Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/panic.c
  4 *
  5 *  Copyright (C) 1991, 1992  Linus Torvalds
  6 */
  7
  8/*
  9 * This function is used through-out the kernel (including mm and fs)
 10 * to indicate a major problem.
 11 */
 12#include <linux/debug_locks.h>
 13#include <linux/sched/debug.h>
 14#include <linux/interrupt.h>
 15#include <linux/kgdb.h>
 16#include <linux/kmsg_dump.h>
 17#include <linux/kallsyms.h>
 18#include <linux/notifier.h>
 19#include <linux/vt_kern.h>
 20#include <linux/module.h>
 21#include <linux/random.h>
 22#include <linux/ftrace.h>
 23#include <linux/reboot.h>
 24#include <linux/delay.h>
 25#include <linux/kexec.h>
 26#include <linux/panic_notifier.h>
 27#include <linux/sched.h>
 28#include <linux/string_helpers.h>
 29#include <linux/sysrq.h>
 30#include <linux/init.h>
 31#include <linux/nmi.h>
 32#include <linux/console.h>
 33#include <linux/bug.h>
 34#include <linux/ratelimit.h>
 35#include <linux/debugfs.h>
 36#include <linux/sysfs.h>
 37#include <linux/context_tracking.h>
 38#include <linux/seq_buf.h>
 39#include <trace/events/error_report.h>
 40#include <asm/sections.h>
 41
 42#define PANIC_TIMER_STEP 100
 43#define PANIC_BLINK_SPD 18
 44
 45#ifdef CONFIG_SMP
 46/*
 47 * Should we dump all CPUs backtraces in an oops event?
 48 * Defaults to 0, can be changed via sysctl.
 49 */
 50static unsigned int __read_mostly sysctl_oops_all_cpu_backtrace;
 51#else
 52#define sysctl_oops_all_cpu_backtrace 0
 53#endif /* CONFIG_SMP */
 54
 55int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 56static unsigned long tainted_mask =
 57	IS_ENABLED(CONFIG_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
 58static int pause_on_oops;
 59static int pause_on_oops_flag;
 60static DEFINE_SPINLOCK(pause_on_oops_lock);
 61bool crash_kexec_post_notifiers;
 62int panic_on_warn __read_mostly;
 63unsigned long panic_on_taint;
 64bool panic_on_taint_nousertaint = false;
 65static unsigned int warn_limit __read_mostly;
 66
 67bool panic_triggering_all_cpu_backtrace;
 68
 69int panic_timeout = CONFIG_PANIC_TIMEOUT;
 70EXPORT_SYMBOL_GPL(panic_timeout);
 71
 72#define PANIC_PRINT_TASK_INFO		0x00000001
 73#define PANIC_PRINT_MEM_INFO		0x00000002
 74#define PANIC_PRINT_TIMER_INFO		0x00000004
 75#define PANIC_PRINT_LOCK_INFO		0x00000008
 76#define PANIC_PRINT_FTRACE_INFO		0x00000010
 77#define PANIC_PRINT_ALL_PRINTK_MSG	0x00000020
 78#define PANIC_PRINT_ALL_CPU_BT		0x00000040
 79#define PANIC_PRINT_BLOCKED_TASKS	0x00000080
 80unsigned long panic_print;
 81
 82ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 83
 84EXPORT_SYMBOL(panic_notifier_list);
 85
 86#ifdef CONFIG_SYSCTL
 87static struct ctl_table kern_panic_table[] = {
 88#ifdef CONFIG_SMP
 89	{
 90		.procname       = "oops_all_cpu_backtrace",
 91		.data           = &sysctl_oops_all_cpu_backtrace,
 92		.maxlen         = sizeof(int),
 93		.mode           = 0644,
 94		.proc_handler   = proc_dointvec_minmax,
 95		.extra1         = SYSCTL_ZERO,
 96		.extra2         = SYSCTL_ONE,
 97	},
 98#endif
 99	{
100		.procname       = "warn_limit",
101		.data           = &warn_limit,
102		.maxlen         = sizeof(warn_limit),
103		.mode           = 0644,
104		.proc_handler   = proc_douintvec,
105	},
106};
107
108static __init int kernel_panic_sysctls_init(void)
109{
110	register_sysctl_init("kernel", kern_panic_table);
111	return 0;
112}
113late_initcall(kernel_panic_sysctls_init);
114#endif
115
116static atomic_t warn_count = ATOMIC_INIT(0);
117
118#ifdef CONFIG_SYSFS
119static ssize_t warn_count_show(struct kobject *kobj, struct kobj_attribute *attr,
120			       char *page)
121{
122	return sysfs_emit(page, "%d\n", atomic_read(&warn_count));
123}
124
125static struct kobj_attribute warn_count_attr = __ATTR_RO(warn_count);
126
127static __init int kernel_panic_sysfs_init(void)
128{
129	sysfs_add_file_to_group(kernel_kobj, &warn_count_attr.attr, NULL);
130	return 0;
131}
132late_initcall(kernel_panic_sysfs_init);
133#endif
134
135static long no_blink(int state)
136{
137	return 0;
138}
139
140/* Returns how long it waited in ms */
141long (*panic_blink)(int state);
142EXPORT_SYMBOL(panic_blink);
143
144/*
145 * Stop ourself in panic -- architecture code may override this
146 */
147void __weak __noreturn panic_smp_self_stop(void)
148{
149	while (1)
150		cpu_relax();
151}
152
153/*
154 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
155 * may override this to prepare for crash dumping, e.g. save regs info.
156 */
157void __weak __noreturn nmi_panic_self_stop(struct pt_regs *regs)
158{
159	panic_smp_self_stop();
160}
161
162/*
163 * Stop other CPUs in panic.  Architecture dependent code may override this
164 * with more suitable version.  For example, if the architecture supports
165 * crash dump, it should save registers of each stopped CPU and disable
166 * per-CPU features such as virtualization extensions.
167 */
168void __weak crash_smp_send_stop(void)
169{
170	static int cpus_stopped;
171
172	/*
173	 * This function can be called twice in panic path, but obviously
174	 * we execute this only once.
175	 */
176	if (cpus_stopped)
177		return;
178
179	/*
180	 * Note smp_send_stop is the usual smp shutdown function, which
181	 * unfortunately means it may not be hardened to work in a panic
182	 * situation.
183	 */
184	smp_send_stop();
185	cpus_stopped = 1;
186}
187
188atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
189
190/*
191 * A variant of panic() called from NMI context. We return if we've already
192 * panicked on this CPU. If another CPU already panicked, loop in
193 * nmi_panic_self_stop() which can provide architecture dependent code such
194 * as saving register state for crash dump.
195 */
196void nmi_panic(struct pt_regs *regs, const char *msg)
197{
198	int old_cpu, this_cpu;
199
200	old_cpu = PANIC_CPU_INVALID;
201	this_cpu = raw_smp_processor_id();
202
203	/* atomic_try_cmpxchg updates old_cpu on failure */
204	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu))
205		panic("%s", msg);
206	else if (old_cpu != this_cpu)
207		nmi_panic_self_stop(regs);
208}
209EXPORT_SYMBOL(nmi_panic);
210
211static void panic_print_sys_info(bool console_flush)
212{
213	if (console_flush) {
214		if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG)
215			console_flush_on_panic(CONSOLE_REPLAY_ALL);
216		return;
217	}
218
219	if (panic_print & PANIC_PRINT_TASK_INFO)
220		show_state();
221
222	if (panic_print & PANIC_PRINT_MEM_INFO)
223		show_mem();
224
225	if (panic_print & PANIC_PRINT_TIMER_INFO)
226		sysrq_timer_list_show();
227
228	if (panic_print & PANIC_PRINT_LOCK_INFO)
229		debug_show_all_locks();
230
231	if (panic_print & PANIC_PRINT_FTRACE_INFO)
232		ftrace_dump(DUMP_ALL);
233
234	if (panic_print & PANIC_PRINT_BLOCKED_TASKS)
235		show_state_filter(TASK_UNINTERRUPTIBLE);
236}
237
238void check_panic_on_warn(const char *origin)
239{
240	unsigned int limit;
241
242	if (panic_on_warn)
243		panic("%s: panic_on_warn set ...\n", origin);
244
245	limit = READ_ONCE(warn_limit);
246	if (atomic_inc_return(&warn_count) >= limit && limit)
247		panic("%s: system warned too often (kernel.warn_limit is %d)",
248		      origin, limit);
249}
250
251/*
252 * Helper that triggers the NMI backtrace (if set in panic_print)
253 * and then performs the secondary CPUs shutdown - we cannot have
254 * the NMI backtrace after the CPUs are off!
255 */
256static void panic_other_cpus_shutdown(bool crash_kexec)
257{
258	if (panic_print & PANIC_PRINT_ALL_CPU_BT) {
259		/* Temporary allow non-panic CPUs to write their backtraces. */
260		panic_triggering_all_cpu_backtrace = true;
261		trigger_all_cpu_backtrace();
262		panic_triggering_all_cpu_backtrace = false;
263	}
264
265	/*
266	 * Note that smp_send_stop() is the usual SMP shutdown function,
267	 * which unfortunately may not be hardened to work in a panic
268	 * situation. If we want to do crash dump after notifier calls
269	 * and kmsg_dump, we will need architecture dependent extra
270	 * bits in addition to stopping other CPUs, hence we rely on
271	 * crash_smp_send_stop() for that.
272	 */
273	if (!crash_kexec)
274		smp_send_stop();
275	else
276		crash_smp_send_stop();
277}
278
279/**
280 *	panic - halt the system
281 *	@fmt: The text string to print
282 *
283 *	Display a message, then perform cleanups.
284 *
285 *	This function never returns.
286 */
287void panic(const char *fmt, ...)
288{
289	static char buf[1024];
290	va_list args;
291	long i, i_next = 0, len;
292	int state = 0;
293	int old_cpu, this_cpu;
294	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
295
296	if (panic_on_warn) {
297		/*
298		 * This thread may hit another WARN() in the panic path.
299		 * Resetting this prevents additional WARN() from panicking the
300		 * system on this thread.  Other threads are blocked by the
301		 * panic_mutex in panic().
302		 */
303		panic_on_warn = 0;
304	}
305
306	/*
307	 * Disable local interrupts. This will prevent panic_smp_self_stop
308	 * from deadlocking the first cpu that invokes the panic, since
309	 * there is nothing to prevent an interrupt handler (that runs
310	 * after setting panic_cpu) from invoking panic() again.
311	 */
312	local_irq_disable();
313	preempt_disable_notrace();
314
315	/*
316	 * It's possible to come here directly from a panic-assertion and
317	 * not have preempt disabled. Some functions called from here want
318	 * preempt to be disabled. No point enabling it later though...
319	 *
320	 * Only one CPU is allowed to execute the panic code from here. For
321	 * multiple parallel invocations of panic, all other CPUs either
322	 * stop themself or will wait until they are stopped by the 1st CPU
323	 * with smp_send_stop().
324	 *
325	 * cmpxchg success means this is the 1st CPU which comes here,
326	 * so go ahead.
327	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
328	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
329	 */
330	old_cpu = PANIC_CPU_INVALID;
331	this_cpu = raw_smp_processor_id();
 
