Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4#include "e1000.h"
5#include <net/ip6_checksum.h>
6#include <linux/io.h>
7#include <linux/prefetch.h>
8#include <linux/bitops.h>
9#include <linux/if_vlan.h>
10
11char e1000_driver_name[] = "e1000";
12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14
15/* e1000_pci_tbl - PCI Device ID Table
16 *
17 * Last entry must be all 0s
18 *
19 * Macro expands to...
20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21 */
22static const struct pci_device_id e1000_pci_tbl[] = {
23 INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 /* required last entry */
61 {0,}
62};
63
64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65
66int e1000_up(struct e1000_adapter *adapter);
67void e1000_down(struct e1000_adapter *adapter);
68void e1000_reinit_locked(struct e1000_adapter *adapter);
69void e1000_reset(struct e1000_adapter *adapter);
70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 struct e1000_tx_ring *txdr);
76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 struct e1000_rx_ring *rxdr);
78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 struct e1000_tx_ring *tx_ring);
80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 struct e1000_rx_ring *rx_ring);
82void e1000_update_stats(struct e1000_adapter *adapter);
83
84static int e1000_init_module(void);
85static void e1000_exit_module(void);
86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87static void e1000_remove(struct pci_dev *pdev);
88static int e1000_alloc_queues(struct e1000_adapter *adapter);
89static int e1000_sw_init(struct e1000_adapter *adapter);
90int e1000_open(struct net_device *netdev);
91int e1000_close(struct net_device *netdev);
92static void e1000_configure_tx(struct e1000_adapter *adapter);
93static void e1000_configure_rx(struct e1000_adapter *adapter);
94static void e1000_setup_rctl(struct e1000_adapter *adapter);
95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *tx_ring);
99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rx_ring);
101static void e1000_set_rx_mode(struct net_device *netdev);
102static void e1000_update_phy_info_task(struct work_struct *work);
103static void e1000_watchdog(struct work_struct *work);
104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 struct net_device *netdev);
107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108static int e1000_set_mac(struct net_device *netdev, void *p);
109static irqreturn_t e1000_intr(int irq, void *data);
110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 struct e1000_tx_ring *tx_ring);
112static int e1000_clean(struct napi_struct *napi, int budget);
113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 struct e1000_rx_ring *rx_ring,
115 int *work_done, int work_to_do);
116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 struct e1000_rx_ring *rx_ring,
118 int *work_done, int work_to_do);
119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 struct e1000_rx_ring *rx_ring,
121 int cleaned_count)
122{
123}
124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 struct e1000_rx_ring *rx_ring,
126 int cleaned_count);
127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring,
129 int cleaned_count);
130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 int cmd);
133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136static void e1000_reset_task(struct work_struct *work);
137static void e1000_smartspeed(struct e1000_adapter *adapter);
138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 struct sk_buff *skb);
140
141static bool e1000_vlan_used(struct e1000_adapter *adapter);
142static void e1000_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 bool filter_on);
146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 __be16 proto, u16 vid);
148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 __be16 proto, u16 vid);
150static void e1000_restore_vlan(struct e1000_adapter *adapter);
151
152static int e1000_suspend(struct device *dev);
153static int e1000_resume(struct device *dev);
154static void e1000_shutdown(struct pci_dev *pdev);
155
156#ifdef CONFIG_NET_POLL_CONTROLLER
157/* for netdump / net console */
158static void e1000_netpoll (struct net_device *netdev);
159#endif
160
161#define COPYBREAK_DEFAULT 256
162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163module_param(copybreak, uint, 0644);
164MODULE_PARM_DESC(copybreak,
165 "Maximum size of packet that is copied to a new buffer on receive");
166
167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 pci_channel_state_t state);
169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170static void e1000_io_resume(struct pci_dev *pdev);
171
172static const struct pci_error_handlers e1000_err_handler = {
173 .error_detected = e1000_io_error_detected,
174 .slot_reset = e1000_io_slot_reset,
175 .resume = e1000_io_resume,
176};
177
178static DEFINE_SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179
180static struct pci_driver e1000_driver = {
181 .name = e1000_driver_name,
182 .id_table = e1000_pci_tbl,
183 .probe = e1000_probe,
184 .remove = e1000_remove,
185 .driver.pm = pm_sleep_ptr(&e1000_pm_ops),
186 .shutdown = e1000_shutdown,
187 .err_handler = &e1000_err_handler
188};
189
190MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
191MODULE_LICENSE("GPL v2");
192
193#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
194static int debug = -1;
195module_param(debug, int, 0);
196MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
197
198/**
199 * e1000_get_hw_dev - helper function for getting netdev
200 * @hw: pointer to HW struct
201 *
202 * return device used by hardware layer to print debugging information
203 *
204 **/
205struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
206{
207 struct e1000_adapter *adapter = hw->back;
208 return adapter->netdev;
209}
210
211/**
212 * e1000_init_module - Driver Registration Routine
213 *
214 * e1000_init_module is the first routine called when the driver is
215 * loaded. All it does is register with the PCI subsystem.
216 **/
217static int __init e1000_init_module(void)
218{
219 int ret;
220 pr_info("%s\n", e1000_driver_string);
221
222 pr_info("%s\n", e1000_copyright);
223
224 ret = pci_register_driver(&e1000_driver);
225 if (copybreak != COPYBREAK_DEFAULT) {
226 if (copybreak == 0)
227 pr_info("copybreak disabled\n");
228 else
229 pr_info("copybreak enabled for "
230 "packets <= %u bytes\n", copybreak);
231 }
232 return ret;
233}
234
235module_init(e1000_init_module);
236
237/**
238 * e1000_exit_module - Driver Exit Cleanup Routine
239 *
240 * e1000_exit_module is called just before the driver is removed
241 * from memory.
242 **/
243static void __exit e1000_exit_module(void)
244{
245 pci_unregister_driver(&e1000_driver);
246}
247
248module_exit(e1000_exit_module);
249
250static int e1000_request_irq(struct e1000_adapter *adapter)
251{
252 struct net_device *netdev = adapter->netdev;
253 irq_handler_t handler = e1000_intr;
254 int irq_flags = IRQF_SHARED;
255 int err;
256
257 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
258 netdev);
259 if (err) {
260 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
261 }
262
263 return err;
264}
265
266static void e1000_free_irq(struct e1000_adapter *adapter)
267{
268 struct net_device *netdev = adapter->netdev;
269
270 free_irq(adapter->pdev->irq, netdev);
271}
272
273/**
274 * e1000_irq_disable - Mask off interrupt generation on the NIC
275 * @adapter: board private structure
276 **/
277static void e1000_irq_disable(struct e1000_adapter *adapter)
278{
279 struct e1000_hw *hw = &adapter->hw;
280
281 ew32(IMC, ~0);
282 E1000_WRITE_FLUSH();
283 synchronize_irq(adapter->pdev->irq);
284}
285
286/**
287 * e1000_irq_enable - Enable default interrupt generation settings
288 * @adapter: board private structure
289 **/
290static void e1000_irq_enable(struct e1000_adapter *adapter)
291{
292 struct e1000_hw *hw = &adapter->hw;
293
294 ew32(IMS, IMS_ENABLE_MASK);
295 E1000_WRITE_FLUSH();
296}
297
298static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
299{
300 struct e1000_hw *hw = &adapter->hw;
301 struct net_device *netdev = adapter->netdev;
302 u16 vid = hw->mng_cookie.vlan_id;
303 u16 old_vid = adapter->mng_vlan_id;
304
305 if (!e1000_vlan_used(adapter))
306 return;
307
308 if (!test_bit(vid, adapter->active_vlans)) {
309 if (hw->mng_cookie.status &
310 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
311 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
312 adapter->mng_vlan_id = vid;
313 } else {
314 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
315 }
316 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
317 (vid != old_vid) &&
318 !test_bit(old_vid, adapter->active_vlans))
319 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
320 old_vid);
321 } else {
322 adapter->mng_vlan_id = vid;
323 }
324}
325
326static void e1000_init_manageability(struct e1000_adapter *adapter)
327{
328 struct e1000_hw *hw = &adapter->hw;
329
330 if (adapter->en_mng_pt) {
331 u32 manc = er32(MANC);
332
333 /* disable hardware interception of ARP */
334 manc &= ~(E1000_MANC_ARP_EN);
335
336 ew32(MANC, manc);
337 }
338}
339
340static void e1000_release_manageability(struct e1000_adapter *adapter)
341{
342 struct e1000_hw *hw = &adapter->hw;
343
344 if (adapter->en_mng_pt) {
345 u32 manc = er32(MANC);
346
347 /* re-enable hardware interception of ARP */
348 manc |= E1000_MANC_ARP_EN;
349
350 ew32(MANC, manc);
351 }
352}
353
354/**
355 * e1000_configure - configure the hardware for RX and TX
356 * @adapter: private board structure
357 **/
358static void e1000_configure(struct e1000_adapter *adapter)
359{
360 struct net_device *netdev = adapter->netdev;
361 int i;
362
363 e1000_set_rx_mode(netdev);
364
365 e1000_restore_vlan(adapter);
366 e1000_init_manageability(adapter);
367
368 e1000_configure_tx(adapter);
369 e1000_setup_rctl(adapter);
370 e1000_configure_rx(adapter);
371 /* call E1000_DESC_UNUSED which always leaves
372 * at least 1 descriptor unused to make sure
373 * next_to_use != next_to_clean
374 */
375 for (i = 0; i < adapter->num_rx_queues; i++) {
376 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
377 adapter->alloc_rx_buf(adapter, ring,
378 E1000_DESC_UNUSED(ring));
379 }
380}
381
382int e1000_up(struct e1000_adapter *adapter)
383{
384 struct e1000_hw *hw = &adapter->hw;
385
386 /* hardware has been reset, we need to reload some things */
387 e1000_configure(adapter);
388
389 clear_bit(__E1000_DOWN, &adapter->flags);
390
391 napi_enable(&adapter->napi);
392
393 e1000_irq_enable(adapter);
394
395 netif_wake_queue(adapter->netdev);
396
397 /* fire a link change interrupt to start the watchdog */
398 ew32(ICS, E1000_ICS_LSC);
399 return 0;
400}
401
402/**
403 * e1000_power_up_phy - restore link in case the phy was powered down
404 * @adapter: address of board private structure
405 *
406 * The phy may be powered down to save power and turn off link when the
407 * driver is unloaded and wake on lan is not enabled (among others)
408 * *** this routine MUST be followed by a call to e1000_reset ***
409 **/
410void e1000_power_up_phy(struct e1000_adapter *adapter)
411{
412 struct e1000_hw *hw = &adapter->hw;
413 u16 mii_reg = 0;
414
415 /* Just clear the power down bit to wake the phy back up */
416 if (hw->media_type == e1000_media_type_copper) {
417 /* according to the manual, the phy will retain its
418 * settings across a power-down/up cycle
419 */
420 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
421 mii_reg &= ~MII_CR_POWER_DOWN;
422 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
423 }
424}
425
426static void e1000_power_down_phy(struct e1000_adapter *adapter)
427{
428 struct e1000_hw *hw = &adapter->hw;
429
430 /* Power down the PHY so no link is implied when interface is down *
431 * The PHY cannot be powered down if any of the following is true *
432 * (a) WoL is enabled
433 * (b) AMT is active
434 * (c) SoL/IDER session is active
435 */
436 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
437 hw->media_type == e1000_media_type_copper) {
438 u16 mii_reg = 0;
439
440 switch (hw->mac_type) {
441 case e1000_82540:
442 case e1000_82545:
443 case e1000_82545_rev_3:
444 case e1000_82546:
445 case e1000_ce4100:
446 case e1000_82546_rev_3:
447 case e1000_82541:
448 case e1000_82541_rev_2:
449 case e1000_82547:
450 case e1000_82547_rev_2:
451 if (er32(MANC) & E1000_MANC_SMBUS_EN)
452 goto out;
453 break;
454 default:
455 goto out;
456 }
457 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
458 mii_reg |= MII_CR_POWER_DOWN;
459 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
460 msleep(1);
461 }
462out:
463 return;
464}
465
466static void e1000_down_and_stop(struct e1000_adapter *adapter)
467{
468 set_bit(__E1000_DOWN, &adapter->flags);
469
470 cancel_delayed_work_sync(&adapter->watchdog_task);
471
472 /*
473 * Since the watchdog task can reschedule other tasks, we should cancel
474 * it first, otherwise we can run into the situation when a work is
475 * still running after the adapter has been turned down.
476 */
477
478 cancel_delayed_work_sync(&adapter->phy_info_task);
479 cancel_delayed_work_sync(&adapter->fifo_stall_task);
480
481 /* Only kill reset task if adapter is not resetting */
482 if (!test_bit(__E1000_RESETTING, &adapter->flags))
483 cancel_work_sync(&adapter->reset_task);
484}
485
486void e1000_down(struct e1000_adapter *adapter)
487{
488 struct e1000_hw *hw = &adapter->hw;
489 struct net_device *netdev = adapter->netdev;
490 u32 rctl, tctl;
491
492 /* disable receives in the hardware */
493 rctl = er32(RCTL);
494 ew32(RCTL, rctl & ~E1000_RCTL_EN);
495 /* flush and sleep below */
496
497 netif_tx_disable(netdev);
498
499 /* disable transmits in the hardware */
500 tctl = er32(TCTL);
501 tctl &= ~E1000_TCTL_EN;
502 ew32(TCTL, tctl);
503 /* flush both disables and wait for them to finish */
504 E1000_WRITE_FLUSH();
505 msleep(10);
506
507 /* Set the carrier off after transmits have been disabled in the
508 * hardware, to avoid race conditions with e1000_watchdog() (which
509 * may be running concurrently to us, checking for the carrier
510 * bit to decide whether it should enable transmits again). Such
511 * a race condition would result into transmission being disabled
512 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
513 */
514 netif_carrier_off(netdev);
515
516 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
517 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
518 napi_disable(&adapter->napi);
519
520 e1000_irq_disable(adapter);
521
522 /* Setting DOWN must be after irq_disable to prevent
523 * a screaming interrupt. Setting DOWN also prevents
524 * tasks from rescheduling.
525 */
526 e1000_down_and_stop(adapter);
527
528 adapter->link_speed = 0;
529 adapter->link_duplex = 0;
530
531 e1000_reset(adapter);
532 e1000_clean_all_tx_rings(adapter);
533 e1000_clean_all_rx_rings(adapter);
534}
535
536void e1000_reinit_locked(struct e1000_adapter *adapter)
537{
538 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
539 msleep(1);
540
541 /* only run the task if not already down */
542 if (!test_bit(__E1000_DOWN, &adapter->flags)) {
543 e1000_down(adapter);
544 e1000_up(adapter);
545 }
546
547 clear_bit(__E1000_RESETTING, &adapter->flags);
548}
549
550void e1000_reset(struct e1000_adapter *adapter)
551{
552 struct e1000_hw *hw = &adapter->hw;
553 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
554 bool legacy_pba_adjust = false;
555 u16 hwm;
556
557 /* Repartition Pba for greater than 9k mtu
558 * To take effect CTRL.RST is required.
559 */
560
561 switch (hw->mac_type) {
562 case e1000_82542_rev2_0:
563 case e1000_82542_rev2_1:
564 case e1000_82543:
565 case e1000_82544:
566 case e1000_82540:
567 case e1000_82541:
568 case e1000_82541_rev_2:
569 legacy_pba_adjust = true;
570 pba = E1000_PBA_48K;
571 break;
572 case e1000_82545:
573 case e1000_82545_rev_3:
574 case e1000_82546:
575 case e1000_ce4100:
576 case e1000_82546_rev_3:
577 pba = E1000_PBA_48K;
578 break;
579 case e1000_82547:
580 case e1000_82547_rev_2:
581 legacy_pba_adjust = true;
582 pba = E1000_PBA_30K;
583 break;
584 case e1000_undefined:
585 case e1000_num_macs:
586 break;
587 }
588
589 if (legacy_pba_adjust) {
590 if (hw->max_frame_size > E1000_RXBUFFER_8192)
591 pba -= 8; /* allocate more FIFO for Tx */
592
593 if (hw->mac_type == e1000_82547) {
594 adapter->tx_fifo_head = 0;
595 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596 adapter->tx_fifo_size =
597 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598 atomic_set(&adapter->tx_fifo_stall, 0);
599 }
600 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
601 /* adjust PBA for jumbo frames */
602 ew32(PBA, pba);
603
604 /* To maintain wire speed transmits, the Tx FIFO should be
605 * large enough to accommodate two full transmit packets,
606 * rounded up to the next 1KB and expressed in KB. Likewise,
607 * the Rx FIFO should be large enough to accommodate at least
608 * one full receive packet and is similarly rounded up and
609 * expressed in KB.
610 */
611 pba = er32(PBA);
612 /* upper 16 bits has Tx packet buffer allocation size in KB */
613 tx_space = pba >> 16;
614 /* lower 16 bits has Rx packet buffer allocation size in KB */
615 pba &= 0xffff;
616 /* the Tx fifo also stores 16 bytes of information about the Tx
617 * but don't include ethernet FCS because hardware appends it
618 */
619 min_tx_space = (hw->max_frame_size +
620 sizeof(struct e1000_tx_desc) -
621 ETH_FCS_LEN) * 2;
622 min_tx_space = ALIGN(min_tx_space, 1024);
623 min_tx_space >>= 10;
624 /* software strips receive CRC, so leave room for it */
625 min_rx_space = hw->max_frame_size;
626 min_rx_space = ALIGN(min_rx_space, 1024);
627 min_rx_space >>= 10;
628
629 /* If current Tx allocation is less than the min Tx FIFO size,
630 * and the min Tx FIFO size is less than the current Rx FIFO
631 * allocation, take space away from current Rx allocation
632 */
633 if (tx_space < min_tx_space &&
634 ((min_tx_space - tx_space) < pba)) {
635 pba = pba - (min_tx_space - tx_space);
636
637 /* PCI/PCIx hardware has PBA alignment constraints */
638 switch (hw->mac_type) {
639 case e1000_82545 ... e1000_82546_rev_3:
640 pba &= ~(E1000_PBA_8K - 1);
641 break;
642 default:
643 break;
644 }
645
646 /* if short on Rx space, Rx wins and must trump Tx
647 * adjustment or use Early Receive if available
648 */
649 if (pba < min_rx_space)
650 pba = min_rx_space;
651 }
652 }
653
654 ew32(PBA, pba);
655
656 /* flow control settings:
657 * The high water mark must be low enough to fit one full frame
658 * (or the size used for early receive) above it in the Rx FIFO.
659 * Set it to the lower of:
660 * - 90% of the Rx FIFO size, and
661 * - the full Rx FIFO size minus the early receive size (for parts
662 * with ERT support assuming ERT set to E1000_ERT_2048), or
663 * - the full Rx FIFO size minus one full frame
664 */
665 hwm = min(((pba << 10) * 9 / 10),
666 ((pba << 10) - hw->max_frame_size));
667
668 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
669 hw->fc_low_water = hw->fc_high_water - 8;
670 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
671 hw->fc_send_xon = 1;
672 hw->fc = hw->original_fc;
673
674 /* Allow time for pending master requests to run */
675 e1000_reset_hw(hw);
676 if (hw->mac_type >= e1000_82544)
677 ew32(WUC, 0);
678
679 if (e1000_init_hw(hw))
680 e_dev_err("Hardware Error\n");
681 e1000_update_mng_vlan(adapter);
682
683 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
684 if (hw->mac_type >= e1000_82544 &&
685 hw->autoneg == 1 &&
686 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
687 u32 ctrl = er32(CTRL);
688 /* clear phy power management bit if we are in gig only mode,
689 * which if enabled will attempt negotiation to 100Mb, which
690 * can cause a loss of link at power off or driver unload
691 */
692 ctrl &= ~E1000_CTRL_SWDPIN3;
693 ew32(CTRL, ctrl);
694 }
695
696 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
697 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
698
699 e1000_reset_adaptive(hw);
700 e1000_phy_get_info(hw, &adapter->phy_info);
701
702 e1000_release_manageability(adapter);
703}
704
705/* Dump the eeprom for users having checksum issues */
706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
707{
708 struct net_device *netdev = adapter->netdev;
709 struct ethtool_eeprom eeprom;
710 const struct ethtool_ops *ops = netdev->ethtool_ops;
711 u8 *data;
712 int i;
713 u16 csum_old, csum_new = 0;
714
715 eeprom.len = ops->get_eeprom_len(netdev);
716 eeprom.offset = 0;
717
718 data = kmalloc(eeprom.len, GFP_KERNEL);
719 if (!data)
720 return;
721
722 ops->get_eeprom(netdev, &eeprom, data);
723
724 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
725 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
726 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
727 csum_new += data[i] + (data[i + 1] << 8);
728 csum_new = EEPROM_SUM - csum_new;
729
730 pr_err("/*********************/\n");
731 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
732 pr_err("Calculated : 0x%04x\n", csum_new);
733
734 pr_err("Offset Values\n");
735 pr_err("======== ======\n");
736 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
737
738 pr_err("Include this output when contacting your support provider.\n");
739 pr_err("This is not a software error! Something bad happened to\n");
740 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
741 pr_err("result in further problems, possibly loss of data,\n");
742 pr_err("corruption or system hangs!\n");
743 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
744 pr_err("which is invalid and requires you to set the proper MAC\n");
745 pr_err("address manually before continuing to enable this network\n");
746 pr_err("device. Please inspect the EEPROM dump and report the\n");
747 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
748 pr_err("/*********************/\n");
749
750 kfree(data);
751}
752
753/**
754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
755 * @pdev: PCI device information struct
756 *
757 * Return true if an adapter needs ioport resources
758 **/
759static int e1000_is_need_ioport(struct pci_dev *pdev)
760{
761 switch (pdev->device) {
762 case E1000_DEV_ID_82540EM:
763 case E1000_DEV_ID_82540EM_LOM:
764 case E1000_DEV_ID_82540EP:
765 case E1000_DEV_ID_82540EP_LOM:
766 case E1000_DEV_ID_82540EP_LP:
767 case E1000_DEV_ID_82541EI:
768 case E1000_DEV_ID_82541EI_MOBILE:
769 case E1000_DEV_ID_82541ER:
770 case E1000_DEV_ID_82541ER_LOM:
771 case E1000_DEV_ID_82541GI:
772 case E1000_DEV_ID_82541GI_LF:
773 case E1000_DEV_ID_82541GI_MOBILE:
774 case E1000_DEV_ID_82544EI_COPPER:
775 case E1000_DEV_ID_82544EI_FIBER:
776 case E1000_DEV_ID_82544GC_COPPER:
777 case E1000_DEV_ID_82544GC_LOM:
778 case E1000_DEV_ID_82545EM_COPPER:
779 case E1000_DEV_ID_82545EM_FIBER:
780 case E1000_DEV_ID_82546EB_COPPER:
781 case E1000_DEV_ID_82546EB_FIBER:
782 case E1000_DEV_ID_82546EB_QUAD_COPPER:
783 return true;
784 default:
785 return false;
786 }
787}
788
789static netdev_features_t e1000_fix_features(struct net_device *netdev,
790 netdev_features_t features)
791{
792 /* Since there is no support for separate Rx/Tx vlan accel
793 * enable/disable make sure Tx flag is always in same state as Rx.
794 */
795 if (features & NETIF_F_HW_VLAN_CTAG_RX)
796 features |= NETIF_F_HW_VLAN_CTAG_TX;
797 else
798 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
799
800 return features;
801}
802
803static int e1000_set_features(struct net_device *netdev,
804 netdev_features_t features)
805{
806 struct e1000_adapter *adapter = netdev_priv(netdev);
807 netdev_features_t changed = features ^ netdev->features;
808
809 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
810 e1000_vlan_mode(netdev, features);
811
812 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
813 return 0;
814
815 netdev->features = features;
816 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
817
818 if (netif_running(netdev))
819 e1000_reinit_locked(adapter);
820 else
821 e1000_reset(adapter);
822
823 return 1;
824}
825
826static const struct net_device_ops e1000_netdev_ops = {
827 .ndo_open = e1000_open,
828 .ndo_stop = e1000_close,
829 .ndo_start_xmit = e1000_xmit_frame,
830 .ndo_set_rx_mode = e1000_set_rx_mode,
831 .ndo_set_mac_address = e1000_set_mac,
832 .ndo_tx_timeout = e1000_tx_timeout,
833 .ndo_change_mtu = e1000_change_mtu,
834 .ndo_eth_ioctl = e1000_ioctl,
835 .ndo_validate_addr = eth_validate_addr,
836 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
837 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
838#ifdef CONFIG_NET_POLL_CONTROLLER
839 .ndo_poll_controller = e1000_netpoll,
840#endif
841 .ndo_fix_features = e1000_fix_features,
842 .ndo_set_features = e1000_set_features,
843};
844
845/**
846 * e1000_init_hw_struct - initialize members of hw struct
847 * @adapter: board private struct
848 * @hw: structure used by e1000_hw.c
849 *
850 * Factors out initialization of the e1000_hw struct to its own function
851 * that can be called very early at init (just after struct allocation).
852 * Fields are initialized based on PCI device information and
853 * OS network device settings (MTU size).
854 * Returns negative error codes if MAC type setup fails.
855 */
856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
857 struct e1000_hw *hw)
858{
859 struct pci_dev *pdev = adapter->pdev;
860
861 /* PCI config space info */
862 hw->vendor_id = pdev->vendor;
863 hw->device_id = pdev->device;
864 hw->subsystem_vendor_id = pdev->subsystem_vendor;
865 hw->subsystem_id = pdev->subsystem_device;
866 hw->revision_id = pdev->revision;
867
868 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
869
870 hw->max_frame_size = adapter->netdev->mtu +
871 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
872 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
873
874 /* identify the MAC */
875 if (e1000_set_mac_type(hw)) {
876 e_err(probe, "Unknown MAC Type\n");
877 return -EIO;
878 }
879
880 switch (hw->mac_type) {
881 default:
882 break;
883 case e1000_82541:
884 case e1000_82547:
885 case e1000_82541_rev_2:
886 case e1000_82547_rev_2:
887 hw->phy_init_script = 1;
888 break;
889 }
890
891 e1000_set_media_type(hw);
892 e1000_get_bus_info(hw);
893
894 hw->wait_autoneg_complete = false;
895 hw->tbi_compatibility_en = true;
896 hw->adaptive_ifs = true;
897
898 /* Copper options */
899
900 if (hw->media_type == e1000_media_type_copper) {
901 hw->mdix = AUTO_ALL_MODES;
902 hw->disable_polarity_correction = false;
903 hw->master_slave = E1000_MASTER_SLAVE;
904 }
905
906 return 0;
907}
908
909/**
910 * e1000_probe - Device Initialization Routine
911 * @pdev: PCI device information struct
912 * @ent: entry in e1000_pci_tbl
913 *
914 * Returns 0 on success, negative on failure
915 *
916 * e1000_probe initializes an adapter identified by a pci_dev structure.
917 * The OS initialization, configuring of the adapter private structure,
918 * and a hardware reset occur.
919 **/
920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
921{
922 struct net_device *netdev;
923 struct e1000_adapter *adapter = NULL;
924 struct e1000_hw *hw;
925
926 static int cards_found;
927 static int global_quad_port_a; /* global ksp3 port a indication */
928 int i, err, pci_using_dac;
929 u16 eeprom_data = 0;
930 u16 tmp = 0;
931 u16 eeprom_apme_mask = E1000_EEPROM_APME;
932 int bars, need_ioport;
933 bool disable_dev = false;
934
935 /* do not allocate ioport bars when not needed */
936 need_ioport = e1000_is_need_ioport(pdev);
937 if (need_ioport) {
938 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
939 err = pci_enable_device(pdev);
940 } else {
941 bars = pci_select_bars(pdev, IORESOURCE_MEM);
942 err = pci_enable_device_mem(pdev);
943 }
944 if (err)
945 return err;
946
947 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
948 if (err)
949 goto err_pci_reg;
950
951 pci_set_master(pdev);
952 err = pci_save_state(pdev);
953 if (err)
954 goto err_alloc_etherdev;
955
956 err = -ENOMEM;
957 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
958 if (!netdev)
959 goto err_alloc_etherdev;
960
961 SET_NETDEV_DEV(netdev, &pdev->dev);
962
963 pci_set_drvdata(pdev, netdev);
964 adapter = netdev_priv(netdev);
965 adapter->netdev = netdev;
966 adapter->pdev = pdev;
967 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
968 adapter->bars = bars;
969 adapter->need_ioport = need_ioport;
970
971 hw = &adapter->hw;
972 hw->back = adapter;
973
974 err = -EIO;
975 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
976 if (!hw->hw_addr)
977 goto err_ioremap;
978
979 if (adapter->need_ioport) {
980 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
981 if (pci_resource_len(pdev, i) == 0)
982 continue;
983 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
984 hw->io_base = pci_resource_start(pdev, i);
985 break;
986 }
987 }
988 }
989
990 /* make ready for any if (hw->...) below */
991 err = e1000_init_hw_struct(adapter, hw);
992 if (err)
993 goto err_sw_init;
994
995 /* there is a workaround being applied below that limits
996 * 64-bit DMA addresses to 64-bit hardware. There are some
997 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
998 */
999 pci_using_dac = 0;
1000 if ((hw->bus_type == e1000_bus_type_pcix) &&
1001 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002 pci_using_dac = 1;
1003 } else {
1004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005 if (err) {
1006 pr_err("No usable DMA config, aborting\n");
1007 goto err_dma;
1008 }
1009 }
1010
1011 netdev->netdev_ops = &e1000_netdev_ops;
1012 e1000_set_ethtool_ops(netdev);
1013 netdev->watchdog_timeo = 5 * HZ;
1014 netif_napi_add(netdev, &adapter->napi, e1000_clean);
1015
1016 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1017
1018 adapter->bd_number = cards_found;
1019
1020 /* setup the private structure */
1021
1022 err = e1000_sw_init(adapter);
1023 if (err)
1024 goto err_sw_init;
1025
1026 err = -EIO;
1027 if (hw->mac_type == e1000_ce4100) {
1028 hw->ce4100_gbe_mdio_base_virt =
1029 ioremap(pci_resource_start(pdev, BAR_1),
1030 pci_resource_len(pdev, BAR_1));
1031
1032 if (!hw->ce4100_gbe_mdio_base_virt)
1033 goto err_mdio_ioremap;
1034 }
1035
1036 if (hw->mac_type >= e1000_82543) {
1037 netdev->hw_features = NETIF_F_SG |
1038 NETIF_F_HW_CSUM |
1039 NETIF_F_HW_VLAN_CTAG_RX;
1040 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041 NETIF_F_HW_VLAN_CTAG_FILTER;
1042 }
1043
1044 if ((hw->mac_type >= e1000_82544) &&
1045 (hw->mac_type != e1000_82547))
1046 netdev->hw_features |= NETIF_F_TSO;
1047
1048 netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050 netdev->features |= netdev->hw_features;
1051 netdev->hw_features |= (NETIF_F_RXCSUM |
1052 NETIF_F_RXALL |
1053 NETIF_F_RXFCS);
1054
1055 if (pci_using_dac) {
1056 netdev->features |= NETIF_F_HIGHDMA;
1057 netdev->vlan_features |= NETIF_F_HIGHDMA;
1058 }
1059
1060 netdev->vlan_features |= (NETIF_F_TSO |
1061 NETIF_F_HW_CSUM |
1062 NETIF_F_SG);
1063
1064 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067 netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069 /* MTU range: 46 - 16110 */
1070 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075 /* initialize eeprom parameters */
1076 if (e1000_init_eeprom_params(hw)) {
1077 e_err(probe, "EEPROM initialization failed\n");
1078 goto err_eeprom;
1079 }
1080
1081 /* before reading the EEPROM, reset the controller to
1082 * put the device in a known good starting state
1083 */
1084
1085 e1000_reset_hw(hw);
1086
1087 /* make sure the EEPROM is good */
1088 if (e1000_validate_eeprom_checksum(hw) < 0) {
1089 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090 e1000_dump_eeprom(adapter);
1091 /* set MAC address to all zeroes to invalidate and temporary
1092 * disable this device for the user. This blocks regular
1093 * traffic while still permitting ethtool ioctls from reaching
1094 * the hardware as well as allowing the user to run the
1095 * interface after manually setting a hw addr using
1096 * `ip set address`
1097 */
1098 memset(hw->mac_addr, 0, netdev->addr_len);
1099 } else {
1100 /* copy the MAC address out of the EEPROM */
1101 if (e1000_read_mac_addr(hw))
1102 e_err(probe, "EEPROM Read Error\n");
1103 }
1104 /* don't block initialization here due to bad MAC address */
1105 eth_hw_addr_set(netdev, hw->mac_addr);
1106
1107 if (!is_valid_ether_addr(netdev->dev_addr))
1108 e_err(probe, "Invalid MAC Address\n");
1109
1110
1111 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113 e1000_82547_tx_fifo_stall_task);
1114 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117 e1000_check_options(adapter);
1118
1119 /* Initial Wake on LAN setting
1120 * If APM wake is enabled in the EEPROM,
1121 * enable the ACPI Magic Packet filter
1122 */
1123
1124 switch (hw->mac_type) {
1125 case e1000_82542_rev2_0:
1126 case e1000_82542_rev2_1:
1127 case e1000_82543:
1128 break;
1129 case e1000_82544:
1130 e1000_read_eeprom(hw,
1131 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133 break;
1134 case e1000_82546:
1135 case e1000_82546_rev_3:
1136 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137 e1000_read_eeprom(hw,
1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139 break;
1140 }
1141 fallthrough;
1142 default:
1143 e1000_read_eeprom(hw,
1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145 break;
1146 }
1147 if (eeprom_data & eeprom_apme_mask)
1148 adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150 /* now that we have the eeprom settings, apply the special cases
1151 * where the eeprom may be wrong or the board simply won't support
1152 * wake on lan on a particular port
1153 */
1154 switch (pdev->device) {
1155 case E1000_DEV_ID_82546GB_PCIE:
1156 adapter->eeprom_wol = 0;
1157 break;
1158 case E1000_DEV_ID_82546EB_FIBER:
1159 case E1000_DEV_ID_82546GB_FIBER:
1160 /* Wake events only supported on port A for dual fiber
1161 * regardless of eeprom setting
1162 */
1163 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164 adapter->eeprom_wol = 0;
1165 break;
1166 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167 /* if quad port adapter, disable WoL on all but port A */
1168 if (global_quad_port_a != 0)
1169 adapter->eeprom_wol = 0;
1170 else
1171 adapter->quad_port_a = true;
1172 /* Reset for multiple quad port adapters */
1173 if (++global_quad_port_a == 4)
1174 global_quad_port_a = 0;
1175 break;
1176 }
1177
1178 /* initialize the wol settings based on the eeprom settings */
1179 adapter->wol = adapter->eeprom_wol;
1180 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182 /* Auto detect PHY address */
1183 if (hw->mac_type == e1000_ce4100) {
1184 for (i = 0; i < 32; i++) {
1185 hw->phy_addr = i;
1186 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188 if (tmp != 0 && tmp != 0xFF)
1189 break;
1190 }
1191
1192 if (i >= 32)
1193 goto err_eeprom;
1194 }
1195
1196 /* reset the hardware with the new settings */
1197 e1000_reset(adapter);
1198
1199 strcpy(netdev->name, "eth%d");
1200 err = register_netdev(netdev);
1201 if (err)
1202 goto err_register;
1203
1204 e1000_vlan_filter_on_off(adapter, false);
1205
1206 /* print bus type/speed/width info */
1207 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214 netdev->dev_addr);
1215
1216 /* carrier off reporting is important to ethtool even BEFORE open */
1217 netif_carrier_off(netdev);
1218
1219 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221 cards_found++;
1222 return 0;
1223
1224err_register:
1225err_eeprom:
1226 e1000_phy_hw_reset(hw);
1227
1228 if (hw->flash_address)
1229 iounmap(hw->flash_address);
1230 kfree(adapter->tx_ring);
1231 kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235 iounmap(hw->ce4100_gbe_mdio_base_virt);
1236 iounmap(hw->hw_addr);
1237err_ioremap:
1238 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239 free_netdev(netdev);
1240err_alloc_etherdev:
1241 pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243 if (!adapter || disable_dev)
1244 pci_disable_device(pdev);
1245 return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259 struct net_device *netdev = pci_get_drvdata(pdev);
1260 struct e1000_adapter *adapter = netdev_priv(netdev);
1261 struct e1000_hw *hw = &adapter->hw;
1262 bool disable_dev;
1263
1264 e1000_down_and_stop(adapter);
1265 e1000_release_manageability(adapter);
1266
1267 unregister_netdev(netdev);
1268
1269 e1000_phy_hw_reset(hw);
1270
1271 kfree(adapter->tx_ring);
1272 kfree(adapter->rx_ring);
1273
1274 if (hw->mac_type == e1000_ce4100)
1275 iounmap(hw->ce4100_gbe_mdio_base_virt);
1276 iounmap(hw->hw_addr);
1277 if (hw->flash_address)
1278 iounmap(hw->flash_address);
1279 pci_release_selected_regions(pdev, adapter->bars);
1280
1281 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282 free_netdev(netdev);
1283
1284 if (disable_dev)
1285 pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299 adapter->num_tx_queues = 1;
1300 adapter->num_rx_queues = 1;
1301
1302 if (e1000_alloc_queues(adapter)) {
1303 e_err(probe, "Unable to allocate memory for queues\n");
1304 return -ENOMEM;
1305 }
1306
1307 /* Explicitly disable IRQ since the NIC can be in any state. */
1308 e1000_irq_disable(adapter);
1309
1310 spin_lock_init(&adapter->stats_lock);
1311
1312 set_bit(__E1000_DOWN, &adapter->flags);
1313
1314 return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328 if (!adapter->tx_ring)
1329 return -ENOMEM;
1330
1331 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333 if (!adapter->rx_ring) {
1334 kfree(adapter->tx_ring);
1335 return -ENOMEM;
1336 }
1337
1338 return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP). At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355 struct e1000_adapter *adapter = netdev_priv(netdev);
1356 struct e1000_hw *hw = &adapter->hw;
1357 int err;
1358
1359 /* disallow open during test */
1360 if (test_bit(__E1000_TESTING, &adapter->flags))
1361 return -EBUSY;
1362
1363 netif_carrier_off(netdev);
1364
1365 /* allocate transmit descriptors */
1366 err = e1000_setup_all_tx_resources(adapter);
1367 if (err)
1368 goto err_setup_tx;
1369
1370 /* allocate receive descriptors */
1371 err = e1000_setup_all_rx_resources(adapter);
1372 if (err)
1373 goto err_setup_rx;
1374
1375 e1000_power_up_phy(adapter);
1376
1377 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378 if ((hw->mng_cookie.status &
1379 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380 e1000_update_mng_vlan(adapter);
1381 }
1382
1383 /* before we allocate an interrupt, we must be ready to handle it.
1384 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385 * as soon as we call pci_request_irq, so we have to setup our
1386 * clean_rx handler before we do so.
1387 */
1388 e1000_configure(adapter);
1389
1390 err = e1000_request_irq(adapter);
1391 if (err)
1392 goto err_req_irq;
1393
1394 /* From here on the code is the same as e1000_up() */
1395 clear_bit(__E1000_DOWN, &adapter->flags);
1396
1397 netif_napi_set_irq(&adapter->napi, adapter->pdev->irq);
1398 napi_enable(&adapter->napi);
1399 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
1400 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
1401
1402 e1000_irq_enable(adapter);
1403
1404 netif_start_queue(netdev);
1405
1406 /* fire a link status change interrupt to start the watchdog */
1407 ew32(ICS, E1000_ICS_LSC);
1408
1409 return E1000_SUCCESS;
1410
1411err_req_irq:
1412 e1000_power_down_phy(adapter);
1413 e1000_free_all_rx_resources(adapter);
1414err_setup_rx:
1415 e1000_free_all_tx_resources(adapter);
1416err_setup_tx:
1417 e1000_reset(adapter);
1418
1419 return err;
1420}
1421
1422/**
1423 * e1000_close - Disables a network interface
1424 * @netdev: network interface device structure
1425 *
1426 * Returns 0, this is not allowed to fail
1427 *
1428 * The close entry point is called when an interface is de-activated
1429 * by the OS. The hardware is still under the drivers control, but
1430 * needs to be disabled. A global MAC reset is issued to stop the
1431 * hardware, and all transmit and receive resources are freed.
