Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
 
 
 
 
  10 */
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/kvm_host.h>
  14#include "linux/lockdep.h"
  15#include <linux/export.h>
  16#include <linux/vmalloc.h>
  17#include <linux/uaccess.h>
  18#include <linux/sched/stat.h>
  19
  20#include <asm/processor.h>
  21#include <asm/user.h>
  22#include <asm/fpu/xstate.h>
  23#include <asm/sgx.h>
  24#include <asm/cpuid.h>
  25#include "cpuid.h"
  26#include "lapic.h"
  27#include "mmu.h"
  28#include "trace.h"
  29#include "pmu.h"
  30#include "xen.h"
  31
  32/*
  33 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  34 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  35 */
  36u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
  37EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  38
  39struct cpuid_xstate_sizes {
  40	u32 eax;
  41	u32 ebx;
  42	u32 ecx;
  43};
  44
  45static struct cpuid_xstate_sizes xstate_sizes[XFEATURE_MAX] __ro_after_init;
  46
  47void __init kvm_init_xstate_sizes(void)
  48{
  49	u32 ign;
  50	int i;
  51
  52	for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes); i++) {
  53		struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
  54
  55		cpuid_count(0xD, i, &xs->eax, &xs->ebx, &xs->ecx, &ign);
  56	}
  57}
  58
  59u32 xstate_required_size(u64 xstate_bv, bool compacted)
  60{
  61	int feature_bit = 0;
  62	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  63
  64	xstate_bv &= XFEATURE_MASK_EXTEND;
  65	while (xstate_bv) {
  66		if (xstate_bv & 0x1) {
  67			struct cpuid_xstate_sizes *xs = &xstate_sizes[feature_bit];
  68			u32 offset;
  69
  70			/* ECX[1]: 64B alignment in compacted form */
  71			if (compacted)
  72				offset = (xs->ecx & 0x2) ? ALIGN(ret, 64) : ret;
  73			else
  74				offset = xs->ebx;
  75			ret = max(ret, offset + xs->eax);
  76		}
  77
  78		xstate_bv >>= 1;
  79		feature_bit++;
  80	}
  81
  82	return ret;
  83}
  84
  85#define F feature_bit
  86
  87/* Scattered Flag - For features that are scattered by cpufeatures.h. */
  88#define SF(name)						\
  89({								\
  90	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
  91	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
  92})
  93
  94/*
  95 * Magic value used by KVM when querying userspace-provided CPUID entries and
  96 * doesn't care about the CPIUD index because the index of the function in
  97 * question is not significant.  Note, this magic value must have at least one
  98 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
  99 * to avoid false positives when processing guest CPUID input.
 100 */
 101#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
 102
 103static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
 104	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
 105{
 106	struct kvm_cpuid_entry2 *e;
 107	int i;
 
 
 108
 109	/*
 110	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
 111	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
 112	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
 113	 * typically disabled in KVM only when KVM is in a performance critical
 114	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
 115	 * if this rule is violated, this assertion is purely to flag potential
 116	 * performance issues.  If this fires, consider moving the lookup out
 117	 * of the hotpath, e.g. by caching information during CPUID updates.
 118	 */
 119	lockdep_assert_irqs_enabled();
 120
 121	for (i = 0; i < nent; i++) {
 122		e = &entries[i];
 123
 124		if (e->function != function)
 125			continue;
 126
 127		/*
 128		 * If the index isn't significant, use the first entry with a
 129		 * matching function.  It's userspace's responsibility to not
 130		 * provide "duplicate" entries in all cases.
 131		 */
 132		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
 133			return e;
 134
 
 
 135
 136		/*
 137		 * Similarly, use the first matching entry if KVM is doing a
 138		 * lookup (as opposed to emulating CPUID) for a function that's
 139		 * architecturally defined as not having a significant index.
 140		 */
 141		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
 142			/*
 143			 * Direct lookups from KVM should not diverge from what
 144			 * KVM defines internally (the architectural behavior).
 145			 */
 146			WARN_ON_ONCE(cpuid_function_is_indexed(function));
 147			return e;
 148		}
 149	}
 150
 151	return NULL;
 152}
 153
 154static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
 155			   struct kvm_cpuid_entry2 *entries,
 156			   int nent)
 157{
 158	struct kvm_cpuid_entry2 *best;
 159	u64 xfeatures;
 160
 161	/*
 162	 * The existing code assumes virtual address is 48-bit or 57-bit in the
 163	 * canonical address checks; exit if it is ever changed.
 164	 */
 165	best = cpuid_entry2_find(entries, nent, 0x80000008,
 166				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 167	if (best) {
 168		int vaddr_bits = (best->eax & 0xff00) >> 8;
 169
 170		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
 171			return -EINVAL;
 172	}
 173
 174	/*
 175	 * Exposing dynamic xfeatures to the guest requires additional
 176	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
 177	 */
 178	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 179	if (!best)
 180		return 0;
 181
 182	xfeatures = best->eax | ((u64)best->edx << 32);
 183	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
 184	if (!xfeatures)
 185		return 0;
 186
 187	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
 188}
 189
 190/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
 191static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 192				 int nent)
 193{
 194	struct kvm_cpuid_entry2 *orig;
 195	int i;
 196
 197	if (nent != vcpu->arch.cpuid_nent)
 198		return -EINVAL;
 
 199
 200	for (i = 0; i < nent; i++) {
 201		orig = &vcpu->arch.cpuid_entries[i];
 202		if (e2[i].function != orig->function ||
 203		    e2[i].index != orig->index ||
 204		    e2[i].flags != orig->flags ||
 205		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
 206		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
 207			return -EINVAL;
 208	}
 209
 210	return 0;
 211}
 212
 213static struct kvm_hypervisor_cpuid __kvm_get_hypervisor_cpuid(struct kvm_cpuid_entry2 *entries,
 214							      int nent, const char *sig)
 215{
 216	struct kvm_hypervisor_cpuid cpuid = {};
 217	struct kvm_cpuid_entry2 *entry;
 218	u32 base;
 219
 220	for_each_possible_hypervisor_cpuid_base(base) {
 221		entry = cpuid_entry2_find(entries, nent, base, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 222
 223		if (entry) {
 224			u32 signature[3];
 225
 226			signature[0] = entry->ebx;
 227			signature[1] = entry->ecx;
 228			signature[2] = entry->edx;
 229
 230			if (!memcmp(signature, sig, sizeof(signature))) {
 231				cpuid.base = base;
 232				cpuid.limit = entry->eax;
 233				break;
 234			}
 235		}
 236	}
 237
 238	return cpuid;
 239}
 240
 241static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
 242							    const char *sig)
 243{
 244	return __kvm_get_hypervisor_cpuid(vcpu->arch.cpuid_entries,
 245					  vcpu->arch.cpuid_nent, sig);
 246}
 247
 248static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_cpuid_entry2 *entries,
 249							      int nent, u32 kvm_cpuid_base)
 250{
 251	return cpuid_entry2_find(entries, nent, kvm_cpuid_base | KVM_CPUID_FEATURES,
 252				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 253}
 254
 255static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
 256{
 257	u32 base = vcpu->arch.kvm_cpuid.base;
 258
 259	if (!base)
 260		return NULL;
 261
 262	return __kvm_find_kvm_cpuid_features(vcpu->arch.cpuid_entries,
 263					     vcpu->arch.cpuid_nent, base);
 264}
 265
 266void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
 267{
 268	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
 269
 270	/*
 271	 * save the feature bitmap to avoid cpuid lookup for every PV
 272	 * operation
 273	 */
 274	if (best)
 275		vcpu->arch.pv_cpuid.features = best->eax;
 276}
 277
 278/*
 279 * Calculate guest's supported XCR0 taking into account guest CPUID data and
 280 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
 281 */
 282static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
 283{
 284	struct kvm_cpuid_entry2 *best;
 285
 286	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 287	if (!best)
 288		return 0;
 289
 290	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
 291}
 292
 293static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
 294				       int nent)
 295{
 296	struct kvm_cpuid_entry2 *best;
 297	struct kvm_hypervisor_cpuid kvm_cpuid;
 298
 299	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 300	if (best) {
 301		/* Update OSXSAVE bit */
 302		if (boot_cpu_has(X86_FEATURE_XSAVE))
 303			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
 304					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
 305
 306		cpuid_entry_change(best, X86_FEATURE_APIC,
 307			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
 308	}
 309
 310	best = cpuid_entry2_find(entries, nent, 7, 0);
 311	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
 312		cpuid_entry_change(best, X86_FEATURE_OSPKE,
 313				   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
 314
 315	best = cpuid_entry2_find(entries, nent, 0xD, 0);
 316	if (best)
 317		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
 318
 319	best = cpuid_entry2_find(entries, nent, 0xD, 1);
 320	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 321		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 322		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 323
 324	kvm_cpuid = __kvm_get_hypervisor_cpuid(entries, nent, KVM_SIGNATURE);
 325	if (kvm_cpuid.base) {
 326		best = __kvm_find_kvm_cpuid_features(entries, nent, kvm_cpuid.base);
 327		if (kvm_hlt_in_guest(vcpu->kvm) && best)
 328			best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 329	}
 330
 331	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 332		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 333		if (best)
 334			cpuid_entry_change(best, X86_FEATURE_MWAIT,
 335					   vcpu->arch.ia32_misc_enable_msr &
 336					   MSR_IA32_MISC_ENABLE_MWAIT);
 337	}
 338}
 339
 340void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
 341{
 342	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 343}
 344EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
 345
 346static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
 347{
 348#ifdef CONFIG_KVM_HYPERV
 349	struct kvm_cpuid_entry2 *entry;
 350
 351	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
 352				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 353	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
 354#else
 355	return false;
 356#endif
 357}
 358
 359static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
 360{
 361	struct kvm_cpuid_entry2 *entry;
 362
 363	entry = kvm_find_cpuid_entry(vcpu, 0);
 364	if (!entry)
 365		return false;
 366
 367	return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
 368	       is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
 369}
 370
 371static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 372{
 373	struct kvm_lapic *apic = vcpu->arch.apic;
 374	struct kvm_cpuid_entry2 *best;
 375	bool allow_gbpages;
 376
 377	BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
 378	bitmap_zero(vcpu->arch.governed_features.enabled,
 379		    KVM_MAX_NR_GOVERNED_FEATURES);
 380
 381	/*
 382	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
 383	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
 384	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
 385	 * walk for performance and complexity reasons.  Not to mention KVM
 386	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
 387	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
 388	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
 389	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
 390	 * and can install smaller shadow pages if the host lacks 1GiB support.
 391	 */
 392	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
 393				      guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
 394	if (allow_gbpages)
 395		kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
 396
 397	best = kvm_find_cpuid_entry(vcpu, 1);
 398	if (best && apic) {
 399		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 400			apic->lapic_timer.timer_mode_mask = 3 << 17;
 401		else
 402			apic->lapic_timer.timer_mode_mask = 1 << 17;
 403
 404		kvm_apic_set_version(vcpu);
 