332
333	/* atomic_try_cmpxchg updates old_cpu on failure */
334	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
335		/* go ahead */
336	} else if (old_cpu != this_cpu)
337		panic_smp_self_stop();
338
339	console_verbose();
340	bust_spinlocks(1);
341	va_start(args, fmt);
342	len = vscnprintf(buf, sizeof(buf), fmt, args);
343	va_end(args);
344
345	if (len && buf[len - 1] == '\n')
346		buf[len - 1] = '\0';
347
348	pr_emerg("Kernel panic - not syncing: %s\n", buf);
349#ifdef CONFIG_DEBUG_BUGVERBOSE
350	/*
351	 * Avoid nested stack-dumping if a panic occurs during oops processing
352	 */
353	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
354		dump_stack();
355#endif
356
357	/*
358	 * If kgdb is enabled, give it a chance to run before we stop all
359	 * the other CPUs or else we won't be able to debug processes left
360	 * running on them.
361	 */
362	kgdb_panic(buf);
363
364	/*
365	 * If we have crashed and we have a crash kernel loaded let it handle
366	 * everything else.
367	 * If we want to run this after calling panic_notifiers, pass
368	 * the "crash_kexec_post_notifiers" option to the kernel.
369	 *
370	 * Bypass the panic_cpu check and call __crash_kexec directly.
371	 */
372	if (!_crash_kexec_post_notifiers)
 
