Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright 2010
  4 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  5 *
  6 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  7 *
 
 
 
 
 
 
 
 
 
  8 * PV guests under Xen are running in an non-contiguous memory architecture.
  9 *
 10 * When PCI pass-through is utilized, this necessitates an IOMMU for
 11 * translating bus (DMA) to virtual and vice-versa and also providing a
 12 * mechanism to have contiguous pages for device drivers operations (say DMA
 13 * operations).
 14 *
 15 * Specifically, under Xen the Linux idea of pages is an illusion. It
 16 * assumes that pages start at zero and go up to the available memory. To
 17 * help with that, the Linux Xen MMU provides a lookup mechanism to
 18 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 20 * memory is not contiguous. Xen hypervisor stitches memory for guests
 21 * from different pools, which means there is no guarantee that PFN==MFN
 22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 23 * allocated in descending order (high to low), meaning the guest might
 24 * never get any MFN's under the 4GB mark.
 
 25 */
 26
 27#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
 28
 29#include <linux/memblock.h>
 30#include <linux/dma-direct.h>
 31#include <linux/dma-map-ops.h>
 32#include <linux/export.h>
 33#include <xen/swiotlb-xen.h>
 34#include <xen/page.h>
 35#include <xen/xen-ops.h>
 36#include <xen/hvc-console.h>
 37
 38#include <asm/dma-mapping.h>
 
 39
 40#include <trace/events/swiotlb.h>
 41#define MAX_DMA_BITS 32
 
 
 
 
 42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 43/*
 44 * Quick lookup value of the bus address of the IOTLB.
 45 */
 46
 47static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
 
 
 
 
 
 
 
 48{
 49	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
 50	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
 51
 52	baddr |= paddr & ~XEN_PAGE_MASK;
 53	return baddr;
 54}
 55
 56static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
 57{
 58	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
 59}
 60
 61static inline phys_addr_t xen_bus_to_phys(struct device *dev,
 62					  phys_addr_t baddr)
 63{
 64	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
 65	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
 66			    (baddr & ~XEN_PAGE_MASK);
 
 
 67
 68	return paddr;
 69}
 70
 71static inline phys_addr_t xen_dma_to_phys(struct device *dev,
 72					  dma_addr_t dma_addr)
 73{
 74	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
 75}
 76
 77static inline bool range_requires_alignment(phys_addr_t p, size_t size)
 
 
 78{
 79	phys_addr_t algn = 1ULL << (get_order(size) + PAGE_SHIFT);
 80	phys_addr_t bus_addr = pfn_to_bfn(XEN_PFN_DOWN(p)) << XEN_PAGE_SHIFT;
 
 
 
 
 81
 82	return IS_ALIGNED(p, algn) && !IS_ALIGNED(bus_addr, algn);
 
 
 
 
 83}
 84
 85static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
 86{
 87	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
 88	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
 89
 90	next_bfn = pfn_to_bfn(xen_pfn);
 91
 92	for (i = 1; i < nr_pages; i++)
 93		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
 94			return 1;
 95
 96	return 0;
 
 
 
 
 97}
 98
 99static struct io_tlb_pool *xen_swiotlb_find_pool(struct device *dev,
100						 dma_addr_t dma_addr)
101{
102	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
103	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
104	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
105
106	/* If the address is outside our domain, it CAN
107	 * have the same virtual address as another address
108	 * in our domain. Therefore _only_ check address within our domain.
109	 */
110	if (pfn_valid(PFN_DOWN(paddr)))
111		return swiotlb_find_pool(dev, paddr);
112	return NULL;
 
 
113}
114
115#ifdef CONFIG_X86
116int xen_swiotlb_fixup(void *buf, unsigned long nslabs)
 
 
117{
118	int rc;
119	unsigned int order = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT);
120	unsigned int i, dma_bits = order + PAGE_SHIFT;
121	dma_addr_t dma_handle;
122	phys_addr_t p = virt_to_phys(buf);
123
124	BUILD_BUG_ON(IO_TLB_SEGSIZE & (IO_TLB_SEGSIZE - 1));
125	BUG_ON(nslabs % IO_TLB_SEGSIZE);
126
127	i = 0;
128	do {
 
