Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/panic.c
  4 *
  5 *  Copyright (C) 1991, 1992  Linus Torvalds
  6 */
  7
  8/*
  9 * This function is used through-out the kernel (including mm and fs)
 10 * to indicate a major problem.
 11 */
 12#include <linux/debug_locks.h>
 13#include <linux/sched/debug.h>
 14#include <linux/interrupt.h>
 15#include <linux/kgdb.h>
 16#include <linux/kmsg_dump.h>
 17#include <linux/kallsyms.h>
 18#include <linux/notifier.h>
 19#include <linux/vt_kern.h>
 20#include <linux/module.h>
 21#include <linux/random.h>
 22#include <linux/ftrace.h>
 23#include <linux/reboot.h>
 24#include <linux/delay.h>
 25#include <linux/kexec.h>
 26#include <linux/panic_notifier.h>
 27#include <linux/sched.h>
 28#include <linux/string_helpers.h>
 29#include <linux/sysrq.h>
 30#include <linux/init.h>
 31#include <linux/nmi.h>
 32#include <linux/console.h>
 33#include <linux/bug.h>
 34#include <linux/ratelimit.h>
 35#include <linux/debugfs.h>
 36#include <linux/sysfs.h>
 37#include <linux/context_tracking.h>
 38#include <linux/seq_buf.h>
 39#include <trace/events/error_report.h>
 40#include <asm/sections.h>
 41
 42#define PANIC_TIMER_STEP 100
 43#define PANIC_BLINK_SPD 18
 44
 45#ifdef CONFIG_SMP
 46/*
 47 * Should we dump all CPUs backtraces in an oops event?
 48 * Defaults to 0, can be changed via sysctl.
 49 */
 50static unsigned int __read_mostly sysctl_oops_all_cpu_backtrace;
 51#else
 52#define sysctl_oops_all_cpu_backtrace 0
 53#endif /* CONFIG_SMP */
 54
 55int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 56static unsigned long tainted_mask =
 57	IS_ENABLED(CONFIG_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
 58static int pause_on_oops;
 59static int pause_on_oops_flag;
 60static DEFINE_SPINLOCK(pause_on_oops_lock);
 61bool crash_kexec_post_notifiers;
 62int panic_on_warn __read_mostly;
 63unsigned long panic_on_taint;
 64bool panic_on_taint_nousertaint = false;
 65static unsigned int warn_limit __read_mostly;
 66
 67bool panic_triggering_all_cpu_backtrace;
 68
 69int panic_timeout = CONFIG_PANIC_TIMEOUT;
 70EXPORT_SYMBOL_GPL(panic_timeout);
 71
 72#define PANIC_PRINT_TASK_INFO		0x00000001
 73#define PANIC_PRINT_MEM_INFO		0x00000002
 74#define PANIC_PRINT_TIMER_INFO		0x00000004
 75#define PANIC_PRINT_LOCK_INFO		0x00000008
 76#define PANIC_PRINT_FTRACE_INFO		0x00000010
 77#define PANIC_PRINT_ALL_PRINTK_MSG	0x00000020
 78#define PANIC_PRINT_ALL_CPU_BT		0x00000040
 79#define PANIC_PRINT_BLOCKED_TASKS	0x00000080
 80unsigned long panic_print;
 81
 82ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 83
 84EXPORT_SYMBOL(panic_notifier_list);
 85
 86#ifdef CONFIG_SYSCTL
 87static struct ctl_table kern_panic_table[] = {
 88#ifdef CONFIG_SMP
 89	{
 90		.procname       = "oops_all_cpu_backtrace",
 91		.data           = &sysctl_oops_all_cpu_backtrace,
 92		.maxlen         = sizeof(int),
 93		.mode           = 0644,
 94		.proc_handler   = proc_dointvec_minmax,
 95		.extra1         = SYSCTL_ZERO,
 96		.extra2         = SYSCTL_ONE,
 97	},
 98#endif
 99	{
100		.procname       = "warn_limit",
101		.data           = &warn_limit,
102		.maxlen         = sizeof(warn_limit),
103		.mode           = 0644,
104		.proc_handler   = proc_douintvec,
105	},
106};
107
108static __init int kernel_panic_sysctls_init(void)
109{
110	register_sysctl_init("kernel", kern_panic_table);
111	return 0;
112}
113late_initcall(kernel_panic_sysctls_init);
114#endif
115
116static atomic_t warn_count = ATOMIC_INIT(0);
117
118#ifdef CONFIG_SYSFS
119static ssize_t warn_count_show(struct kobject *kobj, struct kobj_attribute *attr,
120			       char *page)
121{
122	return sysfs_emit(page, "%d\n", atomic_read(&warn_count));
123}
124
125static struct kobj_attribute warn_count_attr = __ATTR_RO(warn_count);
126
127static __init int kernel_panic_sysfs_init(void)
128{
129	sysfs_add_file_to_group(kernel_kobj, &warn_count_attr.attr, NULL);
130	return 0;
131}
132late_initcall(kernel_panic_sysfs_init);
133#endif
134
135static long no_blink(int state)
136{
137	return 0;
138}
139
140/* Returns how long it waited in ms */
141long (*panic_blink)(int state);
142EXPORT_SYMBOL(panic_blink);
143
144/*
145 * Stop ourself in panic -- architecture code may override this
146 */
147void __weak __noreturn panic_smp_self_stop(void)
148{
149	while (1)
150		cpu_relax();
151}
152
153/*
154 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
155 * may override this to prepare for crash dumping, e.g. save regs info.
156 */
157void __weak __noreturn nmi_panic_self_stop(struct pt_regs *regs)
158{
159	panic_smp_self_stop();
160}
161
162/*
163 * Stop other CPUs in panic.  Architecture dependent code may override this
164 * with more suitable version.  For example, if the architecture supports
165 * crash dump, it should save registers of each stopped CPU and disable
166 * per-CPU features such as virtualization extensions.
167 */
168void __weak crash_smp_send_stop(void)
169{
170	static int cpus_stopped;
171
172	/*
173	 * This function can be called twice in panic path, but obviously
174	 * we execute this only once.
175	 */
176	if (cpus_stopped)
177		return;
178
179	/*
180	 * Note smp_send_stop is the usual smp shutdown function, which
181	 * unfortunately means it may not be hardened to work in a panic
182	 * situation.
183	 */
184	smp_send_stop();
185	cpus_stopped = 1;
186}
187
188atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
189
190/*
191 * A variant of panic() called from NMI context. We return if we've already
192 * panicked on this CPU. If another CPU already panicked, loop in
193 * nmi_panic_self_stop() which can provide architecture dependent code such
194 * as saving register state for crash dump.
195 */
196void nmi_panic(struct pt_regs *regs, const char *msg)
197{
198	int old_cpu, this_cpu;
199
200	old_cpu = PANIC_CPU_INVALID;
201	this_cpu = raw_smp_processor_id();
202
203	/* atomic_try_cmpxchg updates old_cpu on failure */
204	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu))
205		panic("%s", msg);
206	else if (old_cpu != this_cpu)
207		nmi_panic_self_stop(regs);
208}
209EXPORT_SYMBOL(nmi_panic);
210
211static void panic_print_sys_info(bool console_flush)
212{
213	if (console_flush) {
214		if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG)
215			console_flush_on_panic(CONSOLE_REPLAY_ALL);
216		return;
217	}
218
219	if (panic_print & PANIC_PRINT_TASK_INFO)
220		show_state();
221
222	if (panic_print & PANIC_PRINT_MEM_INFO)
223		show_mem();
224
225	if (panic_print & PANIC_PRINT_TIMER_INFO)
226		sysrq_timer_list_show();
227
228	if (panic_print & PANIC_PRINT_LOCK_INFO)
229		debug_show_all_locks();
230
231	if (panic_print & PANIC_PRINT_FTRACE_INFO)
232		ftrace_dump(DUMP_ALL);
233
234	if (panic_print & PANIC_PRINT_BLOCKED_TASKS)
235		show_state_filter(TASK_UNINTERRUPTIBLE);
236}
237
238void check_panic_on_warn(const char *origin)
239{
240	unsigned int limit;
241
242	if (panic_on_warn)
243		panic("%s: panic_on_warn set ...\n", origin);
244
245	limit = READ_ONCE(warn_limit);
246	if (atomic_inc_return(&warn_count) >= limit && limit)
247		panic("%s: system warned too often (kernel.warn_limit is %d)",
248		      origin, limit);
249}
250
251/*
252 * Helper that triggers the NMI backtrace (if set in panic_print)
253 * and then performs the secondary CPUs shutdown - we cannot have
254 * the NMI backtrace after the CPUs are off!
255 */
256static void panic_other_cpus_shutdown(bool crash_kexec)
257{
258	if (panic_print & PANIC_PRINT_ALL_CPU_BT) {
259		/* Temporary allow non-panic CPUs to write their backtraces. */
260		panic_triggering_all_cpu_backtrace = true;
261		trigger_all_cpu_backtrace();
262		panic_triggering_all_cpu_backtrace = false;
263	}
264
265	/*
266	 * Note that smp_send_stop() is the usual SMP shutdown function,
267	 * which unfortunately may not be hardened to work in a panic
268	 * situation. If we want to do crash dump after notifier calls
269	 * and kmsg_dump, we will need architecture dependent extra
270	 * bits in addition to stopping other CPUs, hence we rely on
271	 * crash_smp_send_stop() for that.
272	 */
273	if (!crash_kexec)
274		smp_send_stop();
275	else
276		crash_smp_send_stop();
277}
278
279/**
280 *	panic - halt the system
281 *	@fmt: The text string to print
282 *
283 *	Display a message, then perform cleanups.
284 *
285 *	This function never returns.
286 */
287void panic(const char *fmt, ...)
288{
289	static char buf[1024];
290	va_list args;
291	long i, i_next = 0, len;
292	int state = 0;
293	int old_cpu, this_cpu;
294	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
295
296	if (panic_on_warn) {
297		/*
298		 * This thread may hit another WARN() in the panic path.
299		 * Resetting this prevents additional WARN() from panicking the
300		 * system on this thread.  Other threads are blocked by the
301		 * panic_mutex in panic().
302		 */
303		panic_on_warn = 0;
304	}
305
306	/*
307	 * Disable local interrupts. This will prevent panic_smp_self_stop
308	 * from deadlocking the first cpu that invokes the panic, since
309	 * there is nothing to prevent an interrupt handler (that runs
310	 * after setting panic_cpu) from invoking panic() again.
311	 */
312	local_irq_disable();
313	preempt_disable_notrace();
314
315	/*
316	 * It's possible to come here directly from a panic-assertion and
317	 * not have preempt disabled. Some functions called from here want
318	 * preempt to be disabled. No point enabling it later though...
319	 *
320	 * Only one CPU is allowed to execute the panic code from here. For
321	 * multiple parallel invocations of panic, all other CPUs either
322	 * stop themself or will wait until they are stopped by the 1st CPU
323	 * with smp_send_stop().
324	 *
325	 * cmpxchg success means this is the 1st CPU which comes here,
326	 * so go ahead.
327	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
328	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
329	 */
330	old_cpu = PANIC_CPU_INVALID;
331	this_cpu = raw_smp_processor_id();
 
