val)
1485					goto out;
1486			} else {
1487				ret_val = hw->phy.ops.acquire(hw);
1488				if (ret_val)
1489					goto out;
1490
1491				ret_val = e1e_wphy_locked(hw,
1492							  PHY_REG(776, 20),
1493							  0xC023);
1494				hw->phy.ops.release(hw);
1495				if (ret_val)
1496					goto out;
1497
1498			}
1499		}
1500	}
1501
1502	/* I217 Packet Loss issue:
1503	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1504	 * on power up.
1505	 * Set the Beacon Duration for I217 to 8 usec
1506	 */
1507	if (hw->mac.type >= e1000_pch_lpt) {
1508		u32 mac_reg;
1509
1510		mac_reg = er32(FEXTNVM4);
1511		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1512		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1513		ew32(FEXTNVM4, mac_reg);
1514	}
1515
1516	/* Work-around I218 hang issue */
1517	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1518	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1519	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1520	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1521		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1522		if (ret_val)
1523			goto out;
1524	}
1525	if (hw->mac.type >= e1000_pch_lpt) {
1526		/* Set platform power management values for
1527		 * Latency Tolerance Reporting (LTR)
1528		 */
1529		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1530		if (ret_val)
1531			goto out;
1532	}
1533
1534	/* Clear link partner's EEE ability */
1535	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1536
1537	if (hw->mac.type >= e1000_pch_lpt) {
1538		u32 fextnvm6 = er32(FEXTNVM6);
1539
1540		if (hw->mac.type == e1000_pch_spt) {
1541			/* FEXTNVM6 K1-off workaround - for SPT only */
1542			u32 pcieanacfg = er32(PCIEANACFG);
1543
1544			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1545				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1546			else
1547				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1548		}
1549
1550		ew32(FEXTNVM6, fextnvm6);
1551	}
1552
1553	if (!link)
1554		goto out;
1555
1556	switch (hw->mac.type) {
1557	case e1000_pch2lan:
1558		ret_val = e1000_k1_workaround_lv(hw);
1559		if (ret_val)
1560			return ret_val;
1561		/* fall-thru */
1562	case e1000_pchlan:
1563		if (hw->phy.type == e1000_phy_82578) {
1564			ret_val = e1000_link_stall_workaround_hv(hw);
1565			if (ret_val)
1566				return ret_val;
1567		}
1568
1569		/* Workaround for PCHx parts in half-duplex:
1570		 * Set the number of preambles removed from the packet
1571		 * when it is passed from the PHY to the MAC to prevent
1572		 * the MAC from misinterpreting the packet type.
1573		 */
1574		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1575		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1576
1577		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1578			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1579
1580		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1581		break;
1582	default:
1583		break;
1584	}
1585
1586	/* Check if there was DownShift, must be checked
1587	 * immediately after link-up
1588	 */
1589	e1000e_check_downshift(hw);
1590
1591	/* Enable/Disable EEE after link up */
1592	if (hw->phy.type > e1000_phy_82579) {
1593		ret_val = e1000_set_eee_pchlan(hw);
1594		if (ret_val)
1595			return ret_val;
1596	}
1597
1598	/* If we are forcing speed/duplex, then we simply return since
1599	 * we have already determined whether we have link or not.
1600	 */
1601	if (!mac->autoneg)
1602		return -E1000_ERR_CONFIG;
1603
1604	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1605	 * of MAC speed/duplex configuration.  So we only need to
1606	 * configure Collision Distance in the MAC.
1607	 */
1608	mac->ops.config_collision_dist(hw);
1609
1610	/* Configure Flow Control now that Auto-Neg has completed.
1611	 * First, we need to restore the desired flow control
1612	 * settings because we may have had to re-autoneg with a
1613	 * different link partner.
1614	 */
1615	ret_val = e1000e_config_fc_after_link_up(hw);
1616	if (ret_val)
1617		e_dbg("Error configuring flow control\n");
1618
1619	return ret_val;
1620
1621out:
1622	mac->get_link_status = true;
1623	return ret_val;
1624}
1625
1626static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1627{
1628	struct e1000_hw *hw = &adapter->hw;
1629	s32 rc;
1630
1631	rc = e1000_init_mac_params_ich8lan(hw);
1632	if (rc)
1633		return rc;
1634
1635	rc = e1000_init_nvm_params_ich8lan(hw);
1636	if (rc)
1637		return rc;
1638
1639	switch (hw->mac.type) {
1640	case e1000_ich8lan:
1641	case e1000_ich9lan:
1642	case e1000_ich10lan:
1643		rc = e1000_init_phy_params_ich8lan(hw);
1644		break;
1645	case e1000_pchlan:
1646	case e1000_pch2lan:
1647	case e1000_pch_lpt:
1648	case e1000_pch_spt:
1649	case e1000_pch_cnp:
 
 
 
 
 
 
1650		rc = e1000_init_phy_params_pchlan(hw);
1651		break;
1652	default:
1653		break;
1654	}
1655	if (rc)
1656		return rc;
1657
1658	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1659	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1660	 */
1661	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1662	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1663	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1664		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1665		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1666
1667		hw->mac.ops.blink_led = NULL;
1668	}
1669
1670	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1671	    (adapter->hw.phy.type != e1000_phy_ife))
1672		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1673
1674	/* Enable workaround for 82579 w/ ME enabled */
1675	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1676	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1677		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1678
1679	return 0;
1680}
1681
1682static DEFINE_MUTEX(nvm_mutex);
1683
1684/**
1685 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1686 *  @hw: pointer to the HW structure
1687 *
1688 *  Acquires the mutex for performing NVM operations.
1689 **/
1690static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1691{
1692	mutex_lock(&nvm_mutex);
1693
1694	return 0;
1695}
1696
1697/**
1698 *  e1000_release_nvm_ich8lan - Release NVM mutex
1699 *  @hw: pointer to the HW structure
1700 *
1701 *  Releases the mutex used while performing NVM operations.
1702 **/
1703static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1704{
1705	mutex_unlock(&nvm_mutex);
1706}
1707
1708/**
1709 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1710 *  @hw: pointer to the HW structure
1711 *
1712 *  Acquires the software control flag for performing PHY and select
1713 *  MAC CSR accesses.
1714 **/
1715static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1716{
1717	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1718	s32 ret_val = 0;
1719
1720	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1721			     &hw->adapter->state)) {
1722		e_dbg("contention for Phy access\n");
1723		return -E1000_ERR_PHY;
1724	}
1725
1726	while (timeout) {
1727		extcnf_ctrl = er32(EXTCNF_CTRL);
1728		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1729			break;
1730
1731		mdelay(1);
1732		timeout--;
1733	}
1734
1735	if (!timeout) {
1736		e_dbg("SW has already locked the resource.\n");
1737		ret_val = -E1000_ERR_CONFIG;
1738		goto out;
1739	}
1740
1741	timeout = SW_FLAG_TIMEOUT;
1742
1743	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1744	ew32(EXTCNF_CTRL, extcnf_ctrl);
1745
1746	while (timeout) {
1747		extcnf_ctrl = er32(EXTCNF_CTRL);
1748		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1749			break;
1750
1751		mdelay(1);
1752		timeout--;
1753	}
1754
1755	if (!timeout) {
1756		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1757		      er32(FWSM), extcnf_ctrl);
1758		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1759		ew32(EXTCNF_CTRL, extcnf_ctrl);
1760		ret_val = -E1000_ERR_CONFIG;
1761		goto out;
1762	}
1763
1764out:
1765	if (ret_val)
1766		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1767
1768	return ret_val;
1769}
1770
1771/**
1772 *  e1000_release_swflag_ich8lan - Release software control flag
1773 *  @hw: pointer to the HW structure
1774 *
1775 *  Releases the software control flag for performing PHY and select
1776 *  MAC CSR accesses.
1777 **/
1778static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1779{
1780	u32 extcnf_ctrl;
1781
1782	extcnf_ctrl = er32(EXTCNF_CTRL);
1783
1784	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1785		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1786		ew32(EXTCNF_CTRL, extcnf_ctrl);
1787	} else {
1788		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1789	}
1790
1791	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1792}
1793
1794/**
1795 *  e1000_check_mng_mode_ich8lan - Checks management mode
1796 *  @hw: pointer to the HW structure
1797 *
1798 *  This checks if the adapter has any manageability enabled.
1799 *  This is a function pointer entry point only called by read/write
1800 *  routines for the PHY and NVM parts.
1801 **/
1802static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1803{
1804	u32 fwsm;
1805
1806	fwsm = er32(FWSM);
1807	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1808		((fwsm & E1000_FWSM_MODE_MASK) ==
1809		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1810}
1811
1812/**
1813 *  e1000_check_mng_mode_pchlan - Checks management mode
1814 *  @hw: pointer to the HW structure
1815 *
1816 *  This checks if the adapter has iAMT enabled.
1817 *  This is a function pointer entry point only called by read/write
1818 *  routines for the PHY and NVM parts.
1819 **/
1820static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1821{
1822	u32 fwsm;
1823
1824	fwsm = er32(FWSM);
1825	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1826	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1827}
1828
1829/**
1830 *  e1000_rar_set_pch2lan - Set receive address register
1831 *  @hw: pointer to the HW structure
1832 *  @addr: pointer to the receive address
1833 *  @index: receive address array register
1834 *
1835 *  Sets the receive address array register at index to the address passed
1836 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1837 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1838 *  Use SHRA[0-3] in place of those reserved for ME.
1839 **/
1840static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1841{
1842	u32 rar_low, rar_high;
1843
1844	/* HW expects these in little endian so we reverse the byte order
1845	 * from network order (big endian) to little endian
1846	 */
1847	rar_low = ((u32)addr[0] |
1848		   ((u32)addr[1] << 8) |
1849		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1850
1851	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1852
1853	/* If MAC address zero, no need to set the AV bit */
1854	if (rar_low || rar_high)
1855		rar_high |= E1000_RAH_AV;
1856
1857	if (index == 0) {
1858		ew32(RAL(index), rar_low);
1859		e1e_flush();
1860		ew32(RAH(index), rar_high);
1861		e1e_flush();
1862		return 0;
1863	}
1864
1865	/* RAR[1-6] are owned by manageability.  Skip those and program the
1866	 * next address into the SHRA register array.
1867	 */
1868	if (index < (u32)(hw->mac.rar_entry_count)) {
1869		s32 ret_val;
1870
1871		ret_val = e1000_acquire_swflag_ich8lan(hw);
1872		if (ret_val)
1873			goto out;
1874
1875		ew32(SHRAL(index - 1), rar_low);
1876		e1e_flush();
1877		ew32(SHRAH(index - 1), rar_high);
1878		e1e_flush();
1879
1880		e1000_release_swflag_ich8lan(hw);
1881
1882		/* verify the register updates */
1883		if ((er32(SHRAL(index - 1)) == rar_low) &&
1884		    (er32(SHRAH(index - 1)) == rar_high))
1885			return 0;
1886
1887		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1888		      (index - 1), er32(FWSM));
1889	}
1890
1891out:
1892	e_dbg("Failed to write receive address at index %d\n", index);
1893	return -E1000_ERR_CONFIG;
1894}
1895
1896/**
1897 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1898 *  @hw: pointer to the HW structure
1899 *
1900 *  Get the number of available receive registers that the Host can
1901 *  program. SHRA[0-10] are the shared receive address registers
1902 *  that are shared between the Host and manageability engine (ME).
1903 *  ME can reserve any number of addresses and the host needs to be
1904 *  able to tell how many available registers it has access to.
1905 **/
1906static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1907{
1908	u32 wlock_mac;
1909	u32 num_entries;
1910
1911	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1912	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1913
1914	switch (wlock_mac) {
1915	case 0:
1916		/* All SHRA[0..10] and RAR[0] available */
1917		num_entries = hw->mac.rar_entry_count;
1918		break;
1919	case 1:
1920		/* Only RAR[0] available */
1921		num_entries = 1;
1922		break;
1923	default:
1924		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1925		num_entries = wlock_mac + 1;
1926		break;
1927	}
1928
1929	return num_entries;
1930}
1931
1932/**
1933 *  e1000_rar_set_pch_lpt - Set receive address registers
1934 *  @hw: pointer to the HW structure
1935 *  @addr: pointer to the receive address
1936 *  @index: receive address array register
1937 *
1938 *  Sets the receive address register array at index to the address passed
1939 *  in by addr. For LPT, RAR[0] is the base address register that is to
1940 *  contain the MAC address. SHRA[0-10] are the shared receive address
1941 *  registers that are shared between the Host and manageability engine (ME).
1942 **/
1943static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1944{
1945	u32 rar_low, rar_high;
1946	u32 wlock_mac;
1947
1948	/* HW expects these in little endian so we reverse the byte order
1949	 * from network order (big endian) to little endian
1950	 */
1951	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1952		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1953
1954	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1955
1956	/* If MAC address zero, no need to set the AV bit */
1957	if (rar_low || rar_high)
1958		rar_high |= E1000_RAH_AV;
1959
1960	if (index == 0) {
1961		ew32(RAL(index), rar_low);
1962		e1e_flush();
1963		ew32(RAH(index), rar_high);
1964		e1e_flush();
1965		return 0;
1966	}
1967
1968	/* The manageability engine (ME) can lock certain SHRAR registers that
1969	 * it is using - those registers are unavailable for use.
1970	 */
1971	if (index < hw->mac.rar_entry_count) {
1972		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1973		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1974
1975		/* Check if all SHRAR registers are locked */
1976		if (wlock_mac == 1)
1977			goto out;
1978
1979		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1980			s32 ret_val;
1981
1982			ret_val = e1000_acquire_swflag_ich8lan(hw);
1983
1984			if (ret_val)
1985				goto out;
1986
1987			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1988			e1e_flush();
1989			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1990			e1e_flush();
1991
1992			e1000_release_swflag_ich8lan(hw);
1993
1994			/* verify the register updates */
1995			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1996			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1997				return 0;
1998		}
1999	}
2000
2001out:
2002	e_dbg("Failed to write receive address at index %d\n", index);
2003	return -E1000_ERR_CONFIG;
2004}
2005
2006/**
2007 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2008 *  @hw: pointer to the HW structure
2009 *
2010 *  Checks if firmware is blocking the reset of the PHY.
2011 *  This is a function pointer entry point only called by
2012 *  reset routines.
2013 **/
2014static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2015{
2016	bool blocked = false;
2017	int i = 0;
2018
2019	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2020	       (i++ < 30))
2021		usleep_range(10000, 20000);
2022	return blocked ? E1000_BLK_PHY_RESET : 0;
2023}
2024
2025/**
2026 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2027 *  @hw: pointer to the HW structure
2028 *
2029 *  Assumes semaphore already acquired.
2030 *
2031 **/
2032static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2033{
2034	u16 phy_data;
2035	u32 strap = er32(STRAP);
2036	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2037	    E1000_STRAP_SMT_FREQ_SHIFT;
2038	s32 ret_val;
2039
2040	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2041
2042	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2043	if (ret_val)
2044		return ret_val;
2045
2046	phy_data &= ~HV_SMB_ADDR_MASK;
2047	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2048	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2049
2050	if (hw->phy.type == e1000_phy_i217) {
2051		/* Restore SMBus frequency */
2052		if (freq--) {
2053			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2054			phy_data |= (freq & BIT(0)) <<
2055			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2056			phy_data |= (freq & BIT(1)) <<
2057			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2058		} else {
2059			e_dbg("Unsupported SMB frequency in PHY\n");
2060		}
2061	}
2062
2063	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2064}
2065
2066/**
2067 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2068 *  @hw:   pointer to the HW structure
2069 *
2070 *  SW should configure the LCD from the NVM extended configuration region
2071 *  as a workaround for certain parts.
2072 **/
2073static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2074{
2075	struct e1000_phy_info *phy = &hw->phy;
2076	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2077	s32 ret_val = 0;
2078	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2079
2080	/* Initialize the PHY from the NVM on ICH platforms.  This
2081	 * is needed due to an issue where the NVM configuration is
2082	 * not properly autoloaded after power transitions.
2083	 * Therefore, after each PHY reset, we will load the
2084	 * configuration data out of the NVM manually.
2085	 */
2086	switch (hw->mac.type) {
2087	case e1000_ich8lan:
2088		if (phy->type != e1000_phy_igp_3)
2089			return ret_val;
2090
2091		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2092		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2093			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2094			break;
2095		}
2096		/* Fall-thru */
2097	case e1000_pchlan:
2098	case e1000_pch2lan:
2099	case e1000_pch_lpt:
2100	case e1000_pch_spt:
2101	case e1000_pch_cnp:
 
