Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* ethtool support for e1000 */
   5
   6#include <linux/netdevice.h>
   7#include <linux/interrupt.h>
   8#include <linux/ethtool.h>
   9#include <linux/pci.h>
  10#include <linux/slab.h>
  11#include <linux/delay.h>
  12#include <linux/vmalloc.h>
  13#include <linux/pm_runtime.h>
  14
  15#include "e1000.h"
  16
  17enum { NETDEV_STATS, E1000_STATS };
  18
  19struct e1000_stats {
  20	char stat_string[ETH_GSTRING_LEN];
  21	int type;
  22	int sizeof_stat;
  23	int stat_offset;
  24};
  25
  26static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
  27#define E1000E_PRIV_FLAGS_S0IX_ENABLED	BIT(0)
  28	"s0ix-enabled",
  29};
  30
  31#define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
  32
  33#define E1000_STAT(str, m) { \
  34		.stat_string = str, \
  35		.type = E1000_STATS, \
  36		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
  37		.stat_offset = offsetof(struct e1000_adapter, m) }
  38#define E1000_NETDEV_STAT(str, m) { \
  39		.stat_string = str, \
  40		.type = NETDEV_STATS, \
  41		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
  42		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
  43
  44static const struct e1000_stats e1000_gstrings_stats[] = {
  45	E1000_STAT("rx_packets", stats.gprc),
  46	E1000_STAT("tx_packets", stats.gptc),
  47	E1000_STAT("rx_bytes", stats.gorc),
  48	E1000_STAT("tx_bytes", stats.gotc),
  49	E1000_STAT("rx_broadcast", stats.bprc),
  50	E1000_STAT("tx_broadcast", stats.bptc),
  51	E1000_STAT("rx_multicast", stats.mprc),
  52	E1000_STAT("tx_multicast", stats.mptc),
  53	E1000_NETDEV_STAT("rx_errors", rx_errors),
  54	E1000_NETDEV_STAT("tx_errors", tx_errors),
  55	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
  56	E1000_STAT("multicast", stats.mprc),
  57	E1000_STAT("collisions", stats.colc),
  58	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
  59	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
  60	E1000_STAT("rx_crc_errors", stats.crcerrs),
  61	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
  62	E1000_STAT("rx_no_buffer_count", stats.rnbc),
  63	E1000_STAT("rx_missed_errors", stats.mpc),
  64	E1000_STAT("tx_aborted_errors", stats.ecol),
  65	E1000_STAT("tx_carrier_errors", stats.tncrs),
  66	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
  67	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
  68	E1000_STAT("tx_window_errors", stats.latecol),
  69	E1000_STAT("tx_abort_late_coll", stats.latecol),
  70	E1000_STAT("tx_deferred_ok", stats.dc),
  71	E1000_STAT("tx_single_coll_ok", stats.scc),
  72	E1000_STAT("tx_multi_coll_ok", stats.mcc),
  73	E1000_STAT("tx_timeout_count", tx_timeout_count),
  74	E1000_STAT("tx_restart_queue", restart_queue),
  75	E1000_STAT("rx_long_length_errors", stats.roc),
  76	E1000_STAT("rx_short_length_errors", stats.ruc),
  77	E1000_STAT("rx_align_errors", stats.algnerrc),
  78	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
  79	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
  80	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
  81	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
  82	E1000_STAT("tx_flow_control_xon", stats.xontxc),
  83	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
  84	E1000_STAT("rx_csum_offload_good", hw_csum_good),
  85	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
  86	E1000_STAT("rx_header_split", rx_hdr_split),
  87	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
  88	E1000_STAT("tx_smbus", stats.mgptc),
  89	E1000_STAT("rx_smbus", stats.mgprc),
  90	E1000_STAT("dropped_smbus", stats.mgpdc),
  91	E1000_STAT("rx_dma_failed", rx_dma_failed),
  92	E1000_STAT("tx_dma_failed", tx_dma_failed),
  93	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  94	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
  95	E1000_STAT("corr_ecc_errors", corr_errors),
  96	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  97	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  98};
  99
 100#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
 101#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
 102static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
 103	"Register test  (offline)", "Eeprom test    (offline)",
 104	"Interrupt test (offline)", "Loopback test  (offline)",
 105	"Link test   (on/offline)"
 106};
 107
 108#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
 109
 110static int e1000_get_link_ksettings(struct net_device *netdev,
 111				    struct ethtool_link_ksettings *cmd)
 112{
 113	u32 speed, supported, advertising, lp_advertising, lpa_t;
 114	struct e1000_adapter *adapter = netdev_priv(netdev);
 115	struct e1000_hw *hw = &adapter->hw;
 
 116
 117	if (hw->phy.media_type == e1000_media_type_copper) {
 118		supported = (SUPPORTED_10baseT_Half |
 119			     SUPPORTED_10baseT_Full |
 120			     SUPPORTED_100baseT_Half |
 121			     SUPPORTED_100baseT_Full |
 122			     SUPPORTED_1000baseT_Full |
 123			     SUPPORTED_Asym_Pause |
 124			     SUPPORTED_Autoneg |
 125			     SUPPORTED_Pause |
 126			     SUPPORTED_TP);
 127		if (hw->phy.type == e1000_phy_ife)
 128			supported &= ~SUPPORTED_1000baseT_Full;
 129		advertising = ADVERTISED_TP;
 130
 131		if (hw->mac.autoneg == 1) {
 132			advertising |= ADVERTISED_Autoneg;
 133			/* the e1000 autoneg seems to match ethtool nicely */
 134			advertising |= hw->phy.autoneg_advertised;
 135		}
 136
 137		cmd->base.port = PORT_TP;
 138		cmd->base.phy_address = hw->phy.addr;
 139	} else {
 140		supported   = (SUPPORTED_1000baseT_Full |
 141			       SUPPORTED_FIBRE |
 142			       SUPPORTED_Autoneg);
 143
 144		advertising = (ADVERTISED_1000baseT_Full |
 145			       ADVERTISED_FIBRE |
 146			       ADVERTISED_Autoneg);
 147
 148		cmd->base.port = PORT_FIBRE;
 149	}
 150
 151	speed = SPEED_UNKNOWN;
 152	cmd->base.duplex = DUPLEX_UNKNOWN;
 153
 154	if (netif_running(netdev)) {
 155		if (netif_carrier_ok(netdev)) {
 156			speed = adapter->link_speed;
 157			cmd->base.duplex = adapter->link_duplex - 1;
 158		}
 159	} else {
 160		u32 status = er32(STATUS);
 161
 162		if (status & E1000_STATUS_LU) {
 163			if (status & E1000_STATUS_SPEED_1000)
 164				speed = SPEED_1000;
 165			else if (status & E1000_STATUS_SPEED_100)
 166				speed = SPEED_100;
 167			else
 168				speed = SPEED_10;
 169
 170			if (status & E1000_STATUS_FD)
 171				cmd->base.duplex = DUPLEX_FULL;
 172			else
 173				cmd->base.duplex = DUPLEX_HALF;
 174		}
 175	}
 176
 177	cmd->base.speed = speed;
 178	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
 179			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 180
 181	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 182	if ((hw->phy.media_type == e1000_media_type_copper) &&
 183	    netif_carrier_ok(netdev))
 184		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
 185			ETH_TP_MDI_X : ETH_TP_MDI;
 186	else
 187		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 188
 189	if (hw->phy.mdix == AUTO_ALL_MODES)
 190		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 191	else
 192		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
 193
 194	if (hw->phy.media_type != e1000_media_type_copper)
 195		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
 196
 197	lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000);
 198	lp_advertising = lpa_t |
 199	mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa);
 200
 201	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 202						supported);
 203	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 204						advertising);
 205	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
 206						lp_advertising);
 207
 208	return 0;
 209}
 210
 211static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
 212{
 213	struct e1000_mac_info *mac = &adapter->hw.mac;
 214
 215	mac->autoneg = 0;
 216
 217	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 218	 * for the switch() below to work
 219	 */
 220	if ((spd & 1) || (dplx & ~1))
 221		goto err_inval;
 222
 223	/* Fiber NICs only allow 1000 gbps Full duplex */
 224	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
 225	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
 226		goto err_inval;
 227	}
 228
 229	switch (spd + dplx) {
 230	case SPEED_10 + DUPLEX_HALF:
 231		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 232		break;
 233	case SPEED_10 + DUPLEX_FULL:
 234		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 235		break;
 236	case SPEED_100 + DUPLEX_HALF:
 237		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 238		break;
 239	case SPEED_100 + DUPLEX_FULL:
 240		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 241		break;
 242	case SPEED_1000 + DUPLEX_FULL:
 243		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
 244			mac->autoneg = 1;
 245			adapter->hw.phy.autoneg_advertised =
 246				ADVERTISE_1000_FULL;
 247		} else {
 248			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
 249		}
 250		break;
 251	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
 252	default:
 253		goto err_inval;
 254	}
 255
 256	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 257	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 258
 259	return 0;
 260
 261err_inval:
 262	e_err("Unsupported Speed/Duplex configuration\n");
 263	return -EINVAL;
 264}
 265
 266static int e1000_set_link_ksettings(struct net_device *netdev,
 267				    const struct ethtool_link_ksettings *cmd)
 268{
 269	struct e1000_adapter *adapter = netdev_priv(netdev);
 270	struct e1000_hw *hw = &adapter->hw;
 271	int ret_val = 0;
 272	u32 advertising;
 273
 274	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 275						cmd->link_modes.advertising);
 276
 
 
 277	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 278	 * cannot be changed
 279	 */
 280	if (hw->phy.ops.check_reset_block &&
 281	    hw->phy.ops.check_reset_block(hw)) {
 282		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
 283		return -EINVAL;
 
 284	}
 285
 286	/* MDI setting is only allowed when autoneg enabled because
 287	 * some hardware doesn't allow MDI setting when speed or
 288	 * duplex is forced.
 289	 */
 290	if (cmd->base.eth_tp_mdix_ctrl) {
 291		if (hw->phy.media_type != e1000_media_type_copper)
 292			return -EOPNOTSUPP;
 
 
 293
 294		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 295		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 296			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 297			return -EINVAL;
 
 298		}
 299	}
 300
 301	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 302		usleep_range(1000, 2000);
 303
 304	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 305		hw->mac.autoneg = 1;
 306		if (hw->phy.media_type == e1000_media_type_fiber)
 307			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
 308			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
 309		else
 310			hw->phy.autoneg_advertised = advertising |
 311			    ADVERTISED_TP | ADVERTISED_Autoneg;
 312		advertising = hw->phy.autoneg_advertised;
 313		if (adapter->fc_autoneg)
 314			hw->fc.requested_mode = e1000_fc_default;
 315	} else {
 316		u32 speed = cmd->base.speed;
 317		/* calling this overrides forced MDI setting */
 318		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 319			ret_val = -EINVAL;
 320			goto out;
 321		}
 322	}
 323
 324	/* MDI-X => 2; MDI => 1; Auto => 3 */
 325	if (cmd->base.eth_tp_mdix_ctrl) {
 326		/* fix up the value for auto (3 => 0) as zero is mapped
 327		 * internally to auto
 328		 */
 329		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 330			hw->phy.mdix = AUTO_ALL_MODES;
 331		else
 332			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
 333	}
 334
 335	/* reset the link */
 336	if (netif_running(adapter->netdev)) {
 337		e1000e_down(adapter, true);
 338		e1000e_up(adapter);
 339	} else {
 340		e1000e_reset(adapter);
 341	}
 342
 343out:
 
 344	clear_bit(__E1000_RESETTING, &adapter->state);
 345	return ret_val;
 346}
 347
 348static void e1000_get_pauseparam(struct net_device *netdev,
 349				 struct ethtool_pauseparam *pause)
 350{
 351	struct e1000_adapter *adapter = netdev_priv(netdev);
 352	struct e1000_hw *hw = &adapter->hw;
 353
 354	pause->autoneg =
 355	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 356
 357	if (hw->fc.current_mode == e1000_fc_rx_pause) {
 358		pause->rx_pause = 1;
 359	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
 360		pause->tx_pause = 1;
 361	} else if (hw->fc.current_mode == e1000_fc_full) {
 362		pause->rx_pause = 1;
 363		pause->tx_pause = 1;
 364	}
 365}
 366
 367static int e1000_set_pauseparam(struct net_device *netdev,
 368				struct ethtool_pauseparam *pause)
 369{
 370	struct e1000_adapter *adapter = netdev_priv(netdev);
 371	struct e1000_hw *hw = &adapter->hw;
 372	int retval = 0;
 373
 374	adapter->fc_autoneg = pause->autoneg;
 375
 376	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 377		usleep_range(1000, 2000);
 378
 
 
 379	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 380		hw->fc.requested_mode = e1000_fc_default;
 381		if (netif_running(adapter->netdev)) {
 382			e1000e_down(adapter, true);
 383			e1000e_up(adapter);
 384		} else {
 385			e1000e_reset(adapter);
 386		}
 387	} else {
 388		if (pause->rx_pause && pause->tx_pause)
 389			hw->fc.requested_mode = e1000_fc_full;
 390		else if (pause->rx_pause && !pause->tx_pause)
 391			hw->fc.requested_mode = e1000_fc_rx_pause;
 392		else if (!pause->rx_pause && pause->tx_pause)
 393			hw->fc.requested_mode = e1000_fc_tx_pause;
 394		else if (!pause->rx_pause && !pause->tx_pause)
 395			hw->fc.requested_mode = e1000_fc_none;
 396
 397		hw->fc.current_mode = hw->fc.requested_mode;
 398
 399		if (hw->phy.media_type == e1000_media_type_fiber) {
 400			retval = hw->mac.ops.setup_link(hw);
 401			/* implicit goto out */
 402		} else {
 403			retval = e1000e_force_mac_fc(hw);
 404			if (retval)
 405				goto out;
 406			e1000e_set_fc_watermarks(hw);
 407		}
 408	}
 409
 410out:
 
 411	clear_bit(__E1000_RESETTING, &adapter->state);
 412	return retval;
 413}
 414
 415static u32 e1000_get_msglevel(struct net_device *netdev)
 416{
 417	struct e1000_adapter *adapter = netdev_priv(netdev);
 418	return adapter->msg_enable;
 419}
 420
 421static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 422{
 423	struct e1000_adapter *adapter = netdev_priv(netdev);
 424	adapter->msg_enable = data;
 425}
 426
 427static int e1000_get_regs_len(struct net_device __always_unused *netdev)
 428{
 429#define E1000_REGS_LEN 32	/* overestimate */
 430	return E1000_REGS_LEN * sizeof(u32);
 431}
 432
 433static void e1000_get_regs(struct net_device *netdev,
 434			   struct ethtool_regs *regs, void *p)
 435{
 436	struct e1000_adapter *adapter = netdev_priv(netdev);
 437	struct e1000_hw *hw = &adapter->hw;
 438	u32 *regs_buff = p;
 439	u16 phy_data;
 440
 
 
 441	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 442
 443	regs->version = (1u << 24) |
 444			(adapter->pdev->revision << 16) |
 445			adapter->pdev->device;
 446
 447	regs_buff[0] = er32(CTRL);
 448	regs_buff[1] = er32(STATUS);
 449
 450	regs_buff[2] = er32(RCTL);
 451	regs_buff[3] = er32(RDLEN(0));
 452	regs_buff[4] = er32(RDH(0));
 453	regs_buff[5] = er32(RDT(0));
 454	regs_buff[6] = er32(RDTR);
 455
 456	regs_buff[7] = er32(TCTL);
 457	regs_buff[8] = er32(TDLEN(0));
 458	regs_buff[9] = er32(TDH(0));
 459	regs_buff[10] = er32(TDT(0));
 460	regs_buff[11] = er32(TIDV);
 461
 462	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
 463
 464	/* ethtool doesn't use anything past this point, so all this
 465	 * code is likely legacy junk for apps that may or may not exist
 466	 */
 467	if (hw->phy.type == e1000_phy_m88) {
 468		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 469		regs_buff[13] = (u32)phy_data; /* cable length */
 470		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 471		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 472		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 473		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 474		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 475		regs_buff[18] = regs_buff[13]; /* cable polarity */
 476		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 477		regs_buff[20] = regs_buff[17]; /* polarity correction */
 478		/* phy receive errors */
 479		regs_buff[22] = adapter->phy_stats.receive_errors;
 480		regs_buff[23] = regs_buff[13]; /* mdix mode */
 481	}
 482	regs_buff[21] = 0;	/* was idle_errors */
 483	e1e_rphy(hw, MII_STAT1000, &phy_data);
 484	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
 485	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
 
 
 486}
 487
 488static int e1000_get_eeprom_len(struct net_device *netdev)
 489{
 490	struct e1000_adapter *adapter = netdev_priv(netdev);
 491	return adapter->hw.nvm.word_size * 2;
 492}
 493
 494static int e1000_get_eeprom(struct net_device *netdev,
 495			    struct ethtool_eeprom *eeprom, u8 *bytes)
 496{
 497	struct e1000_adapter *adapter = netdev_priv(netdev);
 498	struct e1000_hw *hw = &adapter->hw;
 499	u16 *eeprom_buff;
 500	int first_word;
 501	int last_word;
 502	int ret_val = 0;
 503	u16 i;
 504
 505	if (eeprom->len == 0)
 506		return -EINVAL;
 507
 508	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
 509
 510	first_word = eeprom->offset >> 1;
 511	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 512
 513	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 514				    GFP_KERNEL);
 515	if (!eeprom_buff)
 516		return -ENOMEM;
 517
 
 
 518	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 519		ret_val = e1000_read_nvm(hw, first_word,
 520					 last_word - first_word + 1,
 521					 eeprom_buff);
 522	} else {
 523		for (i = 0; i < last_word - first_word + 1; i++) {
 524			ret_val = e1000_read_nvm(hw, first_word + i, 1,
 525						 &eeprom_buff[i]);
 526			if (ret_val)
 527				break;
 528		}
 529	}
 530
 
 
 531	if (ret_val) {
 532		/* a read error occurred, throw away the result */
 533		memset(eeprom_buff, 0xff, sizeof(u16) *
 534		       (last_word - first_word + 1));
 535	} else {
 536		/* Device's eeprom is always little-endian, word addressable */
 537		for (i = 0; i < last_word - first_word + 1; i++)
 538			le16_to_cpus(&eeprom_buff[i]);
 539	}
 540
 541	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
 542	kfree(eeprom_buff);
 543
 544	return ret_val;
 545}
 546
 547static int e1000_set_eeprom(struct net_device *netdev,
 548			    struct ethtool_eeprom *eeprom, u8 *bytes)
 549{
 550	struct e1000_adapter *adapter = netdev_priv(netdev);
 551	struct e1000_hw *hw = &adapter->hw;
 552	u16 *eeprom_buff;
 553	void *ptr;
 554	int max_len;
 555	int first_word;
 556	int last_word;
 557	int ret_val = 0;
 558	u16 i;
 559
 560	if (eeprom->len == 0)
 561		return -EOPNOTSUPP;
 562
 563	if (eeprom->magic !=
 564	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
 565		return -EFAULT;
 566
 567	if (adapter->flags & FLAG_READ_ONLY_NVM)
 568		return -EINVAL;
 569
 570	max_len = hw->nvm.word_size * 2;
 571
 572	first_word = eeprom->offset >> 1;
 573	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 574	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 575	if (!eeprom_buff)
 576		return -ENOMEM;
 577
 578	ptr = (void *)eeprom_buff;
 579
 