1432 **/
1433int e1000_close(struct net_device *netdev)
1434{
1435 struct e1000_adapter *adapter = netdev_priv(netdev);
1436 struct e1000_hw *hw = &adapter->hw;
1437 int count = E1000_CHECK_RESET_COUNT;
1438
1439 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1440 usleep_range(10000, 20000);
1441
1442 WARN_ON(count < 0);
1443
1444 /* signal that we're down so that the reset task will no longer run */
1445 set_bit(__E1000_DOWN, &adapter->flags);
1446 clear_bit(__E1000_RESETTING, &adapter->flags);
1447
1448 e1000_down(adapter);
1449 e1000_power_down_phy(adapter);
1450 e1000_free_irq(adapter);
1451
1452 e1000_free_all_tx_resources(adapter);
1453 e1000_free_all_rx_resources(adapter);
1454
1455 /* kill manageability vlan ID if supported, but not if a vlan with
1456 * the same ID is registered on the host OS (let 8021q kill it)
1457 */
1458 if ((hw->mng_cookie.status &
1459 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1460 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1461 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1462 adapter->mng_vlan_id);
1463 }
1464
1465 return 0;
1466}
1467
1468/**
1469 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1470 * @adapter: address of board private structure
1471 * @start: address of beginning of memory
1472 * @len: length of memory
1473 **/
1474static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1475 unsigned long len)
1476{
1477 struct e1000_hw *hw = &adapter->hw;
1478 unsigned long begin = (unsigned long)start;
1479 unsigned long end = begin + len;
1480
1481 /* First rev 82545 and 82546 need to not allow any memory
1482 * write location to cross 64k boundary due to errata 23
1483 */
1484 if (hw->mac_type == e1000_82545 ||
1485 hw->mac_type == e1000_ce4100 ||
1486 hw->mac_type == e1000_82546) {
1487 return ((begin ^ (end - 1)) >> 16) == 0;
1488 }
1489
1490 return true;
1491}
1492
1493/**
1494 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1495 * @adapter: board private structure
1496 * @txdr: tx descriptor ring (for a specific queue) to setup
1497 *
1498 * Return 0 on success, negative on failure
1499 **/
1500static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1501 struct e1000_tx_ring *txdr)
1502{
1503 struct pci_dev *pdev = adapter->pdev;
1504 int size;
1505
1506 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1507 txdr->buffer_info = vzalloc(size);
1508 if (!txdr->buffer_info)
1509 return -ENOMEM;
1510
1511 /* round up to nearest 4K */
1512
1513 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1514 txdr->size = ALIGN(txdr->size, 4096);
1515
1516 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1517 GFP_KERNEL);
1518 if (!txdr->desc) {
1519setup_tx_desc_die:
1520 vfree(txdr->buffer_info);
1521 return -ENOMEM;
1522 }
1523
1524 /* Fix for errata 23, can't cross 64kB boundary */
1525 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1526 void *olddesc = txdr->desc;
1527 dma_addr_t olddma = txdr->dma;
1528 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1529 txdr->size, txdr->desc);
1530 /* Try again, without freeing the previous */
1531 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1532 &txdr->dma, GFP_KERNEL);
1533 /* Failed allocation, critical failure */
1534 if (!txdr->desc) {
1535 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1536 olddma);
1537 goto setup_tx_desc_die;
1538 }
1539
1540 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1541 /* give up */
1542 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1543 txdr->dma);
1544 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545 olddma);
1546 e_err(probe, "Unable to allocate aligned memory "
1547 "for the transmit descriptor ring\n");
1548 vfree(txdr->buffer_info);
1549 return -ENOMEM;
1550 } else {
1551 /* Free old allocation, new allocation was successful */
1552 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553 olddma);
1554 }
1555 }
1556 memset(txdr->desc, 0, txdr->size);
1557
1558 txdr->next_to_use = 0;
1559 txdr->next_to_clean = 0;
1560
1561 return 0;
1562}
1563
1564/**
1565 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1566 * (Descriptors) for all queues
1567 * @adapter: board private structure
1568 *
1569 * Return 0 on success, negative on failure
1570 **/
1571int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1572{
1573 int i, err = 0;
1574
1575 for (i = 0; i < adapter->num_tx_queues; i++) {
1576 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1577 if (err) {
1578 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1579 for (i-- ; i >= 0; i--)
1580 e1000_free_tx_resources(adapter,
1581 &adapter->tx_ring[i]);
1582 break;
1583 }
1584 }
1585
1586 return err;
1587}
1588
1589/**
1590 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1591 * @adapter: board private structure
1592 *
1593 * Configure the Tx unit of the MAC after a reset.
1594 **/
1595static void e1000_configure_tx(struct e1000_adapter *adapter)
1596{
1597 u64 tdba;
1598 struct e1000_hw *hw = &adapter->hw;
1599 u32 tdlen, tctl, tipg;
1600 u32 ipgr1, ipgr2;
1601
1602 /* Setup the HW Tx Head and Tail descriptor pointers */
1603
1604 switch (adapter->num_tx_queues) {
1605 case 1:
1606 default:
1607 tdba = adapter->tx_ring[0].dma;
1608 tdlen = adapter->tx_ring[0].count *
1609 sizeof(struct e1000_tx_desc);
1610 ew32(TDLEN, tdlen);
1611 ew32(TDBAH, (tdba >> 32));
1612 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1613 ew32(TDT, 0);
1614 ew32(TDH, 0);
1615 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1616 E1000_TDH : E1000_82542_TDH);
1617 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1618 E1000_TDT : E1000_82542_TDT);
1619 break;
1620 }
1621
1622 /* Set the default values for the Tx Inter Packet Gap timer */
1623 if ((hw->media_type == e1000_media_type_fiber ||
1624 hw->media_type == e1000_media_type_internal_serdes))
1625 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1626 else
1627 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1628
1629 switch (hw->mac_type) {
1630 case e1000_82542_rev2_0:
1631 case e1000_82542_rev2_1:
1632 tipg = DEFAULT_82542_TIPG_IPGT;
1633 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1634 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1635 break;
1636 default:
1637 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1638 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1639 break;
1640 }
1641 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1642 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1643 ew32(TIPG, tipg);
1644
1645 /* Set the Tx Interrupt Delay register */
1646
1647 ew32(TIDV, adapter->tx_int_delay);
1648 if (hw->mac_type >= e1000_82540)
1649 ew32(TADV, adapter->tx_abs_int_delay);
1650
1651 /* Program the Transmit Control Register */
1652
1653 tctl = er32(TCTL);
1654 tctl &= ~E1000_TCTL_CT;
1655 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1656 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1657
1658 e1000_config_collision_dist(hw);
1659
1660 /* Setup Transmit Descriptor Settings for eop descriptor */
1661 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1662
1663 /* only set IDE if we are delaying interrupts using the timers */
1664 if (adapter->tx_int_delay)
1665 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1666
1667 if (hw->mac_type < e1000_82543)
1668 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1669 else
1670 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1671
1672 /* Cache if we're 82544 running in PCI-X because we'll
1673 * need this to apply a workaround later in the send path.
1674 */
1675 if (hw->mac_type == e1000_82544 &&
1676 hw->bus_type == e1000_bus_type_pcix)
1677 adapter->pcix_82544 = true;
1678
1679 ew32(TCTL, tctl);
1680
1681}
1682
1683/**
1684 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1685 * @adapter: board private structure
1686 * @rxdr: rx descriptor ring (for a specific queue) to setup
1687 *
1688 * Returns 0 on success, negative on failure
1689 **/
1690static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1691 struct e1000_rx_ring *rxdr)
1692{
1693 struct pci_dev *pdev = adapter->pdev;
1694 int size, desc_len;
1695
1696 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1697 rxdr->buffer_info = vzalloc(size);
1698 if (!rxdr->buffer_info)
1699 return -ENOMEM;
1700
1701 desc_len = sizeof(struct e1000_rx_desc);
1702
1703 /* Round up to nearest 4K */
1704
1705 rxdr->size = rxdr->count * desc_len;
1706 rxdr->size = ALIGN(rxdr->size, 4096);
1707
1708 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1709 GFP_KERNEL);
1710 if (!rxdr->desc) {
1711setup_rx_desc_die:
1712 vfree(rxdr->buffer_info);
1713 return -ENOMEM;
1714 }
1715
1716 /* Fix for errata 23, can't cross 64kB boundary */
1717 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1718 void *olddesc = rxdr->desc;
1719 dma_addr_t olddma = rxdr->dma;
1720 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1721 rxdr->size, rxdr->desc);
1722 /* Try again, without freeing the previous */
1723 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1724 &rxdr->dma, GFP_KERNEL);
1725 /* Failed allocation, critical failure */
1726 if (!rxdr->desc) {
1727 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1728 olddma);
1729 goto setup_rx_desc_die;
1730 }
1731
1732 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1733 /* give up */
1734 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1735 rxdr->dma);
1736 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737 olddma);
1738 e_err(probe, "Unable to allocate aligned memory for "
1739 "the Rx descriptor ring\n");
1740 goto setup_rx_desc_die;
1741 } else {
1742 /* Free old allocation, new allocation was successful */
1743 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1744 olddma);
1745 }
1746 }
1747 memset(rxdr->desc, 0, rxdr->size);
1748
1749 rxdr->next_to_clean = 0;
1750 rxdr->next_to_use = 0;
1751 rxdr->rx_skb_top = NULL;
1752
1753 return 0;
1754}
1755
1756/**
1757 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1758 * (Descriptors) for all queues
1759 * @adapter: board private structure
1760 *
1761 * Return 0 on success, negative on failure
1762 **/
1763int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1764{
1765 int i, err = 0;
1766
1767 for (i = 0; i < adapter->num_rx_queues; i++) {
1768 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1769 if (err) {
1770 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1771 for (i-- ; i >= 0; i--)
1772 e1000_free_rx_resources(adapter,
1773 &adapter->rx_ring[i]);
1774 break;
1775 }
1776 }
1777
1778 return err;
1779}
1780
1781/**
1782 * e1000_setup_rctl - configure the receive control registers
1783 * @adapter: Board private structure
1784 **/
1785static void e1000_setup_rctl(struct e1000_adapter *adapter)
1786{
1787 struct e1000_hw *hw = &adapter->hw;
1788 u32 rctl;
1789
1790 rctl = er32(RCTL);
1791
1792 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1793
1794 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1795 E1000_RCTL_RDMTS_HALF |
1796 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1797
1798 if (hw->tbi_compatibility_on == 1)
1799 rctl |= E1000_RCTL_SBP;
1800 else
1801 rctl &= ~E1000_RCTL_SBP;
1802
1803 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1804 rctl &= ~E1000_RCTL_LPE;
1805 else
1806 rctl |= E1000_RCTL_LPE;
1807
1808 /* Setup buffer sizes */
1809 rctl &= ~E1000_RCTL_SZ_4096;
1810 rctl |= E1000_RCTL_BSEX;
1811 switch (adapter->rx_buffer_len) {
1812 case E1000_RXBUFFER_2048:
1813 default:
1814 rctl |= E1000_RCTL_SZ_2048;
1815 rctl &= ~E1000_RCTL_BSEX;
1816 break;
1817 case E1000_RXBUFFER_4096:
1818 rctl |= E1000_RCTL_SZ_4096;
1819 break;
1820 case E1000_RXBUFFER_8192:
1821 rctl |= E1000_RCTL_SZ_8192;
1822 break;
1823 case E1000_RXBUFFER_16384:
1824 rctl |= E1000_RCTL_SZ_16384;
1825 break;
1826 }
1827
1828 /* This is useful for sniffing bad packets. */
1829 if (adapter->netdev->features & NETIF_F_RXALL) {
1830 /* UPE and MPE will be handled by normal PROMISC logic
1831 * in e1000e_set_rx_mode
1832 */
1833 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1834 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1835 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1836
1837 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1838 E1000_RCTL_DPF | /* Allow filtered pause */
1839 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1840 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1841 * and that breaks VLANs.
1842 */
1843 }
1844
1845 ew32(RCTL, rctl);
1846}
1847
1848/**
1849 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850 * @adapter: board private structure
1851 *
1852 * Configure the Rx unit of the MAC after a reset.
1853 **/
1854static void e1000_configure_rx(struct e1000_adapter *adapter)
1855{
1856 u64 rdba;
1857 struct e1000_hw *hw = &adapter->hw;
1858 u32 rdlen, rctl, rxcsum;
1859
1860 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1861 rdlen = adapter->rx_ring[0].count *
1862 sizeof(struct e1000_rx_desc);
1863 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1864 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1865 } else {
1866 rdlen = adapter->rx_ring[0].count *
1867 sizeof(struct e1000_rx_desc);
1868 adapter->clean_rx = e1000_clean_rx_irq;
1869 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870 }
1871
1872 /* disable receives while setting up the descriptors */
1873 rctl = er32(RCTL);
1874 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1875
1876 /* set the Receive Delay Timer Register */
1877 ew32(RDTR, adapter->rx_int_delay);
1878
1879 if (hw->mac_type >= e1000_82540) {
1880 ew32(RADV, adapter->rx_abs_int_delay);
1881 if (adapter->itr_setting != 0)
1882 ew32(ITR, 1000000000 / (adapter->itr * 256));
1883 }
1884
1885 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1886 * the Base and Length of the Rx Descriptor Ring
1887 */
1888 switch (adapter->num_rx_queues) {
1889 case 1:
1890 default:
1891 rdba = adapter->rx_ring[0].dma;
1892 ew32(RDLEN, rdlen);
1893 ew32(RDBAH, (rdba >> 32));
1894 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895 ew32(RDT, 0);
1896 ew32(RDH, 0);
1897 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1898 E1000_RDH : E1000_82542_RDH);
1899 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1900 E1000_RDT : E1000_82542_RDT);
1901 break;
1902 }
1903
1904 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1905 if (hw->mac_type >= e1000_82543) {
1906 rxcsum = er32(RXCSUM);
1907 if (adapter->rx_csum)
1908 rxcsum |= E1000_RXCSUM_TUOFL;
1909 else
1910 /* don't need to clear IPPCSE as it defaults to 0 */
1911 rxcsum &= ~E1000_RXCSUM_TUOFL;
1912 ew32(RXCSUM, rxcsum);
1913 }
1914
1915 /* Enable Receives */
1916 ew32(RCTL, rctl | E1000_RCTL_EN);
1917}
1918
1919/**
1920 * e1000_free_tx_resources - Free Tx Resources per Queue
1921 * @adapter: board private structure
1922 * @tx_ring: Tx descriptor ring for a specific queue
1923 *
1924 * Free all transmit software resources
1925 **/
1926static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1927 struct e1000_tx_ring *tx_ring)
1928{
1929 struct pci_dev *pdev = adapter->pdev;
1930
1931 e1000_clean_tx_ring(adapter, tx_ring);
1932
1933 vfree(tx_ring->buffer_info);
1934 tx_ring->buffer_info = NULL;
1935
1936 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1937 tx_ring->dma);
1938
1939 tx_ring->desc = NULL;
1940}
1941
1942/**
1943 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1944 * @adapter: board private structure
1945 *
1946 * Free all transmit software resources
1947 **/
1948void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1949{
1950 int i;
1951
1952 for (i = 0; i < adapter->num_tx_queues; i++)
1953 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1954}
1955
1956static void
1957e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1958 struct e1000_tx_buffer *buffer_info,
1959 int budget)
1960{
1961 if (buffer_info->dma) {
1962 if (buffer_info->mapped_as_page)
1963 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1964 buffer_info->length, DMA_TO_DEVICE);
1965 else
1966 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1967 buffer_info->length,
1968 DMA_TO_DEVICE);
1969 buffer_info->dma = 0;
1970 }
1971 if (buffer_info->skb) {
1972 napi_consume_skb(buffer_info->skb, budget);
1973 buffer_info->skb = NULL;
1974 }
1975 buffer_info->time_stamp = 0;
1976 /* buffer_info must be completely set up in the transmit path */
1977}
1978
1979/**
1980 * e1000_clean_tx_ring - Free Tx Buffers
1981 * @adapter: board private structure
1982 * @tx_ring: ring to be cleaned
1983 **/
1984static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1985 struct e1000_tx_ring *tx_ring)
1986{
1987 struct e1000_hw *hw = &adapter->hw;
1988 struct e1000_tx_buffer *buffer_info;
1989 unsigned long size;
1990 unsigned int i;
1991
1992 /* Free all the Tx ring sk_buffs */
1993
1994 for (i = 0; i < tx_ring->count; i++) {
1995 buffer_info = &tx_ring->buffer_info[i];
1996 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1997 }
1998
1999 netdev_reset_queue(adapter->netdev);
2000 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2001 memset(tx_ring->buffer_info, 0, size);
2002
2003 /* Zero out the descriptor ring */
2004
2005 memset(tx_ring->desc, 0, tx_ring->size);
2006
2007 tx_ring->next_to_use = 0;
2008 tx_ring->next_to_clean = 0;
2009 tx_ring->last_tx_tso = false;
2010
2011 writel(0, hw->hw_addr + tx_ring->tdh);
2012 writel(0, hw->hw_addr + tx_ring->tdt);
2013}
2014
2015/**
2016 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2017 * @adapter: board private structure
2018 **/
2019static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2020{
2021 int i;
2022
2023 for (i = 0; i < adapter->num_tx_queues; i++)
2024 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2025}
2026
2027/**
2028 * e1000_free_rx_resources - Free Rx Resources
2029 * @adapter: board private structure
2030 * @rx_ring: ring to clean the resources from
2031 *
2032 * Free all receive software resources
2033 **/
2034static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2035 struct e1000_rx_ring *rx_ring)
2036{
2037 struct pci_dev *pdev = adapter->pdev;
2038
2039 e1000_clean_rx_ring(adapter, rx_ring);
2040
2041 vfree(rx_ring->buffer_info);
2042 rx_ring->buffer_info = NULL;
2043
2044 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2045 rx_ring->dma);
2046
2047 rx_ring->desc = NULL;
2048}
2049
2050/**
2051 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052 * @adapter: board private structure
2053 *
2054 * Free all receive software resources
2055 **/
2056void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2057{
2058 int i;
2059
2060 for (i = 0; i < adapter->num_rx_queues; i++)
2061 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2062}
2063
2064#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2065static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2066{
2067 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2068 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2069}
2070
2071static void *e1000_alloc_frag(const struct e1000_adapter *a)
2072{
2073 unsigned int len = e1000_frag_len(a);
2074 u8 *data = netdev_alloc_frag(len);
2075
2076 if (likely(data))
2077 data += E1000_HEADROOM;
2078 return data;
2079}
2080
2081/**
2082 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2083 * @adapter: board private structure
2084 * @rx_ring: ring to free buffers from
2085 **/
2086static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2087 struct e1000_rx_ring *rx_ring)
2088{
2089 struct e1000_hw *hw = &adapter->hw;
2090 struct e1000_rx_buffer *buffer_info;
2091 struct pci_dev *pdev = adapter->pdev;
2092 unsigned long size;
2093 unsigned int i;
2094
2095 /* Free all the Rx netfrags */
2096 for (i = 0; i < rx_ring->count; i++) {
2097 buffer_info = &rx_ring->buffer_info[i];
2098 if (adapter->clean_rx == e1000_clean_rx_irq) {
2099 if (buffer_info->dma)
2100 dma_unmap_single(&pdev->dev, buffer_info->dma,
2101 adapter->rx_buffer_len,
2102 DMA_FROM_DEVICE);
2103 if (buffer_info->rxbuf.data) {
2104 skb_free_frag(buffer_info->rxbuf.data);
2105 buffer_info->rxbuf.data = NULL;
2106 }
2107 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2108 if (buffer_info->dma)
2109 dma_unmap_page(&pdev->dev, buffer_info->dma,
2110 adapter->rx_buffer_len,
2111 DMA_FROM_DEVICE);
2112 if (buffer_info->rxbuf.page) {
2113 put_page(buffer_info->rxbuf.page);
2114 buffer_info->rxbuf.page = NULL;
2115 }
2116 }
2117
2118 buffer_info->dma = 0;
2119 }
2120
2121 /* there also may be some cached data from a chained receive */
2122 napi_free_frags(&adapter->napi);
2123 rx_ring->rx_skb_top = NULL;
2124
2125 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2126 memset(rx_ring->buffer_info, 0, size);
2127
2128 /* Zero out the descriptor ring */
2129 memset(rx_ring->desc, 0, rx_ring->size);
2130
2131 rx_ring->next_to_clean = 0;
2132 rx_ring->next_to_use = 0;
2133
2134 writel(0, hw->hw_addr + rx_ring->rdh);
2135 writel(0, hw->hw_addr + rx_ring->rdt);
2136}
2137
2138/**
2139 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2140 * @adapter: board private structure
2141 **/
2142static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2143{
2144 int i;
2145
2146 for (i = 0; i < adapter->num_rx_queues; i++)
2147 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2148}
2149
2150/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2151 * and memory write and invalidate disabled for certain operations
2152 */
2153static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2154{
2155 struct e1000_hw *hw = &adapter->hw;
2156 struct net_device *netdev = adapter->netdev;
2157 u32 rctl;
2158
2159 e1000_pci_clear_mwi(hw);
2160
2161 rctl = er32(RCTL);
2162 rctl |= E1000_RCTL_RST;
2163 ew32(RCTL, rctl);
2164 E1000_WRITE_FLUSH();
2165 mdelay(5);
2166
2167 if (netif_running(netdev))
2168 e1000_clean_all_rx_rings(adapter);
2169}
2170
2171static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2172{
2173 struct e1000_hw *hw = &adapter->hw;
2174 struct net_device *netdev = adapter->netdev;
2175 u32 rctl;
2176
2177 rctl = er32(RCTL);
2178 rctl &= ~E1000_RCTL_RST;
2179 ew32(RCTL, rctl);
2180 E1000_WRITE_FLUSH();
2181 mdelay(5);
2182
2183 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2184 e1000_pci_set_mwi(hw);
2185
2186 if (netif_running(netdev)) {
2187 /* No need to loop, because 82542 supports only 1 queue */
2188 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2189 e1000_configure_rx(adapter);
2190 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2191 }
2192}
2193
2194/**
2195 * e1000_set_mac - Change the Ethernet Address of the NIC
2196 * @netdev: network interface device structure
2197 * @p: pointer to an address structure
2198 *
2199 * Returns 0 on success, negative on failure
2200 **/
2201static int e1000_set_mac(struct net_device *netdev, void *p)
2202{
2203 struct e1000_adapter *adapter = netdev_priv(netdev);
2204 struct e1000_hw *hw = &adapter->hw;
2205 struct sockaddr *addr = p;
2206
2207 if (!is_valid_ether_addr(addr->sa_data))
2208 return -EADDRNOTAVAIL;
2209
2210 /* 82542 2.0 needs to be in reset to write receive address registers */
2211
2212 if (hw->mac_type == e1000_82542_rev2_0)
2213 e1000_enter_82542_rst(adapter);
2214
2215 eth_hw_addr_set(netdev, addr->sa_data);
2216 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2217
2218 e1000_rar_set(hw, hw->mac_addr, 0);
2219
2220 if (hw->mac_type == e1000_82542_rev2_0)
2221 e1000_leave_82542_rst(adapter);
2222
2223 return 0;
2224}
2225
2226/**
2227 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2228 * @netdev: network interface device structure
2229 *
2230 * The set_rx_mode entry point is called whenever the unicast or multicast
2231 * address lists or the network interface flags are updated. This routine is
2232 * responsible for configuring the hardware for proper unicast, multicast,
2233 * promiscuous mode, and all-multi behavior.
2234 **/
2235static void e1000_set_rx_mode(struct net_device *netdev)
2236{
2237 struct e1000_adapter *adapter = netdev_priv(netdev);
2238 struct e1000_hw *hw = &adapter->hw;
2239 struct netdev_hw_addr *ha;
2240 bool use_uc = false;
2241 u32 rctl;
2242 u32 hash_value;
2243 int i, rar_entries = E1000_RAR_ENTRIES;
2244 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2245 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2246
2247 if (!mcarray)
2248 return;
2249
2250 /* Check for Promiscuous and All Multicast modes */
2251
2252 rctl = er32(RCTL);
2253
2254 if (netdev->flags & IFF_PROMISC) {
2255 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2256 rctl &= ~E1000_RCTL_VFE;
2257 } else {
2258 if (netdev->flags & IFF_ALLMULTI)
2259 rctl |= E1000_RCTL_MPE;
2260 else
2261 rctl &= ~E1000_RCTL_MPE;
2262 /* Enable VLAN filter if there is a VLAN */
2263 if (e1000_vlan_used(adapter))
2264 rctl |= E1000_RCTL_VFE;
2265 }
2266
2267 if (netdev_uc_count(netdev) > rar_entries - 1) {
2268 rctl |= E1000_RCTL_UPE;
2269 } else if (!(netdev->flags & IFF_PROMISC)) {
2270 rctl &= ~E1000_RCTL_UPE;
2271 use_uc = true;
2272 }
2273
2274 ew32(RCTL, rctl);
2275
2276 /* 82542 2.0 needs to be in reset to write receive address registers */
2277
2278 if (hw->mac_type == e1000_82542_rev2_0)
2279 e1000_enter_82542_rst(adapter);
2280
2281 /* load the first 14 addresses into the exact filters 1-14. Unicast
2282 * addresses take precedence to avoid disabling unicast filtering
2283 * when possible.
2284 *
2285 * RAR 0 is used for the station MAC address
2286 * if there are not 14 addresses, go ahead and clear the filters
2287 */
2288 i = 1;
2289 if (use_uc)
2290 netdev_for_each_uc_addr(ha, netdev) {
2291 if (i == rar_entries)
2292 break;
2293 e1000_rar_set(hw, ha->addr, i++);
2294 }
2295
2296 netdev_for_each_mc_addr(ha, netdev) {
2297 if (i == rar_entries) {
2298 /* load any remaining addresses into the hash table */
2299 u32 hash_reg, hash_bit, mta;
2300 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2301 hash_reg = (hash_value >> 5) & 0x7F;
2302 hash_bit = hash_value & 0x1F;
2303 mta = (1 << hash_bit);
2304 mcarray[hash_reg] |= mta;
2305 } else {
2306 e1000_rar_set(hw, ha->addr, i++);
2307 }
2308 }
2309
2310 for (; i < rar_entries; i++) {
2311 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2312 E1000_WRITE_FLUSH();
2313 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2314 E1000_WRITE_FLUSH();
2315 }
2316
2317 /* write the hash table completely, write from bottom to avoid
2318 * both stupid write combining chipsets, and flushing each write
2319 */
2320 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2321 /* If we are on an 82544 has an errata where writing odd
2322 * offsets overwrites the previous even offset, but writing
2323 * backwards over the range solves the issue by always
2324 * writing the odd offset first
2325 */
2326 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2327 }
2328 E1000_WRITE_FLUSH();
2329
2330 if (hw->mac_type == e1000_82542_rev2_0)
2331 e1000_leave_82542_rst(adapter);
2332
2333 kfree(mcarray);
2334}
2335
2336/**
2337 * e1000_update_phy_info_task - get phy info
2338 * @work: work struct contained inside adapter struct
2339 *
2340 * Need to wait a few seconds after link up to get diagnostic information from
2341 * the phy
2342 */
2343static void e1000_update_phy_info_task(struct work_struct *work)
2344{
2345 struct e1000_adapter *adapter = container_of(work,
2346 struct e1000_adapter,
2347 phy_info_task.work);
2348
2349 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2350}
2351
2352/**
2353 * e1000_82547_tx_fifo_stall_task - task to complete work
2354 * @work: work struct contained inside adapter struct
2355 **/
2356static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2357{
2358 struct e1000_adapter *adapter = container_of(work,
2359 struct e1000_adapter,
2360 fifo_stall_task.work);
2361 struct e1000_hw *hw = &adapter->hw;
2362 struct net_device *netdev = adapter->netdev;
2363 u32 tctl;
2364
2365 if (atomic_read(&adapter->tx_fifo_stall)) {
2366 if ((er32(TDT) == er32(TDH)) &&
2367 (er32(TDFT) == er32(TDFH)) &&
2368 (er32(TDFTS) == er32(TDFHS))) {
2369 tctl = er32(TCTL);
2370 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2371 ew32(TDFT, adapter->tx_head_addr);
2372 ew32(TDFH, adapter->tx_head_addr);
2373 ew32(TDFTS, adapter->tx_head_addr);
2374 ew32(TDFHS, adapter->tx_head_addr);
2375 ew32(TCTL, tctl);
2376 E1000_WRITE_FLUSH();
2377
2378 adapter->tx_fifo_head = 0;
2379 atomic_set(&adapter->tx_fifo_stall, 0);
2380 netif_wake_queue(netdev);
2381 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2382 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2383 }
2384 }
2385}
2386
2387bool e1000_has_link(struct e1000_adapter *adapter)
2388{
2389 struct e1000_hw *hw = &adapter->hw;
2390 bool link_active = false;
2391
2392 /* get_link_status is set on LSC (link status) interrupt or rx
2393 * sequence error interrupt (except on intel ce4100).
2394 * get_link_status will stay false until the
2395 * e1000_check_for_link establishes link for copper adapters
2396 * ONLY
2397 */
2398 switch (hw->media_type) {
2399 case e1000_media_type_copper:
2400 if (hw->mac_type == e1000_ce4100)
2401 hw->get_link_status = 1;
2402 if (hw->get_link_status) {
2403 e1000_check_for_link(hw);
2404 link_active = !hw->get_link_status;
2405 } else {
2406 link_active = true;
2407 }
2408 break;
2409 case e1000_media_type_fiber:
2410 e1000_check_for_link(hw);
2411 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2412 break;
2413 case e1000_media_type_internal_serdes:
2414 e1000_check_for_link(hw);
2415 link_active = hw->serdes_has_link;
2416 break;
2417 default:
2418 break;
2419 }
2420
2421 return link_active;
2422}
2423
2424/**
2425 * e1000_watchdog - work function
2426 * @work: work struct contained inside adapter struct
2427 **/
2428static void e1000_watchdog(struct work_struct *work)
2429{
2430 struct e1000_adapter *adapter = container_of(work,
2431 struct e1000_adapter,
2432 watchdog_task.work);
2433 struct e1000_hw *hw = &adapter->hw;
2434 struct net_device *netdev = adapter->netdev;
2435 struct e1000_tx_ring *txdr = adapter->tx_ring;
2436 u32 link, tctl;
2437
2438 link = e1000_has_link(adapter);
2439 if ((netif_carrier_ok(netdev)) && link)
2440 goto link_up;
2441
2442 if (link) {
2443 if (!netif_carrier_ok(netdev)) {
2444 u32 ctrl;
2445 /* update snapshot of PHY registers on LSC */
2446 e1000_get_speed_and_duplex(hw,
2447 &adapter->link_speed,
2448 &adapter->link_duplex);
2449
2450 ctrl = er32(CTRL);
2451 pr_info("%s NIC Link is Up %d Mbps %s, "
2452 "Flow Control: %s\n",
2453 netdev->name,
2454 adapter->link_speed,
2455 adapter->link_duplex == FULL_DUPLEX ?
2456 "Full Duplex" : "Half Duplex",
2457 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2458 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2459 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2460 E1000_CTRL_TFCE) ? "TX" : "None")));
2461
2462 /* adjust timeout factor according to speed/duplex */
2463 adapter->tx_timeout_factor = 1;
2464 switch (adapter->link_speed) {
2465 case SPEED_10:
2466 adapter->tx_timeout_factor = 16;
2467 break;
2468 case SPEED_100:
2469 /* maybe add some timeout factor ? */
2470 break;
2471 }
2472
2473 /* enable transmits in the hardware */
2474 tctl = er32(TCTL);
2475 tctl |= E1000_TCTL_EN;
2476 ew32(TCTL, tctl);
2477
2478 netif_carrier_on(netdev);
2479 if (!test_bit(__E1000_DOWN, &adapter->flags))
2480 schedule_delayed_work(&adapter->phy_info_task,
2481 2 * HZ);
2482 adapter->smartspeed = 0;
2483 }
2484 } else {
2485 if (netif_carrier_ok(netdev)) {
2486 adapter->link_speed = 0;
2487 adapter->link_duplex = 0;
2488 pr_info("%s NIC Link is Down\n",
2489 netdev->name);
2490 netif_carrier_off(netdev);
2491
2492 if (!test_bit(__E1000_DOWN, &adapter->flags))
2493 schedule_delayed_work(&adapter->phy_info_task,
2494 2 * HZ);
2495 }
2496
2497 e1000_smartspeed(adapter);
2498 }
2499
2500link_up:
2501 e1000_update_stats(adapter);
2502
2503 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2504 adapter->tpt_old = adapter->stats.tpt;
2505 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2506 adapter->colc_old = adapter->stats.colc;
2507
2508 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2509 adapter->gorcl_old = adapter->stats.gorcl;
2510 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2511 adapter->gotcl_old = adapter->stats.gotcl;
2512
2513 e1000_update_adaptive(hw);
2514
2515 if (!netif_carrier_ok(netdev)) {
2516 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2517 /* We've lost link, so the controller stops DMA,
2518 * but we've got queued Tx work that's never going
2519 * to get done, so reset controller to flush Tx.
2520 * (Do the reset outside of interrupt context).
2521 */
2522 adapter->tx_timeout_count++;
2523 schedule_work(&adapter->reset_task);
2524 /* exit immediately since reset is imminent */
2525 return;
2526 }
2527 }
2528
2529 /* Simple mode for Interrupt Throttle Rate (ITR) */
2530 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2532 * Total asymmetrical Tx or Rx gets ITR=8000;
2533 * everyone else is between 2000-8000.
2534 */
2535 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2536 u32 dif = (adapter->gotcl > adapter->gorcl ?
2537 adapter->gotcl - adapter->gorcl :
2538 adapter->gorcl - adapter->gotcl) / 10000;
2539 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2540
2541 ew32(ITR, 1000000000 / (itr * 256));
2542 }
2543
2544 /* Cause software interrupt to ensure rx ring is cleaned */
2545 ew32(ICS, E1000_ICS_RXDMT0);
2546
2547 /* Force detection of hung controller every watchdog period */
2548 adapter->detect_tx_hung = true;
2549
2550 /* Reschedule the task */
2551 if (!test_bit(__E1000_DOWN, &adapter->flags))
2552 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2553}
2554
2555enum latency_range {
2556 lowest_latency = 0,
2557 low_latency = 1,
2558 bulk_latency = 2,
2559 latency_invalid = 255
2560};
2561
2562/**
2563 * e1000_update_itr - update the dynamic ITR value based on statistics
2564 * @adapter: pointer to adapter
2565 * @itr_setting: current adapter->itr
2566 * @packets: the number of packets during this measurement interval
2567 * @bytes: the number of bytes during this measurement interval
2568 *
2569 * Stores a new ITR value based on packets and byte
2570 * counts during the last interrupt. The advantage of per interrupt
2571 * computation is faster updates and more accurate ITR for the current
2572 * traffic pattern. Constants in this function were computed
2573 * based on theoretical maximum wire speed and thresholds were set based
2574 * on testing data as well as attempting to minimize response time
2575 * while increasing bulk throughput.
2576 * this functionality is controlled by the InterruptThrottleRate module
2577 * parameter (see e1000_param.c)
2578 **/
2579static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2580 u16 itr_setting, int packets, int bytes)
2581{
2582 unsigned int retval = itr_setting;
2583 struct e1000_hw *hw = &adapter->hw;
2584
2585 if (unlikely(hw->mac_type < e1000_82540))
2586 goto update_itr_done;
2587
2588 if (packets == 0)
2589 goto update_itr_done;
2590
2591 switch (itr_setting) {
2592 case lowest_latency:
2593 /* jumbo frames get bulk treatment*/
2594 if (bytes/packets > 8000)
2595 retval = bulk_latency;
2596 else if ((packets < 5) && (bytes > 512))
2597 retval = low_latency;
2598 break;
2599 case low_latency: /* 50 usec aka 20000 ints/s */
2600 if (bytes > 10000) {
2601 /* jumbo frames need bulk latency setting */
2602 if (bytes/packets > 8000)
2603 retval = bulk_latency;
2604 else if ((packets < 10) || ((bytes/packets) > 1200))
2605 retval = bulk_latency;
2606 else if ((packets > 35))
2607 retval = lowest_latency;
2608 } else if (bytes/packets > 2000)
2609 retval = bulk_latency;
2610 else if (packets <= 2 && bytes < 512)
2611 retval = lowest_latency;
2612 break;
2613 case bulk_latency: /* 250 usec aka 4000 ints/s */
2614 if (bytes > 25000) {
2615 if (packets > 35)
2616 retval = low_latency;
2617 } else if (bytes < 6000) {
2618 retval = low_latency;
2619 }
2620 break;
2621 }
2622
2623update_itr_done:
2624 return retval;
2625}
2626
2627static void e1000_set_itr(struct e1000_adapter *adapter)
2628{
2629 struct e1000_hw *hw = &adapter->hw;
2630 u16 current_itr;
2631 u32 new_itr = adapter->itr;
2632
2633 if (unlikely(hw->mac_type < e1000_82540))
2634 return;
2635
2636 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2637 if (unlikely(adapter->link_speed != SPEED_1000)) {
2638 new_itr = 4000;
2639 goto set_itr_now;
2640 }
2641
2642 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2643 adapter->total_tx_packets,
2644 adapter->total_tx_bytes);
2645 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2646 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2647 adapter->tx_itr = low_latency;
2648
2649 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2650 adapter->total_rx_packets,
2651 adapter->total_rx_bytes);
2652 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2653 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2654 adapter->rx_itr = low_latency;
2655
2656 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2657
2658 switch (current_itr) {
2659 /* counts and packets in update_itr are dependent on these numbers */
2660 case lowest_latency:
2661 new_itr = 70000;
2662 break;
2663 case low_latency:
2664 new_itr = 20000; /* aka hwitr = ~200 */
2665 break;
2666 case bulk_latency:
2667 new_itr = 4000;
2668 break;
2669 default:
2670 break;
2671 }
2672
2673set_itr_now:
2674 if (new_itr != adapter->itr) {
2675 /* this attempts to bias the interrupt rate towards Bulk
2676 * by adding intermediate steps when interrupt rate is
2677 * increasing
2678 */
2679 new_itr = new_itr > adapter->itr ?
