Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright 2010
  4 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  5 *
  6 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  7 *
  8 * PV guests under Xen are running in an non-contiguous memory architecture.
  9 *
 10 * When PCI pass-through is utilized, this necessitates an IOMMU for
 11 * translating bus (DMA) to virtual and vice-versa and also providing a
 12 * mechanism to have contiguous pages for device drivers operations (say DMA
 13 * operations).
 14 *
 15 * Specifically, under Xen the Linux idea of pages is an illusion. It
 16 * assumes that pages start at zero and go up to the available memory. To
 17 * help with that, the Linux Xen MMU provides a lookup mechanism to
 18 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 20 * memory is not contiguous. Xen hypervisor stitches memory for guests
 21 * from different pools, which means there is no guarantee that PFN==MFN
 22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 23 * allocated in descending order (high to low), meaning the guest might
 24 * never get any MFN's under the 4GB mark.
 25 */
 26
 27#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
 28
 29#include <linux/memblock.h>
 30#include <linux/dma-direct.h>
 31#include <linux/dma-map-ops.h>
 32#include <linux/export.h>
 33#include <xen/swiotlb-xen.h>
 34#include <xen/page.h>
 35#include <xen/xen-ops.h>
 36#include <xen/hvc-console.h>
 37
 38#include <asm/dma-mapping.h>
 
 39
 40#include <trace/events/swiotlb.h>
 41#define MAX_DMA_BITS 32
 42
 43/*
 44 * Quick lookup value of the bus address of the IOTLB.
 45 */
 46
 47static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
 48{
 49	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
 50	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
 51
 52	baddr |= paddr & ~XEN_PAGE_MASK;
 53	return baddr;
 54}
 55
 56static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
 57{
 58	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
 59}
 60
 61static inline phys_addr_t xen_bus_to_phys(struct device *dev,
 62					  phys_addr_t baddr)
 63{
 64	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
 65	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
 66			    (baddr & ~XEN_PAGE_MASK);
 67
 68	return paddr;
 69}
 70
 71static inline phys_addr_t xen_dma_to_phys(struct device *dev,
 72					  dma_addr_t dma_addr)
 73{
 74	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
 75}
 76
 77static inline bool range_requires_alignment(phys_addr_t p, size_t size)
 78{
 79	phys_addr_t algn = 1ULL << (get_order(size) + PAGE_SHIFT);
 80	phys_addr_t bus_addr = pfn_to_bfn(XEN_PFN_DOWN(p)) << XEN_PAGE_SHIFT;
 81
 82	return IS_ALIGNED(p, algn) && !IS_ALIGNED(bus_addr, algn);
 83}
 84
 85static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
 86{
 87	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
 88	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
 89
 90	next_bfn = pfn_to_bfn(xen_pfn);
 91
 92	for (i = 1; i < nr_pages; i++)
 93		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
 94			return 1;
 95
 96	return 0;
 97}
 98
 99static struct io_tlb_pool *xen_swiotlb_find_pool(struct device *dev,
100						 dma_addr_t dma_addr)
101{
102	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
103	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
104	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
105
106	/* If the address is outside our domain, it CAN
107	 * have the same virtual address as another address
108	 * in our domain. Therefore _only_ check address within our domain.
109	 */
110	if (pfn_valid(PFN_DOWN(paddr)))
111		return swiotlb_find_pool(dev, paddr);
112	return NULL;
113}
114
115#ifdef CONFIG_X86
116int xen_swiotlb_fixup(void *buf, unsigned long nslabs)
117{
118	int rc;
119	unsigned int order = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT);
120	unsigned int i, dma_bits = order + PAGE_SHIFT;
121	dma_addr_t dma_handle;
122	phys_addr_t p = virt_to_phys(buf);
123
124	BUILD_BUG_ON(IO_TLB_SEGSIZE & (IO_TLB_SEGSIZE - 1));
125	BUG_ON(nslabs % IO_TLB_SEGSIZE);
126
127	i = 0;
128	do {
 
 
129		do {
130			rc = xen_create_contiguous_region(
131				p + (i << IO_TLB_SHIFT), order,
 
132				dma_bits, &dma_handle);
133		} while (rc && dma_bits++ < MAX_DMA_BITS);
134		if (rc)
135			return rc;
136
137		i += IO_TLB_SEGSIZE;
138	} while (i < nslabs);
139	return 0;
140}
141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142static void *
143xen_swiotlb_alloc_coherent(struct device *dev, size_t size,
144		dma_addr_t *dma_handle, gfp_t flags, unsigned long attrs)
 