 
 580	if (eeprom->offset & 1) {
 581		/* need read/modify/write of first changed EEPROM word */
 582		/* only the second byte of the word is being modified */
 583		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
 584		ptr++;
 585	}
 586	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
 587		/* need read/modify/write of last changed EEPROM word */
 588		/* only the first byte of the word is being modified */
 589		ret_val = e1000_read_nvm(hw, last_word, 1,
 590					 &eeprom_buff[last_word - first_word]);
 591
 592	if (ret_val)
 593		goto out;
 594
 595	/* Device's eeprom is always little-endian, word addressable */
 596	for (i = 0; i < last_word - first_word + 1; i++)
 597		le16_to_cpus(&eeprom_buff[i]);
 598
 599	memcpy(ptr, bytes, eeprom->len);
 600
 601	for (i = 0; i < last_word - first_word + 1; i++)
 602		cpu_to_le16s(&eeprom_buff[i]);
 603
 604	ret_val = e1000_write_nvm(hw, first_word,
 605				  last_word - first_word + 1, eeprom_buff);
 606
 607	if (ret_val)
 608		goto out;
 609
 610	/* Update the checksum over the first part of the EEPROM if needed
 611	 * and flush shadow RAM for applicable controllers
 612	 */
 613	if ((first_word <= NVM_CHECKSUM_REG) ||
 614	    (hw->mac.type == e1000_82583) ||
 615	    (hw->mac.type == e1000_82574) ||
 616	    (hw->mac.type == e1000_82573))
 617		ret_val = e1000e_update_nvm_checksum(hw);
 618
 619out:
 
 620	kfree(eeprom_buff);
 621	return ret_val;
 622}
 623
 624static void e1000_get_drvinfo(struct net_device *netdev,
 625			      struct ethtool_drvinfo *drvinfo)
 626{
 627	struct e1000_adapter *adapter = netdev_priv(netdev);
 628
 629	strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
 
 
 630
 631	/* EEPROM image version # is reported as firmware version # for
 632	 * PCI-E controllers
 633	 */
 634	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
 635		 "%d.%d-%d",
 636		 FIELD_GET(0xF000, adapter->eeprom_vers),
 637		 FIELD_GET(0x0FF0, adapter->eeprom_vers),
 638		 (adapter->eeprom_vers & 0x000F));
 639
 640	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
 641		sizeof(drvinfo->bus_info));
 642}
 643
 644static void e1000_get_ringparam(struct net_device *netdev,
 645				struct ethtool_ringparam *ring,
 646				struct kernel_ethtool_ringparam *kernel_ring,
 647				struct netlink_ext_ack *extack)
 648{
 649	struct e1000_adapter *adapter = netdev_priv(netdev);
 650
 651	ring->rx_max_pending = E1000_MAX_RXD;
 652	ring->tx_max_pending = E1000_MAX_TXD;
 653	ring->rx_pending = adapter->rx_ring_count;
 654	ring->tx_pending = adapter->tx_ring_count;
 655}
 656
 657static int e1000_set_ringparam(struct net_device *netdev,
 658			       struct ethtool_ringparam *ring,
 659			       struct kernel_ethtool_ringparam *kernel_ring,
 660			       struct netlink_ext_ack *extack)
 661{
 662	struct e1000_adapter *adapter = netdev_priv(netdev);
 663	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
 664	int err = 0, size = sizeof(struct e1000_ring);
 665	bool set_tx = false, set_rx = false;
 666	u16 new_rx_count, new_tx_count;
 667
 668	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 669		return -EINVAL;
 670
 671	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
 672			       E1000_MAX_RXD);
 673	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 674
 675	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
 676			       E1000_MAX_TXD);
 677	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 678
 679	if ((new_tx_count == adapter->tx_ring_count) &&
 680	    (new_rx_count == adapter->rx_ring_count))
 681		/* nothing to do */
 682		return 0;
 683
 684	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 685		usleep_range(1000, 2000);
 686
 687	if (!netif_running(adapter->netdev)) {
 688		/* Set counts now and allocate resources during open() */
 689		adapter->tx_ring->count = new_tx_count;
 690		adapter->rx_ring->count = new_rx_count;
 691		adapter->tx_ring_count = new_tx_count;
 692		adapter->rx_ring_count = new_rx_count;
 693		goto clear_reset;
 694	}
 695
 696	set_tx = (new_tx_count != adapter->tx_ring_count);
 697	set_rx = (new_rx_count != adapter->rx_ring_count);
 698
 699	/* Allocate temporary storage for ring updates */
 700	if (set_tx) {
 701		temp_tx = vmalloc(size);
 702		if (!temp_tx) {
 703			err = -ENOMEM;
 704			goto free_temp;
 705		}
 706	}
 707	if (set_rx) {
 708		temp_rx = vmalloc(size);
 709		if (!temp_rx) {
 710			err = -ENOMEM;
 711			goto free_temp;
 712		}
 713	}
 714
 
 
 715	e1000e_down(adapter, true);
 716
 717	/* We can't just free everything and then setup again, because the
 718	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
 719	 * structs.  First, attempt to allocate new resources...
 720	 */
 721	if (set_tx) {
 722		memcpy(temp_tx, adapter->tx_ring, size);
 723		temp_tx->count = new_tx_count;
 724		err = e1000e_setup_tx_resources(temp_tx);
 725		if (err)
 726			goto err_setup;
 727	}
 728	if (set_rx) {
 729		memcpy(temp_rx, adapter->rx_ring, size);
 730		temp_rx->count = new_rx_count;
 731		err = e1000e_setup_rx_resources(temp_rx);
 732		if (err)
 733			goto err_setup_rx;
 734	}
 735
 736	/* ...then free the old resources and copy back any new ring data */
 737	if (set_tx) {
 738		e1000e_free_tx_resources(adapter->tx_ring);
 739		memcpy(adapter->tx_ring, temp_tx, size);
 740		adapter->tx_ring_count = new_tx_count;
 741	}
 742	if (set_rx) {
 743		e1000e_free_rx_resources(adapter->rx_ring);
 744		memcpy(adapter->rx_ring, temp_rx, size);
 745		adapter->rx_ring_count = new_rx_count;
 746	}
 747
 748err_setup_rx:
 749	if (err && set_tx)
 750		e1000e_free_tx_resources(temp_tx);
 751err_setup:
 752	e1000e_up(adapter);
 
 753free_temp:
 754	vfree(temp_tx);
 755	vfree(temp_rx);
 756clear_reset:
 757	clear_bit(__E1000_RESETTING, &adapter->state);
 758	return err;
 759}
 760
 761static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
 762			     int reg, int offset, u32 mask, u32 write)
 763{
 764	u32 pat, val;
 765	static const u32 test[] = {
 766		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 767	};
 768	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
 769		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
 770				      (test[pat] & write));
 771		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
 772		if (val != (test[pat] & write & mask)) {
 773			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 774			      reg + (offset << 2), val,
 775			      (test[pat] & write & mask));
 776			*data = reg;
 777			return true;
 778		}
 779	}
 780	return false;
 781}
 782
 783static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
 784			      int reg, u32 mask, u32 write)
 785{
 786	u32 val;
 787
 788	__ew32(&adapter->hw, reg, write & mask);
 789	val = __er32(&adapter->hw, reg);
 790	if ((write & mask) != (val & mask)) {
 791		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 792		      reg, (val & mask), (write & mask));
 793		*data = reg;
 794		return true;
 795	}
 796	return false;
 797}
 798
 799#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
 800	do {                                                                   \
 801		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
 802			return 1;                                              \
 803	} while (0)
 804#define REG_PATTERN_TEST(reg, mask, write)                                     \
 805	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
 806
 807#define REG_SET_AND_CHECK(reg, mask, write)                                    \
 808	do {                                                                   \
 809		if (reg_set_and_check(adapter, data, reg, mask, write))        \
 810			return 1;                                              \
 811	} while (0)
 812
 813static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 814{
 815	struct e1000_hw *hw = &adapter->hw;
 816	struct e1000_mac_info *mac = &adapter->hw.mac;
 817	u32 value;
 818	u32 before;
 819	u32 after;
 820	u32 i;
 821	u32 toggle;
 822	u32 mask;
 823	u32 wlock_mac = 0;
 824
 825	/* The status register is Read Only, so a write should fail.
 826	 * Some bits that get toggled are ignored.  There are several bits
 827	 * on newer hardware that are r/w.
 828	 */
 829	switch (mac->type) {
 830	case e1000_82571:
 831	case e1000_82572:
 832	case e1000_80003es2lan:
 833		toggle = 0x7FFFF3FF;
 834		break;
 835	default:
 836		toggle = 0x7FFFF033;
 837		break;
 838	}
 839
 840	before = er32(STATUS);
 841	value = (er32(STATUS) & toggle);
 842	ew32(STATUS, toggle);
 843	after = er32(STATUS) & toggle;
 844	if (value != after) {
 845		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
 846		      after, value);
 847		*data = 1;
 848		return 1;
 849	}
 850	/* restore previous status */
 851	ew32(STATUS, before);
 852
 853	if (!(adapter->flags & FLAG_IS_ICH)) {
 854		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 855		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
 856		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
 857		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
 858	}
 859
 860	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
 861	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 862	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
 863	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
 864	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
 865	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
 866	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
 867	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 868	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 869	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
 870
 871	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
 872
 873	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
 874	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
 875	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
 876
 877	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
 878	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 879	if (!(adapter->flags & FLAG_IS_ICH))
 880		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
 881	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 882	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
 883	mask = 0x8003FFFF;
 884	switch (mac->type) {
 885	case e1000_ich10lan:
 886	case e1000_pchlan:
 887	case e1000_pch2lan:
 888	case e1000_pch_lpt:
 889	case e1000_pch_spt:
 
 890	case e1000_pch_cnp:
 891	case e1000_pch_tgp:
 892	case e1000_pch_adp:
 893	case e1000_pch_mtp:
 894	case e1000_pch_lnp:
 895	case e1000_pch_ptp:
 896	case e1000_pch_nvp:
 897		mask |= BIT(18);
 898		break;
 899	default:
 900		break;
 901	}
 902
 903	if (mac->type >= e1000_pch_lpt)
 904		wlock_mac = FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK, er32(FWSM));
 
 905
 906	for (i = 0; i < mac->rar_entry_count; i++) {
 907		if (mac->type >= e1000_pch_lpt) {
 908			/* Cannot test write-protected SHRAL[n] registers */
 909			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
 910				continue;
 911
 912			/* SHRAH[9] different than the others */
 913			if (i == 10)
 914				mask |= BIT(30);
 915			else
 916				mask &= ~BIT(30);
 917		}
 918		if (mac->type == e1000_pch2lan) {
 919			/* SHRAH[0,1,2] different than previous */
 920			if (i == 1)
 921				mask &= 0xFFF4FFFF;
 922			/* SHRAH[3] different than SHRAH[0,1,2] */
 923			if (i == 4)
 924				mask |= BIT(30);
 925			/* RAR[1-6] owned by management engine - skipping */
 926			if (i > 0)
 927				i += 6;
 928		}
 929
 930		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
 931				       0xFFFFFFFF);
 932		/* reset index to actual value */
 933		if ((mac->type == e1000_pch2lan) && (i > 6))
 934			i -= 6;
 935	}
 936
 937	for (i = 0; i < mac->mta_reg_count; i++)
 938		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
 939
 940	*data = 0;
 941
 942	return 0;
 943}
 944
 945static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 946{
 947	u16 temp;
 948	u16 checksum = 0;
 949	u16 i;
 950
 951	*data = 0;
 952	/* Read and add up the contents of the EEPROM */
 953	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 954		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
 955			*data = 1;
 956			return *data;
 957		}
 958		checksum += temp;
 959	}
 960
 961	/* If Checksum is not Correct return error else test passed */
 962	if ((checksum != (u16)NVM_SUM) && !(*data))
 963		*data = 2;
 964
 965	return *data;
 966}
 967
 968static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
 969{
 970	struct net_device *netdev = (struct net_device *)data;
 971	struct e1000_adapter *adapter = netdev_priv(netdev);
 972	struct e1000_hw *hw = &adapter->hw;
 973
 974	adapter->test_icr |= er32(ICR);
 975
 976	return IRQ_HANDLED;
 977}
 978
 979static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 980{
 981	struct net_device *netdev = adapter->netdev;
 982	struct e1000_hw *hw = &adapter->hw;
 983	u32 mask;
 984	u32 shared_int = 1;
 985	u32 irq = adapter->pdev->irq;
 986	int i;
 987	int ret_val = 0;
 988	int int_mode = E1000E_INT_MODE_LEGACY;
 989
 990	*data = 0;
 991
 992	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
 993	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
 994		int_mode = adapter->int_mode;
 995		e1000e_reset_interrupt_capability(adapter);
 996		adapter->int_mode = E1000E_INT_MODE_LEGACY;
 997		e1000e_set_interrupt_capability(adapter);
 998	}
 999	/* Hook up test interrupt handler just for this test */
1000	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1001			 netdev)) {
1002		shared_int = 0;
1003	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1004			       netdev)) {
1005		*data = 1;
1006		ret_val = -1;
1007		goto out;
1008	}
1009	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1010
1011	/* Disable all the interrupts */
1012	ew32(IMC, 0xFFFFFFFF);
1013	e1e_flush();
1014	usleep_range(10000, 11000);
1015
1016	/* Test each interrupt */
1017	for (i = 0; i < 10; i++) {
1018		/* Interrupt to test */
1019		mask = BIT(i);
1020
1021		if (adapter->flags & FLAG_IS_ICH) {
1022			switch (mask) {
1023			case E1000_ICR_RXSEQ:
1024				continue;
1025			case 0x00000100:
1026				if (adapter->hw.mac.type == e1000_ich8lan ||
1027				    adapter->hw.mac.type == e1000_ich9lan)
1028					continue;
1029				break;
1030			default:
1031				break;
1032			}
1033		}
1034
1035		if (!shared_int) {
1036			/* Disable the interrupt to be reported in
1037			 * the cause register and then force the same
1038			 * interrupt and see if one gets posted.  If
1039			 * an interrupt was posted to the bus, the
1040			 * test failed.
1041			 */
1042			adapter->test_icr = 0;
1043			ew32(IMC, mask);
1044			ew32(ICS, mask);
1045			e1e_flush();
1046			usleep_range(10000, 11000);
1047
1048			if (adapter->test_icr & mask) {
1049				*data = 3;
1050				break;
1051			}
1052		}
1053
1054		/* Enable the interrupt to be reported in
1055		 * the cause register and then force the same
1056		 * interrupt and see if one gets posted.  If
1057		 * an interrupt was not posted to the bus, the
1058		 * test failed.
1059		 */
1060		adapter->test_icr = 0;
1061		ew32(IMS, mask);
1062		ew32(ICS, mask);
1063		e1e_flush();
1064		usleep_range(10000, 11000);
1065
1066		if (!(adapter->test_icr & mask)) {
1067			*data = 4;
1068			break;
1069		}
1070
1071		if (!shared_int) {
1072			/* Disable the other interrupts to be reported in
1073			 * the cause register and then force the other
1074			 * interrupts and see if any get posted.  If
1075			 * an interrupt was posted to the bus, the
1076			 * test failed.
1077			 */
1078			adapter->test_icr = 0;
1079			ew32(IMC, ~mask & 0x00007FFF);
1080			ew32(ICS, ~mask & 0x00007FFF);
1081			e1e_flush();
1082			usleep_range(10000, 11000);
1083
1084			if (adapter->test_icr) {
1085				*data = 5;
1086				break;
1087			}
1088		}
1089	}
1090
1091	/* Disable all the interrupts */
1092	ew32(IMC, 0xFFFFFFFF);
1093	e1e_flush();
1094	usleep_range(10000, 11000);
1095
1096	/* Unhook test interrupt handler */
1097	free_irq(irq, netdev);
1098
1099out:
1100	if (int_mode == E1000E_INT_MODE_MSIX) {
1101		e1000e_reset_interrupt_capability(adapter);
1102		adapter->int_mode = int_mode;
1103		e1000e_set_interrupt_capability(adapter);
1104	}
1105
1106	return ret_val;
1107}
1108
1109static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1110{
1111	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1112	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1113	struct pci_dev *pdev = adapter->pdev;
1114	struct e1000_buffer *buffer_info;
1115	int i;
1116
1117	if (tx_ring->desc && tx_ring->buffer_info) {
1118		for (i = 0; i < tx_ring->count; i++) {
1119			buffer_info = &tx_ring->buffer_info[i];
1120
1121			if (buffer_info->dma)
1122				dma_unmap_single(&pdev->dev,
1123						 buffer_info->dma,
1124						 buffer_info->length,
1125						 DMA_TO_DEVICE);
1126			dev_kfree_skb(buffer_info->skb);
 
1127		}
1128	}
1129
1130	if (rx_ring->desc && rx_ring->buffer_info) {
1131		for (i = 0; i < rx_ring->count; i++) {
1132			buffer_info = &rx_ring->buffer_info[i];
1133
1134			if (buffer_info->dma)
1135				dma_unmap_single(&pdev->dev,
1136						 buffer_info->dma,
1137						 2048, DMA_FROM_DEVICE);
1138			dev_kfree_skb(buffer_info->skb);
 