373		__crash_kexec(NULL);
374
375	panic_other_cpus_shutdown(_crash_kexec_post_notifiers);
376
377	printk_legacy_allow_panic_sync();
 
 
 
 
 
 
 
 
 
 
 
378
379	/*
380	 * Run any panic handlers, including those that might need to
381	 * add information to the kmsg dump output.
382	 */
383	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
384
385	panic_print_sys_info(false);
386
387	kmsg_dump_desc(KMSG_DUMP_PANIC, buf);
388
389	/*
390	 * If you doubt kdump always works fine in any situation,
391	 * "crash_kexec_post_notifiers" offers you a chance to run
392	 * panic_notifiers and dumping kmsg before kdump.
393	 * Note: since some panic_notifiers can make crashed kernel
394	 * more unstable, it can increase risks of the kdump failure too.
395	 *
396	 * Bypass the panic_cpu check and call __crash_kexec directly.
397	 */
398	if (_crash_kexec_post_notifiers)
399		__crash_kexec(NULL);
400
401	console_unblank();
402
403	/*
404	 * We may have ended up stopping the CPU holding the lock (in
405	 * smp_send_stop()) while still having some valuable data in the console
406	 * buffer.  Try to acquire the lock then release it regardless of the
407	 * result.  The release will also print the buffers out.  Locks debug
408	 * should be disabled to avoid reporting bad unlock balance when
409	 * panic() is not being callled from OOPS.
410	 */
411	debug_locks_off();
412	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
413
414	panic_print_sys_info(true);
415
416	if (!panic_blink)
417		panic_blink = no_blink;
418
419	if (panic_timeout > 0) {
420		/*
421		 * Delay timeout seconds before rebooting the machine.
422		 * We can't use the "normal" timers since we just panicked.
423		 */
424		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
425
426		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
427			touch_nmi_watchdog();
428			if (i >= i_next) {
429				i += panic_blink(state ^= 1);
430				i_next = i + 3600 / PANIC_BLINK_SPD;
431			}
432			mdelay(PANIC_TIMER_STEP);
433		}
434	}
435	if (panic_timeout != 0) {
436		/*
437		 * This will not be a clean reboot, with everything
438		 * shutting down.  But if there is a chance of
439		 * rebooting the system it will be rebooted.
440		 */
441		if (panic_reboot_mode != REBOOT_UNDEFINED)
442			reboot_mode = panic_reboot_mode;
443		emergency_restart();
444	}
445#ifdef __sparc__
446	{
447		extern int stop_a_enabled;
448		/* Make sure the user can actually press Stop-A (L1-A) */
449		stop_a_enabled = 1;
450		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
451			 "twice on console to return to the boot prom\n");
452	}
453#endif
454#if defined(CONFIG_S390)
455	disabled_wait();
456#endif
457	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
458
459	/* Do not scroll important messages printed above */
460	suppress_printk = 1;
461
462	/*
463	 * The final messages may not have been printed if in a context that
464	 * defers printing (such as NMI) and irq_work is not available.
465	 * Explicitly flush the kernel log buffer one last time.
466	 */
467	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
468	nbcon_atomic_flush_unsafe();
469
 
 
 
 
 
470	local_irq_enable();
471	for (i = 0; ; i += PANIC_TIMER_STEP) {
472		touch_softlockup_watchdog();
473		if (i >= i_next) {
474			i += panic_blink(state ^= 1);
475			i_next = i + 3600 / PANIC_BLINK_SPD;
476		}
477		mdelay(PANIC_TIMER_STEP);
478	}
479}
480
481EXPORT_SYMBOL(panic);
482
483#define TAINT_FLAG(taint, _c_true, _c_false, _module)			\
484	[ TAINT_##taint ] = {						\
485		.c_true = _c_true, .c_false = _c_false,			\
486		.module = _module,					\
487		.desc = #taint,						\
488	}
489
490/*
491 * TAINT_FORCED_RMMOD could be a per-module flag but the module
492 * is being removed anyway.
493 */
494const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
495	TAINT_FLAG(PROPRIETARY_MODULE,		'P', 'G', true),
496	TAINT_FLAG(FORCED_MODULE,		'F', ' ', true),
497	TAINT_FLAG(CPU_OUT_OF_SPEC,		'S', ' ', false),
498	TAINT_FLAG(FORCED_RMMOD,		'R', ' ', false),
499	TAINT_FLAG(MACHINE_CHECK,		'M', ' ', false),
500	TAINT_FLAG(BAD_PAGE,			'B', ' ', false),
501	TAINT_FLAG(USER,			'U', ' ', false),
502	TAINT_FLAG(DIE,				'D', ' ', false),
503	TAINT_FLAG(OVERRIDDEN_ACPI_TABLE,	'A', ' ', false),
504	TAINT_FLAG(WARN,			'W', ' ', false),
505	TAINT_FLAG(CRAP,			'C', ' ', true),
506	TAINT_FLAG(FIRMWARE_WORKAROUND,		'I', ' ', false),
507	TAINT_FLAG(OOT_MODULE,			'O', ' ', true),
508	TAINT_FLAG(UNSIGNED_MODULE,		'E', ' ', true),
509	TAINT_FLAG(SOFTLOCKUP,			'L', ' ', false),
510	TAINT_FLAG(LIVEPATCH,			'K', ' ', true),
511	TAINT_FLAG(AUX,				'X', ' ', true),
512	TAINT_FLAG(RANDSTRUCT,			'T', ' ', true),
513	TAINT_FLAG(TEST,			'N', ' ', true),
514};
515
516#undef TAINT_FLAG
517
518static void print_tainted_seq(struct seq_buf *s, bool verbose)
519{
520	const char *sep = "";
521	int i;
522
523	if (!tainted_mask) {
524		seq_buf_puts(s, "Not tainted");
525		return;
526	}
527
528	seq_buf_printf(s, "Tainted: ");
529	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
530		const struct taint_flag *t = &taint_flags[i];
531		bool is_set = test_bit(i, &tainted_mask);
532		char c = is_set ? t->c_true : t->c_false;
533
534		if (verbose) {
535			if (is_set) {
536				seq_buf_printf(s, "%s[%c]=%s", sep, c, t->desc);
537				sep = ", ";
538			}
539		} else {
540			seq_buf_putc(s, c);
541		}
542	}
543}
544
545static const char *_print_tainted(bool verbose)
546{
547	/* FIXME: what should the size be? */
548	static char buf[sizeof(taint_flags)];
549	struct seq_buf s;
550
551	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
552
553	seq_buf_init(&s, buf, sizeof(buf));
554
555	print_tainted_seq(&s, verbose);
556
557	return seq_buf_str(&s);
558}
559
560/**
561 * print_tainted - return a string to represent the kernel taint state.
562 *
563 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
564 *
565 * The string is overwritten by the next call to print_tainted(),
566 * but is always NULL terminated.
567 */
568const char *print_tainted(void)
569{
570	return _print_tainted(false);
571}
572
573/**
574 * print_tainted_verbose - A more verbose version of print_tainted()
575 */
576const char *print_tainted_verbose(void)
577{
578	return _print_tainted(true);
 