 
129		do {
130			rc = xen_create_contiguous_region(
131				p + (i << IO_TLB_SHIFT), order,
 
132				dma_bits, &dma_handle);
133		} while (rc && dma_bits++ < MAX_DMA_BITS);
134		if (rc)
135			return rc;
136
137		i += IO_TLB_SEGSIZE;
138	} while (i < nslabs);
139	return 0;
140}
 
 
 
 
 
 
 
141
142static void *
143xen_swiotlb_alloc_coherent(struct device *dev, size_t size,
144		dma_addr_t *dma_handle, gfp_t flags, unsigned long attrs)
 
 
 
 
 
 
 
145{
146	u64 dma_mask = dev->coherent_dma_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147	int order = get_order(size);
 
148	phys_addr_t phys;
149	void *ret;
150
151	/* Align the allocation to the Xen page size */
152	size = ALIGN(size, XEN_PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
153
154	ret = (void *)__get_free_pages(flags, get_order(size));
155	if (!ret)
156		return ret;
157	phys = virt_to_phys(ret);
158
159	*dma_handle = xen_phys_to_dma(dev, phys);
160	if (*dma_handle + size - 1 > dma_mask ||
161	    range_straddles_page_boundary(phys, size) ||
162	    range_requires_alignment(phys, size)) {
163		if (xen_create_contiguous_region(phys, order, fls64(dma_mask),
164				dma_handle) != 0)
165			goto out_free_pages;
166		SetPageXenRemapped(virt_to_page(ret));
167	}
168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169	memset(ret, 0, size);
170	return ret;
171
172out_free_pages:
173	free_pages((unsigned long)ret, get_order(size));
174	return NULL;
175}
 
176
177static void
178xen_swiotlb_free_coherent(struct device *dev, size_t size, void *vaddr,
179		dma_addr_t dma_handle, unsigned long attrs)
180{
181	phys_addr_t phys = virt_to_phys(vaddr);
182	int order = get_order(size);
 
 
183
184	/* Convert the size to actually allocated. */
185	size = ALIGN(size, XEN_PAGE_SIZE);
186
187	if (WARN_ON_ONCE(dma_handle + size - 1 > dev->coherent_dma_mask) ||
188	    WARN_ON_ONCE(range_straddles_page_boundary(phys, size) ||
189			 range_requires_alignment(phys, size)))
190	    	return;
191
192	if (TestClearPageXenRemapped(virt_to_page(vaddr)))
 
193		xen_destroy_contiguous_region(phys, order);
194	free_pages((unsigned long)vaddr, get_order(size));
 
195}
196#endif /* CONFIG_X86 */
 
197
198/*
199 * Map a single buffer of the indicated size for DMA in streaming mode.  The
200 * physical address to use is returned.
201 *
202 * Once the device is given the dma address, the device owns this memory until
203 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
204 */
205static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
206				unsigned long offset, size_t size,
207				enum dma_data_direction dir,
208				unsigned long attrs)
209{
210	phys_addr_t map, phys = page_to_phys(page) + offset;
211	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
212
213	BUG_ON(dir == DMA_NONE);
214	/*
215	 * If the address happens to be in the device's DMA window,
216	 * we can safely return the device addr and not worry about bounce
217	 * buffering it.
218	 */
219	if (dma_capable(dev, dev_addr, size, true) &&
220	    !range_straddles_page_boundary(phys, size) &&
221		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
222		!is_swiotlb_force_bounce(dev))
223		goto done;
 
 
 
 
 
224
225	/*
226	 * Oh well, have to allocate and map a bounce buffer.
227	 */
228	trace_swiotlb_bounced(dev, dev_addr, size);
229
230	map = swiotlb_tbl_map_single(dev, phys, size, 0, dir, attrs);
231	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
232		return DMA_MAPPING_ERROR;
233
234	phys = map;
235	dev_addr = xen_phys_to_dma(dev, map);
 