 
 
 
 
 
 
 
 
 
 405	}
 406
 407	vcpu->arch.guest_supported_xcr0 =
 408		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 409
 410	kvm_update_pv_runtime(vcpu);
 411
 412	vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
 413	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 414	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 415
 416	kvm_pmu_refresh(vcpu);
 417	vcpu->arch.cr4_guest_rsvd_bits =
 418	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
 419
 420	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
 421						    vcpu->arch.cpuid_nent));
 422
 423	/* Invoke the vendor callback only after the above state is updated. */
 424	kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
 425
 426	/*
 427	 * Except for the MMU, which needs to do its thing any vendor specific
 428	 * adjustments to the reserved GPA bits.
 429	 */
 430	kvm_mmu_after_set_cpuid(vcpu);
 431}
 432
 433int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 434{
 435	struct kvm_cpuid_entry2 *best;
 436
 437	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
 438	if (!best || best->eax < 0x80000008)
 439		goto not_found;
 440	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
 441	if (best)
 442		return best->eax & 0xff;
 443not_found:
 444	return 36;
 445}
 446
 447/*
 448 * This "raw" version returns the reserved GPA bits without any adjustments for
 449 * encryption technologies that usurp bits.  The raw mask should be used if and
 450 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
 451 */
 452u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
 453{
 454	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
 455}
 456
 457static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 458                        int nent)
 459{
 460	int r;
 461
 462	__kvm_update_cpuid_runtime(vcpu, e2, nent);
 463
 464	/*
 465	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
 466	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
 467	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
 468	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
 469	 * the core vCPU model on the fly. It would've been better to forbid any
 470	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
 471	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
 472	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
 473	 * whether the supplied CPUID data is equal to what's already set.
 474	 */
 475	if (kvm_vcpu_has_run(vcpu)) {
 476		r = kvm_cpuid_check_equal(vcpu, e2, nent);
 477		if (r)
 478			return r;
 479
 480		kvfree(e2);
 481		return 0;
 482	}
 483
 484#ifdef CONFIG_KVM_HYPERV
 485	if (kvm_cpuid_has_hyperv(e2, nent)) {
 486		r = kvm_hv_vcpu_init(vcpu);
 487		if (r)
 488			return r;
 489	}
 490#endif
 491
 492	r = kvm_check_cpuid(vcpu, e2, nent);
 493	if (r)
 494		return r;
 495
 496	kvfree(vcpu->arch.cpuid_entries);
 497	vcpu->arch.cpuid_entries = e2;
 498	vcpu->arch.cpuid_nent = nent;
 499
 500	vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
 501#ifdef CONFIG_KVM_XEN
 502	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
 503#endif
 504	kvm_vcpu_after_set_cpuid(vcpu);
 505
 506	return 0;
 507}
 508
 509/* when an old userspace process fills a new kernel module */
 510int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 511			     struct kvm_cpuid *cpuid,
 512			     struct kvm_cpuid_entry __user *entries)
 513{
 514	int r, i;
 515	struct kvm_cpuid_entry *e = NULL;
 516	struct kvm_cpuid_entry2 *e2 = NULL;
 517
 
 518	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 519		return -E2BIG;
 520
 521	if (cpuid->nent) {
 522		e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
 523		if (IS_ERR(e))
 524			return PTR_ERR(e);
 525
 526		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
 527		if (!e2) {
 528			r = -ENOMEM;
 529			goto out_free_cpuid;
 530		}
 531	}
 532	for (i = 0; i < cpuid->nent; i++) {
 533		e2[i].function = e[i].function;
 534		e2[i].eax = e[i].eax;
 535		e2[i].ebx = e[i].ebx;
 536		e2[i].ecx = e[i].ecx;
 537		e2[i].edx = e[i].edx;
 538		e2[i].index = 0;
 539		e2[i].flags = 0;
 540		e2[i].padding[0] = 0;
 541		e2[i].padding[1] = 0;
 542		e2[i].padding[2] = 0;
 543	}
 544
 545	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 546	if (r)
 547		kvfree(e2);
 548
 549out_free_cpuid:
 550	kvfree(e);
 551
 
 
 552	return r;
 553}
 554
 555int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 556			      struct kvm_cpuid2 *cpuid,
 557			      struct kvm_cpuid_entry2 __user *entries)
 558{
 559	struct kvm_cpuid_entry2 *e2 = NULL;
 560	int r;
 561
 
 562	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 563		return -E2BIG;
 564
 565	if (cpuid->nent) {
 566		e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
 567		if (IS_ERR(e2))
 568			return PTR_ERR(e2);
 569	}
 570
 571	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 572	if (r)
 573		kvfree(e2);
 574
 575	return r;
 576}
 577
 578int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 579			      struct kvm_cpuid2 *cpuid,
 580			      struct kvm_cpuid_entry2 __user *entries)
 581{
 582	if (cpuid->nent < vcpu->arch.cpuid_nent)
 583		return -E2BIG;
 584
 585	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
 
 
 
 
 586			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 587		return -EFAULT;
 
 588
 
 589	cpuid->nent = vcpu->arch.cpuid_nent;
 590	return 0;
 591}
 592
 593/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
 594static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
 595{
 596	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 597	struct kvm_cpuid_entry2 entry;
 598
 599	reverse_cpuid_check(leaf);
 600
 601	cpuid_count(cpuid.function, cpuid.index,
 602		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 603
 604	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 605}
 606
 607static __always_inline
 608void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
 609{
 610	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
 611	BUILD_BUG_ON(leaf < NCAPINTS);
 612
 613	kvm_cpu_caps[leaf] = mask;
 614
 615	__kvm_cpu_cap_mask(leaf);
 616}
 617
 618static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 
 619{
 620	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
 621	BUILD_BUG_ON(leaf >= NCAPINTS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622
 623	kvm_cpu_caps[leaf] &= mask;
 
 624
 625	__kvm_cpu_cap_mask(leaf);
 626}
 627
 628void kvm_set_cpu_caps(void)
 
 629{
 
 
 630#ifdef CONFIG_X86_64
 631	unsigned int f_gbpages = F(GBPAGES);
 632	unsigned int f_lm = F(LM);
 633	unsigned int f_xfd = F(XFD);
 634#else
 635	unsigned int f_gbpages = 0;
 636	unsigned int f_lm = 0;
 637	unsigned int f_xfd = 0;
 638#endif
 639	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
 640
 641	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
 642		     sizeof(boot_cpu_data.x86_capability));
 643
 644	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 645	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
 646
 647	kvm_cpu_cap_mask(CPUID_1_ECX,
 648		/*
 649		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 650		 * advertised to guests via CPUID!
 651		 */
 652		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 653		0 /* DS-CPL, VMX, SMX, EST */ |
 654		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 655		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 656		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 657		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 658		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 659		F(F16C) | F(RDRAND)
 660	);
 661	/* KVM emulates x2apic in software irrespective of host support. */
 662	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 663
 664	kvm_cpu_cap_mask(CPUID_1_EDX,
 