1139		}
1140	}
1141
1142	if (tx_ring->desc) {
1143		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1144				  tx_ring->dma);
1145		tx_ring->desc = NULL;
1146	}
1147	if (rx_ring->desc) {
1148		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1149				  rx_ring->dma);
1150		rx_ring->desc = NULL;
1151	}
1152
1153	kfree(tx_ring->buffer_info);
1154	tx_ring->buffer_info = NULL;
1155	kfree(rx_ring->buffer_info);
1156	rx_ring->buffer_info = NULL;
1157}
1158
1159static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1160{
1161	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1162	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1163	struct pci_dev *pdev = adapter->pdev;
1164	struct e1000_hw *hw = &adapter->hw;
1165	u32 rctl;
1166	int i;
1167	int ret_val;
1168
1169	/* Setup Tx descriptor ring and Tx buffers */
1170
1171	if (!tx_ring->count)
1172		tx_ring->count = E1000_DEFAULT_TXD;
1173
1174	tx_ring->buffer_info = kcalloc(tx_ring->count,
1175				       sizeof(struct e1000_buffer), GFP_KERNEL);
1176	if (!tx_ring->buffer_info) {
1177		ret_val = 1;
1178		goto err_nomem;
1179	}
1180
1181	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1182	tx_ring->size = ALIGN(tx_ring->size, 4096);
1183	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1184					   &tx_ring->dma, GFP_KERNEL);
1185	if (!tx_ring->desc) {
1186		ret_val = 2;
1187		goto err_nomem;
1188	}
1189	tx_ring->next_to_use = 0;
1190	tx_ring->next_to_clean = 0;
1191
1192	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1193	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1194	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1195	ew32(TDH(0), 0);
1196	ew32(TDT(0), 0);
1197	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1198	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1199	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1200
1201	for (i = 0; i < tx_ring->count; i++) {
1202		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1203		struct sk_buff *skb;
1204		unsigned int skb_size = 1024;
1205
1206		skb = alloc_skb(skb_size, GFP_KERNEL);
1207		if (!skb) {
1208			ret_val = 3;
1209			goto err_nomem;
1210		}
1211		skb_put(skb, skb_size);
1212		tx_ring->buffer_info[i].skb = skb;
1213		tx_ring->buffer_info[i].length = skb->len;
1214		tx_ring->buffer_info[i].dma =
1215		    dma_map_single(&pdev->dev, skb->data, skb->len,
1216				   DMA_TO_DEVICE);
1217		if (dma_mapping_error(&pdev->dev,
1218				      tx_ring->buffer_info[i].dma)) {
1219			ret_val = 4;
1220			goto err_nomem;
1221		}
1222		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1223		tx_desc->lower.data = cpu_to_le32(skb->len);
1224		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1225						   E1000_TXD_CMD_IFCS |
1226						   E1000_TXD_CMD_RS);
1227		tx_desc->upper.data = 0;
1228	}
1229
1230	/* Setup Rx descriptor ring and Rx buffers */
1231
1232	if (!rx_ring->count)
1233		rx_ring->count = E1000_DEFAULT_RXD;
1234
1235	rx_ring->buffer_info = kcalloc(rx_ring->count,
1236				       sizeof(struct e1000_buffer), GFP_KERNEL);
1237	if (!rx_ring->buffer_info) {
1238		ret_val = 5;
1239		goto err_nomem;
1240	}
1241
1242	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1243	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1244					   &rx_ring->dma, GFP_KERNEL);
1245	if (!rx_ring->desc) {
1246		ret_val = 6;
1247		goto err_nomem;
1248	}
1249	rx_ring->next_to_use = 0;
1250	rx_ring->next_to_clean = 0;
1251
1252	rctl = er32(RCTL);
1253	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1254		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1255	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1256	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1257	ew32(RDLEN(0), rx_ring->size);
1258	ew32(RDH(0), 0);
1259	ew32(RDT(0), 0);
1260	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1261	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1262	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1263	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1264	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1265	ew32(RCTL, rctl);
1266
1267	for (i = 0; i < rx_ring->count; i++) {
1268		union e1000_rx_desc_extended *rx_desc;
1269		struct sk_buff *skb;
1270
1271		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1272		if (!skb) {
1273			ret_val = 7;
1274			goto err_nomem;
1275		}
1276		skb_reserve(skb, NET_IP_ALIGN);
1277		rx_ring->buffer_info[i].skb = skb;
1278		rx_ring->buffer_info[i].dma =
1279		    dma_map_single(&pdev->dev, skb->data, 2048,
1280				   DMA_FROM_DEVICE);
1281		if (dma_mapping_error(&pdev->dev,
1282				      rx_ring->buffer_info[i].dma)) {
1283			ret_val = 8;
1284			goto err_nomem;
1285		}
1286		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1287		rx_desc->read.buffer_addr =
1288		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1289		memset(skb->data, 0x00, skb->len);
1290	}
1291
1292	return 0;
1293
1294err_nomem:
1295	e1000_free_desc_rings(adapter);
1296	return ret_val;
1297}
1298
1299static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1300{
1301	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1302	e1e_wphy(&adapter->hw, 29, 0x001F);
1303	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1304	e1e_wphy(&adapter->hw, 29, 0x001A);
1305	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1306}
1307
1308static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1309{
1310	struct e1000_hw *hw = &adapter->hw;
1311	u32 ctrl_reg = 0;
1312	u16 phy_reg = 0;
1313	s32 ret_val = 0;
1314
1315	hw->mac.autoneg = 0;
1316
1317	if (hw->phy.type == e1000_phy_ife) {
1318		/* force 100, set loopback */
1319		e1e_wphy(hw, MII_BMCR, 0x6100);
1320
1321		/* Now set up the MAC to the same speed/duplex as the PHY. */
1322		ctrl_reg = er32(CTRL);
1323		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1324		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1325			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1326			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1327			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1328
1329		ew32(CTRL, ctrl_reg);
1330		e1e_flush();
1331		usleep_range(500, 1000);
1332
1333		return 0;
1334	}
1335
1336	/* Specific PHY configuration for loopback */
1337	switch (hw->phy.type) {
1338	case e1000_phy_m88:
1339		/* Auto-MDI/MDIX Off */
1340		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1341		/* reset to update Auto-MDI/MDIX */
1342		e1e_wphy(hw, MII_BMCR, 0x9140);
1343		/* autoneg off */
1344		e1e_wphy(hw, MII_BMCR, 0x8140);
1345		break;
1346	case e1000_phy_gg82563:
1347		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1348		break;
1349	case e1000_phy_bm:
1350		/* Set Default MAC Interface speed to 1GB */
1351		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1352		phy_reg &= ~0x0007;
1353		phy_reg |= 0x006;
1354		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1355		/* Assert SW reset for above settings to take effect */
1356		hw->phy.ops.commit(hw);
1357		usleep_range(1000, 2000);
1358		/* Force Full Duplex */
1359		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1360		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1361		/* Set Link Up (in force link) */
1362		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1363		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1364		/* Force Link */
1365		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1366		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1367		/* Set Early Link Enable */
1368		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1369		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1370		break;
1371	case e1000_phy_82577:
1372	case e1000_phy_82578:
1373		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1374		ret_val = hw->phy.ops.acquire(hw);
1375		if (ret_val) {
1376			e_err("Cannot setup 1Gbps loopback.\n");
1377			return ret_val;
1378		}
1379		e1000_configure_k1_ich8lan(hw, false);
1380		hw->phy.ops.release(hw);
1381		break;
1382	case e1000_phy_82579:
1383		/* Disable PHY energy detect power down */
1384		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1385		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1386		/* Disable full chip energy detect */
1387		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1388		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1389		/* Enable loopback on the PHY */
1390		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1391		break;
1392	default:
1393		break;
1394	}
1395
1396	/* force 1000, set loopback */
1397	e1e_wphy(hw, MII_BMCR, 0x4140);
1398	msleep(250);
1399
1400	/* Now set up the MAC to the same speed/duplex as the PHY. */
1401	ctrl_reg = er32(CTRL);
1402	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1403	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1404		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1405		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1406		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1407
1408	if (adapter->flags & FLAG_IS_ICH)
1409		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1410
1411	if (hw->phy.media_type == e1000_media_type_copper &&
1412	    hw->phy.type == e1000_phy_m88) {
1413		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1414	} else {
1415		/* Set the ILOS bit on the fiber Nic if half duplex link is
1416		 * detected.
1417		 */
1418		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1419			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1420	}
1421
1422	ew32(CTRL, ctrl_reg);
1423
1424	/* Disable the receiver on the PHY so when a cable is plugged in, the
1425	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1426	 */
1427	if (hw->phy.type == e1000_phy_m88)
1428		e1000_phy_disable_receiver(adapter);
1429
1430	usleep_range(500, 1000);
1431
1432	return 0;
1433}
1434
1435static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1436{
1437	struct e1000_hw *hw = &adapter->hw;
1438	u32 ctrl = er32(CTRL);
1439	int link;
1440
1441	/* special requirements for 82571/82572 fiber adapters */
1442
1443	/* jump through hoops to make sure link is up because serdes
1444	 * link is hardwired up
1445	 */
1446	ctrl |= E1000_CTRL_SLU;
1447	ew32(CTRL, ctrl);
1448
1449	/* disable autoneg */
1450	ctrl = er32(TXCW);
1451	ctrl &= ~BIT(31);
1452	ew32(TXCW, ctrl);
1453
1454	link = (er32(STATUS) & E1000_STATUS_LU);
1455
1456	if (!link) {
1457		/* set invert loss of signal */
1458		ctrl = er32(CTRL);
1459		ctrl |= E1000_CTRL_ILOS;
1460		ew32(CTRL, ctrl);
1461	}
1462
1463	/* special write to serdes control register to enable SerDes analog
1464	 * loopback
1465	 */
1466	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1467	e1e_flush();
1468	usleep_range(10000, 11000);
1469
1470	return 0;
1471}
1472
1473/* only call this for fiber/serdes connections to es2lan */
1474static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1475{
1476	struct e1000_hw *hw = &adapter->hw;
1477	u32 ctrlext = er32(CTRL_EXT);
1478	u32 ctrl = er32(CTRL);
1479
1480	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1481	 * on mac_type 80003es2lan)
1482	 */
1483	adapter->tx_fifo_head = ctrlext;
1484
1485	/* clear the serdes mode bits, putting the device into mac loopback */
1486	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1487	ew32(CTRL_EXT, ctrlext);
1488
1489	/* force speed to 1000/FD, link up */
1490	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1491	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1492		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1493	ew32(CTRL, ctrl);
1494
1495	/* set mac loopback */
1496	ctrl = er32(RCTL);
1497	ctrl |= E1000_RCTL_LBM_MAC;
1498	ew32(RCTL, ctrl);
1499
1500	/* set testing mode parameters (no need to reset later) */
1501#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1502#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1503	ew32(KMRNCTRLSTA,
1504	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1505
1506	return 0;
1507}
1508
1509static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1510{
1511	struct e1000_hw *hw = &adapter->hw;
1512	u32 rctl, fext_nvm11, tarc0;
1513
1514	if (hw->mac.type >= e1000_pch_spt) {
1515		fext_nvm11 = er32(FEXTNVM11);
1516		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1517		ew32(FEXTNVM11, fext_nvm11);
1518		tarc0 = er32(TARC(0));
1519		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1520		tarc0 &= 0xcfffffff;
1521		/* set bit 29 (value of MULR requests is now 2) */
1522		tarc0 |= 0x20000000;
1523		ew32(TARC(0), tarc0);
1524	}
1525	if (hw->phy.media_type == e1000_media_type_fiber ||
1526	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1527		switch (hw->mac.type) {
1528		case e1000_80003es2lan:
1529			return e1000_set_es2lan_mac_loopback(adapter);
1530		case e1000_82571:
1531		case e1000_82572:
1532			return e1000_set_82571_fiber_loopback(adapter);
1533		default:
1534			rctl = er32(RCTL);
1535			rctl |= E1000_RCTL_LBM_TCVR;
1536			ew32(RCTL, rctl);
1537			return 0;
1538		}
1539	} else if (hw->phy.media_type == e1000_media_type_copper) {
1540		return e1000_integrated_phy_loopback(adapter);
1541	}
1542
1543	return 7;
1544}
1545
1546static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1547{
1548	struct e1000_hw *hw = &adapter->hw;
1549	u32 rctl, fext_nvm11, tarc0;
1550	u16 phy_reg;
1551
1552	rctl = er32(RCTL);
1553	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1554	ew32(RCTL, rctl);
1555
1556	switch (hw->mac.type) {
1557	case e1000_pch_spt:
1558	case e1000_pch_cnp:
1559	case e1000_pch_tgp:
1560	case e1000_pch_adp:
1561	case e1000_pch_mtp:
1562	case e1000_pch_lnp:
1563	case e1000_pch_ptp:
1564	case e1000_pch_nvp:
1565		fext_nvm11 = er32(FEXTNVM11);
1566		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1567		ew32(FEXTNVM11, fext_nvm11);
1568		tarc0 = er32(TARC(0));
1569		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1570		/* set bit 29 (value of MULR requests is now 0) */
1571		tarc0 &= 0xcfffffff;
1572		ew32(TARC(0), tarc0);
1573		fallthrough;
1574	case e1000_80003es2lan:
1575		if (hw->phy.media_type == e1000_media_type_fiber ||
1576		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1577			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1578			ew32(CTRL_EXT, adapter->tx_fifo_head);
1579			adapter->tx_fifo_head = 0;
1580		}
1581		fallthrough;
1582	case e1000_82571:
1583	case e1000_82572:
1584		if (hw->phy.media_type == e1000_media_type_fiber ||
1585		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1586			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1587			e1e_flush();
1588			usleep_range(10000, 11000);
1589			break;
1590		}
1591		fallthrough;
1592	default:
1593		hw->mac.autoneg = 1;
1594		if (hw->phy.type == e1000_phy_gg82563)
1595			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1596		e1e_rphy(hw, MII_BMCR, &phy_reg);
1597		if (phy_reg & BMCR_LOOPBACK) {
1598			phy_reg &= ~BMCR_LOOPBACK;
1599			e1e_wphy(hw, MII_BMCR, phy_reg);
1600			if (hw->phy.ops.commit)
1601				hw->phy.ops.commit(hw);
1602		}
1603		break;
1604	}
1605}
1606
1607static void e1000_create_lbtest_frame(struct sk_buff *skb,
1608				      unsigned int frame_size)
1609{
1610	memset(skb->data, 0xFF, frame_size);
1611	frame_size &= ~1;
1612	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1613	skb->data[frame_size / 2 + 10] = 0xBE;
1614	skb->data[frame_size / 2 + 12] = 0xAF;
1615}
1616
1617static int e1000_check_lbtest_frame(struct sk_buff *skb,
1618				    unsigned int frame_size)
1619{
1620	frame_size &= ~1;
1621	if (*(skb->data + 3) == 0xFF)
1622		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1623		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1624			return 0;
1625	return 13;
1626}
1627
1628static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1629{
1630	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1631	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1632	struct pci_dev *pdev = adapter->pdev;
1633	struct e1000_hw *hw = &adapter->hw;
1634	struct e1000_buffer *buffer_info;
1635	int i, j, k, l;
1636	int lc;
1637	int good_cnt;
1638	int ret_val = 0;
1639	unsigned long time;
1640
1641	ew32(RDT(0), rx_ring->count - 1);
1642
1643	/* Calculate the loop count based on the largest descriptor ring
1644	 * The idea is to wrap the largest ring a number of times using 64
1645	 * send/receive pairs during each loop
1646	 */
1647
1648	if (rx_ring->count <= tx_ring->count)
1649		lc = ((tx_ring->count / 64) * 2) + 1;
1650	else
1651		lc = ((rx_ring->count / 64) * 2) + 1;
1652
1653	k = 0;
1654	l = 0;
1655	/* loop count loop */
1656	for (j = 0; j <= lc; j++) {
1657		/* send the packets */
1658		for (i = 0; i < 64; i++) {
1659			buffer_info = &tx_ring->buffer_info[k];
1660
1661			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1662			dma_sync_single_for_device(&pdev->dev,
1663						   buffer_info->dma,
1664						   buffer_info->length,
1665						   DMA_TO_DEVICE);
1666			k++;
1667			if (k == tx_ring->count)
1668				k = 0;
1669		}
1670		ew32(TDT(0), k);
1671		e1e_flush();
1672		msleep(200);
1673		time = jiffies;	/* set the start time for the receive */
1674		good_cnt = 0;
1675		/* receive the sent packets */
1676		do {
1677			buffer_info = &rx_ring->buffer_info[l];
1678
1679			dma_sync_single_for_cpu(&pdev->dev,
1680						buffer_info->dma, 2048,
1681						DMA_FROM_DEVICE);
1682
1683			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1684							   1024);
1685			if (!ret_val)
1686				good_cnt++;
1687			l++;
1688			if (l == rx_ring->count)
1689				l = 0;
1690			/* time + 20 msecs (200 msecs on 2.4) is more than
1691			 * enough time to complete the receives, if it's
1692			 * exceeded, break and error off
1693			 */
1694		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1695		if (good_cnt != 64) {
1696			ret_val = 13;	/* ret_val is the same as mis-compare */
1697			break;
1698		}
1699		if (time_after(jiffies, time + 20)) {
1700			ret_val = 14;	/* error code for time out error */
1701			break;
1702		}
1703	}
1704	return ret_val;
1705}
1706
1707static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1708{
1709	struct e1000_hw *hw = &adapter->hw;
1710
1711	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1712	if (hw->phy.ops.check_reset_block &&
1713	    hw->phy.ops.check_reset_block(hw)) {
1714		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1715		*data = 0;
1716		goto out;
1717	}
1718
1719	*data = e1000_setup_desc_rings(adapter);
1720	if (*data)
1721		goto out;
1722
1723	*data = e1000_setup_loopback_test(adapter);
1724	if (*data)
1725		goto err_loopback;
1726
1727	*data = e1000_run_loopback_test(adapter);
1728	e1000_loopback_cleanup(adapter);
1729
1730err_loopback:
1731	e1000_free_desc_rings(adapter);
1732out:
1733	return *data;
1734}
1735
1736static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1737{
1738	struct e1000_hw *hw = &adapter->hw;
1739
1740	*data = 0;
1741	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1742		int i = 0;
1743
1744		hw->mac.serdes_has_link = false;
1745
1746		/* On some blade server designs, link establishment
1747		 * could take as long as 2-3 minutes
1748		 */
1749		do {
1750			hw->mac.ops.check_for_link(hw);
1751			if (hw->mac.serdes_has_link)
1752				return *data;
1753			msleep(20);
1754		} while (i++ < 3750);
1755
1756		*data = 1;
1757	} else {
1758		hw->mac.ops.check_for_link(hw);
1759		if (hw->mac.autoneg)
1760			/* On some Phy/switch combinations, link establishment
1761			 * can take a few seconds more than expected.
1762			 */
1763			msleep_interruptible(5000);
1764
1765		if (!(er32(STATUS) & E1000_STATUS_LU))
1766			*data = 1;
1767	}
1768	return *data;
1769}
1770
1771static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1772				 int sset)
1773{
1774	switch (sset) {
1775	case ETH_SS_TEST:
1776		return E1000_TEST_LEN;
1777	case ETH_SS_STATS:
1778		return E1000_STATS_LEN;
1779	case ETH_SS_PRIV_FLAGS:
1780		return E1000E_PRIV_FLAGS_STR_LEN;
1781	default:
1782		return -EOPNOTSUPP;
1783	}
1784}
1785
1786static void e1000_diag_test(struct net_device *netdev,
1787			    struct ethtool_test *eth_test, u64 *data)
1788{
1789	struct e1000_adapter *adapter = netdev_priv(netdev);
1790	u16 autoneg_advertised;
1791	u8 forced_speed_duplex;
1792	u8 autoneg;
1793	bool if_running = netif_running(netdev);
1794
 