 
236
237	/*
238	 * Ensure that the address returned is DMA'ble
239	 */
240	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
241		__swiotlb_tbl_unmap_single(dev, map, size, dir,
242				attrs | DMA_ATTR_SKIP_CPU_SYNC,
243				swiotlb_find_pool(dev, map));
244		return DMA_MAPPING_ERROR;
245	}
246
247done:
248	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
249		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
250			arch_sync_dma_for_device(phys, size, dir);
251		else
252			xen_dma_sync_for_device(dev, dev_addr, size, dir);
253	}
254	return dev_addr;
255}
 
256
257/*
258 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
259 * match what was provided for in a previous xen_swiotlb_map_page call.  All
260 * other usages are undefined.
261 *
262 * After this call, reads by the cpu to the buffer are guaranteed to see
263 * whatever the device wrote there.
264 */
265static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
266		size_t size, enum dma_data_direction dir, unsigned long attrs)
 
267{
268	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
269	struct io_tlb_pool *pool;
270
271	BUG_ON(dir == DMA_NONE);
272
273	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
274		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
275			arch_sync_dma_for_cpu(paddr, size, dir);
276		else
277			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
278	}
279
280	/* NOTE: We use dev_addr here, not paddr! */
281	pool = xen_swiotlb_find_pool(hwdev, dev_addr);
282	if (pool)
283		__swiotlb_tbl_unmap_single(hwdev, paddr, size, dir,
284					   attrs, pool);
285}
286
287static void
288xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
289		size_t size, enum dma_data_direction dir)
290{
291	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
292	struct io_tlb_pool *pool;
293
294	if (!dev_is_dma_coherent(dev)) {
295		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
296			arch_sync_dma_for_cpu(paddr, size, dir);
297		else
298			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
299	}
300
301	pool = xen_swiotlb_find_pool(dev, dma_addr);
302	if (pool)
303		__swiotlb_sync_single_for_cpu(dev, paddr, size, dir, pool);
304}
305
306static void
307xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
308		size_t size, enum dma_data_direction dir)
309{
310	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
311	struct io_tlb_pool *pool;
312
313	pool = xen_swiotlb_find_pool(dev, dma_addr);
314	if (pool)
315		__swiotlb_sync_single_for_device(dev, paddr, size, dir, pool);
316
317	if (!dev_is_dma_coherent(dev)) {
318		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
319			arch_sync_dma_for_device(paddr, size, dir);
320		else
321			xen_dma_sync_for_device(dev, dma_addr, size, dir);
322	}
323}
 
324
325/*
326 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
327 * concerning calls here are the same as for swiotlb_unmap_page() above.
 
 
 
 
 
 
328 */
329static void
330xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
331		enum dma_data_direction dir, unsigned long attrs)
 
332{
333	struct scatterlist *sg;
334	int i;
335
336	BUG_ON(dir == DMA_NONE);
337
338	for_each_sg(sgl, sg, nelems, i)
339		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
340				dir, attrs);
 
 
 
 
 
 
341
 
 
 
 
342}
343
344static int
345xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
346		enum dma_data_direction dir, unsigned long attrs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347{
348	struct scatterlist *sg;
349	int i;
350
351	BUG_ON(dir == DMA_NONE);
352
353	for_each_sg(sgl, sg, nelems, i) {
354		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
355				sg->offset, sg->length, dir, attrs);
356		if (sg->dma_address == DMA_MAPPING_ERROR)
357			goto out_unmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358		sg_dma_len(sg) = sg->length;
359	}
360
361	return nelems;
362out_unmap:
363	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
364	sg_dma_len(sgl) = 0;
365	return -EIO;
366}
 
367
368static void
369xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
370			    int nelems, enum dma_data_direction dir)
 
 
 
 
 
371{
372	struct scatterlist *sg;
373	int i;
374
375	for_each_sg(sgl, sg, nelems, i) {
376		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
377				sg->length, dir);
378	}
 
379}
 
380
 
 
 
 
 
 
 
381static void
382xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
383			       int nelems, enum dma_data_direction dir)
 