332
333	/* atomic_try_cmpxchg updates old_cpu on failure */
334	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
335		/* go ahead */
336	} else if (old_cpu != this_cpu)
337		panic_smp_self_stop();
338
339	console_verbose();
340	bust_spinlocks(1);
341	va_start(args, fmt);
342	len = vscnprintf(buf, sizeof(buf), fmt, args);
343	va_end(args);
344
345	if (len && buf[len - 1] == '\n')
346		buf[len - 1] = '\0';
347
348	pr_emerg("Kernel panic - not syncing: %s\n", buf);
349#ifdef CONFIG_DEBUG_BUGVERBOSE
350	/*
351	 * Avoid nested stack-dumping if a panic occurs during oops processing
352	 */
353	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
354		dump_stack();
355#endif
356
357	/*
358	 * If kgdb is enabled, give it a chance to run before we stop all
359	 * the other CPUs or else we won't be able to debug processes left
360	 * running on them.
361	 */
362	kgdb_panic(buf);
363
364	/*
365	 * If we have crashed and we have a crash kernel loaded let it handle
366	 * everything else.
367	 * If we want to run this after calling panic_notifiers, pass
368	 * the "crash_kexec_post_notifiers" option to the kernel.
369	 *
370	 * Bypass the panic_cpu check and call __crash_kexec directly.
371	 */
372	if (!_crash_kexec_post_notifiers)
 