2680 min(adapter->itr + (new_itr >> 2), new_itr) :
2681 new_itr;
2682 adapter->itr = new_itr;
2683 ew32(ITR, 1000000000 / (new_itr * 256));
2684 }
2685}
2686
2687#define E1000_TX_FLAGS_CSUM 0x00000001
2688#define E1000_TX_FLAGS_VLAN 0x00000002
2689#define E1000_TX_FLAGS_TSO 0x00000004
2690#define E1000_TX_FLAGS_IPV4 0x00000008
2691#define E1000_TX_FLAGS_NO_FCS 0x00000010
2692#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2693#define E1000_TX_FLAGS_VLAN_SHIFT 16
2694
2695static int e1000_tso(struct e1000_adapter *adapter,
2696 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2697 __be16 protocol)
2698{
2699 struct e1000_context_desc *context_desc;
2700 struct e1000_tx_buffer *buffer_info;
2701 unsigned int i;
2702 u32 cmd_length = 0;
2703 u16 ipcse = 0, tucse, mss;
2704 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2705
2706 if (skb_is_gso(skb)) {
2707 int err;
2708
2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
2711 return err;
2712
2713 hdr_len = skb_tcp_all_headers(skb);
2714 mss = skb_shinfo(skb)->gso_size;
2715 if (protocol == htons(ETH_P_IP)) {
2716 struct iphdr *iph = ip_hdr(skb);
2717 iph->tot_len = 0;
2718 iph->check = 0;
2719 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2720 iph->daddr, 0,
2721 IPPROTO_TCP,
2722 0);
2723 cmd_length = E1000_TXD_CMD_IP;
2724 ipcse = skb_transport_offset(skb) - 1;
2725 } else if (skb_is_gso_v6(skb)) {
2726 tcp_v6_gso_csum_prep(skb);
2727 ipcse = 0;
2728 }
2729 ipcss = skb_network_offset(skb);
2730 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2731 tucss = skb_transport_offset(skb);
2732 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2733 tucse = 0;
2734
2735 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2736 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2737
2738 i = tx_ring->next_to_use;
2739 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2740 buffer_info = &tx_ring->buffer_info[i];
2741
2742 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2743 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2744 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2745 context_desc->upper_setup.tcp_fields.tucss = tucss;
2746 context_desc->upper_setup.tcp_fields.tucso = tucso;
2747 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2748 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2749 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2750 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2751
2752 buffer_info->time_stamp = jiffies;
2753 buffer_info->next_to_watch = i;
2754
2755 if (++i == tx_ring->count)
2756 i = 0;
2757
2758 tx_ring->next_to_use = i;
2759
2760 return true;
2761 }
2762 return false;
2763}
2764
2765static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2767 __be16 protocol)
2768{
2769 struct e1000_context_desc *context_desc;
2770 struct e1000_tx_buffer *buffer_info;
2771 unsigned int i;
2772 u8 css;
2773 u32 cmd_len = E1000_TXD_CMD_DEXT;
2774
2775 if (skb->ip_summed != CHECKSUM_PARTIAL)
2776 return false;
2777
2778 switch (protocol) {
2779 case cpu_to_be16(ETH_P_IP):
2780 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781 cmd_len |= E1000_TXD_CMD_TCP;
2782 break;
2783 case cpu_to_be16(ETH_P_IPV6):
2784 /* XXX not handling all IPV6 headers */
2785 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786 cmd_len |= E1000_TXD_CMD_TCP;
2787 break;
2788 default:
2789 if (unlikely(net_ratelimit()))
2790 e_warn(drv, "checksum_partial proto=%x!\n",
2791 skb->protocol);
2792 break;
2793 }
2794
2795 css = skb_checksum_start_offset(skb);
2796
2797 i = tx_ring->next_to_use;
2798 buffer_info = &tx_ring->buffer_info[i];
2799 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800
2801 context_desc->lower_setup.ip_config = 0;
2802 context_desc->upper_setup.tcp_fields.tucss = css;
2803 context_desc->upper_setup.tcp_fields.tucso =
2804 css + skb->csum_offset;
2805 context_desc->upper_setup.tcp_fields.tucse = 0;
2806 context_desc->tcp_seg_setup.data = 0;
2807 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808
2809 buffer_info->time_stamp = jiffies;
2810 buffer_info->next_to_watch = i;
2811
2812 if (unlikely(++i == tx_ring->count))
2813 i = 0;
2814
2815 tx_ring->next_to_use = i;
2816
2817 return true;
2818}
2819
2820#define E1000_MAX_TXD_PWR 12
2821#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2822
2823static int e1000_tx_map(struct e1000_adapter *adapter,
2824 struct e1000_tx_ring *tx_ring,
2825 struct sk_buff *skb, unsigned int first,
2826 unsigned int max_per_txd, unsigned int nr_frags,
2827 unsigned int mss)
2828{
2829 struct e1000_hw *hw = &adapter->hw;
2830 struct pci_dev *pdev = adapter->pdev;
2831 struct e1000_tx_buffer *buffer_info;
2832 unsigned int len = skb_headlen(skb);
2833 unsigned int offset = 0, size, count = 0, i;
2834 unsigned int f, bytecount, segs;
2835
2836 i = tx_ring->next_to_use;
2837
2838 while (len) {
2839 buffer_info = &tx_ring->buffer_info[i];
2840 size = min(len, max_per_txd);
2841 /* Workaround for Controller erratum --
2842 * descriptor for non-tso packet in a linear SKB that follows a
2843 * tso gets written back prematurely before the data is fully
2844 * DMA'd to the controller
2845 */
2846 if (!skb->data_len && tx_ring->last_tx_tso &&
2847 !skb_is_gso(skb)) {
2848 tx_ring->last_tx_tso = false;
2849 size -= 4;
2850 }
2851
2852 /* Workaround for premature desc write-backs
2853 * in TSO mode. Append 4-byte sentinel desc
2854 */
2855 if (unlikely(mss && !nr_frags && size == len && size > 8))
2856 size -= 4;
2857 /* work-around for errata 10 and it applies
2858 * to all controllers in PCI-X mode
2859 * The fix is to make sure that the first descriptor of a
2860 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2861 */
2862 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2863 (size > 2015) && count == 0))
2864 size = 2015;
2865
2866 /* Workaround for potential 82544 hang in PCI-X. Avoid
2867 * terminating buffers within evenly-aligned dwords.
2868 */
2869 if (unlikely(adapter->pcix_82544 &&
2870 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2871 size > 4))
2872 size -= 4;
2873
2874 buffer_info->length = size;
2875 /* set time_stamp *before* dma to help avoid a possible race */
2876 buffer_info->time_stamp = jiffies;
2877 buffer_info->mapped_as_page = false;
2878 buffer_info->dma = dma_map_single(&pdev->dev,
2879 skb->data + offset,
2880 size, DMA_TO_DEVICE);
2881 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2882 goto dma_error;
2883 buffer_info->next_to_watch = i;
2884
2885 len -= size;
2886 offset += size;
2887 count++;
2888 if (len) {
2889 i++;
2890 if (unlikely(i == tx_ring->count))
2891 i = 0;
2892 }
2893 }
2894
2895 for (f = 0; f < nr_frags; f++) {
2896 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2897
2898 len = skb_frag_size(frag);
2899 offset = 0;
2900
2901 while (len) {
2902 unsigned long bufend;
2903 i++;
2904 if (unlikely(i == tx_ring->count))
2905 i = 0;
2906
2907 buffer_info = &tx_ring->buffer_info[i];
2908 size = min(len, max_per_txd);
2909 /* Workaround for premature desc write-backs
2910 * in TSO mode. Append 4-byte sentinel desc
2911 */
2912 if (unlikely(mss && f == (nr_frags-1) &&
2913 size == len && size > 8))
2914 size -= 4;
2915 /* Workaround for potential 82544 hang in PCI-X.
2916 * Avoid terminating buffers within evenly-aligned
2917 * dwords.
2918 */
2919 bufend = (unsigned long)
2920 page_to_phys(skb_frag_page(frag));
2921 bufend += offset + size - 1;
2922 if (unlikely(adapter->pcix_82544 &&
2923 !(bufend & 4) &&
2924 size > 4))
2925 size -= 4;
2926
2927 buffer_info->length = size;
2928 buffer_info->time_stamp = jiffies;
2929 buffer_info->mapped_as_page = true;
2930 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2931 offset, size, DMA_TO_DEVICE);
2932 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2933 goto dma_error;
2934 buffer_info->next_to_watch = i;
2935
2936 len -= size;
2937 offset += size;
2938 count++;
2939 }
2940 }
2941
2942 segs = skb_shinfo(skb)->gso_segs ?: 1;
2943 /* multiply data chunks by size of headers */
2944 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2945
2946 tx_ring->buffer_info[i].skb = skb;
2947 tx_ring->buffer_info[i].segs = segs;
2948 tx_ring->buffer_info[i].bytecount = bytecount;
2949 tx_ring->buffer_info[first].next_to_watch = i;
2950
2951 return count;
2952
2953dma_error:
2954 dev_err(&pdev->dev, "TX DMA map failed\n");
2955 buffer_info->dma = 0;
2956 if (count)
2957 count--;
2958
2959 while (count--) {
2960 if (i == 0)
2961 i += tx_ring->count;
2962 i--;
2963 buffer_info = &tx_ring->buffer_info[i];
2964 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2965 }
2966
2967 return 0;
2968}
2969
2970static void e1000_tx_queue(struct e1000_adapter *adapter,
2971 struct e1000_tx_ring *tx_ring, int tx_flags,
2972 int count)
2973{
2974 struct e1000_tx_desc *tx_desc = NULL;
2975 struct e1000_tx_buffer *buffer_info;
2976 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977 unsigned int i;
2978
2979 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981 E1000_TXD_CMD_TSE;
2982 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
2984 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986 }
2987
2988 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991 }
2992
2993 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994 txd_lower |= E1000_TXD_CMD_VLE;
2995 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996 }
2997
2998 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000
3001 i = tx_ring->next_to_use;
3002
3003 while (count--) {
3004 buffer_info = &tx_ring->buffer_info[i];
3005 tx_desc = E1000_TX_DESC(*tx_ring, i);
3006 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007 tx_desc->lower.data =
3008 cpu_to_le32(txd_lower | buffer_info->length);
3009 tx_desc->upper.data = cpu_to_le32(txd_upper);
3010 if (unlikely(++i == tx_ring->count))
3011 i = 0;
3012 }
3013
3014 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3015
3016 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3017 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3019
3020 /* Force memory writes to complete before letting h/w
3021 * know there are new descriptors to fetch. (Only
3022 * applicable for weak-ordered memory model archs,
3023 * such as IA-64).
3024 */
3025 dma_wmb();
3026
3027 tx_ring->next_to_use = i;
3028}
3029
3030/* 82547 workaround to avoid controller hang in half-duplex environment.
3031 * The workaround is to avoid queuing a large packet that would span
3032 * the internal Tx FIFO ring boundary by notifying the stack to resend
3033 * the packet at a later time. This gives the Tx FIFO an opportunity to
3034 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3035 * to the beginning of the Tx FIFO.
3036 */
3037
3038#define E1000_FIFO_HDR 0x10
3039#define E1000_82547_PAD_LEN 0x3E0
3040
3041static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3042 struct sk_buff *skb)
3043{
3044 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3045 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3046
3047 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3048
3049 if (adapter->link_duplex != HALF_DUPLEX)
3050 goto no_fifo_stall_required;
3051
3052 if (atomic_read(&adapter->tx_fifo_stall))
3053 return 1;
3054
3055 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3056 atomic_set(&adapter->tx_fifo_stall, 1);
3057 return 1;
3058 }
3059
3060no_fifo_stall_required:
3061 adapter->tx_fifo_head += skb_fifo_len;
3062 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3063 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064 return 0;
3065}
3066
3067static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3068{
3069 struct e1000_adapter *adapter = netdev_priv(netdev);
3070 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3071
3072 netif_stop_queue(netdev);
3073 /* Herbert's original patch had:
3074 * smp_mb__after_netif_stop_queue();
3075 * but since that doesn't exist yet, just open code it.
3076 */
3077 smp_mb();
3078
3079 /* We need to check again in a case another CPU has just
3080 * made room available.
3081 */
3082 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083 return -EBUSY;
3084
3085 /* A reprieve! */
3086 netif_start_queue(netdev);
3087 ++adapter->restart_queue;
3088 return 0;
3089}
3090
3091static int e1000_maybe_stop_tx(struct net_device *netdev,
3092 struct e1000_tx_ring *tx_ring, int size)
3093{
3094 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3095 return 0;
3096 return __e1000_maybe_stop_tx(netdev, size);
3097}
3098
3099#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3100static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3101 struct net_device *netdev)
3102{
3103 struct e1000_adapter *adapter = netdev_priv(netdev);
3104 struct e1000_hw *hw = &adapter->hw;
3105 struct e1000_tx_ring *tx_ring;
3106 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3107 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3108 unsigned int tx_flags = 0;
3109 unsigned int len = skb_headlen(skb);
3110 unsigned int nr_frags;
3111 unsigned int mss;
3112 int count = 0;
3113 int tso;
3114 unsigned int f;
3115 __be16 protocol = vlan_get_protocol(skb);
3116
3117 /* This goes back to the question of how to logically map a Tx queue
3118 * to a flow. Right now, performance is impacted slightly negatively
3119 * if using multiple Tx queues. If the stack breaks away from a
3120 * single qdisc implementation, we can look at this again.
3121 */
3122 tx_ring = adapter->tx_ring;
3123
3124 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3125 * packets may get corrupted during padding by HW.
3126 * To WA this issue, pad all small packets manually.
3127 */
3128 if (eth_skb_pad(skb))
3129 return NETDEV_TX_OK;
3130
3131 mss = skb_shinfo(skb)->gso_size;
3132 /* The controller does a simple calculation to
3133 * make sure there is enough room in the FIFO before
3134 * initiating the DMA for each buffer. The calc is:
3135 * 4 = ceil(buffer len/mss). To make sure we don't
3136 * overrun the FIFO, adjust the max buffer len if mss
3137 * drops.
3138 */
3139 if (mss) {
3140 u8 hdr_len;
3141 max_per_txd = min(mss << 2, max_per_txd);
3142 max_txd_pwr = fls(max_per_txd) - 1;
3143
3144 hdr_len = skb_tcp_all_headers(skb);
3145 if (skb->data_len && hdr_len == len) {
3146 switch (hw->mac_type) {
3147 case e1000_82544: {
3148 unsigned int pull_size;
3149
3150 /* Make sure we have room to chop off 4 bytes,
3151 * and that the end alignment will work out to
3152 * this hardware's requirements
3153 * NOTE: this is a TSO only workaround
3154 * if end byte alignment not correct move us
3155 * into the next dword
3156 */
3157 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3158 & 4)
3159 break;
3160 pull_size = min((unsigned int)4, skb->data_len);
3161 if (!__pskb_pull_tail(skb, pull_size)) {
3162 e_err(drv, "__pskb_pull_tail "
3163 "failed.\n");
3164 dev_kfree_skb_any(skb);
3165 return NETDEV_TX_OK;
3166 }
3167 len = skb_headlen(skb);
3168 break;
3169 }
3170 default:
3171 /* do nothing */
3172 break;
3173 }
3174 }
3175 }
3176
3177 /* reserve a descriptor for the offload context */
3178 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3179 count++;
3180 count++;
3181
3182 /* Controller Erratum workaround */
3183 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3184 count++;
3185
3186 count += TXD_USE_COUNT(len, max_txd_pwr);
3187
3188 if (adapter->pcix_82544)
3189 count++;
3190
3191 /* work-around for errata 10 and it applies to all controllers
3192 * in PCI-X mode, so add one more descriptor to the count
3193 */
3194 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3195 (len > 2015)))
3196 count++;
3197
3198 nr_frags = skb_shinfo(skb)->nr_frags;
3199 for (f = 0; f < nr_frags; f++)
3200 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3201 max_txd_pwr);
3202 if (adapter->pcix_82544)
3203 count += nr_frags;
3204
3205 /* need: count + 2 desc gap to keep tail from touching
3206 * head, otherwise try next time
3207 */
3208 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3209 return NETDEV_TX_BUSY;
3210
3211 if (unlikely((hw->mac_type == e1000_82547) &&
3212 (e1000_82547_fifo_workaround(adapter, skb)))) {
3213 netif_stop_queue(netdev);
3214 if (!test_bit(__E1000_DOWN, &adapter->flags))
3215 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3216 return NETDEV_TX_BUSY;
3217 }
3218
3219 if (skb_vlan_tag_present(skb)) {
3220 tx_flags |= E1000_TX_FLAGS_VLAN;
3221 tx_flags |= (skb_vlan_tag_get(skb) <<
3222 E1000_TX_FLAGS_VLAN_SHIFT);
3223 }
3224
3225 first = tx_ring->next_to_use;
3226
3227 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3228 if (tso < 0) {
3229 dev_kfree_skb_any(skb);
3230 return NETDEV_TX_OK;
3231 }
3232
3233 if (likely(tso)) {
3234 if (likely(hw->mac_type != e1000_82544))
3235 tx_ring->last_tx_tso = true;
3236 tx_flags |= E1000_TX_FLAGS_TSO;
3237 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3238 tx_flags |= E1000_TX_FLAGS_CSUM;
3239
3240 if (protocol == htons(ETH_P_IP))
3241 tx_flags |= E1000_TX_FLAGS_IPV4;
3242
3243 if (unlikely(skb->no_fcs))
3244 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3245
3246 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3247 nr_frags, mss);
3248
3249 if (count) {
3250 /* The descriptors needed is higher than other Intel drivers
3251 * due to a number of workarounds. The breakdown is below:
3252 * Data descriptors: MAX_SKB_FRAGS + 1
3253 * Context Descriptor: 1
3254 * Keep head from touching tail: 2
3255 * Workarounds: 3
3256 */
3257 int desc_needed = MAX_SKB_FRAGS + 7;
3258
3259 netdev_sent_queue(netdev, skb->len);
3260 skb_tx_timestamp(skb);
3261
3262 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263
3264 /* 82544 potentially requires twice as many data descriptors
3265 * in order to guarantee buffers don't end on evenly-aligned
3266 * dwords
3267 */
3268 if (adapter->pcix_82544)
3269 desc_needed += MAX_SKB_FRAGS + 1;
3270
3271 /* Make sure there is space in the ring for the next send. */
3272 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3273
3274 if (!netdev_xmit_more() ||
3275 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3276 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3277 }
3278 } else {
3279 dev_kfree_skb_any(skb);
3280 tx_ring->buffer_info[first].time_stamp = 0;
3281 tx_ring->next_to_use = first;
3282 }
3283
3284 return NETDEV_TX_OK;
3285}
3286
3287#define NUM_REGS 38 /* 1 based count */
3288static void e1000_regdump(struct e1000_adapter *adapter)
3289{
3290 struct e1000_hw *hw = &adapter->hw;
3291 u32 regs[NUM_REGS];
3292 u32 *regs_buff = regs;
3293 int i = 0;
3294
3295 static const char * const reg_name[] = {
3296 "CTRL", "STATUS",
3297 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3298 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3299 "TIDV", "TXDCTL", "TADV", "TARC0",
3300 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3301 "TXDCTL1", "TARC1",
3302 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3303 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3304 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3305 };
3306
3307 regs_buff[0] = er32(CTRL);
3308 regs_buff[1] = er32(STATUS);
3309
3310 regs_buff[2] = er32(RCTL);
3311 regs_buff[3] = er32(RDLEN);
3312 regs_buff[4] = er32(RDH);
3313 regs_buff[5] = er32(RDT);
3314 regs_buff[6] = er32(RDTR);
3315
3316 regs_buff[7] = er32(TCTL);
3317 regs_buff[8] = er32(TDBAL);
3318 regs_buff[9] = er32(TDBAH);
3319 regs_buff[10] = er32(TDLEN);
3320 regs_buff[11] = er32(TDH);
3321 regs_buff[12] = er32(TDT);
3322 regs_buff[13] = er32(TIDV);
3323 regs_buff[14] = er32(TXDCTL);
3324 regs_buff[15] = er32(TADV);
3325 regs_buff[16] = er32(TARC0);
3326
3327 regs_buff[17] = er32(TDBAL1);
3328 regs_buff[18] = er32(TDBAH1);
3329 regs_buff[19] = er32(TDLEN1);
3330 regs_buff[20] = er32(TDH1);
3331 regs_buff[21] = er32(TDT1);
3332 regs_buff[22] = er32(TXDCTL1);
3333 regs_buff[23] = er32(TARC1);
3334 regs_buff[24] = er32(CTRL_EXT);
3335 regs_buff[25] = er32(ERT);
3336 regs_buff[26] = er32(RDBAL0);
3337 regs_buff[27] = er32(RDBAH0);
3338 regs_buff[28] = er32(TDFH);
3339 regs_buff[29] = er32(TDFT);
3340 regs_buff[30] = er32(TDFHS);
3341 regs_buff[31] = er32(TDFTS);
3342 regs_buff[32] = er32(TDFPC);
3343 regs_buff[33] = er32(RDFH);
3344 regs_buff[34] = er32(RDFT);
3345 regs_buff[35] = er32(RDFHS);
3346 regs_buff[36] = er32(RDFTS);
3347 regs_buff[37] = er32(RDFPC);
3348
3349 pr_info("Register dump\n");
3350 for (i = 0; i < NUM_REGS; i++)
3351 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3352}
3353
3354/*
3355 * e1000_dump: Print registers, tx ring and rx ring
3356 */
3357static void e1000_dump(struct e1000_adapter *adapter)
3358{
3359 /* this code doesn't handle multiple rings */
3360 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3361 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3362 int i;
3363
3364 if (!netif_msg_hw(adapter))
3365 return;
3366
3367 /* Print Registers */
3368 e1000_regdump(adapter);
3369
3370 /* transmit dump */
3371 pr_info("TX Desc ring0 dump\n");
3372
3373 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3374 *
3375 * Legacy Transmit Descriptor
3376 * +--------------------------------------------------------------+
3377 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3378 * +--------------------------------------------------------------+
3379 * 8 | Special | CSS | Status | CMD | CSO | Length |
3380 * +--------------------------------------------------------------+
3381 * 63 48 47 36 35 32 31 24 23 16 15 0
3382 *
3383 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3384 * 63 48 47 40 39 32 31 16 15 8 7 0
3385 * +----------------------------------------------------------------+
3386 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3387 * +----------------------------------------------------------------+
3388 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3389 * +----------------------------------------------------------------+
3390 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3391 *
3392 * Extended Data Descriptor (DTYP=0x1)
3393 * +----------------------------------------------------------------+
3394 * 0 | Buffer Address [63:0] |
3395 * +----------------------------------------------------------------+
3396 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3397 * +----------------------------------------------------------------+
3398 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3399 */
3400 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3401 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3402
3403 if (!netif_msg_tx_done(adapter))
3404 goto rx_ring_summary;
3405
3406 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3407 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3408 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3409 struct my_u { __le64 a; __le64 b; };
3410 struct my_u *u = (struct my_u *)tx_desc;
3411 const char *type;
3412
3413 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3414 type = "NTC/U";
3415 else if (i == tx_ring->next_to_use)
3416 type = "NTU";
3417 else if (i == tx_ring->next_to_clean)
3418 type = "NTC";
3419 else
3420 type = "";
3421
3422 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3423 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3424 le64_to_cpu(u->a), le64_to_cpu(u->b),
3425 (u64)buffer_info->dma, buffer_info->length,
3426 buffer_info->next_to_watch,
3427 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3428 }
3429
3430rx_ring_summary:
3431 /* receive dump */
3432 pr_info("\nRX Desc ring dump\n");
3433
3434 /* Legacy Receive Descriptor Format
3435 *
3436 * +-----------------------------------------------------+
3437 * | Buffer Address [63:0] |
3438 * +-----------------------------------------------------+
3439 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440 * +-----------------------------------------------------+
3441 * 63 48 47 40 39 32 31 16 15 0
3442 */
3443 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3444
3445 if (!netif_msg_rx_status(adapter))
3446 goto exit;
3447
3448 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3451 struct my_u { __le64 a; __le64 b; };
3452 struct my_u *u = (struct my_u *)rx_desc;
3453 const char *type;
3454
3455 if (i == rx_ring->next_to_use)
3456 type = "NTU";
3457 else if (i == rx_ring->next_to_clean)
3458 type = "NTC";
3459 else
3460 type = "";
3461
3462 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3463 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3465 } /* for */
3466
3467 /* dump the descriptor caches */
3468 /* rx */
3469 pr_info("Rx descriptor cache in 64bit format\n");
3470 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472 i,
3473 readl(adapter->hw.hw_addr + i+4),
3474 readl(adapter->hw.hw_addr + i),
3475 readl(adapter->hw.hw_addr + i+12),
3476 readl(adapter->hw.hw_addr + i+8));
3477 }
3478 /* tx */
3479 pr_info("Tx descriptor cache in 64bit format\n");
3480 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482 i,
3483 readl(adapter->hw.hw_addr + i+4),
3484 readl(adapter->hw.hw_addr + i),
3485 readl(adapter->hw.hw_addr + i+12),
3486 readl(adapter->hw.hw_addr + i+8));
3487 }
3488exit:
3489 return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 * @txqueue: number of the Tx queue that hung (unused)
3496 **/
3497static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3498{
3499 struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501 /* Do the reset outside of interrupt context */
3502 adapter->tx_timeout_count++;
3503 schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508 struct e1000_adapter *adapter =
3509 container_of(work, struct e1000_adapter, reset_task);
3510
3511 e_err(drv, "Reset adapter\n");
3512 rtnl_lock();
3513 e1000_reinit_locked(adapter);
3514 rtnl_unlock();
3515}
3516
3517/**
3518 * e1000_change_mtu - Change the Maximum Transfer Unit
3519 * @netdev: network interface device structure
3520 * @new_mtu: new value for maximum frame size
3521 *
3522 * Returns 0 on success, negative on failure
3523 **/
3524static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525{
3526 struct e1000_adapter *adapter = netdev_priv(netdev);
3527 struct e1000_hw *hw = &adapter->hw;
3528 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3529
3530 /* Adapter-specific max frame size limits. */
3531 switch (hw->mac_type) {
3532 case e1000_undefined ... e1000_82542_rev2_1:
3533 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3534 e_err(probe, "Jumbo Frames not supported.\n");
3535 return -EINVAL;
3536 }
3537 break;
3538 default:
3539 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3540 break;
3541 }
3542
3543 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3544 msleep(1);
3545 /* e1000_down has a dependency on max_frame_size */
3546 hw->max_frame_size = max_frame;
3547 if (netif_running(netdev)) {
3548 /* prevent buffers from being reallocated */
3549 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3550 e1000_down(adapter);
3551 }
3552
3553 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3554 * means we reserve 2 more, this pushes us to allocate from the next
3555 * larger slab size.
3556 * i.e. RXBUFFER_2048 --> size-4096 slab
3557 * however with the new *_jumbo_rx* routines, jumbo receives will use
3558 * fragmented skbs
3559 */
3560
3561 if (max_frame <= E1000_RXBUFFER_2048)
3562 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3563 else
3564#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3565 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3566#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3567 adapter->rx_buffer_len = PAGE_SIZE;
3568#endif
3569
3570 /* adjust allocation if LPE protects us, and we aren't using SBP */
3571 if (!hw->tbi_compatibility_on &&
3572 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3573 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3574 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3575
3576 netdev_dbg(netdev, "changing MTU from %d to %d\n",
3577 netdev->mtu, new_mtu);
3578 WRITE_ONCE(netdev->mtu, new_mtu);
3579
3580 if (netif_running(netdev))
3581 e1000_up(adapter);
3582 else
3583 e1000_reset(adapter);
3584
3585 clear_bit(__E1000_RESETTING, &adapter->flags);
3586
3587 return 0;
3588}
3589
3590/**
3591 * e1000_update_stats - Update the board statistics counters
3592 * @adapter: board private structure
3593 **/
3594void e1000_update_stats(struct e1000_adapter *adapter)
3595{
3596 struct net_device *netdev = adapter->netdev;
3597 struct e1000_hw *hw = &adapter->hw;
3598 struct pci_dev *pdev = adapter->pdev;
3599 unsigned long flags;
3600 u16 phy_tmp;
3601
3602#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3603
3604 /* Prevent stats update while adapter is being reset, or if the pci
3605 * connection is down.
3606 */
3607 if (adapter->link_speed == 0)
3608 return;
3609 if (pci_channel_offline(pdev))
3610 return;
3611
3612 spin_lock_irqsave(&adapter->stats_lock, flags);
3613
3614 /* these counters are modified from e1000_tbi_adjust_stats,
3615 * called from the interrupt context, so they must only
3616 * be written while holding adapter->stats_lock
3617 */
3618
3619 adapter->stats.crcerrs += er32(CRCERRS);
3620 adapter->stats.gprc += er32(GPRC);
3621 adapter->stats.gorcl += er32(GORCL);
3622 adapter->stats.gorch += er32(GORCH);
3623 adapter->stats.bprc += er32(BPRC);
3624 adapter->stats.mprc += er32(MPRC);
3625 adapter->stats.roc += er32(ROC);
3626
3627 adapter->stats.prc64 += er32(PRC64);
3628 adapter->stats.prc127 += er32(PRC127);
3629 adapter->stats.prc255 += er32(PRC255);
3630 adapter->stats.prc511 += er32(PRC511);
3631 adapter->stats.prc1023 += er32(PRC1023);
3632 adapter->stats.prc1522 += er32(PRC1522);
3633
3634 adapter->stats.symerrs += er32(SYMERRS);
3635 adapter->stats.mpc += er32(MPC);
3636 adapter->stats.scc += er32(SCC);
3637 adapter->stats.ecol += er32(ECOL);
3638 adapter->stats.mcc += er32(MCC);
3639 adapter->stats.latecol += er32(LATECOL);
3640 adapter->stats.dc += er32(DC);
3641 adapter->stats.sec += er32(SEC);
3642 adapter->stats.rlec += er32(RLEC);
3643 adapter->stats.xonrxc += er32(XONRXC);
3644 adapter->stats.xontxc += er32(XONTXC);
3645 adapter->stats.xoffrxc += er32(XOFFRXC);
3646 adapter->stats.xofftxc += er32(XOFFTXC);
3647 adapter->stats.fcruc += er32(FCRUC);
3648 adapter->stats.gptc += er32(GPTC);
3649 adapter->stats.gotcl += er32(GOTCL);
3650 adapter->stats.gotch += er32(GOTCH);
3651 adapter->stats.rnbc += er32(RNBC);
3652 adapter->stats.ruc += er32(RUC);
3653 adapter->stats.rfc += er32(RFC);
3654 adapter->stats.rjc += er32(RJC);
3655 adapter->stats.torl += er32(TORL);
3656 adapter->stats.torh += er32(TORH);
3657 adapter->stats.totl += er32(TOTL);
3658 adapter->stats.toth += er32(TOTH);
3659 adapter->stats.tpr += er32(TPR);
3660
3661 adapter->stats.ptc64 += er32(PTC64);
3662 adapter->stats.ptc127 += er32(PTC127);
3663 adapter->stats.ptc255 += er32(PTC255);
3664 adapter->stats.ptc511 += er32(PTC511);
3665 adapter->stats.ptc1023 += er32(PTC1023);
3666 adapter->stats.ptc1522 += er32(PTC1522);
3667
3668 adapter->stats.mptc += er32(MPTC);
3669 adapter->stats.bptc += er32(BPTC);
3670
3671 /* used for adaptive IFS */
3672
3673 hw->tx_packet_delta = er32(TPT);
3674 adapter->stats.tpt += hw->tx_packet_delta;
3675 hw->collision_delta = er32(COLC);
3676 adapter->stats.colc += hw->collision_delta;
3677
3678 if (hw->mac_type >= e1000_82543) {
3679 adapter->stats.algnerrc += er32(ALGNERRC);
3680 adapter->stats.rxerrc += er32(RXERRC);
3681 adapter->stats.tncrs += er32(TNCRS);
3682 adapter->stats.cexterr += er32(CEXTERR);
3683 adapter->stats.tsctc += er32(TSCTC);
3684 adapter->stats.tsctfc += er32(TSCTFC);
3685 }
3686
3687 /* Fill out the OS statistics structure */
3688 netdev->stats.multicast = adapter->stats.mprc;
3689 netdev->stats.collisions = adapter->stats.colc;
3690
3691 /* Rx Errors */
3692
3693 /* RLEC on some newer hardware can be incorrect so build
3694 * our own version based on RUC and ROC
3695 */
3696 netdev->stats.rx_errors = adapter->stats.rxerrc +
3697 adapter->stats.crcerrs + adapter->stats.algnerrc +
3698 adapter->stats.ruc + adapter->stats.roc +
3699 adapter->stats.cexterr;
3700 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3701 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3702 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3703 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3704 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3705
3706 /* Tx Errors */
3707 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3708 netdev->stats.tx_errors = adapter->stats.txerrc;
3709 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3710 netdev->stats.tx_window_errors = adapter->stats.latecol;
3711 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3712 if (hw->bad_tx_carr_stats_fd &&
3713 adapter->link_duplex == FULL_DUPLEX) {
3714 netdev->stats.tx_carrier_errors = 0;
3715 adapter->stats.tncrs = 0;
3716 }
3717
3718 /* Tx Dropped needs to be maintained elsewhere */
3719
3720 /* Phy Stats */
3721 if (hw->media_type == e1000_media_type_copper) {
3722 if ((adapter->link_speed == SPEED_1000) &&
3723 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3724 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3725 adapter->phy_stats.idle_errors += phy_tmp;
3726 }
3727
3728 if ((hw->mac_type <= e1000_82546) &&
3729 (hw->phy_type == e1000_phy_m88) &&
3730 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3731 adapter->phy_stats.receive_errors += phy_tmp;
3732 }
3733
3734 /* Management Stats */
3735 if (hw->has_smbus) {
3736 adapter->stats.mgptc += er32(MGTPTC);
3737 adapter->stats.mgprc += er32(MGTPRC);
3738 adapter->stats.mgpdc += er32(MGTPDC);
3739 }
3740
3741 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3742}
3743
3744/**
3745 * e1000_intr - Interrupt Handler
3746 * @irq: interrupt number
3747 * @data: pointer to a network interface device structure
3748 **/
3749static irqreturn_t e1000_intr(int irq, void *data)
3750{
3751 struct net_device *netdev = data;
3752 struct e1000_adapter *adapter = netdev_priv(netdev);
3753 struct e1000_hw *hw = &adapter->hw;
3754 u32 icr = er32(ICR);
3755
3756 if (unlikely((!icr)))
3757 return IRQ_NONE; /* Not our interrupt */
3758
3759 /* we might have caused the interrupt, but the above
3760 * read cleared it, and just in case the driver is
3761 * down there is nothing to do so return handled
3762 */
3763 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3764 return IRQ_HANDLED;
3765
3766 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3767 hw->get_link_status = 1;
3768 /* guard against interrupt when we're going down */
3769 if (!test_bit(__E1000_DOWN, &adapter->flags))
3770 schedule_delayed_work(&adapter->watchdog_task, 1);
3771 }
3772
3773 /* disable interrupts, without the synchronize_irq bit */
3774 ew32(IMC, ~0);
3775 E1000_WRITE_FLUSH();
3776
3777 if (likely(napi_schedule_prep(&adapter->napi))) {
3778 adapter->total_tx_bytes = 0;
3779 adapter->total_tx_packets = 0;
3780 adapter->total_rx_bytes = 0;
3781 adapter->total_rx_packets = 0;
3782 __napi_schedule(&adapter->napi);
3783 } else {
3784 /* this really should not happen! if it does it is basically a
3785 * bug, but not a hard error, so enable ints and continue
3786 */
3787 if (!test_bit(__E1000_DOWN, &adapter->flags))
3788 e1000_irq_enable(adapter);
3789 }
3790
3791 return IRQ_HANDLED;
3792}
3793
3794/**
3795 * e1000_clean - NAPI Rx polling callback
3796 * @napi: napi struct containing references to driver info
3797 * @budget: budget given to driver for receive packets
3798 **/
3799static int e1000_clean(struct napi_struct *napi, int budget)
3800{
3801 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3802 napi);
3803 int tx_clean_complete = 0, work_done = 0;
3804
3805 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3806
3807 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3808
3809 if (!tx_clean_complete || work_done == budget)
3810 return budget;
3811
3812 /* Exit the polling mode, but don't re-enable interrupts if stack might
3813 * poll us due to busy-polling
3814 */
3815 if (likely(napi_complete_done(napi, work_done))) {
3816 if (likely(adapter->itr_setting & 3))
3817 e1000_set_itr(adapter);
3818 if (!test_bit(__E1000_DOWN, &adapter->flags))
3819 e1000_irq_enable(adapter);
3820 }
3821
3822 return work_done;
3823}
3824
3825/**
3826 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827 * @adapter: board private structure
3828 * @tx_ring: ring to clean
3829 **/
3830static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3831 struct e1000_tx_ring *tx_ring)
3832{
3833 struct e1000_hw *hw = &adapter->hw;
3834 struct net_device *netdev = adapter->netdev;
3835 struct e1000_tx_desc *tx_desc, *eop_desc;
3836 struct e1000_tx_buffer *buffer_info;
3837 unsigned int i, eop;
3838 unsigned int count = 0;
3839 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3840 unsigned int bytes_compl = 0, pkts_compl = 0;
3841
3842 i = tx_ring->next_to_clean;
3843 eop = tx_ring->buffer_info[i].next_to_watch;
3844 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845
3846 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3847 (count < tx_ring->count)) {
3848 bool cleaned = false;
3849 dma_rmb(); /* read buffer_info after eop_desc */
3850 for ( ; !cleaned; count++) {
3851 tx_desc = E1000_TX_DESC(*tx_ring, i);
3852 buffer_info = &tx_ring->buffer_info[i];
3853 cleaned = (i == eop);
3854
3855 if (cleaned) {
3856 total_tx_packets += buffer_info->segs;
3857 total_tx_bytes += buffer_info->bytecount;
3858 if (buffer_info->skb) {
3859 bytes_compl += buffer_info->skb->len;
3860 pkts_compl++;
3861 }
3862
3863 }
3864 e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3865 64);
3866 tx_desc->upper.data = 0;
3867
3868 if (unlikely(++i == tx_ring->count))
3869 i = 0;
3870 }
3871
3872 eop = tx_ring->buffer_info[i].next_to_watch;
3873 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3874 }
3875
3876 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3877 * which will reuse the cleaned buffers.
3878 */
3879 smp_store_release(&tx_ring->next_to_clean, i);
3880
3881 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3882
3883#define TX_WAKE_THRESHOLD 32
3884 if (unlikely(count && netif_carrier_ok(netdev) &&
3885 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3886 /* Make sure that anybody stopping the queue after this
3887 * sees the new next_to_clean.
3888 */
3889 smp_mb();
3890
3891 if (netif_queue_stopped(netdev) &&
3892 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3893 netif_wake_queue(netdev);
3894 ++adapter->restart_queue;
3895 }
3896 }
3897
3898 if (adapter->detect_tx_hung) {
3899 /* Detect a transmit hang in hardware, this serializes the
3900 * check with the clearing of time_stamp and movement of i
3901 */
3902 adapter->detect_tx_hung = false;
3903 if (tx_ring->buffer_info[eop].time_stamp &&
3904 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3905 (adapter->tx_timeout_factor * HZ)) &&
3906 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3907
3908 /* detected Tx unit hang */
3909 e_err(drv, "Detected Tx Unit Hang\n"
3910 " Tx Queue <%lu>\n"
3911 " TDH <%x>\n"
3912 " TDT <%x>\n"
3913 " next_to_use <%x>\n"
3914 " next_to_clean <%x>\n"
3915 "buffer_info[next_to_clean]\n"
3916 " time_stamp <%lx>\n"
3917 " next_to_watch <%x>\n"
3918 " jiffies <%lx>\n"
3919 " next_to_watch.status <%x>\n",
3920 (unsigned long)(tx_ring - adapter->tx_ring),
3921 readl(hw->hw_addr + tx_ring->tdh),
3922 readl(hw->hw_addr + tx_ring->tdt),
3923 tx_ring->next_to_use,
3924 tx_ring->next_to_clean,
3925 tx_ring->buffer_info[eop].time_stamp,
3926 eop,
3927 jiffies,
3928 eop_desc->upper.fields.status);
3929 e1000_dump(adapter);
3930 netif_stop_queue(netdev);
3931 }
3932 }
3933 adapter->total_tx_bytes += total_tx_bytes;
3934 adapter->total_tx_packets += total_tx_packets;
3935 netdev->stats.tx_bytes += total_tx_bytes;
3936 netdev->stats.tx_packets += total_tx_packets;
3937 return count < tx_ring->count;
3938}
3939
3940/**
3941 * e1000_rx_checksum - Receive Checksum Offload for 82543
3942 * @adapter: board private structure
3943 * @status_err: receive descriptor status and error fields
3944 * @csum: receive descriptor csum field
3945 * @skb: socket buffer with received data
3946 **/
3947static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3948 u32 csum, struct sk_buff *skb)
3949{
3950 struct e1000_hw *hw = &adapter->hw;
3951 u16 status = (u16)status_err;
3952 u8 errors = (u8)(status_err >> 24);
3953
3954 skb_checksum_none_assert(skb);
3955
3956 /* 82543 or newer only */
3957 if (unlikely(hw->mac_type < e1000_82543))
3958 return;
3959 /* Ignore Checksum bit is set */
3960 if (unlikely(status & E1000_RXD_STAT_IXSM))
3961 return;
3962 /* TCP/UDP checksum error bit is set */
3963 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3964 /* let the stack verify checksum errors */
3965 adapter->hw_csum_err++;
3966 return;
3967 }
3968 /* TCP/UDP Checksum has not been calculated */
3969 if (!(status & E1000_RXD_STAT_TCPCS))
3970 return;
3971
3972 /* It must be a TCP or UDP packet with a valid checksum */
3973 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3974 /* TCP checksum is good */
3975 skb->ip_summed = CHECKSUM_UNNECESSARY;
3976 }
3977 adapter->hw_csum_good++;
3978}
3979
3980/**
3981 * e1000_consume_page - helper function for jumbo Rx path
3982 * @bi: software descriptor shadow data
3983 * @skb: skb being modified
3984 * @length: length of data being added
3985 **/
3986static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987 u16 length)
3988{
3989 bi->rxbuf.page = NULL;
3990 skb->len += length;
3991 skb->data_len += length;
3992 skb->truesize += PAGE_SIZE;
3993}
3994
3995/**
3996 * e1000_receive_skb - helper function to handle rx indications
3997 * @adapter: board private structure
3998 * @status: descriptor status field as written by hardware
3999 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000 * @skb: pointer to sk_buff to be indicated to stack
4001 */
4002static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003 __le16 vlan, struct sk_buff *skb)
4004{
4005 skb->protocol = eth_type_trans(skb, adapter->netdev);
4006
4007 if (status & E1000_RXD_STAT_VP) {
4008 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009
4010 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011 }
4012 napi_gro_receive(&adapter->napi, skb);
4013}
4014
4015/**
4016 * e1000_tbi_adjust_stats
4017 * @hw: Struct containing variables accessed by shared code
4018 * @stats: point to stats struct
4019 * @frame_len: The length of the frame in question
4020 * @mac_addr: The Ethernet destination address of the frame in question
4021 *
4022 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4023 */
4024static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4025 struct e1000_hw_stats *stats,
4026 u32 frame_len, const u8 *mac_addr)
4027{
4028 u64 carry_bit;
4029
4030 /* First adjust the frame length. */
4031 frame_len--;
4032 /* We need to adjust the statistics counters, since the hardware
4033 * counters overcount this packet as a CRC error and undercount
4034 * the packet as a good packet
4035 */
4036 /* This packet should not be counted as a CRC error. */
4037 stats->crcerrs--;
4038 /* This packet does count as a Good Packet Received. */
4039 stats->gprc++;
4040
4041 /* Adjust the Good Octets received counters */
4042 carry_bit = 0x80000000 & stats->gorcl;
4043 stats->gorcl += frame_len;
4044 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4045 * Received Count) was one before the addition,
4046 * AND it is zero after, then we lost the carry out,
4047 * need to add one to Gorch (Good Octets Received Count High).