384{
385	struct scatterlist *sg;
386	int i;
387
388	for_each_sg(sgl, sg, nelems, i) {
389		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
390				sg->length, dir);
391	}
392}
393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394/*
395 * Return whether the given device DMA address mask can be supported
396 * properly.  For example, if your device can only drive the low 24-bits
397 * during bus mastering, then you would pass 0x00ffffff as the mask to
398 * this function.
399 */
400static int
401xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
402{
403	return xen_phys_to_dma(hwdev, default_swiotlb_limit()) <= mask;
404}
 
405
406const struct dma_map_ops xen_swiotlb_dma_ops = {
407#ifdef CONFIG_X86
408	.alloc = xen_swiotlb_alloc_coherent,
409	.free = xen_swiotlb_free_coherent,
410#else
411	.alloc = dma_direct_alloc,
412	.free = dma_direct_free,
413#endif
414	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
415	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
416	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
417	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
418	.map_sg = xen_swiotlb_map_sg,
419	.unmap_sg = xen_swiotlb_unmap_sg,
420	.map_page = xen_swiotlb_map_page,
421	.unmap_page = xen_swiotlb_unmap_page,
422	.dma_supported = xen_swiotlb_dma_supported,
423	.mmap = dma_common_mmap,
424	.get_sgtable = dma_common_get_sgtable,
425	.alloc_pages_op = dma_common_alloc_pages,
426	.free_pages = dma_common_free_pages,
427	.max_mapping_size = swiotlb_max_mapping_size,
428};
v4.10.11
 
  1/*
  2 *  Copyright 2010
  3 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  4 *
  5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License v2.0 as published by
  9 * the Free Software Foundation
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * PV guests under Xen are running in an non-contiguous memory architecture.
 17 *
 18 * When PCI pass-through is utilized, this necessitates an IOMMU for
 19 * translating bus (DMA) to virtual and vice-versa and also providing a
 20 * mechanism to have contiguous pages for device drivers operations (say DMA
 21 * operations).
 22 *
 23 * Specifically, under Xen the Linux idea of pages is an illusion. It
 24 * assumes that pages start at zero and go up to the available memory. To
 25 * help with that, the Linux Xen MMU provides a lookup mechanism to
 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 28 * memory is not contiguous. Xen hypervisor stitches memory for guests
 29 * from different pools, which means there is no guarantee that PFN==MFN
 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 31 * allocated in descending order (high to low), meaning the guest might
 32 * never get any MFN's under the 4GB mark.
 33 *
 34 */
 35
 36#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
 37
 38#include <linux/bootmem.h>
 39#include <linux/dma-mapping.h>
 
 40#include <linux/export.h>
 41#include <xen/swiotlb-xen.h>
 42#include <xen/page.h>
 43#include <xen/xen-ops.h>
 44#include <xen/hvc-console.h>
 45
 46#include <asm/dma-mapping.h>
 47#include <asm/xen/page-coherent.h>
 48
 49#include <trace/events/swiotlb.h>
 50/*
 51 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 53 * API.
 54 */
 55
 56#ifndef CONFIG_X86
 57static unsigned long dma_alloc_coherent_mask(struct device *dev,
 58					    gfp_t gfp)
 59{
 60	unsigned long dma_mask = 0;
 61
 62	dma_mask = dev->coherent_dma_mask;
 63	if (!dma_mask)
 64		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
 65
 66	return dma_mask;
 67}
 68#endif
 69
 70static char *xen_io_tlb_start, *xen_io_tlb_end;
 71static unsigned long xen_io_tlb_nslabs;
 72/*
 73 * Quick lookup value of the bus address of the IOTLB.
 74 */
 75
 76static u64 start_dma_addr;
 77
 78/*
 79 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
 80 * can be 32bit when dma_addr_t is 64bit leading to a loss in
 81 * information if the shift is done before casting to 64bit.
 82 */
 83static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
 84{
 85	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
 86	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
 87
 88	dma |= paddr & ~XEN_PAGE_MASK;
 