 
 
 
 
 
 
 
 
579}
580
581int test_taint(unsigned flag)
582{
583	return test_bit(flag, &tainted_mask);
584}
585EXPORT_SYMBOL(test_taint);
586
587unsigned long get_taint(void)
588{
589	return tainted_mask;
590}
591
592/**
593 * add_taint: add a taint flag if not already set.
594 * @flag: one of the TAINT_* constants.
595 * @lockdep_ok: whether lock debugging is still OK.
596 *
597 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
598 * some notewortht-but-not-corrupting cases, it can be set to true.
599 */
600void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
601{
602	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
603		pr_warn("Disabling lock debugging due to kernel taint\n");
604
605	set_bit(flag, &tainted_mask);
606
607	if (tainted_mask & panic_on_taint) {
608		panic_on_taint = 0;
609		panic("panic_on_taint set ...");
610	}
611}
612EXPORT_SYMBOL(add_taint);
613
614static void spin_msec(int msecs)
615{
616	int i;
617
618	for (i = 0; i < msecs; i++) {
619		touch_nmi_watchdog();
620		mdelay(1);
621	}
622}
623
624/*
625 * It just happens that oops_enter() and oops_exit() are identically
626 * implemented...
627 */
628static void do_oops_enter_exit(void)
629{
630	unsigned long flags;
631	static int spin_counter;
632
633	if (!pause_on_oops)
634		return;
635
636	spin_lock_irqsave(&pause_on_oops_lock, flags);
637	if (pause_on_oops_flag == 0) {
638		/* This CPU may now print the oops message */
639		pause_on_oops_flag = 1;
640	} else {
641		/* We need to stall this CPU */
642		if (!spin_counter) {
643			/* This CPU gets to do the counting */
644			spin_counter = pause_on_oops;
645			do {
646				spin_unlock(&pause_on_oops_lock);
647				spin_msec(MSEC_PER_SEC);
648				spin_lock(&pause_on_oops_lock);
649			} while (--spin_counter);
650			pause_on_oops_flag = 0;
651		} else {
652			/* This CPU waits for a different one */
653			while (spin_counter) {
654				spin_unlock(&pause_on_oops_lock);
655				spin_msec(1);
656				spin_lock(&pause_on_oops_lock);
657			}
658		}
659	}
660	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
661}
662
663/*
664 * Return true if the calling CPU is allowed to print oops-related info.
665 * This is a bit racy..
666 */
667bool oops_may_print(void)
668{
669	return pause_on_oops_flag == 0;
670}
671
672/*
673 * Called when the architecture enters its oops handler, before it prints
674 * anything.  If this is the first CPU to oops, and it's oopsing the first
675 * time then let it proceed.
676 *
677 * This is all enabled by the pause_on_oops kernel boot option.  We do all
678 * this to ensure that oopses don't scroll off the screen.  It has the
679 * side-effect of preventing later-oopsing CPUs from mucking up the display,
680 * too.
681 *
682 * It turns out that the CPU which is allowed to print ends up pausing for
683 * the right duration, whereas all the other CPUs pause for twice as long:
684 * once in oops_enter(), once in oops_exit().
685 */
686void oops_enter(void)
687{
688	nbcon_cpu_emergency_enter();
689	tracing_off();
690	/* can't trust the integrity of the kernel anymore: */
691	debug_locks_off();
692	do_oops_enter_exit();
 
 
 
 
 
 
 
 
 
 
 
 
 
693
694	if (sysctl_oops_all_cpu_backtrace)
695		trigger_all_cpu_backtrace();
696}
 
697
698static void print_oops_end_marker(void)
699{
700	pr_warn("---[ end trace %016llx ]---\n", 0ULL);
 
701}
702
703/*
704 * Called when the architecture exits its oops handler, after printing
705 * everything.
706 */
707void oops_exit(void)
708{
709	do_oops_enter_exit();
710	print_oops_end_marker();
711	nbcon_cpu_emergency_exit();
712	kmsg_dump(KMSG_DUMP_OOPS);
713}
714
715struct warn_args {
716	const char *fmt;
717	va_list args;
718};
719
720void __warn(const char *file, int line, void *caller, unsigned taint,
721	    struct pt_regs *regs, struct warn_args *args)
722{
723	nbcon_cpu_emergency_enter();
724
725	disable_trace_on_warning();
726
 