 
1795	set_bit(__E1000_TESTING, &adapter->state);
1796
1797	if (!if_running) {
1798		/* Get control of and reset hardware */
1799		if (adapter->flags & FLAG_HAS_AMT)
1800			e1000e_get_hw_control(adapter);
1801
1802		e1000e_power_up_phy(adapter);
1803
1804		adapter->hw.phy.autoneg_wait_to_complete = 1;
1805		e1000e_reset(adapter);
1806		adapter->hw.phy.autoneg_wait_to_complete = 0;
1807	}
1808
1809	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1810		/* Offline tests */
1811
1812		/* save speed, duplex, autoneg settings */
1813		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1814		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1815		autoneg = adapter->hw.mac.autoneg;
1816
1817		e_info("offline testing starting\n");
1818
1819		if (if_running)
1820			/* indicate we're in test mode */
1821			e1000e_close(netdev);
1822
1823		if (e1000_reg_test(adapter, &data[0]))
1824			eth_test->flags |= ETH_TEST_FL_FAILED;
1825
1826		e1000e_reset(adapter);
1827		if (e1000_eeprom_test(adapter, &data[1]))
1828			eth_test->flags |= ETH_TEST_FL_FAILED;
1829
1830		e1000e_reset(adapter);
1831		if (e1000_intr_test(adapter, &data[2]))
1832			eth_test->flags |= ETH_TEST_FL_FAILED;
1833
1834		e1000e_reset(adapter);
1835		if (e1000_loopback_test(adapter, &data[3]))
1836			eth_test->flags |= ETH_TEST_FL_FAILED;
1837
1838		/* force this routine to wait until autoneg complete/timeout */
1839		adapter->hw.phy.autoneg_wait_to_complete = 1;
1840		e1000e_reset(adapter);
1841		adapter->hw.phy.autoneg_wait_to_complete = 0;
1842
1843		if (e1000_link_test(adapter, &data[4]))
1844			eth_test->flags |= ETH_TEST_FL_FAILED;
1845
1846		/* restore speed, duplex, autoneg settings */
1847		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1848		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1849		adapter->hw.mac.autoneg = autoneg;
1850		e1000e_reset(adapter);
1851
1852		clear_bit(__E1000_TESTING, &adapter->state);
1853		if (if_running)
1854			e1000e_open(netdev);
1855	} else {
1856		/* Online tests */
1857
1858		e_info("online testing starting\n");
1859
1860		/* register, eeprom, intr and loopback tests not run online */
1861		data[0] = 0;
1862		data[1] = 0;
1863		data[2] = 0;
1864		data[3] = 0;
1865
1866		if (e1000_link_test(adapter, &data[4]))
1867			eth_test->flags |= ETH_TEST_FL_FAILED;
1868
1869		clear_bit(__E1000_TESTING, &adapter->state);
1870	}
1871
1872	if (!if_running) {
1873		e1000e_reset(adapter);
1874
1875		if (adapter->flags & FLAG_HAS_AMT)
1876			e1000e_release_hw_control(adapter);
1877	}
1878
1879	msleep_interruptible(4 * 1000);
 
 
1880}
1881
1882static void e1000_get_wol(struct net_device *netdev,
1883			  struct ethtool_wolinfo *wol)
1884{
1885	struct e1000_adapter *adapter = netdev_priv(netdev);
1886
1887	wol->supported = 0;
1888	wol->wolopts = 0;
1889
1890	if (!(adapter->flags & FLAG_HAS_WOL) ||
1891	    !device_can_wakeup(&adapter->pdev->dev))
1892		return;
1893
1894	wol->supported = WAKE_UCAST | WAKE_MCAST |
1895	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1896
1897	/* apply any specific unsupported masks here */
1898	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1899		wol->supported &= ~WAKE_UCAST;
1900
1901		if (adapter->wol & E1000_WUFC_EX)
1902			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1903	}
1904
1905	if (adapter->wol & E1000_WUFC_EX)
1906		wol->wolopts |= WAKE_UCAST;
1907	if (adapter->wol & E1000_WUFC_MC)
1908		wol->wolopts |= WAKE_MCAST;
1909	if (adapter->wol & E1000_WUFC_BC)
1910		wol->wolopts |= WAKE_BCAST;
1911	if (adapter->wol & E1000_WUFC_MAG)
1912		wol->wolopts |= WAKE_MAGIC;
1913	if (adapter->wol & E1000_WUFC_LNKC)
1914		wol->wolopts |= WAKE_PHY;
1915}
1916
1917static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1918{
1919	struct e1000_adapter *adapter = netdev_priv(netdev);
1920
1921	if (!(adapter->flags & FLAG_HAS_WOL) ||
1922	    !device_can_wakeup(&adapter->pdev->dev) ||
1923	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1924			      WAKE_MAGIC | WAKE_PHY)))
1925		return -EOPNOTSUPP;
1926
1927	/* these settings will always override what we currently have */
1928	adapter->wol = 0;
1929
1930	if (wol->wolopts & WAKE_UCAST)
1931		adapter->wol |= E1000_WUFC_EX;
1932	if (wol->wolopts & WAKE_MCAST)
1933		adapter->wol |= E1000_WUFC_MC;
1934	if (wol->wolopts & WAKE_BCAST)
1935		adapter->wol |= E1000_WUFC_BC;
1936	if (wol->wolopts & WAKE_MAGIC)
1937		adapter->wol |= E1000_WUFC_MAG;
1938	if (wol->wolopts & WAKE_PHY)
1939		adapter->wol |= E1000_WUFC_LNKC;
1940
1941	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1942
1943	return 0;
1944}
1945
1946static int e1000_set_phys_id(struct net_device *netdev,
1947			     enum ethtool_phys_id_state state)
1948{
1949	struct e1000_adapter *adapter = netdev_priv(netdev);
1950	struct e1000_hw *hw = &adapter->hw;
1951
1952	switch (state) {
1953	case ETHTOOL_ID_ACTIVE:
1954		pm_runtime_get_sync(netdev->dev.parent);
1955
1956		if (!hw->mac.ops.blink_led)
1957			return 2;	/* cycle on/off twice per second */
1958
1959		hw->mac.ops.blink_led(hw);
1960		break;
1961
1962	case ETHTOOL_ID_INACTIVE:
1963		if (hw->phy.type == e1000_phy_ife)
1964			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1965		hw->mac.ops.led_off(hw);
1966		hw->mac.ops.cleanup_led(hw);
1967		pm_runtime_put_sync(netdev->dev.parent);
1968		break;
1969
1970	case ETHTOOL_ID_ON:
1971		hw->mac.ops.led_on(hw);
1972		break;
1973
1974	case ETHTOOL_ID_OFF:
1975		hw->mac.ops.led_off(hw);
1976		break;
1977	}
1978
1979	return 0;
1980}
1981
1982static int e1000_get_coalesce(struct net_device *netdev,
1983			      struct ethtool_coalesce *ec,
1984			      struct kernel_ethtool_coalesce *kernel_coal,
1985			      struct netlink_ext_ack *extack)
1986{
1987	struct e1000_adapter *adapter = netdev_priv(netdev);
1988
1989	if (adapter->itr_setting <= 4)
1990		ec->rx_coalesce_usecs = adapter->itr_setting;
1991	else
1992		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1993
1994	return 0;
1995}
1996
1997static int e1000_set_coalesce(struct net_device *netdev,
1998			      struct ethtool_coalesce *ec,
1999			      struct kernel_ethtool_coalesce *kernel_coal,
2000			      struct netlink_ext_ack *extack)
2001{
2002	struct e1000_adapter *adapter = netdev_priv(netdev);
2003
2004	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2005	    ((ec->rx_coalesce_usecs > 4) &&
2006	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2007	    (ec->rx_coalesce_usecs == 2))
2008		return -EINVAL;
2009
2010	if (ec->rx_coalesce_usecs == 4) {
2011		adapter->itr_setting = 4;
2012		adapter->itr = adapter->itr_setting;
2013	} else if (ec->rx_coalesce_usecs <= 3) {
2014		adapter->itr = 20000;
2015		adapter->itr_setting = ec->rx_coalesce_usecs;
2016	} else {
2017		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2018		adapter->itr_setting = adapter->itr & ~3;
2019	}
2020
 
 
2021	if (adapter->itr_setting != 0)
2022		e1000e_write_itr(adapter, adapter->itr);
2023	else
2024		e1000e_write_itr(adapter, 0);
2025
 
 
2026	return 0;
2027}
2028
2029static int e1000_nway_reset(struct net_device *netdev)
2030{
2031	struct e1000_adapter *adapter = netdev_priv(netdev);
2032
2033	if (!netif_running(netdev))
2034		return -EAGAIN;
2035
2036	if (!adapter->hw.mac.autoneg)
2037		return -EINVAL;
2038
 
2039	e1000e_reinit_locked(adapter);
 
2040
2041	return 0;
2042}
2043
2044static void e1000_get_ethtool_stats(struct net_device *netdev,
2045				    struct ethtool_stats __always_unused *stats,
2046				    u64 *data)
2047{
2048	struct e1000_adapter *adapter = netdev_priv(netdev);
2049	struct rtnl_link_stats64 net_stats;
2050	int i;
2051	char *p = NULL;
2052
 
 
2053	dev_get_stats(netdev, &net_stats);
2054
 
 
2055	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2056		switch (e1000_gstrings_stats[i].type) {
2057		case NETDEV_STATS:
2058			p = (char *)&net_stats +
2059			    e1000_gstrings_stats[i].stat_offset;
2060			break;
2061		case E1000_STATS:
2062			p = (char *)adapter +
2063			    e1000_gstrings_stats[i].stat_offset;
2064			break;
2065		default:
2066			data[i] = 0;
2067			continue;
2068		}
2069
2070		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2071			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2072	}
2073}
2074
2075static void e1000_get_strings(struct net_device __always_unused *netdev,
2076			      u32 stringset, u8 *data)
2077{
2078	u8 *p = data;
2079	int i;
2080
2081	switch (stringset) {
2082	case ETH_SS_TEST:
2083		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2084		break;
2085	case ETH_SS_STATS:
2086		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2087			memcpy(p, e1000_gstrings_stats[i].stat_string,
2088			       ETH_GSTRING_LEN);
2089			p += ETH_GSTRING_LEN;
2090		}
2091		break;
2092	case ETH_SS_PRIV_FLAGS:
2093		memcpy(data, e1000e_priv_flags_strings,
2094		       E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2095		break;
2096	}
2097}
2098
2099static int e1000_get_rxnfc(struct net_device *netdev,
2100			   struct ethtool_rxnfc *info,
2101			   u32 __always_unused *rule_locs)
2102{
2103	info->data = 0;
2104
2105	switch (info->cmd) {
2106	case ETHTOOL_GRXFH: {
2107		struct e1000_adapter *adapter = netdev_priv(netdev);
2108		struct e1000_hw *hw = &adapter->hw;
2109		u32 mrqc;
2110
 
2111		mrqc = er32(MRQC);
 
2112
2113		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2114			return 0;
2115
2116		switch (info->flow_type) {
2117		case TCP_V4_FLOW:
2118			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2119				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2120			fallthrough;
2121		case UDP_V4_FLOW:
2122		case SCTP_V4_FLOW:
2123		case AH_ESP_V4_FLOW:
2124		case IPV4_FLOW:
2125			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2126				info->data |= RXH_IP_SRC | RXH_IP_DST;
2127			break;
2128		case TCP_V6_FLOW:
2129			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2130				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2131			fallthrough;
2132		case UDP_V6_FLOW:
2133		case SCTP_V6_FLOW:
2134		case AH_ESP_V6_FLOW:
2135		case IPV6_FLOW:
2136			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2137				info->data |= RXH_IP_SRC | RXH_IP_DST;
2138			break;
2139		default:
2140			break;
2141		}
2142		return 0;
2143	}
2144	default:
2145		return -EOPNOTSUPP;
2146	}
2147}
2148
2149static int e1000e_get_eee(struct net_device *netdev, struct ethtool_keee *edata)
2150{
2151	struct e1000_adapter *adapter = netdev_priv(netdev);
2152	struct e1000_hw *hw = &adapter->hw;
2153	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2154	u32 ret_val;
2155
2156	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2157		return -EOPNOTSUPP;
2158
2159	switch (hw->phy.type) {
2160	case e1000_phy_82579:
2161		cap_addr = I82579_EEE_CAPABILITY;
2162		lpa_addr = I82579_EEE_LP_ABILITY;
2163		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2164		break;
2165	case e1000_phy_i217:
2166		cap_addr = I217_EEE_CAPABILITY;
2167		lpa_addr = I217_EEE_LP_ABILITY;
2168		pcs_stat_addr = I217_EEE_PCS_STATUS;
2169		break;
2170	default:
2171		return -EOPNOTSUPP;
2172	}
2173
 
 
2174	ret_val = hw->phy.ops.acquire(hw);
2175	if (ret_val)
 
2176		return -EBUSY;
 
2177
2178	/* EEE Capability */
2179	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2180	if (ret_val)
2181		goto release;
2182	mii_eee_cap1_mod_linkmode_t(edata->supported, phy_data);
2183
2184	/* EEE Advertised */
2185	mii_eee_cap1_mod_linkmode_t(edata->advertised, adapter->eee_advert);
2186
2187	/* EEE Link Partner Advertised */
2188	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2189	if (ret_val)
2190		goto release;
2191	mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data);
2192
2193	/* EEE PCS Status */
2194	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2195	if (ret_val)
2196		goto release;
2197	if (hw->phy.type == e1000_phy_82579)
2198		phy_data <<= 8;
2199
2200	/* Result of the EEE auto negotiation - there is no register that
2201	 * has the status of the EEE negotiation so do a best-guess based
2202	 * on whether Tx or Rx LPI indications have been received.
2203	 */
2204	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2205		edata->eee_active = true;
2206
2207	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2208	edata->tx_lpi_enabled = true;
2209	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2210
2211release:
2212	hw->phy.ops.release(hw);
2213	if (ret_val)
2214		ret_val = -ENODATA;
2215
 
 
2216	return ret_val;
2217}
2218
2219static int e1000e_set_eee(struct net_device *netdev, struct ethtool_keee *edata)
2220{
2221	struct e1000_adapter *adapter = netdev_priv(netdev);
2222	__ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = {};
2223	__ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = {};
2224	struct e1000_hw *hw = &adapter->hw;
2225	struct ethtool_keee eee_curr;
2226	s32 ret_val;
2227
2228	ret_val = e1000e_get_eee(netdev, &eee_curr);
2229	if (ret_val)
2230		return ret_val;
2231
2232	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2233		e_err("Setting EEE tx-lpi is not supported\n");
2234		return -EINVAL;
2235	}
2236
2237	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2238		e_err("Setting EEE Tx LPI timer is not supported\n");
2239		return -EINVAL;
2240	}
2241
2242	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2243			 supported);
2244	linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
2245			 supported);
2246
2247	if (linkmode_andnot(tmp, edata->advertised, supported)) {
2248		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2249		return -EINVAL;
2250	}
2251
2252	adapter->eee_advert = linkmode_to_mii_eee_cap1_t(edata->advertised);
2253
2254	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2255
 
 
2256	/* reset the link */
2257	if (netif_running(netdev))
2258		e1000e_reinit_locked(adapter);
2259	else
2260		e1000e_reset(adapter);
2261
 
 
2262	return 0;
2263}
2264
2265static int e1000e_get_ts_info(struct net_device *netdev,
2266			      struct kernel_ethtool_ts_info *info)
2267{
2268	struct e1000_adapter *adapter = netdev_priv(netdev);
2269
2270	ethtool_op_get_ts_info(netdev, info);
2271
2272	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2273		return 0;
2274
2275	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2276				  SOF_TIMESTAMPING_RX_HARDWARE |
2277				  SOF_TIMESTAMPING_RAW_HARDWARE);
2278
2279	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2280
2281	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2282			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2283			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2284			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2285			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2286			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2287			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2288			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2289			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2290			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2291			    BIT(HWTSTAMP_FILTER_ALL));
2292
2293	if (adapter->ptp_clock)
2294		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2295
2296	return 0;
2297}
2298
2299static u32 e1000e_get_priv_flags(struct net_device *netdev)
2300{
2301	struct e1000_adapter *adapter = netdev_priv(netdev);
2302	u32 priv_flags = 0;
2303
2304	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2305		priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2306
2307	return priv_flags;
2308}
2309
2310static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2311{
2312	struct e1000_adapter *adapter = netdev_priv(netdev);
2313	unsigned int flags2 = adapter->flags2;
2314
2315	flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2316	if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2317		struct e1000_hw *hw = &adapter->hw;
2318
2319		if (hw->mac.type < e1000_pch_cnp)
2320			return -EINVAL;
2321		flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2322	}
2323
2324	if (flags2 != adapter->flags2)
2325		adapter->flags2 = flags2;
2326
2327	return 0;
2328}
2329
2330static const struct ethtool_ops e1000_ethtool_ops = {
2331	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2332	.get_drvinfo		= e1000_get_drvinfo,
2333	.get_regs_len		= e1000_get_regs_len,
2334	.get_regs		= e1000_get_regs,
2335	.get_wol		= e1000_get_wol,
2336	.set_wol		= e1000_set_wol,
2337	.get_msglevel		= e1000_get_msglevel,
2338	.set_msglevel		= e1000_set_msglevel,
2339	.nway_reset		= e1000_nway_reset,
2340	.get_link		= ethtool_op_get_link,
2341	.get_eeprom_len		= e1000_get_eeprom_len,
2342	.get_eeprom		= e1000_get_eeprom,
2343	.set_eeprom		= e1000_set_eeprom,
2344	.get_ringparam		= e1000_get_ringparam,
2345	.set_ringparam		= e1000_set_ringparam,
2346	.get_pauseparam		= e1000_get_pauseparam,
2347	.set_pauseparam		= e1000_set_pauseparam,
2348	.self_test		= e1000_diag_test,
2349	.get_strings		= e1000_get_strings,
2350	.set_phys_id		= e1000_set_phys_id,
2351	.get_ethtool_stats	= e1000_get_ethtool_stats,
2352	.get_sset_count		= e1000e_get_sset_count,
2353	.get_coalesce		= e1000_get_coalesce,
2354	.set_coalesce		= e1000_set_coalesce,
2355	.get_rxnfc		= e1000_get_rxnfc,
2356	.get_ts_info		= e1000e_get_ts_info,
2357	.get_eee		= e1000e_get_eee,
2358	.set_eee		= e1000e_set_eee,
2359	.get_link_ksettings	= e1000_get_link_ksettings,
2360	.set_link_ksettings	= e1000_set_link_ksettings,
2361	.get_priv_flags		= e1000e_get_priv_flags,
2362	.set_priv_flags		= e1000e_set_priv_flags,
2363};
2364
2365void e1000e_set_ethtool_ops(struct net_device *netdev)
2366{
2367	netdev->ethtool_ops = &e1000_ethtool_ops;
2368}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
  22
  23/* ethtool support for e1000 */
  24
  25#include <linux/netdevice.h>
  26#include <linux/interrupt.h>
  27#include <linux/ethtool.h>
  28#include <linux/pci.h>
  29#include <linux/slab.h>
  30#include <linux/delay.h>
  31#include <linux/vmalloc.h>
  32#include <linux/pm_runtime.h>
  33
  34#include "e1000.h"
  35
  36enum { NETDEV_STATS, E1000_STATS };
  37
  38struct e1000_stats {
  39	char stat_string[ETH_GSTRING_LEN];
  40	int type;
  41	int sizeof_stat;
  42	int stat_offset;
  43};
  44
 