4048 * This could be simplified if all environments supported
4049 * 64-bit integers.
4050 */
4051 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4052 stats->gorch++;
4053 /* Is this a broadcast or multicast? Check broadcast first,
4054 * since the test for a multicast frame will test positive on
4055 * a broadcast frame.
4056 */
4057 if (is_broadcast_ether_addr(mac_addr))
4058 stats->bprc++;
4059 else if (is_multicast_ether_addr(mac_addr))
4060 stats->mprc++;
4061
4062 if (frame_len == hw->max_frame_size) {
4063 /* In this case, the hardware has overcounted the number of
4064 * oversize frames.
4065 */
4066 if (stats->roc > 0)
4067 stats->roc--;
4068 }
4069
4070 /* Adjust the bin counters when the extra byte put the frame in the
4071 * wrong bin. Remember that the frame_len was adjusted above.
4072 */
4073 if (frame_len == 64) {
4074 stats->prc64++;
4075 stats->prc127--;
4076 } else if (frame_len == 127) {
4077 stats->prc127++;
4078 stats->prc255--;
4079 } else if (frame_len == 255) {
4080 stats->prc255++;
4081 stats->prc511--;
4082 } else if (frame_len == 511) {
4083 stats->prc511++;
4084 stats->prc1023--;
4085 } else if (frame_len == 1023) {
4086 stats->prc1023++;
4087 stats->prc1522--;
4088 } else if (frame_len == 1522) {
4089 stats->prc1522++;
4090 }
4091}
4092
4093static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4094 u8 status, u8 errors,
4095 u32 length, const u8 *data)
4096{
4097 struct e1000_hw *hw = &adapter->hw;
4098 u8 last_byte = *(data + length - 1);
4099
4100 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4101 unsigned long irq_flags;
4102
4103 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4104 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4105 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4106
4107 return true;
4108 }
4109
4110 return false;
4111}
4112
4113static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4114 unsigned int bufsz)
4115{
4116 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4117
4118 if (unlikely(!skb))
4119 adapter->alloc_rx_buff_failed++;
4120 return skb;
4121}
4122
4123/**
4124 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4125 * @adapter: board private structure
4126 * @rx_ring: ring to clean
4127 * @work_done: amount of napi work completed this call
4128 * @work_to_do: max amount of work allowed for this call to do
4129 *
4130 * the return value indicates whether actual cleaning was done, there
4131 * is no guarantee that everything was cleaned
4132 */
4133static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4134 struct e1000_rx_ring *rx_ring,
4135 int *work_done, int work_to_do)
4136{
4137 struct net_device *netdev = adapter->netdev;
4138 struct pci_dev *pdev = adapter->pdev;
4139 struct e1000_rx_desc *rx_desc, *next_rxd;
4140 struct e1000_rx_buffer *buffer_info, *next_buffer;
4141 u32 length;
4142 unsigned int i;
4143 int cleaned_count = 0;
4144 bool cleaned = false;
4145 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4146
4147 i = rx_ring->next_to_clean;
4148 rx_desc = E1000_RX_DESC(*rx_ring, i);
4149 buffer_info = &rx_ring->buffer_info[i];
4150
4151 while (rx_desc->status & E1000_RXD_STAT_DD) {
4152 struct sk_buff *skb;
4153 u8 status;
4154
4155 if (*work_done >= work_to_do)
4156 break;
4157 (*work_done)++;
4158 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4159
4160 status = rx_desc->status;
4161
4162 if (++i == rx_ring->count)
4163 i = 0;
4164
4165 next_rxd = E1000_RX_DESC(*rx_ring, i);
4166 prefetch(next_rxd);
4167
4168 next_buffer = &rx_ring->buffer_info[i];
4169
4170 cleaned = true;
4171 cleaned_count++;
4172 dma_unmap_page(&pdev->dev, buffer_info->dma,
4173 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4174 buffer_info->dma = 0;
4175
4176 length = le16_to_cpu(rx_desc->length);
4177
4178 /* errors is only valid for DD + EOP descriptors */
4179 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4180 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4181 u8 *mapped = page_address(buffer_info->rxbuf.page);
4182
4183 if (e1000_tbi_should_accept(adapter, status,
4184 rx_desc->errors,
4185 length, mapped)) {
4186 length--;
4187 } else if (netdev->features & NETIF_F_RXALL) {
4188 goto process_skb;
4189 } else {
4190 /* an error means any chain goes out the window
4191 * too
4192 */
4193 dev_kfree_skb(rx_ring->rx_skb_top);
4194 rx_ring->rx_skb_top = NULL;
4195 goto next_desc;
4196 }
4197 }
4198
4199#define rxtop rx_ring->rx_skb_top
4200process_skb:
4201 if (!(status & E1000_RXD_STAT_EOP)) {
4202 /* this descriptor is only the beginning (or middle) */
4203 if (!rxtop) {
4204 /* this is the beginning of a chain */
4205 rxtop = napi_get_frags(&adapter->napi);
4206 if (!rxtop)
4207 break;
4208
4209 skb_fill_page_desc(rxtop, 0,
4210 buffer_info->rxbuf.page,
4211 0, length);
4212 } else {
4213 /* this is the middle of a chain */
4214 skb_fill_page_desc(rxtop,
4215 skb_shinfo(rxtop)->nr_frags,
4216 buffer_info->rxbuf.page, 0, length);
4217 }
4218 e1000_consume_page(buffer_info, rxtop, length);
4219 goto next_desc;
4220 } else {
4221 if (rxtop) {
4222 /* end of the chain */
4223 skb_fill_page_desc(rxtop,
4224 skb_shinfo(rxtop)->nr_frags,
4225 buffer_info->rxbuf.page, 0, length);
4226 skb = rxtop;
4227 rxtop = NULL;
4228 e1000_consume_page(buffer_info, skb, length);
4229 } else {
4230 struct page *p;
4231 /* no chain, got EOP, this buf is the packet
4232 * copybreak to save the put_page/alloc_page
4233 */
4234 p = buffer_info->rxbuf.page;
4235 if (length <= copybreak) {
4236 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237 length -= 4;
4238 skb = e1000_alloc_rx_skb(adapter,
4239 length);
4240 if (!skb)
4241 break;
4242
4243 memcpy(skb_tail_pointer(skb),
4244 page_address(p), length);
4245
4246 /* re-use the page, so don't erase
4247 * buffer_info->rxbuf.page
4248 */
4249 skb_put(skb, length);
4250 e1000_rx_checksum(adapter,
4251 status | rx_desc->errors << 24,
4252 le16_to_cpu(rx_desc->csum), skb);
4253
4254 total_rx_bytes += skb->len;
4255 total_rx_packets++;
4256
4257 e1000_receive_skb(adapter, status,
4258 rx_desc->special, skb);
4259 goto next_desc;
4260 } else {
4261 skb = napi_get_frags(&adapter->napi);
4262 if (!skb) {
4263 adapter->alloc_rx_buff_failed++;
4264 break;
4265 }
4266 skb_fill_page_desc(skb, 0, p, 0,
4267 length);
4268 e1000_consume_page(buffer_info, skb,
4269 length);
4270 }
4271 }
4272 }
4273
4274 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4275 e1000_rx_checksum(adapter,
4276 (u32)(status) |
4277 ((u32)(rx_desc->errors) << 24),
4278 le16_to_cpu(rx_desc->csum), skb);
4279
4280 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4281 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4282 pskb_trim(skb, skb->len - 4);
4283 total_rx_packets++;
4284
4285 if (status & E1000_RXD_STAT_VP) {
4286 __le16 vlan = rx_desc->special;
4287 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4288
4289 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4290 }
4291
4292 napi_gro_frags(&adapter->napi);
4293
4294next_desc:
4295 rx_desc->status = 0;
4296
4297 /* return some buffers to hardware, one at a time is too slow */
4298 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4299 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300 cleaned_count = 0;
4301 }
4302
4303 /* use prefetched values */
4304 rx_desc = next_rxd;
4305 buffer_info = next_buffer;
4306 }
4307 rx_ring->next_to_clean = i;
4308
4309 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4310 if (cleaned_count)
4311 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4312
4313 adapter->total_rx_packets += total_rx_packets;
4314 adapter->total_rx_bytes += total_rx_bytes;
4315 netdev->stats.rx_bytes += total_rx_bytes;
4316 netdev->stats.rx_packets += total_rx_packets;
4317 return cleaned;
4318}
4319
4320/* this should improve performance for small packets with large amounts
4321 * of reassembly being done in the stack
4322 */
4323static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4324 struct e1000_rx_buffer *buffer_info,
4325 u32 length, const void *data)
4326{
4327 struct sk_buff *skb;
4328
4329 if (length > copybreak)
4330 return NULL;
4331
4332 skb = e1000_alloc_rx_skb(adapter, length);
4333 if (!skb)
4334 return NULL;
4335
4336 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4337 length, DMA_FROM_DEVICE);
4338
4339 skb_put_data(skb, data, length);
4340
4341 return skb;
4342}
4343
4344/**
4345 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4346 * @adapter: board private structure
4347 * @rx_ring: ring to clean
4348 * @work_done: amount of napi work completed this call
4349 * @work_to_do: max amount of work allowed for this call to do
4350 */
4351static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4352 struct e1000_rx_ring *rx_ring,
4353 int *work_done, int work_to_do)
4354{
4355 struct net_device *netdev = adapter->netdev;
4356 struct pci_dev *pdev = adapter->pdev;
4357 struct e1000_rx_desc *rx_desc, *next_rxd;
4358 struct e1000_rx_buffer *buffer_info, *next_buffer;
4359 u32 length;
4360 unsigned int i;
4361 int cleaned_count = 0;
4362 bool cleaned = false;
4363 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4364
4365 i = rx_ring->next_to_clean;
4366 rx_desc = E1000_RX_DESC(*rx_ring, i);
4367 buffer_info = &rx_ring->buffer_info[i];
4368
4369 while (rx_desc->status & E1000_RXD_STAT_DD) {
4370 struct sk_buff *skb;
4371 u8 *data;
4372 u8 status;
4373
4374 if (*work_done >= work_to_do)
4375 break;
4376 (*work_done)++;
4377 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4378
4379 status = rx_desc->status;
4380 length = le16_to_cpu(rx_desc->length);
4381
4382 data = buffer_info->rxbuf.data;
4383 prefetch(data);
4384 skb = e1000_copybreak(adapter, buffer_info, length, data);
4385 if (!skb) {
4386 unsigned int frag_len = e1000_frag_len(adapter);
4387
4388 skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4389 if (!skb) {
4390 adapter->alloc_rx_buff_failed++;
4391 break;
4392 }
4393
4394 skb_reserve(skb, E1000_HEADROOM);
4395 dma_unmap_single(&pdev->dev, buffer_info->dma,
4396 adapter->rx_buffer_len,
4397 DMA_FROM_DEVICE);
4398 buffer_info->dma = 0;
4399 buffer_info->rxbuf.data = NULL;
4400 }
4401
4402 if (++i == rx_ring->count)
4403 i = 0;
4404
4405 next_rxd = E1000_RX_DESC(*rx_ring, i);
4406 prefetch(next_rxd);
4407
4408 next_buffer = &rx_ring->buffer_info[i];
4409
4410 cleaned = true;
4411 cleaned_count++;
4412
4413 /* !EOP means multiple descriptors were used to store a single
4414 * packet, if thats the case we need to toss it. In fact, we
4415 * to toss every packet with the EOP bit clear and the next
4416 * frame that _does_ have the EOP bit set, as it is by
4417 * definition only a frame fragment
4418 */
4419 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4420 adapter->discarding = true;
4421
4422 if (adapter->discarding) {
4423 /* All receives must fit into a single buffer */
4424 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4425 dev_kfree_skb(skb);
4426 if (status & E1000_RXD_STAT_EOP)
4427 adapter->discarding = false;
4428 goto next_desc;
4429 }
4430
4431 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4432 if (e1000_tbi_should_accept(adapter, status,
4433 rx_desc->errors,
4434 length, data)) {
4435 length--;
4436 } else if (netdev->features & NETIF_F_RXALL) {
4437 goto process_skb;
4438 } else {
4439 dev_kfree_skb(skb);
4440 goto next_desc;
4441 }
4442 }
4443
4444process_skb:
4445 total_rx_bytes += (length - 4); /* don't count FCS */
4446 total_rx_packets++;
4447
4448 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4449 /* adjust length to remove Ethernet CRC, this must be
4450 * done after the TBI_ACCEPT workaround above
4451 */
4452 length -= 4;
4453
4454 if (buffer_info->rxbuf.data == NULL)
4455 skb_put(skb, length);
4456 else /* copybreak skb */
4457 skb_trim(skb, length);
4458
4459 /* Receive Checksum Offload */
4460 e1000_rx_checksum(adapter,
4461 (u32)(status) |
4462 ((u32)(rx_desc->errors) << 24),
4463 le16_to_cpu(rx_desc->csum), skb);
4464
4465 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4466
4467next_desc:
4468 rx_desc->status = 0;
4469
4470 /* return some buffers to hardware, one at a time is too slow */
4471 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4472 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473 cleaned_count = 0;
4474 }
4475
4476 /* use prefetched values */
4477 rx_desc = next_rxd;
4478 buffer_info = next_buffer;
4479 }
4480 rx_ring->next_to_clean = i;
4481
4482 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4483 if (cleaned_count)
4484 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4485
4486 adapter->total_rx_packets += total_rx_packets;
4487 adapter->total_rx_bytes += total_rx_bytes;
4488 netdev->stats.rx_bytes += total_rx_bytes;
4489 netdev->stats.rx_packets += total_rx_packets;
4490 return cleaned;
4491}
4492
4493/**
4494 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4495 * @adapter: address of board private structure
4496 * @rx_ring: pointer to receive ring structure
4497 * @cleaned_count: number of buffers to allocate this pass
4498 **/
4499static void
4500e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4501 struct e1000_rx_ring *rx_ring, int cleaned_count)
4502{
4503 struct pci_dev *pdev = adapter->pdev;
4504 struct e1000_rx_desc *rx_desc;
4505 struct e1000_rx_buffer *buffer_info;
4506 unsigned int i;
4507
4508 i = rx_ring->next_to_use;
4509 buffer_info = &rx_ring->buffer_info[i];
4510
4511 while (cleaned_count--) {
4512 /* allocate a new page if necessary */
4513 if (!buffer_info->rxbuf.page) {
4514 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4515 if (unlikely(!buffer_info->rxbuf.page)) {
4516 adapter->alloc_rx_buff_failed++;
4517 break;
4518 }
4519 }
4520
4521 if (!buffer_info->dma) {
4522 buffer_info->dma = dma_map_page(&pdev->dev,
4523 buffer_info->rxbuf.page, 0,
4524 adapter->rx_buffer_len,
4525 DMA_FROM_DEVICE);
4526 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4527 put_page(buffer_info->rxbuf.page);
4528 buffer_info->rxbuf.page = NULL;
4529 buffer_info->dma = 0;
4530 adapter->alloc_rx_buff_failed++;
4531 break;
4532 }
4533 }
4534
4535 rx_desc = E1000_RX_DESC(*rx_ring, i);
4536 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4537
4538 if (unlikely(++i == rx_ring->count))
4539 i = 0;
4540 buffer_info = &rx_ring->buffer_info[i];
4541 }
4542
4543 if (likely(rx_ring->next_to_use != i)) {
4544 rx_ring->next_to_use = i;
4545 if (unlikely(i-- == 0))
4546 i = (rx_ring->count - 1);
4547
4548 /* Force memory writes to complete before letting h/w
4549 * know there are new descriptors to fetch. (Only
4550 * applicable for weak-ordered memory model archs,
4551 * such as IA-64).
4552 */
4553 dma_wmb();
4554 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4555 }
4556}
4557
4558/**
4559 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4560 * @adapter: address of board private structure
4561 * @rx_ring: pointer to ring struct
4562 * @cleaned_count: number of new Rx buffers to try to allocate
4563 **/
4564static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4565 struct e1000_rx_ring *rx_ring,
4566 int cleaned_count)
4567{
4568 struct e1000_hw *hw = &adapter->hw;
4569 struct pci_dev *pdev = adapter->pdev;
4570 struct e1000_rx_desc *rx_desc;
4571 struct e1000_rx_buffer *buffer_info;
4572 unsigned int i;
4573 unsigned int bufsz = adapter->rx_buffer_len;
4574
4575 i = rx_ring->next_to_use;
4576 buffer_info = &rx_ring->buffer_info[i];
4577
4578 while (cleaned_count--) {
4579 void *data;
4580
4581 if (buffer_info->rxbuf.data)
4582 goto skip;
4583
4584 data = e1000_alloc_frag(adapter);
4585 if (!data) {
4586 /* Better luck next round */
4587 adapter->alloc_rx_buff_failed++;
4588 break;
4589 }
4590
4591 /* Fix for errata 23, can't cross 64kB boundary */
4592 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4593 void *olddata = data;
4594 e_err(rx_err, "skb align check failed: %u bytes at "
4595 "%p\n", bufsz, data);
4596 /* Try again, without freeing the previous */
4597 data = e1000_alloc_frag(adapter);
4598 /* Failed allocation, critical failure */
4599 if (!data) {
4600 skb_free_frag(olddata);
4601 adapter->alloc_rx_buff_failed++;
4602 break;
4603 }
4604
4605 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4606 /* give up */
4607 skb_free_frag(data);
4608 skb_free_frag(olddata);
4609 adapter->alloc_rx_buff_failed++;
4610 break;
4611 }
4612
4613 /* Use new allocation */
4614 skb_free_frag(olddata);
4615 }
4616 buffer_info->dma = dma_map_single(&pdev->dev,
4617 data,
4618 adapter->rx_buffer_len,
4619 DMA_FROM_DEVICE);
4620 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4621 skb_free_frag(data);
4622 buffer_info->dma = 0;
4623 adapter->alloc_rx_buff_failed++;
4624 break;
4625 }
4626
4627 /* XXX if it was allocated cleanly it will never map to a
4628 * boundary crossing
4629 */
4630
4631 /* Fix for errata 23, can't cross 64kB boundary */
4632 if (!e1000_check_64k_bound(adapter,
4633 (void *)(unsigned long)buffer_info->dma,
4634 adapter->rx_buffer_len)) {
4635 e_err(rx_err, "dma align check failed: %u bytes at "
4636 "%p\n", adapter->rx_buffer_len,
4637 (void *)(unsigned long)buffer_info->dma);
4638
4639 dma_unmap_single(&pdev->dev, buffer_info->dma,
4640 adapter->rx_buffer_len,
4641 DMA_FROM_DEVICE);
4642
4643 skb_free_frag(data);
4644 buffer_info->rxbuf.data = NULL;
4645 buffer_info->dma = 0;
4646
4647 adapter->alloc_rx_buff_failed++;
4648 break;
4649 }
4650 buffer_info->rxbuf.data = data;
4651 skip:
4652 rx_desc = E1000_RX_DESC(*rx_ring, i);
4653 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4654
4655 if (unlikely(++i == rx_ring->count))
4656 i = 0;
4657 buffer_info = &rx_ring->buffer_info[i];
4658 }
4659
4660 if (likely(rx_ring->next_to_use != i)) {
4661 rx_ring->next_to_use = i;
4662 if (unlikely(i-- == 0))
4663 i = (rx_ring->count - 1);
4664
4665 /* Force memory writes to complete before letting h/w
4666 * know there are new descriptors to fetch. (Only
4667 * applicable for weak-ordered memory model archs,
4668 * such as IA-64).
4669 */
4670 dma_wmb();
4671 writel(i, hw->hw_addr + rx_ring->rdt);
4672 }
4673}
4674
4675/**
4676 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4677 * @adapter: address of board private structure
4678 **/
4679static void e1000_smartspeed(struct e1000_adapter *adapter)
4680{
4681 struct e1000_hw *hw = &adapter->hw;
4682 u16 phy_status;
4683 u16 phy_ctrl;
4684
4685 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4686 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4687 return;
4688
4689 if (adapter->smartspeed == 0) {
4690 /* If Master/Slave config fault is asserted twice,
4691 * we assume back-to-back
4692 */
4693 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4695 return;
4696 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4697 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4698 return;
4699 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4700 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4701 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4702 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4703 phy_ctrl);
4704 adapter->smartspeed++;
4705 if (!e1000_phy_setup_autoneg(hw) &&
4706 !e1000_read_phy_reg(hw, PHY_CTRL,
4707 &phy_ctrl)) {
4708 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4709 MII_CR_RESTART_AUTO_NEG);
4710 e1000_write_phy_reg(hw, PHY_CTRL,
4711 phy_ctrl);
4712 }
4713 }
4714 return;
4715 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4716 /* If still no link, perhaps using 2/3 pair cable */
4717 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4718 phy_ctrl |= CR_1000T_MS_ENABLE;
4719 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4720 if (!e1000_phy_setup_autoneg(hw) &&
4721 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4722 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723 MII_CR_RESTART_AUTO_NEG);
4724 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4725 }
4726 }
4727 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4728 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4729 adapter->smartspeed = 0;
4730}
4731
4732/**
4733 * e1000_ioctl - handle ioctl calls
4734 * @netdev: pointer to our netdev
4735 * @ifr: pointer to interface request structure
4736 * @cmd: ioctl data
4737 **/
4738static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4739{
4740 switch (cmd) {
4741 case SIOCGMIIPHY:
4742 case SIOCGMIIREG:
4743 case SIOCSMIIREG:
4744 return e1000_mii_ioctl(netdev, ifr, cmd);
4745 default:
4746 return -EOPNOTSUPP;
4747 }
4748}
4749
4750/**
4751 * e1000_mii_ioctl -
4752 * @netdev: pointer to our netdev
4753 * @ifr: pointer to interface request structure
4754 * @cmd: ioctl data
4755 **/
4756static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4757 int cmd)
4758{
4759 struct e1000_adapter *adapter = netdev_priv(netdev);
4760 struct e1000_hw *hw = &adapter->hw;
4761 struct mii_ioctl_data *data = if_mii(ifr);
4762 int retval;
4763 u16 mii_reg;
4764 unsigned long flags;
4765
4766 if (hw->media_type != e1000_media_type_copper)
4767 return -EOPNOTSUPP;
4768
4769 switch (cmd) {
4770 case SIOCGMIIPHY:
4771 data->phy_id = hw->phy_addr;
4772 break;
4773 case SIOCGMIIREG:
4774 spin_lock_irqsave(&adapter->stats_lock, flags);
4775 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4776 &data->val_out)) {
4777 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778 return -EIO;
4779 }
4780 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781 break;
4782 case SIOCSMIIREG:
4783 if (data->reg_num & ~(0x1F))
4784 return -EFAULT;
4785 mii_reg = data->val_in;
4786 spin_lock_irqsave(&adapter->stats_lock, flags);
4787 if (e1000_write_phy_reg(hw, data->reg_num,
4788 mii_reg)) {
4789 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790 return -EIO;
4791 }
4792 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4793 if (hw->media_type == e1000_media_type_copper) {
4794 switch (data->reg_num) {
4795 case PHY_CTRL:
4796 if (mii_reg & MII_CR_POWER_DOWN)
4797 break;
4798 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4799 hw->autoneg = 1;
4800 hw->autoneg_advertised = 0x2F;
4801 } else {
4802 u32 speed;
4803 if (mii_reg & 0x40)
4804 speed = SPEED_1000;
4805 else if (mii_reg & 0x2000)
4806 speed = SPEED_100;
4807 else
4808 speed = SPEED_10;
4809 retval = e1000_set_spd_dplx(
4810 adapter, speed,
4811 ((mii_reg & 0x100)
4812 ? DUPLEX_FULL :
4813 DUPLEX_HALF));
4814 if (retval)
4815 return retval;
4816 }
4817 if (netif_running(adapter->netdev))
4818 e1000_reinit_locked(adapter);
4819 else
4820 e1000_reset(adapter);
4821 break;
4822 case M88E1000_PHY_SPEC_CTRL:
4823 case M88E1000_EXT_PHY_SPEC_CTRL:
4824 if (e1000_phy_reset(hw))
4825 return -EIO;
4826 break;
4827 }
4828 } else {
4829 switch (data->reg_num) {
4830 case PHY_CTRL:
4831 if (mii_reg & MII_CR_POWER_DOWN)
4832 break;
4833 if (netif_running(adapter->netdev))
4834 e1000_reinit_locked(adapter);
4835 else
4836 e1000_reset(adapter);
4837 break;
4838 }
4839 }
4840 break;
4841 default:
4842 return -EOPNOTSUPP;
4843 }
4844 return E1000_SUCCESS;
4845}
4846
4847void e1000_pci_set_mwi(struct e1000_hw *hw)
4848{
4849 struct e1000_adapter *adapter = hw->back;
4850 int ret_val = pci_set_mwi(adapter->pdev);
4851
4852 if (ret_val)
4853 e_err(probe, "Error in setting MWI\n");
4854}
4855
4856void e1000_pci_clear_mwi(struct e1000_hw *hw)
4857{
4858 struct e1000_adapter *adapter = hw->back;
4859
4860 pci_clear_mwi(adapter->pdev);
4861}
4862
4863int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4864{
4865 struct e1000_adapter *adapter = hw->back;
4866 return pcix_get_mmrbc(adapter->pdev);
4867}
4868
4869void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4870{
4871 struct e1000_adapter *adapter = hw->back;
4872 pcix_set_mmrbc(adapter->pdev, mmrbc);
4873}
4874
4875void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4876{
4877 outl(value, port);
4878}
4879
4880static bool e1000_vlan_used(struct e1000_adapter *adapter)
4881{
4882 u16 vid;
4883
4884 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4885 return true;
4886 return false;
4887}
4888
4889static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4890 netdev_features_t features)
4891{
4892 struct e1000_hw *hw = &adapter->hw;
4893 u32 ctrl;
4894
4895 ctrl = er32(CTRL);
4896 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4897 /* enable VLAN tag insert/strip */
4898 ctrl |= E1000_CTRL_VME;
4899 } else {
4900 /* disable VLAN tag insert/strip */
4901 ctrl &= ~E1000_CTRL_VME;
4902 }
4903 ew32(CTRL, ctrl);
4904}
4905static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4906 bool filter_on)
4907{
4908 struct e1000_hw *hw = &adapter->hw;
4909 u32 rctl;
4910
4911 if (!test_bit(__E1000_DOWN, &adapter->flags))
4912 e1000_irq_disable(adapter);
4913
4914 __e1000_vlan_mode(adapter, adapter->netdev->features);
4915 if (filter_on) {
4916 /* enable VLAN receive filtering */
4917 rctl = er32(RCTL);
4918 rctl &= ~E1000_RCTL_CFIEN;
4919 if (!(adapter->netdev->flags & IFF_PROMISC))
4920 rctl |= E1000_RCTL_VFE;
4921 ew32(RCTL, rctl);
4922 e1000_update_mng_vlan(adapter);
4923 } else {
4924 /* disable VLAN receive filtering */
4925 rctl = er32(RCTL);
4926 rctl &= ~E1000_RCTL_VFE;
4927 ew32(RCTL, rctl);
4928 }
4929
4930 if (!test_bit(__E1000_DOWN, &adapter->flags))
4931 e1000_irq_enable(adapter);
4932}
4933
4934static void e1000_vlan_mode(struct net_device *netdev,
4935 netdev_features_t features)
4936{
4937 struct e1000_adapter *adapter = netdev_priv(netdev);
4938
4939 if (!test_bit(__E1000_DOWN, &adapter->flags))
4940 e1000_irq_disable(adapter);
4941
4942 __e1000_vlan_mode(adapter, features);
4943
4944 if (!test_bit(__E1000_DOWN, &adapter->flags))
4945 e1000_irq_enable(adapter);
4946}
4947
4948static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4949 __be16 proto, u16 vid)
4950{
4951 struct e1000_adapter *adapter = netdev_priv(netdev);
4952 struct e1000_hw *hw = &adapter->hw;
4953 u32 vfta, index;
4954
4955 if ((hw->mng_cookie.status &
4956 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4957 (vid == adapter->mng_vlan_id))
4958 return 0;
4959
4960 if (!e1000_vlan_used(adapter))
4961 e1000_vlan_filter_on_off(adapter, true);
4962
4963 /* add VID to filter table */
4964 index = (vid >> 5) & 0x7F;
4965 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4966 vfta |= (1 << (vid & 0x1F));
4967 e1000_write_vfta(hw, index, vfta);
4968
4969 set_bit(vid, adapter->active_vlans);
4970
4971 return 0;
4972}
4973
4974static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4975 __be16 proto, u16 vid)
4976{
4977 struct e1000_adapter *adapter = netdev_priv(netdev);
4978 struct e1000_hw *hw = &adapter->hw;
4979 u32 vfta, index;
4980
4981 if (!test_bit(__E1000_DOWN, &adapter->flags))
4982 e1000_irq_disable(adapter);
4983 if (!test_bit(__E1000_DOWN, &adapter->flags))
4984 e1000_irq_enable(adapter);
4985
4986 /* remove VID from filter table */
4987 index = (vid >> 5) & 0x7F;
4988 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4989 vfta &= ~(1 << (vid & 0x1F));
4990 e1000_write_vfta(hw, index, vfta);
4991
4992 clear_bit(vid, adapter->active_vlans);
4993
4994 if (!e1000_vlan_used(adapter))
4995 e1000_vlan_filter_on_off(adapter, false);
4996
4997 return 0;
4998}
4999
5000static void e1000_restore_vlan(struct e1000_adapter *adapter)
5001{
5002 u16 vid;
5003
5004 if (!e1000_vlan_used(adapter))
5005 return;
5006
5007 e1000_vlan_filter_on_off(adapter, true);
5008 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5009 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5010}
5011
5012int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5013{
5014 struct e1000_hw *hw = &adapter->hw;
5015
5016 hw->autoneg = 0;
5017
5018 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5019 * for the switch() below to work
5020 */
5021 if ((spd & 1) || (dplx & ~1))
5022 goto err_inval;
5023
5024 /* Fiber NICs only allow 1000 gbps Full duplex */
5025 if ((hw->media_type == e1000_media_type_fiber) &&
5026 spd != SPEED_1000 &&
5027 dplx != DUPLEX_FULL)
5028 goto err_inval;
5029
5030 switch (spd + dplx) {
5031 case SPEED_10 + DUPLEX_HALF:
5032 hw->forced_speed_duplex = e1000_10_half;
5033 break;
5034 case SPEED_10 + DUPLEX_FULL:
5035 hw->forced_speed_duplex = e1000_10_full;
5036 break;
5037 case SPEED_100 + DUPLEX_HALF:
5038 hw->forced_speed_duplex = e1000_100_half;
5039 break;
5040 case SPEED_100 + DUPLEX_FULL:
5041 hw->forced_speed_duplex = e1000_100_full;
5042 break;
5043 case SPEED_1000 + DUPLEX_FULL:
5044 hw->autoneg = 1;
5045 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5046 break;
5047 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5048 default:
5049 goto err_inval;
5050 }
5051
5052 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5053 hw->mdix = AUTO_ALL_MODES;
5054
5055 return 0;
5056
5057err_inval:
5058 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5059 return -EINVAL;
5060}
5061
5062static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5063{
5064 struct net_device *netdev = pci_get_drvdata(pdev);
5065 struct e1000_adapter *adapter = netdev_priv(netdev);
5066 struct e1000_hw *hw = &adapter->hw;
5067 u32 ctrl, ctrl_ext, rctl, status;
5068 u32 wufc = adapter->wol;
5069
5070 netif_device_detach(netdev);
5071
5072 if (netif_running(netdev)) {
5073 int count = E1000_CHECK_RESET_COUNT;
5074
5075 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5076 usleep_range(10000, 20000);
5077
5078 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5079 rtnl_lock();
5080 e1000_down(adapter);
5081 rtnl_unlock();
5082 }
5083
5084 status = er32(STATUS);
5085 if (status & E1000_STATUS_LU)
5086 wufc &= ~E1000_WUFC_LNKC;
5087
5088 if (wufc) {
5089 e1000_setup_rctl(adapter);
5090 e1000_set_rx_mode(netdev);
5091
5092 rctl = er32(RCTL);
5093
5094 /* turn on all-multi mode if wake on multicast is enabled */
5095 if (wufc & E1000_WUFC_MC)
5096 rctl |= E1000_RCTL_MPE;
5097
5098 /* enable receives in the hardware */
5099 ew32(RCTL, rctl | E1000_RCTL_EN);
5100
5101 if (hw->mac_type >= e1000_82540) {
5102 ctrl = er32(CTRL);
5103 /* advertise wake from D3Cold */
5104 #define E1000_CTRL_ADVD3WUC 0x00100000
5105 /* phy power management enable */
5106 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5107 ctrl |= E1000_CTRL_ADVD3WUC |
5108 E1000_CTRL_EN_PHY_PWR_MGMT;
5109 ew32(CTRL, ctrl);
5110 }
5111
5112 if (hw->media_type == e1000_media_type_fiber ||
5113 hw->media_type == e1000_media_type_internal_serdes) {
5114 /* keep the laser running in D3 */
5115 ctrl_ext = er32(CTRL_EXT);
5116 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5117 ew32(CTRL_EXT, ctrl_ext);
5118 }
5119
5120 ew32(WUC, E1000_WUC_PME_EN);
5121 ew32(WUFC, wufc);
5122 } else {
5123 ew32(WUC, 0);
5124 ew32(WUFC, 0);
5125 }
5126
5127 e1000_release_manageability(adapter);
5128
5129 *enable_wake = !!wufc;
5130
5131 /* make sure adapter isn't asleep if manageability is enabled */
5132 if (adapter->en_mng_pt)
5133 *enable_wake = true;
5134
5135 if (netif_running(netdev))
5136 e1000_free_irq(adapter);
5137
5138 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5139 pci_disable_device(pdev);
5140
5141 return 0;
5142}
5143
5144static int e1000_suspend(struct device *dev)
5145{
5146 int retval;
5147 struct pci_dev *pdev = to_pci_dev(dev);
5148 bool wake;
5149
5150 retval = __e1000_shutdown(pdev, &wake);
5151 device_set_wakeup_enable(dev, wake);
5152
5153 return retval;
5154}
5155
5156static int e1000_resume(struct device *dev)
5157{
5158 struct pci_dev *pdev = to_pci_dev(dev);
5159 struct net_device *netdev = pci_get_drvdata(pdev);
5160 struct e1000_adapter *adapter = netdev_priv(netdev);
5161 struct e1000_hw *hw = &adapter->hw;
5162 u32 err;
5163
5164 if (adapter->need_ioport)
5165 err = pci_enable_device(pdev);
5166 else
5167 err = pci_enable_device_mem(pdev);
5168 if (err) {
5169 pr_err("Cannot enable PCI device from suspend\n");
5170 return err;
5171 }
5172
5173 /* flush memory to make sure state is correct */
5174 smp_mb__before_atomic();
5175 clear_bit(__E1000_DISABLED, &adapter->flags);
5176 pci_set_master(pdev);
5177
5178 pci_enable_wake(pdev, PCI_D3hot, 0);
5179 pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181 if (netif_running(netdev)) {
5182 err = e1000_request_irq(adapter);
5183 if (err)
5184 return err;
5185 }
5186
5187 e1000_power_up_phy(adapter);
5188 e1000_reset(adapter);
5189 ew32(WUS, ~0);
5190
5191 e1000_init_manageability(adapter);
5192
5193 if (netif_running(netdev))
5194 e1000_up(adapter);
5195
5196 netif_device_attach(netdev);
5197
5198 return 0;
5199}
5200
5201static void e1000_shutdown(struct pci_dev *pdev)
5202{
5203 bool wake;
5204
5205 __e1000_shutdown(pdev, &wake);
5206
5207 if (system_state == SYSTEM_POWER_OFF) {
5208 pci_wake_from_d3(pdev, wake);
5209 pci_set_power_state(pdev, PCI_D3hot);
5210 }
5211}
5212
5213#ifdef CONFIG_NET_POLL_CONTROLLER
5214/* Polling 'interrupt' - used by things like netconsole to send skbs
5215 * without having to re-enable interrupts. It's not called while
5216 * the interrupt routine is executing.
5217 */
5218static void e1000_netpoll(struct net_device *netdev)
5219{
5220 struct e1000_adapter *adapter = netdev_priv(netdev);
5221
5222 if (disable_hardirq(adapter->pdev->irq))
5223 e1000_intr(adapter->pdev->irq, netdev);
5224 enable_irq(adapter->pdev->irq);
5225}
5226#endif
5227
5228/**
5229 * e1000_io_error_detected - called when PCI error is detected
5230 * @pdev: Pointer to PCI device
5231 * @state: The current pci connection state
5232 *
5233 * This function is called after a PCI bus error affecting
5234 * this device has been detected.
5235 */
5236static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5237 pci_channel_state_t state)
5238{
5239 struct net_device *netdev = pci_get_drvdata(pdev);
5240 struct e1000_adapter *adapter = netdev_priv(netdev);
5241
5242 rtnl_lock();
5243 netif_device_detach(netdev);
5244
5245 if (state == pci_channel_io_perm_failure) {
5246 rtnl_unlock();
5247 return PCI_ERS_RESULT_DISCONNECT;
5248 }
5249
5250 if (netif_running(netdev))
5251 e1000_down(adapter);
5252
5253 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5254 pci_disable_device(pdev);
5255 rtnl_unlock();
5256
5257 /* Request a slot reset. */
5258 return PCI_ERS_RESULT_NEED_RESET;
5259}
5260
5261/**
5262 * e1000_io_slot_reset - called after the pci bus has been reset.
5263 * @pdev: Pointer to PCI device
5264 *
5265 * Restart the card from scratch, as if from a cold-boot. Implementation
5266 * resembles the first-half of the e1000_resume routine.
5267 */
5268static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5269{
5270 struct net_device *netdev = pci_get_drvdata(pdev);
5271 struct e1000_adapter *adapter = netdev_priv(netdev);
5272 struct e1000_hw *hw = &adapter->hw;
5273 int err;
5274
5275 if (adapter->need_ioport)
5276 err = pci_enable_device(pdev);
5277 else
5278 err = pci_enable_device_mem(pdev);
5279 if (err) {
5280 pr_err("Cannot re-enable PCI device after reset.\n");
5281 return PCI_ERS_RESULT_DISCONNECT;
5282 }
5283
5284 /* flush memory to make sure state is correct */
5285 smp_mb__before_atomic();
5286 clear_bit(__E1000_DISABLED, &adapter->flags);
5287 pci_set_master(pdev);
5288
5289 pci_enable_wake(pdev, PCI_D3hot, 0);
5290 pci_enable_wake(pdev, PCI_D3cold, 0);
5291
5292 e1000_reset(adapter);
5293 ew32(WUS, ~0);
5294
5295 return PCI_ERS_RESULT_RECOVERED;
5296}
5297
5298/**
5299 * e1000_io_resume - called when traffic can start flowing again.
5300 * @pdev: Pointer to PCI device
5301 *
5302 * This callback is called when the error recovery driver tells us that
5303 * its OK to resume normal operation. Implementation resembles the
5304 * second-half of the e1000_resume routine.
5305 */
5306static void e1000_io_resume(struct pci_dev *pdev)
5307{
5308 struct net_device *netdev = pci_get_drvdata(pdev);
5309 struct e1000_adapter *adapter = netdev_priv(netdev);
5310
5311 e1000_init_manageability(adapter);
5312
5313 if (netif_running(netdev)) {
5314 if (e1000_up(adapter)) {
5315 pr_info("can't bring device back up after reset\n");
5316 return;
5317 }
5318 }
5319
5320 netif_device_attach(netdev);
5321}
5322
5323/* e1000_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/*******************************************************************************
3
4 Intel PRO/1000 Linux driver
5 Copyright(c) 1999 - 2006 Intel Corporation.
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28*******************************************************************************/
29
30#include "e1000.h"
31#include <net/ip6_checksum.h>
32#include <linux/io.h>
33#include <linux/prefetch.h>
34#include <linux/bitops.h>
35#include <linux/if_vlan.h>
36
37char e1000_driver_name[] = "e1000";
38static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
39#define DRV_VERSION "7.3.21-k8-NAPI"
40const char e1000_driver_version[] = DRV_VERSION;
41static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43/* e1000_pci_tbl - PCI Device ID Table
44 *
45 * Last entry must be all 0s
46 *
47 * Macro expands to...