 
 
 
 
 
2102		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2103		break;
2104	default:
2105		return ret_val;
2106	}
2107
2108	ret_val = hw->phy.ops.acquire(hw);
2109	if (ret_val)
2110		return ret_val;
2111
2112	data = er32(FEXTNVM);
2113	if (!(data & sw_cfg_mask))
2114		goto release;
2115
2116	/* Make sure HW does not configure LCD from PHY
2117	 * extended configuration before SW configuration
2118	 */
2119	data = er32(EXTCNF_CTRL);
2120	if ((hw->mac.type < e1000_pch2lan) &&
2121	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2122		goto release;
2123
2124	cnf_size = er32(EXTCNF_SIZE);
2125	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2126	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2127	if (!cnf_size)
2128		goto release;
2129
2130	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2131	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2132
2133	if (((hw->mac.type == e1000_pchlan) &&
2134	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2135	    (hw->mac.type > e1000_pchlan)) {
2136		/* HW configures the SMBus address and LEDs when the
2137		 * OEM and LCD Write Enable bits are set in the NVM.
2138		 * When both NVM bits are cleared, SW will configure
2139		 * them instead.
2140		 */
2141		ret_val = e1000_write_smbus_addr(hw);
2142		if (ret_val)
2143			goto release;
2144
2145		data = er32(LEDCTL);
2146		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2147							(u16)data);
2148		if (ret_val)
2149			goto release;
2150	}
2151
2152	/* Configure LCD from extended configuration region. */
2153
2154	/* cnf_base_addr is in DWORD */
2155	word_addr = (u16)(cnf_base_addr << 1);
2156
2157	for (i = 0; i < cnf_size; i++) {
2158		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2159		if (ret_val)
2160			goto release;
2161
2162		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2163					 1, &reg_addr);
2164		if (ret_val)
2165			goto release;
2166
2167		/* Save off the PHY page for future writes. */
2168		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2169			phy_page = reg_data;
2170			continue;
2171		}
2172
2173		reg_addr &= PHY_REG_MASK;
2174		reg_addr |= phy_page;
2175
2176		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2177		if (ret_val)
2178			goto release;
2179	}
2180
2181release:
2182	hw->phy.ops.release(hw);
2183	return ret_val;
2184}
2185
2186/**
2187 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2188 *  @hw:   pointer to the HW structure
2189 *  @link: link up bool flag
2190 *
2191 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2192 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2193 *  If link is down, the function will restore the default K1 setting located
2194 *  in the NVM.
2195 **/
2196static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2197{
2198	s32 ret_val = 0;
2199	u16 status_reg = 0;
2200	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2201
2202	if (hw->mac.type != e1000_pchlan)
2203		return 0;
2204
2205	/* Wrap the whole flow with the sw flag */
2206	ret_val = hw->phy.ops.acquire(hw);
2207	if (ret_val)
2208		return ret_val;
2209
2210	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2211	if (link) {
2212		if (hw->phy.type == e1000_phy_82578) {
2213			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2214						  &status_reg);
2215			if (ret_val)
2216				goto release;
2217
2218			status_reg &= (BM_CS_STATUS_LINK_UP |
2219				       BM_CS_STATUS_RESOLVED |
2220				       BM_CS_STATUS_SPEED_MASK);
2221
2222			if (status_reg == (BM_CS_STATUS_LINK_UP |
2223					   BM_CS_STATUS_RESOLVED |
2224					   BM_CS_STATUS_SPEED_1000))
2225				k1_enable = false;
2226		}
2227
2228		if (hw->phy.type == e1000_phy_82577) {
2229			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2230			if (ret_val)
2231				goto release;
2232
2233			status_reg &= (HV_M_STATUS_LINK_UP |
2234				       HV_M_STATUS_AUTONEG_COMPLETE |
2235				       HV_M_STATUS_SPEED_MASK);
2236
2237			if (status_reg == (HV_M_STATUS_LINK_UP |
2238					   HV_M_STATUS_AUTONEG_COMPLETE |
2239					   HV_M_STATUS_SPEED_1000))
2240				k1_enable = false;
2241		}
2242
2243		/* Link stall fix for link up */
2244		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2245		if (ret_val)
2246			goto release;
2247
2248	} else {
2249		/* Link stall fix for link down */
2250		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2251		if (ret_val)
2252			goto release;
2253	}
2254
2255	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2256
2257release:
2258	hw->phy.ops.release(hw);
2259
2260	return ret_val;
2261}
2262
2263/**
2264 *  e1000_configure_k1_ich8lan - Configure K1 power state
2265 *  @hw: pointer to the HW structure
2266 *  @enable: K1 state to configure
2267 *
2268 *  Configure the K1 power state based on the provided parameter.
2269 *  Assumes semaphore already acquired.
2270 *
2271 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2272 **/
2273s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2274{
2275	s32 ret_val;
2276	u32 ctrl_reg = 0;
2277	u32 ctrl_ext = 0;
2278	u32 reg = 0;
2279	u16 kmrn_reg = 0;
2280
2281	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2282					      &kmrn_reg);
2283	if (ret_val)
2284		return ret_val;
2285
2286	if (k1_enable)
2287		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2288	else
2289		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2290
2291	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2292					       kmrn_reg);
2293	if (ret_val)
2294		return ret_val;
2295
2296	usleep_range(20, 40);
2297	ctrl_ext = er32(CTRL_EXT);
2298	ctrl_reg = er32(CTRL);
2299
2300	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2301	reg |= E1000_CTRL_FRCSPD;
2302	ew32(CTRL, reg);
2303
2304	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2305	e1e_flush();
2306	usleep_range(20, 40);
2307	ew32(CTRL, ctrl_reg);
2308	ew32(CTRL_EXT, ctrl_ext);
2309	e1e_flush();
2310	usleep_range(20, 40);
2311
2312	return 0;
2313}
2314
2315/**
2316 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2317 *  @hw:       pointer to the HW structure
2318 *  @d0_state: boolean if entering d0 or d3 device state
2319 *
2320 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2321 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2322 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2323 **/
2324static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2325{
2326	s32 ret_val = 0;
2327	u32 mac_reg;
2328	u16 oem_reg;
2329
2330	if (hw->mac.type < e1000_pchlan)
2331		return ret_val;
2332
2333	ret_val = hw->phy.ops.acquire(hw);
2334	if (ret_val)
2335		return ret_val;
2336
2337	if (hw->mac.type == e1000_pchlan) {
2338		mac_reg = er32(EXTCNF_CTRL);
2339		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2340			goto release;
2341	}
2342
2343	mac_reg = er32(FEXTNVM);
2344	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2345		goto release;
2346
2347	mac_reg = er32(PHY_CTRL);
2348
2349	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2350	if (ret_val)
2351		goto release;
2352
2353	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2354
2355	if (d0_state) {
2356		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2357			oem_reg |= HV_OEM_BITS_GBE_DIS;
2358
2359		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2360			oem_reg |= HV_OEM_BITS_LPLU;
2361	} else {
2362		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2363			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2364			oem_reg |= HV_OEM_BITS_GBE_DIS;
2365
2366		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2367			       E1000_PHY_CTRL_NOND0A_LPLU))
2368			oem_reg |= HV_OEM_BITS_LPLU;
2369	}
2370
2371	/* Set Restart auto-neg to activate the bits */
2372	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2373	    !hw->phy.ops.check_reset_block(hw))
2374		oem_reg |= HV_OEM_BITS_RESTART_AN;
2375
2376	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2377
2378release:
2379	hw->phy.ops.release(hw);
2380
2381	return ret_val;
2382}
2383
2384/**
2385 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2386 *  @hw:   pointer to the HW structure
2387 **/
2388static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2389{
2390	s32 ret_val;
2391	u16 data;
2392
2393	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2394	if (ret_val)
2395		return ret_val;
2396
2397	data |= HV_KMRN_MDIO_SLOW;
2398
2399	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2400
2401	return ret_val;
2402}
2403
2404/**
2405 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2406 *  done after every PHY reset.
 
 
2407 **/
2408static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2409{
2410	s32 ret_val = 0;
2411	u16 phy_data;
2412
2413	if (hw->mac.type != e1000_pchlan)
2414		return 0;
2415
2416	/* Set MDIO slow mode before any other MDIO access */
2417	if (hw->phy.type == e1000_phy_82577) {
2418		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2419		if (ret_val)
2420			return ret_val;
2421	}
2422
2423	if (((hw->phy.type == e1000_phy_82577) &&
2424	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2425	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2426		/* Disable generation of early preamble */
2427		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2428		if (ret_val)
2429			return ret_val;
2430
2431		/* Preamble tuning for SSC */
2432		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2433		if (ret_val)
2434			return ret_val;
2435	}
2436
2437	if (hw->phy.type == e1000_phy_82578) {
2438		/* Return registers to default by doing a soft reset then
2439		 * writing 0x3140 to the control register.
2440		 */
2441		if (hw->phy.revision < 2) {
2442			e1000e_phy_sw_reset(hw);
2443			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2444			if (ret_val)
2445				return ret_val;
2446		}
2447	}
2448
2449	/* Select page 0 */
2450	ret_val = hw->phy.ops.acquire(hw);
2451	if (ret_val)
2452		return ret_val;
2453
2454	hw->phy.addr = 1;
2455	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2456	hw->phy.ops.release(hw);
2457	if (ret_val)
2458		return ret_val;
2459
2460	/* Configure the K1 Si workaround during phy reset assuming there is
2461	 * link so that it disables K1 if link is in 1Gbps.
2462	 */
2463	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2464	if (ret_val)
2465		return ret_val;
2466
2467	/* Workaround for link disconnects on a busy hub in half duplex */
2468	ret_val = hw->phy.ops.acquire(hw);
2469	if (ret_val)
2470		return ret_val;
2471	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2472	if (ret_val)
2473		goto release;
2474	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2475	if (ret_val)
2476		goto release;
2477
2478	/* set MSE higher to enable link to stay up when noise is high */
2479	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2480release:
2481	hw->phy.ops.release(hw);
2482
2483	return ret_val;
2484}
2485
2486/**
2487 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2488 *  @hw:   pointer to the HW structure
2489 **/
2490void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2491{
2492	u32 mac_reg;
2493	u16 i, phy_reg = 0;
2494	s32 ret_val;
2495
2496	ret_val = hw->phy.ops.acquire(hw);
2497	if (ret_val)
2498		return;
2499	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2500	if (ret_val)
2501		goto release;
2502
2503	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2504	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2505		mac_reg = er32(RAL(i));
2506		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2507					   (u16)(mac_reg & 0xFFFF));
2508		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2509					   (u16)((mac_reg >> 16) & 0xFFFF));
2510
2511		mac_reg = er32(RAH(i));
2512		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2513					   (u16)(mac_reg & 0xFFFF));
2514		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2515					   (u16)((mac_reg & E1000_RAH_AV)
2516						 >> 16));
2517	}
2518
2519	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2520
2521release:
2522	hw->phy.ops.release(hw);
2523}
2524
2525/**
2526 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2527 *  with 82579 PHY
2528 *  @hw: pointer to the HW structure
2529 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2530 **/
2531s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2532{
2533	s32 ret_val = 0;
2534	u16 phy_reg, data;
2535	u32 mac_reg;
2536	u16 i;
2537
2538	if (hw->mac.type < e1000_pch2lan)
2539		return 0;
2540
2541	/* disable Rx path while enabling/disabling workaround */
2542	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2543	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2544	if (ret_val)
2545		return ret_val;
2546
2547	if (enable) {
2548		/* Write Rx addresses (rar_entry_count for RAL/H, and
2549		 * SHRAL/H) and initial CRC values to the MAC
2550		 */
2551		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2552			u8 mac_addr[ETH_ALEN] = { 0 };
2553			u32 addr_high, addr_low;
2554
2555			addr_high = er32(RAH(i));
2556			if (!(addr_high & E1000_RAH_AV))
2557				continue;
2558			addr_low = er32(RAL(i));
2559			mac_addr[0] = (addr_low & 0xFF);
2560			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2561			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2562			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2563			mac_addr[4] = (addr_high & 0xFF);
2564			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2565
2566			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2567		}
2568
2569		/* Write Rx addresses to the PHY */
2570		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2571
2572		/* Enable jumbo frame workaround in the MAC */
2573		mac_reg = er32(FFLT_DBG);
2574		mac_reg &= ~BIT(14);
2575		mac_reg |= (7 << 15);
2576		ew32(FFLT_DBG, mac_reg);
2577
2578		mac_reg = er32(RCTL);
2579		mac_reg |= E1000_RCTL_SECRC;
2580		ew32(RCTL, mac_reg);
2581
2582		ret_val = e1000e_read_kmrn_reg(hw,
2583					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2584					       &data);
2585		if (ret_val)
2586			return ret_val;
2587		ret_val = e1000e_write_kmrn_reg(hw,
2588						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2589						data | BIT(0));
2590		if (ret_val)
2591			return ret_val;
2592		ret_val = e1000e_read_kmrn_reg(hw,
2593					       E1000_KMRNCTRLSTA_HD_CTRL,
2594					       &data);
2595		if (ret_val)
2596			return ret_val;
2597		data &= ~(0xF << 8);
2598		data |= (0xB << 8);
2599		ret_val = e1000e_write_kmrn_reg(hw,
2600						E1000_KMRNCTRLSTA_HD_CTRL,
2601						data);
2602		if (ret_val)
2603			return ret_val;
2604
2605		/* Enable jumbo frame workaround in the PHY */
2606		e1e_rphy(hw, PHY_REG(769, 23), &data);
2607		data &= ~(0x7F << 5);
2608		data |= (0x37 << 5);
2609		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2610		if (ret_val)
2611			return ret_val;
2612		e1e_rphy(hw, PHY_REG(769, 16), &data);
2613		data &= ~BIT(13);
2614		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2615		if (ret_val)
2616			return ret_val;
2617		e1e_rphy(hw, PHY_REG(776, 20), &data);
2618		data &= ~(0x3FF << 2);
2619		data |= (E1000_TX_PTR_GAP << 2);
2620		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2621		if (ret_val)
2622			return ret_val;
2623		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2624		if (ret_val)
2625			return ret_val;
2626		e1e_rphy(hw, HV_PM_CTRL, &data);
2627		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2628		if (ret_val)
2629			return ret_val;
2630	} else {
2631		/* Write MAC register values back to h/w defaults */
2632		mac_reg = er32(FFLT_DBG);
2633		mac_reg &= ~(0xF << 14);
2634		ew32(FFLT_DBG, mac_reg);
2635
2636		mac_reg = er32(RCTL);
2637		mac_reg &= ~E1000_RCTL_SECRC;
2638		ew32(RCTL, mac_reg);
2639
2640		ret_val = e1000e_read_kmrn_reg(hw,
2641					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2642					       &data);
2643		if (ret_val)
2644			return ret_val;
2645		ret_val = e1000e_write_kmrn_reg(hw,
2646						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2647						data & ~BIT(0));
2648		if (ret_val)
2649			return ret_val;
2650		ret_val = e1000e_read_kmrn_reg(hw,
2651					       E1000_KMRNCTRLSTA_HD_CTRL,
2652					       &data);
2653		if (ret_val)
2654			return ret_val;
2655		data &= ~(0xF << 8);
2656		data |= (0xB << 8);
2657		ret_val = e1000e_write_kmrn_reg(hw,
2658						E1000_KMRNCTRLSTA_HD_CTRL,
2659						data);
2660		if (ret_val)
2661			return ret_val;
2662
2663		/* Write PHY register values back to h/w defaults */
2664		e1e_rphy(hw, PHY_REG(769, 23), &data);
2665		data &= ~(0x7F << 5);
2666		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2667		if (ret_val)
2668			return ret_val;
2669		e1e_rphy(hw, PHY_REG(769, 16), &data);
2670		data |= BIT(13);
2671		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2672		if (ret_val)
2673			return ret_val;
2674		e1e_rphy(hw, PHY_REG(776, 20), &data);
2675		data &= ~(0x3FF << 2);
2676		data |= (0x8 << 2);
2677		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2678		if (ret_val)
2679			return ret_val;
2680		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2681		if (ret_val)
2682			return ret_val;
2683		e1e_rphy(hw, HV_PM_CTRL, &data);
2684		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2685		if (ret_val)
2686			return ret_val;
2687	}
2688
2689	/* re-enable Rx path after enabling/disabling workaround */
2690	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2691}
2692
2693/**
2694 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2695 *  done after every PHY reset.
 