373		__crash_kexec(NULL);
374
375	panic_other_cpus_shutdown(_crash_kexec_post_notifiers);
376
377	printk_legacy_allow_panic_sync();
 
 
 
 
 
 
 
 
 
 
 
378
379	/*
380	 * Run any panic handlers, including those that might need to
381	 * add information to the kmsg dump output.
382	 */
383	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
384
385	panic_print_sys_info(false);
386
387	kmsg_dump_desc(KMSG_DUMP_PANIC, buf);
388
389	/*
390	 * If you doubt kdump always works fine in any situation,
391	 * "crash_kexec_post_notifiers" offers you a chance to run
392	 * panic_notifiers and dumping kmsg before kdump.
393	 * Note: since some panic_notifiers can make crashed kernel
394	 * more unstable, it can increase risks of the kdump failure too.
395	 *
396	 * Bypass the panic_cpu check and call __crash_kexec directly.
397	 */
398	if (_crash_kexec_post_notifiers)
399		__crash_kexec(NULL);
400
401	console_unblank();
402
403	/*
404	 * We may have ended up stopping the CPU holding the lock (in
405	 * smp_send_stop()) while still having some valuable data in the console
406	 * buffer.  Try to acquire the lock then release it regardless of the
407	 * result.  The release will also print the buffers out.  Locks debug
408	 * should be disabled to avoid reporting bad unlock balance when
409	 * panic() is not being callled from OOPS.
410	 */
411	debug_locks_off();
412	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
413
414	panic_print_sys_info(true);
415
416	if (!panic_blink)
417		panic_blink = no_blink;
418
419	if (panic_timeout > 0) {
420		/*
421		 * Delay timeout seconds before rebooting the machine.
422		 * We can't use the "normal" timers since we just panicked.
423		 */
424		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
425
426		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
427			touch_nmi_watchdog();
428			if (i >= i_next) {
429				i += panic_blink(state ^= 1);
430				i_next = i + 3600 / PANIC_BLINK_SPD;
431			}
432			mdelay(PANIC_TIMER_STEP);
433		}
434	}
435	if (panic_timeout != 0) {
436		/*
437		 * This will not be a clean reboot, with everything
438		 * shutting down.  But if there is a chance of
439		 * rebooting the system it will be rebooted.
440		 */
441		if (panic_reboot_mode != REBOOT_UNDEFINED)
442			reboot_mode = panic_reboot_mode;
443		emergency_restart();
444	}
445#ifdef __sparc__
446	{
447		extern int stop_a_enabled;
448		/* Make sure the user can actually press Stop-A (L1-A) */
449		stop_a_enabled = 1;
450		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
451			 "twice on console to return to the boot prom\n");
452	}
453#endif
454#if defined(CONFIG_S390)
455	disabled_wait();
 
 
 
 
 
456#endif
457	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
458
459	/* Do not scroll important messages printed above */
460	suppress_printk = 1;
461
462	/*
463	 * The final messages may not have been printed if in a context that
464	 * defers printing (such as NMI) and irq_work is not available.
465	 * Explicitly flush the kernel log buffer one last time.
466	 */
467	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
468	nbcon_atomic_flush_unsafe();
469
470	local_irq_enable();
471	for (i = 0; ; i += PANIC_TIMER_STEP) {
472		touch_softlockup_watchdog();
473		if (i >= i_next) {
474			i += panic_blink(state ^= 1);
475			i_next = i + 3600 / PANIC_BLINK_SPD;
476		}
477		mdelay(PANIC_TIMER_STEP);
478	}
479}
480
481EXPORT_SYMBOL(panic);
482
483#define TAINT_FLAG(taint, _c_true, _c_false, _module)			\
484	[ TAINT_##taint ] = {						\
485		.c_true = _c_true, .c_false = _c_false,			\
486		.module = _module,					\
487		.desc = #taint,						\
488	}
489
490/*
491 * TAINT_FORCED_RMMOD could be a per-module flag but the module
492 * is being removed anyway.
493 */
494const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
495	TAINT_FLAG(PROPRIETARY_MODULE,		'P', 'G', true),
496	TAINT_FLAG(FORCED_MODULE,		'F', ' ', true),
497	TAINT_FLAG(CPU_OUT_OF_SPEC,		'S', ' ', false),
498	TAINT_FLAG(FORCED_RMMOD,		'R', ' ', false),
499	TAINT_FLAG(MACHINE_CHECK,		'M', ' ', false),
500	TAINT_FLAG(BAD_PAGE,			'B', ' ', false),
501	TAINT_FLAG(USER,			'U', ' ', false),
502	TAINT_FLAG(DIE,				'D', ' ', false),
503	TAINT_FLAG(OVERRIDDEN_ACPI_TABLE,	'A', ' ', false),
504	TAINT_FLAG(WARN,			'W', ' ', false),
505	TAINT_FLAG(CRAP,			'C', ' ', true),
506	TAINT_FLAG(FIRMWARE_WORKAROUND,		'I', ' ', false),
507	TAINT_FLAG(OOT_MODULE,			'O', ' ', true),
508	TAINT_FLAG(UNSIGNED_MODULE,		'E', ' ', true),
509	TAINT_FLAG(SOFTLOCKUP,			'L', ' ', false),
510	TAINT_FLAG(LIVEPATCH,			'K', ' ', true),
511	TAINT_FLAG(AUX,				'X', ' ', true),
512	TAINT_FLAG(RANDSTRUCT,			'T', ' ', true),
513	TAINT_FLAG(TEST,			'N', ' ', true),
514};
515
516#undef TAINT_FLAG
517
518static void print_tainted_seq(struct seq_buf *s, bool verbose)
519{
520	const char *sep = "";
521	int i;
522
523	if (!tainted_mask) {
524		seq_buf_puts(s, "Not tainted");
525		return;
526	}
527
528	seq_buf_printf(s, "Tainted: ");
529	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
530		const struct taint_flag *t = &taint_flags[i];
531		bool is_set = test_bit(i, &tainted_mask);
532		char c = is_set ? t->c_true : t->c_false;
533
534		if (verbose) {
535			if (is_set) {
536				seq_buf_printf(s, "%s[%c]=%s", sep, c, t->desc);
537				sep = ", ";
538			}
539		} else {
540			seq_buf_putc(s, c);
541		}
542	}
543}
544
545static const char *_print_tainted(bool verbose)
546{
547	/* FIXME: what should the size be? */
548	static char buf[sizeof(taint_flags)];
549	struct seq_buf s;
550
551	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
552
553	seq_buf_init(&s, buf, sizeof(buf));
554
555	print_tainted_seq(&s, verbose);
556
557	return seq_buf_str(&s);
558}
559
560/**
561 * print_tainted - return a string to represent the kernel taint state.
562 *
563 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst
564 *
565 * The string is overwritten by the next call to print_tainted(),
566 * but is always NULL terminated.
567 */
568const char *print_tainted(void)
569{
570	return _print_tainted(false);
571}
572
573/**
574 * print_tainted_verbose - A more verbose version of print_tainted()
575 */
576const char *print_tainted_verbose(void)
577{
578	return _print_tainted(true);
 