 
 
 
 
 
 
  45#define E1000_STAT(str, m) { \
  46		.stat_string = str, \
  47		.type = E1000_STATS, \
  48		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
  49		.stat_offset = offsetof(struct e1000_adapter, m) }
  50#define E1000_NETDEV_STAT(str, m) { \
  51		.stat_string = str, \
  52		.type = NETDEV_STATS, \
  53		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
  54		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
  55
  56static const struct e1000_stats e1000_gstrings_stats[] = {
  57	E1000_STAT("rx_packets", stats.gprc),
  58	E1000_STAT("tx_packets", stats.gptc),
  59	E1000_STAT("rx_bytes", stats.gorc),
  60	E1000_STAT("tx_bytes", stats.gotc),
  61	E1000_STAT("rx_broadcast", stats.bprc),
  62	E1000_STAT("tx_broadcast", stats.bptc),
  63	E1000_STAT("rx_multicast", stats.mprc),
  64	E1000_STAT("tx_multicast", stats.mptc),
  65	E1000_NETDEV_STAT("rx_errors", rx_errors),
  66	E1000_NETDEV_STAT("tx_errors", tx_errors),
  67	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
  68	E1000_STAT("multicast", stats.mprc),
  69	E1000_STAT("collisions", stats.colc),
  70	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
  71	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
  72	E1000_STAT("rx_crc_errors", stats.crcerrs),
  73	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
  74	E1000_STAT("rx_no_buffer_count", stats.rnbc),
  75	E1000_STAT("rx_missed_errors", stats.mpc),
  76	E1000_STAT("tx_aborted_errors", stats.ecol),
  77	E1000_STAT("tx_carrier_errors", stats.tncrs),
  78	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
  79	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
  80	E1000_STAT("tx_window_errors", stats.latecol),
  81	E1000_STAT("tx_abort_late_coll", stats.latecol),
  82	E1000_STAT("tx_deferred_ok", stats.dc),
  83	E1000_STAT("tx_single_coll_ok", stats.scc),
  84	E1000_STAT("tx_multi_coll_ok", stats.mcc),
  85	E1000_STAT("tx_timeout_count", tx_timeout_count),
  86	E1000_STAT("tx_restart_queue", restart_queue),
  87	E1000_STAT("rx_long_length_errors", stats.roc),
  88	E1000_STAT("rx_short_length_errors", stats.ruc),
  89	E1000_STAT("rx_align_errors", stats.algnerrc),
  90	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
  91	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
  92	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
  93	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
  94	E1000_STAT("tx_flow_control_xon", stats.xontxc),
  95	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
  96	E1000_STAT("rx_csum_offload_good", hw_csum_good),
  97	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
  98	E1000_STAT("rx_header_split", rx_hdr_split),
  99	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
 100	E1000_STAT("tx_smbus", stats.mgptc),
 101	E1000_STAT("rx_smbus", stats.mgprc),
 102	E1000_STAT("dropped_smbus", stats.mgpdc),
 103	E1000_STAT("rx_dma_failed", rx_dma_failed),
 104	E1000_STAT("tx_dma_failed", tx_dma_failed),
 105	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
 106	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
 107	E1000_STAT("corr_ecc_errors", corr_errors),
 108	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
 109	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
 110};
 111
 112#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
 113#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
 114static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
 115	"Register test  (offline)", "Eeprom test    (offline)",
 116	"Interrupt test (offline)", "Loopback test  (offline)",
 117	"Link test   (on/offline)"
 118};
 119
 120#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
 121
 122static int e1000_get_link_ksettings(struct net_device *netdev,
 123				    struct ethtool_link_ksettings *cmd)
 124{
 
 125	struct e1000_adapter *adapter = netdev_priv(netdev);
 126	struct e1000_hw *hw = &adapter->hw;
 127	u32 speed, supported, advertising;
 128
 129	if (hw->phy.media_type == e1000_media_type_copper) {
 130		supported = (SUPPORTED_10baseT_Half |
 131			     SUPPORTED_10baseT_Full |
 132			     SUPPORTED_100baseT_Half |
 133			     SUPPORTED_100baseT_Full |
 134			     SUPPORTED_1000baseT_Full |
 
 135			     SUPPORTED_Autoneg |
 
 136			     SUPPORTED_TP);
 137		if (hw->phy.type == e1000_phy_ife)
 138			supported &= ~SUPPORTED_1000baseT_Full;
 139		advertising = ADVERTISED_TP;
 140
 141		if (hw->mac.autoneg == 1) {
 142			advertising |= ADVERTISED_Autoneg;
 143			/* the e1000 autoneg seems to match ethtool nicely */
 144			advertising |= hw->phy.autoneg_advertised;
 145		}
 146
 147		cmd->base.port = PORT_TP;
 148		cmd->base.phy_address = hw->phy.addr;
 149	} else {
 150		supported   = (SUPPORTED_1000baseT_Full |
 151			       SUPPORTED_FIBRE |
 152			       SUPPORTED_Autoneg);
 153
 154		advertising = (ADVERTISED_1000baseT_Full |
 155			       ADVERTISED_FIBRE |
 156			       ADVERTISED_Autoneg);
 157
 158		cmd->base.port = PORT_FIBRE;
 159	}
 160
 161	speed = SPEED_UNKNOWN;
 162	cmd->base.duplex = DUPLEX_UNKNOWN;
 163
 164	if (netif_running(netdev)) {
 165		if (netif_carrier_ok(netdev)) {
 166			speed = adapter->link_speed;
 167			cmd->base.duplex = adapter->link_duplex - 1;
 168		}
 169	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
 170		u32 status = er32(STATUS);
 171
 172		if (status & E1000_STATUS_LU) {
 173			if (status & E1000_STATUS_SPEED_1000)
 174				speed = SPEED_1000;
 175			else if (status & E1000_STATUS_SPEED_100)
 176				speed = SPEED_100;
 177			else
 178				speed = SPEED_10;
 179
 180			if (status & E1000_STATUS_FD)
 181				cmd->base.duplex = DUPLEX_FULL;
 182			else
 183				cmd->base.duplex = DUPLEX_HALF;
 184		}
 185	}
 186
 187	cmd->base.speed = speed;
 188	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
 189			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 190
 191	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 192	if ((hw->phy.media_type == e1000_media_type_copper) &&
 193	    netif_carrier_ok(netdev))
 194		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
 195			ETH_TP_MDI_X : ETH_TP_MDI;
 196	else
 197		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 198
 199	if (hw->phy.mdix == AUTO_ALL_MODES)
 200		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 201	else
 202		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
 203
 204	if (hw->phy.media_type != e1000_media_type_copper)
 205		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
 206
 
 
 
 
 207	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 208						supported);
 209	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 210						advertising);
 
 
 211
 212	return 0;
 213}
 214
 215static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
 216{
 217	struct e1000_mac_info *mac = &adapter->hw.mac;
 218
 219	mac->autoneg = 0;
 220
 221	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 222	 * for the switch() below to work
 223	 */
 224	if ((spd & 1) || (dplx & ~1))
 225		goto err_inval;
 226
 227	/* Fiber NICs only allow 1000 gbps Full duplex */
 228	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
 229	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
 230		goto err_inval;
 231	}
 232
 233	switch (spd + dplx) {
 234	case SPEED_10 + DUPLEX_HALF:
 235		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 236		break;
 237	case SPEED_10 + DUPLEX_FULL:
 238		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 239		break;
 240	case SPEED_100 + DUPLEX_HALF:
 241		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 242		break;
 243	case SPEED_100 + DUPLEX_FULL:
 244		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 245		break;
 246	case SPEED_1000 + DUPLEX_FULL:
 247		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
 248			mac->autoneg = 1;
 249			adapter->hw.phy.autoneg_advertised =
 250				ADVERTISE_1000_FULL;
 251		} else {
 252			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
 253		}
 254		break;
 255	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
 256	default:
 257		goto err_inval;
 258	}
 259
 260	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 261	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 262
 263	return 0;
 264
 265err_inval:
 266	e_err("Unsupported Speed/Duplex configuration\n");
 267	return -EINVAL;
 268}
 269
 270static int e1000_set_link_ksettings(struct net_device *netdev,
 271				    const struct ethtool_link_ksettings *cmd)
 272{
 273	struct e1000_adapter *adapter = netdev_priv(netdev);
 274	struct e1000_hw *hw = &adapter->hw;
 275	int ret_val = 0;
 276	u32 advertising;
 277
 278	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 279						cmd->link_modes.advertising);
 280
 281	pm_runtime_get_sync(netdev->dev.parent);
 282
 283	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 284	 * cannot be changed
 285	 */
 286	if (hw->phy.ops.check_reset_block &&
 287	    hw->phy.ops.check_reset_block(hw)) {
 288		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
 289		ret_val = -EINVAL;
 290		goto out;
 291	}
 292
 293	/* MDI setting is only allowed when autoneg enabled because
 294	 * some hardware doesn't allow MDI setting when speed or
 295	 * duplex is forced.
 296	 */
 297	if (cmd->base.eth_tp_mdix_ctrl) {
 298		if (hw->phy.media_type != e1000_media_type_copper) {
 299			ret_val = -EOPNOTSUPP;
 300			goto out;
 301		}
 302
 303		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 304		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 305			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 306			ret_val = -EINVAL;
 307			goto out;
 308		}
 309	}
 310
 311	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 312		usleep_range(1000, 2000);
 313
 314	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 315		hw->mac.autoneg = 1;
 316		if (hw->phy.media_type == e1000_media_type_fiber)
 317			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
 318			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
 319		else
 320			hw->phy.autoneg_advertised = advertising |
 321			    ADVERTISED_TP | ADVERTISED_Autoneg;
 322		advertising = hw->phy.autoneg_advertised;
 323		if (adapter->fc_autoneg)
 324			hw->fc.requested_mode = e1000_fc_default;
 325	} else {
 326		u32 speed = cmd->base.speed;
 327		/* calling this overrides forced MDI setting */
 328		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 329			ret_val = -EINVAL;
 330			goto out;
 331		}
 332	}
 333
 334	/* MDI-X => 2; MDI => 1; Auto => 3 */
 335	if (cmd->base.eth_tp_mdix_ctrl) {
 336		/* fix up the value for auto (3 => 0) as zero is mapped
 337		 * internally to auto
 338		 */
 339		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 340			hw->phy.mdix = AUTO_ALL_MODES;
 341		else
 342			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
 343	}
 344
 345	/* reset the link */
 346	if (netif_running(adapter->netdev)) {
 347		e1000e_down(adapter, true);
 348		e1000e_up(adapter);
 349	} else {
 350		e1000e_reset(adapter);
 351	}
 352
 353out:
 354	pm_runtime_put_sync(netdev->dev.parent);
 355	clear_bit(__E1000_RESETTING, &adapter->state);
 356	return ret_val;
 357}
 358
 359static void e1000_get_pauseparam(struct net_device *netdev,
 360				 struct ethtool_pauseparam *pause)
 361{
 362	struct e1000_adapter *adapter = netdev_priv(netdev);
 363	struct e1000_hw *hw = &adapter->hw;
 364
 365	pause->autoneg =
 366	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 367
 368	if (hw->fc.current_mode == e1000_fc_rx_pause) {
 369		pause->rx_pause = 1;
 370	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
 371		pause->tx_pause = 1;
 372	} else if (hw->fc.current_mode == e1000_fc_full) {
 373		pause->rx_pause = 1;
 374		pause->tx_pause = 1;
 375	}
 376}
 377
 378static int e1000_set_pauseparam(struct net_device *netdev,
 379				struct ethtool_pauseparam *pause)
 380{
 381	struct e1000_adapter *adapter = netdev_priv(netdev);
 382	struct e1000_hw *hw = &adapter->hw;
 383	int retval = 0;
 384
 385	adapter->fc_autoneg = pause->autoneg;
 386
 387	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 388		usleep_range(1000, 2000);
 389
 390	pm_runtime_get_sync(netdev->dev.parent);
 391
 392	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 393		hw->fc.requested_mode = e1000_fc_default;
 394		if (netif_running(adapter->netdev)) {
 395			e1000e_down(adapter, true);
 396			e1000e_up(adapter);
 397		} else {
 398			e1000e_reset(adapter);
 399		}
 400	} else {
 401		if (pause->rx_pause && pause->tx_pause)
 402			hw->fc.requested_mode = e1000_fc_full;
 403		else if (pause->rx_pause && !pause->tx_pause)
 404			hw->fc.requested_mode = e1000_fc_rx_pause;
 405		else if (!pause->rx_pause && pause->tx_pause)
 406			hw->fc.requested_mode = e1000_fc_tx_pause;
 407		else if (!pause->rx_pause && !pause->tx_pause)
 408			hw->fc.requested_mode = e1000_fc_none;
 409
 410		hw->fc.current_mode = hw->fc.requested_mode;
 411
 412		if (hw->phy.media_type == e1000_media_type_fiber) {
 413			retval = hw->mac.ops.setup_link(hw);
 414			/* implicit goto out */
 415		} else {
 416			retval = e1000e_force_mac_fc(hw);
 417			if (retval)
 418				goto out;
 419			e1000e_set_fc_watermarks(hw);
 420		}
 421	}
 422
 423out:
 424	pm_runtime_put_sync(netdev->dev.parent);
 425	clear_bit(__E1000_RESETTING, &adapter->state);
 426	return retval;
 427}
 428
 429static u32 e1000_get_msglevel(struct net_device *netdev)
 430{
 431	struct e1000_adapter *adapter = netdev_priv(netdev);
 432	return adapter->msg_enable;
 433}
 434
 435static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 436{
 437	struct e1000_adapter *adapter = netdev_priv(netdev);
 438	adapter->msg_enable = data;
 439}
 440
 441static int e1000_get_regs_len(struct net_device __always_unused *netdev)
 442{
 443#define E1000_REGS_LEN 32	/* overestimate */
 444	return E1000_REGS_LEN * sizeof(u32);
 445}
 446
 447static void e1000_get_regs(struct net_device *netdev,
 448			   struct ethtool_regs *regs, void *p)
 449{
 450	struct e1000_adapter *adapter = netdev_priv(netdev);
 451	struct e1000_hw *hw = &adapter->hw;
 452	u32 *regs_buff = p;
 453	u16 phy_data;
 454
 455	pm_runtime_get_sync(netdev->dev.parent);
 456
 457	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 458
 459	regs->version = (1u << 24) |
 460			(adapter->pdev->revision << 16) |
 461			adapter->pdev->device;
 462
 463	regs_buff[0] = er32(CTRL);
 464	regs_buff[1] = er32(STATUS);
 465
 466	regs_buff[2] = er32(RCTL);
 467	regs_buff[3] = er32(RDLEN(0));
 468	regs_buff[4] = er32(RDH(0));
 469	regs_buff[5] = er32(RDT(0));
 470	regs_buff[6] = er32(RDTR);
 471
 472	regs_buff[7] = er32(TCTL);
 473	regs_buff[8] = er32(TDLEN(0));
 474	regs_buff[9] = er32(TDH(0));
 475	regs_buff[10] = er32(TDT(0));
 476	regs_buff[11] = er32(TIDV);
 477
 478	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
 479
 480	/* ethtool doesn't use anything past this point, so all this
 481	 * code is likely legacy junk for apps that may or may not exist
 482	 */
 483	if (hw->phy.type == e1000_phy_m88) {
 484		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 485		regs_buff[13] = (u32)phy_data; /* cable length */
 486		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 487		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 488		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 489		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 490		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 491		regs_buff[18] = regs_buff[13]; /* cable polarity */
 492		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 493		regs_buff[20] = regs_buff[17]; /* polarity correction */
 494		/* phy receive errors */
 495		regs_buff[22] = adapter->phy_stats.receive_errors;
 496		regs_buff[23] = regs_buff[13]; /* mdix mode */
 497	}
 498	regs_buff[21] = 0;	/* was idle_errors */
 499	e1e_rphy(hw, MII_STAT1000, &phy_data);
 500	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
 501	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
 502
 503	pm_runtime_put_sync(netdev->dev.parent);
 504}
 505
 506static int e1000_get_eeprom_len(struct net_device *netdev)
 507{
 508	struct e1000_adapter *adapter = netdev_priv(netdev);
 509	return adapter->hw.nvm.word_size * 2;
 510}
 511
 512static int e1000_get_eeprom(struct net_device *netdev,
 513			    struct ethtool_eeprom *eeprom, u8 *bytes)
 514{
 515	struct e1000_adapter *adapter = netdev_priv(netdev);
 516	struct e1000_hw *hw = &adapter->hw;
 517	u16 *eeprom_buff;
 518	int first_word;
 519	int last_word;
 520	int ret_val = 0;
 521	u16 i;
 522
 523	if (eeprom->len == 0)
 524		return -EINVAL;
 525
 526	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
 527
 528	first_word = eeprom->offset >> 1;
 529	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 530
 531	eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
 532			      GFP_KERNEL);
 533	if (!eeprom_buff)
 534		return -ENOMEM;
 535
 536	pm_runtime_get_sync(netdev->dev.parent);
 537
 538	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 539		ret_val = e1000_read_nvm(hw, first_word,
 540					 last_word - first_word + 1,
 541					 eeprom_buff);
 542	} else {
 543		for (i = 0; i < last_word - first_word + 1; i++) {
 544			ret_val = e1000_read_nvm(hw, first_word + i, 1,
 545						 &eeprom_buff[i]);
 546			if (ret_val)
 547				break;
 548		}
 549	}
 550
 551	pm_runtime_put_sync(netdev->dev.parent);
 552
 553	if (ret_val) {
 554		/* a read error occurred, throw away the result */
 555		memset(eeprom_buff, 0xff, sizeof(u16) *
 556		       (last_word - first_word + 1));
 557	} else {
 558		/* Device's eeprom is always little-endian, word addressable */
 559		for (i = 0; i < last_word - first_word + 1; i++)
 560			le16_to_cpus(&eeprom_buff[i]);
 561	}
 562
 563	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
 564	kfree(eeprom_buff);
 565
 566	return ret_val;
 567}
 568
 569static int e1000_set_eeprom(struct net_device *netdev,
 570			    struct ethtool_eeprom *eeprom, u8 *bytes)
 571{
 572	struct e1000_adapter *adapter = netdev_priv(netdev);
 573	struct e1000_hw *hw = &adapter->hw;
 574	u16 *eeprom_buff;
 575	void *ptr;
 576	int max_len;
 577	int first_word;
 578	int last_word;
 579	int ret_val = 0;
 580	u16 i;
 581
 582	if (eeprom->len == 0)
 583		return -EOPNOTSUPP;
 584
 585	if (eeprom->magic !=
 586	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
 587		return -EFAULT;
 588
 589	if (adapter->flags & FLAG_READ_ONLY_NVM)
 590		return -EINVAL;
 591
 592	max_len = hw->nvm.word_size * 2;
 593
 594	first_word = eeprom->offset >> 1;
 595	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 596	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 597	if (!eeprom_buff)
 598		return -ENOMEM;
 599
 600	ptr = (void *)eeprom_buff;
 601
 602	pm_runtime_get_sync(netdev->dev.parent);
 603
 604	if (eeprom->offset & 1) {
 605		/* need read/modify/write of first changed EEPROM word */
 606		/* only the second byte of the word is being modified */
 607		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
 608		ptr++;
 609	}
 610	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
 611		/* need read/modify/write of last changed EEPROM word */
 612		/* only the first byte of the word is being modified */
 613		ret_val = e1000_read_nvm(hw, last_word, 1,
 614					 &eeprom_buff[last_word - first_word]);
 615
 616	if (ret_val)
 617		goto out;
 618
 619	/* Device's eeprom is always little-endian, word addressable */
 620	for (i = 0; i < last_word - first_word + 1; i++)
 621		le16_to_cpus(&eeprom_buff[i]);
 622
 623	memcpy(ptr, bytes, eeprom->len);
 624
 625	for (i = 0; i < last_word - first_word + 1; i++)
 626		cpu_to_le16s(&eeprom_buff[i]);
 627
 628	ret_val = e1000_write_nvm(hw, first_word,
 629				  last_word - first_word + 1, eeprom_buff);
 630
 631	if (ret_val)
 632		goto out;
 633
 634	/* Update the checksum over the first part of the EEPROM if needed
 635	 * and flush shadow RAM for applicable controllers
 636	 */
 637	if ((first_word <= NVM_CHECKSUM_REG) ||
 638	    (hw->mac.type == e1000_82583) ||
 639	    (hw->mac.type == e1000_82574) ||
 640	    (hw->mac.type == e1000_82573))
 641		ret_val = e1000e_update_nvm_checksum(hw);
 642
 643out:
 644	pm_runtime_put_sync(netdev->dev.parent);
 645	kfree(eeprom_buff);
 646	return ret_val;
 647}
 648
 649static void e1000_get_drvinfo(struct net_device *netdev,
 650			      struct ethtool_drvinfo *drvinfo)
 651{
 652	struct e1000_adapter *adapter = netdev_priv(netdev);
 653
 654	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
 655	strlcpy(drvinfo->version, e1000e_driver_version,
 656		sizeof(drvinfo->version));
 657
 658	/* EEPROM image version # is reported as firmware version # for
 659	 * PCI-E controllers
 660	 */
 661	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
 662		 "%d.%d-%d",
 663		 (adapter->eeprom_vers & 0xF000) >> 12,
 664		 (adapter->eeprom_vers & 0x0FF0) >> 4,
 665		 (adapter->eeprom_vers & 0x000F));
 666
 667	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 668		sizeof(drvinfo->bus_info));
 669}
 670
 671static void e1000_get_ringparam(struct net_device *netdev,
 672				struct ethtool_ringparam *ring)
 