 665		F(FPU) | F(VME) | F(DE) | F(PSE) |
 666		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 667		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 668		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 669		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 670		0 /* Reserved, DS, ACPI */ | F(MMX) |
 671		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 672		0 /* HTT, TM, Reserved, PBE */
 673	);
 674
 675	kvm_cpu_cap_mask(CPUID_7_0_EBX,
 676		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
 677		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
 678		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
 679		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
 680		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
 681		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
 682		F(AVX512VL));
 683
 684	kvm_cpu_cap_mask(CPUID_7_ECX,
 685		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 686		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 687		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 688		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
 689		F(SGX_LC) | F(BUS_LOCK_DETECT)
 690	);
 691	/* Set LA57 based on hardware capability. */
 692	if (cpuid_ecx(7) & F(LA57))
 693		kvm_cpu_cap_set(X86_FEATURE_LA57);
 694
 695	/*
 696	 * PKU not yet implemented for shadow paging and requires OSPKE
 697	 * to be set on the host. Clear it if that is not the case
 698	 */
 699	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 700		kvm_cpu_cap_clear(X86_FEATURE_PKU);
 701
 702	kvm_cpu_cap_mask(CPUID_7_EDX,
 703		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 704		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 705		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 706		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
 707		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
 708	);
 709
 710	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 711	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 712	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 713
 714	if (boot_cpu_has(X86_FEATURE_AMD_IBPB_RET) &&
 715	    boot_cpu_has(X86_FEATURE_AMD_IBPB) &&
 716	    boot_cpu_has(X86_FEATURE_AMD_IBRS))
 717		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 718	if (boot_cpu_has(X86_FEATURE_STIBP))
 719		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 720	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 721		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 722
 723	kvm_cpu_cap_mask(CPUID_7_1_EAX,
 724		F(SHA512) | F(SM3) | F(SM4) | F(AVX_VNNI) | F(AVX512_BF16) |
 725		F(CMPCCXADD) | F(FZRM) | F(FSRS) | F(FSRC) | F(AMX_FP16) |
 726		F(AVX_IFMA) | F(LAM)
 727	);
 728
 729	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
 730		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(AMX_COMPLEX) |
 731		F(AVX_VNNI_INT16) | F(PREFETCHITI) | F(AVX10)
 732	);
 733
 734	kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
 735		F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
 736		F(BHI_CTRL) | F(MCDT_NO)
 737	);
 738
 739	kvm_cpu_cap_mask(CPUID_D_1_EAX,
 740		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
 741	);
 742
 743	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
 744		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
 745	);
 746
 747	kvm_cpu_cap_init_kvm_defined(CPUID_24_0_EBX,
 748		F(AVX10_128) | F(AVX10_256) | F(AVX10_512)
 749	);
 750
 751	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 752		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 753		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 754		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 755		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 756		F(TOPOEXT) | 0 /* PERFCTR_CORE */
 757	);
 758
 759	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 760		F(FPU) | F(VME) | F(DE) | F(PSE) |
 761		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 762		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 763		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 764		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 765		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 766		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 767		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 768	);
 769
 770	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 771		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 772
 773	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
 774		SF(CONSTANT_TSC)
 775	);
 776
 777	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 778		F(CLZERO) | F(XSAVEERPTR) |
 779		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 780		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
 781		F(AMD_PSFD) | F(AMD_IBPB_RET)
 782	);
 783
 784	/*
 785	 * AMD has separate bits for each SPEC_CTRL bit.
 786	 * arch/x86/kernel/cpu/bugs.c is kind enough to
 787	 * record that in cpufeatures so use them.
 788	 */
 789	if (boot_cpu_has(X86_FEATURE_IBPB)) {
 790		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 791		if (boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
 792		    !boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB))
 793			kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB_RET);
 794	}
 795	if (boot_cpu_has(X86_FEATURE_IBRS))
 796		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 797	if (boot_cpu_has(X86_FEATURE_STIBP))
 798		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 799	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 800		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 801	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 802		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 803	/*
 804	 * The preference is to use SPEC CTRL MSR instead of the
 805	 * VIRT_SPEC MSR.
 806	 */
 807	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 808	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 809		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 810
 811	/*
 812	 * Hide all SVM features by default, SVM will set the cap bits for
 813	 * features it emulates and/or exposes for L1.
 814	 */
 815	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 816
 817	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
 818		0 /* SME */ | 0 /* SEV */ | 0 /* VM_PAGE_FLUSH */ | 0 /* SEV_ES */ |
 819		F(SME_COHERENT));
 820
 821	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
 822		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
 823		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
 824		F(WRMSR_XX_BASE_NS)
 825	);
 826
 827	kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
 828	kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
 829	kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
 830
 831	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
 832		F(PERFMON_V2)
 833	);
 834
 835	/*
 836	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
 837	 * KVM's supported CPUID if the feature is reported as supported by the
 838	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
 839	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
 840	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
 841	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
 842	 * the mask with the raw host CPUID, and reporting support in AMD's
 843	 * leaf can make it easier for userspace to detect the feature.
 844	 */
 845	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
 846		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
 847	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
 848		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
 849	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
 850
 851	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 
 852		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 853		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 854		F(PMM) | F(PMM_EN)
 855	);
 856
 857	/*
 858	 * Hide RDTSCP and RDPID if either feature is reported as supported but
 859	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
 860	 * should never happen, but the guest will likely crash if RDTSCP or
 861	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
 862	 * the past.  For example, the sanity check may fire if this instance of
 863	 * KVM is running as L1 on top of an older, broken KVM.
 864	 */
 865	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
 866		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
 867		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
 868		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
 869		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
 870	}
 871}
 872EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 873
 874struct kvm_cpuid_array {
 875	struct kvm_cpuid_entry2 *entries;
 876	int maxnent;
 877	int nent;
 878};
 879
 880static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
 881{
 882	if (array->nent >= array->maxnent)
 883		return NULL;
 884
 885	return &array->entries[array->nent++];
 886}
 887
 888static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 889					      u32 function, u32 index)
 890{
 891	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
 892
 893	if (!entry)
 894		return NULL;
 895
 896	memset(entry, 0, sizeof(*entry));
 897	entry->function = function;
 898	entry->index = index;
 899	switch (function & 0xC0000000) {
 900	case 0x40000000:
 901		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
 902		return entry;
 903
 904	case 0x80000000:
 905		/*
 906		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
 907		 * would result in out-of-bounds calls to do_host_cpuid.
 908		 */
 909		{
 910			static int max_cpuid_80000000;
 911			if (!READ_ONCE(max_cpuid_80000000))
 912				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
 913			if (function > READ_ONCE(max_cpuid_80000000))
 914				return entry;
 915		}
 916		break;
 917
 918	default:
 919		break;
 920	}
 921
 922	cpuid_count(entry->function, entry->index,
 923		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 924
 925	if (cpuid_function_is_indexed(function))
 926		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 927
 928	return entry;
 929}
 930
 931static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 932{
 933	struct kvm_cpuid_entry2 *entry;
 934
 935	if (array->nent >= array->maxnent)
 936		return -E2BIG;
 937
 938	entry = &array->entries[array->nent];
 939	entry->function = func;
 940	entry->index = 0;
 941	entry->flags = 0;
 942
 943	switch (func) {
 944	case 0:
 945		entry->eax = 7;
 946		++array->nent;
 947		break;
 948	case 1:
 949		entry->ecx = F(MOVBE);
 950		++array->nent;
 951		break;
 952	case 7:
 953		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 954		entry->eax = 0;
 955		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
 956			entry->ecx = F(RDPID);
 957		++array->nent;
 958		break;
 959	default:
 960		break;
 961	}
 962
 963	return 0;
 964}
 965
 966static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 967{
 968	struct kvm_cpuid_entry2 *entry;
 969	int r, i, max_idx;
 970
 971	/* all calls to cpuid_count() should be made on the same cpu */
 972	get_cpu();
 973
 974	r = -E2BIG;
 975
 976	entry = do_host_cpuid(array, function, 0);
 977	if (!entry)
 978		goto out;
 979
 
 
 
 980	switch (function) {
 981	case 0:
 982		/* Limited to the highest leaf implemented in KVM. */
 983		entry->eax = min(entry->eax, 0x24U);
 984		break;
 985	case 1:
 986		cpuid_entry_override(entry, CPUID_1_EDX);
 987		cpuid_entry_override(entry, CPUID_1_ECX);
 988		break;
 989	case 2:
 990		/*
 991		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 992		 * CPUID(function=2, index=0) may return different results each
 993		 * time, with the least-significant byte in EAX enumerating the
 994		 * number of times software should do CPUID(2, 0).
 995		 *
 996		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 997		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 998		 * return 01H. Software should ignore this value and not
 999		 * interpret it as an informational descriptor", while AMD's
1000		 * APM states that CPUID(2) is reserved.
1001		 *
1002		 * WARN if a frankenstein CPU that supports virtualization and
1003		 * a stateful CPUID.0x2 is encountered.
1004		 */
1005		WARN_ON_ONCE((entry->eax & 0xff) > 1);
 
 
 
 
 
1006		break;
1007	/* functions 4 and 0x8000001d have additional index. */
1008	case 4:
1009	case 0x8000001d:
1010		/*
1011		 * Read entries until the cache type in the previous entry is
1012		 * zero, i.e. indicates an invalid entry.
1013		 */
1014		for (i = 1; entry->eax & 0x1f; ++i) {
1015			entry = do_host_cpuid(array, function, i);
1016			if (!entry)
1017				goto out;
 
 
 
 
 
 
 
 
1018		}
1019		break;
 