 
 
 
 
 
 
 
 
 
 
579}
580
581int test_taint(unsigned flag)
582{
583	return test_bit(flag, &tainted_mask);
584}
585EXPORT_SYMBOL(test_taint);
586
587unsigned long get_taint(void)
588{
589	return tainted_mask;
590}
591
592/**
593 * add_taint: add a taint flag if not already set.
594 * @flag: one of the TAINT_* constants.
595 * @lockdep_ok: whether lock debugging is still OK.
596 *
597 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
598 * some notewortht-but-not-corrupting cases, it can be set to true.
599 */
600void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
601{
602	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
603		pr_warn("Disabling lock debugging due to kernel taint\n");
604
605	set_bit(flag, &tainted_mask);
606
607	if (tainted_mask & panic_on_taint) {
608		panic_on_taint = 0;
609		panic("panic_on_taint set ...");
610	}
611}
612EXPORT_SYMBOL(add_taint);
613
614static void spin_msec(int msecs)
615{
616	int i;
617
618	for (i = 0; i < msecs; i++) {
619		touch_nmi_watchdog();
620		mdelay(1);
621	}
622}
623
624/*
625 * It just happens that oops_enter() and oops_exit() are identically
626 * implemented...
627 */
628static void do_oops_enter_exit(void)
629{
630	unsigned long flags;
631	static int spin_counter;
632
633	if (!pause_on_oops)
634		return;
635
636	spin_lock_irqsave(&pause_on_oops_lock, flags);
637	if (pause_on_oops_flag == 0) {
638		/* This CPU may now print the oops message */
639		pause_on_oops_flag = 1;
640	} else {
641		/* We need to stall this CPU */
642		if (!spin_counter) {
643			/* This CPU gets to do the counting */
644			spin_counter = pause_on_oops;
645			do {
646				spin_unlock(&pause_on_oops_lock);
647				spin_msec(MSEC_PER_SEC);
648				spin_lock(&pause_on_oops_lock);
649			} while (--spin_counter);
650			pause_on_oops_flag = 0;
651		} else {
652			/* This CPU waits for a different one */
653			while (spin_counter) {
654				spin_unlock(&pause_on_oops_lock);
655				spin_msec(1);
656				spin_lock(&pause_on_oops_lock);
657			}
658		}
659	}
660	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
661}
662
663/*
664 * Return true if the calling CPU is allowed to print oops-related info.
665 * This is a bit racy..
666 */
667bool oops_may_print(void)
668{
669	return pause_on_oops_flag == 0;
670}
671
672/*
673 * Called when the architecture enters its oops handler, before it prints
674 * anything.  If this is the first CPU to oops, and it's oopsing the first
675 * time then let it proceed.
676 *
677 * This is all enabled by the pause_on_oops kernel boot option.  We do all
678 * this to ensure that oopses don't scroll off the screen.  It has the
679 * side-effect of preventing later-oopsing CPUs from mucking up the display,
680 * too.
681 *
682 * It turns out that the CPU which is allowed to print ends up pausing for
683 * the right duration, whereas all the other CPUs pause for twice as long:
684 * once in oops_enter(), once in oops_exit().
685 */
686void oops_enter(void)
687{
688	nbcon_cpu_emergency_enter();
689	tracing_off();
690	/* can't trust the integrity of the kernel anymore: */
691	debug_locks_off();
692	do_oops_enter_exit();
 
 
 
 
 
 
693
694	if (sysctl_oops_all_cpu_backtrace)
695		trigger_all_cpu_backtrace();
 
 
 
 
 
 
696}
 
697
698static void print_oops_end_marker(void)
699{
700	pr_warn("---[ end trace %016llx ]---\n", 0ULL);
 
701}
702
703/*
704 * Called when the architecture exits its oops handler, after printing
705 * everything.
706 */
707void oops_exit(void)
708{
709	do_oops_enter_exit();
710	print_oops_end_marker();
711	nbcon_cpu_emergency_exit();
712	kmsg_dump(KMSG_DUMP_OOPS);
713}
714
715struct warn_args {
716	const char *fmt;
717	va_list args;
718};
719
720void __warn(const char *file, int line, void *caller, unsigned taint,
721	    struct pt_regs *regs, struct warn_args *args)
722{
723	nbcon_cpu_emergency_enter();
724
725	disable_trace_on_warning();
726
 
 
 
727	if (file)
728		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
729			raw_smp_processor_id(), current->pid, file, line,
730			caller);
731	else
732		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
733			raw_smp_processor_id(), current->pid, caller);
734
735#pragma GCC diagnostic push
736#ifndef __clang__
737#pragma GCC diagnostic ignored "-Wsuggest-attribute=format"
738#endif
739	if (args)
740		vprintk(args->fmt, args->args);
741#pragma GCC diagnostic pop
 
 
 
 
 
 
 
 
 