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 */
50static const struct pci_device_id e1000_pci_tbl[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1075),
77 INTEL_E1000_ETHERNET_DEVICE(0x1076),
78 INTEL_E1000_ETHERNET_DEVICE(0x1077),
79 INTEL_E1000_ETHERNET_DEVICE(0x1078),
80 INTEL_E1000_ETHERNET_DEVICE(0x1079),
81 INTEL_E1000_ETHERNET_DEVICE(0x107A),
82 INTEL_E1000_ETHERNET_DEVICE(0x107B),
83 INTEL_E1000_ETHERNET_DEVICE(0x107C),
84 INTEL_E1000_ETHERNET_DEVICE(0x108A),
85 INTEL_E1000_ETHERNET_DEVICE(0x1099),
86 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
87 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
88 /* required last entry */
89 {0,}
90};
91
92MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
93
94int e1000_up(struct e1000_adapter *adapter);
95void e1000_down(struct e1000_adapter *adapter);
96void e1000_reinit_locked(struct e1000_adapter *adapter);
97void e1000_reset(struct e1000_adapter *adapter);
98int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
99int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
101void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
102static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
103 struct e1000_tx_ring *txdr);
104static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
105 struct e1000_rx_ring *rxdr);
106static void e1000_free_tx_resources(struct e1000_adapter *adapter,
107 struct e1000_tx_ring *tx_ring);
108static void e1000_free_rx_resources(struct e1000_adapter *adapter,
109 struct e1000_rx_ring *rx_ring);
110void e1000_update_stats(struct e1000_adapter *adapter);
111
112static int e1000_init_module(void);
113static void e1000_exit_module(void);
114static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
115static void e1000_remove(struct pci_dev *pdev);
116static int e1000_alloc_queues(struct e1000_adapter *adapter);
117static int e1000_sw_init(struct e1000_adapter *adapter);
118int e1000_open(struct net_device *netdev);
119int e1000_close(struct net_device *netdev);
120static void e1000_configure_tx(struct e1000_adapter *adapter);
121static void e1000_configure_rx(struct e1000_adapter *adapter);
122static void e1000_setup_rctl(struct e1000_adapter *adapter);
123static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
125static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *tx_ring);
127static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring);
129static void e1000_set_rx_mode(struct net_device *netdev);
130static void e1000_update_phy_info_task(struct work_struct *work);
131static void e1000_watchdog(struct work_struct *work);
132static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
133static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
134 struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count)
150{
151}
152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 struct e1000_rx_ring *rx_ring,
154 int cleaned_count);
155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int cleaned_count);
158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 int cmd);
161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163static void e1000_tx_timeout(struct net_device *dev);
164static void e1000_reset_task(struct work_struct *work);
165static void e1000_smartspeed(struct e1000_adapter *adapter);
166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 struct sk_buff *skb);
168
169static bool e1000_vlan_used(struct e1000_adapter *adapter);
170static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 bool filter_on);
174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
178static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
180#ifdef CONFIG_PM
181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182static int e1000_resume(struct pci_dev *pdev);
183#endif
184static void e1000_shutdown(struct pci_dev *pdev);
185
186#ifdef CONFIG_NET_POLL_CONTROLLER
187/* for netdump / net console */
188static void e1000_netpoll (struct net_device *netdev);
189#endif
190
191#define COPYBREAK_DEFAULT 256
192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193module_param(copybreak, uint, 0644);
194MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
196
197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 pci_channel_state_t state);
199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200static void e1000_io_resume(struct pci_dev *pdev);
201
202static const struct pci_error_handlers e1000_err_handler = {
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
206};
207
208static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
212 .remove = e1000_remove,
213#ifdef CONFIG_PM
214 /* Power Management Hooks */
215 .suspend = e1000_suspend,
216 .resume = e1000_resume,
217#endif
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
220};
221
222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224MODULE_LICENSE("GPL");
225MODULE_VERSION(DRV_VERSION);
226
227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228static int debug = -1;
229module_param(debug, int, 0);
230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232/**
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
235 *
236 **/
237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238{
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
241}
242
243/**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
249static int __init e1000_init_module(void)
250{
251 int ret;
252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253
254 pr_info("%s\n", e1000_copyright);
255
256 ret = pci_register_driver(&e1000_driver);
257 if (copybreak != COPYBREAK_DEFAULT) {
258 if (copybreak == 0)
259 pr_info("copybreak disabled\n");
260 else
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
263 }
264 return ret;
265}
266
267module_init(e1000_init_module);
268
269/**
270 * e1000_exit_module - Driver Exit Cleanup Routine
271 *
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
274 **/
275static void __exit e1000_exit_module(void)
276{
277 pci_unregister_driver(&e1000_driver);
278}
279
280module_exit(e1000_exit_module);
281
282static int e1000_request_irq(struct e1000_adapter *adapter)
283{
284 struct net_device *netdev = adapter->netdev;
285 irq_handler_t handler = e1000_intr;
286 int irq_flags = IRQF_SHARED;
287 int err;
288
289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 netdev);
291 if (err) {
292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 }
294
295 return err;
296}
297
298static void e1000_free_irq(struct e1000_adapter *adapter)
299{
300 struct net_device *netdev = adapter->netdev;
301
302 free_irq(adapter->pdev->irq, netdev);
303}
304
305/**
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
308 **/
309static void e1000_irq_disable(struct e1000_adapter *adapter)
310{
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMC, ~0);
314 E1000_WRITE_FLUSH();
315 synchronize_irq(adapter->pdev->irq);
316}
317
318/**
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
321 **/
322static void e1000_irq_enable(struct e1000_adapter *adapter)
323{
324 struct e1000_hw *hw = &adapter->hw;
325
326 ew32(IMS, IMS_ENABLE_MASK);
327 E1000_WRITE_FLUSH();
328}
329
330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331{
332 struct e1000_hw *hw = &adapter->hw;
333 struct net_device *netdev = adapter->netdev;
334 u16 vid = hw->mng_cookie.vlan_id;
335 u16 old_vid = adapter->mng_vlan_id;
336
337 if (!e1000_vlan_used(adapter))
338 return;
339
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 adapter->mng_vlan_id = vid;
345 } else {
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 }
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 (vid != old_vid) &&
350 !test_bit(old_vid, adapter->active_vlans))
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 old_vid);
353 } else {
354 adapter->mng_vlan_id = vid;
355 }
356}
357
358static void e1000_init_manageability(struct e1000_adapter *adapter)
359{
360 struct e1000_hw *hw = &adapter->hw;
361
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
364
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
367
368 ew32(MANC, manc);
369 }
370}
371
372static void e1000_release_manageability(struct e1000_adapter *adapter)
373{
374 struct e1000_hw *hw = &adapter->hw;
375
376 if (adapter->en_mng_pt) {
377 u32 manc = er32(MANC);
378
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
381
382 ew32(MANC, manc);
383 }
384}
385
386/**
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
389 **/
390static void e1000_configure(struct e1000_adapter *adapter)
391{
392 struct net_device *netdev = adapter->netdev;
393 int i;
394
395 e1000_set_rx_mode(netdev);
396
397 e1000_restore_vlan(adapter);
398 e1000_init_manageability(adapter);
399
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
405 * next_to_use != next_to_clean
406 */
407 for (i = 0; i < adapter->num_rx_queues; i++) {
408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 adapter->alloc_rx_buf(adapter, ring,
410 E1000_DESC_UNUSED(ring));
411 }
412}
413
414int e1000_up(struct e1000_adapter *adapter)
415{
416 struct e1000_hw *hw = &adapter->hw;
417
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
420
421 clear_bit(__E1000_DOWN, &adapter->flags);
422
423 napi_enable(&adapter->napi);
424
425 e1000_irq_enable(adapter);
426
427 netif_wake_queue(adapter->netdev);
428
429 /* fire a link change interrupt to start the watchdog */
430 ew32(ICS, E1000_ICS_LSC);
431 return 0;
432}
433
434/**
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
437 *
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
441 **/
442void e1000_power_up_phy(struct e1000_adapter *adapter)
443{
444 struct e1000_hw *hw = &adapter->hw;
445 u16 mii_reg = 0;
446
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw->media_type == e1000_media_type_copper) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle
451 */
452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 mii_reg &= ~MII_CR_POWER_DOWN;
454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 }
456}
457
458static void e1000_power_down_phy(struct e1000_adapter *adapter)
459{
460 struct e1000_hw *hw = &adapter->hw;
461
462 /* Power down the PHY so no link is implied when interface is down *
463 * The PHY cannot be powered down if any of the following is true *
464 * (a) WoL is enabled
465 * (b) AMT is active
466 * (c) SoL/IDER session is active
467 */
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
470 u16 mii_reg = 0;
471
472 switch (hw->mac_type) {
473 case e1000_82540:
474 case e1000_82545:
475 case e1000_82545_rev_3:
476 case e1000_82546:
477 case e1000_ce4100:
478 case e1000_82546_rev_3:
479 case e1000_82541:
480 case e1000_82541_rev_2:
481 case e1000_82547:
482 case e1000_82547_rev_2:
483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 goto out;
485 break;
486 default:
487 goto out;
488 }
489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 mii_reg |= MII_CR_POWER_DOWN;
491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 msleep(1);
493 }
494out:
495 return;
496}
497
498static void e1000_down_and_stop(struct e1000_adapter *adapter)
499{
500 set_bit(__E1000_DOWN, &adapter->flags);
501
502 cancel_delayed_work_sync(&adapter->watchdog_task);
503
504 /*
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
508 */
509
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
512
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
516}
517
518void e1000_down(struct e1000_adapter *adapter)
519{
520 struct e1000_hw *hw = &adapter->hw;
521 struct net_device *netdev = adapter->netdev;
522 u32 rctl, tctl;
523
524 /* disable receives in the hardware */
525 rctl = er32(RCTL);
526 ew32(RCTL, rctl & ~E1000_RCTL_EN);
527 /* flush and sleep below */
528
529 netif_tx_disable(netdev);
530
531 /* disable transmits in the hardware */
532 tctl = er32(TCTL);
533 tctl &= ~E1000_TCTL_EN;
534 ew32(TCTL, tctl);
535 /* flush both disables and wait for them to finish */
536 E1000_WRITE_FLUSH();
537 msleep(10);
538
539 /* Set the carrier off after transmits have been disabled in the
540 * hardware, to avoid race conditions with e1000_watchdog() (which
541 * may be running concurrently to us, checking for the carrier
542 * bit to decide whether it should enable transmits again). Such
543 * a race condition would result into transmission being disabled
544 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
545 */
546 netif_carrier_off(netdev);
547
548 napi_disable(&adapter->napi);
549
550 e1000_irq_disable(adapter);
551
552 /* Setting DOWN must be after irq_disable to prevent
553 * a screaming interrupt. Setting DOWN also prevents
554 * tasks from rescheduling.
555 */
556 e1000_down_and_stop(adapter);
557
558 adapter->link_speed = 0;
559 adapter->link_duplex = 0;
560
561 e1000_reset(adapter);
562 e1000_clean_all_tx_rings(adapter);
563 e1000_clean_all_rx_rings(adapter);
564}
565
566void e1000_reinit_locked(struct e1000_adapter *adapter)
567{
568 WARN_ON(in_interrupt());
569 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
570 msleep(1);
571 e1000_down(adapter);
572 e1000_up(adapter);
573 clear_bit(__E1000_RESETTING, &adapter->flags);
574}
575
576void e1000_reset(struct e1000_adapter *adapter)
577{
578 struct e1000_hw *hw = &adapter->hw;
579 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
580 bool legacy_pba_adjust = false;
581 u16 hwm;
582
583 /* Repartition Pba for greater than 9k mtu
584 * To take effect CTRL.RST is required.
585 */
586
587 switch (hw->mac_type) {
588 case e1000_82542_rev2_0:
589 case e1000_82542_rev2_1:
590 case e1000_82543:
591 case e1000_82544:
592 case e1000_82540:
593 case e1000_82541:
594 case e1000_82541_rev_2:
595 legacy_pba_adjust = true;
596 pba = E1000_PBA_48K;
597 break;
598 case e1000_82545:
599 case e1000_82545_rev_3:
600 case e1000_82546:
601 case e1000_ce4100:
602 case e1000_82546_rev_3:
603 pba = E1000_PBA_48K;
604 break;
605 case e1000_82547:
606 case e1000_82547_rev_2:
607 legacy_pba_adjust = true;
608 pba = E1000_PBA_30K;
609 break;
610 case e1000_undefined:
611 case e1000_num_macs:
612 break;
613 }
614
615 if (legacy_pba_adjust) {
616 if (hw->max_frame_size > E1000_RXBUFFER_8192)
617 pba -= 8; /* allocate more FIFO for Tx */
618
619 if (hw->mac_type == e1000_82547) {
620 adapter->tx_fifo_head = 0;
621 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
622 adapter->tx_fifo_size =
623 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
624 atomic_set(&adapter->tx_fifo_stall, 0);
625 }
626 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
627 /* adjust PBA for jumbo frames */
628 ew32(PBA, pba);
629
630 /* To maintain wire speed transmits, the Tx FIFO should be
631 * large enough to accommodate two full transmit packets,
632 * rounded up to the next 1KB and expressed in KB. Likewise,
633 * the Rx FIFO should be large enough to accommodate at least
634 * one full receive packet and is similarly rounded up and
635 * expressed in KB.
636 */
637 pba = er32(PBA);
638 /* upper 16 bits has Tx packet buffer allocation size in KB */
639 tx_space = pba >> 16;
640 /* lower 16 bits has Rx packet buffer allocation size in KB */
641 pba &= 0xffff;
642 /* the Tx fifo also stores 16 bytes of information about the Tx
643 * but don't include ethernet FCS because hardware appends it
644 */
645 min_tx_space = (hw->max_frame_size +
646 sizeof(struct e1000_tx_desc) -
647 ETH_FCS_LEN) * 2;
648 min_tx_space = ALIGN(min_tx_space, 1024);
649 min_tx_space >>= 10;
650 /* software strips receive CRC, so leave room for it */
651 min_rx_space = hw->max_frame_size;
652 min_rx_space = ALIGN(min_rx_space, 1024);
653 min_rx_space >>= 10;
654
655 /* If current Tx allocation is less than the min Tx FIFO size,
656 * and the min Tx FIFO size is less than the current Rx FIFO
657 * allocation, take space away from current Rx allocation
658 */
659 if (tx_space < min_tx_space &&
660 ((min_tx_space - tx_space) < pba)) {
661 pba = pba - (min_tx_space - tx_space);
662
663 /* PCI/PCIx hardware has PBA alignment constraints */
664 switch (hw->mac_type) {
665 case e1000_82545 ... e1000_82546_rev_3:
666 pba &= ~(E1000_PBA_8K - 1);
667 break;
668 default:
669 break;
670 }
671
672 /* if short on Rx space, Rx wins and must trump Tx
673 * adjustment or use Early Receive if available
674 */
675 if (pba < min_rx_space)
676 pba = min_rx_space;
677 }
678 }
679
680 ew32(PBA, pba);
681
682 /* flow control settings:
683 * The high water mark must be low enough to fit one full frame
684 * (or the size used for early receive) above it in the Rx FIFO.
685 * Set it to the lower of:
686 * - 90% of the Rx FIFO size, and
687 * - the full Rx FIFO size minus the early receive size (for parts
688 * with ERT support assuming ERT set to E1000_ERT_2048), or
689 * - the full Rx FIFO size minus one full frame
690 */
691 hwm = min(((pba << 10) * 9 / 10),
692 ((pba << 10) - hw->max_frame_size));
693
694 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
695 hw->fc_low_water = hw->fc_high_water - 8;
696 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
697 hw->fc_send_xon = 1;
698 hw->fc = hw->original_fc;
699
700 /* Allow time for pending master requests to run */
701 e1000_reset_hw(hw);
702 if (hw->mac_type >= e1000_82544)
703 ew32(WUC, 0);
704
705 if (e1000_init_hw(hw))
706 e_dev_err("Hardware Error\n");
707 e1000_update_mng_vlan(adapter);
708
709 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
710 if (hw->mac_type >= e1000_82544 &&
711 hw->autoneg == 1 &&
712 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
713 u32 ctrl = er32(CTRL);
714 /* clear phy power management bit if we are in gig only mode,
715 * which if enabled will attempt negotiation to 100Mb, which
716 * can cause a loss of link at power off or driver unload
717 */
718 ctrl &= ~E1000_CTRL_SWDPIN3;
719 ew32(CTRL, ctrl);
720 }
721
722 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
723 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
724
725 e1000_reset_adaptive(hw);
726 e1000_phy_get_info(hw, &adapter->phy_info);
727
728 e1000_release_manageability(adapter);
729}
730
731/* Dump the eeprom for users having checksum issues */
732static void e1000_dump_eeprom(struct e1000_adapter *adapter)
733{
734 struct net_device *netdev = adapter->netdev;
735 struct ethtool_eeprom eeprom;
736 const struct ethtool_ops *ops = netdev->ethtool_ops;
737 u8 *data;
738 int i;
739 u16 csum_old, csum_new = 0;
740
741 eeprom.len = ops->get_eeprom_len(netdev);
742 eeprom.offset = 0;
743
744 data = kmalloc(eeprom.len, GFP_KERNEL);
745 if (!data)
746 return;
747
748 ops->get_eeprom(netdev, &eeprom, data);
749
750 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
751 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
752 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
753 csum_new += data[i] + (data[i + 1] << 8);
754 csum_new = EEPROM_SUM - csum_new;
755
756 pr_err("/*********************/\n");
757 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
758 pr_err("Calculated : 0x%04x\n", csum_new);
759
760 pr_err("Offset Values\n");
761 pr_err("======== ======\n");
762 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
763
764 pr_err("Include this output when contacting your support provider.\n");
765 pr_err("This is not a software error! Something bad happened to\n");
766 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
767 pr_err("result in further problems, possibly loss of data,\n");
768 pr_err("corruption or system hangs!\n");
769 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
770 pr_err("which is invalid and requires you to set the proper MAC\n");
771 pr_err("address manually before continuing to enable this network\n");
772 pr_err("device. Please inspect the EEPROM dump and report the\n");
773 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
774 pr_err("/*********************/\n");
775
776 kfree(data);
777}
778
779/**
780 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
781 * @pdev: PCI device information struct
782 *
783 * Return true if an adapter needs ioport resources
784 **/
785static int e1000_is_need_ioport(struct pci_dev *pdev)
786{
787 switch (pdev->device) {
788 case E1000_DEV_ID_82540EM:
789 case E1000_DEV_ID_82540EM_LOM:
790 case E1000_DEV_ID_82540EP:
791 case E1000_DEV_ID_82540EP_LOM:
792 case E1000_DEV_ID_82540EP_LP:
793 case E1000_DEV_ID_82541EI:
794 case E1000_DEV_ID_82541EI_MOBILE:
795 case E1000_DEV_ID_82541ER:
796 case E1000_DEV_ID_82541ER_LOM:
797 case E1000_DEV_ID_82541GI:
798 case E1000_DEV_ID_82541GI_LF:
799 case E1000_DEV_ID_82541GI_MOBILE:
800 case E1000_DEV_ID_82544EI_COPPER:
801 case E1000_DEV_ID_82544EI_FIBER:
802 case E1000_DEV_ID_82544GC_COPPER:
803 case E1000_DEV_ID_82544GC_LOM:
804 case E1000_DEV_ID_82545EM_COPPER:
805 case E1000_DEV_ID_82545EM_FIBER:
806 case E1000_DEV_ID_82546EB_COPPER:
807 case E1000_DEV_ID_82546EB_FIBER:
808 case E1000_DEV_ID_82546EB_QUAD_COPPER:
809 return true;
810 default:
811 return false;
812 }
813}
814
815static netdev_features_t e1000_fix_features(struct net_device *netdev,
816 netdev_features_t features)
817{
818 /* Since there is no support for separate Rx/Tx vlan accel
819 * enable/disable make sure Tx flag is always in same state as Rx.
820 */
821 if (features & NETIF_F_HW_VLAN_CTAG_RX)
822 features |= NETIF_F_HW_VLAN_CTAG_TX;
823 else
824 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
825
826 return features;
827}
828
829static int e1000_set_features(struct net_device *netdev,
830 netdev_features_t features)
831{
832 struct e1000_adapter *adapter = netdev_priv(netdev);
833 netdev_features_t changed = features ^ netdev->features;
834
835 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
836 e1000_vlan_mode(netdev, features);
837
838 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
839 return 0;
840
841 netdev->features = features;
842 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
843
844 if (netif_running(netdev))
845 e1000_reinit_locked(adapter);
846 else
847 e1000_reset(adapter);
848
849 return 0;
850}
851
852static const struct net_device_ops e1000_netdev_ops = {
853 .ndo_open = e1000_open,
854 .ndo_stop = e1000_close,
855 .ndo_start_xmit = e1000_xmit_frame,
856 .ndo_set_rx_mode = e1000_set_rx_mode,
857 .ndo_set_mac_address = e1000_set_mac,
858 .ndo_tx_timeout = e1000_tx_timeout,
859 .ndo_change_mtu = e1000_change_mtu,
860 .ndo_do_ioctl = e1000_ioctl,
861 .ndo_validate_addr = eth_validate_addr,
862 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
863 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
864#ifdef CONFIG_NET_POLL_CONTROLLER
865 .ndo_poll_controller = e1000_netpoll,
866#endif
867 .ndo_fix_features = e1000_fix_features,
868 .ndo_set_features = e1000_set_features,
869};
870
871/**
872 * e1000_init_hw_struct - initialize members of hw struct
873 * @adapter: board private struct
874 * @hw: structure used by e1000_hw.c
875 *
876 * Factors out initialization of the e1000_hw struct to its own function
877 * that can be called very early at init (just after struct allocation).
878 * Fields are initialized based on PCI device information and
879 * OS network device settings (MTU size).
880 * Returns negative error codes if MAC type setup fails.
881 */
882static int e1000_init_hw_struct(struct e1000_adapter *adapter,
883 struct e1000_hw *hw)
884{
885 struct pci_dev *pdev = adapter->pdev;
886
887 /* PCI config space info */
888 hw->vendor_id = pdev->vendor;
889 hw->device_id = pdev->device;
890 hw->subsystem_vendor_id = pdev->subsystem_vendor;
891 hw->subsystem_id = pdev->subsystem_device;
892 hw->revision_id = pdev->revision;
893
894 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
895
896 hw->max_frame_size = adapter->netdev->mtu +
897 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
898 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
899
900 /* identify the MAC */
901 if (e1000_set_mac_type(hw)) {
902 e_err(probe, "Unknown MAC Type\n");
903 return -EIO;
904 }
905
906 switch (hw->mac_type) {
907 default:
908 break;
909 case e1000_82541:
910 case e1000_82547:
911 case e1000_82541_rev_2:
912 case e1000_82547_rev_2:
913 hw->phy_init_script = 1;
914 break;
915 }
916
917 e1000_set_media_type(hw);
918 e1000_get_bus_info(hw);
919
920 hw->wait_autoneg_complete = false;
921 hw->tbi_compatibility_en = true;
922 hw->adaptive_ifs = true;
923
924 /* Copper options */
925
926 if (hw->media_type == e1000_media_type_copper) {
927 hw->mdix = AUTO_ALL_MODES;
928 hw->disable_polarity_correction = false;
929 hw->master_slave = E1000_MASTER_SLAVE;
930 }
931
932 return 0;
933}
934
935/**
936 * e1000_probe - Device Initialization Routine
937 * @pdev: PCI device information struct
938 * @ent: entry in e1000_pci_tbl
939 *
940 * Returns 0 on success, negative on failure
941 *
942 * e1000_probe initializes an adapter identified by a pci_dev structure.
943 * The OS initialization, configuring of the adapter private structure,
944 * and a hardware reset occur.
945 **/
946static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
947{
948 struct net_device *netdev;
949 struct e1000_adapter *adapter = NULL;
950 struct e1000_hw *hw;
951
952 static int cards_found;
953 static int global_quad_port_a; /* global ksp3 port a indication */
954 int i, err, pci_using_dac;
955 u16 eeprom_data = 0;
956 u16 tmp = 0;
957 u16 eeprom_apme_mask = E1000_EEPROM_APME;
958 int bars, need_ioport;
959 bool disable_dev = false;
960
961 /* do not allocate ioport bars when not needed */
962 need_ioport = e1000_is_need_ioport(pdev);
963 if (need_ioport) {
964 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
965 err = pci_enable_device(pdev);
966 } else {
967 bars = pci_select_bars(pdev, IORESOURCE_MEM);
968 err = pci_enable_device_mem(pdev);
969 }
970 if (err)
971 return err;
972
973 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
974 if (err)
975 goto err_pci_reg;
976
977 pci_set_master(pdev);
978 err = pci_save_state(pdev);
979 if (err)
980 goto err_alloc_etherdev;
981
982 err = -ENOMEM;
983 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
984 if (!netdev)
985 goto err_alloc_etherdev;
986
987 SET_NETDEV_DEV(netdev, &pdev->dev);
988
989 pci_set_drvdata(pdev, netdev);
990 adapter = netdev_priv(netdev);
991 adapter->netdev = netdev;
992 adapter->pdev = pdev;
993 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
994 adapter->bars = bars;
995 adapter->need_ioport = need_ioport;
996
997 hw = &adapter->hw;
998 hw->back = adapter;
999
1000 err = -EIO;
1001 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1002 if (!hw->hw_addr)
1003 goto err_ioremap;
1004
1005 if (adapter->need_ioport) {
1006 for (i = BAR_1; i <= BAR_5; i++) {
1007 if (pci_resource_len(pdev, i) == 0)
1008 continue;
1009 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1010 hw->io_base = pci_resource_start(pdev, i);
1011 break;
1012 }
1013 }
1014 }
1015
1016 /* make ready for any if (hw->...) below */
1017 err = e1000_init_hw_struct(adapter, hw);
1018 if (err)
1019 goto err_sw_init;
1020
1021 /* there is a workaround being applied below that limits
1022 * 64-bit DMA addresses to 64-bit hardware. There are some
1023 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1024 */
1025 pci_using_dac = 0;
1026 if ((hw->bus_type == e1000_bus_type_pcix) &&
1027 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1028 pci_using_dac = 1;
1029 } else {
1030 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1031 if (err) {
1032 pr_err("No usable DMA config, aborting\n");
1033 goto err_dma;
1034 }
1035 }
1036
1037 netdev->netdev_ops = &e1000_netdev_ops;
1038 e1000_set_ethtool_ops(netdev);
1039 netdev->watchdog_timeo = 5 * HZ;
1040 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1041
1042 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1043
1044 adapter->bd_number = cards_found;
1045
1046 /* setup the private structure */
1047
1048 err = e1000_sw_init(adapter);
1049 if (err)
1050 goto err_sw_init;
1051
1052 err = -EIO;
1053 if (hw->mac_type == e1000_ce4100) {
1054 hw->ce4100_gbe_mdio_base_virt =
1055 ioremap(pci_resource_start(pdev, BAR_1),
1056 pci_resource_len(pdev, BAR_1));
1057
1058 if (!hw->ce4100_gbe_mdio_base_virt)
1059 goto err_mdio_ioremap;
1060 }
1061
1062 if (hw->mac_type >= e1000_82543) {
1063 netdev->hw_features = NETIF_F_SG |
1064 NETIF_F_HW_CSUM |
1065 NETIF_F_HW_VLAN_CTAG_RX;
1066 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1067 NETIF_F_HW_VLAN_CTAG_FILTER;
1068 }
1069
1070 if ((hw->mac_type >= e1000_82544) &&
1071 (hw->mac_type != e1000_82547))
1072 netdev->hw_features |= NETIF_F_TSO;
1073
1074 netdev->priv_flags |= IFF_SUPP_NOFCS;
1075
1076 netdev->features |= netdev->hw_features;
1077 netdev->hw_features |= (NETIF_F_RXCSUM |
1078 NETIF_F_RXALL |
1079 NETIF_F_RXFCS);
1080
1081 if (pci_using_dac) {
1082 netdev->features |= NETIF_F_HIGHDMA;
1083 netdev->vlan_features |= NETIF_F_HIGHDMA;
1084 }
1085
1086 netdev->vlan_features |= (NETIF_F_TSO |
1087 NETIF_F_HW_CSUM |
1088 NETIF_F_SG);
1089
1090 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1091 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1092 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1093 netdev->priv_flags |= IFF_UNICAST_FLT;
1094
1095 /* MTU range: 46 - 16110 */
1096 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1097 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1098
1099 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1100
1101 /* initialize eeprom parameters */
1102 if (e1000_init_eeprom_params(hw)) {
1103 e_err(probe, "EEPROM initialization failed\n");
1104 goto err_eeprom;
1105 }
1106
1107 /* before reading the EEPROM, reset the controller to
1108 * put the device in a known good starting state
1109 */
1110
1111 e1000_reset_hw(hw);
1112
1113 /* make sure the EEPROM is good */
1114 if (e1000_validate_eeprom_checksum(hw) < 0) {
1115 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1116 e1000_dump_eeprom(adapter);
1117 /* set MAC address to all zeroes to invalidate and temporary
1118 * disable this device for the user. This blocks regular
1119 * traffic while still permitting ethtool ioctls from reaching
1120 * the hardware as well as allowing the user to run the
1121 * interface after manually setting a hw addr using
1122 * `ip set address`
1123 */
1124 memset(hw->mac_addr, 0, netdev->addr_len);
1125 } else {
1126 /* copy the MAC address out of the EEPROM */
1127 if (e1000_read_mac_addr(hw))
1128 e_err(probe, "EEPROM Read Error\n");
1129 }
1130 /* don't block initialization here due to bad MAC address */
1131 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1132
1133 if (!is_valid_ether_addr(netdev->dev_addr))
1134 e_err(probe, "Invalid MAC Address\n");
1135
1136
1137 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1138 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1139 e1000_82547_tx_fifo_stall_task);
1140 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1141 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1142
1143 e1000_check_options(adapter);
1144
1145 /* Initial Wake on LAN setting
1146 * If APM wake is enabled in the EEPROM,
1147 * enable the ACPI Magic Packet filter
1148 */
1149
1150 switch (hw->mac_type) {
1151 case e1000_82542_rev2_0:
1152 case e1000_82542_rev2_1:
1153 case e1000_82543:
1154 break;
1155 case e1000_82544:
1156 e1000_read_eeprom(hw,
1157 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1158 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1159 break;
1160 case e1000_82546:
1161 case e1000_82546_rev_3:
1162 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1163 e1000_read_eeprom(hw,
1164 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1165 break;
1166 }
1167 /* Fall Through */
1168 default:
1169 e1000_read_eeprom(hw,
1170 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1171 break;
1172 }
1173 if (eeprom_data & eeprom_apme_mask)
1174 adapter->eeprom_wol |= E1000_WUFC_MAG;
1175
1176 /* now that we have the eeprom settings, apply the special cases
1177 * where the eeprom may be wrong or the board simply won't support
1178 * wake on lan on a particular port
1179 */
1180 switch (pdev->device) {
1181 case E1000_DEV_ID_82546GB_PCIE:
1182 adapter->eeprom_wol = 0;
1183 break;
1184 case E1000_DEV_ID_82546EB_FIBER:
1185 case E1000_DEV_ID_82546GB_FIBER:
1186 /* Wake events only supported on port A for dual fiber
1187 * regardless of eeprom setting
1188 */
1189 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1190 adapter->eeprom_wol = 0;
1191 break;
1192 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1193 /* if quad port adapter, disable WoL on all but port A */
1194 if (global_quad_port_a != 0)
1195 adapter->eeprom_wol = 0;
1196 else
1197 adapter->quad_port_a = true;
1198 /* Reset for multiple quad port adapters */
1199 if (++global_quad_port_a == 4)
1200 global_quad_port_a = 0;
1201 break;
1202 }
1203
1204 /* initialize the wol settings based on the eeprom settings */
1205 adapter->wol = adapter->eeprom_wol;
1206 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1207
1208 /* Auto detect PHY address */
1209 if (hw->mac_type == e1000_ce4100) {
1210 for (i = 0; i < 32; i++) {
1211 hw->phy_addr = i;
1212 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1213
1214 if (tmp != 0 && tmp != 0xFF)
1215 break;
1216 }
1217
1218 if (i >= 32)
1219 goto err_eeprom;
1220 }
1221
1222 /* reset the hardware with the new settings */
1223 e1000_reset(adapter);
1224
1225 strcpy(netdev->name, "eth%d");
1226 err = register_netdev(netdev);
1227 if (err)
1228 goto err_register;
1229
1230 e1000_vlan_filter_on_off(adapter, false);
1231
1232 /* print bus type/speed/width info */
1233 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1234 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1235 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1236 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1237 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1238 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1239 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1240 netdev->dev_addr);
1241
1242 /* carrier off reporting is important to ethtool even BEFORE open */
1243 netif_carrier_off(netdev);
1244
1245 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1246
1247 cards_found++;
1248 return 0;
1249
1250err_register:
1251err_eeprom:
1252 e1000_phy_hw_reset(hw);
1253
1254 if (hw->flash_address)
1255 iounmap(hw->flash_address);
1256 kfree(adapter->tx_ring);
1257 kfree(adapter->rx_ring);
1258err_dma:
1259err_sw_init:
1260err_mdio_ioremap:
1261 iounmap(hw->ce4100_gbe_mdio_base_virt);
1262 iounmap(hw->hw_addr);
1263err_ioremap:
1264 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1265 free_netdev(netdev);
1266err_alloc_etherdev:
1267 pci_release_selected_regions(pdev, bars);
1268err_pci_reg:
1269 if (!adapter || disable_dev)
1270 pci_disable_device(pdev);
1271 return err;
1272}
1273
1274/**
1275 * e1000_remove - Device Removal Routine
1276 * @pdev: PCI device information struct
1277 *
1278 * e1000_remove is called by the PCI subsystem to alert the driver
1279 * that it should release a PCI device. That could be caused by a
1280 * Hot-Plug event, or because the driver is going to be removed from
1281 * memory.
1282 **/
1283static void e1000_remove(struct pci_dev *pdev)
1284{
1285 struct net_device *netdev = pci_get_drvdata(pdev);
1286 struct e1000_adapter *adapter = netdev_priv(netdev);
1287 struct e1000_hw *hw = &adapter->hw;
1288 bool disable_dev;
1289
1290 e1000_down_and_stop(adapter);
1291 e1000_release_manageability(adapter);
1292
1293 unregister_netdev(netdev);
1294
1295 e1000_phy_hw_reset(hw);
1296
1297 kfree(adapter->tx_ring);
1298 kfree(adapter->rx_ring);
1299
1300 if (hw->mac_type == e1000_ce4100)
1301 iounmap(hw->ce4100_gbe_mdio_base_virt);
1302 iounmap(hw->hw_addr);
1303 if (hw->flash_address)
1304 iounmap(hw->flash_address);
1305 pci_release_selected_regions(pdev, adapter->bars);
1306
1307 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1308 free_netdev(netdev);
1309
1310 if (disable_dev)
1311 pci_disable_device(pdev);
1312}
1313
1314/**
1315 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1316 * @adapter: board private structure to initialize
1317 *
1318 * e1000_sw_init initializes the Adapter private data structure.
1319 * e1000_init_hw_struct MUST be called before this function
1320 **/
1321static int e1000_sw_init(struct e1000_adapter *adapter)
1322{
1323 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1324
1325 adapter->num_tx_queues = 1;
1326 adapter->num_rx_queues = 1;
1327
1328 if (e1000_alloc_queues(adapter)) {
1329 e_err(probe, "Unable to allocate memory for queues\n");
1330 return -ENOMEM;
1331 }
1332
1333 /* Explicitly disable IRQ since the NIC can be in any state. */
1334 e1000_irq_disable(adapter);
1335
1336 spin_lock_init(&adapter->stats_lock);
1337
1338 set_bit(__E1000_DOWN, &adapter->flags);
1339
1340 return 0;
1341}
1342
1343/**
1344 * e1000_alloc_queues - Allocate memory for all rings
1345 * @adapter: board private structure to initialize
1346 *
1347 * We allocate one ring per queue at run-time since we don't know the
1348 * number of queues at compile-time.
1349 **/
1350static int e1000_alloc_queues(struct e1000_adapter *adapter)
1351{
1352 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1353 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1354 if (!adapter->tx_ring)
1355 return -ENOMEM;
1356
1357 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1358 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1359 if (!adapter->rx_ring) {
1360 kfree(adapter->tx_ring);
1361 return -ENOMEM;
1362 }
1363
1364 return E1000_SUCCESS;
1365}
1366
1367/**
1368 * e1000_open - Called when a network interface is made active
1369 * @netdev: network interface device structure
1370 *
1371 * Returns 0 on success, negative value on failure
1372 *
1373 * The open entry point is called when a network interface is made
1374 * active by the system (IFF_UP). At this point all resources needed
1375 * for transmit and receive operations are allocated, the interrupt
1376 * handler is registered with the OS, the watchdog task is started,
1377 * and the stack is notified that the interface is ready.
1378 **/
1379int e1000_open(struct net_device *netdev)
1380{
1381 struct e1000_adapter *adapter = netdev_priv(netdev);
1382 struct e1000_hw *hw = &adapter->hw;
1383 int err;
1384
1385 /* disallow open during test */
1386 if (test_bit(__E1000_TESTING, &adapter->flags))
1387 return -EBUSY;
1388
1389 netif_carrier_off(netdev);
1390
1391 /* allocate transmit descriptors */
1392 err = e1000_setup_all_tx_resources(adapter);
1393 if (err)
1394 goto err_setup_tx;
1395
1396 /* allocate receive descriptors */
1397 err = e1000_setup_all_rx_resources(adapter);
1398 if (err)
1399 goto err_setup_rx;
1400
1401 e1000_power_up_phy(adapter);
1402
1403 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1404 if ((hw->mng_cookie.status &
1405 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1406 e1000_update_mng_vlan(adapter);
1407 }
1408
1409 /* before we allocate an interrupt, we must be ready to handle it.
1410 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1411 * as soon as we call pci_request_irq, so we have to setup our
1412 * clean_rx handler before we do so.
1413 */
1414 e1000_configure(adapter);
1415
1416 err = e1000_request_irq(adapter);
1417 if (err)
1418 goto err_req_irq;
1419
1420 /* From here on the code is the same as e1000_up() */
1421 clear_bit(__E1000_DOWN, &adapter->flags);
1422
1423 napi_enable(&adapter->napi);
1424
1425 e1000_irq_enable(adapter);
1426
1427 netif_start_queue(netdev);
1428
1429 /* fire a link status change interrupt to start the watchdog */
1430 ew32(ICS, E1000_ICS_LSC);
1431
1432 return E1000_SUCCESS;
1433
1434err_req_irq:
1435 e1000_power_down_phy(adapter);
1436 e1000_free_all_rx_resources(adapter);
1437err_setup_rx:
1438 e1000_free_all_tx_resources(adapter);
1439err_setup_tx:
1440 e1000_reset(adapter);
1441
1442 return err;
1443}
1444
1445/**
1446 * e1000_close - Disables a network interface
1447 * @netdev: network interface device structure
1448 *
1449 * Returns 0, this is not allowed to fail
1450 *
1451 * The close entry point is called when an interface is de-activated
1452 * by the OS. The hardware is still under the drivers control, but
1453 * needs to be disabled. A global MAC reset is issued to stop the
1454 * hardware, and all transmit and receive resources are freed.