 
2696 **/
2697static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2698{
2699	s32 ret_val = 0;
2700
2701	if (hw->mac.type != e1000_pch2lan)
2702		return 0;
2703
2704	/* Set MDIO slow mode before any other MDIO access */
2705	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2706	if (ret_val)
2707		return ret_val;
2708
2709	ret_val = hw->phy.ops.acquire(hw);
2710	if (ret_val)
2711		return ret_val;
2712	/* set MSE higher to enable link to stay up when noise is high */
2713	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2714	if (ret_val)
2715		goto release;
2716	/* drop link after 5 times MSE threshold was reached */
2717	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2718release:
2719	hw->phy.ops.release(hw);
2720
2721	return ret_val;
2722}
2723
2724/**
2725 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2726 *  @hw:   pointer to the HW structure
2727 *
2728 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2729 *  Disable K1 in 1000Mbps and 100Mbps
2730 **/
2731static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2732{
2733	s32 ret_val = 0;
2734	u16 status_reg = 0;
2735
2736	if (hw->mac.type != e1000_pch2lan)
2737		return 0;
2738
2739	/* Set K1 beacon duration based on 10Mbs speed */
2740	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2741	if (ret_val)
2742		return ret_val;
2743
2744	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2745	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2746		if (status_reg &
2747		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2748			u16 pm_phy_reg;
2749
2750			/* LV 1G/100 Packet drop issue wa  */
2751			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2752			if (ret_val)
2753				return ret_val;
2754			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2755			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2756			if (ret_val)
2757				return ret_val;
2758		} else {
2759			u32 mac_reg;
2760
2761			mac_reg = er32(FEXTNVM4);
2762			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2763			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2764			ew32(FEXTNVM4, mac_reg);
2765		}
2766	}
2767
2768	return ret_val;
2769}
2770
2771/**
2772 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2773 *  @hw:   pointer to the HW structure
2774 *  @gate: boolean set to true to gate, false to ungate
2775 *
2776 *  Gate/ungate the automatic PHY configuration via hardware; perform
2777 *  the configuration via software instead.
2778 **/
2779static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2780{
2781	u32 extcnf_ctrl;
2782
2783	if (hw->mac.type < e1000_pch2lan)
2784		return;
2785
2786	extcnf_ctrl = er32(EXTCNF_CTRL);
2787
2788	if (gate)
2789		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2790	else
2791		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2792
2793	ew32(EXTCNF_CTRL, extcnf_ctrl);
2794}
2795
2796/**
2797 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2798 *  @hw: pointer to the HW structure
2799 *
2800 *  Check the appropriate indication the MAC has finished configuring the
2801 *  PHY after a software reset.
2802 **/
2803static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2804{
2805	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2806
2807	/* Wait for basic configuration completes before proceeding */
2808	do {
2809		data = er32(STATUS);
2810		data &= E1000_STATUS_LAN_INIT_DONE;
2811		usleep_range(100, 200);
2812	} while ((!data) && --loop);
2813
2814	/* If basic configuration is incomplete before the above loop
2815	 * count reaches 0, loading the configuration from NVM will
2816	 * leave the PHY in a bad state possibly resulting in no link.
2817	 */
2818	if (loop == 0)
2819		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2820
2821	/* Clear the Init Done bit for the next init event */
2822	data = er32(STATUS);
2823	data &= ~E1000_STATUS_LAN_INIT_DONE;
2824	ew32(STATUS, data);
2825}
2826
2827/**
2828 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2829 *  @hw: pointer to the HW structure
2830 **/
2831static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2832{
2833	s32 ret_val = 0;
2834	u16 reg;
2835
2836	if (hw->phy.ops.check_reset_block(hw))
2837		return 0;
2838
2839	/* Allow time for h/w to get to quiescent state after reset */
2840	usleep_range(10000, 20000);
2841
2842	/* Perform any necessary post-reset workarounds */
2843	switch (hw->mac.type) {
2844	case e1000_pchlan:
2845		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2846		if (ret_val)
2847			return ret_val;
2848		break;
2849	case e1000_pch2lan:
2850		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2851		if (ret_val)
2852			return ret_val;
2853		break;
2854	default:
2855		break;
2856	}
2857
2858	/* Clear the host wakeup bit after lcd reset */
2859	if (hw->mac.type >= e1000_pchlan) {
2860		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2861		reg &= ~BM_WUC_HOST_WU_BIT;
2862		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2863	}
2864
2865	/* Configure the LCD with the extended configuration region in NVM */
2866	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2867	if (ret_val)
2868		return ret_val;
2869
2870	/* Configure the LCD with the OEM bits in NVM */
2871	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2872
2873	if (hw->mac.type == e1000_pch2lan) {
2874		/* Ungate automatic PHY configuration on non-managed 82579 */
2875		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2876			usleep_range(10000, 20000);
2877			e1000_gate_hw_phy_config_ich8lan(hw, false);
2878		}
2879
2880		/* Set EEE LPI Update Timer to 200usec */
2881		ret_val = hw->phy.ops.acquire(hw);
2882		if (ret_val)
2883			return ret_val;
2884		ret_val = e1000_write_emi_reg_locked(hw,
2885						     I82579_LPI_UPDATE_TIMER,
2886						     0x1387);
2887		hw->phy.ops.release(hw);
2888	}
2889
2890	return ret_val;
2891}
2892
2893/**
2894 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2895 *  @hw: pointer to the HW structure
2896 *
2897 *  Resets the PHY
2898 *  This is a function pointer entry point called by drivers
2899 *  or other shared routines.
2900 **/
2901static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2902{
2903	s32 ret_val = 0;
2904
2905	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2906	if ((hw->mac.type == e1000_pch2lan) &&
2907	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2908		e1000_gate_hw_phy_config_ich8lan(hw, true);
2909
2910	ret_val = e1000e_phy_hw_reset_generic(hw);
2911	if (ret_val)
2912		return ret_val;
2913
2914	return e1000_post_phy_reset_ich8lan(hw);
2915}
2916
2917/**
2918 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2919 *  @hw: pointer to the HW structure
2920 *  @active: true to enable LPLU, false to disable
2921 *
2922 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2923 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2924 *  the phy speed. This function will manually set the LPLU bit and restart
2925 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2926 *  since it configures the same bit.
2927 **/
2928static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2929{
2930	s32 ret_val;
2931	u16 oem_reg;
2932
2933	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2934	if (ret_val)
2935		return ret_val;
2936
2937	if (active)
2938		oem_reg |= HV_OEM_BITS_LPLU;
2939	else
2940		oem_reg &= ~HV_OEM_BITS_LPLU;
2941
2942	if (!hw->phy.ops.check_reset_block(hw))
2943		oem_reg |= HV_OEM_BITS_RESTART_AN;
2944
2945	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2946}
2947
2948/**
2949 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2950 *  @hw: pointer to the HW structure
2951 *  @active: true to enable LPLU, false to disable
2952 *
2953 *  Sets the LPLU D0 state according to the active flag.  When
2954 *  activating LPLU this function also disables smart speed
2955 *  and vice versa.  LPLU will not be activated unless the
2956 *  device autonegotiation advertisement meets standards of
2957 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2958 *  This is a function pointer entry point only called by
2959 *  PHY setup routines.
2960 **/
2961static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2962{
2963	struct e1000_phy_info *phy = &hw->phy;
2964	u32 phy_ctrl;
2965	s32 ret_val = 0;
2966	u16 data;
2967
2968	if (phy->type == e1000_phy_ife)
2969		return 0;
2970
2971	phy_ctrl = er32(PHY_CTRL);
2972
2973	if (active) {
2974		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2975		ew32(PHY_CTRL, phy_ctrl);
2976
2977		if (phy->type != e1000_phy_igp_3)
2978			return 0;
2979
2980		/* Call gig speed drop workaround on LPLU before accessing
2981		 * any PHY registers
2982		 */
2983		if (hw->mac.type == e1000_ich8lan)
2984			e1000e_gig_downshift_workaround_ich8lan(hw);
2985
2986		/* When LPLU is enabled, we should disable SmartSpeed */
2987		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2988		if (ret_val)
2989			return ret_val;
2990		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2991		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2992		if (ret_val)
2993			return ret_val;
2994	} else {
2995		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2996		ew32(PHY_CTRL, phy_ctrl);
2997
2998		if (phy->type != e1000_phy_igp_3)
2999			return 0;
3000
3001		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3002		 * during Dx states where the power conservation is most
3003		 * important.  During driver activity we should enable
3004		 * SmartSpeed, so performance is maintained.
3005		 */
3006		if (phy->smart_speed == e1000_smart_speed_on) {
3007			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3008					   &data);
3009			if (ret_val)
3010				return ret_val;
3011
3012			data |= IGP01E1000_PSCFR_SMART_SPEED;
3013			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3014					   data);
3015			if (ret_val)
3016				return ret_val;
3017		} else if (phy->smart_speed == e1000_smart_speed_off) {
3018			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3019					   &data);
3020			if (ret_val)
3021				return ret_val;
3022
3023			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3024			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3025					   data);
3026			if (ret_val)
3027				return ret_val;
3028		}
3029	}
3030
3031	return 0;
3032}
3033
3034/**
3035 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3036 *  @hw: pointer to the HW structure
3037 *  @active: true to enable LPLU, false to disable
3038 *
3039 *  Sets the LPLU D3 state according to the active flag.  When
3040 *  activating LPLU this function also disables smart speed
3041 *  and vice versa.  LPLU will not be activated unless the
3042 *  device autonegotiation advertisement meets standards of
3043 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3044 *  This is a function pointer entry point only called by
3045 *  PHY setup routines.
3046 **/
3047static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3048{
3049	struct e1000_phy_info *phy = &hw->phy;
3050	u32 phy_ctrl;
3051	s32 ret_val = 0;
3052	u16 data;
3053
3054	phy_ctrl = er32(PHY_CTRL);
3055
3056	if (!active) {
3057		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3058		ew32(PHY_CTRL, phy_ctrl);
3059
3060		if (phy->type != e1000_phy_igp_3)
3061			return 0;
3062
3063		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3064		 * during Dx states where the power conservation is most
3065		 * important.  During driver activity we should enable
3066		 * SmartSpeed, so performance is maintained.
3067		 */
3068		if (phy->smart_speed == e1000_smart_speed_on) {
3069			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3070					   &data);
3071			if (ret_val)
3072				return ret_val;
3073
3074			data |= IGP01E1000_PSCFR_SMART_SPEED;
3075			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3076					   data);
3077			if (ret_val)
3078				return ret_val;
3079		} else if (phy->smart_speed == e1000_smart_speed_off) {
3080			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3081					   &data);
3082			if (ret_val)
3083				return ret_val;
3084
3085			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3086			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3087					   data);
3088			if (ret_val)
3089				return ret_val;
3090		}
3091	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3092		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3093		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3094		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3095		ew32(PHY_CTRL, phy_ctrl);
3096
3097		if (phy->type != e1000_phy_igp_3)
3098			return 0;
3099
3100		/* Call gig speed drop workaround on LPLU before accessing
3101		 * any PHY registers
3102		 */
3103		if (hw->mac.type == e1000_ich8lan)
3104			e1000e_gig_downshift_workaround_ich8lan(hw);
3105
3106		/* When LPLU is enabled, we should disable SmartSpeed */
3107		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3108		if (ret_val)
3109			return ret_val;
3110
3111		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3112		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3113	}
3114
3115	return ret_val;
3116}
3117
3118/**
3119 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3120 *  @hw: pointer to the HW structure
3121 *  @bank:  pointer to the variable that returns the active bank
3122 *
3123 *  Reads signature byte from the NVM using the flash access registers.
3124 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3125 **/
3126static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3127{
3128	u32 eecd;
3129	struct e1000_nvm_info *nvm = &hw->nvm;
3130	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3131	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3132	u32 nvm_dword = 0;
3133	u8 sig_byte = 0;
3134	s32 ret_val;
3135
3136	switch (hw->mac.type) {
3137	case e1000_pch_spt:
3138	case e1000_pch_cnp:
 
 
 
 
 