 
727	if (file)
728		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
729			raw_smp_processor_id(), current->pid, file, line,
730			caller);
731	else
732		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
733			raw_smp_processor_id(), current->pid, caller);
734
735#pragma GCC diagnostic push
736#ifndef __clang__
737#pragma GCC diagnostic ignored "-Wsuggest-attribute=format"
738#endif
739	if (args)
740		vprintk(args->fmt, args->args);
741#pragma GCC diagnostic pop
 
 
 
 
 
 
 
 
 
 
742
743	print_modules();
744
745	if (regs)
746		show_regs(regs);
747
748	check_panic_on_warn("kernel");
749
750	if (!regs)
751		dump_stack();
752
753	print_irqtrace_events(current);
754
755	print_oops_end_marker();
756	trace_error_report_end(ERROR_DETECTOR_WARN, (unsigned long)caller);
757
758	/* Just a warning, don't kill lockdep. */
759	add_taint(taint, LOCKDEP_STILL_OK);
760
761	nbcon_cpu_emergency_exit();
762}
763
764#ifdef CONFIG_BUG
765#ifndef __WARN_FLAGS
766void warn_slowpath_fmt(const char *file, int line, unsigned taint,
767		       const char *fmt, ...)
768{
769	bool rcu = warn_rcu_enter();
770	struct warn_args args;
771
772	pr_warn(CUT_HERE);
773
774	if (!fmt) {
775		__warn(file, line, __builtin_return_address(0), taint,
776		       NULL, NULL);
777		warn_rcu_exit(rcu);
778		return;
779	}
780
781	args.fmt = fmt;
782	va_start(args.args, fmt);
783	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
 
784	va_end(args.args);
785	warn_rcu_exit(rcu);
786}
787EXPORT_SYMBOL(warn_slowpath_fmt);
788#else
789void __warn_printk(const char *fmt, ...)
790{
791	bool rcu = warn_rcu_enter();
792	va_list args;
793
794	pr_warn(CUT_HERE);
795
796	va_start(args, fmt);
797	vprintk(fmt, args);
798	va_end(args);
799	warn_rcu_exit(rcu);
800}
801EXPORT_SYMBOL(__warn_printk);
802#endif
803
804/* Support resetting WARN*_ONCE state */
805
806static int clear_warn_once_set(void *data, u64 val)
807{
808	generic_bug_clear_once();
809	memset(__start_once, 0, __end_once - __start_once);
810	return 0;
811}
812
813DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set,
814			 "%lld\n");
 
 
 
 
815
816static __init int register_warn_debugfs(void)
817{
818	/* Don't care about failure */
819	debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL,
820				   &clear_warn_once_fops);
821	return 0;
822}
823
824device_initcall(register_warn_debugfs);
825#endif
826
827#ifdef CONFIG_STACKPROTECTOR
828
829/*
830 * Called when gcc's -fstack-protector feature is used, and
831 * gcc detects corruption of the on-stack canary value
832 */
833__visible noinstr void __stack_chk_fail(void)
834{
835	instrumentation_begin();
836	panic("stack-protector: Kernel stack is corrupted in: %pB",
837		__builtin_return_address(0));
838	instrumentation_end();
839}
840EXPORT_SYMBOL(__stack_chk_fail);
841
842#endif
843
844core_param(panic, panic_timeout, int, 0644);
845core_param(panic_print, panic_print, ulong, 0644);
846core_param(pause_on_oops, pause_on_oops, int, 0644);
847core_param(panic_on_warn, panic_on_warn, int, 0644);
848core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
849
850static int __init oops_setup(char *s)
851{
852	if (!s)
853		return -EINVAL;
854	if (!strcmp(s, "panic"))
855		panic_on_oops = 1;
856	return 0;
857}
858early_param("oops", oops_setup);
859
860static int __init panic_on_taint_setup(char *s)
861{
862	char *taint_str;
863
864	if (!s)
865		return -EINVAL;
866
867	taint_str = strsep(&s, ",");
868	if (kstrtoul(taint_str, 16, &panic_on_taint))
869		return -EINVAL;
870
871	/* make sure panic_on_taint doesn't hold out-of-range TAINT flags */
872	panic_on_taint &= TAINT_FLAGS_MAX;
873
874	if (!panic_on_taint)
875		return -EINVAL;
876
877	if (s && !strcmp(s, "nousertaint"))
878		panic_on_taint_nousertaint = true;
879
880	pr_info("panic_on_taint: bitmask=0x%lx nousertaint_mode=%s\n",
881		panic_on_taint, str_enabled_disabled(panic_on_taint_nousertaint));
882
883	return 0;
884}
885early_param("panic_on_taint", panic_on_taint_setup);
v4.10.11
 
  1/*
  2 *  linux/kernel/panic.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7/*
  8 * This function is used through-out the kernel (including mm and fs)
  9 * to indicate a major problem.
 10 */
 11#include <linux/debug_locks.h>
 
 12#include <linux/interrupt.h>
 
 13#include <linux/kmsg_dump.h>
 14#include <linux/kallsyms.h>
 15#include <linux/notifier.h>
 
 16#include <linux/module.h>
 17#include <linux/random.h>
 18#include <linux/ftrace.h>
 19#include <linux/reboot.h>
 20#include <linux/delay.h>
 21#include <linux/kexec.h>
 
 22#include <linux/sched.h>
 
 23#include <linux/sysrq.h>
 24#include <linux/init.h>
 25#include <linux/nmi.h>
 26#include <linux/console.h>
 27#include <linux/bug.h>
 
 
 
 
 
 
 
 28
 29#define PANIC_TIMER_STEP 100
 30#define PANIC_BLINK_SPD 18
 31
 
 
 
 
 
 
 
 
 
 
 32int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
 33static unsigned long tainted_mask;
 
 34static int pause_on_oops;
 35static int pause_on_oops_flag;
 36static DEFINE_SPINLOCK(pause_on_oops_lock);
 37bool crash_kexec_post_notifiers;
 38int panic_on_warn __read_mostly;
 
 
 
 
 
 39
 40int panic_timeout = CONFIG_PANIC_TIMEOUT;
 41EXPORT_SYMBOL_GPL(panic_timeout);
 42
 
 
 
 
 
 
 