1020	case 6: /* Thermal management */
1021		entry->eax = 0x4; /* allow ARAT */
1022		entry->ebx = 0;
1023		entry->ecx = 0;
1024		entry->edx = 0;
1025		break;
1026	/* function 7 has additional index. */
1027	case 7:
1028		max_idx = entry->eax = min(entry->eax, 2u);
1029		cpuid_entry_override(entry, CPUID_7_0_EBX);
1030		cpuid_entry_override(entry, CPUID_7_ECX);
1031		cpuid_entry_override(entry, CPUID_7_EDX);
1032
1033		/* KVM only supports up to 0x7.2, capped above via min(). */
1034		if (max_idx >= 1) {
1035			entry = do_host_cpuid(array, function, 1);
1036			if (!entry)
1037				goto out;
1038
1039			cpuid_entry_override(entry, CPUID_7_1_EAX);
1040			cpuid_entry_override(entry, CPUID_7_1_EDX);
 
 
 
 
 
 
 
1041			entry->ebx = 0;
1042			entry->ecx = 0;
 
1043		}
1044		if (max_idx >= 2) {
1045			entry = do_host_cpuid(array, function, 2);
1046			if (!entry)
1047				goto out;
1048
1049			cpuid_entry_override(entry, CPUID_7_2_EDX);
1050			entry->ecx = 0;
1051			entry->ebx = 0;
1052			entry->eax = 0;
1053		}
1054		break;
1055	case 0xa: { /* Architectural Performance Monitoring */
 
1056		union cpuid10_eax eax;
1057		union cpuid10_edx edx;
1058
1059		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1060			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1061			break;
1062		}
 
 
 
 
 
 
 
 
 
1063
1064		eax.split.version_id = kvm_pmu_cap.version;
1065		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1066		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1067		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1068		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1069		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1070
1071		if (kvm_pmu_cap.version)
1072			edx.split.anythread_deprecated = 1;
1073		edx.split.reserved1 = 0;
1074		edx.split.reserved2 = 0;
1075
1076		entry->eax = eax.full;
1077		entry->ebx = kvm_pmu_cap.events_mask;
1078		entry->ecx = 0;
1079		entry->edx = edx.full;
1080		break;
1081	}
1082	case 0x1f:
1083	case 0xb:
1084		/*
1085		 * No topology; a valid topology is indicated by the presence
1086		 * of subleaf 1.
1087		 */
1088		entry->eax = entry->ebx = entry->ecx = 0;
1089		break;
1090	case 0xd: {
1091		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1092		u64 permitted_xss = kvm_caps.supported_xss;
1093
1094		entry->eax &= permitted_xcr0;
1095		entry->ebx = xstate_required_size(permitted_xcr0, false);
1096		entry->ecx = entry->ebx;
1097		entry->edx &= permitted_xcr0 >> 32;
1098		if (!permitted_xcr0)
1099			break;
1100
1101		entry = do_host_cpuid(array, function, 1);
1102		if (!entry)
1103			goto out;
1104
1105		cpuid_entry_override(entry, CPUID_D_1_EAX);
1106		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1107			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1108							  true);
1109		else {
1110			WARN_ON_ONCE(permitted_xss != 0);
1111			entry->ebx = 0;
1112		}
1113		entry->ecx &= permitted_xss;
1114		entry->edx &= permitted_xss >> 32;
1115
1116		for (i = 2; i < 64; ++i) {
1117			bool s_state;
1118			if (permitted_xcr0 & BIT_ULL(i))
1119				s_state = false;
1120			else if (permitted_xss & BIT_ULL(i))
1121				s_state = true;
1122			else
1123				continue;
1124
1125			entry = do_host_cpuid(array, function, i);
1126			if (!entry)
 
 
1127				goto out;
1128
1129			/*
1130			 * The supported check above should have filtered out
1131			 * invalid sub-leafs.  Only valid sub-leafs should
1132			 * reach this point, and they should have a non-zero
1133			 * save state size.  Furthermore, check whether the
1134			 * processor agrees with permitted_xcr0/permitted_xss
1135			 * on whether this is an XCR0- or IA32_XSS-managed area.
1136			 */
1137			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1138				--array->nent;
1139				continue;
1140			}
1141
1142			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1143				entry->ecx &= ~BIT_ULL(2);
1144			entry->edx = 0;
1145		}
1146		break;
1147	}
1148	case 0x12:
1149		/* Intel SGX */
1150		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1151			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1152			break;
1153		}
1154
1155		/*
1156		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1157		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1158		 * are restricted by kernel and KVM capabilities (like most
1159		 * feature flags), while enclave size is unrestricted.
1160		 */
1161		cpuid_entry_override(entry, CPUID_12_EAX);
1162		entry->ebx &= SGX_MISC_EXINFO;
1163
1164		entry = do_host_cpuid(array, function, 1);
1165		if (!entry)
1166			goto out;
1167
1168		/*
1169		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1170		 * feature flags.  Advertise all supported flags, including
1171		 * privileged attributes that require explicit opt-in from
1172		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1173		 * expected to derive it from supported XCR0.
1174		 */
1175		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1176		entry->ebx &= 0;
1177		break;
1178	/* Intel PT */
1179	case 0x14:
1180		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1181			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1182			break;
1183		}
1184
1185		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1186			if (!do_host_cpuid(array, function, i))
1187				goto out;
1188		}
1189		break;
1190	/* Intel AMX TILE */
1191	case 0x1d:
1192		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1193			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1194			break;
1195		}
1196
1197		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1198			if (!do_host_cpuid(array, function, i))
 
1199				goto out;
1200		}
1201		break;
1202	case 0x1e: /* TMUL information */
1203		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1204			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1205			break;
1206		}
1207		break;
1208	case 0x24: {
1209		u8 avx10_version;
1210
1211		if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
1212			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1213			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1214		}
1215
1216		/*
1217		 * The AVX10 version is encoded in EBX[7:0].  Note, the version
1218		 * is guaranteed to be >=1 if AVX10 is supported.  Note #2, the
1219		 * version needs to be captured before overriding EBX features!
1220		 */
1221		avx10_version = min_t(u8, entry->ebx & 0xff, 1);
1222		cpuid_entry_override(entry, CPUID_24_0_EBX);
1223		entry->ebx |= avx10_version;
1224
1225		entry->eax = 0;
1226		entry->ecx = 0;
1227		entry->edx = 0;
1228		break;
1229	}
1230	case KVM_CPUID_SIGNATURE: {
1231		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
 
1232		entry->eax = KVM_CPUID_FEATURES;
1233		entry->ebx = sigptr[0];
1234		entry->ecx = sigptr[1];
1235		entry->edx = sigptr[2];
1236		break;
1237	}
1238	case KVM_CPUID_FEATURES:
1239		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1240			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1241			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1242			     (1 << KVM_FEATURE_ASYNC_PF) |
1243			     (1 << KVM_FEATURE_PV_EOI) |
1244			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1245			     (1 << KVM_FEATURE_PV_UNHALT) |
1246			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1247			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1248			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1249			     (1 << KVM_FEATURE_POLL_CONTROL) |
1250			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1251			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1252
1253		if (sched_info_on())
1254			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1255
1256		entry->ebx = 0;
1257		entry->ecx = 0;
1258		entry->edx = 0;
1259		break;
1260	case 0x80000000:
1261		entry->eax = min(entry->eax, 0x80000022);
1262		/*
1263		 * Serializing LFENCE is reported in a multitude of ways, and
1264		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1265		 * userspace by providing the CPUID leaf ourselves.
1266		 *
1267		 * However, only do it if the host has CPUID leaf 0x8000001d.
1268		 * QEMU thinks that it can query the host blindly for that
1269		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1270		 * above.  The processor merrily returns values from the
1271		 * highest Intel leaf which QEMU tries to use as the guest's
1272		 * 0x8000001d.  Even worse, this can result in an infinite
1273		 * loop if said highest leaf has no subleaves indexed by ECX.
1274		 */
1275		if (entry->eax >= 0x8000001d &&
1276		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1277		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1278			entry->eax = max(entry->eax, 0x80000021);
1279		break;
1280	case 0x80000001:
1281		entry->ebx &= ~GENMASK(27, 16);
1282		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1283		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1284		break;
1285	case 0x80000005:
1286		/*  Pass host L1 cache and TLB info. */
1287		break;
1288	case 0x80000006:
1289		/* Drop reserved bits, pass host L2 cache and TLB info. */
1290		entry->edx &= ~GENMASK(17, 16);
1291		break;
1292	case 0x80000007: /* Advanced power management */
1293		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1294
1295		/* mask against host */
1296		entry->edx &= boot_cpu_data.x86_power;
1297		entry->eax = entry->ebx = entry->ecx = 0;
1298		break;
1299	case 0x80000008: {
1300		/*
1301		 * GuestPhysAddrSize (EAX[23:16]) is intended for software
1302		 * use.
1303		 *
1304		 * KVM's ABI is to report the effective MAXPHYADDR for the
1305		 * guest in PhysAddrSize (phys_as), and the maximum
1306		 * *addressable* GPA in GuestPhysAddrSize (g_phys_as).
1307		 *
1308		 * GuestPhysAddrSize is valid if and only if TDP is enabled,
1309		 * in which case the max GPA that can be addressed by KVM may
1310		 * be less than the max GPA that can be legally generated by
1311		 * the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
1312		 * support 5-level TDP.
1313		 */
1314		unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1315		unsigned int phys_as, g_phys_as;
1316
1317		/*
1318		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1319		 * the guest operates in the same PA space as the host, i.e.
1320		 * reductions in MAXPHYADDR for memory encryption affect shadow
1321		 * paging, too.
1322		 *
1323		 * If TDP is enabled, use the raw bare metal MAXPHYADDR as
1324		 * reductions to the HPAs do not affect GPAs.  The max
1325		 * addressable GPA is the same as the max effective GPA, except
1326		 * that it's capped at 48 bits if 5-level TDP isn't supported
1327		 * (hardware processes bits 51:48 only when walking the fifth
1328		 * level page table).
1329		 */
1330		if (!tdp_enabled) {
1331			phys_as = boot_cpu_data.x86_phys_bits;
1332			g_phys_as = 0;
1333		} else {
1334			phys_as = entry->eax & 0xff;
1335			g_phys_as = phys_as;
1336			if (kvm_mmu_get_max_tdp_level() < 5)
1337				g_phys_as = min(g_phys_as, 48);
1338		}
1339
1340		entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
1341		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1342		entry->edx = 0;
1343		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
 