 
3139		bank1_offset = nvm->flash_bank_size;
3140		act_offset = E1000_ICH_NVM_SIG_WORD;
3141
3142		/* set bank to 0 in case flash read fails */
3143		*bank = 0;
3144
3145		/* Check bank 0 */
3146		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3147							 &nvm_dword);
3148		if (ret_val)
3149			return ret_val;
3150		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3151		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3152		    E1000_ICH_NVM_SIG_VALUE) {
3153			*bank = 0;
3154			return 0;
3155		}
3156
3157		/* Check bank 1 */
3158		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3159							 bank1_offset,
3160							 &nvm_dword);
3161		if (ret_val)
3162			return ret_val;
3163		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3164		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3165		    E1000_ICH_NVM_SIG_VALUE) {
3166			*bank = 1;
3167			return 0;
3168		}
3169
3170		e_dbg("ERROR: No valid NVM bank present\n");
3171		return -E1000_ERR_NVM;
3172	case e1000_ich8lan:
3173	case e1000_ich9lan:
3174		eecd = er32(EECD);
3175		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3176		    E1000_EECD_SEC1VAL_VALID_MASK) {
3177			if (eecd & E1000_EECD_SEC1VAL)
3178				*bank = 1;
3179			else
3180				*bank = 0;
3181
3182			return 0;
3183		}
3184		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3185		/* fall-thru */
3186	default:
3187		/* set bank to 0 in case flash read fails */
3188		*bank = 0;
3189
3190		/* Check bank 0 */
3191		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3192							&sig_byte);
3193		if (ret_val)
3194			return ret_val;
3195		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3196		    E1000_ICH_NVM_SIG_VALUE) {
3197			*bank = 0;
3198			return 0;
3199		}
3200
3201		/* Check bank 1 */
3202		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3203							bank1_offset,
3204							&sig_byte);
3205		if (ret_val)
3206			return ret_val;
3207		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3208		    E1000_ICH_NVM_SIG_VALUE) {
3209			*bank = 1;
3210			return 0;
3211		}
3212
3213		e_dbg("ERROR: No valid NVM bank present\n");
3214		return -E1000_ERR_NVM;
3215	}
3216}
3217
3218/**
3219 *  e1000_read_nvm_spt - NVM access for SPT
3220 *  @hw: pointer to the HW structure
3221 *  @offset: The offset (in bytes) of the word(s) to read.
3222 *  @words: Size of data to read in words.
3223 *  @data: pointer to the word(s) to read at offset.
3224 *
3225 *  Reads a word(s) from the NVM
3226 **/
3227static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3228			      u16 *data)
3229{
3230	struct e1000_nvm_info *nvm = &hw->nvm;
3231	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3232	u32 act_offset;
3233	s32 ret_val = 0;
3234	u32 bank = 0;
3235	u32 dword = 0;
3236	u16 offset_to_read;
3237	u16 i;
3238
3239	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3240	    (words == 0)) {
3241		e_dbg("nvm parameter(s) out of bounds\n");
3242		ret_val = -E1000_ERR_NVM;
3243		goto out;
3244	}
3245
3246	nvm->ops.acquire(hw);
3247
3248	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3249	if (ret_val) {
3250		e_dbg("Could not detect valid bank, assuming bank 0\n");
3251		bank = 0;
3252	}
3253
3254	act_offset = (bank) ? nvm->flash_bank_size : 0;
3255	act_offset += offset;
3256
3257	ret_val = 0;
3258
3259	for (i = 0; i < words; i += 2) {
3260		if (words - i == 1) {
3261			if (dev_spec->shadow_ram[offset + i].modified) {
3262				data[i] =
3263				    dev_spec->shadow_ram[offset + i].value;
3264			} else {
3265				offset_to_read = act_offset + i -
3266				    ((act_offset + i) % 2);
3267				ret_val =
3268				  e1000_read_flash_dword_ich8lan(hw,
3269								 offset_to_read,
3270								 &dword);
3271				if (ret_val)
3272					break;
3273				if ((act_offset + i) % 2 == 0)
3274					data[i] = (u16)(dword & 0xFFFF);
3275				else
3276					data[i] = (u16)((dword >> 16) & 0xFFFF);
3277			}
3278		} else {
3279			offset_to_read = act_offset + i;
3280			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3281			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3282				ret_val =
3283				  e1000_read_flash_dword_ich8lan(hw,
3284								 offset_to_read,
3285								 &dword);
3286				if (ret_val)
3287					break;
3288			}
3289			if (dev_spec->shadow_ram[offset + i].modified)
3290				data[i] =
3291				    dev_spec->shadow_ram[offset + i].value;
3292			else
3293				data[i] = (u16)(dword & 0xFFFF);
3294			if (dev_spec->shadow_ram[offset + i].modified)
3295				data[i + 1] =
3296				    dev_spec->shadow_ram[offset + i + 1].value;
3297			else
3298				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3299		}
3300	}
3301
3302	nvm->ops.release(hw);
3303
3304out:
3305	if (ret_val)
3306		e_dbg("NVM read error: %d\n", ret_val);
3307
3308	return ret_val;
3309}
3310
3311/**
3312 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3313 *  @hw: pointer to the HW structure
3314 *  @offset: The offset (in bytes) of the word(s) to read.
3315 *  @words: Size of data to read in words
3316 *  @data: Pointer to the word(s) to read at offset.
3317 *
3318 *  Reads a word(s) from the NVM using the flash access registers.
3319 **/
3320static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3321				  u16 *data)
3322{
3323	struct e1000_nvm_info *nvm = &hw->nvm;
3324	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3325	u32 act_offset;
3326	s32 ret_val = 0;
3327	u32 bank = 0;
3328	u16 i, word;
3329
3330	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3331	    (words == 0)) {
3332		e_dbg("nvm parameter(s) out of bounds\n");
3333		ret_val = -E1000_ERR_NVM;
3334		goto out;
3335	}
3336
3337	nvm->ops.acquire(hw);
3338
3339	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3340	if (ret_val) {
3341		e_dbg("Could not detect valid bank, assuming bank 0\n");
3342		bank = 0;
3343	}
3344
3345	act_offset = (bank) ? nvm->flash_bank_size : 0;
3346	act_offset += offset;
3347
3348	ret_val = 0;
3349	for (i = 0; i < words; i++) {
3350		if (dev_spec->shadow_ram[offset + i].modified) {
3351			data[i] = dev_spec->shadow_ram[offset + i].value;
3352		} else {
3353			ret_val = e1000_read_flash_word_ich8lan(hw,
3354								act_offset + i,
3355								&word);
3356			if (ret_val)
3357				break;
3358			data[i] = word;
3359		}
3360	}
3361
3362	nvm->ops.release(hw);
3363
3364out:
3365	if (ret_val)
3366		e_dbg("NVM read error: %d\n", ret_val);
3367
3368	return ret_val;
3369}
3370
3371/**
3372 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3373 *  @hw: pointer to the HW structure
3374 *
3375 *  This function does initial flash setup so that a new read/write/erase cycle
3376 *  can be started.
3377 **/
3378static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3379{
3380	union ich8_hws_flash_status hsfsts;
3381	s32 ret_val = -E1000_ERR_NVM;
3382
3383	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3384
3385	/* Check if the flash descriptor is valid */
3386	if (!hsfsts.hsf_status.fldesvalid) {
3387		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3388		return -E1000_ERR_NVM;
3389	}
3390
3391	/* Clear FCERR and DAEL in hw status by writing 1 */
3392	hsfsts.hsf_status.flcerr = 1;
3393	hsfsts.hsf_status.dael = 1;
3394	if (hw->mac.type >= e1000_pch_spt)
3395		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3396	else
3397		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3398
3399	/* Either we should have a hardware SPI cycle in progress
3400	 * bit to check against, in order to start a new cycle or
3401	 * FDONE bit should be changed in the hardware so that it
3402	 * is 1 after hardware reset, which can then be used as an
3403	 * indication whether a cycle is in progress or has been
3404	 * completed.
3405	 */
3406
3407	if (!hsfsts.hsf_status.flcinprog) {
3408		/* There is no cycle running at present,
3409		 * so we can start a cycle.
3410		 * Begin by setting Flash Cycle Done.
3411		 */
3412		hsfsts.hsf_status.flcdone = 1;
3413		if (hw->mac.type >= e1000_pch_spt)
3414			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3415		else
3416			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3417		ret_val = 0;
3418	} else {
3419		s32 i;
3420
3421		/* Otherwise poll for sometime so the current
3422		 * cycle has a chance to end before giving up.
3423		 */
3424		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3425			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3426			if (!hsfsts.hsf_status.flcinprog) {
3427				ret_val = 0;
3428				break;
3429			}
3430			udelay(1);
3431		}
3432		if (!ret_val) {
3433			/* Successful in waiting for previous cycle to timeout,
3434			 * now set the Flash Cycle Done.
3435			 */
3436			hsfsts.hsf_status.flcdone = 1;
3437			if (hw->mac.type >= e1000_pch_spt)
3438				ew32flash(ICH_FLASH_HSFSTS,
3439					  hsfsts.regval & 0xFFFF);
3440			else
3441				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3442		} else {
3443			e_dbg("Flash controller busy, cannot get access\n");
3444		}
3445	}
3446
3447	return ret_val;
3448}
3449
3450/**
3451 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3452 *  @hw: pointer to the HW structure
3453 *  @timeout: maximum time to wait for completion
3454 *
3455 *  This function starts a flash cycle and waits for its completion.
3456 **/
3457static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3458{
3459	union ich8_hws_flash_ctrl hsflctl;
3460	union ich8_hws_flash_status hsfsts;
3461	u32 i = 0;
3462
3463	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3464	if (hw->mac.type >= e1000_pch_spt)
3465		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3466	else
3467		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3468	hsflctl.hsf_ctrl.flcgo = 1;
3469
3470	if (hw->mac.type >= e1000_pch_spt)
3471		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3472	else
3473		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3474
3475	/* wait till FDONE bit is set to 1 */
3476	do {
3477		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3478		if (hsfsts.hsf_status.flcdone)
3479			break;
3480		udelay(1);
3481	} while (i++ < timeout);
3482
3483	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3484		return 0;
3485
3486	return -E1000_ERR_NVM;
3487}
3488
3489/**
3490 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3491 *  @hw: pointer to the HW structure
3492 *  @offset: offset to data location
3493 *  @data: pointer to the location for storing the data
3494 *
3495 *  Reads the flash dword at offset into data.  Offset is converted
3496 *  to bytes before read.
3497 **/
3498static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3499					  u32 *data)
3500{
3501	/* Must convert word offset into bytes. */
3502	offset <<= 1;
3503	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3504}
3505
3506/**
3507 *  e1000_read_flash_word_ich8lan - Read word from flash
3508 *  @hw: pointer to the HW structure
3509 *  @offset: offset to data location
3510 *  @data: pointer to the location for storing the data
3511 *
3512 *  Reads the flash word at offset into data.  Offset is converted
3513 *  to bytes before read.
3514 **/
3515static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3516					 u16 *data)
3517{
3518	/* Must convert offset into bytes. */
3519	offset <<= 1;
3520
3521	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3522}
3523
3524/**
3525 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3526 *  @hw: pointer to the HW structure
3527 *  @offset: The offset of the byte to read.
3528 *  @data: Pointer to a byte to store the value read.
3529 *
3530 *  Reads a single byte from the NVM using the flash access registers.
3531 **/
3532static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3533					 u8 *data)
3534{
3535	s32 ret_val;
3536	u16 word = 0;
3537
3538	/* In SPT, only 32 bits access is supported,
3539	 * so this function should not be called.
3540	 */
3541	if (hw->mac.type >= e1000_pch_spt)
3542		return -E1000_ERR_NVM;
3543	else
3544		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3545
3546	if (ret_val)
3547		return ret_val;
3548
3549	*data = (u8)word;
3550
3551	return 0;
3552}
3553
3554/**
3555 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3556 *  @hw: pointer to the HW structure
3557 *  @offset: The offset (in bytes) of the byte or word to read.
3558 *  @size: Size of data to read, 1=byte 2=word
3559 *  @data: Pointer to the word to store the value read.
3560 *
3561 *  Reads a byte or word from the NVM using the flash access registers.
3562 **/
3563static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3564					 u8 size, u16 *data)
3565{
3566	union ich8_hws_flash_status hsfsts;
3567	union ich8_hws_flash_ctrl hsflctl;
3568	u32 flash_linear_addr;
3569	u32 flash_data = 0;
3570	s32 ret_val = -E1000_ERR_NVM;
3571	u8 count = 0;
3572
3573	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3574		return -E1000_ERR_NVM;
3575
3576	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3577			     hw->nvm.flash_base_addr);
3578
3579	do {
3580		udelay(1);
3581		/* Steps */
3582		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3583		if (ret_val)
3584			break;
3585
3586		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3587		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3588		hsflctl.hsf_ctrl.fldbcount = size - 1;
3589		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3590		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3591
3592		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3593
3594		ret_val =
3595		    e1000_flash_cycle_ich8lan(hw,
3596					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3597
3598		/* Check if FCERR is set to 1, if set to 1, clear it
3599		 * and try the whole sequence a few more times, else
3600		 * read in (shift in) the Flash Data0, the order is
3601		 * least significant byte first msb to lsb
3602		 */
3603		if (!ret_val) {
3604			flash_data = er32flash(ICH_FLASH_FDATA0);
3605			if (size == 1)
3606				*data = (u8)(flash_data & 0x000000FF);
3607			else if (size == 2)
3608				*data = (u16)(flash_data & 0x0000FFFF);
3609			break;
3610		} else {
3611			/* If we've gotten here, then things are probably
3612			 * completely hosed, but if the error condition is
3613			 * detected, it won't hurt to give it another try...
3614			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3615			 */
3616			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3617			if (hsfsts.hsf_status.flcerr) {
3618				/* Repeat for some time before giving up. */
3619				continue;
3620			} else if (!hsfsts.hsf_status.flcdone) {
3621				e_dbg("Timeout error - flash cycle did not complete.\n");
3622				break;
3623			}
3624		}
3625	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3626
3627	return ret_val;
3628}
3629
3630/**