 
 
 
 43ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
 44
 45EXPORT_SYMBOL(panic_notifier_list);
 46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47static long no_blink(int state)
 48{
 49	return 0;
 50}
 51
 52/* Returns how long it waited in ms */
 53long (*panic_blink)(int state);
 54EXPORT_SYMBOL(panic_blink);
 55
 56/*
 57 * Stop ourself in panic -- architecture code may override this
 58 */
 59void __weak panic_smp_self_stop(void)
 60{
 61	while (1)
 62		cpu_relax();
 63}
 64
 65/*
 66 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
 67 * may override this to prepare for crash dumping, e.g. save regs info.
 68 */
 69void __weak nmi_panic_self_stop(struct pt_regs *regs)
 70{
 71	panic_smp_self_stop();
 72}
 73
 74/*
 75 * Stop other CPUs in panic.  Architecture dependent code may override this
 76 * with more suitable version.  For example, if the architecture supports
 77 * crash dump, it should save registers of each stopped CPU and disable
 78 * per-CPU features such as virtualization extensions.
 79 */
 80void __weak crash_smp_send_stop(void)
 81{
 82	static int cpus_stopped;
 83
 84	/*
 85	 * This function can be called twice in panic path, but obviously
 86	 * we execute this only once.
 87	 */
 88	if (cpus_stopped)
 89		return;
 90
 91	/*
 92	 * Note smp_send_stop is the usual smp shutdown function, which
 93	 * unfortunately means it may not be hardened to work in a panic
 94	 * situation.
 95	 */
 96	smp_send_stop();
 97	cpus_stopped = 1;
 98}
 99
100atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
101
102/*
103 * A variant of panic() called from NMI context. We return if we've already
104 * panicked on this CPU. If another CPU already panicked, loop in
105 * nmi_panic_self_stop() which can provide architecture dependent code such
106 * as saving register state for crash dump.
107 */
108void nmi_panic(struct pt_regs *regs, const char *msg)
109{
110	int old_cpu, cpu;
111
112	cpu = raw_smp_processor_id();
113	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
114
115	if (old_cpu == PANIC_CPU_INVALID)
 
116		panic("%s", msg);
117	else if (old_cpu != cpu)
118		nmi_panic_self_stop(regs);
119}
120EXPORT_SYMBOL(nmi_panic);
121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122/**
123 *	panic - halt the system
124 *	@fmt: The text string to print
125 *
126 *	Display a message, then perform cleanups.
127 *
128 *	This function never returns.
129 */
130void panic(const char *fmt, ...)
131{
132	static char buf[1024];
133	va_list args;
134	long i, i_next = 0;
135	int state = 0;
136	int old_cpu, this_cpu;
137	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
138
 
 
 
 
 
 
 
 
 
 
139	/*
140	 * Disable local interrupts. This will prevent panic_smp_self_stop
141	 * from deadlocking the first cpu that invokes the panic, since
142	 * there is nothing to prevent an interrupt handler (that runs
143	 * after setting panic_cpu) from invoking panic() again.
144	 */
145	local_irq_disable();
 
146
147	/*
148	 * It's possible to come here directly from a panic-assertion and
149	 * not have preempt disabled. Some functions called from here want
150	 * preempt to be disabled. No point enabling it later though...
151	 *
152	 * Only one CPU is allowed to execute the panic code from here. For
153	 * multiple parallel invocations of panic, all other CPUs either
154	 * stop themself or will wait until they are stopped by the 1st CPU
155	 * with smp_send_stop().
156	 *
157	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
158	 * comes here, so go ahead.
159	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
160	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
161	 */
 
162	this_cpu = raw_smp_processor_id();
163	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
164
165	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
 
 
 
166		panic_smp_self_stop();
167
168	console_verbose();
169	bust_spinlocks(1);
170	va_start(args, fmt);
171	vsnprintf(buf, sizeof(buf), fmt, args);
172	va_end(args);
 
 
 
 
173	pr_emerg("Kernel panic - not syncing: %s\n", buf);
174#ifdef CONFIG_DEBUG_BUGVERBOSE
175	/*
176	 * Avoid nested stack-dumping if a panic occurs during oops processing
177	 */
178	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
179		dump_stack();
180#endif
181
182	/*
 
 
 
 
 
 
 
183	 * If we have crashed and we have a crash kernel loaded let it handle
184	 * everything else.
185	 * If we want to run this after calling panic_notifiers, pass
186	 * the "crash_kexec_post_notifiers" option to the kernel.
187	 *
188	 * Bypass the panic_cpu check and call __crash_kexec directly.
189	 */
190	if (!_crash_kexec_post_notifiers) {
191		printk_nmi_flush_on_panic();
192		__crash_kexec(NULL);
193
194		/*
195		 * Note smp_send_stop is the usual smp shutdown function, which
196		 * unfortunately means it may not be hardened to work in a
197		 * panic situation.
198		 */
199		smp_send_stop();
200	} else {
201		/*
202		 * If we want to do crash dump after notifier calls and
203		 * kmsg_dump, we will need architecture dependent extra
204		 * works in addition to stopping other CPUs.
205		 */
206		crash_smp_send_stop();
207	}
208
209	/*
210	 * Run any panic handlers, including those that might need to
211	 * add information to the kmsg dump output.
212	 */
213	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
214
215	/* Call flush even twice. It tries harder with a single online CPU */
216	printk_nmi_flush_on_panic();
217	kmsg_dump(KMSG_DUMP_PANIC);
218
219	/*
220	 * If you doubt kdump always works fine in any situation,
221	 * "crash_kexec_post_notifiers" offers you a chance to run
222	 * panic_notifiers and dumping kmsg before kdump.
223	 * Note: since some panic_notifiers can make crashed kernel
224	 * more unstable, it can increase risks of the kdump failure too.
225	 *
226	 * Bypass the panic_cpu check and call __crash_kexec directly.
227	 */
228	if (_crash_kexec_post_notifiers)
229		__crash_kexec(NULL);
230
231	bust_spinlocks(0);
232
233	/*
234	 * We may have ended up stopping the CPU holding the lock (in
235	 * smp_send_stop()) while still having some valuable data in the console
236	 * buffer.  Try to acquire the lock then release it regardless of the
237	 * result.  The release will also print the buffers out.  Locks debug
238	 * should be disabled to avoid reporting bad unlock balance when
239	 * panic() is not being callled from OOPS.
240	 */
241	debug_locks_off();
242	console_flush_on_panic();
 