 
 
 
 
 
 
 
 
 
 
 
 
1344		break;
1345	}
1346	case 0x8000000A:
1347		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1348			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1349			break;
1350		}
1351		entry->eax = 1; /* SVM revision 1 */
1352		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1353				   ASID emulation to nested SVM */
1354		entry->ecx = 0; /* Reserved */
1355		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1356		break;
1357	case 0x80000019:
1358		entry->ecx = entry->edx = 0;
1359		break;
1360	case 0x8000001a:
1361		entry->eax &= GENMASK(2, 0);
1362		entry->ebx = entry->ecx = entry->edx = 0;
1363		break;
1364	case 0x8000001e:
1365		/* Do not return host topology information.  */
1366		entry->eax = entry->ebx = entry->ecx = 0;
1367		entry->edx = 0; /* reserved */
1368		break;
1369	case 0x8000001F:
1370		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1371			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1372		} else {
1373			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1374			/* Clear NumVMPL since KVM does not support VMPL.  */
1375			entry->ebx &= ~GENMASK(31, 12);
1376			/*
1377			 * Enumerate '0' for "PA bits reduction", the adjusted
1378			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1379			 */
1380			entry->ebx &= ~GENMASK(11, 6);
1381		}
1382		break;
1383	case 0x80000020:
1384		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1385		break;
1386	case 0x80000021:
1387		entry->ebx = entry->ecx = entry->edx = 0;
1388		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1389		break;
1390	/* AMD Extended Performance Monitoring and Debug */
1391	case 0x80000022: {
1392		union cpuid_0x80000022_ebx ebx;
1393
1394		entry->ecx = entry->edx = 0;
1395		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1396			entry->eax = entry->ebx = 0;
1397			break;
1398		}
1399
1400		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1401
1402		if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1403			ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1404		else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1405			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1406		else
1407			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1408
1409		entry->ebx = ebx.full;
1410		break;
1411	}
1412	/*Add support for Centaur's CPUID instruction*/
1413	case 0xC0000000:
1414		/*Just support up to 0xC0000004 now*/
1415		entry->eax = min(entry->eax, 0xC0000004);
1416		break;
1417	case 0xC0000001:
1418		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
 
1419		break;
1420	case 3: /* Processor serial number */
1421	case 5: /* MONITOR/MWAIT */
1422	case 0xC0000002:
1423	case 0xC0000003:
1424	case 0xC0000004:
1425	default:
1426		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1427		break;
1428	}
1429
 
 
1430	r = 0;
1431
1432out:
1433	put_cpu();
1434
1435	return r;
1436}
1437
1438static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1439			 unsigned int type)
1440{
1441	if (type == KVM_GET_EMULATED_CPUID)
1442		return __do_cpuid_func_emulated(array, func);
1443
1444	return __do_cpuid_func(array, func);
1445}
1446
1447#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1448
1449static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1450			  unsigned int type)
1451{
1452	u32 limit;
1453	int r;
1454
1455	if (func == CENTAUR_CPUID_SIGNATURE &&
1456	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1457		return 0;
1458
1459	r = do_cpuid_func(array, func, type);
1460	if (r)
1461		return r;
1462
1463	limit = array->entries[array->nent - 1].eax;
1464	for (func = func + 1; func <= limit; ++func) {
1465		r = do_cpuid_func(array, func, type);
1466		if (r)
1467			break;
1468	}
1469
1470	return r;
 
 
1471}
1472
1473static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1474				 __u32 num_entries, unsigned int ioctl_type)
1475{
1476	int i;
1477	__u32 pad[3];
1478
1479	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1480		return false;
1481
1482	/*
1483	 * We want to make sure that ->padding is being passed clean from
1484	 * userspace in case we want to use it for something in the future.
1485	 *
1486	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1487	 * have to give ourselves satisfied only with the emulated side. /me
1488	 * sheds a tear.
1489	 */
1490	for (i = 0; i < num_entries; i++) {
1491		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1492			return true;
1493
1494		if (pad[0] || pad[1] || pad[2])
1495			return true;
1496	}
1497	return false;
1498}
1499
1500int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1501			    struct kvm_cpuid_entry2 __user *entries,
1502			    unsigned int type)
1503{
1504	static const u32 funcs[] = {
1505		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
 
 
 
 
 
 
 
1506	};
1507
1508	struct kvm_cpuid_array array = {
1509		.nent = 0,
1510	};
1511	int r, i;
1512
1513	if (cpuid->nent < 1)
1514		return -E2BIG;
1515	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1516		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1517
1518	if (sanity_check_entries(entries, cpuid->nent, type))
1519		return -EINVAL;
1520
1521	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1522	if (!array.entries)
1523		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524
1525	array.maxnent = cpuid->nent;
 
 
 
1526
1527	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1528		r = get_cpuid_func(&array, funcs[i], type);
1529		if (r)
1530			goto out_free;
1531	}
1532	cpuid->nent = array.nent;
1533
1534	if (copy_to_user(entries, array.entries,
1535			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1536		r = -EFAULT;
 
 
 
1537
1538out_free:
1539	kvfree(array.entries);
 
1540	return r;
1541}
1542
1543struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1544						    u32 function, u32 index)
1545{
1546	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1547				 function, index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548}
1549EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1550
1551struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1552					      u32 function)
1553{
1554	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1555				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
 
 
 
 
 
 
 
 
 
 
 
 
 
1556}
1557EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1558
1559/*
1560 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1561 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1562 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1563 * range.  Centaur/VIA follows Intel semantics.
1564 *
1565 * A leaf is considered out-of-range if its function is higher than the maximum
1566 * supported leaf of its associated class or if its associated class does not
1567 * exist.
1568 *
1569 * There are three primary classes to be considered, with their respective
1570 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1571 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1572 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1573 *
1574 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1575 *  - Hypervisor: 0x40000000 - 0x4fffffff
1576 *  - Extended:   0x80000000 - 0xbfffffff
1577 *  - Centaur:    0xc0000000 - 0xcfffffff
1578 *
1579 * The Hypervisor class is further subdivided into sub-classes that each act as
1580 * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1581 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1582 * CPUID sub-classes are:
1583 *
1584 *  - HyperV:     0x40000000 - 0x400000ff
1585 *  - KVM:        0x40000100 - 0x400001ff
1586 */
1587static struct kvm_cpuid_entry2 *
1588get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1589{
1590	struct kvm_cpuid_entry2 *basic, *class;
1591	u32 function = *fn_ptr;
1592
1593	basic = kvm_find_cpuid_entry(vcpu, 0);
1594	if (!basic)
1595		return NULL;
1596
1597	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1598	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1599		return NULL;
 
 
 
 
 
 
 
1600
1601	if (function >= 0x40000000 && function <= 0x4fffffff)
1602		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1603	else if (function >= 0xc0000000)
1604		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1605	else
1606		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1607
1608	if (class && function <= class->eax)
1609		return NULL;
1610
1611	/*
1612	 * Leaf specific adjustments are also applied when redirecting to the
1613	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1614	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1615	 * needs to be pulled from CPUID.0xb.1.
1616	 */
1617	*fn_ptr = basic->eax;
1618
1619	/*
1620	 * The class does not exist or the requested function is out of range;
1621	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1622	 * the original requested leaf is observed!
1623	 */
1624	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1625}
1626
1627bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1628	       u32 *ecx, u32 *edx, bool exact_only)
1629{
1630	u32 orig_function = *eax, function = *eax, index = *ecx;
1631	struct kvm_cpuid_entry2 *entry;
1632	bool exact, used_max_basic = false;
1633
1634	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1635	exact = !!entry;
1636
1637	if (!entry && !exact_only) {
1638		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1639		used_max_basic = !!entry;
1640	}
1641
1642	if (entry) {
1643		*eax = entry->eax;
1644		*ebx = entry->ebx;
1645		*ecx = entry->ecx;
1646		*edx = entry->edx;
1647		if (function == 7 && index == 0) {
1648			u64 data;
1649		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1650			    (data & TSX_CTRL_CPUID_CLEAR))
1651				*ebx &= ~(F(RTM) | F(HLE));
1652		} else if (function == 0x80000007) {
1653			if (kvm_hv_invtsc_suppressed(vcpu))
1654				*edx &= ~SF(CONSTANT_TSC);
1655		}
1656	} else {
1657		*eax = *ebx = *ecx = *edx = 0;
1658		/*
1659		 * When leaf 0BH or 1FH is defined, CL is pass-through
1660		 * and EDX is always the x2APIC ID, even for undefined
1661		 * subleaves. Index 1 will exist iff the leaf is
1662		 * implemented, so we pass through CL iff leaf 1
1663		 * exists. EDX can be copied from any existing index.
1664		 */
1665		if (function == 0xb || function == 0x1f) {
1666			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1667			if (entry) {
1668				*ecx = index & 0xff;
1669				*edx = entry->edx;
1670			}
1671		}
1672	}
1673	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1674			used_max_basic);
1675	return exact;
1676}
1677EXPORT_SYMBOL_GPL(kvm_cpuid);
1678
1679int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1680{
1681	u32 eax, ebx, ecx, edx;
1682
1683	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1684		return 1;
1685
1686	eax = kvm_rax_read(vcpu);
1687	ecx = kvm_rcx_read(vcpu);
1688	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1689	kvm_rax_write(vcpu, eax);
1690	kvm_rbx_write(vcpu, ebx);
1691	kvm_rcx_write(vcpu, ecx);
1692	kvm_rdx_write(vcpu, edx);
1693	return kvm_skip_emulated_instruction(vcpu);
1694}
1695EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
v4.17
 