3631 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3632 *  @hw: pointer to the HW structure
3633 *  @offset: The offset (in bytes) of the dword to read.
3634 *  @data: Pointer to the dword to store the value read.
3635 *
3636 *  Reads a byte or word from the NVM using the flash access registers.
3637 **/
3638
3639static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3640					   u32 *data)
3641{
3642	union ich8_hws_flash_status hsfsts;
3643	union ich8_hws_flash_ctrl hsflctl;
3644	u32 flash_linear_addr;
3645	s32 ret_val = -E1000_ERR_NVM;
3646	u8 count = 0;
3647
3648	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3649		return -E1000_ERR_NVM;
3650	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3651			     hw->nvm.flash_base_addr);
3652
3653	do {
3654		udelay(1);
3655		/* Steps */
3656		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3657		if (ret_val)
3658			break;
3659		/* In SPT, This register is in Lan memory space, not flash.
3660		 * Therefore, only 32 bit access is supported
3661		 */
3662		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3663
3664		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3665		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3666		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3667		/* In SPT, This register is in Lan memory space, not flash.
3668		 * Therefore, only 32 bit access is supported
3669		 */
3670		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3671		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3672
3673		ret_val =
3674		   e1000_flash_cycle_ich8lan(hw,
3675					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3676
3677		/* Check if FCERR is set to 1, if set to 1, clear it
3678		 * and try the whole sequence a few more times, else
3679		 * read in (shift in) the Flash Data0, the order is
3680		 * least significant byte first msb to lsb
3681		 */
3682		if (!ret_val) {
3683			*data = er32flash(ICH_FLASH_FDATA0);
3684			break;
3685		} else {
3686			/* If we've gotten here, then things are probably
3687			 * completely hosed, but if the error condition is
3688			 * detected, it won't hurt to give it another try...
3689			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3690			 */
3691			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3692			if (hsfsts.hsf_status.flcerr) {
3693				/* Repeat for some time before giving up. */
3694				continue;
3695			} else if (!hsfsts.hsf_status.flcdone) {
3696				e_dbg("Timeout error - flash cycle did not complete.\n");
3697				break;
3698			}
3699		}
3700	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3701
3702	return ret_val;
3703}
3704
3705/**
3706 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3707 *  @hw: pointer to the HW structure
3708 *  @offset: The offset (in bytes) of the word(s) to write.
3709 *  @words: Size of data to write in words
3710 *  @data: Pointer to the word(s) to write at offset.
3711 *
3712 *  Writes a byte or word to the NVM using the flash access registers.
3713 **/
3714static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3715				   u16 *data)
3716{
3717	struct e1000_nvm_info *nvm = &hw->nvm;
3718	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3719	u16 i;
3720
3721	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3722	    (words == 0)) {
3723		e_dbg("nvm parameter(s) out of bounds\n");
3724		return -E1000_ERR_NVM;
3725	}
3726
3727	nvm->ops.acquire(hw);
3728
3729	for (i = 0; i < words; i++) {
3730		dev_spec->shadow_ram[offset + i].modified = true;
3731		dev_spec->shadow_ram[offset + i].value = data[i];
3732	}
3733
3734	nvm->ops.release(hw);
3735
3736	return 0;
3737}
3738
3739/**
3740 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3741 *  @hw: pointer to the HW structure
3742 *
3743 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3744 *  which writes the checksum to the shadow ram.  The changes in the shadow
3745 *  ram are then committed to the EEPROM by processing each bank at a time
3746 *  checking for the modified bit and writing only the pending changes.
3747 *  After a successful commit, the shadow ram is cleared and is ready for
3748 *  future writes.
3749 **/
3750static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3751{
3752	struct e1000_nvm_info *nvm = &hw->nvm;
3753	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3754	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3755	s32 ret_val;
3756	u32 dword = 0;
3757
3758	ret_val = e1000e_update_nvm_checksum_generic(hw);
3759	if (ret_val)
3760		goto out;
3761
3762	if (nvm->type != e1000_nvm_flash_sw)
3763		goto out;
3764
3765	nvm->ops.acquire(hw);
3766
3767	/* We're writing to the opposite bank so if we're on bank 1,
3768	 * write to bank 0 etc.  We also need to erase the segment that
3769	 * is going to be written
3770	 */
3771	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3772	if (ret_val) {
3773		e_dbg("Could not detect valid bank, assuming bank 0\n");
3774		bank = 0;
3775	}
3776
3777	if (bank == 0) {
3778		new_bank_offset = nvm->flash_bank_size;
3779		old_bank_offset = 0;
3780		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3781		if (ret_val)
3782			goto release;
3783	} else {
3784		old_bank_offset = nvm->flash_bank_size;
3785		new_bank_offset = 0;
3786		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3787		if (ret_val)
3788			goto release;
3789	}
3790	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3791		/* Determine whether to write the value stored
3792		 * in the other NVM bank or a modified value stored
3793		 * in the shadow RAM
3794		 */
3795		ret_val = e1000_read_flash_dword_ich8lan(hw,
3796							 i + old_bank_offset,
3797							 &dword);
3798
3799		if (dev_spec->shadow_ram[i].modified) {
3800			dword &= 0xffff0000;
3801			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3802		}
3803		if (dev_spec->shadow_ram[i + 1].modified) {
3804			dword &= 0x0000ffff;
3805			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3806				  << 16);
3807		}
3808		if (ret_val)
3809			break;
3810
3811		/* If the word is 0x13, then make sure the signature bits
3812		 * (15:14) are 11b until the commit has completed.
3813		 * This will allow us to write 10b which indicates the
3814		 * signature is valid.  We want to do this after the write
3815		 * has completed so that we don't mark the segment valid
3816		 * while the write is still in progress
3817		 */
3818		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3819			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3820
3821		/* Convert offset to bytes. */
3822		act_offset = (i + new_bank_offset) << 1;
3823
3824		usleep_range(100, 200);
3825
3826		/* Write the data to the new bank. Offset in words */
3827		act_offset = i + new_bank_offset;
3828		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3829								dword);
3830		if (ret_val)
3831			break;
3832	}
3833
3834	/* Don't bother writing the segment valid bits if sector
3835	 * programming failed.
3836	 */
3837	if (ret_val) {
3838		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3839		e_dbg("Flash commit failed.\n");
3840		goto release;
3841	}
3842
3843	/* Finally validate the new segment by setting bit 15:14
3844	 * to 10b in word 0x13 , this can be done without an
3845	 * erase as well since these bits are 11 to start with
3846	 * and we need to change bit 14 to 0b
3847	 */
3848	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3849
3850	/*offset in words but we read dword */
3851	--act_offset;
3852	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3853
3854	if (ret_val)
3855		goto release;
3856
3857	dword &= 0xBFFFFFFF;
3858	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3859
3860	if (ret_val)
3861		goto release;
3862
3863	/* And invalidate the previously valid segment by setting
3864	 * its signature word (0x13) high_byte to 0b. This can be
3865	 * done without an erase because flash erase sets all bits
3866	 * to 1's. We can write 1's to 0's without an erase
3867	 */
3868	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3869
3870	/* offset in words but we read dword */
3871	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3872	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3873
3874	if (ret_val)
3875		goto release;
3876
3877	dword &= 0x00FFFFFF;
3878	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3879
3880	if (ret_val)
3881		goto release;
3882
3883	/* Great!  Everything worked, we can now clear the cached entries. */
3884	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3885		dev_spec->shadow_ram[i].modified = false;
3886		dev_spec->shadow_ram[i].value = 0xFFFF;
3887	}
3888
3889release:
3890	nvm->ops.release(hw);
3891
3892	/* Reload the EEPROM, or else modifications will not appear
3893	 * until after the next adapter reset.
3894	 */
3895	if (!ret_val) {
3896		nvm->ops.reload(hw);
3897		usleep_range(10000, 20000);
3898	}
3899
3900out:
3901	if (ret_val)
3902		e_dbg("NVM update error: %d\n", ret_val);
3903
3904	return ret_val;
3905}
3906
3907/**
3908 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3909 *  @hw: pointer to the HW structure
3910 *
3911 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3912 *  which writes the checksum to the shadow ram.  The changes in the shadow
3913 *  ram are then committed to the EEPROM by processing each bank at a time
3914 *  checking for the modified bit and writing only the pending changes.
3915 *  After a successful commit, the shadow ram is cleared and is ready for
3916 *  future writes.
3917 **/
3918static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3919{
3920	struct e1000_nvm_info *nvm = &hw->nvm;
3921	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3922	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3923	s32 ret_val;
3924	u16 data = 0;
3925
3926	ret_val = e1000e_update_nvm_checksum_generic(hw);
3927	if (ret_val)
3928		goto out;
3929
3930	if (nvm->type != e1000_nvm_flash_sw)
3931		goto out;
3932
3933	nvm->ops.acquire(hw);
3934
3935	/* We're writing to the opposite bank so if we're on bank 1,
3936	 * write to bank 0 etc.  We also need to erase the segment that
3937	 * is going to be written
3938	 */
3939	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3940	if (ret_val) {
3941		e_dbg("Could not detect valid bank, assuming bank 0\n");
3942		bank = 0;
3943	}
3944
3945	if (bank == 0) {
3946		new_bank_offset = nvm->flash_bank_size;
3947		old_bank_offset = 0;
3948		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3949		if (ret_val)
3950			goto release;
3951	} else {
3952		old_bank_offset = nvm->flash_bank_size;
3953		new_bank_offset = 0;
3954		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3955		if (ret_val)
3956			goto release;
3957	}
3958	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3959		if (dev_spec->shadow_ram[i].modified) {
3960			data = dev_spec->shadow_ram[i].value;
3961		} else {
3962			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3963								old_bank_offset,
3964								&data);
3965			if (ret_val)
3966				break;
3967		}
3968
3969		/* If the word is 0x13, then make sure the signature bits
3970		 * (15:14) are 11b until the commit has completed.
3971		 * This will allow us to write 10b which indicates the
3972		 * signature is valid.  We want to do this after the write
3973		 * has completed so that we don't mark the segment valid
3974		 * while the write is still in progress
3975		 */
3976		if (i == E1000_ICH_NVM_SIG_WORD)
3977			data |= E1000_ICH_NVM_SIG_MASK;
3978
3979		/* Convert offset to bytes. */
3980		act_offset = (i + new_bank_offset) << 1;
3981
3982		usleep_range(100, 200);
3983		/* Write the bytes to the new bank. */
3984		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3985							       act_offset,
3986							       (u8)data);
3987		if (ret_val)
3988			break;
3989
3990		usleep_range(100, 200);
3991		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3992							       act_offset + 1,
3993							       (u8)(data >> 8));
3994		if (ret_val)
3995			break;
3996	}
3997
3998	/* Don't bother writing the segment valid bits if sector
3999	 * programming failed.
4000	 */
4001	if (ret_val) {
4002		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4003		e_dbg("Flash commit failed.\n");
4004		goto release;
4005	}
4006
4007	/* Finally validate the new segment by setting bit 15:14
4008	 * to 10b in word 0x13 , this can be done without an
4009	 * erase as well since these bits are 11 to start with
4010	 * and we need to change bit 14 to 0b
4011	 */
4012	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4013	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4014	if (ret_val)
4015		goto release;
4016
4017	data &= 0xBFFF;
4018	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4019						       act_offset * 2 + 1,
4020						       (u8)(data >> 8));
4021	if (ret_val)
4022		goto release;
4023
4024	/* And invalidate the previously valid segment by setting
4025	 * its signature word (0x13) high_byte to 0b. This can be
4026	 * done without an erase because flash erase sets all bits
4027	 * to 1's. We can write 1's to 0's without an erase
4028	 */
4029	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4030	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4031	if (ret_val)
4032		goto release;
4033
4034	/* Great!  Everything worked, we can now clear the cached entries. */
4035	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4036		dev_spec->shadow_ram[i].modified = false;
4037		dev_spec->shadow_ram[i].value = 0xFFFF;
4038	}
4039
4040release:
4041	nvm->ops.release(hw);
4042
4043	/* Reload the EEPROM, or else modifications will not appear
4044	 * until after the next adapter reset.
4045	 */
4046	if (!ret_val) {
4047		nvm->ops.reload(hw);
4048		usleep_range(10000, 20000);
4049	}
4050
4051out:
4052	if (ret_val)
4053		e_dbg("NVM update error: %d\n", ret_val);
4054
4055	return ret_val;
4056}
4057
4058/**
4059 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4060 *  @hw: pointer to the HW structure
4061 *
4062 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4063 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4064 *  calculated, in which case we need to calculate the checksum and set bit 6.
4065 **/
4066static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4067{
4068	s32 ret_val;
4069	u16 data;
4070	u16 word;
4071	u16 valid_csum_mask;
4072
4073	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4074	 * the checksum needs to be fixed.  This bit is an indication that
4075	 * the NVM was prepared by OEM software and did not calculate
4076	 * the checksum...a likely scenario.
4077	 */
4078	switch (hw->mac.type) {
4079	case e1000_pch_lpt:
4080	case e1000_pch_spt:
4081	case e1000_pch_cnp:
 