145{
146	u64 dma_mask = dev->coherent_dma_mask;
147	int order = get_order(size);
 
148	phys_addr_t phys;
149	void *ret;
 
 
 
 
 
 
 
 
 
 
 
150
151	/* Align the allocation to the Xen page size */
152	size = ALIGN(size, XEN_PAGE_SIZE);
 
 
 
 
153
154	ret = (void *)__get_free_pages(flags, get_order(size));
155	if (!ret)
156		return ret;
157	phys = virt_to_phys(ret);
158
159	*dma_handle = xen_phys_to_dma(dev, phys);
160	if (*dma_handle + size - 1 > dma_mask ||
161	    range_straddles_page_boundary(phys, size) ||
162	    range_requires_alignment(phys, size)) {
163		if (xen_create_contiguous_region(phys, order, fls64(dma_mask),
164				dma_handle) != 0)
165			goto out_free_pages;
 
 
 
 
 
 
 
 
 
 
 
 
166		SetPageXenRemapped(virt_to_page(ret));
167	}
168
169	memset(ret, 0, size);
170	return ret;
171
172out_free_pages:
173	free_pages((unsigned long)ret, get_order(size));
174	return NULL;
175}
176
177static void
178xen_swiotlb_free_coherent(struct device *dev, size_t size, void *vaddr,
179		dma_addr_t dma_handle, unsigned long attrs)
180{
181	phys_addr_t phys = virt_to_phys(vaddr);
182	int order = get_order(size);
 
 
 
183
184	/* Convert the size to actually allocated. */
185	size = ALIGN(size, XEN_PAGE_SIZE);
 
 
 
 
186
187	if (WARN_ON_ONCE(dma_handle + size - 1 > dev->coherent_dma_mask) ||
188	    WARN_ON_ONCE(range_straddles_page_boundary(phys, size) ||
189			 range_requires_alignment(phys, size)))
190	    	return;
191
192	if (TestClearPageXenRemapped(virt_to_page(vaddr)))
 
 
 
 
 
 
 
193		xen_destroy_contiguous_region(phys, order);
194	free_pages((unsigned long)vaddr, get_order(size));
 