1455 **/
1456int e1000_close(struct net_device *netdev)
1457{
1458 struct e1000_adapter *adapter = netdev_priv(netdev);
1459 struct e1000_hw *hw = &adapter->hw;
1460 int count = E1000_CHECK_RESET_COUNT;
1461
1462 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1463 usleep_range(10000, 20000);
1464
1465 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1466 e1000_down(adapter);
1467 e1000_power_down_phy(adapter);
1468 e1000_free_irq(adapter);
1469
1470 e1000_free_all_tx_resources(adapter);
1471 e1000_free_all_rx_resources(adapter);
1472
1473 /* kill manageability vlan ID if supported, but not if a vlan with
1474 * the same ID is registered on the host OS (let 8021q kill it)
1475 */
1476 if ((hw->mng_cookie.status &
1477 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1478 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1479 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1480 adapter->mng_vlan_id);
1481 }
1482
1483 return 0;
1484}
1485
1486/**
1487 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1488 * @adapter: address of board private structure
1489 * @start: address of beginning of memory
1490 * @len: length of memory
1491 **/
1492static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1493 unsigned long len)
1494{
1495 struct e1000_hw *hw = &adapter->hw;
1496 unsigned long begin = (unsigned long)start;
1497 unsigned long end = begin + len;
1498
1499 /* First rev 82545 and 82546 need to not allow any memory
1500 * write location to cross 64k boundary due to errata 23
1501 */
1502 if (hw->mac_type == e1000_82545 ||
1503 hw->mac_type == e1000_ce4100 ||
1504 hw->mac_type == e1000_82546) {
1505 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1506 }
1507
1508 return true;
1509}
1510
1511/**
1512 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1513 * @adapter: board private structure
1514 * @txdr: tx descriptor ring (for a specific queue) to setup
1515 *
1516 * Return 0 on success, negative on failure
1517 **/
1518static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1519 struct e1000_tx_ring *txdr)
1520{
1521 struct pci_dev *pdev = adapter->pdev;
1522 int size;
1523
1524 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1525 txdr->buffer_info = vzalloc(size);
1526 if (!txdr->buffer_info)
1527 return -ENOMEM;
1528
1529 /* round up to nearest 4K */
1530
1531 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1532 txdr->size = ALIGN(txdr->size, 4096);
1533
1534 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1535 GFP_KERNEL);
1536 if (!txdr->desc) {
1537setup_tx_desc_die:
1538 vfree(txdr->buffer_info);
1539 return -ENOMEM;
1540 }
1541
1542 /* Fix for errata 23, can't cross 64kB boundary */
1543 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1544 void *olddesc = txdr->desc;
1545 dma_addr_t olddma = txdr->dma;
1546 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1547 txdr->size, txdr->desc);
1548 /* Try again, without freeing the previous */
1549 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1550 &txdr->dma, GFP_KERNEL);
1551 /* Failed allocation, critical failure */
1552 if (!txdr->desc) {
1553 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1554 olddma);
1555 goto setup_tx_desc_die;
1556 }
1557
1558 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1559 /* give up */
1560 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1561 txdr->dma);
1562 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1563 olddma);
1564 e_err(probe, "Unable to allocate aligned memory "
1565 "for the transmit descriptor ring\n");
1566 vfree(txdr->buffer_info);
1567 return -ENOMEM;
1568 } else {
1569 /* Free old allocation, new allocation was successful */
1570 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1571 olddma);
1572 }
1573 }
1574 memset(txdr->desc, 0, txdr->size);
1575
1576 txdr->next_to_use = 0;
1577 txdr->next_to_clean = 0;
1578
1579 return 0;
1580}
1581
1582/**
1583 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1584 * (Descriptors) for all queues
1585 * @adapter: board private structure
1586 *
1587 * Return 0 on success, negative on failure
1588 **/
1589int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1590{
1591 int i, err = 0;
1592
1593 for (i = 0; i < adapter->num_tx_queues; i++) {
1594 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1595 if (err) {
1596 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1597 for (i-- ; i >= 0; i--)
1598 e1000_free_tx_resources(adapter,
1599 &adapter->tx_ring[i]);
1600 break;
1601 }
1602 }
1603
1604 return err;
1605}
1606
1607/**
1608 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1609 * @adapter: board private structure
1610 *
1611 * Configure the Tx unit of the MAC after a reset.
1612 **/
1613static void e1000_configure_tx(struct e1000_adapter *adapter)
1614{
1615 u64 tdba;
1616 struct e1000_hw *hw = &adapter->hw;
1617 u32 tdlen, tctl, tipg;
1618 u32 ipgr1, ipgr2;
1619
1620 /* Setup the HW Tx Head and Tail descriptor pointers */
1621
1622 switch (adapter->num_tx_queues) {
1623 case 1:
1624 default:
1625 tdba = adapter->tx_ring[0].dma;
1626 tdlen = adapter->tx_ring[0].count *
1627 sizeof(struct e1000_tx_desc);
1628 ew32(TDLEN, tdlen);
1629 ew32(TDBAH, (tdba >> 32));
1630 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1631 ew32(TDT, 0);
1632 ew32(TDH, 0);
1633 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1634 E1000_TDH : E1000_82542_TDH);
1635 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1636 E1000_TDT : E1000_82542_TDT);
1637 break;
1638 }
1639
1640 /* Set the default values for the Tx Inter Packet Gap timer */
1641 if ((hw->media_type == e1000_media_type_fiber ||
1642 hw->media_type == e1000_media_type_internal_serdes))
1643 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1644 else
1645 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1646
1647 switch (hw->mac_type) {
1648 case e1000_82542_rev2_0:
1649 case e1000_82542_rev2_1:
1650 tipg = DEFAULT_82542_TIPG_IPGT;
1651 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1652 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1653 break;
1654 default:
1655 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1656 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1657 break;
1658 }
1659 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1660 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1661 ew32(TIPG, tipg);
1662
1663 /* Set the Tx Interrupt Delay register */
1664
1665 ew32(TIDV, adapter->tx_int_delay);
1666 if (hw->mac_type >= e1000_82540)
1667 ew32(TADV, adapter->tx_abs_int_delay);
1668
1669 /* Program the Transmit Control Register */
1670
1671 tctl = er32(TCTL);
1672 tctl &= ~E1000_TCTL_CT;
1673 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1674 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1675
1676 e1000_config_collision_dist(hw);
1677
1678 /* Setup Transmit Descriptor Settings for eop descriptor */
1679 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1680
1681 /* only set IDE if we are delaying interrupts using the timers */
1682 if (adapter->tx_int_delay)
1683 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1684
1685 if (hw->mac_type < e1000_82543)
1686 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1687 else
1688 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1689
1690 /* Cache if we're 82544 running in PCI-X because we'll
1691 * need this to apply a workaround later in the send path.
1692 */
1693 if (hw->mac_type == e1000_82544 &&
1694 hw->bus_type == e1000_bus_type_pcix)
1695 adapter->pcix_82544 = true;
1696
1697 ew32(TCTL, tctl);
1698
1699}
1700
1701/**
1702 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1703 * @adapter: board private structure
1704 * @rxdr: rx descriptor ring (for a specific queue) to setup
1705 *
1706 * Returns 0 on success, negative on failure
1707 **/
1708static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1709 struct e1000_rx_ring *rxdr)
1710{
1711 struct pci_dev *pdev = adapter->pdev;
1712 int size, desc_len;
1713
1714 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1715 rxdr->buffer_info = vzalloc(size);
1716 if (!rxdr->buffer_info)
1717 return -ENOMEM;
1718
1719 desc_len = sizeof(struct e1000_rx_desc);
1720
1721 /* Round up to nearest 4K */
1722
1723 rxdr->size = rxdr->count * desc_len;
1724 rxdr->size = ALIGN(rxdr->size, 4096);
1725
1726 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1727 GFP_KERNEL);
1728 if (!rxdr->desc) {
1729setup_rx_desc_die:
1730 vfree(rxdr->buffer_info);
1731 return -ENOMEM;
1732 }
1733
1734 /* Fix for errata 23, can't cross 64kB boundary */
1735 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1736 void *olddesc = rxdr->desc;
1737 dma_addr_t olddma = rxdr->dma;
1738 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1739 rxdr->size, rxdr->desc);
1740 /* Try again, without freeing the previous */
1741 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1742 &rxdr->dma, GFP_KERNEL);
1743 /* Failed allocation, critical failure */
1744 if (!rxdr->desc) {
1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746 olddma);
1747 goto setup_rx_desc_die;
1748 }
1749
1750 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1751 /* give up */
1752 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1753 rxdr->dma);
1754 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1755 olddma);
1756 e_err(probe, "Unable to allocate aligned memory for "
1757 "the Rx descriptor ring\n");
1758 goto setup_rx_desc_die;
1759 } else {
1760 /* Free old allocation, new allocation was successful */
1761 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1762 olddma);
1763 }
1764 }
1765 memset(rxdr->desc, 0, rxdr->size);
1766
1767 rxdr->next_to_clean = 0;
1768 rxdr->next_to_use = 0;
1769 rxdr->rx_skb_top = NULL;
1770
1771 return 0;
1772}
1773
1774/**
1775 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1776 * (Descriptors) for all queues
1777 * @adapter: board private structure
1778 *
1779 * Return 0 on success, negative on failure
1780 **/
1781int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1782{
1783 int i, err = 0;
1784
1785 for (i = 0; i < adapter->num_rx_queues; i++) {
1786 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1787 if (err) {
1788 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1789 for (i-- ; i >= 0; i--)
1790 e1000_free_rx_resources(adapter,
1791 &adapter->rx_ring[i]);
1792 break;
1793 }
1794 }
1795
1796 return err;
1797}
1798
1799/**
1800 * e1000_setup_rctl - configure the receive control registers
1801 * @adapter: Board private structure
1802 **/
1803static void e1000_setup_rctl(struct e1000_adapter *adapter)
1804{
1805 struct e1000_hw *hw = &adapter->hw;
1806 u32 rctl;
1807
1808 rctl = er32(RCTL);
1809
1810 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1811
1812 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1813 E1000_RCTL_RDMTS_HALF |
1814 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1815
1816 if (hw->tbi_compatibility_on == 1)
1817 rctl |= E1000_RCTL_SBP;
1818 else
1819 rctl &= ~E1000_RCTL_SBP;
1820
1821 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1822 rctl &= ~E1000_RCTL_LPE;
1823 else
1824 rctl |= E1000_RCTL_LPE;
1825
1826 /* Setup buffer sizes */
1827 rctl &= ~E1000_RCTL_SZ_4096;
1828 rctl |= E1000_RCTL_BSEX;
1829 switch (adapter->rx_buffer_len) {
1830 case E1000_RXBUFFER_2048:
1831 default:
1832 rctl |= E1000_RCTL_SZ_2048;
1833 rctl &= ~E1000_RCTL_BSEX;
1834 break;
1835 case E1000_RXBUFFER_4096:
1836 rctl |= E1000_RCTL_SZ_4096;
1837 break;
1838 case E1000_RXBUFFER_8192:
1839 rctl |= E1000_RCTL_SZ_8192;
1840 break;
1841 case E1000_RXBUFFER_16384:
1842 rctl |= E1000_RCTL_SZ_16384;
1843 break;
1844 }
1845
1846 /* This is useful for sniffing bad packets. */
1847 if (adapter->netdev->features & NETIF_F_RXALL) {
1848 /* UPE and MPE will be handled by normal PROMISC logic
1849 * in e1000e_set_rx_mode
1850 */
1851 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1852 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1853 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1854
1855 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1856 E1000_RCTL_DPF | /* Allow filtered pause */
1857 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1858 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1859 * and that breaks VLANs.
1860 */
1861 }
1862
1863 ew32(RCTL, rctl);
1864}
1865
1866/**
1867 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1868 * @adapter: board private structure
1869 *
1870 * Configure the Rx unit of the MAC after a reset.
1871 **/
1872static void e1000_configure_rx(struct e1000_adapter *adapter)
1873{
1874 u64 rdba;
1875 struct e1000_hw *hw = &adapter->hw;
1876 u32 rdlen, rctl, rxcsum;
1877
1878 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1879 rdlen = adapter->rx_ring[0].count *
1880 sizeof(struct e1000_rx_desc);
1881 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1882 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1883 } else {
1884 rdlen = adapter->rx_ring[0].count *
1885 sizeof(struct e1000_rx_desc);
1886 adapter->clean_rx = e1000_clean_rx_irq;
1887 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1888 }
1889
1890 /* disable receives while setting up the descriptors */
1891 rctl = er32(RCTL);
1892 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1893
1894 /* set the Receive Delay Timer Register */
1895 ew32(RDTR, adapter->rx_int_delay);
1896
1897 if (hw->mac_type >= e1000_82540) {
1898 ew32(RADV, adapter->rx_abs_int_delay);
1899 if (adapter->itr_setting != 0)
1900 ew32(ITR, 1000000000 / (adapter->itr * 256));
1901 }
1902
1903 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1904 * the Base and Length of the Rx Descriptor Ring
1905 */
1906 switch (adapter->num_rx_queues) {
1907 case 1:
1908 default:
1909 rdba = adapter->rx_ring[0].dma;
1910 ew32(RDLEN, rdlen);
1911 ew32(RDBAH, (rdba >> 32));
1912 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1913 ew32(RDT, 0);
1914 ew32(RDH, 0);
1915 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1916 E1000_RDH : E1000_82542_RDH);
1917 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1918 E1000_RDT : E1000_82542_RDT);
1919 break;
1920 }
1921
1922 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1923 if (hw->mac_type >= e1000_82543) {
1924 rxcsum = er32(RXCSUM);
1925 if (adapter->rx_csum)
1926 rxcsum |= E1000_RXCSUM_TUOFL;
1927 else
1928 /* don't need to clear IPPCSE as it defaults to 0 */
1929 rxcsum &= ~E1000_RXCSUM_TUOFL;
1930 ew32(RXCSUM, rxcsum);
1931 }
1932
1933 /* Enable Receives */
1934 ew32(RCTL, rctl | E1000_RCTL_EN);
1935}
1936
1937/**
1938 * e1000_free_tx_resources - Free Tx Resources per Queue
1939 * @adapter: board private structure
1940 * @tx_ring: Tx descriptor ring for a specific queue
1941 *
1942 * Free all transmit software resources
1943 **/
1944static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1945 struct e1000_tx_ring *tx_ring)
1946{
1947 struct pci_dev *pdev = adapter->pdev;
1948
1949 e1000_clean_tx_ring(adapter, tx_ring);
1950
1951 vfree(tx_ring->buffer_info);
1952 tx_ring->buffer_info = NULL;
1953
1954 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1955 tx_ring->dma);
1956
1957 tx_ring->desc = NULL;
1958}
1959
1960/**
1961 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1962 * @adapter: board private structure
1963 *
1964 * Free all transmit software resources
1965 **/
1966void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1967{
1968 int i;
1969
1970 for (i = 0; i < adapter->num_tx_queues; i++)
1971 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1972}
1973
1974static void
1975e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1976 struct e1000_tx_buffer *buffer_info)
1977{
1978 if (buffer_info->dma) {
1979 if (buffer_info->mapped_as_page)
1980 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1981 buffer_info->length, DMA_TO_DEVICE);
1982 else
1983 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1984 buffer_info->length,
1985 DMA_TO_DEVICE);
1986 buffer_info->dma = 0;
1987 }
1988 if (buffer_info->skb) {
1989 dev_kfree_skb_any(buffer_info->skb);
1990 buffer_info->skb = NULL;
1991 }
1992 buffer_info->time_stamp = 0;
1993 /* buffer_info must be completely set up in the transmit path */
1994}
1995
1996/**
1997 * e1000_clean_tx_ring - Free Tx Buffers
1998 * @adapter: board private structure
1999 * @tx_ring: ring to be cleaned
2000 **/
2001static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2002 struct e1000_tx_ring *tx_ring)
2003{
2004 struct e1000_hw *hw = &adapter->hw;
2005 struct e1000_tx_buffer *buffer_info;
2006 unsigned long size;
2007 unsigned int i;
2008
2009 /* Free all the Tx ring sk_buffs */
2010
2011 for (i = 0; i < tx_ring->count; i++) {
2012 buffer_info = &tx_ring->buffer_info[i];
2013 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2014 }
2015
2016 netdev_reset_queue(adapter->netdev);
2017 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2018 memset(tx_ring->buffer_info, 0, size);
2019
2020 /* Zero out the descriptor ring */
2021
2022 memset(tx_ring->desc, 0, tx_ring->size);
2023
2024 tx_ring->next_to_use = 0;
2025 tx_ring->next_to_clean = 0;
2026 tx_ring->last_tx_tso = false;
2027
2028 writel(0, hw->hw_addr + tx_ring->tdh);
2029 writel(0, hw->hw_addr + tx_ring->tdt);
2030}
2031
2032/**
2033 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2034 * @adapter: board private structure
2035 **/
2036static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2037{
2038 int i;
2039
2040 for (i = 0; i < adapter->num_tx_queues; i++)
2041 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2042}
2043
2044/**
2045 * e1000_free_rx_resources - Free Rx Resources
2046 * @adapter: board private structure
2047 * @rx_ring: ring to clean the resources from
2048 *
2049 * Free all receive software resources
2050 **/
2051static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2052 struct e1000_rx_ring *rx_ring)
2053{
2054 struct pci_dev *pdev = adapter->pdev;
2055
2056 e1000_clean_rx_ring(adapter, rx_ring);
2057
2058 vfree(rx_ring->buffer_info);
2059 rx_ring->buffer_info = NULL;
2060
2061 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2062 rx_ring->dma);
2063
2064 rx_ring->desc = NULL;
2065}
2066
2067/**
2068 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2069 * @adapter: board private structure
2070 *
2071 * Free all receive software resources
2072 **/
2073void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2074{
2075 int i;
2076
2077 for (i = 0; i < adapter->num_rx_queues; i++)
2078 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2079}
2080
2081#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2082static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2083{
2084 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2085 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2086}
2087
2088static void *e1000_alloc_frag(const struct e1000_adapter *a)
2089{
2090 unsigned int len = e1000_frag_len(a);
2091 u8 *data = netdev_alloc_frag(len);
2092
2093 if (likely(data))
2094 data += E1000_HEADROOM;
2095 return data;
2096}
2097
2098/**
2099 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2100 * @adapter: board private structure
2101 * @rx_ring: ring to free buffers from
2102 **/
2103static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2104 struct e1000_rx_ring *rx_ring)
2105{
2106 struct e1000_hw *hw = &adapter->hw;
2107 struct e1000_rx_buffer *buffer_info;
2108 struct pci_dev *pdev = adapter->pdev;
2109 unsigned long size;
2110 unsigned int i;
2111
2112 /* Free all the Rx netfrags */
2113 for (i = 0; i < rx_ring->count; i++) {
2114 buffer_info = &rx_ring->buffer_info[i];
2115 if (adapter->clean_rx == e1000_clean_rx_irq) {
2116 if (buffer_info->dma)
2117 dma_unmap_single(&pdev->dev, buffer_info->dma,
2118 adapter->rx_buffer_len,
2119 DMA_FROM_DEVICE);
2120 if (buffer_info->rxbuf.data) {
2121 skb_free_frag(buffer_info->rxbuf.data);
2122 buffer_info->rxbuf.data = NULL;
2123 }
2124 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2125 if (buffer_info->dma)
2126 dma_unmap_page(&pdev->dev, buffer_info->dma,
2127 adapter->rx_buffer_len,
2128 DMA_FROM_DEVICE);
2129 if (buffer_info->rxbuf.page) {
2130 put_page(buffer_info->rxbuf.page);
2131 buffer_info->rxbuf.page = NULL;
2132 }
2133 }
2134
2135 buffer_info->dma = 0;
2136 }
2137
2138 /* there also may be some cached data from a chained receive */
2139 napi_free_frags(&adapter->napi);
2140 rx_ring->rx_skb_top = NULL;
2141
2142 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2143 memset(rx_ring->buffer_info, 0, size);
2144
2145 /* Zero out the descriptor ring */
2146 memset(rx_ring->desc, 0, rx_ring->size);
2147
2148 rx_ring->next_to_clean = 0;
2149 rx_ring->next_to_use = 0;
2150
2151 writel(0, hw->hw_addr + rx_ring->rdh);
2152 writel(0, hw->hw_addr + rx_ring->rdt);
2153}
2154
2155/**
2156 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2157 * @adapter: board private structure
2158 **/
2159static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2160{
2161 int i;
2162
2163 for (i = 0; i < adapter->num_rx_queues; i++)
2164 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2165}
2166
2167/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2168 * and memory write and invalidate disabled for certain operations
2169 */
2170static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2171{
2172 struct e1000_hw *hw = &adapter->hw;
2173 struct net_device *netdev = adapter->netdev;
2174 u32 rctl;
2175
2176 e1000_pci_clear_mwi(hw);
2177
2178 rctl = er32(RCTL);
2179 rctl |= E1000_RCTL_RST;
2180 ew32(RCTL, rctl);
2181 E1000_WRITE_FLUSH();
2182 mdelay(5);
2183
2184 if (netif_running(netdev))
2185 e1000_clean_all_rx_rings(adapter);
2186}
2187
2188static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2189{
2190 struct e1000_hw *hw = &adapter->hw;
2191 struct net_device *netdev = adapter->netdev;
2192 u32 rctl;
2193
2194 rctl = er32(RCTL);
2195 rctl &= ~E1000_RCTL_RST;
2196 ew32(RCTL, rctl);
2197 E1000_WRITE_FLUSH();
2198 mdelay(5);
2199
2200 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2201 e1000_pci_set_mwi(hw);
2202
2203 if (netif_running(netdev)) {
2204 /* No need to loop, because 82542 supports only 1 queue */
2205 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2206 e1000_configure_rx(adapter);
2207 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2208 }
2209}
2210
2211/**
2212 * e1000_set_mac - Change the Ethernet Address of the NIC
2213 * @netdev: network interface device structure
2214 * @p: pointer to an address structure
2215 *
2216 * Returns 0 on success, negative on failure
2217 **/
2218static int e1000_set_mac(struct net_device *netdev, void *p)
2219{
2220 struct e1000_adapter *adapter = netdev_priv(netdev);
2221 struct e1000_hw *hw = &adapter->hw;
2222 struct sockaddr *addr = p;
2223
2224 if (!is_valid_ether_addr(addr->sa_data))
2225 return -EADDRNOTAVAIL;
2226
2227 /* 82542 2.0 needs to be in reset to write receive address registers */
2228
2229 if (hw->mac_type == e1000_82542_rev2_0)
2230 e1000_enter_82542_rst(adapter);
2231
2232 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2233 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2234
2235 e1000_rar_set(hw, hw->mac_addr, 0);
2236
2237 if (hw->mac_type == e1000_82542_rev2_0)
2238 e1000_leave_82542_rst(adapter);
2239
2240 return 0;
2241}
2242
2243/**
2244 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2245 * @netdev: network interface device structure
2246 *
2247 * The set_rx_mode entry point is called whenever the unicast or multicast
2248 * address lists or the network interface flags are updated. This routine is
2249 * responsible for configuring the hardware for proper unicast, multicast,
2250 * promiscuous mode, and all-multi behavior.
2251 **/
2252static void e1000_set_rx_mode(struct net_device *netdev)
2253{
2254 struct e1000_adapter *adapter = netdev_priv(netdev);
2255 struct e1000_hw *hw = &adapter->hw;
2256 struct netdev_hw_addr *ha;
2257 bool use_uc = false;
2258 u32 rctl;
2259 u32 hash_value;
2260 int i, rar_entries = E1000_RAR_ENTRIES;
2261 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2262 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2263
2264 if (!mcarray)
2265 return;
2266
2267 /* Check for Promiscuous and All Multicast modes */
2268
2269 rctl = er32(RCTL);
2270
2271 if (netdev->flags & IFF_PROMISC) {
2272 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2273 rctl &= ~E1000_RCTL_VFE;
2274 } else {
2275 if (netdev->flags & IFF_ALLMULTI)
2276 rctl |= E1000_RCTL_MPE;
2277 else
2278 rctl &= ~E1000_RCTL_MPE;
2279 /* Enable VLAN filter if there is a VLAN */
2280 if (e1000_vlan_used(adapter))
2281 rctl |= E1000_RCTL_VFE;
2282 }
2283
2284 if (netdev_uc_count(netdev) > rar_entries - 1) {
2285 rctl |= E1000_RCTL_UPE;
2286 } else if (!(netdev->flags & IFF_PROMISC)) {
2287 rctl &= ~E1000_RCTL_UPE;
2288 use_uc = true;
2289 }
2290
2291 ew32(RCTL, rctl);
2292
2293 /* 82542 2.0 needs to be in reset to write receive address registers */
2294
2295 if (hw->mac_type == e1000_82542_rev2_0)
2296 e1000_enter_82542_rst(adapter);
2297
2298 /* load the first 14 addresses into the exact filters 1-14. Unicast
2299 * addresses take precedence to avoid disabling unicast filtering
2300 * when possible.
2301 *
2302 * RAR 0 is used for the station MAC address
2303 * if there are not 14 addresses, go ahead and clear the filters
2304 */
2305 i = 1;
2306 if (use_uc)
2307 netdev_for_each_uc_addr(ha, netdev) {
2308 if (i == rar_entries)
2309 break;
2310 e1000_rar_set(hw, ha->addr, i++);
2311 }
2312
2313 netdev_for_each_mc_addr(ha, netdev) {
2314 if (i == rar_entries) {
2315 /* load any remaining addresses into the hash table */
2316 u32 hash_reg, hash_bit, mta;
2317 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2318 hash_reg = (hash_value >> 5) & 0x7F;
2319 hash_bit = hash_value & 0x1F;
2320 mta = (1 << hash_bit);
2321 mcarray[hash_reg] |= mta;
2322 } else {
2323 e1000_rar_set(hw, ha->addr, i++);
2324 }
2325 }
2326
2327 for (; i < rar_entries; i++) {
2328 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2329 E1000_WRITE_FLUSH();
2330 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2331 E1000_WRITE_FLUSH();
2332 }
2333
2334 /* write the hash table completely, write from bottom to avoid
2335 * both stupid write combining chipsets, and flushing each write
2336 */
2337 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2338 /* If we are on an 82544 has an errata where writing odd
2339 * offsets overwrites the previous even offset, but writing
2340 * backwards over the range solves the issue by always
2341 * writing the odd offset first
2342 */
2343 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2344 }
2345 E1000_WRITE_FLUSH();
2346
2347 if (hw->mac_type == e1000_82542_rev2_0)
2348 e1000_leave_82542_rst(adapter);
2349
2350 kfree(mcarray);
2351}
2352
2353/**
2354 * e1000_update_phy_info_task - get phy info
2355 * @work: work struct contained inside adapter struct
2356 *
2357 * Need to wait a few seconds after link up to get diagnostic information from
2358 * the phy
2359 */
2360static void e1000_update_phy_info_task(struct work_struct *work)
2361{
2362 struct e1000_adapter *adapter = container_of(work,
2363 struct e1000_adapter,
2364 phy_info_task.work);
2365
2366 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2367}
2368
2369/**
2370 * e1000_82547_tx_fifo_stall_task - task to complete work
2371 * @work: work struct contained inside adapter struct
2372 **/
2373static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2374{
2375 struct e1000_adapter *adapter = container_of(work,
2376 struct e1000_adapter,
2377 fifo_stall_task.work);
2378 struct e1000_hw *hw = &adapter->hw;
2379 struct net_device *netdev = adapter->netdev;
2380 u32 tctl;
2381
2382 if (atomic_read(&adapter->tx_fifo_stall)) {
2383 if ((er32(TDT) == er32(TDH)) &&
2384 (er32(TDFT) == er32(TDFH)) &&
2385 (er32(TDFTS) == er32(TDFHS))) {
2386 tctl = er32(TCTL);
2387 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2388 ew32(TDFT, adapter->tx_head_addr);
2389 ew32(TDFH, adapter->tx_head_addr);
2390 ew32(TDFTS, adapter->tx_head_addr);
2391 ew32(TDFHS, adapter->tx_head_addr);
2392 ew32(TCTL, tctl);
2393 E1000_WRITE_FLUSH();
2394
2395 adapter->tx_fifo_head = 0;
2396 atomic_set(&adapter->tx_fifo_stall, 0);
2397 netif_wake_queue(netdev);
2398 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2399 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2400 }
2401 }
2402}
2403
2404bool e1000_has_link(struct e1000_adapter *adapter)
2405{
2406 struct e1000_hw *hw = &adapter->hw;
2407 bool link_active = false;
2408
2409 /* get_link_status is set on LSC (link status) interrupt or rx
2410 * sequence error interrupt (except on intel ce4100).
2411 * get_link_status will stay false until the
2412 * e1000_check_for_link establishes link for copper adapters
2413 * ONLY
2414 */
2415 switch (hw->media_type) {
2416 case e1000_media_type_copper:
2417 if (hw->mac_type == e1000_ce4100)
2418 hw->get_link_status = 1;
2419 if (hw->get_link_status) {
2420 e1000_check_for_link(hw);
2421 link_active = !hw->get_link_status;
2422 } else {
2423 link_active = true;
2424 }
2425 break;
2426 case e1000_media_type_fiber:
2427 e1000_check_for_link(hw);
2428 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2429 break;
2430 case e1000_media_type_internal_serdes:
2431 e1000_check_for_link(hw);
2432 link_active = hw->serdes_has_link;
2433 break;
2434 default:
2435 break;
2436 }
2437
2438 return link_active;
2439}
2440
2441/**
2442 * e1000_watchdog - work function
2443 * @work: work struct contained inside adapter struct
2444 **/
2445static void e1000_watchdog(struct work_struct *work)
2446{
2447 struct e1000_adapter *adapter = container_of(work,
2448 struct e1000_adapter,
2449 watchdog_task.work);
2450 struct e1000_hw *hw = &adapter->hw;
2451 struct net_device *netdev = adapter->netdev;
2452 struct e1000_tx_ring *txdr = adapter->tx_ring;
2453 u32 link, tctl;
2454
2455 link = e1000_has_link(adapter);
2456 if ((netif_carrier_ok(netdev)) && link)
2457 goto link_up;
2458
2459 if (link) {
2460 if (!netif_carrier_ok(netdev)) {
2461 u32 ctrl;
2462 bool txb2b = true;
2463 /* update snapshot of PHY registers on LSC */
2464 e1000_get_speed_and_duplex(hw,
2465 &adapter->link_speed,
2466 &adapter->link_duplex);
2467
2468 ctrl = er32(CTRL);
2469 pr_info("%s NIC Link is Up %d Mbps %s, "
2470 "Flow Control: %s\n",
2471 netdev->name,
2472 adapter->link_speed,
2473 adapter->link_duplex == FULL_DUPLEX ?
2474 "Full Duplex" : "Half Duplex",
2475 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2476 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2477 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2478 E1000_CTRL_TFCE) ? "TX" : "None")));
2479
2480 /* adjust timeout factor according to speed/duplex */
2481 adapter->tx_timeout_factor = 1;
2482 switch (adapter->link_speed) {
2483 case SPEED_10:
2484 txb2b = false;
2485 adapter->tx_timeout_factor = 16;
2486 break;
2487 case SPEED_100:
2488 txb2b = false;
2489 /* maybe add some timeout factor ? */
2490 break;
2491 }
2492
2493 /* enable transmits in the hardware */
2494 tctl = er32(TCTL);
2495 tctl |= E1000_TCTL_EN;
2496 ew32(TCTL, tctl);
2497
2498 netif_carrier_on(netdev);
2499 if (!test_bit(__E1000_DOWN, &adapter->flags))
2500 schedule_delayed_work(&adapter->phy_info_task,
2501 2 * HZ);
2502 adapter->smartspeed = 0;
2503 }
2504 } else {
2505 if (netif_carrier_ok(netdev)) {
2506 adapter->link_speed = 0;
2507 adapter->link_duplex = 0;
2508 pr_info("%s NIC Link is Down\n",
2509 netdev->name);
2510 netif_carrier_off(netdev);
2511
2512 if (!test_bit(__E1000_DOWN, &adapter->flags))
2513 schedule_delayed_work(&adapter->phy_info_task,
2514 2 * HZ);
2515 }
2516
2517 e1000_smartspeed(adapter);
2518 }
2519
2520link_up:
2521 e1000_update_stats(adapter);
2522
2523 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2524 adapter->tpt_old = adapter->stats.tpt;
2525 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2526 adapter->colc_old = adapter->stats.colc;
2527
2528 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2529 adapter->gorcl_old = adapter->stats.gorcl;
2530 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2531 adapter->gotcl_old = adapter->stats.gotcl;
2532
2533 e1000_update_adaptive(hw);
2534
2535 if (!netif_carrier_ok(netdev)) {
2536 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2537 /* We've lost link, so the controller stops DMA,
2538 * but we've got queued Tx work that's never going
2539 * to get done, so reset controller to flush Tx.
2540 * (Do the reset outside of interrupt context).
2541 */
2542 adapter->tx_timeout_count++;
2543 schedule_work(&adapter->reset_task);
2544 /* exit immediately since reset is imminent */
2545 return;
2546 }
2547 }
2548
2549 /* Simple mode for Interrupt Throttle Rate (ITR) */
2550 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2551 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2552 * Total asymmetrical Tx or Rx gets ITR=8000;
2553 * everyone else is between 2000-8000.
2554 */
2555 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2556 u32 dif = (adapter->gotcl > adapter->gorcl ?
2557 adapter->gotcl - adapter->gorcl :
2558 adapter->gorcl - adapter->gotcl) / 10000;
2559 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2560
2561 ew32(ITR, 1000000000 / (itr * 256));
2562 }
2563
2564 /* Cause software interrupt to ensure rx ring is cleaned */
2565 ew32(ICS, E1000_ICS_RXDMT0);
2566
2567 /* Force detection of hung controller every watchdog period */
2568 adapter->detect_tx_hung = true;
2569
2570 /* Reschedule the task */
2571 if (!test_bit(__E1000_DOWN, &adapter->flags))
2572 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2573}
2574
2575enum latency_range {
2576 lowest_latency = 0,
2577 low_latency = 1,
2578 bulk_latency = 2,
2579 latency_invalid = 255
2580};
2581
2582/**
2583 * e1000_update_itr - update the dynamic ITR value based on statistics
2584 * @adapter: pointer to adapter
2585 * @itr_setting: current adapter->itr
2586 * @packets: the number of packets during this measurement interval
2587 * @bytes: the number of bytes during this measurement interval
2588 *
2589 * Stores a new ITR value based on packets and byte
2590 * counts during the last interrupt. The advantage of per interrupt
2591 * computation is faster updates and more accurate ITR for the current
2592 * traffic pattern. Constants in this function were computed
2593 * based on theoretical maximum wire speed and thresholds were set based
2594 * on testing data as well as attempting to minimize response time
2595 * while increasing bulk throughput.
2596 * this functionality is controlled by the InterruptThrottleRate module
2597 * parameter (see e1000_param.c)
2598 **/
2599static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2600 u16 itr_setting, int packets, int bytes)
2601{
2602 unsigned int retval = itr_setting;
2603 struct e1000_hw *hw = &adapter->hw;
2604
2605 if (unlikely(hw->mac_type < e1000_82540))
2606 goto update_itr_done;
2607
2608 if (packets == 0)
2609 goto update_itr_done;
2610
2611 switch (itr_setting) {
2612 case lowest_latency:
2613 /* jumbo frames get bulk treatment*/
2614 if (bytes/packets > 8000)
2615 retval = bulk_latency;
2616 else if ((packets < 5) && (bytes > 512))
2617 retval = low_latency;
2618 break;
2619 case low_latency: /* 50 usec aka 20000 ints/s */
2620 if (bytes > 10000) {
2621 /* jumbo frames need bulk latency setting */
2622 if (bytes/packets > 8000)
2623 retval = bulk_latency;
2624 else if ((packets < 10) || ((bytes/packets) > 1200))
2625 retval = bulk_latency;
2626 else if ((packets > 35))
2627 retval = lowest_latency;
2628 } else if (bytes/packets > 2000)
2629 retval = bulk_latency;
2630 else if (packets <= 2 && bytes < 512)
2631 retval = lowest_latency;
2632 break;
2633 case bulk_latency: /* 250 usec aka 4000 ints/s */
2634 if (bytes > 25000) {
2635 if (packets > 35)
2636 retval = low_latency;
2637 } else if (bytes < 6000) {
2638 retval = low_latency;
2639 }
2640 break;
2641 }
2642
2643update_itr_done:
2644 return retval;
2645}
2646
2647static void e1000_set_itr(struct e1000_adapter *adapter)
2648{
2649 struct e1000_hw *hw = &adapter->hw;
2650 u16 current_itr;
2651 u32 new_itr = adapter->itr;
2652
2653 if (unlikely(hw->mac_type < e1000_82540))
2654 return;
2655
2656 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2657 if (unlikely(adapter->link_speed != SPEED_1000)) {
2658 current_itr = 0;
2659 new_itr = 4000;
2660 goto set_itr_now;
2661 }
2662
2663 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2664 adapter->total_tx_packets,
2665 adapter->total_tx_bytes);
2666 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2667 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2668 adapter->tx_itr = low_latency;
2669
2670 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2671 adapter->total_rx_packets,
2672 adapter->total_rx_bytes);
2673 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2674 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2675 adapter->rx_itr = low_latency;
2676
2677 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2678
2679 switch (current_itr) {
2680 /* counts and packets in update_itr are dependent on these numbers */
2681 case lowest_latency:
2682 new_itr = 70000;
2683 break;
2684 case low_latency:
2685 new_itr = 20000; /* aka hwitr = ~200 */
2686 break;
2687 case bulk_latency:
2688 new_itr = 4000;
2689 break;
2690 default:
2691 break;
2692 }
2693
2694set_itr_now:
2695 if (new_itr != adapter->itr) {
2696 /* this attempts to bias the interrupt rate towards Bulk
2697 * by adding intermediate steps when interrupt rate is
2698 * increasing
2699 */
2700 new_itr = new_itr > adapter->itr ?
2701 min(adapter->itr + (new_itr >> 2), new_itr) :
2702 new_itr;
2703 adapter->itr = new_itr;
2704 ew32(ITR, 1000000000 / (new_itr * 256));
2705 }
2706}
2707
2708#define E1000_TX_FLAGS_CSUM 0x00000001
2709#define E1000_TX_FLAGS_VLAN 0x00000002
2710#define E1000_TX_FLAGS_TSO 0x00000004
2711#define E1000_TX_FLAGS_IPV4 0x00000008
2712#define E1000_TX_FLAGS_NO_FCS 0x00000010
2713#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2714#define E1000_TX_FLAGS_VLAN_SHIFT 16
2715
2716static int e1000_tso(struct e1000_adapter *adapter,
2717 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2718 __be16 protocol)
2719{
2720 struct e1000_context_desc *context_desc;
2721 struct e1000_tx_buffer *buffer_info;
2722 unsigned int i;
2723 u32 cmd_length = 0;
2724 u16 ipcse = 0, tucse, mss;
2725 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2726
2727 if (skb_is_gso(skb)) {
2728 int err;
2729
2730 err = skb_cow_head(skb, 0);
2731 if (err < 0)
2732 return err;
2733
2734 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2735 mss = skb_shinfo(skb)->gso_size;
2736 if (protocol == htons(ETH_P_IP)) {
2737 struct iphdr *iph = ip_hdr(skb);
2738 iph->tot_len = 0;
2739 iph->check = 0;
2740 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2741 iph->daddr, 0,
2742 IPPROTO_TCP,
2743 0);
2744 cmd_length = E1000_TXD_CMD_IP;
2745 ipcse = skb_transport_offset(skb) - 1;
2746 } else if (skb_is_gso_v6(skb)) {
2747 ipv6_hdr(skb)->payload_len = 0;
2748 tcp_hdr(skb)->check =
2749 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2750 &ipv6_hdr(skb)->daddr,
2751 0, IPPROTO_TCP, 0);
2752 ipcse = 0;
2753 }
2754 ipcss = skb_network_offset(skb);
2755 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2756 tucss = skb_transport_offset(skb);
2757 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2758 tucse = 0;
2759
2760 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2761 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2762
2763 i = tx_ring->next_to_use;
2764 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2765 buffer_info = &tx_ring->buffer_info[i];
2766
2767 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2768 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2769 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2770 context_desc->upper_setup.tcp_fields.tucss = tucss;
2771 context_desc->upper_setup.tcp_fields.tucso = tucso;
2772 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2773 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2774 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2775 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2776
2777 buffer_info->time_stamp = jiffies;
2778 buffer_info->next_to_watch = i;
2779
2780 if (++i == tx_ring->count)
2781 i = 0;
2782
2783 tx_ring->next_to_use = i;
2784
2785 return true;
2786 }
2787 return false;
2788}
2789
2790static bool e1000_tx_csum(struct e1000_adapter *adapter,
2791 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2792 __be16 protocol)
2793{
2794 struct e1000_context_desc *context_desc;
2795 struct e1000_tx_buffer *buffer_info;
2796 unsigned int i;
2797 u8 css;
2798 u32 cmd_len = E1000_TXD_CMD_DEXT;
2799
2800 if (skb->ip_summed != CHECKSUM_PARTIAL)
2801 return false;
2802
2803 switch (protocol) {
2804 case cpu_to_be16(ETH_P_IP):
2805 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2806 cmd_len |= E1000_TXD_CMD_TCP;
2807 break;
2808 case cpu_to_be16(ETH_P_IPV6):
2809 /* XXX not handling all IPV6 headers */
2810 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2811 cmd_len |= E1000_TXD_CMD_TCP;
2812 break;
2813 default:
2814 if (unlikely(net_ratelimit()))
2815 e_warn(drv, "checksum_partial proto=%x!\n",
2816 skb->protocol);
2817 break;
2818 }
2819
2820 css = skb_checksum_start_offset(skb);
2821
2822 i = tx_ring->next_to_use;
2823 buffer_info = &tx_ring->buffer_info[i];
2824 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2825
2826 context_desc->lower_setup.ip_config = 0;
2827 context_desc->upper_setup.tcp_fields.tucss = css;
2828 context_desc->upper_setup.tcp_fields.tucso =
2829 css + skb->csum_offset;
2830 context_desc->upper_setup.tcp_fields.tucse = 0;
2831 context_desc->tcp_seg_setup.data = 0;
2832 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2833
2834 buffer_info->time_stamp = jiffies;
2835 buffer_info->next_to_watch = i;
2836
2837 if (unlikely(++i == tx_ring->count))
2838 i = 0;
2839
2840 tx_ring->next_to_use = i;
2841
2842 return true;
2843}
2844
2845#define E1000_MAX_TXD_PWR 12
2846#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2847
2848static int e1000_tx_map(struct e1000_adapter *adapter,
2849 struct e1000_tx_ring *tx_ring,
2850 struct sk_buff *skb, unsigned int first,
2851 unsigned int max_per_txd, unsigned int nr_frags,
2852 unsigned int mss)
2853{
2854 struct e1000_hw *hw = &adapter->hw;
2855 struct pci_dev *pdev = adapter->pdev;
2856 struct e1000_tx_buffer *buffer_info;
2857 unsigned int len = skb_headlen(skb);
2858 unsigned int offset = 0, size, count = 0, i;
2859 unsigned int f, bytecount, segs;
2860
2861 i = tx_ring->next_to_use;
2862
2863 while (len) {
2864 buffer_info = &tx_ring->buffer_info[i];
2865 size = min(len, max_per_txd);
2866 /* Workaround for Controller erratum --
2867 * descriptor for non-tso packet in a linear SKB that follows a
2868 * tso gets written back prematurely before the data is fully
2869 * DMA'd to the controller
2870 */
2871 if (!skb->data_len && tx_ring->last_tx_tso &&
2872 !skb_is_gso(skb)) {
2873 tx_ring->last_tx_tso = false;
2874 size -= 4;
2875 }
2876
2877 /* Workaround for premature desc write-backs
2878 * in TSO mode. Append 4-byte sentinel desc
2879 */
2880 if (unlikely(mss && !nr_frags && size == len && size > 8))
2881 size -= 4;
2882 /* work-around for errata 10 and it applies
2883 * to all controllers in PCI-X mode
2884 * The fix is to make sure that the first descriptor of a
2885 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2886 */
2887 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2888 (size > 2015) && count == 0))
2889 size = 2015;
2890
2891 /* Workaround for potential 82544 hang in PCI-X. Avoid
2892 * terminating buffers within evenly-aligned dwords.