 
 
 
 
 
4082		word = NVM_COMPAT;
4083		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4084		break;
4085	default:
4086		word = NVM_FUTURE_INIT_WORD1;
4087		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4088		break;
4089	}
4090
4091	ret_val = e1000_read_nvm(hw, word, 1, &data);
4092	if (ret_val)
4093		return ret_val;
4094
4095	if (!(data & valid_csum_mask)) {
4096		data |= valid_csum_mask;
4097		ret_val = e1000_write_nvm(hw, word, 1, &data);
4098		if (ret_val)
4099			return ret_val;
4100		ret_val = e1000e_update_nvm_checksum(hw);
4101		if (ret_val)
4102			return ret_val;
 
 
 
 
4103	}
4104
4105	return e1000e_validate_nvm_checksum_generic(hw);
4106}
4107
4108/**
4109 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4110 *  @hw: pointer to the HW structure
4111 *
4112 *  To prevent malicious write/erase of the NVM, set it to be read-only
4113 *  so that the hardware ignores all write/erase cycles of the NVM via
4114 *  the flash control registers.  The shadow-ram copy of the NVM will
4115 *  still be updated, however any updates to this copy will not stick
4116 *  across driver reloads.
4117 **/
4118void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4119{
4120	struct e1000_nvm_info *nvm = &hw->nvm;
4121	union ich8_flash_protected_range pr0;
4122	union ich8_hws_flash_status hsfsts;
4123	u32 gfpreg;
4124
4125	nvm->ops.acquire(hw);
4126
4127	gfpreg = er32flash(ICH_FLASH_GFPREG);
4128
4129	/* Write-protect GbE Sector of NVM */
4130	pr0.regval = er32flash(ICH_FLASH_PR0);
4131	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4132	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4133	pr0.range.wpe = true;
4134	ew32flash(ICH_FLASH_PR0, pr0.regval);
4135
4136	/* Lock down a subset of GbE Flash Control Registers, e.g.
4137	 * PR0 to prevent the write-protection from being lifted.
4138	 * Once FLOCKDN is set, the registers protected by it cannot
4139	 * be written until FLOCKDN is cleared by a hardware reset.
4140	 */
4141	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4142	hsfsts.hsf_status.flockdn = true;
4143	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4144
4145	nvm->ops.release(hw);
4146}
4147
4148/**
4149 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4150 *  @hw: pointer to the HW structure
4151 *  @offset: The offset (in bytes) of the byte/word to read.
4152 *  @size: Size of data to read, 1=byte 2=word
4153 *  @data: The byte(s) to write to the NVM.
4154 *
4155 *  Writes one/two bytes to the NVM using the flash access registers.
4156 **/
4157static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4158					  u8 size, u16 data)
4159{
4160	union ich8_hws_flash_status hsfsts;
4161	union ich8_hws_flash_ctrl hsflctl;
4162	u32 flash_linear_addr;
4163	u32 flash_data = 0;
4164	s32 ret_val;
4165	u8 count = 0;
4166
4167	if (hw->mac.type >= e1000_pch_spt) {
4168		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4169			return -E1000_ERR_NVM;
4170	} else {
4171		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4172			return -E1000_ERR_NVM;
4173	}
4174
4175	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4176			     hw->nvm.flash_base_addr);
4177
4178	do {
4179		udelay(1);
4180		/* Steps */
4181		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4182		if (ret_val)
4183			break;
4184		/* In SPT, This register is in Lan memory space, not
4185		 * flash.  Therefore, only 32 bit access is supported
4186		 */
4187		if (hw->mac.type >= e1000_pch_spt)
4188			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4189		else
4190			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4191
4192		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4193		hsflctl.hsf_ctrl.fldbcount = size - 1;
4194		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4195		/* In SPT, This register is in Lan memory space,
4196		 * not flash.  Therefore, only 32 bit access is
4197		 * supported
4198		 */
4199		if (hw->mac.type >= e1000_pch_spt)
4200			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4201		else
4202			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4203
4204		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4205
4206		if (size == 1)
4207			flash_data = (u32)data & 0x00FF;
4208		else
4209			flash_data = (u32)data;
4210
4211		ew32flash(ICH_FLASH_FDATA0, flash_data);
4212
4213		/* check if FCERR is set to 1 , if set to 1, clear it
4214		 * and try the whole sequence a few more times else done
4215		 */
4216		ret_val =
4217		    e1000_flash_cycle_ich8lan(hw,
4218					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4219		if (!ret_val)
4220			break;
4221
4222		/* If we're here, then things are most likely
4223		 * completely hosed, but if the error condition
4224		 * is detected, it won't hurt to give it another
4225		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4226		 */
4227		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4228		if (hsfsts.hsf_status.flcerr)
4229			/* Repeat for some time before giving up. */
4230			continue;
4231		if (!hsfsts.hsf_status.flcdone) {
4232			e_dbg("Timeout error - flash cycle did not complete.\n");
4233			break;
4234		}
4235	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4236
4237	return ret_val;
4238}
4239
4240/**
4241*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4242*  @hw: pointer to the HW structure
4243*  @offset: The offset (in bytes) of the dwords to read.
4244*  @data: The 4 bytes to write to the NVM.
4245*
4246*  Writes one/two/four bytes to the NVM using the flash access registers.
4247**/
4248static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4249					    u32 data)
4250{
4251	union ich8_hws_flash_status hsfsts;
4252	union ich8_hws_flash_ctrl hsflctl;
4253	u32 flash_linear_addr;
4254	s32 ret_val;
4255	u8 count = 0;
4256
4257	if (hw->mac.type >= e1000_pch_spt) {
4258		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4259			return -E1000_ERR_NVM;
4260	}
4261	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4262			     hw->nvm.flash_base_addr);
4263	do {
4264		udelay(1);
4265		/* Steps */
4266		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4267		if (ret_val)
4268			break;
4269
4270		/* In SPT, This register is in Lan memory space, not
4271		 * flash.  Therefore, only 32 bit access is supported
4272		 */
4273		if (hw->mac.type >= e1000_pch_spt)
4274			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4275			    >> 16;
4276		else
4277			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4278
4279		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4280		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4281
4282		/* In SPT, This register is in Lan memory space,
4283		 * not flash.  Therefore, only 32 bit access is
4284		 * supported
4285		 */
4286		if (hw->mac.type >= e1000_pch_spt)
4287			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4288		else
4289			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4290
4291		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4292
4293		ew32flash(ICH_FLASH_FDATA0, data);
4294
4295		/* check if FCERR is set to 1 , if set to 1, clear it
4296		 * and try the whole sequence a few more times else done
4297		 */
4298		ret_val =
4299		   e1000_flash_cycle_ich8lan(hw,
4300					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4301
4302		if (!ret_val)
4303			break;
4304
4305		/* If we're here, then things are most likely
4306		 * completely hosed, but if the error condition
4307		 * is detected, it won't hurt to give it another
4308		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4309		 */
4310		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4311
4312		if (hsfsts.hsf_status.flcerr)
4313			/* Repeat for some time before giving up. */
4314			continue;
4315		if (!hsfsts.hsf_status.flcdone) {
4316			e_dbg("Timeout error - flash cycle did not complete.\n");
4317			break;
4318		}
4319	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4320
4321	return ret_val;
4322}
4323
4324/**
4325 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4326 *  @hw: pointer to the HW structure
4327 *  @offset: The index of the byte to read.
4328 *  @data: The byte to write to the NVM.
4329 *
4330 *  Writes a single byte to the NVM using the flash access registers.
4331 **/
4332static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4333					  u8 data)
4334{
4335	u16 word = (u16)data;
4336
4337	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4338}
4339
4340/**
4341*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4342*  @hw: pointer to the HW structure
4343*  @offset: The offset of the word to write.
4344*  @dword: The dword to write to the NVM.
4345*
4346*  Writes a single dword to the NVM using the flash access registers.
4347*  Goes through a retry algorithm before giving up.
4348**/
4349static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4350						 u32 offset, u32 dword)
4351{
4352	s32 ret_val;
4353	u16 program_retries;
4354
4355	/* Must convert word offset into bytes. */
4356	offset <<= 1;
4357	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4358
4359	if (!ret_val)
4360		return ret_val;
4361	for (program_retries = 0; program_retries < 100; program_retries++) {
4362		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4363		usleep_range(100, 200);
4364		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4365		if (!ret_val)
4366			break;
4367	}
4368	if (program_retries == 100)
4369		return -E1000_ERR_NVM;
4370
4371	return 0;
4372}
4373
4374/**
4375 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4376 *  @hw: pointer to the HW structure
4377 *  @offset: The offset of the byte to write.
4378 *  @byte: The byte to write to the NVM.
4379 *
4380 *  Writes a single byte to the NVM using the flash access registers.
4381 *  Goes through a retry algorithm before giving up.
4382 **/
4383static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4384						u32 offset, u8 byte)
4385{
4386	s32 ret_val;
4387	u16 program_retries;
4388
4389	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4390	if (!ret_val)
4391		return ret_val;
4392
4393	for (program_retries = 0; program_retries < 100; program_retries++) {
4394		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4395		usleep_range(100, 200);
4396		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4397		if (!ret_val)
4398			break;
4399	}
4400	if (program_retries == 100)
4401		return -E1000_ERR_NVM;
4402
4403	return 0;
4404}
4405
4406/**
4407 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4408 *  @hw: pointer to the HW structure
4409 *  @bank: 0 for first bank, 1 for second bank, etc.
4410 *
4411 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4412 *  bank N is 4096 * N + flash_reg_addr.
4413 **/
4414static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4415{
4416	struct e1000_nvm_info *nvm = &hw->nvm;
4417	union ich8_hws_flash_status hsfsts;
4418	union ich8_hws_flash_ctrl hsflctl;
4419	u32 flash_linear_addr;
4420	/* bank size is in 16bit words - adjust to bytes */
4421	u32 flash_bank_size = nvm->flash_bank_size * 2;
4422	s32 ret_val;
4423	s32 count = 0;
4424	s32 j, iteration, sector_size;
4425
4426	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4427
4428	/* Determine HW Sector size: Read BERASE bits of hw flash status
4429	 * register
4430	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4431	 *     consecutive sectors.  The start index for the nth Hw sector
4432	 *     can be calculated as = bank * 4096 + n * 256
4433	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4434	 *     The start index for the nth Hw sector can be calculated
4435	 *     as = bank * 4096
4436	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4437	 *     (ich9 only, otherwise error condition)
4438	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4439	 */
4440	switch (hsfsts.hsf_status.berasesz) {
4441	case 0:
4442		/* Hw sector size 256 */
4443		sector_size = ICH_FLASH_SEG_SIZE_256;
4444		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4445		break;
4446	case 1:
4447		sector_size = ICH_FLASH_SEG_SIZE_4K;
4448		iteration = 1;
4449		break;
4450	case 2:
4451		sector_size = ICH_FLASH_SEG_SIZE_8K;
4452		iteration = 1;
4453		break;
4454	case 3:
4455		sector_size = ICH_FLASH_SEG_SIZE_64K;
4456		iteration = 1;
4457		break;
4458	default:
4459		return -E1000_ERR_NVM;
4460	}
4461
4462	/* Start with the base address, then add the sector offset. */
4463	flash_linear_addr = hw->nvm.flash_base_addr;
4464	flash_linear_addr += (bank) ? flash_bank_size : 0;
4465
4466	for (j = 0; j < iteration; j++) {
4467		do {
4468			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4469
4470			/* Steps */
4471			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4472			if (ret_val)
4473				return ret_val;
4474
4475			/* Write a value 11 (block Erase) in Flash
4476			 * Cycle field in hw flash control
4477			 */
4478			if (hw->mac.type >= e1000_pch_spt)
4479				hsflctl.regval =
4480				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4481			else
4482				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4483
4484			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4485			if (hw->mac.type >= e1000_pch_spt)
4486				ew32flash(ICH_FLASH_HSFSTS,
4487					  hsflctl.regval << 16);
4488			else
4489				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4490
4491			/* Write the last 24 bits of an index within the
4492			 * block into Flash Linear address field in Flash
4493			 * Address.
4494			 */
4495			flash_linear_addr += (j * sector_size);
4496			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4497
4498			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4499			if (!ret_val)
4500				break;
4501
4502			/* Check if FCERR is set to 1.  If 1,
4503			 * clear it and try the whole sequence
4504			 * a few more times else Done
4505			 */
4506			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4507			if (hsfsts.hsf_status.flcerr)
4508				/* repeat for some time before giving up */
4509				continue;
4510			else if (!hsfsts.hsf_status.flcdone)
4511				return ret_val;
4512		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4513	}
4514
4515	return 0;
4516}
4517
4518/**
4519 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4520 *  @hw: pointer to the HW structure
4521 *  @data: Pointer to the LED settings
4522 *
4523 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4524 *  settings is all 0's or F's, set the LED default to a valid LED default
4525 *  setting.
4526 **/
4527static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4528{
4529	s32 ret_val;
4530
4531	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4532	if (ret_val) {
4533		e_dbg("NVM Read Error\n");
4534		return ret_val;
4535	}
4536
4537	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4538		*data = ID_LED_DEFAULT_ICH8LAN;
4539
4540	return 0;
4541}
4542
4543/**
4544 *  e1000_id_led_init_pchlan - store LED configurations
4545 *  @hw: pointer to the HW structure
4546 *
4547 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4548 *  the PHY LED configuration register.
4549 *
4550 *  PCH also does not have an "always on" or "always off" mode which
4551 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4552 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4553 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4554 *  link based on logic in e1000_led_[on|off]_pchlan().
4555 **/
4556static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4557{
4558	struct e1000_mac_info *mac = &hw->mac;
4559	s32 ret_val;
4560	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4561	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4562	u16 data, i, temp, shift;
4563
4564	/* Get default ID LED modes */
4565	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4566	if (ret_val)
4567		return ret_val;
4568
4569	mac->ledctl_default = er32(LEDCTL);
4570	mac->ledctl_mode1 = mac->ledctl_default;
4571	mac->ledctl_mode2 = mac->ledctl_default;
4572
4573	for (i = 0; i < 4; i++) {
4574		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4575		shift = (i * 5);
4576		switch (temp) {
4577		case ID_LED_ON1_DEF2:
4578		case ID_LED_ON1_ON2:
4579		case ID_LED_ON1_OFF2:
4580			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4581			mac->ledctl_mode1 |= (ledctl_on << shift);
4582			break;
4583		case ID_LED_OFF1_DEF2:
4584		case ID_LED_OFF1_ON2:
4585		case ID_LED_OFF1_OFF2:
4586			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4587			mac->ledctl_mode1 |= (ledctl_off << shift);
4588			break;
4589		default:
4590			/* Do nothing */
4591			break;
4592		}
4593		switch (temp) {
4594		case ID_LED_DEF1_ON2:
4595		case ID_LED_ON1_ON2:
4596		case ID_LED_OFF1_ON2:
4597			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4598			mac->ledctl_mode2 |= (ledctl_on << shift);
4599			break;
4600		case ID_LED_DEF1_OFF2:
4601		case ID_LED_ON1_OFF2:
4602		case ID_LED_OFF1_OFF2:
4603			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4604			mac->ledctl_mode2 |= (ledctl_off << shift);
4605			break;
4606		default:
4607			/* Do nothing */
4608			break;
4609		}
4610	}
4611
4612	return 0;
4613}
4614
4615/**
4616 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4617 *  @hw: pointer to the HW structure
4618 *
4619 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4620 *  register, so the the bus width is hard coded.
4621 **/
4622static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4623{
4624	struct e1000_bus_info *bus = &hw->bus;
4625	s32 ret_val;
4626
4627	ret_val = e1000e_get_bus_info_pcie(hw);
4628
4629	/* ICH devices are "PCI Express"-ish.  They have
4630	 * a configuration space, but do not contain
4631	 * PCI Express Capability registers, so bus width
4632	 * must be hardcoded.
4633	 */
4634	if (bus->width == e1000_bus_width_unknown)
4635		bus->width = e1000_bus_width_pcie_x1;
4636
4637	return ret_val;
4638}
4639
4640/**
4641 *  e1000_reset_hw_ich8lan - Reset the hardware
4642 *  @hw: pointer to the HW structure
4643 *
4644 *  Does a full reset of the hardware which includes a reset of the PHY and
4645 *  MAC.
4646 **/
4647static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4648{
4649	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4650	u16 kum_cfg;
4651	u32 ctrl, reg;
4652	s32 ret_val;
4653
4654	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4655	 * on the last TLP read/write transaction when MAC is reset.
4656	 */
4657	ret_val = e1000e_disable_pcie_master(hw);
4658	if (ret_val)
4659		e_dbg("PCI-E Master disable polling has failed.\n");
4660
4661	e_dbg("Masking off all interrupts\n");
4662	ew32(IMC, 0xffffffff);
4663
4664	/* Disable the Transmit and Receive units.  Then delay to allow
4665	 * any pending transactions to complete before we hit the MAC
4666	 * with the global reset.
4667	 */
4668	ew32(RCTL, 0);
4669	ew32(TCTL, E1000_TCTL_PSP);
4670	e1e_flush();
4671
4672	usleep_range(10000, 20000);
4673
4674	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4675	if (hw->mac.type == e1000_ich8lan) {
4676		/* Set Tx and Rx buffer allocation to 8k apiece. */
4677		ew32(PBA, E1000_PBA_8K);
4678		/* Set Packet Buffer Size to 16k. */
4679		ew32(PBS, E1000_PBS_16K);
4680	}
4681
4682	if (hw->mac.type == e1000_pchlan) {
4683		/* Save the NVM K1 bit setting */
4684		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4685		if (ret_val)
4686			return ret_val;
4687
4688		if (kum_cfg & E1000_NVM_K1_ENABLE)
4689			dev_spec->nvm_k1_enabled = true;
4690		else
4691			dev_spec->nvm_k1_enabled = false;
4692	}
4693
4694	ctrl = er32(CTRL);
4695
4696	if (!hw->phy.ops.check_reset_block(hw)) {
4697		/* Full-chip reset requires MAC and PHY reset at the same
4698		 * time to make sure the interface between MAC and the
4699		 * external PHY is reset.
4700		 */
4701		ctrl |= E1000_CTRL_PHY_RST;
4702
4703		/* Gate automatic PHY configuration by hardware on
4704		 * non-managed 82579
4705		 */
4706		if ((hw->mac.type == e1000_pch2lan) &&
4707		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4708			e1000_gate_hw_phy_config_ich8lan(hw, true);
4709	}
4710	ret_val = e1000_acquire_swflag_ich8lan(hw);
4711	e_dbg("Issuing a global reset to ich8lan\n");
4712	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4713	/* cannot issue a flush here because it hangs the hardware */
4714	msleep(20);
4715
4716	/* Set Phy Config Counter to 50msec */
4717	if (hw->mac.type == e1000_pch2lan) {
4718		reg = er32(FEXTNVM3);
4719		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4720		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4721		ew32(FEXTNVM3, reg);
4722	}
4723
4724	if (!ret_val)
4725		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4726
4727	if (ctrl & E1000_CTRL_PHY_RST) {
4728		ret_val = hw->phy.ops.get_cfg_done(hw);
4729		if (ret_val)
4730			return ret_val;
4731
4732		ret_val = e1000_post_phy_reset_ich8lan(hw);
4733		if (ret_val)
4734			return ret_val;
4735	}
4736
4737	/* For PCH, this write will make sure that any noise
4738	 * will be detected as a CRC error and be dropped rather than show up
4739	 * as a bad packet to the DMA engine.
4740	 */
4741	if (hw->mac.type == e1000_pchlan)
4742		ew32(CRC_OFFSET, 0x65656565);
4743
4744	ew32(IMC, 0xffffffff);
4745	er32(ICR);
4746
4747	reg = er32(KABGTXD);
4748	reg |= E1000_KABGTXD_BGSQLBIAS;
4749	ew32(KABGTXD, reg);
4750
4751	return 0;
4752}
4753
4754/**
4755 *  e1000_init_hw_ich8lan - Initialize the hardware
4756 *  @hw: pointer to the HW structure
4757 *
4758 *  Prepares the hardware for transmit and receive by doing the following:
4759 *   - initialize hardware bits
4760 *   - initialize LED identification
4761 *   - setup receive address registers
4762 *   - setup flow control
4763 *   - setup transmit descriptors
4764 *   - clear statistics
4765 **/
4766static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4767{
4768	struct e1000_mac_info *mac = &hw->mac;
4769	u32 ctrl_ext, txdctl, snoop;
4770	s32 ret_val;
4771	u16 i;
4772
4773	e1000_initialize_hw_bits_ich8lan(hw);
4774
4775	/* Initialize identification LED */
4776	ret_val = mac->ops.id_led_init(hw);
4777	/* An error is not fatal and we should not stop init due to this */
4778	if (ret_val)
4779		e_dbg("Error initializing identification LED\n");
4780
4781	/* Setup the receive address. */
4782	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4783
4784	/* Zero out the Multicast HASH table */
4785	e_dbg("Zeroing the MTA\n");
4786	for (i = 0; i < mac->mta_reg_count; i++)
4787		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4788
4789	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4790	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4791	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4792	 */
4793	if (hw->phy.type == e1000_phy_82578) {
4794		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4795		i &= ~BM_WUC_HOST_WU_BIT;
4796		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4797		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4798		if (ret_val)
4799			return ret_val;
4800	}
4801
4802	/* Setup link and flow control */
4803	ret_val = mac->ops.setup_link(hw);
4804
4805	/* Set the transmit descriptor write-back policy for both queues */
4806	txdctl = er32(TXDCTL(0));
4807	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4808		  E1000_TXDCTL_FULL_TX_DESC_WB);
4809	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4810		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4811	ew32(TXDCTL(0), txdctl);
4812	txdctl = er32(TXDCTL(1));
4813	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4814		  E1000_TXDCTL_FULL_TX_DESC_WB);
4815	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4816		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4817	ew32(TXDCTL(1), txdctl);
4818
4819	/* ICH8 has opposite polarity of no_snoop bits.
4820	 * By default, we should use snoop behavior.
4821	 */
4822	if (mac->type == e1000_ich8lan)
4823		snoop = PCIE_ICH8_SNOOP_ALL;
4824	else
4825		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4826	e1000e_set_pcie_no_snoop(hw, snoop);
4827
 
 
 
 
 
 
 
 
 