 
243
244	if (!panic_blink)
245		panic_blink = no_blink;
246
247	if (panic_timeout > 0) {
248		/*
249		 * Delay timeout seconds before rebooting the machine.
250		 * We can't use the "normal" timers since we just panicked.
251		 */
252		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
253
254		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
255			touch_nmi_watchdog();
256			if (i >= i_next) {
257				i += panic_blink(state ^= 1);
258				i_next = i + 3600 / PANIC_BLINK_SPD;
259			}
260			mdelay(PANIC_TIMER_STEP);
261		}
262	}
263	if (panic_timeout != 0) {
264		/*
265		 * This will not be a clean reboot, with everything
266		 * shutting down.  But if there is a chance of
267		 * rebooting the system it will be rebooted.
268		 */
 
 
269		emergency_restart();
270	}
271#ifdef __sparc__
272	{
273		extern int stop_a_enabled;
274		/* Make sure the user can actually press Stop-A (L1-A) */
275		stop_a_enabled = 1;
276		pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
 
277	}
278#endif
279#if defined(CONFIG_S390)
280	{
281		unsigned long caller;
 
 
 
 
 
 
 
 
 
 
 
 
282
283		caller = (unsigned long)__builtin_return_address(0);
284		disabled_wait(caller);
285	}
286#endif
287	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
288	local_irq_enable();
289	for (i = 0; ; i += PANIC_TIMER_STEP) {
290		touch_softlockup_watchdog();
291		if (i >= i_next) {
292			i += panic_blink(state ^= 1);
293			i_next = i + 3600 / PANIC_BLINK_SPD;
294		}
295		mdelay(PANIC_TIMER_STEP);
296	}
297}
298
299EXPORT_SYMBOL(panic);
300
 
 
 
 
 
 
 
301/*
302 * TAINT_FORCED_RMMOD could be a per-module flag but the module
303 * is being removed anyway.
304 */
305const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
306	{ 'P', 'G', true },	/* TAINT_PROPRIETARY_MODULE */
307	{ 'F', ' ', true },	/* TAINT_FORCED_MODULE */
308	{ 'S', ' ', false },	/* TAINT_CPU_OUT_OF_SPEC */
309	{ 'R', ' ', false },	/* TAINT_FORCED_RMMOD */
310	{ 'M', ' ', false },	/* TAINT_MACHINE_CHECK */
311	{ 'B', ' ', false },	/* TAINT_BAD_PAGE */
312	{ 'U', ' ', false },	/* TAINT_USER */
313	{ 'D', ' ', false },	/* TAINT_DIE */
314	{ 'A', ' ', false },	/* TAINT_OVERRIDDEN_ACPI_TABLE */
315	{ 'W', ' ', false },	/* TAINT_WARN */
316	{ 'C', ' ', true },	/* TAINT_CRAP */
317	{ 'I', ' ', false },	/* TAINT_FIRMWARE_WORKAROUND */
318	{ 'O', ' ', true },	/* TAINT_OOT_MODULE */
319	{ 'E', ' ', true },	/* TAINT_UNSIGNED_MODULE */
320	{ 'L', ' ', false },	/* TAINT_SOFTLOCKUP */
321	{ 'K', ' ', true },	/* TAINT_LIVEPATCH */
 
 
 
322};
323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324/**
325 *	print_tainted - return a string to represent the kernel taint state.
326 *
327 *  'P' - Proprietary module has been loaded.
328 *  'F' - Module has been forcibly loaded.
329 *  'S' - SMP with CPUs not designed for SMP.
330 *  'R' - User forced a module unload.
331 *  'M' - System experienced a machine check exception.
332 *  'B' - System has hit bad_page.
333 *  'U' - Userspace-defined naughtiness.
334 *  'D' - Kernel has oopsed before
335 *  'A' - ACPI table overridden.
336 *  'W' - Taint on warning.
337 *  'C' - modules from drivers/staging are loaded.
338 *  'I' - Working around severe firmware bug.
339 *  'O' - Out-of-tree module has been loaded.
340 *  'E' - Unsigned module has been loaded.
341 *  'L' - A soft lockup has previously occurred.
342 *  'K' - Kernel has been live patched.
343 *
344 *	The string is overwritten by the next call to print_tainted().
 
345 */
346const char *print_tainted(void)
347{
348	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
 
349
350	if (tainted_mask) {
351		char *s;
352		int i;
353
354		s = buf + sprintf(buf, "Tainted: ");
355		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
356			const struct taint_flag *t = &taint_flags[i];
357			*s++ = test_bit(i, &tainted_mask) ?
358					t->c_true : t->c_false;
359		}
360		*s = 0;
361	} else
362		snprintf(buf, sizeof(buf), "Not tainted");
363
364	return buf;
365}
366
367int test_taint(unsigned flag)
368{
369	return test_bit(flag, &tainted_mask);
370}
371EXPORT_SYMBOL(test_taint);
372
373unsigned long get_taint(void)
374{
375	return tainted_mask;
376}
377
378/**
379 * add_taint: add a taint flag if not already set.
380 * @flag: one of the TAINT_* constants.
381 * @lockdep_ok: whether lock debugging is still OK.
382 *
383 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
384 * some notewortht-but-not-corrupting cases, it can be set to true.
385 */
386void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
387{
388	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
389		pr_warn("Disabling lock debugging due to kernel taint\n");
390
391	set_bit(flag, &tainted_mask);
 
 
 
 
 