2893 */
2894 if (unlikely(adapter->pcix_82544 &&
2895 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2896 size > 4))
2897 size -= 4;
2898
2899 buffer_info->length = size;
2900 /* set time_stamp *before* dma to help avoid a possible race */
2901 buffer_info->time_stamp = jiffies;
2902 buffer_info->mapped_as_page = false;
2903 buffer_info->dma = dma_map_single(&pdev->dev,
2904 skb->data + offset,
2905 size, DMA_TO_DEVICE);
2906 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2907 goto dma_error;
2908 buffer_info->next_to_watch = i;
2909
2910 len -= size;
2911 offset += size;
2912 count++;
2913 if (len) {
2914 i++;
2915 if (unlikely(i == tx_ring->count))
2916 i = 0;
2917 }
2918 }
2919
2920 for (f = 0; f < nr_frags; f++) {
2921 const struct skb_frag_struct *frag;
2922
2923 frag = &skb_shinfo(skb)->frags[f];
2924 len = skb_frag_size(frag);
2925 offset = 0;
2926
2927 while (len) {
2928 unsigned long bufend;
2929 i++;
2930 if (unlikely(i == tx_ring->count))
2931 i = 0;
2932
2933 buffer_info = &tx_ring->buffer_info[i];
2934 size = min(len, max_per_txd);
2935 /* Workaround for premature desc write-backs
2936 * in TSO mode. Append 4-byte sentinel desc
2937 */
2938 if (unlikely(mss && f == (nr_frags-1) &&
2939 size == len && size > 8))
2940 size -= 4;
2941 /* Workaround for potential 82544 hang in PCI-X.
2942 * Avoid terminating buffers within evenly-aligned
2943 * dwords.
2944 */
2945 bufend = (unsigned long)
2946 page_to_phys(skb_frag_page(frag));
2947 bufend += offset + size - 1;
2948 if (unlikely(adapter->pcix_82544 &&
2949 !(bufend & 4) &&
2950 size > 4))
2951 size -= 4;
2952
2953 buffer_info->length = size;
2954 buffer_info->time_stamp = jiffies;
2955 buffer_info->mapped_as_page = true;
2956 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2957 offset, size, DMA_TO_DEVICE);
2958 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2959 goto dma_error;
2960 buffer_info->next_to_watch = i;
2961
2962 len -= size;
2963 offset += size;
2964 count++;
2965 }
2966 }
2967
2968 segs = skb_shinfo(skb)->gso_segs ?: 1;
2969 /* multiply data chunks by size of headers */
2970 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2971
2972 tx_ring->buffer_info[i].skb = skb;
2973 tx_ring->buffer_info[i].segs = segs;
2974 tx_ring->buffer_info[i].bytecount = bytecount;
2975 tx_ring->buffer_info[first].next_to_watch = i;
2976
2977 return count;
2978
2979dma_error:
2980 dev_err(&pdev->dev, "TX DMA map failed\n");
2981 buffer_info->dma = 0;
2982 if (count)
2983 count--;
2984
2985 while (count--) {
2986 if (i == 0)
2987 i += tx_ring->count;
2988 i--;
2989 buffer_info = &tx_ring->buffer_info[i];
2990 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2991 }
2992
2993 return 0;
2994}
2995
2996static void e1000_tx_queue(struct e1000_adapter *adapter,
2997 struct e1000_tx_ring *tx_ring, int tx_flags,
2998 int count)
2999{
3000 struct e1000_tx_desc *tx_desc = NULL;
3001 struct e1000_tx_buffer *buffer_info;
3002 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3003 unsigned int i;
3004
3005 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3006 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3007 E1000_TXD_CMD_TSE;
3008 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3009
3010 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3011 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3012 }
3013
3014 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3015 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3016 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3017 }
3018
3019 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3020 txd_lower |= E1000_TXD_CMD_VLE;
3021 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3022 }
3023
3024 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3025 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3026
3027 i = tx_ring->next_to_use;
3028
3029 while (count--) {
3030 buffer_info = &tx_ring->buffer_info[i];
3031 tx_desc = E1000_TX_DESC(*tx_ring, i);
3032 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3033 tx_desc->lower.data =
3034 cpu_to_le32(txd_lower | buffer_info->length);
3035 tx_desc->upper.data = cpu_to_le32(txd_upper);
3036 if (unlikely(++i == tx_ring->count))
3037 i = 0;
3038 }
3039
3040 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3041
3042 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3043 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3044 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3045
3046 /* Force memory writes to complete before letting h/w
3047 * know there are new descriptors to fetch. (Only
3048 * applicable for weak-ordered memory model archs,
3049 * such as IA-64).
3050 */
3051 wmb();
3052
3053 tx_ring->next_to_use = i;
3054}
3055
3056/* 82547 workaround to avoid controller hang in half-duplex environment.
3057 * The workaround is to avoid queuing a large packet that would span
3058 * the internal Tx FIFO ring boundary by notifying the stack to resend
3059 * the packet at a later time. This gives the Tx FIFO an opportunity to
3060 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3061 * to the beginning of the Tx FIFO.
3062 */
3063
3064#define E1000_FIFO_HDR 0x10
3065#define E1000_82547_PAD_LEN 0x3E0
3066
3067static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3068 struct sk_buff *skb)
3069{
3070 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3071 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3072
3073 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3074
3075 if (adapter->link_duplex != HALF_DUPLEX)
3076 goto no_fifo_stall_required;
3077
3078 if (atomic_read(&adapter->tx_fifo_stall))
3079 return 1;
3080
3081 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3082 atomic_set(&adapter->tx_fifo_stall, 1);
3083 return 1;
3084 }
3085
3086no_fifo_stall_required:
3087 adapter->tx_fifo_head += skb_fifo_len;
3088 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3089 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3090 return 0;
3091}
3092
3093static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3094{
3095 struct e1000_adapter *adapter = netdev_priv(netdev);
3096 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3097
3098 netif_stop_queue(netdev);
3099 /* Herbert's original patch had:
3100 * smp_mb__after_netif_stop_queue();
3101 * but since that doesn't exist yet, just open code it.
3102 */
3103 smp_mb();
3104
3105 /* We need to check again in a case another CPU has just
3106 * made room available.
3107 */
3108 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3109 return -EBUSY;
3110
3111 /* A reprieve! */
3112 netif_start_queue(netdev);
3113 ++adapter->restart_queue;
3114 return 0;
3115}
3116
3117static int e1000_maybe_stop_tx(struct net_device *netdev,
3118 struct e1000_tx_ring *tx_ring, int size)
3119{
3120 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3121 return 0;
3122 return __e1000_maybe_stop_tx(netdev, size);
3123}
3124
3125#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3126static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3127 struct net_device *netdev)
3128{
3129 struct e1000_adapter *adapter = netdev_priv(netdev);
3130 struct e1000_hw *hw = &adapter->hw;
3131 struct e1000_tx_ring *tx_ring;
3132 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3133 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3134 unsigned int tx_flags = 0;
3135 unsigned int len = skb_headlen(skb);
3136 unsigned int nr_frags;
3137 unsigned int mss;
3138 int count = 0;
3139 int tso;
3140 unsigned int f;
3141 __be16 protocol = vlan_get_protocol(skb);
3142
3143 /* This goes back to the question of how to logically map a Tx queue
3144 * to a flow. Right now, performance is impacted slightly negatively
3145 * if using multiple Tx queues. If the stack breaks away from a
3146 * single qdisc implementation, we can look at this again.
3147 */
3148 tx_ring = adapter->tx_ring;
3149
3150 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3151 * packets may get corrupted during padding by HW.
3152 * To WA this issue, pad all small packets manually.
3153 */
3154 if (eth_skb_pad(skb))
3155 return NETDEV_TX_OK;
3156
3157 mss = skb_shinfo(skb)->gso_size;
3158 /* The controller does a simple calculation to
3159 * make sure there is enough room in the FIFO before
3160 * initiating the DMA for each buffer. The calc is:
3161 * 4 = ceil(buffer len/mss). To make sure we don't
3162 * overrun the FIFO, adjust the max buffer len if mss
3163 * drops.
3164 */
3165 if (mss) {
3166 u8 hdr_len;
3167 max_per_txd = min(mss << 2, max_per_txd);
3168 max_txd_pwr = fls(max_per_txd) - 1;
3169
3170 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3171 if (skb->data_len && hdr_len == len) {
3172 switch (hw->mac_type) {
3173 unsigned int pull_size;
3174 case e1000_82544:
3175 /* Make sure we have room to chop off 4 bytes,
3176 * and that the end alignment will work out to
3177 * this hardware's requirements
3178 * NOTE: this is a TSO only workaround
3179 * if end byte alignment not correct move us
3180 * into the next dword
3181 */
3182 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3183 & 4)
3184 break;
3185 /* fall through */
3186 pull_size = min((unsigned int)4, skb->data_len);
3187 if (!__pskb_pull_tail(skb, pull_size)) {
3188 e_err(drv, "__pskb_pull_tail "
3189 "failed.\n");
3190 dev_kfree_skb_any(skb);
3191 return NETDEV_TX_OK;
3192 }
3193 len = skb_headlen(skb);
3194 break;
3195 default:
3196 /* do nothing */
3197 break;
3198 }
3199 }
3200 }
3201
3202 /* reserve a descriptor for the offload context */
3203 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3204 count++;
3205 count++;
3206
3207 /* Controller Erratum workaround */
3208 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3209 count++;
3210
3211 count += TXD_USE_COUNT(len, max_txd_pwr);
3212
3213 if (adapter->pcix_82544)
3214 count++;
3215
3216 /* work-around for errata 10 and it applies to all controllers
3217 * in PCI-X mode, so add one more descriptor to the count
3218 */
3219 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3220 (len > 2015)))
3221 count++;
3222
3223 nr_frags = skb_shinfo(skb)->nr_frags;
3224 for (f = 0; f < nr_frags; f++)
3225 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3226 max_txd_pwr);
3227 if (adapter->pcix_82544)
3228 count += nr_frags;
3229
3230 /* need: count + 2 desc gap to keep tail from touching
3231 * head, otherwise try next time
3232 */
3233 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3234 return NETDEV_TX_BUSY;
3235
3236 if (unlikely((hw->mac_type == e1000_82547) &&
3237 (e1000_82547_fifo_workaround(adapter, skb)))) {
3238 netif_stop_queue(netdev);
3239 if (!test_bit(__E1000_DOWN, &adapter->flags))
3240 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3241 return NETDEV_TX_BUSY;
3242 }
3243
3244 if (skb_vlan_tag_present(skb)) {
3245 tx_flags |= E1000_TX_FLAGS_VLAN;
3246 tx_flags |= (skb_vlan_tag_get(skb) <<
3247 E1000_TX_FLAGS_VLAN_SHIFT);
3248 }
3249
3250 first = tx_ring->next_to_use;
3251
3252 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3253 if (tso < 0) {
3254 dev_kfree_skb_any(skb);
3255 return NETDEV_TX_OK;
3256 }
3257
3258 if (likely(tso)) {
3259 if (likely(hw->mac_type != e1000_82544))
3260 tx_ring->last_tx_tso = true;
3261 tx_flags |= E1000_TX_FLAGS_TSO;
3262 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3263 tx_flags |= E1000_TX_FLAGS_CSUM;
3264
3265 if (protocol == htons(ETH_P_IP))
3266 tx_flags |= E1000_TX_FLAGS_IPV4;
3267
3268 if (unlikely(skb->no_fcs))
3269 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3270
3271 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3272 nr_frags, mss);
3273
3274 if (count) {
3275 /* The descriptors needed is higher than other Intel drivers
3276 * due to a number of workarounds. The breakdown is below:
3277 * Data descriptors: MAX_SKB_FRAGS + 1
3278 * Context Descriptor: 1
3279 * Keep head from touching tail: 2
3280 * Workarounds: 3
3281 */
3282 int desc_needed = MAX_SKB_FRAGS + 7;
3283
3284 netdev_sent_queue(netdev, skb->len);
3285 skb_tx_timestamp(skb);
3286
3287 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3288
3289 /* 82544 potentially requires twice as many data descriptors
3290 * in order to guarantee buffers don't end on evenly-aligned
3291 * dwords
3292 */
3293 if (adapter->pcix_82544)
3294 desc_needed += MAX_SKB_FRAGS + 1;
3295
3296 /* Make sure there is space in the ring for the next send. */
3297 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3298
3299 if (!skb->xmit_more ||
3300 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3301 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3302 /* we need this if more than one processor can write to
3303 * our tail at a time, it synchronizes IO on IA64/Altix
3304 * systems
3305 */
3306 mmiowb();
3307 }
3308 } else {
3309 dev_kfree_skb_any(skb);
3310 tx_ring->buffer_info[first].time_stamp = 0;
3311 tx_ring->next_to_use = first;
3312 }
3313
3314 return NETDEV_TX_OK;
3315}
3316
3317#define NUM_REGS 38 /* 1 based count */
3318static void e1000_regdump(struct e1000_adapter *adapter)
3319{
3320 struct e1000_hw *hw = &adapter->hw;
3321 u32 regs[NUM_REGS];
3322 u32 *regs_buff = regs;
3323 int i = 0;
3324
3325 static const char * const reg_name[] = {
3326 "CTRL", "STATUS",
3327 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3328 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3329 "TIDV", "TXDCTL", "TADV", "TARC0",
3330 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3331 "TXDCTL1", "TARC1",
3332 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3333 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3334 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3335 };
3336
3337 regs_buff[0] = er32(CTRL);
3338 regs_buff[1] = er32(STATUS);
3339
3340 regs_buff[2] = er32(RCTL);
3341 regs_buff[3] = er32(RDLEN);
3342 regs_buff[4] = er32(RDH);
3343 regs_buff[5] = er32(RDT);
3344 regs_buff[6] = er32(RDTR);
3345
3346 regs_buff[7] = er32(TCTL);
3347 regs_buff[8] = er32(TDBAL);
3348 regs_buff[9] = er32(TDBAH);
3349 regs_buff[10] = er32(TDLEN);
3350 regs_buff[11] = er32(TDH);
3351 regs_buff[12] = er32(TDT);
3352 regs_buff[13] = er32(TIDV);
3353 regs_buff[14] = er32(TXDCTL);
3354 regs_buff[15] = er32(TADV);
3355 regs_buff[16] = er32(TARC0);
3356
3357 regs_buff[17] = er32(TDBAL1);
3358 regs_buff[18] = er32(TDBAH1);
3359 regs_buff[19] = er32(TDLEN1);
3360 regs_buff[20] = er32(TDH1);
3361 regs_buff[21] = er32(TDT1);
3362 regs_buff[22] = er32(TXDCTL1);
3363 regs_buff[23] = er32(TARC1);
3364 regs_buff[24] = er32(CTRL_EXT);
3365 regs_buff[25] = er32(ERT);
3366 regs_buff[26] = er32(RDBAL0);
3367 regs_buff[27] = er32(RDBAH0);
3368 regs_buff[28] = er32(TDFH);
3369 regs_buff[29] = er32(TDFT);
3370 regs_buff[30] = er32(TDFHS);
3371 regs_buff[31] = er32(TDFTS);
3372 regs_buff[32] = er32(TDFPC);
3373 regs_buff[33] = er32(RDFH);
3374 regs_buff[34] = er32(RDFT);
3375 regs_buff[35] = er32(RDFHS);
3376 regs_buff[36] = er32(RDFTS);
3377 regs_buff[37] = er32(RDFPC);
3378
3379 pr_info("Register dump\n");
3380 for (i = 0; i < NUM_REGS; i++)
3381 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3382}
3383
3384/*
3385 * e1000_dump: Print registers, tx ring and rx ring
3386 */
3387static void e1000_dump(struct e1000_adapter *adapter)
3388{
3389 /* this code doesn't handle multiple rings */
3390 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3391 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3392 int i;
3393
3394 if (!netif_msg_hw(adapter))
3395 return;
3396
3397 /* Print Registers */
3398 e1000_regdump(adapter);
3399
3400 /* transmit dump */
3401 pr_info("TX Desc ring0 dump\n");
3402
3403 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3404 *
3405 * Legacy Transmit Descriptor
3406 * +--------------------------------------------------------------+
3407 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3408 * +--------------------------------------------------------------+
3409 * 8 | Special | CSS | Status | CMD | CSO | Length |
3410 * +--------------------------------------------------------------+
3411 * 63 48 47 36 35 32 31 24 23 16 15 0
3412 *
3413 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3414 * 63 48 47 40 39 32 31 16 15 8 7 0
3415 * +----------------------------------------------------------------+
3416 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3417 * +----------------------------------------------------------------+
3418 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3419 * +----------------------------------------------------------------+
3420 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3421 *
3422 * Extended Data Descriptor (DTYP=0x1)
3423 * +----------------------------------------------------------------+
3424 * 0 | Buffer Address [63:0] |
3425 * +----------------------------------------------------------------+
3426 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3427 * +----------------------------------------------------------------+
3428 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3429 */
3430 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3431 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3432
3433 if (!netif_msg_tx_done(adapter))
3434 goto rx_ring_summary;
3435
3436 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3437 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3438 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3439 struct my_u { __le64 a; __le64 b; };
3440 struct my_u *u = (struct my_u *)tx_desc;
3441 const char *type;
3442
3443 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3444 type = "NTC/U";
3445 else if (i == tx_ring->next_to_use)
3446 type = "NTU";
3447 else if (i == tx_ring->next_to_clean)
3448 type = "NTC";
3449 else
3450 type = "";
3451
3452 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3453 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3454 le64_to_cpu(u->a), le64_to_cpu(u->b),
3455 (u64)buffer_info->dma, buffer_info->length,
3456 buffer_info->next_to_watch,
3457 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3458 }
3459
3460rx_ring_summary:
3461 /* receive dump */
3462 pr_info("\nRX Desc ring dump\n");
3463
3464 /* Legacy Receive Descriptor Format
3465 *
3466 * +-----------------------------------------------------+
3467 * | Buffer Address [63:0] |
3468 * +-----------------------------------------------------+
3469 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3470 * +-----------------------------------------------------+
3471 * 63 48 47 40 39 32 31 16 15 0
3472 */
3473 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3474
3475 if (!netif_msg_rx_status(adapter))
3476 goto exit;
3477
3478 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3479 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3480 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3481 struct my_u { __le64 a; __le64 b; };
3482 struct my_u *u = (struct my_u *)rx_desc;
3483 const char *type;
3484
3485 if (i == rx_ring->next_to_use)
3486 type = "NTU";
3487 else if (i == rx_ring->next_to_clean)
3488 type = "NTC";
3489 else
3490 type = "";
3491
3492 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3493 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3494 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3495 } /* for */
3496
3497 /* dump the descriptor caches */
3498 /* rx */
3499 pr_info("Rx descriptor cache in 64bit format\n");
3500 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3501 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3502 i,
3503 readl(adapter->hw.hw_addr + i+4),
3504 readl(adapter->hw.hw_addr + i),
3505 readl(adapter->hw.hw_addr + i+12),
3506 readl(adapter->hw.hw_addr + i+8));
3507 }
3508 /* tx */
3509 pr_info("Tx descriptor cache in 64bit format\n");
3510 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3511 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3512 i,
3513 readl(adapter->hw.hw_addr + i+4),
3514 readl(adapter->hw.hw_addr + i),
3515 readl(adapter->hw.hw_addr + i+12),
3516 readl(adapter->hw.hw_addr + i+8));
3517 }
3518exit:
3519 return;
3520}
3521
3522/**
3523 * e1000_tx_timeout - Respond to a Tx Hang
3524 * @netdev: network interface device structure
3525 **/
3526static void e1000_tx_timeout(struct net_device *netdev)
3527{
3528 struct e1000_adapter *adapter = netdev_priv(netdev);
3529
3530 /* Do the reset outside of interrupt context */
3531 adapter->tx_timeout_count++;
3532 schedule_work(&adapter->reset_task);
3533}
3534
3535static void e1000_reset_task(struct work_struct *work)
3536{
3537 struct e1000_adapter *adapter =
3538 container_of(work, struct e1000_adapter, reset_task);
3539
3540 e_err(drv, "Reset adapter\n");
3541 e1000_reinit_locked(adapter);
3542}
3543
3544/**
3545 * e1000_change_mtu - Change the Maximum Transfer Unit
3546 * @netdev: network interface device structure
3547 * @new_mtu: new value for maximum frame size
3548 *
3549 * Returns 0 on success, negative on failure
3550 **/
3551static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3552{
3553 struct e1000_adapter *adapter = netdev_priv(netdev);
3554 struct e1000_hw *hw = &adapter->hw;
3555 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3556
3557 /* Adapter-specific max frame size limits. */
3558 switch (hw->mac_type) {
3559 case e1000_undefined ... e1000_82542_rev2_1:
3560 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3561 e_err(probe, "Jumbo Frames not supported.\n");
3562 return -EINVAL;
3563 }
3564 break;
3565 default:
3566 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3567 break;
3568 }
3569
3570 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3571 msleep(1);
3572 /* e1000_down has a dependency on max_frame_size */
3573 hw->max_frame_size = max_frame;
3574 if (netif_running(netdev)) {
3575 /* prevent buffers from being reallocated */
3576 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3577 e1000_down(adapter);
3578 }
3579
3580 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3581 * means we reserve 2 more, this pushes us to allocate from the next
3582 * larger slab size.
3583 * i.e. RXBUFFER_2048 --> size-4096 slab
3584 * however with the new *_jumbo_rx* routines, jumbo receives will use
3585 * fragmented skbs
3586 */
3587
3588 if (max_frame <= E1000_RXBUFFER_2048)
3589 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3590 else
3591#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3592 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3593#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3594 adapter->rx_buffer_len = PAGE_SIZE;
3595#endif
3596
3597 /* adjust allocation if LPE protects us, and we aren't using SBP */
3598 if (!hw->tbi_compatibility_on &&
3599 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3600 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3601 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3602
3603 pr_info("%s changing MTU from %d to %d\n",
3604 netdev->name, netdev->mtu, new_mtu);
3605 netdev->mtu = new_mtu;
3606
3607 if (netif_running(netdev))
3608 e1000_up(adapter);
3609 else
3610 e1000_reset(adapter);
3611
3612 clear_bit(__E1000_RESETTING, &adapter->flags);
3613
3614 return 0;
3615}
3616
3617/**
3618 * e1000_update_stats - Update the board statistics counters
3619 * @adapter: board private structure
3620 **/
3621void e1000_update_stats(struct e1000_adapter *adapter)
3622{
3623 struct net_device *netdev = adapter->netdev;
3624 struct e1000_hw *hw = &adapter->hw;
3625 struct pci_dev *pdev = adapter->pdev;
3626 unsigned long flags;
3627 u16 phy_tmp;
3628
3629#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3630
3631 /* Prevent stats update while adapter is being reset, or if the pci
3632 * connection is down.
3633 */
3634 if (adapter->link_speed == 0)
3635 return;
3636 if (pci_channel_offline(pdev))
3637 return;
3638
3639 spin_lock_irqsave(&adapter->stats_lock, flags);
3640
3641 /* these counters are modified from e1000_tbi_adjust_stats,
3642 * called from the interrupt context, so they must only
3643 * be written while holding adapter->stats_lock
3644 */
3645
3646 adapter->stats.crcerrs += er32(CRCERRS);
3647 adapter->stats.gprc += er32(GPRC);
3648 adapter->stats.gorcl += er32(GORCL);
3649 adapter->stats.gorch += er32(GORCH);
3650 adapter->stats.bprc += er32(BPRC);
3651 adapter->stats.mprc += er32(MPRC);
3652 adapter->stats.roc += er32(ROC);
3653
3654 adapter->stats.prc64 += er32(PRC64);
3655 adapter->stats.prc127 += er32(PRC127);
3656 adapter->stats.prc255 += er32(PRC255);
3657 adapter->stats.prc511 += er32(PRC511);
3658 adapter->stats.prc1023 += er32(PRC1023);
3659 adapter->stats.prc1522 += er32(PRC1522);
3660
3661 adapter->stats.symerrs += er32(SYMERRS);
3662 adapter->stats.mpc += er32(MPC);
3663 adapter->stats.scc += er32(SCC);
3664 adapter->stats.ecol += er32(ECOL);
3665 adapter->stats.mcc += er32(MCC);
3666 adapter->stats.latecol += er32(LATECOL);
3667 adapter->stats.dc += er32(DC);
3668 adapter->stats.sec += er32(SEC);
3669 adapter->stats.rlec += er32(RLEC);
3670 adapter->stats.xonrxc += er32(XONRXC);
3671 adapter->stats.xontxc += er32(XONTXC);
3672 adapter->stats.xoffrxc += er32(XOFFRXC);
3673 adapter->stats.xofftxc += er32(XOFFTXC);
3674 adapter->stats.fcruc += er32(FCRUC);
3675 adapter->stats.gptc += er32(GPTC);
3676 adapter->stats.gotcl += er32(GOTCL);
3677 adapter->stats.gotch += er32(GOTCH);
3678 adapter->stats.rnbc += er32(RNBC);
3679 adapter->stats.ruc += er32(RUC);
3680 adapter->stats.rfc += er32(RFC);
3681 adapter->stats.rjc += er32(RJC);
3682 adapter->stats.torl += er32(TORL);
3683 adapter->stats.torh += er32(TORH);
3684 adapter->stats.totl += er32(TOTL);
3685 adapter->stats.toth += er32(TOTH);
3686 adapter->stats.tpr += er32(TPR);
3687
3688 adapter->stats.ptc64 += er32(PTC64);
3689 adapter->stats.ptc127 += er32(PTC127);
3690 adapter->stats.ptc255 += er32(PTC255);
3691 adapter->stats.ptc511 += er32(PTC511);
3692 adapter->stats.ptc1023 += er32(PTC1023);
3693 adapter->stats.ptc1522 += er32(PTC1522);
3694
3695 adapter->stats.mptc += er32(MPTC);
3696 adapter->stats.bptc += er32(BPTC);
3697
3698 /* used for adaptive IFS */
3699
3700 hw->tx_packet_delta = er32(TPT);
3701 adapter->stats.tpt += hw->tx_packet_delta;
3702 hw->collision_delta = er32(COLC);
3703 adapter->stats.colc += hw->collision_delta;
3704
3705 if (hw->mac_type >= e1000_82543) {
3706 adapter->stats.algnerrc += er32(ALGNERRC);
3707 adapter->stats.rxerrc += er32(RXERRC);
3708 adapter->stats.tncrs += er32(TNCRS);
3709 adapter->stats.cexterr += er32(CEXTERR);
3710 adapter->stats.tsctc += er32(TSCTC);
3711 adapter->stats.tsctfc += er32(TSCTFC);
3712 }
3713
3714 /* Fill out the OS statistics structure */
3715 netdev->stats.multicast = adapter->stats.mprc;
3716 netdev->stats.collisions = adapter->stats.colc;
3717
3718 /* Rx Errors */
3719
3720 /* RLEC on some newer hardware can be incorrect so build
3721 * our own version based on RUC and ROC
3722 */
3723 netdev->stats.rx_errors = adapter->stats.rxerrc +
3724 adapter->stats.crcerrs + adapter->stats.algnerrc +
3725 adapter->stats.ruc + adapter->stats.roc +
3726 adapter->stats.cexterr;
3727 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3728 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3729 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3730 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3731 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3732
3733 /* Tx Errors */
3734 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3735 netdev->stats.tx_errors = adapter->stats.txerrc;
3736 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3737 netdev->stats.tx_window_errors = adapter->stats.latecol;
3738 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3739 if (hw->bad_tx_carr_stats_fd &&
3740 adapter->link_duplex == FULL_DUPLEX) {
3741 netdev->stats.tx_carrier_errors = 0;
3742 adapter->stats.tncrs = 0;
3743 }
3744
3745 /* Tx Dropped needs to be maintained elsewhere */
3746
3747 /* Phy Stats */
3748 if (hw->media_type == e1000_media_type_copper) {
3749 if ((adapter->link_speed == SPEED_1000) &&
3750 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3751 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3752 adapter->phy_stats.idle_errors += phy_tmp;
3753 }
3754
3755 if ((hw->mac_type <= e1000_82546) &&
3756 (hw->phy_type == e1000_phy_m88) &&
3757 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3758 adapter->phy_stats.receive_errors += phy_tmp;
3759 }
3760
3761 /* Management Stats */
3762 if (hw->has_smbus) {
3763 adapter->stats.mgptc += er32(MGTPTC);
3764 adapter->stats.mgprc += er32(MGTPRC);
3765 adapter->stats.mgpdc += er32(MGTPDC);
3766 }
3767
3768 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3769}
3770
3771/**
3772 * e1000_intr - Interrupt Handler
3773 * @irq: interrupt number
3774 * @data: pointer to a network interface device structure
3775 **/
3776static irqreturn_t e1000_intr(int irq, void *data)
3777{
3778 struct net_device *netdev = data;
3779 struct e1000_adapter *adapter = netdev_priv(netdev);
3780 struct e1000_hw *hw = &adapter->hw;
3781 u32 icr = er32(ICR);
3782
3783 if (unlikely((!icr)))
3784 return IRQ_NONE; /* Not our interrupt */
3785
3786 /* we might have caused the interrupt, but the above
3787 * read cleared it, and just in case the driver is
3788 * down there is nothing to do so return handled
3789 */
3790 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3791 return IRQ_HANDLED;
3792
3793 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3794 hw->get_link_status = 1;
3795 /* guard against interrupt when we're going down */
3796 if (!test_bit(__E1000_DOWN, &adapter->flags))
3797 schedule_delayed_work(&adapter->watchdog_task, 1);
3798 }
3799
3800 /* disable interrupts, without the synchronize_irq bit */
3801 ew32(IMC, ~0);
3802 E1000_WRITE_FLUSH();
3803
3804 if (likely(napi_schedule_prep(&adapter->napi))) {
3805 adapter->total_tx_bytes = 0;
3806 adapter->total_tx_packets = 0;
3807 adapter->total_rx_bytes = 0;
3808 adapter->total_rx_packets = 0;
3809 __napi_schedule(&adapter->napi);
3810 } else {
3811 /* this really should not happen! if it does it is basically a
3812 * bug, but not a hard error, so enable ints and continue
3813 */
3814 if (!test_bit(__E1000_DOWN, &adapter->flags))
3815 e1000_irq_enable(adapter);
3816 }
3817
3818 return IRQ_HANDLED;
3819}
3820
3821/**
3822 * e1000_clean - NAPI Rx polling callback
3823 * @adapter: board private structure
3824 **/
3825static int e1000_clean(struct napi_struct *napi, int budget)
3826{
3827 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3828 napi);
3829 int tx_clean_complete = 0, work_done = 0;
3830
3831 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3832
3833 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3834
3835 if (!tx_clean_complete)
3836 work_done = budget;
3837
3838 /* If budget not fully consumed, exit the polling mode */
3839 if (work_done < budget) {
3840 if (likely(adapter->itr_setting & 3))
3841 e1000_set_itr(adapter);
3842 napi_complete_done(napi, work_done);
3843 if (!test_bit(__E1000_DOWN, &adapter->flags))
3844 e1000_irq_enable(adapter);
3845 }
3846
3847 return work_done;
3848}
3849
3850/**
3851 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3852 * @adapter: board private structure
3853 **/
3854static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3855 struct e1000_tx_ring *tx_ring)
3856{
3857 struct e1000_hw *hw = &adapter->hw;
3858 struct net_device *netdev = adapter->netdev;
3859 struct e1000_tx_desc *tx_desc, *eop_desc;
3860 struct e1000_tx_buffer *buffer_info;
3861 unsigned int i, eop;
3862 unsigned int count = 0;
3863 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3864 unsigned int bytes_compl = 0, pkts_compl = 0;
3865
3866 i = tx_ring->next_to_clean;
3867 eop = tx_ring->buffer_info[i].next_to_watch;
3868 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3869
3870 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3871 (count < tx_ring->count)) {
3872 bool cleaned = false;
3873 dma_rmb(); /* read buffer_info after eop_desc */
3874 for ( ; !cleaned; count++) {
3875 tx_desc = E1000_TX_DESC(*tx_ring, i);
3876 buffer_info = &tx_ring->buffer_info[i];
3877 cleaned = (i == eop);
3878
3879 if (cleaned) {
3880 total_tx_packets += buffer_info->segs;
3881 total_tx_bytes += buffer_info->bytecount;
3882 if (buffer_info->skb) {
3883 bytes_compl += buffer_info->skb->len;
3884 pkts_compl++;
3885 }
3886
3887 }
3888 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3889 tx_desc->upper.data = 0;
3890
3891 if (unlikely(++i == tx_ring->count))
3892 i = 0;
3893 }
3894
3895 eop = tx_ring->buffer_info[i].next_to_watch;
3896 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3897 }
3898
3899 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3900 * which will reuse the cleaned buffers.
3901 */
3902 smp_store_release(&tx_ring->next_to_clean, i);
3903
3904 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3905
3906#define TX_WAKE_THRESHOLD 32
3907 if (unlikely(count && netif_carrier_ok(netdev) &&
3908 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3909 /* Make sure that anybody stopping the queue after this
3910 * sees the new next_to_clean.
3911 */
3912 smp_mb();
3913
3914 if (netif_queue_stopped(netdev) &&
3915 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3916 netif_wake_queue(netdev);
3917 ++adapter->restart_queue;
3918 }
3919 }
3920
3921 if (adapter->detect_tx_hung) {
3922 /* Detect a transmit hang in hardware, this serializes the
3923 * check with the clearing of time_stamp and movement of i
3924 */
3925 adapter->detect_tx_hung = false;
3926 if (tx_ring->buffer_info[eop].time_stamp &&
3927 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3928 (adapter->tx_timeout_factor * HZ)) &&
3929 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3930
3931 /* detected Tx unit hang */
3932 e_err(drv, "Detected Tx Unit Hang\n"
3933 " Tx Queue <%lu>\n"
3934 " TDH <%x>\n"
3935 " TDT <%x>\n"
3936 " next_to_use <%x>\n"
3937 " next_to_clean <%x>\n"
3938 "buffer_info[next_to_clean]\n"
3939 " time_stamp <%lx>\n"
3940 " next_to_watch <%x>\n"
3941 " jiffies <%lx>\n"
3942 " next_to_watch.status <%x>\n",
3943 (unsigned long)(tx_ring - adapter->tx_ring),
3944 readl(hw->hw_addr + tx_ring->tdh),
3945 readl(hw->hw_addr + tx_ring->tdt),
3946 tx_ring->next_to_use,
3947 tx_ring->next_to_clean,
3948 tx_ring->buffer_info[eop].time_stamp,
3949 eop,
3950 jiffies,
3951 eop_desc->upper.fields.status);
3952 e1000_dump(adapter);
3953 netif_stop_queue(netdev);
3954 }
3955 }
3956 adapter->total_tx_bytes += total_tx_bytes;
3957 adapter->total_tx_packets += total_tx_packets;
3958 netdev->stats.tx_bytes += total_tx_bytes;
3959 netdev->stats.tx_packets += total_tx_packets;
3960 return count < tx_ring->count;
3961}
3962
3963/**
3964 * e1000_rx_checksum - Receive Checksum Offload for 82543
3965 * @adapter: board private structure
3966 * @status_err: receive descriptor status and error fields
3967 * @csum: receive descriptor csum field
3968 * @sk_buff: socket buffer with received data
3969 **/
3970static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3971 u32 csum, struct sk_buff *skb)
3972{
3973 struct e1000_hw *hw = &adapter->hw;
3974 u16 status = (u16)status_err;
3975 u8 errors = (u8)(status_err >> 24);
3976
3977 skb_checksum_none_assert(skb);
3978
3979 /* 82543 or newer only */
3980 if (unlikely(hw->mac_type < e1000_82543))
3981 return;
3982 /* Ignore Checksum bit is set */
3983 if (unlikely(status & E1000_RXD_STAT_IXSM))
3984 return;
3985 /* TCP/UDP checksum error bit is set */
3986 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3987 /* let the stack verify checksum errors */
3988 adapter->hw_csum_err++;
3989 return;
3990 }
3991 /* TCP/UDP Checksum has not been calculated */
3992 if (!(status & E1000_RXD_STAT_TCPCS))
3993 return;
3994
3995 /* It must be a TCP or UDP packet with a valid checksum */
3996 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3997 /* TCP checksum is good */
3998 skb->ip_summed = CHECKSUM_UNNECESSARY;
3999 }
4000 adapter->hw_csum_good++;
4001}
4002
4003/**
4004 * e1000_consume_page - helper function for jumbo Rx path
4005 **/
4006static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4007 u16 length)
4008{
4009 bi->rxbuf.page = NULL;
4010 skb->len += length;
4011 skb->data_len += length;
4012 skb->truesize += PAGE_SIZE;
4013}
4014
4015/**
4016 * e1000_receive_skb - helper function to handle rx indications
4017 * @adapter: board private structure
4018 * @status: descriptor status field as written by hardware
4019 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4020 * @skb: pointer to sk_buff to be indicated to stack
4021 */
4022static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4023 __le16 vlan, struct sk_buff *skb)
4024{
4025 skb->protocol = eth_type_trans(skb, adapter->netdev);
4026
4027 if (status & E1000_RXD_STAT_VP) {
4028 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4029
4030 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4031 }
4032 napi_gro_receive(&adapter->napi, skb);
4033}
4034
4035/**
4036 * e1000_tbi_adjust_stats
4037 * @hw: Struct containing variables accessed by shared code
4038 * @frame_len: The length of the frame in question
4039 * @mac_addr: The Ethernet destination address of the frame in question
4040 *
4041 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4042 */
4043static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4044 struct e1000_hw_stats *stats,
4045 u32 frame_len, const u8 *mac_addr)
4046{
4047 u64 carry_bit;
4048
4049 /* First adjust the frame length. */
4050 frame_len--;
4051 /* We need to adjust the statistics counters, since the hardware
4052 * counters overcount this packet as a CRC error and undercount
4053 * the packet as a good packet
4054 */
4055 /* This packet should not be counted as a CRC error. */
4056 stats->crcerrs--;
4057 /* This packet does count as a Good Packet Received. */
4058 stats->gprc++;
4059
4060 /* Adjust the Good Octets received counters */
4061 carry_bit = 0x80000000 & stats->gorcl;
4062 stats->gorcl += frame_len;
4063 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4064 * Received Count) was one before the addition,
4065 * AND it is zero after, then we lost the carry out,
4066 * need to add one to Gorch (Good Octets Received Count High).