 
 673{
 674	struct e1000_adapter *adapter = netdev_priv(netdev);
 675
 676	ring->rx_max_pending = E1000_MAX_RXD;
 677	ring->tx_max_pending = E1000_MAX_TXD;
 678	ring->rx_pending = adapter->rx_ring_count;
 679	ring->tx_pending = adapter->tx_ring_count;
 680}
 681
 682static int e1000_set_ringparam(struct net_device *netdev,
 683			       struct ethtool_ringparam *ring)
 
 
 684{
 685	struct e1000_adapter *adapter = netdev_priv(netdev);
 686	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
 687	int err = 0, size = sizeof(struct e1000_ring);
 688	bool set_tx = false, set_rx = false;
 689	u16 new_rx_count, new_tx_count;
 690
 691	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 692		return -EINVAL;
 693
 694	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
 695			       E1000_MAX_RXD);
 696	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 697
 698	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
 699			       E1000_MAX_TXD);
 700	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 701
 702	if ((new_tx_count == adapter->tx_ring_count) &&
 703	    (new_rx_count == adapter->rx_ring_count))
 704		/* nothing to do */
 705		return 0;
 706
 707	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 708		usleep_range(1000, 2000);
 709
 710	if (!netif_running(adapter->netdev)) {
 711		/* Set counts now and allocate resources during open() */
 712		adapter->tx_ring->count = new_tx_count;
 713		adapter->rx_ring->count = new_rx_count;
 714		adapter->tx_ring_count = new_tx_count;
 715		adapter->rx_ring_count = new_rx_count;
 716		goto clear_reset;
 717	}
 718
 719	set_tx = (new_tx_count != adapter->tx_ring_count);
 720	set_rx = (new_rx_count != adapter->rx_ring_count);
 721
 722	/* Allocate temporary storage for ring updates */
 723	if (set_tx) {
 724		temp_tx = vmalloc(size);
 725		if (!temp_tx) {
 726			err = -ENOMEM;
 727			goto free_temp;
 728		}
 729	}
 730	if (set_rx) {
 731		temp_rx = vmalloc(size);
 732		if (!temp_rx) {
 733			err = -ENOMEM;
 734			goto free_temp;
 735		}
 736	}
 737
 738	pm_runtime_get_sync(netdev->dev.parent);
 739
 740	e1000e_down(adapter, true);
 741
 742	/* We can't just free everything and then setup again, because the
 743	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
 744	 * structs.  First, attempt to allocate new resources...
 745	 */
 746	if (set_tx) {
 747		memcpy(temp_tx, adapter->tx_ring, size);
 748		temp_tx->count = new_tx_count;
 749		err = e1000e_setup_tx_resources(temp_tx);
 750		if (err)
 751			goto err_setup;
 752	}
 753	if (set_rx) {
 754		memcpy(temp_rx, adapter->rx_ring, size);
 755		temp_rx->count = new_rx_count;
 756		err = e1000e_setup_rx_resources(temp_rx);
 757		if (err)
 758			goto err_setup_rx;
 759	}
 760
 761	/* ...then free the old resources and copy back any new ring data */
 762	if (set_tx) {
 763		e1000e_free_tx_resources(adapter->tx_ring);
 764		memcpy(adapter->tx_ring, temp_tx, size);
 765		adapter->tx_ring_count = new_tx_count;
 766	}
 767	if (set_rx) {
 768		e1000e_free_rx_resources(adapter->rx_ring);
 769		memcpy(adapter->rx_ring, temp_rx, size);
 770		adapter->rx_ring_count = new_rx_count;
 771	}
 772
 773err_setup_rx:
 774	if (err && set_tx)
 775		e1000e_free_tx_resources(temp_tx);
 776err_setup:
 777	e1000e_up(adapter);
 778	pm_runtime_put_sync(netdev->dev.parent);
 779free_temp:
 780	vfree(temp_tx);
 781	vfree(temp_rx);
 782clear_reset:
 783	clear_bit(__E1000_RESETTING, &adapter->state);
 784	return err;
 785}
 786
 787static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
 788			     int reg, int offset, u32 mask, u32 write)
 789{
 790	u32 pat, val;
 791	static const u32 test[] = {
 792		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 793	};
 794	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
 795		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
 796				      (test[pat] & write));
 797		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
 798		if (val != (test[pat] & write & mask)) {
 799			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 800			      reg + (offset << 2), val,
 801			      (test[pat] & write & mask));
 802			*data = reg;
 803			return true;
 804		}
 805	}
 806	return false;
 807}
 808
 809static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
 810			      int reg, u32 mask, u32 write)
 811{
 812	u32 val;
 813
 814	__ew32(&adapter->hw, reg, write & mask);
 815	val = __er32(&adapter->hw, reg);
 816	if ((write & mask) != (val & mask)) {
 817		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 818		      reg, (val & mask), (write & mask));
 819		*data = reg;
 820		return true;
 821	}
 822	return false;
 823}
 824
 825#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
 826	do {                                                                   \
 827		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
 828			return 1;                                              \
 829	} while (0)
 830#define REG_PATTERN_TEST(reg, mask, write)                                     \
 831	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
 832
 833#define REG_SET_AND_CHECK(reg, mask, write)                                    \
 834	do {                                                                   \
 835		if (reg_set_and_check(adapter, data, reg, mask, write))        \
 836			return 1;                                              \
 837	} while (0)
 838
 839static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 840{
 841	struct e1000_hw *hw = &adapter->hw;
 842	struct e1000_mac_info *mac = &adapter->hw.mac;
 843	u32 value;
 844	u32 before;
 845	u32 after;
 846	u32 i;
 847	u32 toggle;
 848	u32 mask;
 849	u32 wlock_mac = 0;
 850
 851	/* The status register is Read Only, so a write should fail.
 852	 * Some bits that get toggled are ignored.  There are several bits
 853	 * on newer hardware that are r/w.
 854	 */
 855	switch (mac->type) {
 856	case e1000_82571:
 857	case e1000_82572:
 858	case e1000_80003es2lan:
 859		toggle = 0x7FFFF3FF;
 860		break;
 861	default:
 862		toggle = 0x7FFFF033;
 863		break;
 864	}
 865
 866	before = er32(STATUS);
 867	value = (er32(STATUS) & toggle);
 868	ew32(STATUS, toggle);
 869	after = er32(STATUS) & toggle;
 870	if (value != after) {
 871		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
 872		      after, value);
 873		*data = 1;
 874		return 1;
 875	}
 876	/* restore previous status */
 877	ew32(STATUS, before);
 878
 879	if (!(adapter->flags & FLAG_IS_ICH)) {
 880		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 881		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
 882		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
 883		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
 884	}
 885
 886	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
 887	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 888	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
 889	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
 890	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
 891	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
 892	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
 893	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 894	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 895	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
 896
 897	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
 898
 899	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
 900	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
 901	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
 902
 903	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
 904	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 905	if (!(adapter->flags & FLAG_IS_ICH))
 906		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
 907	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 908	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
 909	mask = 0x8003FFFF;
 910	switch (mac->type) {
 911	case e1000_ich10lan:
 912	case e1000_pchlan:
 913	case e1000_pch2lan:
 914	case e1000_pch_lpt:
 915	case e1000_pch_spt:
 916		/* fall through */
 917	case e1000_pch_cnp:
 
 
 
 
 