 
742
743	print_modules();
744
745	if (regs)
746		show_regs(regs);
747
748	check_panic_on_warn("kernel");
749
750	if (!regs)
751		dump_stack();
752
753	print_irqtrace_events(current);
754
755	print_oops_end_marker();
756	trace_error_report_end(ERROR_DETECTOR_WARN, (unsigned long)caller);
757
758	/* Just a warning, don't kill lockdep. */
759	add_taint(taint, LOCKDEP_STILL_OK);
760
761	nbcon_cpu_emergency_exit();
762}
763
764#ifdef CONFIG_BUG
765#ifndef __WARN_FLAGS
766void warn_slowpath_fmt(const char *file, int line, unsigned taint,
767		       const char *fmt, ...)
768{
769	bool rcu = warn_rcu_enter();
770	struct warn_args args;
771
772	pr_warn(CUT_HERE);
 
 
 
 
 
 
773
774	if (!fmt) {
775		__warn(file, line, __builtin_return_address(0), taint,
776		       NULL, NULL);
777		warn_rcu_exit(rcu);
778		return;
779	}
780
781	args.fmt = fmt;
782	va_start(args.args, fmt);
783	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
784	va_end(args.args);
785	warn_rcu_exit(rcu);
786}
787EXPORT_SYMBOL(warn_slowpath_fmt);
 
 
 
 
 
 
 
788#else
789void __warn_printk(const char *fmt, ...)
790{
791	bool rcu = warn_rcu_enter();
792	va_list args;
793
794	pr_warn(CUT_HERE);
795
796	va_start(args, fmt);
797	vprintk(fmt, args);
798	va_end(args);
799	warn_rcu_exit(rcu);
800}
801EXPORT_SYMBOL(__warn_printk);
802#endif
803
 
 
804/* Support resetting WARN*_ONCE state */
805
806static int clear_warn_once_set(void *data, u64 val)
807{
808	generic_bug_clear_once();
809	memset(__start_once, 0, __end_once - __start_once);
810	return 0;
811}
812
813DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set,
814			 "%lld\n");
 
 
815
816static __init int register_warn_debugfs(void)
817{
818	/* Don't care about failure */
819	debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL,
820				   &clear_warn_once_fops);
821	return 0;
822}
823
824device_initcall(register_warn_debugfs);
825#endif
826
827#ifdef CONFIG_STACKPROTECTOR
828
829/*
830 * Called when gcc's -fstack-protector feature is used, and
831 * gcc detects corruption of the on-stack canary value
832 */
833__visible noinstr void __stack_chk_fail(void)
834{
835	instrumentation_begin();
836	panic("stack-protector: Kernel stack is corrupted in: %pB",
837		__builtin_return_address(0));
838	instrumentation_end();
839}
840EXPORT_SYMBOL(__stack_chk_fail);
841
842#endif
843
 
 
 
 
 
 
 
 
 
 
 
844core_param(panic, panic_timeout, int, 0644);
845core_param(panic_print, panic_print, ulong, 0644);
846core_param(pause_on_oops, pause_on_oops, int, 0644);
847core_param(panic_on_warn, panic_on_warn, int, 0644);
848core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
849
850static int __init oops_setup(char *s)
851{
852	if (!s)
853		return -EINVAL;
854	if (!strcmp(s, "panic"))
855		panic_on_oops = 1;
856	return 0;
857}
858early_param("oops", oops_setup);
859
860static int __init panic_on_taint_setup(char *s)
861{
862	char *taint_str;
863
864	if (!s)
865		return -EINVAL;
866
867	taint_str = strsep(&s, ",");
868	if (kstrtoul(taint_str, 16, &panic_on_taint))
869		return -EINVAL;
870
871	/* make sure panic_on_taint doesn't hold out-of-range TAINT flags */
872	panic_on_taint &= TAINT_FLAGS_MAX;
873
874	if (!panic_on_taint)
875		return -EINVAL;
876
877	if (s && !strcmp(s, "nousertaint"))
878		panic_on_taint_nousertaint = true;
879
880	pr_info("panic_on_taint: bitmask=0x%lx nousertaint_mode=%s\n",
881		panic_on_taint, str_enabled_disabled(panic_on_taint_nousertaint));
882
883	return 0;
884}
885early_param("panic_on_taint", panic_on_taint_setup);
v4.17
 
  1/*
  2 *  linux/kernel/panic.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7/*
  8 * This function is used through-out the kernel (including mm and fs)
  9 * to indicate a major problem.
 10 */
 11#include <linux/debug_locks.h>
 12#include <linux/sched/debug.h>
 13#include <linux/interrupt.h>
 
 14#include <linux/kmsg_dump.h>
 15#include <linux/kallsyms.h>
 16#include <linux/notifier.h>
 
 17#include <linux/module.h>
 18#include <linux/random.h>
 19#include <linux/ftrace.h>
 20#include <linux/reboot.h>
 21#include <linux/delay.h>
 22#include <linux/kexec.h>
 
 23#include <linux/sched.h>
 
 24#include <linux/sysrq.h>
 25#include <linux/init.h>
 26#include <linux/nmi.h>
 27#include <linux/console.h>
 28#include <linux/bug.h>
 29#include <linux/ratelimit.h>
 30#include <linux/debugfs.h>
 
 
 
 
 31#include <asm/sections.h>
 32
 33#define PANIC_TIMER_STEP 100
 34#define PANIC_BLINK_SPD 18
 35
 
 
 
 
 
 
 
 
 
 
 36int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 37static unsigned long tainted_mask =
 38	IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
 39static int pause_on_oops;
 40static int pause_on_oops_flag;
 41static DEFINE_SPINLOCK(pause_on_oops_lock);
 42bool crash_kexec_post_notifiers;
 43int panic_on_warn __read_mostly;
 
 
 
 
 
 44
 45int panic_timeout = CONFIG_PANIC_TIMEOUT;
 46EXPORT_SYMBOL_GPL(panic_timeout);
 47
 
 
 
 
 
 
 
 
 