4828	ctrl_ext = er32(CTRL_EXT);
4829	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4830	ew32(CTRL_EXT, ctrl_ext);
4831
4832	/* Clear all of the statistics registers (clear on read).  It is
4833	 * important that we do this after we have tried to establish link
4834	 * because the symbol error count will increment wildly if there
4835	 * is no link.
4836	 */
4837	e1000_clear_hw_cntrs_ich8lan(hw);
4838
4839	return ret_val;
4840}
4841
4842/**
4843 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4844 *  @hw: pointer to the HW structure
4845 *
4846 *  Sets/Clears required hardware bits necessary for correctly setting up the
4847 *  hardware for transmit and receive.
4848 **/
4849static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4850{
4851	u32 reg;
4852
4853	/* Extended Device Control */
4854	reg = er32(CTRL_EXT);
4855	reg |= BIT(22);
4856	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4857	if (hw->mac.type >= e1000_pchlan)
4858		reg |= E1000_CTRL_EXT_PHYPDEN;
4859	ew32(CTRL_EXT, reg);
4860
4861	/* Transmit Descriptor Control 0 */
4862	reg = er32(TXDCTL(0));
4863	reg |= BIT(22);
4864	ew32(TXDCTL(0), reg);
4865
4866	/* Transmit Descriptor Control 1 */
4867	reg = er32(TXDCTL(1));
4868	reg |= BIT(22);
4869	ew32(TXDCTL(1), reg);
4870
4871	/* Transmit Arbitration Control 0 */
4872	reg = er32(TARC(0));
4873	if (hw->mac.type == e1000_ich8lan)
4874		reg |= BIT(28) | BIT(29);
4875	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4876	ew32(TARC(0), reg);
4877
4878	/* Transmit Arbitration Control 1 */
4879	reg = er32(TARC(1));
4880	if (er32(TCTL) & E1000_TCTL_MULR)
4881		reg &= ~BIT(28);
4882	else
4883		reg |= BIT(28);
4884	reg |= BIT(24) | BIT(26) | BIT(30);
4885	ew32(TARC(1), reg);
4886
4887	/* Device Status */
4888	if (hw->mac.type == e1000_ich8lan) {
4889		reg = er32(STATUS);
4890		reg &= ~BIT(31);
4891		ew32(STATUS, reg);
4892	}
4893
4894	/* work-around descriptor data corruption issue during nfs v2 udp
4895	 * traffic, just disable the nfs filtering capability
4896	 */
4897	reg = er32(RFCTL);
4898	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4899
4900	/* Disable IPv6 extension header parsing because some malformed
4901	 * IPv6 headers can hang the Rx.
4902	 */
4903	if (hw->mac.type == e1000_ich8lan)
4904		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4905	ew32(RFCTL, reg);
4906
4907	/* Enable ECC on Lynxpoint */
4908	if (hw->mac.type >= e1000_pch_lpt) {
4909		reg = er32(PBECCSTS);
4910		reg |= E1000_PBECCSTS_ECC_ENABLE;
4911		ew32(PBECCSTS, reg);
4912
4913		reg = er32(CTRL);
4914		reg |= E1000_CTRL_MEHE;
4915		ew32(CTRL, reg);
4916	}
4917}
4918
4919/**
4920 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4921 *  @hw: pointer to the HW structure
4922 *
4923 *  Determines which flow control settings to use, then configures flow
4924 *  control.  Calls the appropriate media-specific link configuration
4925 *  function.  Assuming the adapter has a valid link partner, a valid link
4926 *  should be established.  Assumes the hardware has previously been reset
4927 *  and the transmitter and receiver are not enabled.
4928 **/
4929static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4930{
4931	s32 ret_val;
4932
4933	if (hw->phy.ops.check_reset_block(hw))
4934		return 0;
4935
4936	/* ICH parts do not have a word in the NVM to determine
4937	 * the default flow control setting, so we explicitly
4938	 * set it to full.
4939	 */
4940	if (hw->fc.requested_mode == e1000_fc_default) {
4941		/* Workaround h/w hang when Tx flow control enabled */
4942		if (hw->mac.type == e1000_pchlan)
4943			hw->fc.requested_mode = e1000_fc_rx_pause;
4944		else
4945			hw->fc.requested_mode = e1000_fc_full;
4946	}
4947
4948	/* Save off the requested flow control mode for use later.  Depending
4949	 * on the link partner's capabilities, we may or may not use this mode.
4950	 */
4951	hw->fc.current_mode = hw->fc.requested_mode;
4952
4953	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4954
4955	/* Continue to configure the copper link. */
4956	ret_val = hw->mac.ops.setup_physical_interface(hw);
4957	if (ret_val)
4958		return ret_val;
4959
4960	ew32(FCTTV, hw->fc.pause_time);
4961	if ((hw->phy.type == e1000_phy_82578) ||
4962	    (hw->phy.type == e1000_phy_82579) ||
4963	    (hw->phy.type == e1000_phy_i217) ||
4964	    (hw->phy.type == e1000_phy_82577)) {
4965		ew32(FCRTV_PCH, hw->fc.refresh_time);
4966
4967		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4968				   hw->fc.pause_time);
4969		if (ret_val)
4970			return ret_val;
4971	}
4972
4973	return e1000e_set_fc_watermarks(hw);
4974}
4975
4976/**
4977 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4978 *  @hw: pointer to the HW structure
4979 *
4980 *  Configures the kumeran interface to the PHY to wait the appropriate time
4981 *  when polling the PHY, then call the generic setup_copper_link to finish
4982 *  configuring the copper link.
4983 **/
4984static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4985{
4986	u32 ctrl;
4987	s32 ret_val;
4988	u16 reg_data;
4989
4990	ctrl = er32(CTRL);
4991	ctrl |= E1000_CTRL_SLU;
4992	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4993	ew32(CTRL, ctrl);
4994
4995	/* Set the mac to wait the maximum time between each iteration
4996	 * and increase the max iterations when polling the phy;
4997	 * this fixes erroneous timeouts at 10Mbps.
4998	 */
4999	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5000	if (ret_val)
5001		return ret_val;
5002	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5003				       &reg_data);
5004	if (ret_val)
5005		return ret_val;
5006	reg_data |= 0x3F;
5007	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5008					reg_data);
5009	if (ret_val)
5010		return ret_val;
5011
5012	switch (hw->phy.type) {
5013	case e1000_phy_igp_3:
5014		ret_val = e1000e_copper_link_setup_igp(hw);
5015		if (ret_val)
5016			return ret_val;
5017		break;
5018	case e1000_phy_bm:
5019	case e1000_phy_82578:
5020		ret_val = e1000e_copper_link_setup_m88(hw);
5021		if (ret_val)
5022			return ret_val;
5023		break;
5024	case e1000_phy_82577:
5025	case e1000_phy_82579:
5026		ret_val = e1000_copper_link_setup_82577(hw);
5027		if (ret_val)
5028			return ret_val;
5029		break;
5030	case e1000_phy_ife:
5031		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5032		if (ret_val)
5033			return ret_val;
5034
5035		reg_data &= ~IFE_PMC_AUTO_MDIX;
5036
5037		switch (hw->phy.mdix) {
5038		case 1:
5039			reg_data &= ~IFE_PMC_FORCE_MDIX;
5040			break;
5041		case 2:
5042			reg_data |= IFE_PMC_FORCE_MDIX;
5043			break;
5044		case 0:
5045		default:
5046			reg_data |= IFE_PMC_AUTO_MDIX;
5047			break;
5048		}
5049		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5050		if (ret_val)
5051			return ret_val;
5052		break;
5053	default:
5054		break;
5055	}
5056
5057	return e1000e_setup_copper_link(hw);
5058}
5059
5060/**
5061 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5062 *  @hw: pointer to the HW structure
5063 *
5064 *  Calls the PHY specific link setup function and then calls the
5065 *  generic setup_copper_link to finish configuring the link for
5066 *  Lynxpoint PCH devices
5067 **/
5068static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5069{
5070	u32 ctrl;
5071	s32 ret_val;
5072
5073	ctrl = er32(CTRL);
5074	ctrl |= E1000_CTRL_SLU;
5075	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5076	ew32(CTRL, ctrl);
5077
5078	ret_val = e1000_copper_link_setup_82577(hw);
5079	if (ret_val)
5080		return ret_val;
5081
5082	return e1000e_setup_copper_link(hw);
5083}
5084
5085/**
5086 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5087 *  @hw: pointer to the HW structure
5088 *  @speed: pointer to store current link speed
5089 *  @duplex: pointer to store the current link duplex
5090 *
5091 *  Calls the generic get_speed_and_duplex to retrieve the current link
5092 *  information and then calls the Kumeran lock loss workaround for links at
5093 *  gigabit speeds.
5094 **/
5095static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5096					  u16 *duplex)
5097{
5098	s32 ret_val;
5099
5100	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5101	if (ret_val)
5102		return ret_val;
5103
5104	if ((hw->mac.type == e1000_ich8lan) &&
5105	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5106		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5107	}
5108
5109	return ret_val;
5110}
5111
5112/**
5113 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5114 *  @hw: pointer to the HW structure
5115 *
5116 *  Work-around for 82566 Kumeran PCS lock loss:
5117 *  On link status change (i.e. PCI reset, speed change) and link is up and
5118 *  speed is gigabit-
5119 *    0) if workaround is optionally disabled do nothing
5120 *    1) wait 1ms for Kumeran link to come up
5121 *    2) check Kumeran Diagnostic register PCS lock loss bit
5122 *    3) if not set the link is locked (all is good), otherwise...
5123 *    4) reset the PHY
5124 *    5) repeat up to 10 times
5125 *  Note: this is only called for IGP3 copper when speed is 1gb.
5126 **/
5127static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5128{
5129	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5130	u32 phy_ctrl;
5131	s32 ret_val;
5132	u16 i, data;
5133	bool link;
5134
5135	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5136		return 0;
5137
5138	/* Make sure link is up before proceeding.  If not just return.
5139	 * Attempting this while link is negotiating fouled up link
5140	 * stability
5141	 */
5142	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5143	if (!link)
5144		return 0;
5145
5146	for (i = 0; i < 10; i++) {
5147		/* read once to clear */
5148		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5149		if (ret_val)
5150			return ret_val;
5151		/* and again to get new status */
5152		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5153		if (ret_val)
5154			return ret_val;
5155
5156		/* check for PCS lock */
5157		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5158			return 0;
5159
5160		/* Issue PHY reset */
5161		e1000_phy_hw_reset(hw);
5162		mdelay(5);
5163	}
5164	/* Disable GigE link negotiation */
5165	phy_ctrl = er32(PHY_CTRL);
5166	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5167		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5168	ew32(PHY_CTRL, phy_ctrl);
5169
5170	/* Call gig speed drop workaround on Gig disable before accessing
5171	 * any PHY registers
5172	 */
5173	e1000e_gig_downshift_workaround_ich8lan(hw);
5174
5175	/* unable to acquire PCS lock */
5176	return -E1000_ERR_PHY;
5177}
5178
5179/**
5180 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5181 *  @hw: pointer to the HW structure
5182 *  @state: boolean value used to set the current Kumeran workaround state
5183 *
5184 *  If ICH8, set the current Kumeran workaround state (enabled - true
5185 *  /disabled - false).
5186 **/
5187void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5188						  bool state)
5189{
5190	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5191
5192	if (hw->mac.type != e1000_ich8lan) {
5193		e_dbg("Workaround applies to ICH8 only.\n");
5194		return;
5195	}
5196
5197	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5198}
5199
5200/**
5201 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5202 *  @hw: pointer to the HW structure
5203 *
5204 *  Workaround for 82566 power-down on D3 entry:
5205 *    1) disable gigabit link
5206 *    2) write VR power-down enable
5207 *    3) read it back
5208 *  Continue if successful, else issue LCD reset and repeat
5209 **/
5210void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5211{
5212	u32 reg;
5213	u16 data;
5214	u8 retry = 0;
5215
5216	if (hw->phy.type != e1000_phy_igp_3)
5217		return;
5218
5219	/* Try the workaround twice (if needed) */
5220	do {
5221		/* Disable link */
5222		reg = er32(PHY_CTRL);
5223		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5224			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5225		ew32(PHY_CTRL, reg);
5226
5227		/* Call gig speed drop workaround on Gig disable before
5228		 * accessing any PHY registers
5229		 */
5230		if (hw->mac.type == e1000_ich8lan)
5231			e1000e_gig_downshift_workaround_ich8lan(hw);
5232
5233		/* Write VR power-down enable */
5234		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5235		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5236		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5237
5238		/* Read it back and test */
5239		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5240		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5241		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5242			break;
5243
5244		/* Issue PHY reset and repeat at most one more time */
5245		reg = er32(CTRL);
5246		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5247		retry++;
5248	} while (retry);
5249}
5250
5251/**
5252 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5253 *  @hw: pointer to the HW structure
5254 *
5255 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5256 *  LPLU, Gig disable, MDIC PHY reset):
5257 *    1) Set Kumeran Near-end loopback
5258 *    2) Clear Kumeran Near-end loopback
5259 *  Should only be called for ICH8[m] devices with any 1G Phy.
5260 **/
5261void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5262{
5263	s32 ret_val;
5264	u16 reg_data;
5265
5266	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5267		return;
5268
5269	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5270				       &reg_data);
5271	if (ret_val)
5272		return;
5273	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5274	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5275					reg_data);
5276	if (ret_val)
5277		return;
5278	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5279	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5280}
5281
5282/**
5283 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5284 *  @hw: pointer to the HW structure
5285 *
5286 *  During S0 to Sx transition, it is possible the link remains at gig
5287 *  instead of negotiating to a lower speed.  Before going to Sx, set
5288 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5289 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5290 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5291 *  needs to be written.
5292 *  Parts that support (and are linked to a partner which support) EEE in
5293 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5294 *  than 10Mbps w/o EEE.
5295 **/
5296void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5297{
5298	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5299	u32 phy_ctrl;
5300	s32 ret_val;
5301
5302	phy_ctrl = er32(PHY_CTRL);
5303	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5304
5305	if (hw->phy.type == e1000_phy_i217) {
5306		u16 phy_reg, device_id = hw->adapter->pdev->device;
5307
5308		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5309		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5310		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5311		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5312		    (hw->mac.type >= e1000_pch_spt)) {
5313			u32 fextnvm6 = er32(FEXTNVM6);
5314
5315			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5316		}
5317
5318		ret_val = hw->phy.ops.acquire(hw);
5319		if (ret_val)
5320			goto out;
5321
5322		if (!dev_spec->eee_disable) {
5323			u16 eee_advert;
5324
5325			ret_val =
5326			    e1000_read_emi_reg_locked(hw,
5327						      I217_EEE_ADVERTISEMENT,
5328						      &eee_advert);
5329			if (ret_val)
5330				goto release;
5331
5332			/* Disable LPLU if both link partners support 100BaseT
5333			 * EEE and 100Full is advertised on both ends of the
5334			 * link, and enable Auto Enable LPI since there will
5335			 * be no driver to enable LPI while in Sx.
5336			 */
5337			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5338			    (dev_spec->eee_lp_ability &
5339			     I82579_EEE_100_SUPPORTED) &&
5340			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5341				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5342					      E1000_PHY_CTRL_NOND0A_LPLU);
5343
5344				/* Set Auto Enable LPI after link up */
5345				e1e_rphy_locked(hw,
5346						I217_LPI_GPIO_CTRL, &phy_reg);
5347				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5348				e1e_wphy_locked(hw,
5349						I217_LPI_GPIO_CTRL, phy_reg);
5350			}
5351		}
5352
5353		/* For i217 Intel Rapid Start Technology support,
5354		 * when the system is going into Sx and no manageability engine
5355		 * is present, the driver must configure proxy to reset only on
5356		 * power good.  LPI (Low Power Idle) state must also reset only
5357		 * on power good, as well as the MTA (Multicast table array).
5358		 * The SMBus release must also be disabled on LCD reset.
5359		 */
5360		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5361			/* Enable proxy to reset only on power good. */
5362			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5363			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5364			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5365
5366			/* Set bit enable LPI (EEE) to reset only on
5367			 * power good.
5368			 */
5369			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5370			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5371			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5372
5373			/* Disable the SMB release on LCD reset. */
5374			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5375			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5376			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5377		}
5378
5379		/* Enable MTA to reset for Intel Rapid Start Technology
5380		 * Support
5381		 */
5382		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5383		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5384		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5385
5386release:
5387		hw->phy.ops.release(hw);
5388	}
5389out:
5390	ew32(PHY_CTRL, phy_ctrl);
5391
5392	if (hw->mac.type == e1000_ich8lan)
5393		e1000e_gig_downshift_workaround_ich8lan(hw);