 
 918		mask |= BIT(18);
 919		break;
 920	default:
 921		break;
 922	}
 923
 924	if (mac->type >= e1000_pch_lpt)
 925		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
 926		    E1000_FWSM_WLOCK_MAC_SHIFT;
 927
 928	for (i = 0; i < mac->rar_entry_count; i++) {
 929		if (mac->type >= e1000_pch_lpt) {
 930			/* Cannot test write-protected SHRAL[n] registers */
 931			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
 932				continue;
 933
 934			/* SHRAH[9] different than the others */
 935			if (i == 10)
 936				mask |= BIT(30);
 937			else
 938				mask &= ~BIT(30);
 939		}
 940		if (mac->type == e1000_pch2lan) {
 941			/* SHRAH[0,1,2] different than previous */
 942			if (i == 1)
 943				mask &= 0xFFF4FFFF;
 944			/* SHRAH[3] different than SHRAH[0,1,2] */
 945			if (i == 4)
 946				mask |= BIT(30);
 947			/* RAR[1-6] owned by management engine - skipping */
 948			if (i > 0)
 949				i += 6;
 950		}
 951
 952		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
 953				       0xFFFFFFFF);
 954		/* reset index to actual value */
 955		if ((mac->type == e1000_pch2lan) && (i > 6))
 956			i -= 6;
 957	}
 958
 959	for (i = 0; i < mac->mta_reg_count; i++)
 960		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
 961
 962	*data = 0;
 963
 964	return 0;
 965}
 966
 967static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 968{
 969	u16 temp;
 970	u16 checksum = 0;
 971	u16 i;
 972
 973	*data = 0;
 974	/* Read and add up the contents of the EEPROM */
 975	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 976		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
 977			*data = 1;
 978			return *data;
 979		}
 980		checksum += temp;
 981	}
 982
 983	/* If Checksum is not Correct return error else test passed */
 984	if ((checksum != (u16)NVM_SUM) && !(*data))
 985		*data = 2;
 986
 987	return *data;
 988}
 989
 990static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
 991{
 992	struct net_device *netdev = (struct net_device *)data;
 993	struct e1000_adapter *adapter = netdev_priv(netdev);
 994	struct e1000_hw *hw = &adapter->hw;
 995
 996	adapter->test_icr |= er32(ICR);
 997
 998	return IRQ_HANDLED;
 999}
1000
1001static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
1002{
1003	struct net_device *netdev = adapter->netdev;
1004	struct e1000_hw *hw = &adapter->hw;
1005	u32 mask;
1006	u32 shared_int = 1;
1007	u32 irq = adapter->pdev->irq;
1008	int i;
1009	int ret_val = 0;
1010	int int_mode = E1000E_INT_MODE_LEGACY;
1011
1012	*data = 0;
1013
1014	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1015	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1016		int_mode = adapter->int_mode;
1017		e1000e_reset_interrupt_capability(adapter);
1018		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1019		e1000e_set_interrupt_capability(adapter);
1020	}
1021	/* Hook up test interrupt handler just for this test */
1022	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1023			 netdev)) {
1024		shared_int = 0;
1025	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1026			       netdev)) {
1027		*data = 1;
1028		ret_val = -1;
1029		goto out;
1030	}
1031	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1032
1033	/* Disable all the interrupts */
1034	ew32(IMC, 0xFFFFFFFF);
1035	e1e_flush();
1036	usleep_range(10000, 20000);
1037
1038	/* Test each interrupt */
1039	for (i = 0; i < 10; i++) {
1040		/* Interrupt to test */
1041		mask = BIT(i);
1042
1043		if (adapter->flags & FLAG_IS_ICH) {
1044			switch (mask) {
1045			case E1000_ICR_RXSEQ:
1046				continue;
1047			case 0x00000100:
1048				if (adapter->hw.mac.type == e1000_ich8lan ||
1049				    adapter->hw.mac.type == e1000_ich9lan)
1050					continue;
1051				break;
1052			default:
1053				break;
1054			}
1055		}
1056
1057		if (!shared_int) {
1058			/* Disable the interrupt to be reported in
1059			 * the cause register and then force the same
1060			 * interrupt and see if one gets posted.  If
1061			 * an interrupt was posted to the bus, the
1062			 * test failed.
1063			 */
1064			adapter->test_icr = 0;
1065			ew32(IMC, mask);
1066			ew32(ICS, mask);
1067			e1e_flush();
1068			usleep_range(10000, 20000);
1069
1070			if (adapter->test_icr & mask) {
1071				*data = 3;
1072				break;
1073			}
1074		}
1075
1076		/* Enable the interrupt to be reported in
1077		 * the cause register and then force the same
1078		 * interrupt and see if one gets posted.  If
1079		 * an interrupt was not posted to the bus, the
1080		 * test failed.
1081		 */
1082		adapter->test_icr = 0;
1083		ew32(IMS, mask);
1084		ew32(ICS, mask);
1085		e1e_flush();
1086		usleep_range(10000, 20000);
1087
1088		if (!(adapter->test_icr & mask)) {
1089			*data = 4;
1090			break;
1091		}
1092
1093		if (!shared_int) {
1094			/* Disable the other interrupts to be reported in
1095			 * the cause register and then force the other
1096			 * interrupts and see if any get posted.  If
1097			 * an interrupt was posted to the bus, the
1098			 * test failed.
1099			 */
1100			adapter->test_icr = 0;
1101			ew32(IMC, ~mask & 0x00007FFF);
1102			ew32(ICS, ~mask & 0x00007FFF);
1103			e1e_flush();
1104			usleep_range(10000, 20000);
1105
1106			if (adapter->test_icr) {
1107				*data = 5;
1108				break;
1109			}
1110		}
1111	}
1112
1113	/* Disable all the interrupts */
1114	ew32(IMC, 0xFFFFFFFF);
1115	e1e_flush();
1116	usleep_range(10000, 20000);
1117
1118	/* Unhook test interrupt handler */
1119	free_irq(irq, netdev);
1120
1121out:
1122	if (int_mode == E1000E_INT_MODE_MSIX) {
1123		e1000e_reset_interrupt_capability(adapter);
1124		adapter->int_mode = int_mode;
1125		e1000e_set_interrupt_capability(adapter);
1126	}
1127
1128	return ret_val;
1129}
1130
1131static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1132{
1133	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1134	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1135	struct pci_dev *pdev = adapter->pdev;
1136	struct e1000_buffer *buffer_info;
1137	int i;
1138
1139	if (tx_ring->desc && tx_ring->buffer_info) {
1140		for (i = 0; i < tx_ring->count; i++) {
1141			buffer_info = &tx_ring->buffer_info[i];
1142
1143			if (buffer_info->dma)
1144				dma_unmap_single(&pdev->dev,
1145						 buffer_info->dma,
1146						 buffer_info->length,
1147						 DMA_TO_DEVICE);
1148			if (buffer_info->skb)
1149				dev_kfree_skb(buffer_info->skb);
1150		}
1151	}
1152
1153	if (rx_ring->desc && rx_ring->buffer_info) {
1154		for (i = 0; i < rx_ring->count; i++) {
1155			buffer_info = &rx_ring->buffer_info[i];
1156
1157			if (buffer_info->dma)
1158				dma_unmap_single(&pdev->dev,
1159						 buffer_info->dma,
1160						 2048, DMA_FROM_DEVICE);
1161			if (buffer_info->skb)
1162				dev_kfree_skb(buffer_info->skb);
1163		}
1164	}
1165
1166	if (tx_ring->desc) {
1167		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1168				  tx_ring->dma);
1169		tx_ring->desc = NULL;
1170	}
1171	if (rx_ring->desc) {
1172		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1173				  rx_ring->dma);
1174		rx_ring->desc = NULL;
1175	}
1176
1177	kfree(tx_ring->buffer_info);
1178	tx_ring->buffer_info = NULL;
1179	kfree(rx_ring->buffer_info);
1180	rx_ring->buffer_info = NULL;
1181}
1182
1183static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1184{
1185	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1186	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1187	struct pci_dev *pdev = adapter->pdev;
1188	struct e1000_hw *hw = &adapter->hw;
1189	u32 rctl;
1190	int i;
1191	int ret_val;
1192
1193	/* Setup Tx descriptor ring and Tx buffers */
1194
1195	if (!tx_ring->count)
1196		tx_ring->count = E1000_DEFAULT_TXD;
1197
1198	tx_ring->buffer_info = kcalloc(tx_ring->count,
1199				       sizeof(struct e1000_buffer), GFP_KERNEL);
1200	if (!tx_ring->buffer_info) {
1201		ret_val = 1;
1202		goto err_nomem;
1203	}
1204
1205	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1206	tx_ring->size = ALIGN(tx_ring->size, 4096);
1207	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1208					   &tx_ring->dma, GFP_KERNEL);
1209	if (!tx_ring->desc) {
1210		ret_val = 2;
1211		goto err_nomem;
1212	}
1213	tx_ring->next_to_use = 0;
1214	tx_ring->next_to_clean = 0;
1215
1216	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1217	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1218	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1219	ew32(TDH(0), 0);
1220	ew32(TDT(0), 0);
1221	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1222	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1223	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1224
1225	for (i = 0; i < tx_ring->count; i++) {
1226		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1227		struct sk_buff *skb;
1228		unsigned int skb_size = 1024;
1229
1230		skb = alloc_skb(skb_size, GFP_KERNEL);
1231		if (!skb) {
1232			ret_val = 3;
1233			goto err_nomem;
1234		}
1235		skb_put(skb, skb_size);
1236		tx_ring->buffer_info[i].skb = skb;
1237		tx_ring->buffer_info[i].length = skb->len;
1238		tx_ring->buffer_info[i].dma =
1239		    dma_map_single(&pdev->dev, skb->data, skb->len,
1240				   DMA_TO_DEVICE);
1241		if (dma_mapping_error(&pdev->dev,
1242				      tx_ring->buffer_info[i].dma)) {
1243			ret_val = 4;
1244			goto err_nomem;
1245		}
1246		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1247		tx_desc->lower.data = cpu_to_le32(skb->len);
1248		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1249						   E1000_TXD_CMD_IFCS |
1250						   E1000_TXD_CMD_RS);
1251		tx_desc->upper.data = 0;
1252	}
1253
1254	/* Setup Rx descriptor ring and Rx buffers */
1255
1256	if (!rx_ring->count)
1257		rx_ring->count = E1000_DEFAULT_RXD;
1258
1259	rx_ring->buffer_info = kcalloc(rx_ring->count,
1260				       sizeof(struct e1000_buffer), GFP_KERNEL);
1261	if (!rx_ring->buffer_info) {
1262		ret_val = 5;
1263		goto err_nomem;
1264	}
1265
1266	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1267	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1268					   &rx_ring->dma, GFP_KERNEL);
1269	if (!rx_ring->desc) {
1270		ret_val = 6;
1271		goto err_nomem;
1272	}
1273	rx_ring->next_to_use = 0;
1274	rx_ring->next_to_clean = 0;
1275
1276	rctl = er32(RCTL);
1277	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1278		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1279	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1280	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1281	ew32(RDLEN(0), rx_ring->size);
1282	ew32(RDH(0), 0);
1283	ew32(RDT(0), 0);
1284	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1285	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1286	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1287	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1288	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1289	ew32(RCTL, rctl);
1290
1291	for (i = 0; i < rx_ring->count; i++) {
1292		union e1000_rx_desc_extended *rx_desc;
1293		struct sk_buff *skb;
1294
1295		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1296		if (!skb) {
1297			ret_val = 7;
1298			goto err_nomem;
1299		}
1300		skb_reserve(skb, NET_IP_ALIGN);
1301		rx_ring->buffer_info[i].skb = skb;
1302		rx_ring->buffer_info[i].dma =
1303		    dma_map_single(&pdev->dev, skb->data, 2048,
1304				   DMA_FROM_DEVICE);
1305		if (dma_mapping_error(&pdev->dev,
1306				      rx_ring->buffer_info[i].dma)) {
1307			ret_val = 8;
1308			goto err_nomem;
1309		}
1310		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1311		rx_desc->read.buffer_addr =
1312		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1313		memset(skb->data, 0x00, skb->len);
1314	}
1315
1316	return 0;
1317
1318err_nomem:
1319	e1000_free_desc_rings(adapter);
1320	return ret_val;
1321}
1322
1323static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1324{
1325	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1326	e1e_wphy(&adapter->hw, 29, 0x001F);
1327	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1328	e1e_wphy(&adapter->hw, 29, 0x001A);
1329	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1330}
1331
1332static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1333{
1334	struct e1000_hw *hw = &adapter->hw;
1335	u32 ctrl_reg = 0;
1336	u16 phy_reg = 0;
1337	s32 ret_val = 0;
1338
1339	hw->mac.autoneg = 0;
1340
1341	if (hw->phy.type == e1000_phy_ife) {
1342		/* force 100, set loopback */
1343		e1e_wphy(hw, MII_BMCR, 0x6100);
1344
1345		/* Now set up the MAC to the same speed/duplex as the PHY. */
1346		ctrl_reg = er32(CTRL);
1347		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1348		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1349			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1350			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1351			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1352
1353		ew32(CTRL, ctrl_reg);
1354		e1e_flush();
1355		usleep_range(500, 1000);
1356
1357		return 0;
1358	}
1359
1360	/* Specific PHY configuration for loopback */
1361	switch (hw->phy.type) {
1362	case e1000_phy_m88:
1363		/* Auto-MDI/MDIX Off */
1364		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1365		/* reset to update Auto-MDI/MDIX */
1366		e1e_wphy(hw, MII_BMCR, 0x9140);
1367		/* autoneg off */
1368		e1e_wphy(hw, MII_BMCR, 0x8140);
1369		break;
1370	case e1000_phy_gg82563:
1371		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1372		break;
1373	case e1000_phy_bm:
1374		/* Set Default MAC Interface speed to 1GB */
1375		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1376		phy_reg &= ~0x0007;
1377		phy_reg |= 0x006;
1378		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1379		/* Assert SW reset for above settings to take effect */
1380		hw->phy.ops.commit(hw);
1381		usleep_range(1000, 2000);
1382		/* Force Full Duplex */
1383		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1384		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1385		/* Set Link Up (in force link) */
1386		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1387		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1388		/* Force Link */
1389		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1390		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1391		/* Set Early Link Enable */
1392		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1393		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1394		break;
1395	case e1000_phy_82577:
1396	case e1000_phy_82578:
1397		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1398		ret_val = hw->phy.ops.acquire(hw);
1399		if (ret_val) {
1400			e_err("Cannot setup 1Gbps loopback.\n");
1401			return ret_val;
1402		}
1403		e1000_configure_k1_ich8lan(hw, false);
1404		hw->phy.ops.release(hw);
1405		break;
1406	case e1000_phy_82579:
1407		/* Disable PHY energy detect power down */
1408		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1409		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1410		/* Disable full chip energy detect */
1411		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1412		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1413		/* Enable loopback on the PHY */
1414		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1415		break;
1416	default:
1417		break;
1418	}
1419
1420	/* force 1000, set loopback */
1421	e1e_wphy(hw, MII_BMCR, 0x4140);
1422	msleep(250);
1423
1424	/* Now set up the MAC to the same speed/duplex as the PHY. */
1425	ctrl_reg = er32(CTRL);
1426	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1427	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1428		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1429		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1430		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1431
1432	if (adapter->flags & FLAG_IS_ICH)
1433		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1434
1435	if (hw->phy.media_type == e1000_media_type_copper &&
1436	    hw->phy.type == e1000_phy_m88) {
1437		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1438	} else {
1439		/* Set the ILOS bit on the fiber Nic if half duplex link is
1440		 * detected.
1441		 */
1442		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1443			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1444	}
1445
1446	ew32(CTRL, ctrl_reg);
1447
1448	/* Disable the receiver on the PHY so when a cable is plugged in, the
1449	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1450	 */
1451	if (hw->phy.type == e1000_phy_m88)
1452		e1000_phy_disable_receiver(adapter);
1453
1454	usleep_range(500, 1000);
1455
1456	return 0;
1457}
1458
1459static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1460{
1461	struct e1000_hw *hw = &adapter->hw;
1462	u32 ctrl = er32(CTRL);
1463	int link;
1464
1465	/* special requirements for 82571/82572 fiber adapters */
1466
1467	/* jump through hoops to make sure link is up because serdes
1468	 * link is hardwired up
1469	 */
1470	ctrl |= E1000_CTRL_SLU;
1471	ew32(CTRL, ctrl);
1472
1473	/* disable autoneg */
1474	ctrl = er32(TXCW);
1475	ctrl &= ~BIT(31);
1476	ew32(TXCW, ctrl);
1477
1478	link = (er32(STATUS) & E1000_STATUS_LU);
1479
1480	if (!link) {
1481		/* set invert loss of signal */
1482		ctrl = er32(CTRL);
1483		ctrl |= E1000_CTRL_ILOS;
1484		ew32(CTRL, ctrl);
1485	}
1486
1487	/* special write to serdes control register to enable SerDes analog
1488	 * loopback
1489	 */
1490	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1491	e1e_flush();
1492	usleep_range(10000, 20000);
1493
1494	return 0;
1495}
1496
1497/* only call this for fiber/serdes connections to es2lan */
1498static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1499{
1500	struct e1000_hw *hw = &adapter->hw;
1501	u32 ctrlext = er32(CTRL_EXT);
1502	u32 ctrl = er32(CTRL);
1503
1504	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1505	 * on mac_type 80003es2lan)
1506	 */
1507	adapter->tx_fifo_head = ctrlext;
1508
1509	/* clear the serdes mode bits, putting the device into mac loopback */
1510	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1511	ew32(CTRL_EXT, ctrlext);
1512
1513	/* force speed to 1000/FD, link up */
1514	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1515	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1516		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1517	ew32(CTRL, ctrl);
1518
1519	/* set mac loopback */
1520	ctrl = er32(RCTL);
1521	ctrl |= E1000_RCTL_LBM_MAC;
1522	ew32(RCTL, ctrl);
1523
1524	/* set testing mode parameters (no need to reset later) */
1525#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1526#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1527	ew32(KMRNCTRLSTA,
1528	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1529
1530	return 0;
1531}
1532
1533static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1534{
1535	struct e1000_hw *hw = &adapter->hw;
1536	u32 rctl, fext_nvm11, tarc0;
1537
1538	if (hw->mac.type >= e1000_pch_spt) {
1539		fext_nvm11 = er32(FEXTNVM11);
1540		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1541		ew32(FEXTNVM11, fext_nvm11);
1542		tarc0 = er32(TARC(0));
1543		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1544		tarc0 &= 0xcfffffff;
1545		/* set bit 29 (value of MULR requests is now 2) */
1546		tarc0 |= 0x20000000;
1547		ew32(TARC(0), tarc0);
1548	}
1549	if (hw->phy.media_type == e1000_media_type_fiber ||
1550	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1551		switch (hw->mac.type) {
1552		case e1000_80003es2lan:
1553			return e1000_set_es2lan_mac_loopback(adapter);
1554		case e1000_82571:
1555		case e1000_82572:
1556			return e1000_set_82571_fiber_loopback(adapter);
1557		default:
1558			rctl = er32(RCTL);
1559			rctl |= E1000_RCTL_LBM_TCVR;
1560			ew32(RCTL, rctl);
1561			return 0;
1562		}
1563	} else if (hw->phy.media_type == e1000_media_type_copper) {
1564		return e1000_integrated_phy_loopback(adapter);
1565	}
1566
1567	return 7;
1568}
1569
1570static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1571{
1572	struct e1000_hw *hw = &adapter->hw;
1573	u32 rctl, fext_nvm11, tarc0;
1574	u16 phy_reg;
1575
1576	rctl = er32(RCTL);
1577	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1578	ew32(RCTL, rctl);
1579
1580	switch (hw->mac.type) {
1581	case e1000_pch_spt:
1582	case e1000_pch_cnp:
 
 
 
 
 
 
1583		fext_nvm11 = er32(FEXTNVM11);
1584		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1585		ew32(FEXTNVM11, fext_nvm11);
1586		tarc0 = er32(TARC(0));
1587		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1588		/* set bit 29 (value of MULR requests is now 0) */
1589		tarc0 &= 0xcfffffff;
1590		ew32(TARC(0), tarc0);
1591		/* fall through */
1592	case e1000_80003es2lan:
1593		if (hw->phy.media_type == e1000_media_type_fiber ||
1594		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1595			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1596			ew32(CTRL_EXT, adapter->tx_fifo_head);
1597			adapter->tx_fifo_head = 0;
1598		}
1599		/* fall through */
1600	case e1000_82571:
1601	case e1000_82572:
1602		if (hw->phy.media_type == e1000_media_type_fiber ||
1603		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1604			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1605			e1e_flush();
1606			usleep_range(10000, 20000);
1607			break;
1608		}
1609		/* Fall Through */
1610	default:
1611		hw->mac.autoneg = 1;
1612		if (hw->phy.type == e1000_phy_gg82563)
1613			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1614		e1e_rphy(hw, MII_BMCR, &phy_reg);
1615		if (phy_reg & BMCR_LOOPBACK) {
1616			phy_reg &= ~BMCR_LOOPBACK;
1617			e1e_wphy(hw, MII_BMCR, phy_reg);
1618			if (hw->phy.ops.commit)
1619				hw->phy.ops.commit(hw);
1620		}
1621		break;
1622	}
1623}
1624
1625static void e1000_create_lbtest_frame(struct sk_buff *skb,
1626				      unsigned int frame_size)
1627{
1628	memset(skb->data, 0xFF, frame_size);
1629	frame_size &= ~1;
1630	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1631	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1632	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1633}
1634
1635static int e1000_check_lbtest_frame(struct sk_buff *skb,
1636				    unsigned int frame_size)
1637{
1638	frame_size &= ~1;
1639	if (*(skb->data + 3) == 0xFF)
1640		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1641		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1642			return 0;
1643	return 13;
1644}
1645
1646static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1647{
1648	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1649	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1650	struct pci_dev *pdev = adapter->pdev;
1651	struct e1000_hw *hw = &adapter->hw;
1652	struct e1000_buffer *buffer_info;
1653	int i, j, k, l;
1654	int lc;
1655	int good_cnt;
1656	int ret_val = 0;
1657	unsigned long time;
1658
1659	ew32(RDT(0), rx_ring->count - 1);
1660
1661	/* Calculate the loop count based on the largest descriptor ring
1662	 * The idea is to wrap the largest ring a number of times using 64
1663	 * send/receive pairs during each loop
1664	 */
1665
1666	if (rx_ring->count <= tx_ring->count)
1667		lc = ((tx_ring->count / 64) * 2) + 1;
1668	else
1669		lc = ((rx_ring->count / 64) * 2) + 1;
1670
1671	k = 0;
1672	l = 0;
1673	/* loop count loop */
1674	for (j = 0; j <= lc; j++) {
1675		/* send the packets */
1676		for (i = 0; i < 64; i++) {
1677			buffer_info = &tx_ring->buffer_info[k];
1678
1679			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1680			dma_sync_single_for_device(&pdev->dev,
1681						   buffer_info->dma,
1682						   buffer_info->length,
1683						   DMA_TO_DEVICE);
1684			k++;
1685			if (k == tx_ring->count)
1686				k = 0;
1687		}
1688		ew32(TDT(0), k);
1689		e1e_flush();
1690		msleep(200);
1691		time = jiffies;	/* set the start time for the receive */
1692		good_cnt = 0;
1693		/* receive the sent packets */
1694		do {
1695			buffer_info = &rx_ring->buffer_info[l];
1696
1697			dma_sync_single_for_cpu(&pdev->dev,
1698						buffer_info->dma, 2048,
1699						DMA_FROM_DEVICE);
1700
1701			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1702							   1024);
1703			if (!ret_val)
1704				good_cnt++;
1705			l++;
1706			if (l == rx_ring->count)
1707				l = 0;
1708			/* time + 20 msecs (200 msecs on 2.4) is more than
1709			 * enough time to complete the receives, if it's
1710			 * exceeded, break and error off
1711			 */
1712		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1713		if (good_cnt != 64) {
1714			ret_val = 13;	/* ret_val is the same as mis-compare */
1715			break;
1716		}
1717		if (time_after(jiffies, time + 20)) {
1718			ret_val = 14;	/* error code for time out error */
1719			break;
1720		}
1721	}
1722	return ret_val;
1723}
1724
1725static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1726{
1727	struct e1000_hw *hw = &adapter->hw;
1728
1729	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1730	if (hw->phy.ops.check_reset_block &&
1731	    hw->phy.ops.check_reset_block(hw)) {
1732		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1733		*data = 0;
1734		goto out;
1735	}
1736
1737	*data = e1000_setup_desc_rings(adapter);
1738	if (*data)
1739		goto out;
1740
1741	*data = e1000_setup_loopback_test(adapter);
1742	if (*data)
1743		goto err_loopback;
1744
1745	*data = e1000_run_loopback_test(adapter);
1746	e1000_loopback_cleanup(adapter);
1747
1748err_loopback:
1749	e1000_free_desc_rings(adapter);
1750out:
1751	return *data;
1752}
1753
1754static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1755{
1756	struct e1000_hw *hw = &adapter->hw;
1757
1758	*data = 0;
1759	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1760		int i = 0;
1761
1762		hw->mac.serdes_has_link = false;
1763
1764		/* On some blade server designs, link establishment
1765		 * could take as long as 2-3 minutes
1766		 */
1767		do {
1768			hw->mac.ops.check_for_link(hw);
1769			if (hw->mac.serdes_has_link)
1770				return *data;
1771			msleep(20);
1772		} while (i++ < 3750);
1773
1774		*data = 1;
1775	} else {
1776		hw->mac.ops.check_for_link(hw);
1777		if (hw->mac.autoneg)
1778			/* On some Phy/switch combinations, link establishment
1779			 * can take a few seconds more than expected.
1780			 */
1781			msleep_interruptible(5000);
1782
1783		if (!(er32(STATUS) & E1000_STATUS_LU))
1784			*data = 1;
1785	}
1786	return *data;
1787}
1788
1789static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1790				 int sset)
1791{
1792	switch (sset) {
1793	case ETH_SS_TEST:
1794		return E1000_TEST_LEN;
1795	case ETH_SS_STATS:
1796		return E1000_STATS_LEN;
 