 
 48ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 49
 50EXPORT_SYMBOL(panic_notifier_list);
 51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 52static long no_blink(int state)
 53{
 54	return 0;
 55}
 56
 57/* Returns how long it waited in ms */
 58long (*panic_blink)(int state);
 59EXPORT_SYMBOL(panic_blink);
 60
 61/*
 62 * Stop ourself in panic -- architecture code may override this
 63 */
 64void __weak panic_smp_self_stop(void)
 65{
 66	while (1)
 67		cpu_relax();
 68}
 69
 70/*
 71 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
 72 * may override this to prepare for crash dumping, e.g. save regs info.
 73 */
 74void __weak nmi_panic_self_stop(struct pt_regs *regs)
 75{
 76	panic_smp_self_stop();
 77}
 78
 79/*
 80 * Stop other CPUs in panic.  Architecture dependent code may override this
 81 * with more suitable version.  For example, if the architecture supports
 82 * crash dump, it should save registers of each stopped CPU and disable
 83 * per-CPU features such as virtualization extensions.
 84 */
 85void __weak crash_smp_send_stop(void)
 86{
 87	static int cpus_stopped;
 88
 89	/*
 90	 * This function can be called twice in panic path, but obviously
 91	 * we execute this only once.
 92	 */
 93	if (cpus_stopped)
 94		return;
 95
 96	/*
 97	 * Note smp_send_stop is the usual smp shutdown function, which
 98	 * unfortunately means it may not be hardened to work in a panic
 99	 * situation.
100	 */
101	smp_send_stop();
102	cpus_stopped = 1;
103}
104
105atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
106
107/*
108 * A variant of panic() called from NMI context. We return if we've already
109 * panicked on this CPU. If another CPU already panicked, loop in
110 * nmi_panic_self_stop() which can provide architecture dependent code such
111 * as saving register state for crash dump.
112 */
113void nmi_panic(struct pt_regs *regs, const char *msg)
114{
115	int old_cpu, cpu;
116
117	cpu = raw_smp_processor_id();
118	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
119
120	if (old_cpu == PANIC_CPU_INVALID)
 
121		panic("%s", msg);
122	else if (old_cpu != cpu)
123		nmi_panic_self_stop(regs);
124}
125EXPORT_SYMBOL(nmi_panic);
126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127/**
128 *	panic - halt the system
129 *	@fmt: The text string to print
130 *
131 *	Display a message, then perform cleanups.
132 *
133 *	This function never returns.
134 */
135void panic(const char *fmt, ...)
136{
137	static char buf[1024];
138	va_list args;
139	long i, i_next = 0;
140	int state = 0;
141	int old_cpu, this_cpu;
142	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
143
 
 
 
 
 
 
 
 
 
 
144	/*
145	 * Disable local interrupts. This will prevent panic_smp_self_stop
146	 * from deadlocking the first cpu that invokes the panic, since
147	 * there is nothing to prevent an interrupt handler (that runs
148	 * after setting panic_cpu) from invoking panic() again.
149	 */
150	local_irq_disable();
 
151
152	/*
153	 * It's possible to come here directly from a panic-assertion and
154	 * not have preempt disabled. Some functions called from here want
155	 * preempt to be disabled. No point enabling it later though...
156	 *
157	 * Only one CPU is allowed to execute the panic code from here. For
158	 * multiple parallel invocations of panic, all other CPUs either
159	 * stop themself or will wait until they are stopped by the 1st CPU
160	 * with smp_send_stop().
161	 *
162	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
163	 * comes here, so go ahead.
164	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
165	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
166	 */
 
167	this_cpu = raw_smp_processor_id();
168	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
169
170	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
 
 
 
171		panic_smp_self_stop();
172
173	console_verbose();
174	bust_spinlocks(1);
175	va_start(args, fmt);
176	vsnprintf(buf, sizeof(buf), fmt, args);
177	va_end(args);
 
 
 
 
178	pr_emerg("Kernel panic - not syncing: %s\n", buf);
179#ifdef CONFIG_DEBUG_BUGVERBOSE
180	/*
181	 * Avoid nested stack-dumping if a panic occurs during oops processing
182	 */
183	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
184		dump_stack();
185#endif
186
187	/*
 
 
 
 
 
 
 
188	 * If we have crashed and we have a crash kernel loaded let it handle
189	 * everything else.
190	 * If we want to run this after calling panic_notifiers, pass
191	 * the "crash_kexec_post_notifiers" option to the kernel.
192	 *
193	 * Bypass the panic_cpu check and call __crash_kexec directly.
194	 */
195	if (!_crash_kexec_post_notifiers) {
196		printk_safe_flush_on_panic();
197		__crash_kexec(NULL);
198
199		/*
200		 * Note smp_send_stop is the usual smp shutdown function, which
201		 * unfortunately means it may not be hardened to work in a
202		 * panic situation.
203		 */
204		smp_send_stop();
205	} else {
206		/*
207		 * If we want to do crash dump after notifier calls and
208		 * kmsg_dump, we will need architecture dependent extra
209		 * works in addition to stopping other CPUs.
210		 */
211		crash_smp_send_stop();
212	}
213
214	/*
215	 * Run any panic handlers, including those that might need to
216	 * add information to the kmsg dump output.
217	 */
218	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
219
220	/* Call flush even twice. It tries harder with a single online CPU */
221	printk_safe_flush_on_panic();
222	kmsg_dump(KMSG_DUMP_PANIC);
223
224	/*
225	 * If you doubt kdump always works fine in any situation,
226	 * "crash_kexec_post_notifiers" offers you a chance to run
227	 * panic_notifiers and dumping kmsg before kdump.
228	 * Note: since some panic_notifiers can make crashed kernel
229	 * more unstable, it can increase risks of the kdump failure too.
230	 *
231	 * Bypass the panic_cpu check and call __crash_kexec directly.
232	 */
233	if (_crash_kexec_post_notifiers)
234		__crash_kexec(NULL);
235
236	bust_spinlocks(0);
237
238	/*
239	 * We may have ended up stopping the CPU holding the lock (in
240	 * smp_send_stop()) while still having some valuable data in the console
241	 * buffer.  Try to acquire the lock then release it regardless of the
242	 * result.  The release will also print the buffers out.  Locks debug
243	 * should be disabled to avoid reporting bad unlock balance when
244	 * panic() is not being callled from OOPS.
245	 */
246	debug_locks_off();
247	console_flush_on_panic();
 