  1/*
  2 * Kernel-based Virtual Machine driver for Linux
  3 * cpuid support routines
  4 *
  5 * derived from arch/x86/kvm/x86.c
  6 *
  7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
  8 * Copyright IBM Corporation, 2008
  9 *
 10 * This work is licensed under the terms of the GNU GPL, version 2.  See
 11 * the COPYING file in the top-level directory.
 12 *
 13 */
 
 14
 15#include <linux/kvm_host.h>
 
 16#include <linux/export.h>
 17#include <linux/vmalloc.h>
 18#include <linux/uaccess.h>
 19#include <linux/sched/stat.h>
 20
 21#include <asm/processor.h>
 22#include <asm/user.h>
 23#include <asm/fpu/xstate.h>
 
 
 24#include "cpuid.h"
 25#include "lapic.h"
 26#include "mmu.h"
 27#include "trace.h"
 28#include "pmu.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 29
 30static u32 xstate_required_size(u64 xstate_bv, bool compacted)
 
 
 
 
 31{
 32	int feature_bit = 0;
 33	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
 34
 35	xstate_bv &= XFEATURE_MASK_EXTEND;
 36	while (xstate_bv) {
 37		if (xstate_bv & 0x1) {
 38		        u32 eax, ebx, ecx, edx, offset;
 39		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
 40			offset = compacted ? ret : ebx;
 41			ret = max(ret, offset + eax);
 
 
 
 
 
 42		}
 43
 44		xstate_bv >>= 1;
 45		feature_bit++;
 46	}
 47
 48	return ret;
 49}
 50
 51bool kvm_mpx_supported(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 52{
 53	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
 54		 && kvm_x86_ops->mpx_supported());
 55}
 56EXPORT_SYMBOL_GPL(kvm_mpx_supported);
 57
 58u64 kvm_supported_xcr0(void)
 59{
 60	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
 
 
 
 
 
 
 
 
 61
 62	if (!kvm_mpx_supported())
 63		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
 64
 65	return xcr0;
 66}
 67
 68#define F(x) bit(X86_FEATURE_##x)
 
 
 
 
 
 
 69
 70/* For scattered features from cpufeatures.h; we currently expose none */
 71#define KF(x) bit(KVM_CPUID_BIT_##x)
 72
 73int kvm_update_cpuid(struct kvm_vcpu *vcpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74{
 75	struct kvm_cpuid_entry2 *best;
 76	struct kvm_lapic *apic = vcpu->arch.apic;
 
 
 
 
 
 
 
 
 
 
 
 
 
 77
 78	best = kvm_find_cpuid_entry(vcpu, 1, 0);
 
 
 
 
 79	if (!best)
 80		return 0;
 81
 82	/* Update OSXSAVE bit */
 83	if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
 84		best->ecx &= ~F(OSXSAVE);
 85		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
 86			best->ecx |= F(OSXSAVE);
 87	}
 
 
 
 
 
 
 
 
 88
 89	best->edx &= ~F(APIC);
 90	if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
 91		best->edx |= F(APIC);
 92
 93	if (apic) {
 94		if (best->ecx & F(TSC_DEADLINE_TIMER))
 95			apic->lapic_timer.timer_mode_mask = 3 << 17;
 96		else
 97			apic->lapic_timer.timer_mode_mask = 1 << 17;
 
 
 
 98	}
 99
100	best = kvm_find_cpuid_entry(vcpu, 7, 0);
101	if (best) {
102		/* Update OSPKE bit */
103		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
104			best->ecx &= ~F(OSPKE);
105			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
106				best->ecx |= F(OSPKE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107		}
108	}
109
110	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
111	if (!best) {
112		vcpu->arch.guest_supported_xcr0 = 0;
113		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
114	} else {
115		vcpu->arch.guest_supported_xcr0 =
116			(best->eax | ((u64)best->edx << 32)) &
117			kvm_supported_xcr0();
118		vcpu->arch.guest_xstate_size = best->ebx =
119			xstate_required_size(vcpu->arch.xcr0, false);
120	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
122	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
123	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
124		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
125
126	/*
127	 * The existing code assumes virtual address is 48-bit or 57-bit in the
128	 * canonical address checks; exit if it is ever changed.
129	 */
130	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131	if (best) {
132		int vaddr_bits = (best->eax & 0xff00) >> 8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
134		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
135			return -EINVAL;
 
 
 
 
136	}
 
137
138	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
139	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
140		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
141		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 
142
143	/* Update physical-address width */
144	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
145	kvm_mmu_reset_context(vcpu);
 
146
147	kvm_pmu_refresh(vcpu);
148	return 0;
 
 
 
 
149}
150
151static int is_efer_nx(void)
152{
153	unsigned long long efer = 0;
154
155	rdmsrl_safe(MSR_EFER, &efer);
156	return efer & EFER_NX;
 
 
 
 
157}
158
159static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
160{
161	int i;
162	struct kvm_cpuid_entry2 *e, *entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
164	entry = NULL;
165	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
166		e = &vcpu->arch.cpuid_entries[i];
167		if (e->function == 0x80000001) {
168			entry = e;
169			break;
170		}
171	}
172	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
173		entry->edx &= ~F(NX);
174		printk(KERN_INFO "kvm: guest NX capability removed\n");
175	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176}
177
178int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
179{
180	struct kvm_cpuid_entry2 *best;
181
182	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
183	if (!best || best->eax < 0x80000008)
184		goto not_found;
185	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
186	if (best)
187		return best->eax & 0xff;
188not_found:
189	return 36;
190}
191EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192
193/* when an old userspace process fills a new kernel module */
194int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
195			     struct kvm_cpuid *cpuid,
196			     struct kvm_cpuid_entry __user *entries)
197{
198	int r, i;
199	struct kvm_cpuid_entry *cpuid_entries = NULL;
 
200
201	r = -E2BIG;
202	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
203		goto out;
204	r = -ENOMEM;
205	if (cpuid->nent) {
206		cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
207					cpuid->nent);
208		if (!cpuid_entries)
209			goto out;
210		r = -EFAULT;
211		if (copy_from_user(cpuid_entries, entries,
212				   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
213			goto out;
 
214	}
215	for (i = 0; i < cpuid->nent; i++) {
216		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
217		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
218		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
219		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
220		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
221		vcpu->arch.cpuid_entries[i].index = 0;
222		vcpu->arch.cpuid_entries[i].flags = 0;
223		vcpu->arch.cpuid_entries[i].padding[0] = 0;
224		vcpu->arch.cpuid_entries[i].padding[1] = 0;
225		vcpu->arch.cpuid_entries[i].padding[2] = 0;
226	}
227	vcpu->arch.cpuid_nent = cpuid->nent;
228	cpuid_fix_nx_cap(vcpu);
229	kvm_apic_set_version(vcpu);
230	kvm_x86_ops->cpuid_update(vcpu);
231	r = kvm_update_cpuid(vcpu);
 
 
232
233out:
234	vfree(cpuid_entries);
235	return r;
236}
237
238int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
239			      struct kvm_cpuid2 *cpuid,
240			      struct kvm_cpuid_entry2 __user *entries)
241{
 
242	int r;
243
244	r = -E2BIG;
245	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
246		goto out;
247	r = -EFAULT;
248	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
249			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
250		goto out;
251	vcpu->arch.cpuid_nent = cpuid->nent;
252	kvm_apic_set_version(vcpu);
253	kvm_x86_ops->cpuid_update(vcpu);
254	r = kvm_update_cpuid(vcpu);
255out:
 
 
256	return r;
257}
258
259int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
260			      struct kvm_cpuid2 *cpuid,
261			      struct kvm_cpuid_entry2 __user *entries)
262{
263	int r;
 