 
1797	default:
1798		return -EOPNOTSUPP;
1799	}
1800}
1801
1802static void e1000_diag_test(struct net_device *netdev,
1803			    struct ethtool_test *eth_test, u64 *data)
1804{
1805	struct e1000_adapter *adapter = netdev_priv(netdev);
1806	u16 autoneg_advertised;
1807	u8 forced_speed_duplex;
1808	u8 autoneg;
1809	bool if_running = netif_running(netdev);
1810
1811	pm_runtime_get_sync(netdev->dev.parent);
1812
1813	set_bit(__E1000_TESTING, &adapter->state);
1814
1815	if (!if_running) {
1816		/* Get control of and reset hardware */
1817		if (adapter->flags & FLAG_HAS_AMT)
1818			e1000e_get_hw_control(adapter);
1819
1820		e1000e_power_up_phy(adapter);
1821
1822		adapter->hw.phy.autoneg_wait_to_complete = 1;
1823		e1000e_reset(adapter);
1824		adapter->hw.phy.autoneg_wait_to_complete = 0;
1825	}
1826
1827	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1828		/* Offline tests */
1829
1830		/* save speed, duplex, autoneg settings */
1831		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1832		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1833		autoneg = adapter->hw.mac.autoneg;
1834
1835		e_info("offline testing starting\n");
1836
1837		if (if_running)
1838			/* indicate we're in test mode */
1839			e1000e_close(netdev);
1840
1841		if (e1000_reg_test(adapter, &data[0]))
1842			eth_test->flags |= ETH_TEST_FL_FAILED;
1843
1844		e1000e_reset(adapter);
1845		if (e1000_eeprom_test(adapter, &data[1]))
1846			eth_test->flags |= ETH_TEST_FL_FAILED;
1847
1848		e1000e_reset(adapter);
1849		if (e1000_intr_test(adapter, &data[2]))
1850			eth_test->flags |= ETH_TEST_FL_FAILED;
1851
1852		e1000e_reset(adapter);
1853		if (e1000_loopback_test(adapter, &data[3]))
1854			eth_test->flags |= ETH_TEST_FL_FAILED;
1855
1856		/* force this routine to wait until autoneg complete/timeout */
1857		adapter->hw.phy.autoneg_wait_to_complete = 1;
1858		e1000e_reset(adapter);
1859		adapter->hw.phy.autoneg_wait_to_complete = 0;
1860
1861		if (e1000_link_test(adapter, &data[4]))
1862			eth_test->flags |= ETH_TEST_FL_FAILED;
1863
1864		/* restore speed, duplex, autoneg settings */
1865		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1866		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1867		adapter->hw.mac.autoneg = autoneg;
1868		e1000e_reset(adapter);
1869
1870		clear_bit(__E1000_TESTING, &adapter->state);
1871		if (if_running)
1872			e1000e_open(netdev);
1873	} else {
1874		/* Online tests */
1875
1876		e_info("online testing starting\n");
1877
1878		/* register, eeprom, intr and loopback tests not run online */
1879		data[0] = 0;
1880		data[1] = 0;
1881		data[2] = 0;
1882		data[3] = 0;
1883
1884		if (e1000_link_test(adapter, &data[4]))
1885			eth_test->flags |= ETH_TEST_FL_FAILED;
1886
1887		clear_bit(__E1000_TESTING, &adapter->state);
1888	}
1889
1890	if (!if_running) {
1891		e1000e_reset(adapter);
1892
1893		if (adapter->flags & FLAG_HAS_AMT)
1894			e1000e_release_hw_control(adapter);
1895	}
1896
1897	msleep_interruptible(4 * 1000);
1898
1899	pm_runtime_put_sync(netdev->dev.parent);
1900}
1901
1902static void e1000_get_wol(struct net_device *netdev,
1903			  struct ethtool_wolinfo *wol)
1904{
1905	struct e1000_adapter *adapter = netdev_priv(netdev);
1906
1907	wol->supported = 0;
1908	wol->wolopts = 0;
1909
1910	if (!(adapter->flags & FLAG_HAS_WOL) ||
1911	    !device_can_wakeup(&adapter->pdev->dev))
1912		return;
1913
1914	wol->supported = WAKE_UCAST | WAKE_MCAST |
1915	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1916
1917	/* apply any specific unsupported masks here */
1918	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1919		wol->supported &= ~WAKE_UCAST;
1920
1921		if (adapter->wol & E1000_WUFC_EX)
1922			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1923	}
1924
1925	if (adapter->wol & E1000_WUFC_EX)
1926		wol->wolopts |= WAKE_UCAST;
1927	if (adapter->wol & E1000_WUFC_MC)
1928		wol->wolopts |= WAKE_MCAST;
1929	if (adapter->wol & E1000_WUFC_BC)
1930		wol->wolopts |= WAKE_BCAST;
1931	if (adapter->wol & E1000_WUFC_MAG)
1932		wol->wolopts |= WAKE_MAGIC;
1933	if (adapter->wol & E1000_WUFC_LNKC)
1934		wol->wolopts |= WAKE_PHY;
1935}
1936
1937static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1938{
1939	struct e1000_adapter *adapter = netdev_priv(netdev);
1940
1941	if (!(adapter->flags & FLAG_HAS_WOL) ||
1942	    !device_can_wakeup(&adapter->pdev->dev) ||
1943	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1944			      WAKE_MAGIC | WAKE_PHY)))
1945		return -EOPNOTSUPP;
1946
1947	/* these settings will always override what we currently have */
1948	adapter->wol = 0;
1949
1950	if (wol->wolopts & WAKE_UCAST)
1951		adapter->wol |= E1000_WUFC_EX;
1952	if (wol->wolopts & WAKE_MCAST)
1953		adapter->wol |= E1000_WUFC_MC;
1954	if (wol->wolopts & WAKE_BCAST)
1955		adapter->wol |= E1000_WUFC_BC;
1956	if (wol->wolopts & WAKE_MAGIC)
1957		adapter->wol |= E1000_WUFC_MAG;
1958	if (wol->wolopts & WAKE_PHY)
1959		adapter->wol |= E1000_WUFC_LNKC;
1960
1961	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1962
1963	return 0;
1964}
1965
1966static int e1000_set_phys_id(struct net_device *netdev,
1967			     enum ethtool_phys_id_state state)
1968{
1969	struct e1000_adapter *adapter = netdev_priv(netdev);
1970	struct e1000_hw *hw = &adapter->hw;
1971
1972	switch (state) {
1973	case ETHTOOL_ID_ACTIVE:
1974		pm_runtime_get_sync(netdev->dev.parent);
1975
1976		if (!hw->mac.ops.blink_led)
1977			return 2;	/* cycle on/off twice per second */
1978
1979		hw->mac.ops.blink_led(hw);
1980		break;
1981
1982	case ETHTOOL_ID_INACTIVE:
1983		if (hw->phy.type == e1000_phy_ife)
1984			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1985		hw->mac.ops.led_off(hw);
1986		hw->mac.ops.cleanup_led(hw);
1987		pm_runtime_put_sync(netdev->dev.parent);
1988		break;
1989
1990	case ETHTOOL_ID_ON:
1991		hw->mac.ops.led_on(hw);
1992		break;
1993
1994	case ETHTOOL_ID_OFF:
1995		hw->mac.ops.led_off(hw);
1996		break;
1997	}
1998
1999	return 0;
2000}
2001
2002static int e1000_get_coalesce(struct net_device *netdev,
2003			      struct ethtool_coalesce *ec)
 
 
2004{
2005	struct e1000_adapter *adapter = netdev_priv(netdev);
2006
2007	if (adapter->itr_setting <= 4)
2008		ec->rx_coalesce_usecs = adapter->itr_setting;
2009	else
2010		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2011
2012	return 0;
2013}
2014
2015static int e1000_set_coalesce(struct net_device *netdev,
2016			      struct ethtool_coalesce *ec)
 
 
2017{
2018	struct e1000_adapter *adapter = netdev_priv(netdev);
2019
2020	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2021	    ((ec->rx_coalesce_usecs > 4) &&
2022	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2023	    (ec->rx_coalesce_usecs == 2))
2024		return -EINVAL;
2025
2026	if (ec->rx_coalesce_usecs == 4) {
2027		adapter->itr_setting = 4;
2028		adapter->itr = adapter->itr_setting;
2029	} else if (ec->rx_coalesce_usecs <= 3) {
2030		adapter->itr = 20000;
2031		adapter->itr_setting = ec->rx_coalesce_usecs;
2032	} else {
2033		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2034		adapter->itr_setting = adapter->itr & ~3;
2035	}
2036
2037	pm_runtime_get_sync(netdev->dev.parent);
2038
2039	if (adapter->itr_setting != 0)
2040		e1000e_write_itr(adapter, adapter->itr);
2041	else
2042		e1000e_write_itr(adapter, 0);
2043
2044	pm_runtime_put_sync(netdev->dev.parent);
2045
2046	return 0;
2047}
2048
2049static int e1000_nway_reset(struct net_device *netdev)
2050{
2051	struct e1000_adapter *adapter = netdev_priv(netdev);
2052
2053	if (!netif_running(netdev))
2054		return -EAGAIN;
2055
2056	if (!adapter->hw.mac.autoneg)
2057		return -EINVAL;
2058
2059	pm_runtime_get_sync(netdev->dev.parent);
2060	e1000e_reinit_locked(adapter);
2061	pm_runtime_put_sync(netdev->dev.parent);
2062
2063	return 0;
2064}
2065
2066static void e1000_get_ethtool_stats(struct net_device *netdev,
2067				    struct ethtool_stats __always_unused *stats,
2068				    u64 *data)
2069{
2070	struct e1000_adapter *adapter = netdev_priv(netdev);
2071	struct rtnl_link_stats64 net_stats;
2072	int i;
2073	char *p = NULL;
2074
2075	pm_runtime_get_sync(netdev->dev.parent);
2076
2077	dev_get_stats(netdev, &net_stats);
2078
2079	pm_runtime_put_sync(netdev->dev.parent);
2080
2081	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2082		switch (e1000_gstrings_stats[i].type) {
2083		case NETDEV_STATS:
2084			p = (char *)&net_stats +
2085			    e1000_gstrings_stats[i].stat_offset;
2086			break;
2087		case E1000_STATS:
2088			p = (char *)adapter +
2089			    e1000_gstrings_stats[i].stat_offset;
2090			break;
2091		default:
2092			data[i] = 0;
2093			continue;
2094		}
2095
2096		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2097			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2098	}
2099}
2100
2101static void e1000_get_strings(struct net_device __always_unused *netdev,
2102			      u32 stringset, u8 *data)
2103{
2104	u8 *p = data;
2105	int i;
2106
2107	switch (stringset) {
2108	case ETH_SS_TEST:
2109		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2110		break;
2111	case ETH_SS_STATS:
2112		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2113			memcpy(p, e1000_gstrings_stats[i].stat_string,
2114			       ETH_GSTRING_LEN);
2115			p += ETH_GSTRING_LEN;
2116		}
2117		break;
 
 
 
 
2118	}
2119}
2120
2121static int e1000_get_rxnfc(struct net_device *netdev,
2122			   struct ethtool_rxnfc *info,
2123			   u32 __always_unused *rule_locs)
2124{
2125	info->data = 0;
2126
2127	switch (info->cmd) {
2128	case ETHTOOL_GRXFH: {
2129		struct e1000_adapter *adapter = netdev_priv(netdev);
2130		struct e1000_hw *hw = &adapter->hw;
2131		u32 mrqc;
2132
2133		pm_runtime_get_sync(netdev->dev.parent);
2134		mrqc = er32(MRQC);
2135		pm_runtime_put_sync(netdev->dev.parent);
2136
2137		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2138			return 0;
2139
2140		switch (info->flow_type) {
2141		case TCP_V4_FLOW:
2142			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2143				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2144			/* fall through */
2145		case UDP_V4_FLOW:
2146		case SCTP_V4_FLOW:
2147		case AH_ESP_V4_FLOW:
2148		case IPV4_FLOW:
2149			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2150				info->data |= RXH_IP_SRC | RXH_IP_DST;
2151			break;
2152		case TCP_V6_FLOW:
2153			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2154				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2155			/* fall through */
2156		case UDP_V6_FLOW:
2157		case SCTP_V6_FLOW:
2158		case AH_ESP_V6_FLOW:
2159		case IPV6_FLOW:
2160			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2161				info->data |= RXH_IP_SRC | RXH_IP_DST;
2162			break;
2163		default:
2164			break;
2165		}
2166		return 0;
2167	}
2168	default:
2169		return -EOPNOTSUPP;
2170	}
2171}
2172
2173static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2174{
2175	struct e1000_adapter *adapter = netdev_priv(netdev);
2176	struct e1000_hw *hw = &adapter->hw;
2177	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2178	u32 ret_val;
2179
2180	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2181		return -EOPNOTSUPP;
2182
2183	switch (hw->phy.type) {
2184	case e1000_phy_82579:
2185		cap_addr = I82579_EEE_CAPABILITY;
2186		lpa_addr = I82579_EEE_LP_ABILITY;
2187		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2188		break;
2189	case e1000_phy_i217:
2190		cap_addr = I217_EEE_CAPABILITY;
2191		lpa_addr = I217_EEE_LP_ABILITY;
2192		pcs_stat_addr = I217_EEE_PCS_STATUS;
2193		break;
2194	default:
2195		return -EOPNOTSUPP;
2196	}
2197
2198	pm_runtime_get_sync(netdev->dev.parent);
2199
2200	ret_val = hw->phy.ops.acquire(hw);
2201	if (ret_val) {
2202		pm_runtime_put_sync(netdev->dev.parent);
2203		return -EBUSY;
2204	}
2205
2206	/* EEE Capability */
2207	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2208	if (ret_val)
2209		goto release;
2210	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2211
2212	/* EEE Advertised */
2213	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2214
2215	/* EEE Link Partner Advertised */
2216	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2217	if (ret_val)
2218		goto release;
2219	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2220
2221	/* EEE PCS Status */
2222	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2223	if (ret_val)
2224		goto release;
2225	if (hw->phy.type == e1000_phy_82579)
2226		phy_data <<= 8;
2227
2228	/* Result of the EEE auto negotiation - there is no register that
2229	 * has the status of the EEE negotiation so do a best-guess based
2230	 * on whether Tx or Rx LPI indications have been received.
2231	 */
2232	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2233		edata->eee_active = true;
2234
2235	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2236	edata->tx_lpi_enabled = true;
2237	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2238
2239release:
2240	hw->phy.ops.release(hw);
2241	if (ret_val)
2242		ret_val = -ENODATA;
2243
2244	pm_runtime_put_sync(netdev->dev.parent);
2245
2246	return ret_val;
2247}
2248
2249static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2250{
2251	struct e1000_adapter *adapter = netdev_priv(netdev);
 
 
2252	struct e1000_hw *hw = &adapter->hw;
2253	struct ethtool_eee eee_curr;
2254	s32 ret_val;
2255
2256	ret_val = e1000e_get_eee(netdev, &eee_curr);
2257	if (ret_val)
2258		return ret_val;
2259
2260	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2261		e_err("Setting EEE tx-lpi is not supported\n");
2262		return -EINVAL;
2263	}
2264
2265	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2266		e_err("Setting EEE Tx LPI timer is not supported\n");
2267		return -EINVAL;
2268	}
2269
2270	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
 
 
 
 
 
2271		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2272		return -EINVAL;
2273	}
2274
2275	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2276
2277	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2278
2279	pm_runtime_get_sync(netdev->dev.parent);
2280
2281	/* reset the link */
2282	if (netif_running(netdev))
2283		e1000e_reinit_locked(adapter);
2284	else
2285		e1000e_reset(adapter);
2286
2287	pm_runtime_put_sync(netdev->dev.parent);
2288
2289	return 0;
2290}
2291
2292static int e1000e_get_ts_info(struct net_device *netdev,
2293			      struct ethtool_ts_info *info)
2294{
2295	struct e1000_adapter *adapter = netdev_priv(netdev);
2296
2297	ethtool_op_get_ts_info(netdev, info);
2298
2299	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2300		return 0;
2301
2302	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2303				  SOF_TIMESTAMPING_RX_HARDWARE |
2304				  SOF_TIMESTAMPING_RAW_HARDWARE);
2305
2306	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2307
2308	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2309			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2310			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2311			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2312			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2313			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2314			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2315			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2316			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2317			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2318			    BIT(HWTSTAMP_FILTER_ALL));
2319
2320	if (adapter->ptp_clock)
2321		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2322
2323	return 0;
2324}
2325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2326static const struct ethtool_ops e1000_ethtool_ops = {
 
2327	.get_drvinfo		= e1000_get_drvinfo,
2328	.get_regs_len		= e1000_get_regs_len,
2329	.get_regs		= e1000_get_regs,
2330	.get_wol		= e1000_get_wol,
2331	.set_wol		= e1000_set_wol,
2332	.get_msglevel		= e1000_get_msglevel,
2333	.set_msglevel		= e1000_set_msglevel,
2334	.nway_reset		= e1000_nway_reset,
2335	.get_link		= ethtool_op_get_link,
2336	.get_eeprom_len		= e1000_get_eeprom_len,
2337	.get_eeprom		= e1000_get_eeprom,
2338	.set_eeprom		= e1000_set_eeprom,
2339	.get_ringparam		= e1000_get_ringparam,
2340	.set_ringparam		= e1000_set_ringparam,
2341	.get_pauseparam		= e1000_get_pauseparam,
2342	.set_pauseparam		= e1000_set_pauseparam,
2343	.self_test		= e1000_diag_test,
2344	.get_strings		= e1000_get_strings,
2345	.set_phys_id		= e1000_set_phys_id,
2346	.get_ethtool_stats	= e1000_get_ethtool_stats,
2347	.get_sset_count		= e1000e_get_sset_count,
2348	.get_coalesce		= e1000_get_coalesce,
2349	.set_coalesce		= e1000_set_coalesce,
2350	.get_rxnfc		= e1000_get_rxnfc,
2351	.get_ts_info		= e1000e_get_ts_info,
2352	.get_eee		= e1000e_get_eee,
2353	.set_eee		= e1000e_set_eee,
2354	.get_link_ksettings	= e1000_get_link_ksettings,
2355	.set_link_ksettings	= e1000_set_link_ksettings,
 
 
2356};
2357
2358void e1000e_set_ethtool_ops(struct net_device *netdev)
2359{
2360	netdev->ethtool_ops = &e1000_ethtool_ops;
2361}