 
 89
 90	return dma;
 
 
 91}
 92
 93static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
 
 94{
 95	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
 96	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
 97	phys_addr_t paddr = dma;
 98
 99	paddr |= baddr & ~XEN_PAGE_MASK;
100
101	return paddr;
102}
103
104static inline dma_addr_t xen_virt_to_bus(void *address)
 
105{
106	return xen_phys_to_bus(virt_to_phys(address));
107}
108
109static int check_pages_physically_contiguous(unsigned long xen_pfn,
110					     unsigned int offset,
111					     size_t length)
112{
113	unsigned long next_bfn;
114	int i;
115	int nr_pages;
116
117	next_bfn = pfn_to_bfn(xen_pfn);
118	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
119
120	for (i = 1; i < nr_pages; i++) {
121		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
122			return 0;
123	}
124	return 1;
125}
126
127static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
128{
129	unsigned long xen_pfn = XEN_PFN_DOWN(p);
130	unsigned int offset = p & ~XEN_PAGE_MASK;
 
 
 
 
 
 
131
132	if (offset + size <= XEN_PAGE_SIZE)
133		return 0;
134	if (check_pages_physically_contiguous(xen_pfn, offset, size))
135		return 0;
136	return 1;
137}
138
139static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
 
140{
141	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
142	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
143	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
144
145	/* If the address is outside our domain, it CAN
146	 * have the same virtual address as another address
147	 * in our domain. Therefore _only_ check address within our domain.
148	 */
149	if (pfn_valid(PFN_DOWN(paddr))) {
150		return paddr >= virt_to_phys(xen_io_tlb_start) &&
151		       paddr < virt_to_phys(xen_io_tlb_end);
152	}
153	return 0;
154}
155
156static int max_dma_bits = 32;
157
158static int
159xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
160{
161	int i, rc;
162	int dma_bits;
 
163	dma_addr_t dma_handle;
164	phys_addr_t p = virt_to_phys(buf);
165
166	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
 