264
265	r = -E2BIG;
266	if (cpuid->nent < vcpu->arch.cpuid_nent)
267		goto out;
268	r = -EFAULT;
269	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
270			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
271		goto out;
272	return 0;
273
274out:
275	cpuid->nent = vcpu->arch.cpuid_nent;
276	return r;
277}
278
279static void cpuid_mask(u32 *word, int wordnum)
 
280{
281	*word &= boot_cpu_data.x86_capability[wordnum];
 
 
 
 
 
 
 
 
282}
283
284static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
285			   u32 index)
286{
287	entry->function = function;
288	entry->index = index;
289	cpuid_count(entry->function, entry->index,
290		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
291	entry->flags = 0;
 
292}
293
294static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
295				   u32 func, u32 index, int *nent, int maxnent)
296{
297	switch (func) {
298	case 0:
299		entry->eax = 7;
300		++*nent;
301		break;
302	case 1:
303		entry->ecx = F(MOVBE);
304		++*nent;
305		break;
306	case 7:
307		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
308		if (index == 0)
309			entry->ecx = F(RDPID);
310		++*nent;
311	default:
312		break;
313	}
314
315	entry->function = func;
316	entry->index = index;
317
318	return 0;
319}
320
321static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
322				 u32 index, int *nent, int maxnent)
323{
324	int r;
325	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
326#ifdef CONFIG_X86_64
327	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
328				? F(GBPAGES) : 0;
329	unsigned f_lm = F(LM);
330#else
331	unsigned f_gbpages = 0;
332	unsigned f_lm = 0;
 
333#endif
334	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
335	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
336	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
337	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
338	unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339
340	/* cpuid 1.edx */
341	const u32 kvm_cpuid_1_edx_x86_features =
342		F(FPU) | F(VME) | F(DE) | F(PSE) |
343		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
344		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
345		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
346		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
347		0 /* Reserved, DS, ACPI */ | F(MMX) |
348		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
349		0 /* HTT, TM, Reserved, PBE */;
350	/* cpuid 0x80000001.edx */
351	const u32 kvm_cpuid_8000_0001_edx_x86_features =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352		F(FPU) | F(VME) | F(DE) | F(PSE) |
353		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
354		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
355		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
356		F(PAT) | F(PSE36) | 0 /* Reserved */ |
357		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
358		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
359		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
360	/* cpuid 1.ecx */
361	const u32 kvm_cpuid_1_ecx_x86_features =
362		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
363		 * but *not* advertised to guests via CPUID ! */
364		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
365		0 /* DS-CPL, VMX, SMX, EST */ |
366		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
367		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
368		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
369		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
370		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
371		F(F16C) | F(RDRAND);
372	/* cpuid 0x80000001.ecx */
373	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
374		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
375		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
376		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
377		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
378		F(TOPOEXT) | F(PERFCTR_CORE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379
380	/* cpuid 0x80000008.ebx */
381	const u32 kvm_cpuid_8000_0008_ebx_x86_features =
382		F(AMD_IBPB) | F(AMD_IBRS) | F(VIRT_SSBD);
 
 
 
 
 
 
 
 
 
 
 
 
383
384	/* cpuid 0xC0000001.edx */
385	const u32 kvm_cpuid_C000_0001_edx_x86_features =
386		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
387		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
388		F(PMM) | F(PMM_EN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389
390	/* cpuid 7.0.ebx */
391	const u32 kvm_cpuid_7_0_ebx_x86_features =
392		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
393		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
394		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
395		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
396		F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
397
398	/* cpuid 0xD.1.eax */
399	const u32 kvm_cpuid_D_1_eax_x86_features =
400		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
401
402	/* cpuid 7.0.ecx*/
403	const u32 kvm_cpuid_7_0_ecx_x86_features =
404		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
405		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
406		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
407
408	/* cpuid 7.0.edx*/
409	const u32 kvm_cpuid_7_0_edx_x86_features =
410		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
411		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES);
412
413	/* all calls to cpuid_count() should be made on the same cpu */
414	get_cpu();
415
416	r = -E2BIG;
417
418	if (*nent >= maxnent)
 
419		goto out;
420
421	do_cpuid_1_ent(entry, function, index);
422	++*nent;
423
424	switch (function) {
425	case 0:
426		entry->eax = min(entry->eax, (u32)0xd);
 
427		break;
428	case 1:
429		entry->edx &= kvm_cpuid_1_edx_x86_features;
430		cpuid_mask(&entry->edx, CPUID_1_EDX);
431		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
432		cpuid_mask(&entry->ecx, CPUID_1_ECX);
433		/* we support x2apic emulation even if host does not support
434		 * it since we emulate x2apic in software */
435		entry->ecx |= F(X2APIC);
436		break;
437	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
438	 * may return different values. This forces us to get_cpu() before
439	 * issuing the first command, and also to emulate this annoying behavior
440	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
441	case 2: {
442		int t, times = entry->eax & 0xff;
443
444		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
445		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
446		for (t = 1; t < times; ++t) {
447			if (*nent >= maxnent)
448				goto out;
449
450			do_cpuid_1_ent(&entry[t], function, 0);
451			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
452			++*nent;
453		}
454		break;
455	}
456	/* function 4 has additional index. */
457	case 4: {
458		int i, cache_type;
459
460		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
461		/* read more entries until cache_type is zero */
462		for (i = 1; ; ++i) {
463			if (*nent >= maxnent)
 
464				goto out;
465
466			cache_type = entry[i - 1].eax & 0x1f;
467			if (!cache_type)
468				break;
469			do_cpuid_1_ent(&entry[i], function, i);
470			entry[i].flags |=
471			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
472			++*nent;
473		}
474		break;
475	}
476	case 6: /* Thermal management */
477		entry->eax = 0x4; /* allow ARAT */
478		entry->ebx = 0;
479		entry->ecx = 0;
480		entry->edx = 0;
481		break;
482	case 7: {
483		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
484		/* Mask ebx against host capability word 9 */
485		if (index == 0) {
486			entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
487			cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
488			// TSC_ADJUST is emulated
489			entry->ebx |= F(TSC_ADJUST);
490			entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
491			cpuid_mask(&entry->ecx, CPUID_7_ECX);
492			entry->ecx |= f_umip;
493			/* PKU is not yet implemented for shadow paging. */
494			if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
495				entry->ecx &= ~F(PKU);
496			entry->edx &= kvm_cpuid_7_0_edx_x86_features;
497			cpuid_mask(&entry->edx, CPUID_7_EDX);
498			/*
499			 * We emulate ARCH_CAPABILITIES in software even
500			 * if the host doesn't support it.
501			 */
502			entry->edx |= F(ARCH_CAPABILITIES);
503		} else {
504			entry->ebx = 0;
505			entry->ecx = 0;
506			entry->edx = 0;
507		}
508		entry->eax = 0;
509		break;
510	}
511	case 9:
 
 
 
 
 
 
512		break;
513	case 0xa: { /* Architectural Performance Monitoring */
514		struct x86_pmu_capability cap;
515		union cpuid10_eax eax;
516		union cpuid10_edx edx;
517
518		perf_get_x86_pmu_capability(&cap);
519
520		/*
521		 * Only support guest architectural pmu on a host
522		 * with architectural pmu.
523		 */
524		if (!cap.version)
525			memset(&cap, 0, sizeof(cap));
526
527		eax.split.version_id = min(cap.version, 2);
528		eax.split.num_counters = cap.num_counters_gp;
529		eax.split.bit_width = cap.bit_width_gp;
530		eax.split.mask_length = cap.events_mask_len;
531
532		edx.split.num_counters_fixed = cap.num_counters_fixed;
533		edx.split.bit_width_fixed = cap.bit_width_fixed;
534		edx.split.reserved = 0;
 
 
 
 
 
 
 
 
535
536		entry->eax = eax.full;
537		entry->ebx = cap.events_mask;
538		entry->ecx = 0;
539		entry->edx = edx.full;
540		break;
541	}
542	/* function 0xb has additional index. */
543	case 0xb: {
544		int i, level_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
545
546		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
547		/* read more entries until level_type is zero */
548		for (i = 1; ; ++i) {
549			if (*nent >= maxnent)
550				goto out;
551
552			level_type = entry[i - 1].ecx & 0xff00;
553			if (!level_type)
554				break;
555			do_cpuid_1_ent(&entry[i], function, i);
556			entry[i].flags |=
557			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
558			++*nent;
 
 
 
 
 
 
 
 
 
559		}
560		break;
561	}
562	case 0xd: {
563		int idx, i;
564		u64 supported = kvm_supported_xcr0();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565
566		entry->eax &= supported;
567		entry->ebx = xstate_required_size(supported, false);
568		entry->ecx = entry->ebx;
569		entry->edx &= supported >> 32;
570		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
571		if (!supported)
 
 
 
572			break;
 
573
574		for (idx = 1, i = 1; idx < 64; ++idx) {
575			u64 mask = ((u64)1 << idx);
576			if (*nent >= maxnent)
577				goto out;
 
 
 
 
 
 
 
 
 
 
578
579			do_cpuid_1_ent(&entry[i], function, idx);
580			if (idx == 1) {
581				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
582				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
583				entry[i].ebx = 0;
584				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
585					entry[i].ebx =
586						xstate_required_size(supported,
587								     true);
588			} else {
589				if (entry[i].eax == 0 || !(supported & mask))
590					continue;
591				if (WARN_ON_ONCE(entry[i].ecx & 1))
592					continue;
593			}
594			entry[i].ecx = 0;
595			entry[i].edx = 0;
596			entry[i].flags |=
597			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
598			++*nent;
599			++i;
600		}
 