5394
5395	if (hw->mac.type >= e1000_pchlan) {
5396		e1000_oem_bits_config_ich8lan(hw, false);
5397
5398		/* Reset PHY to activate OEM bits on 82577/8 */
5399		if (hw->mac.type == e1000_pchlan)
5400			e1000e_phy_hw_reset_generic(hw);
5401
5402		ret_val = hw->phy.ops.acquire(hw);
5403		if (ret_val)
5404			return;
5405		e1000_write_smbus_addr(hw);
5406		hw->phy.ops.release(hw);
5407	}
5408}
5409
5410/**
5411 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5412 *  @hw: pointer to the HW structure
5413 *
5414 *  During Sx to S0 transitions on non-managed devices or managed devices
5415 *  on which PHY resets are not blocked, if the PHY registers cannot be
5416 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5417 *  the PHY.
5418 *  On i217, setup Intel Rapid Start Technology.
5419 **/
5420void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5421{
5422	s32 ret_val;
5423
5424	if (hw->mac.type < e1000_pch2lan)
5425		return;
5426
5427	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5428	if (ret_val) {
5429		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5430		return;
5431	}
5432
5433	/* For i217 Intel Rapid Start Technology support when the system
5434	 * is transitioning from Sx and no manageability engine is present
5435	 * configure SMBus to restore on reset, disable proxy, and enable
5436	 * the reset on MTA (Multicast table array).
5437	 */
5438	if (hw->phy.type == e1000_phy_i217) {
5439		u16 phy_reg;
5440
5441		ret_val = hw->phy.ops.acquire(hw);
5442		if (ret_val) {
5443			e_dbg("Failed to setup iRST\n");
5444			return;
5445		}
5446
5447		/* Clear Auto Enable LPI after link up */
5448		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5449		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5450		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5451
5452		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5453			/* Restore clear on SMB if no manageability engine
5454			 * is present
5455			 */
5456			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5457			if (ret_val)
5458				goto release;
5459			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5460			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5461
5462			/* Disable Proxy */
5463			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5464		}
5465		/* Enable reset on MTA */
5466		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5467		if (ret_val)
5468			goto release;
5469		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5470		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5471release:
5472		if (ret_val)
5473			e_dbg("Error %d in resume workarounds\n", ret_val);
5474		hw->phy.ops.release(hw);
5475	}
5476}
5477
5478/**
5479 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5480 *  @hw: pointer to the HW structure
5481 *
5482 *  Return the LED back to the default configuration.
5483 **/
5484static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5485{
5486	if (hw->phy.type == e1000_phy_ife)
5487		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5488
5489	ew32(LEDCTL, hw->mac.ledctl_default);
5490	return 0;
5491}
5492
5493/**
5494 *  e1000_led_on_ich8lan - Turn LEDs on
5495 *  @hw: pointer to the HW structure
5496 *
5497 *  Turn on the LEDs.
5498 **/
5499static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5500{
5501	if (hw->phy.type == e1000_phy_ife)
5502		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5503				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5504
5505	ew32(LEDCTL, hw->mac.ledctl_mode2);
5506	return 0;
5507}
5508
5509/**
5510 *  e1000_led_off_ich8lan - Turn LEDs off
5511 *  @hw: pointer to the HW structure
5512 *
5513 *  Turn off the LEDs.
5514 **/
5515static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5516{
5517	if (hw->phy.type == e1000_phy_ife)
5518		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5519				(IFE_PSCL_PROBE_MODE |
5520				 IFE_PSCL_PROBE_LEDS_OFF));
5521
5522	ew32(LEDCTL, hw->mac.ledctl_mode1);
5523	return 0;
5524}
5525
5526/**
5527 *  e1000_setup_led_pchlan - Configures SW controllable LED
5528 *  @hw: pointer to the HW structure
5529 *
5530 *  This prepares the SW controllable LED for use.
5531 **/
5532static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5533{
5534	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5535}
5536
5537/**
5538 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5539 *  @hw: pointer to the HW structure
5540 *
5541 *  Return the LED back to the default configuration.
5542 **/
5543static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5544{
5545	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5546}
5547
5548/**
5549 *  e1000_led_on_pchlan - Turn LEDs on
5550 *  @hw: pointer to the HW structure
5551 *
5552 *  Turn on the LEDs.
5553 **/
5554static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5555{
5556	u16 data = (u16)hw->mac.ledctl_mode2;
5557	u32 i, led;
5558
5559	/* If no link, then turn LED on by setting the invert bit
5560	 * for each LED that's mode is "link_up" in ledctl_mode2.
5561	 */
5562	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5563		for (i = 0; i < 3; i++) {
5564			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5565			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5566			    E1000_LEDCTL_MODE_LINK_UP)
5567				continue;
5568			if (led & E1000_PHY_LED0_IVRT)
5569				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5570			else
5571				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5572		}
5573	}
5574
5575	return e1e_wphy(hw, HV_LED_CONFIG, data);
5576}
5577
5578/**
5579 *  e1000_led_off_pchlan - Turn LEDs off
5580 *  @hw: pointer to the HW structure
5581 *
5582 *  Turn off the LEDs.
5583 **/
5584static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5585{
5586	u16 data = (u16)hw->mac.ledctl_mode1;
5587	u32 i, led;
5588
5589	/* If no link, then turn LED off by clearing the invert bit
5590	 * for each LED that's mode is "link_up" in ledctl_mode1.
5591	 */
5592	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5593		for (i = 0; i < 3; i++) {
5594			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5595			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5596			    E1000_LEDCTL_MODE_LINK_UP)
5597				continue;
5598			if (led & E1000_PHY_LED0_IVRT)
5599				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5600			else
5601				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5602		}
5603	}
5604
5605	return e1e_wphy(hw, HV_LED_CONFIG, data);
5606}
5607
5608/**
5609 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5610 *  @hw: pointer to the HW structure
5611 *
5612 *  Read appropriate register for the config done bit for completion status
5613 *  and configure the PHY through s/w for EEPROM-less parts.
5614 *
5615 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5616 *  config done bit, so only an error is logged and continues.  If we were
5617 *  to return with error, EEPROM-less silicon would not be able to be reset
5618 *  or change link.
5619 **/
5620static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5621{
5622	s32 ret_val = 0;
5623	u32 bank = 0;
5624	u32 status;
5625
5626	e1000e_get_cfg_done_generic(hw);
5627
5628	/* Wait for indication from h/w that it has completed basic config */
5629	if (hw->mac.type >= e1000_ich10lan) {
5630		e1000_lan_init_done_ich8lan(hw);
5631	} else {
5632		ret_val = e1000e_get_auto_rd_done(hw);
5633		if (ret_val) {
5634			/* When auto config read does not complete, do not
5635			 * return with an error. This can happen in situations
5636			 * where there is no eeprom and prevents getting link.
5637			 */
5638			e_dbg("Auto Read Done did not complete\n");
5639			ret_val = 0;
5640		}
5641	}
5642
5643	/* Clear PHY Reset Asserted bit */
5644	status = er32(STATUS);
5645	if (status & E1000_STATUS_PHYRA)
5646		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5647	else
5648		e_dbg("PHY Reset Asserted not set - needs delay\n");
5649
5650	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5651	if (hw->mac.type <= e1000_ich9lan) {
5652		if (!(er32(EECD) & E1000_EECD_PRES) &&
5653		    (hw->phy.type == e1000_phy_igp_3)) {
5654			e1000e_phy_init_script_igp3(hw);
5655		}
5656	} else {
5657		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5658			/* Maybe we should do a basic PHY config */
5659			e_dbg("EEPROM not present\n");
5660			ret_val = -E1000_ERR_CONFIG;
5661		}
5662	}
5663
5664	return ret_val;
5665}
5666
5667/**
5668 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5669 * @hw: pointer to the HW structure
5670 *
5671 * In the case of a PHY power down to save power, or to turn off link during a
5672 * driver unload, or wake on lan is not enabled, remove the link.
5673 **/
5674static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5675{
5676	/* If the management interface is not enabled, then power down */
5677	if (!(hw->mac.ops.check_mng_mode(hw) ||
5678	      hw->phy.ops.check_reset_block(hw)))
5679		e1000_power_down_phy_copper(hw);
5680}
5681
5682/**
5683 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5684 *  @hw: pointer to the HW structure
5685 *
5686 *  Clears hardware counters specific to the silicon family and calls
5687 *  clear_hw_cntrs_generic to clear all general purpose counters.
5688 **/
5689static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5690{
5691	u16 phy_data;
5692	s32 ret_val;
5693
5694	e1000e_clear_hw_cntrs_base(hw);
5695
5696	er32(ALGNERRC);
5697	er32(RXERRC);
5698	er32(TNCRS);
5699	er32(CEXTERR);
5700	er32(TSCTC);
5701	er32(TSCTFC);
5702
5703	er32(MGTPRC);
5704	er32(MGTPDC);
5705	er32(MGTPTC);
5706
5707	er32(IAC);
5708	er32(ICRXOC);
5709
5710	/* Clear PHY statistics registers */
5711	if ((hw->phy.type == e1000_phy_82578) ||
5712	    (hw->phy.type == e1000_phy_82579) ||
5713	    (hw->phy.type == e1000_phy_i217) ||
5714	    (hw->phy.type == e1000_phy_82577)) {
5715		ret_val = hw->phy.ops.acquire(hw);
5716		if (ret_val)
5717			return;
5718		ret_val = hw->phy.ops.set_page(hw,
5719					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5720		if (ret_val)
5721			goto release;
5722		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5723		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5724		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5725		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5726		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5727		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5728		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5729		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5730		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5731		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5732		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5733		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5734		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5735		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5736release:
5737		hw->phy.ops.release(hw);
5738	}
5739}
5740
5741static const struct e1000_mac_operations ich8_mac_ops = {
5742	/* check_mng_mode dependent on mac type */
5743	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5744	/* cleanup_led dependent on mac type */
5745	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5746	.get_bus_info		= e1000_get_bus_info_ich8lan,
5747	.set_lan_id		= e1000_set_lan_id_single_port,
5748	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5749	/* led_on dependent on mac type */
5750	/* led_off dependent on mac type */
5751	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5752	.reset_hw		= e1000_reset_hw_ich8lan,
5753	.init_hw		= e1000_init_hw_ich8lan,
5754	.setup_link		= e1000_setup_link_ich8lan,
5755	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5756	/* id_led_init dependent on mac type */
5757	.config_collision_dist	= e1000e_config_collision_dist_generic,
5758	.rar_set		= e1000e_rar_set_generic,
5759	.rar_get_count		= e1000e_rar_get_count_generic,
5760};
5761
5762static const struct e1000_phy_operations ich8_phy_ops = {
5763	.acquire		= e1000_acquire_swflag_ich8lan,
5764	.check_reset_block	= e1000_check_reset_block_ich8lan,
5765	.commit			= NULL,
5766	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5767	.get_cable_length	= e1000e_get_cable_length_igp_2,
5768	.read_reg		= e1000e_read_phy_reg_igp,
5769	.release		= e1000_release_swflag_ich8lan,
5770	.reset			= e1000_phy_hw_reset_ich8lan,
5771	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5772	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5773	.write_reg		= e1000e_write_phy_reg_igp,
5774};
5775
5776static const struct e1000_nvm_operations ich8_nvm_ops = {
5777	.acquire		= e1000_acquire_nvm_ich8lan,
5778	.read			= e1000_read_nvm_ich8lan,
5779	.release		= e1000_release_nvm_ich8lan,
5780	.reload			= e1000e_reload_nvm_generic,
5781	.update			= e1000_update_nvm_checksum_ich8lan,
5782	.valid_led_default	= e1000_valid_led_default_ich8lan,
5783	.validate		= e1000_validate_nvm_checksum_ich8lan,
5784	.write			= e1000_write_nvm_ich8lan,
5785};
5786
5787static const struct e1000_nvm_operations spt_nvm_ops = {
5788	.acquire		= e1000_acquire_nvm_ich8lan,
5789	.release		= e1000_release_nvm_ich8lan,
5790	.read			= e1000_read_nvm_spt,
5791	.update			= e1000_update_nvm_checksum_spt,
5792	.reload			= e1000e_reload_nvm_generic,
5793	.valid_led_default	= e1000_valid_led_default_ich8lan,
5794	.validate		= e1000_validate_nvm_checksum_ich8lan,
5795	.write			= e1000_write_nvm_ich8lan,
5796};
5797
5798const struct e1000_info e1000_ich8_info = {
5799	.mac			= e1000_ich8lan,
5800	.flags			= FLAG_HAS_WOL
5801				  | FLAG_IS_ICH
5802				  | FLAG_HAS_CTRLEXT_ON_LOAD
5803				  | FLAG_HAS_AMT
5804				  | FLAG_HAS_FLASH
5805				  | FLAG_APME_IN_WUC,
5806	.pba			= 8,
5807	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5808	.get_variants		= e1000_get_variants_ich8lan,
5809	.mac_ops		= &ich8_mac_ops,
5810	.phy_ops		= &ich8_phy_ops,
5811	.nvm_ops		= &ich8_nvm_ops,
5812};
5813
5814const struct e1000_info e1000_ich9_info = {
5815	.mac			= e1000_ich9lan,
5816	.flags			= FLAG_HAS_JUMBO_FRAMES
5817				  | FLAG_IS_ICH
5818				  | FLAG_HAS_WOL
5819				  | FLAG_HAS_CTRLEXT_ON_LOAD
5820				  | FLAG_HAS_AMT
5821				  | FLAG_HAS_FLASH
5822				  | FLAG_APME_IN_WUC,
5823	.pba			= 18,
5824	.max_hw_frame_size	= DEFAULT_JUMBO,
5825	.get_variants		= e1000_get_variants_ich8lan,
5826	.mac_ops		= &ich8_mac_ops,
5827	.phy_ops		= &ich8_phy_ops,
5828	.nvm_ops		= &ich8_nvm_ops,
5829};
5830
5831const struct e1000_info e1000_ich10_info = {
5832	.mac			= e1000_ich10lan,
5833	.flags			= FLAG_HAS_JUMBO_FRAMES
5834				  | FLAG_IS_ICH
5835				  | FLAG_HAS_WOL
5836				  | FLAG_HAS_CTRLEXT_ON_LOAD
5837				  | FLAG_HAS_AMT
5838				  | FLAG_HAS_FLASH
5839				  | FLAG_APME_IN_WUC,
5840	.pba			= 18,
5841	.max_hw_frame_size	= DEFAULT_JUMBO,
5842	.get_variants		= e1000_get_variants_ich8lan,
5843	.mac_ops		= &ich8_mac_ops,
5844	.phy_ops		= &ich8_phy_ops,
5845	.nvm_ops		= &ich8_nvm_ops,
5846};
5847
5848const struct e1000_info e1000_pch_info = {
5849	.mac			= e1000_pchlan,
5850	.flags			= FLAG_IS_ICH
5851				  | FLAG_HAS_WOL
5852				  | FLAG_HAS_CTRLEXT_ON_LOAD
5853				  | FLAG_HAS_AMT
5854				  | FLAG_HAS_FLASH
5855				  | FLAG_HAS_JUMBO_FRAMES
5856				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5857				  | FLAG_APME_IN_WUC,
5858	.flags2			= FLAG2_HAS_PHY_STATS,
5859	.pba			= 26,
5860	.max_hw_frame_size	= 4096,
5861	.get_variants		= e1000_get_variants_ich8lan,
5862	.mac_ops		= &ich8_mac_ops,
5863	.phy_ops		= &ich8_phy_ops,
5864	.nvm_ops		= &ich8_nvm_ops,
5865};
5866
5867const struct e1000_info e1000_pch2_info = {
5868	.mac			= e1000_pch2lan,
5869	.flags			= FLAG_IS_ICH
5870				  | FLAG_HAS_WOL
5871				  | FLAG_HAS_HW_TIMESTAMP
5872				  | FLAG_HAS_CTRLEXT_ON_LOAD
5873				  | FLAG_HAS_AMT
5874				  | FLAG_HAS_FLASH
5875				  | FLAG_HAS_JUMBO_FRAMES
5876				  | FLAG_APME_IN_WUC,
5877	.flags2			= FLAG2_HAS_PHY_STATS
5878				  | FLAG2_HAS_EEE
5879				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5880	.pba			= 26,
5881	.max_hw_frame_size	= 9022,
5882	.get_variants		= e1000_get_variants_ich8lan,
5883	.mac_ops		= &ich8_mac_ops,
5884	.phy_ops		= &ich8_phy_ops,
5885	.nvm_ops		= &ich8_nvm_ops,
5886};
5887
5888const struct e1000_info e1000_pch_lpt_info = {
5889	.mac			= e1000_pch_lpt,
5890	.flags			= FLAG_IS_ICH
5891				  | FLAG_HAS_WOL
5892				  | FLAG_HAS_HW_TIMESTAMP
5893				  | FLAG_HAS_CTRLEXT_ON_LOAD
5894				  | FLAG_HAS_AMT
5895				  | FLAG_HAS_FLASH
5896				  | FLAG_HAS_JUMBO_FRAMES
5897				  | FLAG_APME_IN_WUC,
5898	.flags2			= FLAG2_HAS_PHY_STATS
5899				  | FLAG2_HAS_EEE
5900				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5901	.pba			= 26,
5902	.max_hw_frame_size	= 9022,
5903	.get_variants		= e1000_get_variants_ich8lan,
5904	.mac_ops		= &ich8_mac_ops,
5905	.phy_ops		= &ich8_phy_ops,
5906	.nvm_ops		= &ich8_nvm_ops,
5907};
5908
5909const struct e1000_info e1000_pch_spt_info = {
5910	.mac			= e1000_pch_spt,
5911	.flags			= FLAG_IS_ICH
5912				  | FLAG_HAS_WOL
5913				  | FLAG_HAS_HW_TIMESTAMP
5914				  | FLAG_HAS_CTRLEXT_ON_LOAD
5915				  | FLAG_HAS_AMT
5916				  | FLAG_HAS_FLASH
5917				  | FLAG_HAS_JUMBO_FRAMES
5918				  | FLAG_APME_IN_WUC,
5919	.flags2			= FLAG2_HAS_PHY_STATS
5920				  | FLAG2_HAS_EEE,
5921	.pba			= 26,
5922	.max_hw_frame_size	= 9022,
5923	.get_variants		= e1000_get_variants_ich8lan,
5924	.mac_ops		= &ich8_mac_ops,
5925	.phy_ops		= &ich8_phy_ops,
5926	.nvm_ops		= &spt_nvm_ops,
5927};
5928
5929const struct e1000_info e1000_pch_cnp_info = {
5930	.mac			= e1000_pch_cnp,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5931	.flags			= FLAG_IS_ICH
5932				  | FLAG_HAS_WOL
5933				  | FLAG_HAS_HW_TIMESTAMP
5934				  | FLAG_HAS_CTRLEXT_ON_LOAD
5935				  | FLAG_HAS_AMT
5936				  | FLAG_HAS_FLASH
5937				  | FLAG_HAS_JUMBO_FRAMES
5938				  | FLAG_APME_IN_WUC,
5939	.flags2			= FLAG2_HAS_PHY_STATS
5940				  | FLAG2_HAS_EEE,
5941	.pba			= 26,
5942	.max_hw_frame_size	= 9022,
5943	.get_variants		= e1000_get_variants_ich8lan,
5944	.mac_ops		= &ich8_mac_ops,
5945	.phy_ops		= &ich8_phy_ops,
5946	.nvm_ops		= &spt_nvm_ops,
5947};