167
168	i = 0;
169	do {
170		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
171
172		do {
173			rc = xen_create_contiguous_region(
174				p + (i << IO_TLB_SHIFT),
175				get_order(slabs << IO_TLB_SHIFT),
176				dma_bits, &dma_handle);
177		} while (rc && dma_bits++ < max_dma_bits);
178		if (rc)
179			return rc;
180
181		i += slabs;
182	} while (i < nslabs);
183	return 0;
184}
185static unsigned long xen_set_nslabs(unsigned long nr_tbl)
186{
187	if (!nr_tbl) {
188		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
189		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
190	} else
191		xen_io_tlb_nslabs = nr_tbl;
192
193	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
194}
195
196enum xen_swiotlb_err {
197	XEN_SWIOTLB_UNKNOWN = 0,
198	XEN_SWIOTLB_ENOMEM,
199	XEN_SWIOTLB_EFIXUP
200};
201
202static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
203{
204	switch (err) {
205	case XEN_SWIOTLB_ENOMEM:
206		return "Cannot allocate Xen-SWIOTLB buffer\n";
207	case XEN_SWIOTLB_EFIXUP:
208		return "Failed to get contiguous memory for DMA from Xen!\n"\
209		    "You either: don't have the permissions, do not have"\
210		    " enough free memory under 4GB, or the hypervisor memory"\
211		    " is too fragmented!";
212	default:
213		break;
214	}
215	return "";
216}
217int __ref xen_swiotlb_init(int verbose, bool early)
218{
219	unsigned long bytes, order;
220	int rc = -ENOMEM;
221	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
222	unsigned int repeat = 3;
223
224	xen_io_tlb_nslabs = swiotlb_nr_tbl();
225retry:
226	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
227	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
228	/*
229	 * Get IO TLB memory from any location.
230	 */
231	if (early)
232		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
233	else {
234#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
235#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
236		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
237			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
238			if (xen_io_tlb_start)
239				break;
240			order--;
241		}
242		if (order != get_order(bytes)) {
243			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
244				(PAGE_SIZE << order) >> 20);
245			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
246			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
247		}
248	}
249	if (!xen_io_tlb_start) {
250		m_ret = XEN_SWIOTLB_ENOMEM;
251		goto error;
252	}
253	xen_io_tlb_end = xen_io_tlb_start + bytes;
254	/*
255	 * And replace that memory with pages under 4GB.
256	 */
257	rc = xen_swiotlb_fixup(xen_io_tlb_start,
258			       bytes,
259			       xen_io_tlb_nslabs);
260	if (rc) {
261		if (early)
262			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
263		else {
264			free_pages((unsigned long)xen_io_tlb_start, order);
265			xen_io_tlb_start = NULL;
266		}
267		m_ret = XEN_SWIOTLB_EFIXUP;
268		goto error;
269	}
270	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
271	if (early) {
272		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
273			 verbose))
274			panic("Cannot allocate SWIOTLB buffer");
275		rc = 0;
276	} else
277		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
278
279	if (!rc)
280		swiotlb_set_max_segment(PAGE_SIZE);
281
282	return rc;
283error:
284	if (repeat--) {
285		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
286					(xen_io_tlb_nslabs >> 1));
287		pr_info("Lowering to %luMB\n",
288			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
289		goto retry;
290	}
291	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
292	if (early)
293		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
294	else
295		free_pages((unsigned long)xen_io_tlb_start, order);
296	return rc;
297}
298void *
299xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
300			   dma_addr_t *dma_handle, gfp_t flags,
301			   unsigned long attrs)
302{
303	void *ret;
304	int order = get_order(size);
305	u64 dma_mask = DMA_BIT_MASK(32);
306	phys_addr_t phys;
307	dma_addr_t dev_addr;
308
309	/*
310	* Ignore region specifiers - the kernel's ideas of
311	* pseudo-phys memory layout has nothing to do with the
312	* machine physical layout.  We can't allocate highmem
313	* because we can't return a pointer to it.
314	*/
315	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
316
317	/* On ARM this function returns an ioremap'ped virtual address for
318	 * which virt_to_phys doesn't return the corresponding physical
319	 * address. In fact on ARM virt_to_phys only works for kernel direct
320	 * mapped RAM memory. Also see comment below.
321	 */
322	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
323
 
324	if (!ret)
325		return ret;
 
326
327	if (hwdev && hwdev->coherent_dma_mask)
328		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
 
 
 
 
 
 
 
329
330	/* At this point dma_handle is the physical address, next we are
331	 * going to set it to the machine address.
332	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
333	 * to *dma_handle. */
334	phys = *dma_handle;
335	dev_addr = xen_phys_to_bus(phys);
336	if (((dev_addr + size - 1 <= dma_mask)) &&
337	    !range_straddles_page_boundary(phys, size))
338		*dma_handle = dev_addr;
339	else {
340		if (xen_create_contiguous_region(phys, order,
341						 fls64(dma_mask), dma_handle) != 0) {
342			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
343			return NULL;
344		}
345	}
346	memset(ret, 0, size);
347	return ret;
 
 
 
 
348}
349EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
350
351void
352xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
353			  dma_addr_t dev_addr, unsigned long attrs)
354{
 
355	int order = get_order(size);
356	phys_addr_t phys;
357	u64 dma_mask = DMA_BIT_MASK(32);
358
359	if (hwdev && hwdev->coherent_dma_mask)
360		dma_mask = hwdev->coherent_dma_mask;
361
362	/* do not use virt_to_phys because on ARM it doesn't return you the
363	 * physical address */
364	phys = xen_bus_to_phys(dev_addr);
 