 
248
249	if (!panic_blink)
250		panic_blink = no_blink;
251
252	if (panic_timeout > 0) {
253		/*
254		 * Delay timeout seconds before rebooting the machine.
255		 * We can't use the "normal" timers since we just panicked.
256		 */
257		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
258
259		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
260			touch_nmi_watchdog();
261			if (i >= i_next) {
262				i += panic_blink(state ^= 1);
263				i_next = i + 3600 / PANIC_BLINK_SPD;
264			}
265			mdelay(PANIC_TIMER_STEP);
266		}
267	}
268	if (panic_timeout != 0) {
269		/*
270		 * This will not be a clean reboot, with everything
271		 * shutting down.  But if there is a chance of
272		 * rebooting the system it will be rebooted.
273		 */
 
 
274		emergency_restart();
275	}
276#ifdef __sparc__
277	{
278		extern int stop_a_enabled;
279		/* Make sure the user can actually press Stop-A (L1-A) */
280		stop_a_enabled = 1;
281		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
282			 "twice on console to return to the boot prom\n");
283	}
284#endif
285#if defined(CONFIG_S390)
286	{
287		unsigned long caller;
288
289		caller = (unsigned long)__builtin_return_address(0);
290		disabled_wait(caller);
291	}
292#endif
293	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
 
 
 
 
 
 
 
 
 
 
 
 
294	local_irq_enable();
295	for (i = 0; ; i += PANIC_TIMER_STEP) {
296		touch_softlockup_watchdog();
297		if (i >= i_next) {
298			i += panic_blink(state ^= 1);
299			i_next = i + 3600 / PANIC_BLINK_SPD;
300		}
301		mdelay(PANIC_TIMER_STEP);
302	}
303}
304
305EXPORT_SYMBOL(panic);
306
 
 
 
 
 
 
 
307/*
308 * TAINT_FORCED_RMMOD could be a per-module flag but the module
309 * is being removed anyway.
310 */
311const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
312	[ TAINT_PROPRIETARY_MODULE ]	= { 'P', 'G', true },
313	[ TAINT_FORCED_MODULE ]		= { 'F', ' ', true },
314	[ TAINT_CPU_OUT_OF_SPEC ]	= { 'S', ' ', false },
315	[ TAINT_FORCED_RMMOD ]		= { 'R', ' ', false },
316	[ TAINT_MACHINE_CHECK ]		= { 'M', ' ', false },
317	[ TAINT_BAD_PAGE ]		= { 'B', ' ', false },
318	[ TAINT_USER ]			= { 'U', ' ', false },
319	[ TAINT_DIE ]			= { 'D', ' ', false },
320	[ TAINT_OVERRIDDEN_ACPI_TABLE ]	= { 'A', ' ', false },
321	[ TAINT_WARN ]			= { 'W', ' ', false },
322	[ TAINT_CRAP ]			= { 'C', ' ', true },
323	[ TAINT_FIRMWARE_WORKAROUND ]	= { 'I', ' ', false },
324	[ TAINT_OOT_MODULE ]		= { 'O', ' ', true },
325	[ TAINT_UNSIGNED_MODULE ]	= { 'E', ' ', true },
326	[ TAINT_SOFTLOCKUP ]		= { 'L', ' ', false },
327	[ TAINT_LIVEPATCH ]		= { 'K', ' ', true },
328	[ TAINT_AUX ]			= { 'X', ' ', true },
329	[ TAINT_RANDSTRUCT ]		= { 'T', ' ', true },
 
330};
331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332/**
333 * print_tainted - return a string to represent the kernel taint state.
334 *
335 * For individual taint flag meanings, see Documentation/sysctl/kernel.txt
336 *
337 * The string is overwritten by the next call to print_tainted(),
338 * but is always NULL terminated.
339 */
340const char *print_tainted(void)
341{
342	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
 
343
344	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
345
346	if (tainted_mask) {
347		char *s;
348		int i;
349
350		s = buf + sprintf(buf, "Tainted: ");
351		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
352			const struct taint_flag *t = &taint_flags[i];
353			*s++ = test_bit(i, &tainted_mask) ?
354					t->c_true : t->c_false;
355		}
356		*s = 0;
357	} else
358		snprintf(buf, sizeof(buf), "Not tainted");
359
360	return buf;
361}
362
363int test_taint(unsigned flag)
364{
365	return test_bit(flag, &tainted_mask);
366}
367EXPORT_SYMBOL(test_taint);
368
369unsigned long get_taint(void)
370{
371	return tainted_mask;
372}
373
374/**
375 * add_taint: add a taint flag if not already set.
376 * @flag: one of the TAINT_* constants.
377 * @lockdep_ok: whether lock debugging is still OK.
378 *
379 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
380 * some notewortht-but-not-corrupting cases, it can be set to true.
381 */
382void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
383{
384	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
385		pr_warn("Disabling lock debugging due to kernel taint\n");
386
387	set_bit(flag, &tainted_mask);
 
 
 
 
 
388}
389EXPORT_SYMBOL(add_taint);
390
391static void spin_msec(int msecs)
392{
393	int i;
394
395	for (i = 0; i < msecs; i++) {
396		touch_nmi_watchdog();
397		mdelay(1);
398	}
399}
400
401/*
402 * It just happens that oops_enter() and oops_exit() are identically
403 * implemented...
404 */
405static void do_oops_enter_exit(void)
406{
407	unsigned long flags;
408	static int spin_counter;
409
410	if (!pause_on_oops)
411		return;
412
413	spin_lock_irqsave(&pause_on_oops_lock, flags);
414	if (pause_on_oops_flag == 0) {
415		/* This CPU may now print the oops message */
416		pause_on_oops_flag = 1;
417	} else {
418		/* We need to stall this CPU */
419		if (!spin_counter) {
420			/* This CPU gets to do the counting */
421			spin_counter = pause_on_oops;
422			do {
423				spin_unlock(&pause_on_oops_lock);
424				spin_msec(MSEC_PER_SEC);
425				spin_lock(&pause_on_oops_lock);
426			} while (--spin_counter);
427			pause_on_oops_flag = 0;
428		} else {
429			/* This CPU waits for a different one */
430			while (spin_counter) {
431				spin_unlock(&pause_on_oops_lock);
432				spin_msec(1);
433				spin_lock(&pause_on_oops_lock);
434			}
435		}
436	}
437	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
438}
439
440/*
441 * Return true if the calling CPU is allowed to print oops-related info.
442 * This is a bit racy..
443 */
444int oops_may_print(void)
445{
446	return pause_on_oops_flag == 0;
447}
448
449/*
450 * Called when the architecture enters its oops handler, before it prints
451 * anything.  If this is the first CPU to oops, and it's oopsing the first
452 * time then let it proceed.
453 *
454 * This is all enabled by the pause_on_oops kernel boot option.  We do all
455 * this to ensure that oopses don't scroll off the screen.  It has the
456 * side-effect of preventing later-oopsing CPUs from mucking up the display,
457 * too.
458 *
459 * It turns out that the CPU which is allowed to print ends up pausing for
460 * the right duration, whereas all the other CPUs pause for twice as long:
461 * once in oops_enter(), once in oops_exit().
462 */
463void oops_enter(void)
464{
 