4067 * This could be simplified if all environments supported
4068 * 64-bit integers.
4069 */
4070 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4071 stats->gorch++;
4072 /* Is this a broadcast or multicast? Check broadcast first,
4073 * since the test for a multicast frame will test positive on
4074 * a broadcast frame.
4075 */
4076 if (is_broadcast_ether_addr(mac_addr))
4077 stats->bprc++;
4078 else if (is_multicast_ether_addr(mac_addr))
4079 stats->mprc++;
4080
4081 if (frame_len == hw->max_frame_size) {
4082 /* In this case, the hardware has overcounted the number of
4083 * oversize frames.
4084 */
4085 if (stats->roc > 0)
4086 stats->roc--;
4087 }
4088
4089 /* Adjust the bin counters when the extra byte put the frame in the
4090 * wrong bin. Remember that the frame_len was adjusted above.
4091 */
4092 if (frame_len == 64) {
4093 stats->prc64++;
4094 stats->prc127--;
4095 } else if (frame_len == 127) {
4096 stats->prc127++;
4097 stats->prc255--;
4098 } else if (frame_len == 255) {
4099 stats->prc255++;
4100 stats->prc511--;
4101 } else if (frame_len == 511) {
4102 stats->prc511++;
4103 stats->prc1023--;
4104 } else if (frame_len == 1023) {
4105 stats->prc1023++;
4106 stats->prc1522--;
4107 } else if (frame_len == 1522) {
4108 stats->prc1522++;
4109 }
4110}
4111
4112static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4113 u8 status, u8 errors,
4114 u32 length, const u8 *data)
4115{
4116 struct e1000_hw *hw = &adapter->hw;
4117 u8 last_byte = *(data + length - 1);
4118
4119 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4120 unsigned long irq_flags;
4121
4122 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4123 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4124 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4125
4126 return true;
4127 }
4128
4129 return false;
4130}
4131
4132static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4133 unsigned int bufsz)
4134{
4135 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4136
4137 if (unlikely(!skb))
4138 adapter->alloc_rx_buff_failed++;
4139 return skb;
4140}
4141
4142/**
4143 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4144 * @adapter: board private structure
4145 * @rx_ring: ring to clean
4146 * @work_done: amount of napi work completed this call
4147 * @work_to_do: max amount of work allowed for this call to do
4148 *
4149 * the return value indicates whether actual cleaning was done, there
4150 * is no guarantee that everything was cleaned
4151 */
4152static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4153 struct e1000_rx_ring *rx_ring,
4154 int *work_done, int work_to_do)
4155{
4156 struct net_device *netdev = adapter->netdev;
4157 struct pci_dev *pdev = adapter->pdev;
4158 struct e1000_rx_desc *rx_desc, *next_rxd;
4159 struct e1000_rx_buffer *buffer_info, *next_buffer;
4160 u32 length;
4161 unsigned int i;
4162 int cleaned_count = 0;
4163 bool cleaned = false;
4164 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4165
4166 i = rx_ring->next_to_clean;
4167 rx_desc = E1000_RX_DESC(*rx_ring, i);
4168 buffer_info = &rx_ring->buffer_info[i];
4169
4170 while (rx_desc->status & E1000_RXD_STAT_DD) {
4171 struct sk_buff *skb;
4172 u8 status;
4173
4174 if (*work_done >= work_to_do)
4175 break;
4176 (*work_done)++;
4177 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4178
4179 status = rx_desc->status;
4180
4181 if (++i == rx_ring->count)
4182 i = 0;
4183
4184 next_rxd = E1000_RX_DESC(*rx_ring, i);
4185 prefetch(next_rxd);
4186
4187 next_buffer = &rx_ring->buffer_info[i];
4188
4189 cleaned = true;
4190 cleaned_count++;
4191 dma_unmap_page(&pdev->dev, buffer_info->dma,
4192 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4193 buffer_info->dma = 0;
4194
4195 length = le16_to_cpu(rx_desc->length);
4196
4197 /* errors is only valid for DD + EOP descriptors */
4198 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4199 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4200 u8 *mapped = page_address(buffer_info->rxbuf.page);
4201
4202 if (e1000_tbi_should_accept(adapter, status,
4203 rx_desc->errors,
4204 length, mapped)) {
4205 length--;
4206 } else if (netdev->features & NETIF_F_RXALL) {
4207 goto process_skb;
4208 } else {
4209 /* an error means any chain goes out the window
4210 * too
4211 */
4212 if (rx_ring->rx_skb_top)
4213 dev_kfree_skb(rx_ring->rx_skb_top);
4214 rx_ring->rx_skb_top = NULL;
4215 goto next_desc;
4216 }
4217 }
4218
4219#define rxtop rx_ring->rx_skb_top
4220process_skb:
4221 if (!(status & E1000_RXD_STAT_EOP)) {
4222 /* this descriptor is only the beginning (or middle) */
4223 if (!rxtop) {
4224 /* this is the beginning of a chain */
4225 rxtop = napi_get_frags(&adapter->napi);
4226 if (!rxtop)
4227 break;
4228
4229 skb_fill_page_desc(rxtop, 0,
4230 buffer_info->rxbuf.page,
4231 0, length);
4232 } else {
4233 /* this is the middle of a chain */
4234 skb_fill_page_desc(rxtop,
4235 skb_shinfo(rxtop)->nr_frags,
4236 buffer_info->rxbuf.page, 0, length);
4237 }
4238 e1000_consume_page(buffer_info, rxtop, length);
4239 goto next_desc;
4240 } else {
4241 if (rxtop) {
4242 /* end of the chain */
4243 skb_fill_page_desc(rxtop,
4244 skb_shinfo(rxtop)->nr_frags,
4245 buffer_info->rxbuf.page, 0, length);
4246 skb = rxtop;
4247 rxtop = NULL;
4248 e1000_consume_page(buffer_info, skb, length);
4249 } else {
4250 struct page *p;
4251 /* no chain, got EOP, this buf is the packet
4252 * copybreak to save the put_page/alloc_page
4253 */
4254 p = buffer_info->rxbuf.page;
4255 if (length <= copybreak) {
4256 u8 *vaddr;
4257
4258 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4259 length -= 4;
4260 skb = e1000_alloc_rx_skb(adapter,
4261 length);
4262 if (!skb)
4263 break;
4264
4265 vaddr = kmap_atomic(p);
4266 memcpy(skb_tail_pointer(skb), vaddr,
4267 length);
4268 kunmap_atomic(vaddr);
4269 /* re-use the page, so don't erase
4270 * buffer_info->rxbuf.page
4271 */
4272 skb_put(skb, length);
4273 e1000_rx_checksum(adapter,
4274 status | rx_desc->errors << 24,
4275 le16_to_cpu(rx_desc->csum), skb);
4276
4277 total_rx_bytes += skb->len;
4278 total_rx_packets++;
4279
4280 e1000_receive_skb(adapter, status,
4281 rx_desc->special, skb);
4282 goto next_desc;
4283 } else {
4284 skb = napi_get_frags(&adapter->napi);
4285 if (!skb) {
4286 adapter->alloc_rx_buff_failed++;
4287 break;
4288 }
4289 skb_fill_page_desc(skb, 0, p, 0,
4290 length);
4291 e1000_consume_page(buffer_info, skb,
4292 length);
4293 }
4294 }
4295 }
4296
4297 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4298 e1000_rx_checksum(adapter,
4299 (u32)(status) |
4300 ((u32)(rx_desc->errors) << 24),
4301 le16_to_cpu(rx_desc->csum), skb);
4302
4303 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4304 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4305 pskb_trim(skb, skb->len - 4);
4306 total_rx_packets++;
4307
4308 if (status & E1000_RXD_STAT_VP) {
4309 __le16 vlan = rx_desc->special;
4310 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4311
4312 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4313 }
4314
4315 napi_gro_frags(&adapter->napi);
4316
4317next_desc:
4318 rx_desc->status = 0;
4319
4320 /* return some buffers to hardware, one at a time is too slow */
4321 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4322 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4323 cleaned_count = 0;
4324 }
4325
4326 /* use prefetched values */
4327 rx_desc = next_rxd;
4328 buffer_info = next_buffer;
4329 }
4330 rx_ring->next_to_clean = i;
4331
4332 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4333 if (cleaned_count)
4334 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4335
4336 adapter->total_rx_packets += total_rx_packets;
4337 adapter->total_rx_bytes += total_rx_bytes;
4338 netdev->stats.rx_bytes += total_rx_bytes;
4339 netdev->stats.rx_packets += total_rx_packets;
4340 return cleaned;
4341}
4342
4343/* this should improve performance for small packets with large amounts
4344 * of reassembly being done in the stack
4345 */
4346static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4347 struct e1000_rx_buffer *buffer_info,
4348 u32 length, const void *data)
4349{
4350 struct sk_buff *skb;
4351
4352 if (length > copybreak)
4353 return NULL;
4354
4355 skb = e1000_alloc_rx_skb(adapter, length);
4356 if (!skb)
4357 return NULL;
4358
4359 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4360 length, DMA_FROM_DEVICE);
4361
4362 skb_put_data(skb, data, length);
4363
4364 return skb;
4365}
4366
4367/**
4368 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4369 * @adapter: board private structure
4370 * @rx_ring: ring to clean
4371 * @work_done: amount of napi work completed this call
4372 * @work_to_do: max amount of work allowed for this call to do
4373 */
4374static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4375 struct e1000_rx_ring *rx_ring,
4376 int *work_done, int work_to_do)
4377{
4378 struct net_device *netdev = adapter->netdev;
4379 struct pci_dev *pdev = adapter->pdev;
4380 struct e1000_rx_desc *rx_desc, *next_rxd;
4381 struct e1000_rx_buffer *buffer_info, *next_buffer;
4382 u32 length;
4383 unsigned int i;
4384 int cleaned_count = 0;
4385 bool cleaned = false;
4386 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4387
4388 i = rx_ring->next_to_clean;
4389 rx_desc = E1000_RX_DESC(*rx_ring, i);
4390 buffer_info = &rx_ring->buffer_info[i];
4391
4392 while (rx_desc->status & E1000_RXD_STAT_DD) {
4393 struct sk_buff *skb;
4394 u8 *data;
4395 u8 status;
4396
4397 if (*work_done >= work_to_do)
4398 break;
4399 (*work_done)++;
4400 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4401
4402 status = rx_desc->status;
4403 length = le16_to_cpu(rx_desc->length);
4404
4405 data = buffer_info->rxbuf.data;
4406 prefetch(data);
4407 skb = e1000_copybreak(adapter, buffer_info, length, data);
4408 if (!skb) {
4409 unsigned int frag_len = e1000_frag_len(adapter);
4410
4411 skb = build_skb(data - E1000_HEADROOM, frag_len);
4412 if (!skb) {
4413 adapter->alloc_rx_buff_failed++;
4414 break;
4415 }
4416
4417 skb_reserve(skb, E1000_HEADROOM);
4418 dma_unmap_single(&pdev->dev, buffer_info->dma,
4419 adapter->rx_buffer_len,
4420 DMA_FROM_DEVICE);
4421 buffer_info->dma = 0;
4422 buffer_info->rxbuf.data = NULL;
4423 }
4424
4425 if (++i == rx_ring->count)
4426 i = 0;
4427
4428 next_rxd = E1000_RX_DESC(*rx_ring, i);
4429 prefetch(next_rxd);
4430
4431 next_buffer = &rx_ring->buffer_info[i];
4432
4433 cleaned = true;
4434 cleaned_count++;
4435
4436 /* !EOP means multiple descriptors were used to store a single
4437 * packet, if thats the case we need to toss it. In fact, we
4438 * to toss every packet with the EOP bit clear and the next
4439 * frame that _does_ have the EOP bit set, as it is by
4440 * definition only a frame fragment
4441 */
4442 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4443 adapter->discarding = true;
4444
4445 if (adapter->discarding) {
4446 /* All receives must fit into a single buffer */
4447 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4448 dev_kfree_skb(skb);
4449 if (status & E1000_RXD_STAT_EOP)
4450 adapter->discarding = false;
4451 goto next_desc;
4452 }
4453
4454 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4455 if (e1000_tbi_should_accept(adapter, status,
4456 rx_desc->errors,
4457 length, data)) {
4458 length--;
4459 } else if (netdev->features & NETIF_F_RXALL) {
4460 goto process_skb;
4461 } else {
4462 dev_kfree_skb(skb);
4463 goto next_desc;
4464 }
4465 }
4466
4467process_skb:
4468 total_rx_bytes += (length - 4); /* don't count FCS */
4469 total_rx_packets++;
4470
4471 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4472 /* adjust length to remove Ethernet CRC, this must be
4473 * done after the TBI_ACCEPT workaround above
4474 */
4475 length -= 4;
4476
4477 if (buffer_info->rxbuf.data == NULL)
4478 skb_put(skb, length);
4479 else /* copybreak skb */
4480 skb_trim(skb, length);
4481
4482 /* Receive Checksum Offload */
4483 e1000_rx_checksum(adapter,
4484 (u32)(status) |
4485 ((u32)(rx_desc->errors) << 24),
4486 le16_to_cpu(rx_desc->csum), skb);
4487
4488 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4489
4490next_desc:
4491 rx_desc->status = 0;
4492
4493 /* return some buffers to hardware, one at a time is too slow */
4494 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4495 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4496 cleaned_count = 0;
4497 }
4498
4499 /* use prefetched values */
4500 rx_desc = next_rxd;
4501 buffer_info = next_buffer;
4502 }
4503 rx_ring->next_to_clean = i;
4504
4505 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4506 if (cleaned_count)
4507 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4508
4509 adapter->total_rx_packets += total_rx_packets;
4510 adapter->total_rx_bytes += total_rx_bytes;
4511 netdev->stats.rx_bytes += total_rx_bytes;
4512 netdev->stats.rx_packets += total_rx_packets;
4513 return cleaned;
4514}
4515
4516/**
4517 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4518 * @adapter: address of board private structure
4519 * @rx_ring: pointer to receive ring structure
4520 * @cleaned_count: number of buffers to allocate this pass
4521 **/
4522static void
4523e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4524 struct e1000_rx_ring *rx_ring, int cleaned_count)
4525{
4526 struct pci_dev *pdev = adapter->pdev;
4527 struct e1000_rx_desc *rx_desc;
4528 struct e1000_rx_buffer *buffer_info;
4529 unsigned int i;
4530
4531 i = rx_ring->next_to_use;
4532 buffer_info = &rx_ring->buffer_info[i];
4533
4534 while (cleaned_count--) {
4535 /* allocate a new page if necessary */
4536 if (!buffer_info->rxbuf.page) {
4537 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4538 if (unlikely(!buffer_info->rxbuf.page)) {
4539 adapter->alloc_rx_buff_failed++;
4540 break;
4541 }
4542 }
4543
4544 if (!buffer_info->dma) {
4545 buffer_info->dma = dma_map_page(&pdev->dev,
4546 buffer_info->rxbuf.page, 0,
4547 adapter->rx_buffer_len,
4548 DMA_FROM_DEVICE);
4549 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4550 put_page(buffer_info->rxbuf.page);
4551 buffer_info->rxbuf.page = NULL;
4552 buffer_info->dma = 0;
4553 adapter->alloc_rx_buff_failed++;
4554 break;
4555 }
4556 }
4557
4558 rx_desc = E1000_RX_DESC(*rx_ring, i);
4559 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4560
4561 if (unlikely(++i == rx_ring->count))
4562 i = 0;
4563 buffer_info = &rx_ring->buffer_info[i];
4564 }
4565
4566 if (likely(rx_ring->next_to_use != i)) {
4567 rx_ring->next_to_use = i;
4568 if (unlikely(i-- == 0))
4569 i = (rx_ring->count - 1);
4570
4571 /* Force memory writes to complete before letting h/w
4572 * know there are new descriptors to fetch. (Only
4573 * applicable for weak-ordered memory model archs,
4574 * such as IA-64).
4575 */
4576 wmb();
4577 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4578 }
4579}
4580
4581/**
4582 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4583 * @adapter: address of board private structure
4584 **/
4585static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4586 struct e1000_rx_ring *rx_ring,
4587 int cleaned_count)
4588{
4589 struct e1000_hw *hw = &adapter->hw;
4590 struct pci_dev *pdev = adapter->pdev;
4591 struct e1000_rx_desc *rx_desc;
4592 struct e1000_rx_buffer *buffer_info;
4593 unsigned int i;
4594 unsigned int bufsz = adapter->rx_buffer_len;
4595
4596 i = rx_ring->next_to_use;
4597 buffer_info = &rx_ring->buffer_info[i];
4598
4599 while (cleaned_count--) {
4600 void *data;
4601
4602 if (buffer_info->rxbuf.data)
4603 goto skip;
4604
4605 data = e1000_alloc_frag(adapter);
4606 if (!data) {
4607 /* Better luck next round */
4608 adapter->alloc_rx_buff_failed++;
4609 break;
4610 }
4611
4612 /* Fix for errata 23, can't cross 64kB boundary */
4613 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4614 void *olddata = data;
4615 e_err(rx_err, "skb align check failed: %u bytes at "
4616 "%p\n", bufsz, data);
4617 /* Try again, without freeing the previous */
4618 data = e1000_alloc_frag(adapter);
4619 /* Failed allocation, critical failure */
4620 if (!data) {
4621 skb_free_frag(olddata);
4622 adapter->alloc_rx_buff_failed++;
4623 break;
4624 }
4625
4626 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4627 /* give up */
4628 skb_free_frag(data);
4629 skb_free_frag(olddata);
4630 adapter->alloc_rx_buff_failed++;
4631 break;
4632 }
4633
4634 /* Use new allocation */
4635 skb_free_frag(olddata);
4636 }
4637 buffer_info->dma = dma_map_single(&pdev->dev,
4638 data,
4639 adapter->rx_buffer_len,
4640 DMA_FROM_DEVICE);
4641 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4642 skb_free_frag(data);
4643 buffer_info->dma = 0;
4644 adapter->alloc_rx_buff_failed++;
4645 break;
4646 }
4647
4648 /* XXX if it was allocated cleanly it will never map to a
4649 * boundary crossing
4650 */
4651
4652 /* Fix for errata 23, can't cross 64kB boundary */
4653 if (!e1000_check_64k_bound(adapter,
4654 (void *)(unsigned long)buffer_info->dma,
4655 adapter->rx_buffer_len)) {
4656 e_err(rx_err, "dma align check failed: %u bytes at "
4657 "%p\n", adapter->rx_buffer_len,
4658 (void *)(unsigned long)buffer_info->dma);
4659
4660 dma_unmap_single(&pdev->dev, buffer_info->dma,
4661 adapter->rx_buffer_len,
4662 DMA_FROM_DEVICE);
4663
4664 skb_free_frag(data);
4665 buffer_info->rxbuf.data = NULL;
4666 buffer_info->dma = 0;
4667
4668 adapter->alloc_rx_buff_failed++;
4669 break;
4670 }
4671 buffer_info->rxbuf.data = data;
4672 skip:
4673 rx_desc = E1000_RX_DESC(*rx_ring, i);
4674 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4675
4676 if (unlikely(++i == rx_ring->count))
4677 i = 0;
4678 buffer_info = &rx_ring->buffer_info[i];
4679 }
4680
4681 if (likely(rx_ring->next_to_use != i)) {
4682 rx_ring->next_to_use = i;
4683 if (unlikely(i-- == 0))
4684 i = (rx_ring->count - 1);
4685
4686 /* Force memory writes to complete before letting h/w
4687 * know there are new descriptors to fetch. (Only
4688 * applicable for weak-ordered memory model archs,
4689 * such as IA-64).
4690 */
4691 wmb();
4692 writel(i, hw->hw_addr + rx_ring->rdt);
4693 }
4694}
4695
4696/**
4697 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4698 * @adapter:
4699 **/
4700static void e1000_smartspeed(struct e1000_adapter *adapter)
4701{
4702 struct e1000_hw *hw = &adapter->hw;
4703 u16 phy_status;
4704 u16 phy_ctrl;
4705
4706 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4707 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4708 return;
4709
4710 if (adapter->smartspeed == 0) {
4711 /* If Master/Slave config fault is asserted twice,
4712 * we assume back-to-back
4713 */
4714 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4715 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4716 return;
4717 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4718 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4719 return;
4720 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4721 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4722 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4723 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4724 phy_ctrl);
4725 adapter->smartspeed++;
4726 if (!e1000_phy_setup_autoneg(hw) &&
4727 !e1000_read_phy_reg(hw, PHY_CTRL,
4728 &phy_ctrl)) {
4729 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4730 MII_CR_RESTART_AUTO_NEG);
4731 e1000_write_phy_reg(hw, PHY_CTRL,
4732 phy_ctrl);
4733 }
4734 }
4735 return;
4736 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4737 /* If still no link, perhaps using 2/3 pair cable */
4738 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4739 phy_ctrl |= CR_1000T_MS_ENABLE;
4740 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4741 if (!e1000_phy_setup_autoneg(hw) &&
4742 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4743 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4744 MII_CR_RESTART_AUTO_NEG);
4745 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4746 }
4747 }
4748 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4749 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4750 adapter->smartspeed = 0;
4751}
4752
4753/**
4754 * e1000_ioctl -
4755 * @netdev:
4756 * @ifreq:
4757 * @cmd:
4758 **/
4759static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4760{
4761 switch (cmd) {
4762 case SIOCGMIIPHY:
4763 case SIOCGMIIREG:
4764 case SIOCSMIIREG:
4765 return e1000_mii_ioctl(netdev, ifr, cmd);
4766 default:
4767 return -EOPNOTSUPP;
4768 }
4769}
4770
4771/**
4772 * e1000_mii_ioctl -
4773 * @netdev:
4774 * @ifreq:
4775 * @cmd:
4776 **/
4777static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4778 int cmd)
4779{
4780 struct e1000_adapter *adapter = netdev_priv(netdev);
4781 struct e1000_hw *hw = &adapter->hw;
4782 struct mii_ioctl_data *data = if_mii(ifr);
4783 int retval;
4784 u16 mii_reg;
4785 unsigned long flags;
4786
4787 if (hw->media_type != e1000_media_type_copper)
4788 return -EOPNOTSUPP;
4789
4790 switch (cmd) {
4791 case SIOCGMIIPHY:
4792 data->phy_id = hw->phy_addr;
4793 break;
4794 case SIOCGMIIREG:
4795 spin_lock_irqsave(&adapter->stats_lock, flags);
4796 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4797 &data->val_out)) {
4798 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4799 return -EIO;
4800 }
4801 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4802 break;
4803 case SIOCSMIIREG:
4804 if (data->reg_num & ~(0x1F))
4805 return -EFAULT;
4806 mii_reg = data->val_in;
4807 spin_lock_irqsave(&adapter->stats_lock, flags);
4808 if (e1000_write_phy_reg(hw, data->reg_num,
4809 mii_reg)) {
4810 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4811 return -EIO;
4812 }
4813 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4814 if (hw->media_type == e1000_media_type_copper) {
4815 switch (data->reg_num) {
4816 case PHY_CTRL:
4817 if (mii_reg & MII_CR_POWER_DOWN)
4818 break;
4819 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4820 hw->autoneg = 1;
4821 hw->autoneg_advertised = 0x2F;
4822 } else {
4823 u32 speed;
4824 if (mii_reg & 0x40)
4825 speed = SPEED_1000;
4826 else if (mii_reg & 0x2000)
4827 speed = SPEED_100;
4828 else
4829 speed = SPEED_10;
4830 retval = e1000_set_spd_dplx(
4831 adapter, speed,
4832 ((mii_reg & 0x100)
4833 ? DUPLEX_FULL :
4834 DUPLEX_HALF));
4835 if (retval)
4836 return retval;
4837 }
4838 if (netif_running(adapter->netdev))
4839 e1000_reinit_locked(adapter);
4840 else
4841 e1000_reset(adapter);
4842 break;
4843 case M88E1000_PHY_SPEC_CTRL:
4844 case M88E1000_EXT_PHY_SPEC_CTRL:
4845 if (e1000_phy_reset(hw))
4846 return -EIO;
4847 break;
4848 }
4849 } else {
4850 switch (data->reg_num) {
4851 case PHY_CTRL:
4852 if (mii_reg & MII_CR_POWER_DOWN)
4853 break;
4854 if (netif_running(adapter->netdev))
4855 e1000_reinit_locked(adapter);
4856 else
4857 e1000_reset(adapter);
4858 break;
4859 }
4860 }
4861 break;
4862 default:
4863 return -EOPNOTSUPP;
4864 }
4865 return E1000_SUCCESS;
4866}
4867
4868void e1000_pci_set_mwi(struct e1000_hw *hw)
4869{
4870 struct e1000_adapter *adapter = hw->back;
4871 int ret_val = pci_set_mwi(adapter->pdev);
4872
4873 if (ret_val)
4874 e_err(probe, "Error in setting MWI\n");
4875}
4876
4877void e1000_pci_clear_mwi(struct e1000_hw *hw)
4878{
4879 struct e1000_adapter *adapter = hw->back;
4880
4881 pci_clear_mwi(adapter->pdev);
4882}
4883
4884int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4885{
4886 struct e1000_adapter *adapter = hw->back;
4887 return pcix_get_mmrbc(adapter->pdev);
4888}
4889
4890void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4891{
4892 struct e1000_adapter *adapter = hw->back;
4893 pcix_set_mmrbc(adapter->pdev, mmrbc);
4894}
4895
4896void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4897{
4898 outl(value, port);
4899}
4900
4901static bool e1000_vlan_used(struct e1000_adapter *adapter)
4902{
4903 u16 vid;
4904
4905 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4906 return true;
4907 return false;
4908}
4909
4910static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4911 netdev_features_t features)
4912{
4913 struct e1000_hw *hw = &adapter->hw;
4914 u32 ctrl;
4915
4916 ctrl = er32(CTRL);
4917 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4918 /* enable VLAN tag insert/strip */
4919 ctrl |= E1000_CTRL_VME;
4920 } else {
4921 /* disable VLAN tag insert/strip */
4922 ctrl &= ~E1000_CTRL_VME;
4923 }
4924 ew32(CTRL, ctrl);
4925}
4926static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4927 bool filter_on)
4928{
4929 struct e1000_hw *hw = &adapter->hw;
4930 u32 rctl;
4931
4932 if (!test_bit(__E1000_DOWN, &adapter->flags))
4933 e1000_irq_disable(adapter);
4934
4935 __e1000_vlan_mode(adapter, adapter->netdev->features);
4936 if (filter_on) {
4937 /* enable VLAN receive filtering */
4938 rctl = er32(RCTL);
4939 rctl &= ~E1000_RCTL_CFIEN;
4940 if (!(adapter->netdev->flags & IFF_PROMISC))
4941 rctl |= E1000_RCTL_VFE;
4942 ew32(RCTL, rctl);
4943 e1000_update_mng_vlan(adapter);
4944 } else {
4945 /* disable VLAN receive filtering */
4946 rctl = er32(RCTL);
4947 rctl &= ~E1000_RCTL_VFE;
4948 ew32(RCTL, rctl);
4949 }
4950
4951 if (!test_bit(__E1000_DOWN, &adapter->flags))
4952 e1000_irq_enable(adapter);
4953}
4954
4955static void e1000_vlan_mode(struct net_device *netdev,
4956 netdev_features_t features)
4957{
4958 struct e1000_adapter *adapter = netdev_priv(netdev);
4959
4960 if (!test_bit(__E1000_DOWN, &adapter->flags))
4961 e1000_irq_disable(adapter);
4962
4963 __e1000_vlan_mode(adapter, features);
4964
4965 if (!test_bit(__E1000_DOWN, &adapter->flags))
4966 e1000_irq_enable(adapter);
4967}
4968
4969static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4970 __be16 proto, u16 vid)
4971{
4972 struct e1000_adapter *adapter = netdev_priv(netdev);
4973 struct e1000_hw *hw = &adapter->hw;
4974 u32 vfta, index;
4975
4976 if ((hw->mng_cookie.status &
4977 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4978 (vid == adapter->mng_vlan_id))
4979 return 0;
4980
4981 if (!e1000_vlan_used(adapter))
4982 e1000_vlan_filter_on_off(adapter, true);
4983
4984 /* add VID to filter table */
4985 index = (vid >> 5) & 0x7F;
4986 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4987 vfta |= (1 << (vid & 0x1F));
4988 e1000_write_vfta(hw, index, vfta);
4989
4990 set_bit(vid, adapter->active_vlans);
4991
4992 return 0;
4993}
4994
4995static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4996 __be16 proto, u16 vid)
4997{
4998 struct e1000_adapter *adapter = netdev_priv(netdev);
4999 struct e1000_hw *hw = &adapter->hw;
5000 u32 vfta, index;
5001
5002 if (!test_bit(__E1000_DOWN, &adapter->flags))
5003 e1000_irq_disable(adapter);
5004 if (!test_bit(__E1000_DOWN, &adapter->flags))
5005 e1000_irq_enable(adapter);
5006
5007 /* remove VID from filter table */
5008 index = (vid >> 5) & 0x7F;
5009 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5010 vfta &= ~(1 << (vid & 0x1F));
5011 e1000_write_vfta(hw, index, vfta);
5012
5013 clear_bit(vid, adapter->active_vlans);
5014
5015 if (!e1000_vlan_used(adapter))
5016 e1000_vlan_filter_on_off(adapter, false);
5017
5018 return 0;
5019}
5020
5021static void e1000_restore_vlan(struct e1000_adapter *adapter)
5022{
5023 u16 vid;
5024
5025 if (!e1000_vlan_used(adapter))
5026 return;
5027
5028 e1000_vlan_filter_on_off(adapter, true);
5029 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5030 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5031}
5032
5033int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5034{
5035 struct e1000_hw *hw = &adapter->hw;
5036
5037 hw->autoneg = 0;
5038
5039 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5040 * for the switch() below to work
5041 */
5042 if ((spd & 1) || (dplx & ~1))
5043 goto err_inval;
5044
5045 /* Fiber NICs only allow 1000 gbps Full duplex */
5046 if ((hw->media_type == e1000_media_type_fiber) &&
5047 spd != SPEED_1000 &&
5048 dplx != DUPLEX_FULL)
5049 goto err_inval;
5050
5051 switch (spd + dplx) {
5052 case SPEED_10 + DUPLEX_HALF:
5053 hw->forced_speed_duplex = e1000_10_half;
5054 break;
5055 case SPEED_10 + DUPLEX_FULL:
5056 hw->forced_speed_duplex = e1000_10_full;
5057 break;
5058 case SPEED_100 + DUPLEX_HALF:
5059 hw->forced_speed_duplex = e1000_100_half;
5060 break;
5061 case SPEED_100 + DUPLEX_FULL:
5062 hw->forced_speed_duplex = e1000_100_full;
5063 break;
5064 case SPEED_1000 + DUPLEX_FULL:
5065 hw->autoneg = 1;
5066 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5067 break;
5068 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5069 default:
5070 goto err_inval;
5071 }
5072
5073 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5074 hw->mdix = AUTO_ALL_MODES;
5075
5076 return 0;
5077
5078err_inval:
5079 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5080 return -EINVAL;
5081}
5082
5083static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5084{
5085 struct net_device *netdev = pci_get_drvdata(pdev);
5086 struct e1000_adapter *adapter = netdev_priv(netdev);
5087 struct e1000_hw *hw = &adapter->hw;
5088 u32 ctrl, ctrl_ext, rctl, status;
5089 u32 wufc = adapter->wol;
5090#ifdef CONFIG_PM
5091 int retval = 0;
5092#endif
5093
5094 netif_device_detach(netdev);
5095
5096 if (netif_running(netdev)) {
5097 int count = E1000_CHECK_RESET_COUNT;
5098
5099 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5100 usleep_range(10000, 20000);
5101
5102 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5103 e1000_down(adapter);
5104 }
5105
5106#ifdef CONFIG_PM
5107 retval = pci_save_state(pdev);
5108 if (retval)
5109 return retval;
5110#endif
5111
5112 status = er32(STATUS);
5113 if (status & E1000_STATUS_LU)
5114 wufc &= ~E1000_WUFC_LNKC;
5115
5116 if (wufc) {
5117 e1000_setup_rctl(adapter);
5118 e1000_set_rx_mode(netdev);
5119
5120 rctl = er32(RCTL);
5121
5122 /* turn on all-multi mode if wake on multicast is enabled */
5123 if (wufc & E1000_WUFC_MC)
5124 rctl |= E1000_RCTL_MPE;
5125
5126 /* enable receives in the hardware */
5127 ew32(RCTL, rctl | E1000_RCTL_EN);
5128
5129 if (hw->mac_type >= e1000_82540) {
5130 ctrl = er32(CTRL);
5131 /* advertise wake from D3Cold */
5132 #define E1000_CTRL_ADVD3WUC 0x00100000
5133 /* phy power management enable */
5134 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5135 ctrl |= E1000_CTRL_ADVD3WUC |
5136 E1000_CTRL_EN_PHY_PWR_MGMT;
5137 ew32(CTRL, ctrl);
5138 }
5139
5140 if (hw->media_type == e1000_media_type_fiber ||
5141 hw->media_type == e1000_media_type_internal_serdes) {
5142 /* keep the laser running in D3 */
5143 ctrl_ext = er32(CTRL_EXT);
5144 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5145 ew32(CTRL_EXT, ctrl_ext);
5146 }
5147
5148 ew32(WUC, E1000_WUC_PME_EN);
5149 ew32(WUFC, wufc);
5150 } else {
5151 ew32(WUC, 0);
5152 ew32(WUFC, 0);
5153 }
5154
5155 e1000_release_manageability(adapter);
5156
5157 *enable_wake = !!wufc;
5158
5159 /* make sure adapter isn't asleep if manageability is enabled */
5160 if (adapter->en_mng_pt)
5161 *enable_wake = true;
5162
5163 if (netif_running(netdev))
5164 e1000_free_irq(adapter);
5165
5166 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5167 pci_disable_device(pdev);
5168
5169 return 0;
5170}
5171
5172#ifdef CONFIG_PM
5173static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5174{
5175 int retval;
5176 bool wake;
5177
5178 retval = __e1000_shutdown(pdev, &wake);
5179 if (retval)
5180 return retval;
5181
5182 if (wake) {
5183 pci_prepare_to_sleep(pdev);
5184 } else {
5185 pci_wake_from_d3(pdev, false);
5186 pci_set_power_state(pdev, PCI_D3hot);
5187 }
5188
5189 return 0;
5190}
5191
5192static int e1000_resume(struct pci_dev *pdev)
5193{
5194 struct net_device *netdev = pci_get_drvdata(pdev);
5195 struct e1000_adapter *adapter = netdev_priv(netdev);
5196 struct e1000_hw *hw = &adapter->hw;
5197 u32 err;
5198
5199 pci_set_power_state(pdev, PCI_D0);
5200 pci_restore_state(pdev);
5201 pci_save_state(pdev);
5202
5203 if (adapter->need_ioport)
5204 err = pci_enable_device(pdev);
5205 else
5206 err = pci_enable_device_mem(pdev);
5207 if (err) {
5208 pr_err("Cannot enable PCI device from suspend\n");
5209 return err;
5210 }
5211
5212 /* flush memory to make sure state is correct */
5213 smp_mb__before_atomic();
5214 clear_bit(__E1000_DISABLED, &adapter->flags);
5215 pci_set_master(pdev);
5216
5217 pci_enable_wake(pdev, PCI_D3hot, 0);
5218 pci_enable_wake(pdev, PCI_D3cold, 0);
5219
5220 if (netif_running(netdev)) {
5221 err = e1000_request_irq(adapter);
5222 if (err)
5223 return err;
5224 }
5225
5226 e1000_power_up_phy(adapter);
5227 e1000_reset(adapter);
5228 ew32(WUS, ~0);
5229
5230 e1000_init_manageability(adapter);
5231
5232 if (netif_running(netdev))
5233 e1000_up(adapter);
5234
5235 netif_device_attach(netdev);
5236
5237 return 0;
5238}
5239#endif
5240
5241static void e1000_shutdown(struct pci_dev *pdev)
5242{
5243 bool wake;
5244
5245 __e1000_shutdown(pdev, &wake);
5246
5247 if (system_state == SYSTEM_POWER_OFF) {
5248 pci_wake_from_d3(pdev, wake);
5249 pci_set_power_state(pdev, PCI_D3hot);
5250 }
5251}
5252
5253#ifdef CONFIG_NET_POLL_CONTROLLER
5254/* Polling 'interrupt' - used by things like netconsole to send skbs
5255 * without having to re-enable interrupts. It's not called while
5256 * the interrupt routine is executing.
5257 */
5258static void e1000_netpoll(struct net_device *netdev)
5259{
5260 struct e1000_adapter *adapter = netdev_priv(netdev);
5261
5262 if (disable_hardirq(adapter->pdev->irq))
5263 e1000_intr(adapter->pdev->irq, netdev);
5264 enable_irq(adapter->pdev->irq);
5265}
5266#endif
5267
5268/**
5269 * e1000_io_error_detected - called when PCI error is detected
5270 * @pdev: Pointer to PCI device
5271 * @state: The current pci connection state
5272 *
5273 * This function is called after a PCI bus error affecting
5274 * this device has been detected.
5275 */
5276static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5277 pci_channel_state_t state)
5278{
5279 struct net_device *netdev = pci_get_drvdata(pdev);
5280 struct e1000_adapter *adapter = netdev_priv(netdev);
5281
5282 netif_device_detach(netdev);
5283
5284 if (state == pci_channel_io_perm_failure)
5285 return PCI_ERS_RESULT_DISCONNECT;
5286
5287 if (netif_running(netdev))
5288 e1000_down(adapter);
5289
5290 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5291 pci_disable_device(pdev);
5292
5293 /* Request a slot slot reset. */
5294 return PCI_ERS_RESULT_NEED_RESET;
5295}
5296
5297/**
5298 * e1000_io_slot_reset - called after the pci bus has been reset.
5299 * @pdev: Pointer to PCI device
5300 *
5301 * Restart the card from scratch, as if from a cold-boot. Implementation
5302 * resembles the first-half of the e1000_resume routine.
5303 */
5304static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5305{
5306 struct net_device *netdev = pci_get_drvdata(pdev);
5307 struct e1000_adapter *adapter = netdev_priv(netdev);
5308 struct e1000_hw *hw = &adapter->hw;
5309 int err;
5310
5311 if (adapter->need_ioport)
5312 err = pci_enable_device(pdev);
5313 else
5314 err = pci_enable_device_mem(pdev);
5315 if (err) {
5316 pr_err("Cannot re-enable PCI device after reset.\n");
5317 return PCI_ERS_RESULT_DISCONNECT;
5318 }
5319
5320 /* flush memory to make sure state is correct */
5321 smp_mb__before_atomic();
5322 clear_bit(__E1000_DISABLED, &adapter->flags);
5323 pci_set_master(pdev);
5324
5325 pci_enable_wake(pdev, PCI_D3hot, 0);
5326 pci_enable_wake(pdev, PCI_D3cold, 0);
5327
5328 e1000_reset(adapter);
5329 ew32(WUS, ~0);
5330
5331 return PCI_ERS_RESULT_RECOVERED;
5332}
5333
5334/**
5335 * e1000_io_resume - called when traffic can start flowing again.
5336 * @pdev: Pointer to PCI device
5337 *
5338 * This callback is called when the error recovery driver tells us that
5339 * its OK to resume normal operation. Implementation resembles the
5340 * second-half of the e1000_resume routine.
5341 */
5342static void e1000_io_resume(struct pci_dev *pdev)
5343{
5344 struct net_device *netdev = pci_get_drvdata(pdev);
5345 struct e1000_adapter *adapter = netdev_priv(netdev);
5346
5347 e1000_init_manageability(adapter);
5348
5349 if (netif_running(netdev)) {
5350 if (e1000_up(adapter)) {
5351 pr_info("can't bring device back up after reset\n");
5352 return;
5353 }
5354 }
5355
5356 netif_device_attach(netdev);
5357}
5358
5359/* e1000_main.c */