365
366	if (((dev_addr + size - 1 > dma_mask)) ||
367	    range_straddles_page_boundary(phys, size))
368		xen_destroy_contiguous_region(phys, order);
369
370	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
371}
372EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
373
374
375/*
376 * Map a single buffer of the indicated size for DMA in streaming mode.  The
377 * physical address to use is returned.
378 *
379 * Once the device is given the dma address, the device owns this memory until
380 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
381 */
382dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
383				unsigned long offset, size_t size,
384				enum dma_data_direction dir,
385				unsigned long attrs)
386{
387	phys_addr_t map, phys = page_to_phys(page) + offset;
388	dma_addr_t dev_addr = xen_phys_to_bus(phys);
389
390	BUG_ON(dir == DMA_NONE);
391	/*
392	 * If the address happens to be in the device's DMA window,
393	 * we can safely return the device addr and not worry about bounce
394	 * buffering it.
395	 */
396	if (dma_capable(dev, dev_addr, size) &&
397	    !range_straddles_page_boundary(phys, size) &&
398		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
399		(swiotlb_force != SWIOTLB_FORCE)) {
400		/* we are not interested in the dma_addr returned by
401		 * xen_dma_map_page, only in the potential cache flushes executed
402		 * by the function. */
403		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
404		return dev_addr;
405	}
406
407	/*
408	 * Oh well, have to allocate and map a bounce buffer.
409	 */
410	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
411
412	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
413				     attrs);
414	if (map == SWIOTLB_MAP_ERROR)
415		return DMA_ERROR_CODE;
416
417	dev_addr = xen_phys_to_bus(map);
418	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
419					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
420
421	/*
422	 * Ensure that the address returned is DMA'ble
423	 */
424	if (dma_capable(dev, dev_addr, size))
425		return dev_addr;
 
 
 
 
426
427	attrs |= DMA_ATTR_SKIP_CPU_SYNC;
428	swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
429
430	return DMA_ERROR_CODE;
 
 
 
 
431}
432EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
433
434/*
435 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
436 * match what was provided for in a previous xen_swiotlb_map_page call.  All
437 * other usages are undefined.
438 *
439 * After this call, reads by the cpu to the buffer are guaranteed to see
440 * whatever the device wrote there.
441 */
442static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
443			     size_t size, enum dma_data_direction dir,
444			     unsigned long attrs)
445{
446	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
 
447
448	BUG_ON(dir == DMA_NONE);
449
450	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
 
 
 
 
 
451
452	/* NOTE: We use dev_addr here, not paddr! */
453	if (is_xen_swiotlb_buffer(dev_addr)) {
454		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
455		return;
456	}
 
457
458	if (dir != DMA_FROM_DEVICE)
459		return;
 
 
 
 
460
461	/*
462	 * phys_to_virt doesn't work with hihgmem page but we could
463	 * call dma_mark_clean() with hihgmem page here. However, we
464	 * are fine since dma_mark_clean() is null on POWERPC. We can
465	 * make dma_mark_clean() take a physical address if necessary.
466	 */
467	dma_mark_clean(phys_to_virt(paddr), size);
 
 
 
468}
469
470void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
471			    size_t size, enum dma_data_direction dir,
472			    unsigned long attrs)
473{
474	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
 
 
 
 
 
 
 
 
 
 
 
 
475}
476EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
477
478/*
479 * Make physical memory consistent for a single streaming mode DMA translation
480 * after a transfer.
481 *
482 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
483 * using the cpu, yet do not wish to teardown the dma mapping, you must
484 * call this function before doing so.  At the next point you give the dma
485 * address back to the card, you must first perform a
486 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
487 */
488static void
489xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
490			size_t size, enum dma_data_direction dir,
491			enum dma_sync_target target)
492{
493	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
 