 
 
 
 
 
 
 
 
 
 
 
 
601		break;
602	}
603	case KVM_CPUID_SIGNATURE: {
604		static const char signature[12] = "KVMKVMKVM\0\0";
605		const u32 *sigptr = (const u32 *)signature;
606		entry->eax = KVM_CPUID_FEATURES;
607		entry->ebx = sigptr[0];
608		entry->ecx = sigptr[1];
609		entry->edx = sigptr[2];
610		break;
611	}
612	case KVM_CPUID_FEATURES:
613		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
614			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
615			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
616			     (1 << KVM_FEATURE_ASYNC_PF) |
617			     (1 << KVM_FEATURE_PV_EOI) |
618			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
619			     (1 << KVM_FEATURE_PV_UNHALT) |
620			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
621			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT);
 
 
 
 
622
623		if (sched_info_on())
624			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
625
626		entry->ebx = 0;
627		entry->ecx = 0;
628		entry->edx = 0;
629		break;
630	case 0x80000000:
631		entry->eax = min(entry->eax, 0x8000001f);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632		break;
633	case 0x80000001:
634		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
635		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
636		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
637		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
 
 
 
 
 
 
638		break;
639	case 0x80000007: /* Advanced power management */
640		/* invariant TSC is CPUID.80000007H:EDX[8] */
641		entry->edx &= (1 << 8);
642		/* mask against host */
643		entry->edx &= boot_cpu_data.x86_power;
644		entry->eax = entry->ebx = entry->ecx = 0;
645		break;
646	case 0x80000008: {
647		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
648		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
649		unsigned phys_as = entry->eax & 0xff;
 
 
 
 
 
 
 
 
 
 
 
 
 
650
651		if (!g_phys_as)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652			g_phys_as = phys_as;
653		entry->eax = g_phys_as | (virt_as << 8);
 
 
 
 
 
654		entry->edx = 0;
655		/*
656		 * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
657		 * hardware cpuid
658		 */
659		if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
660			entry->ebx |= F(AMD_IBPB);
661		if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
662			entry->ebx |= F(AMD_IBRS);
663		if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
664			entry->ebx |= F(VIRT_SSBD);
665		entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
666		cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
667		if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
668			entry->ebx |= F(VIRT_SSBD);
669		break;
670	}
 
 
 
 
 
 
 
 
 
 
 
671	case 0x80000019:
672		entry->ecx = entry->edx = 0;
673		break;
674	case 0x8000001a:
 
 
 
 
 
 
 
675		break;
676	case 0x8000001d:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677		break;
 
678	/*Add support for Centaur's CPUID instruction*/
679	case 0xC0000000:
680		/*Just support up to 0xC0000004 now*/
681		entry->eax = min(entry->eax, 0xC0000004);
682		break;
683	case 0xC0000001:
684		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
685		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
686		break;
687	case 3: /* Processor serial number */
688	case 5: /* MONITOR/MWAIT */
689	case 0xC0000002:
690	case 0xC0000003:
691	case 0xC0000004:
692	default:
693		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
694		break;
695	}
696
697	kvm_x86_ops->set_supported_cpuid(function, entry);
698
699	r = 0;
700
701out:
702	put_cpu();
703
704	return r;
705}
706
707static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
708			u32 idx, int *nent, int maxnent, unsigned int type)
709{
710	if (type == KVM_GET_EMULATED_CPUID)
711		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
712
713	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
714}
715
716#undef F
717
718struct kvm_cpuid_param {
719	u32 func;
720	u32 idx;
721	bool has_leaf_count;
722	bool (*qualifier)(const struct kvm_cpuid_param *param);
723};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
724
725static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
726{
727	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
728}
729
730static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
731				 __u32 num_entries, unsigned int ioctl_type)
732{
733	int i;
734	__u32 pad[3];
735
736	if (ioctl_type != KVM_GET_EMULATED_CPUID)
737		return false;
738
739	/*
740	 * We want to make sure that ->padding is being passed clean from
741	 * userspace in case we want to use it for something in the future.
742	 *
743	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
744	 * have to give ourselves satisfied only with the emulated side. /me
745	 * sheds a tear.
746	 */
747	for (i = 0; i < num_entries; i++) {
748		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
749			return true;
750
751		if (pad[0] || pad[1] || pad[2])
752			return true;
753	}
754	return false;
755}
756
757int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
758			    struct kvm_cpuid_entry2 __user *entries,
759			    unsigned int type)
760{
761	struct kvm_cpuid_entry2 *cpuid_entries;
762	int limit, nent = 0, r = -E2BIG, i;
763	u32 func;
764	static const struct kvm_cpuid_param param[] = {
765		{ .func = 0, .has_leaf_count = true },
766		{ .func = 0x80000000, .has_leaf_count = true },
767		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
768		{ .func = KVM_CPUID_SIGNATURE },
769		{ .func = KVM_CPUID_FEATURES },
770	};
771
 
 
 
 
 
772	if (cpuid->nent < 1)
773		goto out;
774	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
775		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
776
777	if (sanity_check_entries(entries, cpuid->nent, type))
778		return -EINVAL;
779
780	r = -ENOMEM;
781	cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
782	if (!cpuid_entries)
783		goto out;
784
785	r = 0;
786	for (i = 0; i < ARRAY_SIZE(param); i++) {
787		const struct kvm_cpuid_param *ent = &param[i];
788
789		if (ent->qualifier && !ent->qualifier(ent))
790			continue;
791
792		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
793				&nent, cpuid->nent, type);
794
795		if (r)
796			goto out_free;
797
798		if (!ent->has_leaf_count)
799			continue;
800
801		limit = cpuid_entries[nent - 1].eax;
802		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
803			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
804				     &nent, cpuid->nent, type);
805
 
 
806		if (r)
807			goto out_free;
808	}
 
809
810	r = -EFAULT;
811	if (copy_to_user(entries, cpuid_entries,
812			 nent * sizeof(struct kvm_cpuid_entry2)))
813		goto out_free;
814	cpuid->nent = nent;
815	r = 0;
816
817out_free:
818	vfree(cpuid_entries);
819out:
820	return r;
821}
822
823static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
 
824{
825	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
826	struct kvm_cpuid_entry2 *ej;
827	int j = i;
828	int nent = vcpu->arch.cpuid_nent;
829
830	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
831	/* when no next entry is found, the current entry[i] is reselected */
832	do {
833		j = (j + 1) % nent;
834		ej = &vcpu->arch.cpuid_entries[j];
835	} while (ej->function != e->function);
836
837	ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
838
839	return j;
840}
841
842/* find an entry with matching function, matching index (if needed), and that
843 * should be read next (if it's stateful) */
844static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
845	u32 function, u32 index)
846{
847	if (e->function != function)
848		return 0;
849	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
850		return 0;
851	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
852	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
853		return 0;
854	return 1;
855}
 
856
857struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
858					      u32 function, u32 index)
859{
860	int i;
861	struct kvm_cpuid_entry2 *best = NULL;
862
863	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
864		struct kvm_cpuid_entry2 *e;
865
866		e = &vcpu->arch.cpuid_entries[i];
867		if (is_matching_cpuid_entry(e, function, index)) {
868			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
869				move_to_next_stateful_cpuid_entry(vcpu, i);
870			best = e;
871			break;
872		}
873	}
874	return best;
875}
876EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
877
878/*
879 * If no match is found, check whether we exceed the vCPU's limit
880 * and return the content of the highest valid _standard_ leaf instead.
881 * This is to satisfy the CPUID specification.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
882 */
883static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
884                                                  u32 function, u32 index)
885{
886	struct kvm_cpuid_entry2 *maxlevel;
 
887
888	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
889	if (!maxlevel || maxlevel->eax >= function)
 
 
 
 
890		return NULL;
891	if (function & 0x80000000) {
892		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
893		if (!maxlevel)
894			return NULL;
895	}
896	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
897}
898
899bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
900	       u32 *ecx, u32 *edx, bool check_limit)
901{
902	u32 function = *eax, index = *ecx;
903	struct kvm_cpuid_entry2 *best;
904	bool entry_found = true;
905
906	best = kvm_find_cpuid_entry(vcpu, function, index);
 
907
908	if (!best) {
909		entry_found = false;
910		if (!check_limit)
911			goto out;
 
 
 
912
913		best = check_cpuid_limit(vcpu, function, index);
914	}
 
 
 
 
 
915
916out:
917	if (best) {
918		*eax = best->eax;
919		*ebx = best->ebx;
920		*ecx = best->ecx;
921		*edx = best->edx;
922	} else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
923		*eax = *ebx = *ecx = *edx = 0;
924	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
925	return entry_found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926}
927EXPORT_SYMBOL_GPL(kvm_cpuid);
928
929int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
930{
931	u32 eax, ebx, ecx, edx;
932
933	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
934		return 1;
935
936	eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
937	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
938	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
939	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
940	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
941	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
942	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
943	return kvm_skip_emulated_instruction(vcpu);
944}
945EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);