392}
393EXPORT_SYMBOL(add_taint);
394
395static void spin_msec(int msecs)
396{
397	int i;
398
399	for (i = 0; i < msecs; i++) {
400		touch_nmi_watchdog();
401		mdelay(1);
402	}
403}
404
405/*
406 * It just happens that oops_enter() and oops_exit() are identically
407 * implemented...
408 */
409static void do_oops_enter_exit(void)
410{
411	unsigned long flags;
412	static int spin_counter;
413
414	if (!pause_on_oops)
415		return;
416
417	spin_lock_irqsave(&pause_on_oops_lock, flags);
418	if (pause_on_oops_flag == 0) {
419		/* This CPU may now print the oops message */
420		pause_on_oops_flag = 1;
421	} else {
422		/* We need to stall this CPU */
423		if (!spin_counter) {
424			/* This CPU gets to do the counting */
425			spin_counter = pause_on_oops;
426			do {
427				spin_unlock(&pause_on_oops_lock);
428				spin_msec(MSEC_PER_SEC);
429				spin_lock(&pause_on_oops_lock);
430			} while (--spin_counter);
431			pause_on_oops_flag = 0;
432		} else {
433			/* This CPU waits for a different one */
434			while (spin_counter) {
435				spin_unlock(&pause_on_oops_lock);
436				spin_msec(1);
437				spin_lock(&pause_on_oops_lock);
438			}
439		}
440	}
441	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
442}
443
444/*
445 * Return true if the calling CPU is allowed to print oops-related info.
446 * This is a bit racy..
447 */
448int oops_may_print(void)
449{
450	return pause_on_oops_flag == 0;
451}
452
453/*
454 * Called when the architecture enters its oops handler, before it prints
455 * anything.  If this is the first CPU to oops, and it's oopsing the first
456 * time then let it proceed.
457 *
458 * This is all enabled by the pause_on_oops kernel boot option.  We do all
459 * this to ensure that oopses don't scroll off the screen.  It has the
460 * side-effect of preventing later-oopsing CPUs from mucking up the display,
461 * too.
462 *
463 * It turns out that the CPU which is allowed to print ends up pausing for
464 * the right duration, whereas all the other CPUs pause for twice as long:
465 * once in oops_enter(), once in oops_exit().
466 */
467void oops_enter(void)
468{
 
469	tracing_off();
470	/* can't trust the integrity of the kernel anymore: */
471	debug_locks_off();
472	do_oops_enter_exit();
473}
474
475/*
476 * 64-bit random ID for oopses:
477 */
478static u64 oops_id;
479
480static int init_oops_id(void)
481{
482	if (!oops_id)
483		get_random_bytes(&oops_id, sizeof(oops_id));
484	else
485		oops_id++;
486
487	return 0;
 
488}
489late_initcall(init_oops_id);
490
491void print_oops_end_marker(void)
492{
493	init_oops_id();
494	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
495}
496
497/*
498 * Called when the architecture exits its oops handler, after printing
499 * everything.
500 */
501void oops_exit(void)
502{
503	do_oops_enter_exit();
504	print_oops_end_marker();
 
505	kmsg_dump(KMSG_DUMP_OOPS);
506}
507
508struct warn_args {
509	const char *fmt;
510	va_list args;
511};
512
513void __warn(const char *file, int line, void *caller, unsigned taint,
514	    struct pt_regs *regs, struct warn_args *args)
515{
 
 
516	disable_trace_on_warning();
517
518	pr_warn("------------[ cut here ]------------\n");
519
520	if (file)
521		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
522			raw_smp_processor_id(), current->pid, file, line,
523			caller);
524	else
525		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
526			raw_smp_processor_id(), current->pid, caller);
527
 
 
 
 
528	if (args)
529		vprintk(args->fmt, args->args);
530
531	if (panic_on_warn) {
532		/*
533		 * This thread may hit another WARN() in the panic path.
534		 * Resetting this prevents additional WARN() from panicking the
535		 * system on this thread.  Other threads are blocked by the
536		 * panic_mutex in panic().
537		 */
538		panic_on_warn = 0;
539		panic("panic_on_warn set ...\n");
540	}
541
542	print_modules();
543
544	if (regs)
545		show_regs(regs);
546	else
 
 
 
547		dump_stack();
548
 
 
549	print_oops_end_marker();
 
550
551	/* Just a warning, don't kill lockdep. */
552	add_taint(taint, LOCKDEP_STILL_OK);
 
 
553}
554
555#ifdef WANT_WARN_ON_SLOWPATH
556void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
 
 
557{
 
558	struct warn_args args;
559
 
 
 
 
 
 
 
 
 
560	args.fmt = fmt;
561	va_start(args.args, fmt);
562	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
563	       &args);
564	va_end(args.args);
 
565}
566EXPORT_SYMBOL(warn_slowpath_fmt);
 
 
 
 
 
 
 
567
568void warn_slowpath_fmt_taint(const char *file, int line,
569			     unsigned taint, const char *fmt, ...)
 
 
 
 
 
 
 
 
 
570{
571	struct warn_args args;
 
 
 
572
573	args.fmt = fmt;
574	va_start(args.args, fmt);
575	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
576	va_end(args.args);
577}
578EXPORT_SYMBOL(warn_slowpath_fmt_taint);
579
580void warn_slowpath_null(const char *file, int line)
581{
582	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
 
 
 
583}
584EXPORT_SYMBOL(warn_slowpath_null);
 
585#endif
586
587#ifdef CONFIG_CC_STACKPROTECTOR
588
589/*
590 * Called when gcc's -fstack-protector feature is used, and
591 * gcc detects corruption of the on-stack canary value
592 */
593__visible void __stack_chk_fail(void)
594{
595	panic("stack-protector: Kernel stack is corrupted in: %p\n",
 
596		__builtin_return_address(0));
 
597}
598EXPORT_SYMBOL(__stack_chk_fail);
599
600#endif
601
602core_param(panic, panic_timeout, int, 0644);
 
603core_param(pause_on_oops, pause_on_oops, int, 0644);
604core_param(panic_on_warn, panic_on_warn, int, 0644);
605core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
606
607static int __init oops_setup(char *s)
608{
609	if (!s)
610		return -EINVAL;
611	if (!strcmp(s, "panic"))
612		panic_on_oops = 1;
613	return 0;
614}
615early_param("oops", oops_setup);