465	tracing_off();
466	/* can't trust the integrity of the kernel anymore: */
467	debug_locks_off();
468	do_oops_enter_exit();
469}
470
471/*
472 * 64-bit random ID for oopses:
473 */
474static u64 oops_id;
475
476static int init_oops_id(void)
477{
478	if (!oops_id)
479		get_random_bytes(&oops_id, sizeof(oops_id));
480	else
481		oops_id++;
482
483	return 0;
484}
485late_initcall(init_oops_id);
486
487void print_oops_end_marker(void)
488{
489	init_oops_id();
490	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
491}
492
493/*
494 * Called when the architecture exits its oops handler, after printing
495 * everything.
496 */
497void oops_exit(void)
498{
499	do_oops_enter_exit();
500	print_oops_end_marker();
 
501	kmsg_dump(KMSG_DUMP_OOPS);
502}
503
504struct warn_args {
505	const char *fmt;
506	va_list args;
507};
508
509void __warn(const char *file, int line, void *caller, unsigned taint,
510	    struct pt_regs *regs, struct warn_args *args)
511{
 
 
512	disable_trace_on_warning();
513
514	if (args)
515		pr_warn(CUT_HERE);
516
517	if (file)
518		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
519			raw_smp_processor_id(), current->pid, file, line,
520			caller);
521	else
522		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
523			raw_smp_processor_id(), current->pid, caller);
524
 
 
 
 
525	if (args)
526		vprintk(args->fmt, args->args);
527
528	if (panic_on_warn) {
529		/*
530		 * This thread may hit another WARN() in the panic path.
531		 * Resetting this prevents additional WARN() from panicking the
532		 * system on this thread.  Other threads are blocked by the
533		 * panic_mutex in panic().
534		 */
535		panic_on_warn = 0;
536		panic("panic_on_warn set ...\n");
537	}
538
539	print_modules();
540
541	if (regs)
542		show_regs(regs);
543	else
 
 
 
544		dump_stack();
545
546	print_irqtrace_events(current);
547
548	print_oops_end_marker();
 
549
550	/* Just a warning, don't kill lockdep. */
551	add_taint(taint, LOCKDEP_STILL_OK);
 
 
552}
553
554#ifdef WANT_WARN_ON_SLOWPATH
555void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
 
 
556{
 
557	struct warn_args args;
558
559	args.fmt = fmt;
560	va_start(args.args, fmt);
561	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
562	       &args);
563	va_end(args.args);
564}
565EXPORT_SYMBOL(warn_slowpath_fmt);
566
567void warn_slowpath_fmt_taint(const char *file, int line,
568			     unsigned taint, const char *fmt, ...)
569{
570	struct warn_args args;
 
 
571
572	args.fmt = fmt;
573	va_start(args.args, fmt);
574	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
575	va_end(args.args);
 
576}
577EXPORT_SYMBOL(warn_slowpath_fmt_taint);
578
579void warn_slowpath_null(const char *file, int line)
580{
581	pr_warn(CUT_HERE);
582	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
583}
584EXPORT_SYMBOL(warn_slowpath_null);
585#else
586void __warn_printk(const char *fmt, ...)
587{
 
588	va_list args;
589
590	pr_warn(CUT_HERE);
591
592	va_start(args, fmt);
593	vprintk(fmt, args);
594	va_end(args);
 
595}
596EXPORT_SYMBOL(__warn_printk);
597#endif
598
599#ifdef CONFIG_BUG
600
601/* Support resetting WARN*_ONCE state */
602
603static int clear_warn_once_set(void *data, u64 val)
604{
605	generic_bug_clear_once();
606	memset(__start_once, 0, __end_once - __start_once);
607	return 0;
608}
609
610DEFINE_SIMPLE_ATTRIBUTE(clear_warn_once_fops,
611			NULL,
612			clear_warn_once_set,
613			"%lld\n");
614
615static __init int register_warn_debugfs(void)
616{
617	/* Don't care about failure */
618	debugfs_create_file("clear_warn_once", 0200, NULL,
619			    NULL, &clear_warn_once_fops);
620	return 0;
621}
622
623device_initcall(register_warn_debugfs);
624#endif
625
626#ifdef CONFIG_CC_STACKPROTECTOR
627
628/*
629 * Called when gcc's -fstack-protector feature is used, and
630 * gcc detects corruption of the on-stack canary value
631 */
632__visible void __stack_chk_fail(void)
633{
634	panic("stack-protector: Kernel stack is corrupted in: %pB\n",
 
635		__builtin_return_address(0));
 
636}
637EXPORT_SYMBOL(__stack_chk_fail);
638
639#endif
640
641#ifdef CONFIG_ARCH_HAS_REFCOUNT
642void refcount_error_report(struct pt_regs *regs, const char *err)
643{
644	WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n",
645		err, (void *)instruction_pointer(regs),
646		current->comm, task_pid_nr(current),
647		from_kuid_munged(&init_user_ns, current_uid()),
648		from_kuid_munged(&init_user_ns, current_euid()));
649}
650#endif
651
652core_param(panic, panic_timeout, int, 0644);
 
653core_param(pause_on_oops, pause_on_oops, int, 0644);
654core_param(panic_on_warn, panic_on_warn, int, 0644);
655core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
656
657static int __init oops_setup(char *s)
658{
659	if (!s)
660		return -EINVAL;
661	if (!strcmp(s, "panic"))
662		panic_on_oops = 1;
663	return 0;
664}
665early_param("oops", oops_setup);