494
495	BUG_ON(dir == DMA_NONE);
496
497	if (target == SYNC_FOR_CPU)
498		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
499
500	/* NOTE: We use dev_addr here, not paddr! */
501	if (is_xen_swiotlb_buffer(dev_addr))
502		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
503
504	if (target == SYNC_FOR_DEVICE)
505		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
506
507	if (dir != DMA_FROM_DEVICE)
508		return;
509
510	dma_mark_clean(phys_to_virt(paddr), size);
511}
512
513void
514xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
515				size_t size, enum dma_data_direction dir)
516{
517	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
518}
519EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
520
521void
522xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
523				   size_t size, enum dma_data_direction dir)
524{
525	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
526}
527EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
528
529/*
530 * Map a set of buffers described by scatterlist in streaming mode for DMA.
531 * This is the scatter-gather version of the above xen_swiotlb_map_page
532 * interface.  Here the scatter gather list elements are each tagged with the
533 * appropriate dma address and length.  They are obtained via
534 * sg_dma_{address,length}(SG).
535 *
536 * NOTE: An implementation may be able to use a smaller number of
537 *       DMA address/length pairs than there are SG table elements.
538 *       (for example via virtual mapping capabilities)
539 *       The routine returns the number of addr/length pairs actually
540 *       used, at most nents.
541 *
542 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
543 * same here.
544 */
545int
546xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
547			 int nelems, enum dma_data_direction dir,
548			 unsigned long attrs)
549{
550	struct scatterlist *sg;
551	int i;
552
553	BUG_ON(dir == DMA_NONE);
554
555	for_each_sg(sgl, sg, nelems, i) {
556		phys_addr_t paddr = sg_phys(sg);
557		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
558
559		if (swiotlb_force == SWIOTLB_FORCE ||
560		    xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
561		    !dma_capable(hwdev, dev_addr, sg->length) ||
562		    range_straddles_page_boundary(paddr, sg->length)) {
563			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
564								 start_dma_addr,
565								 sg_phys(sg),
566								 sg->length,
567								 dir, attrs);
568			if (map == SWIOTLB_MAP_ERROR) {
569				dev_warn(hwdev, "swiotlb buffer is full\n");
570				/* Don't panic here, we expect map_sg users
571				   to do proper error handling. */
572				attrs |= DMA_ATTR_SKIP_CPU_SYNC;
573				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
574							   attrs);
575				sg_dma_len(sgl) = 0;
576				return 0;
577			}
578			dev_addr = xen_phys_to_bus(map);
579			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
580						dev_addr,
581						map & ~PAGE_MASK,
582						sg->length,
583						dir,
584						attrs);
585			sg->dma_address = dev_addr;
586		} else {
587			/* we are not interested in the dma_addr returned by
588			 * xen_dma_map_page, only in the potential cache flushes executed
589			 * by the function. */
590			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
591						dev_addr,
592						paddr & ~PAGE_MASK,
593						sg->length,
594						dir,
595						attrs);
596			sg->dma_address = dev_addr;
597		}
598		sg_dma_len(sg) = sg->length;
599	}
 
600	return nelems;
 
 
 
 
601}
602EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
603
604/*
605 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
606 * concerning calls here are the same as for swiotlb_unmap_page() above.
607 */
608void
609xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
610			   int nelems, enum dma_data_direction dir,
611			   unsigned long attrs)
612{
613	struct scatterlist *sg;
614	int i;
615
616	BUG_ON(dir == DMA_NONE);
617
618	for_each_sg(sgl, sg, nelems, i)
619		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
620
621}
622EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
623
624/*
625 * Make physical memory consistent for a set of streaming mode DMA translations
626 * after a transfer.
627 *
628 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
629 * and usage.
630 */
631static void
632xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
633		    int nelems, enum dma_data_direction dir,
634		    enum dma_sync_target target)
635{
636	struct scatterlist *sg;
637	int i;
638
639	for_each_sg(sgl, sg, nelems, i)
640		xen_swiotlb_sync_single(hwdev, sg->dma_address,
641					sg_dma_len(sg), dir, target);
 
642}
643
644void
645xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
646			    int nelems, enum dma_data_direction dir)
647{
648	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
649}
650EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
651
652void
653xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
654			       int nelems, enum dma_data_direction dir)
655{
656	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
657}
658EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
659
660/*
661 * Return whether the given device DMA address mask can be supported
662 * properly.  For example, if your device can only drive the low 24-bits
663 * during bus mastering, then you would pass 0x00ffffff as the mask to
664 * this function.
665 */
666int
667xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
668{
669	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
670}
671EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
672
673int
674xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
675{
676	if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
677		return -EIO;
678
679	*dev->dma_mask = dma_mask;
680
681	return 0;
682}
683EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);