 
195}
196#endif /* CONFIG_X86 */
197
198/*
199 * Map a single buffer of the indicated size for DMA in streaming mode.  The
200 * physical address to use is returned.
201 *
202 * Once the device is given the dma address, the device owns this memory until
203 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
204 */
205static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
206				unsigned long offset, size_t size,
207				enum dma_data_direction dir,
208				unsigned long attrs)
209{
210	phys_addr_t map, phys = page_to_phys(page) + offset;
211	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
212
213	BUG_ON(dir == DMA_NONE);
214	/*
215	 * If the address happens to be in the device's DMA window,
216	 * we can safely return the device addr and not worry about bounce
217	 * buffering it.
218	 */
219	if (dma_capable(dev, dev_addr, size, true) &&
220	    !range_straddles_page_boundary(phys, size) &&
221		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
222		!is_swiotlb_force_bounce(dev))
223		goto done;
224
225	/*
226	 * Oh well, have to allocate and map a bounce buffer.
227	 */
228	trace_swiotlb_bounced(dev, dev_addr, size);
229
230	map = swiotlb_tbl_map_single(dev, phys, size, 0, dir, attrs);
231	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
232		return DMA_MAPPING_ERROR;
233
234	phys = map;
235	dev_addr = xen_phys_to_dma(dev, map);
236
237	/*
238	 * Ensure that the address returned is DMA'ble
239	 */
240	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
241		__swiotlb_tbl_unmap_single(dev, map, size, dir,
242				attrs | DMA_ATTR_SKIP_CPU_SYNC,
243				swiotlb_find_pool(dev, map));
244		return DMA_MAPPING_ERROR;
245	}
246
247done:
248	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
249		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
250			arch_sync_dma_for_device(phys, size, dir);
251		else
252			xen_dma_sync_for_device(dev, dev_addr, size, dir);
253	}
254	return dev_addr;
255}
256
257/*
258 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
259 * match what was provided for in a previous xen_swiotlb_map_page call.  All
260 * other usages are undefined.
261 *
262 * After this call, reads by the cpu to the buffer are guaranteed to see
263 * whatever the device wrote there.
264 */
265static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
266		size_t size, enum dma_data_direction dir, unsigned long attrs)
267{
268	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
269	struct io_tlb_pool *pool;
270
271	BUG_ON(dir == DMA_NONE);
272
273	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
274		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
275			arch_sync_dma_for_cpu(paddr, size, dir);
276		else
277			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
278	}
279
280	/* NOTE: We use dev_addr here, not paddr! */
281	pool = xen_swiotlb_find_pool(hwdev, dev_addr);
282	if (pool)
283		__swiotlb_tbl_unmap_single(hwdev, paddr, size, dir,
284					   attrs, pool);
285}
286
287static void
288xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
289		size_t size, enum dma_data_direction dir)
290{
291	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
292	struct io_tlb_pool *pool;
293
294	if (!dev_is_dma_coherent(dev)) {
295		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
296			arch_sync_dma_for_cpu(paddr, size, dir);
297		else
298			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
299	}
300
301	pool = xen_swiotlb_find_pool(dev, dma_addr);
302	if (pool)
303		__swiotlb_sync_single_for_cpu(dev, paddr, size, dir, pool);
304}
305
306static void
307xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
308		size_t size, enum dma_data_direction dir)
309{
310	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
311	struct io_tlb_pool *pool;
312
313	pool = xen_swiotlb_find_pool(dev, dma_addr);
314	if (pool)
315		__swiotlb_sync_single_for_device(dev, paddr, size, dir, pool);
316
317	if (!dev_is_dma_coherent(dev)) {
318		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
319			arch_sync_dma_for_device(paddr, size, dir);
320		else
321			xen_dma_sync_for_device(dev, dma_addr, size, dir);
322	}
323}
324
325/*
326 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
327 * concerning calls here are the same as for swiotlb_unmap_page() above.
328 */
329static void
330xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
331		enum dma_data_direction dir, unsigned long attrs)
332{
333	struct scatterlist *sg;
334	int i;
335
336	BUG_ON(dir == DMA_NONE);
337
338	for_each_sg(sgl, sg, nelems, i)
339		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
340				dir, attrs);
341
342}
343
344static int
345xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
346		enum dma_data_direction dir, unsigned long attrs)
347{
348	struct scatterlist *sg;
349	int i;
350
351	BUG_ON(dir == DMA_NONE);
352
353	for_each_sg(sgl, sg, nelems, i) {
354		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
355				sg->offset, sg->length, dir, attrs);
356		if (sg->dma_address == DMA_MAPPING_ERROR)
357			goto out_unmap;
358		sg_dma_len(sg) = sg->length;
359	}
360
361	return nelems;
362out_unmap:
363	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
364	sg_dma_len(sgl) = 0;
365	return -EIO;
366}
367
368static void
369xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
370			    int nelems, enum dma_data_direction dir)
371{
372	struct scatterlist *sg;
373	int i;
374
375	for_each_sg(sgl, sg, nelems, i) {
376		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
377				sg->length, dir);
378	}
379}
380
381static void
382xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
383			       int nelems, enum dma_data_direction dir)
384{
385	struct scatterlist *sg;
386	int i;
387
388	for_each_sg(sgl, sg, nelems, i) {
389		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
390				sg->length, dir);
391	}
392}
393
394/*
395 * Return whether the given device DMA address mask can be supported
396 * properly.  For example, if your device can only drive the low 24-bits
397 * during bus mastering, then you would pass 0x00ffffff as the mask to
398 * this function.
399 */
400static int
401xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
402{
403	return xen_phys_to_dma(hwdev, default_swiotlb_limit()) <= mask;
404}
405
406const struct dma_map_ops xen_swiotlb_dma_ops = {
407#ifdef CONFIG_X86
408	.alloc = xen_swiotlb_alloc_coherent,
409	.free = xen_swiotlb_free_coherent,
410#else
411	.alloc = dma_direct_alloc,
412	.free = dma_direct_free,
413#endif
414	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
415	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
416	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
417	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
418	.map_sg = xen_swiotlb_map_sg,
419	.unmap_sg = xen_swiotlb_unmap_sg,
420	.map_page = xen_swiotlb_map_page,
421	.unmap_page = xen_swiotlb_unmap_page,
422	.dma_supported = xen_swiotlb_dma_supported,
423	.mmap = dma_common_mmap,
424	.get_sgtable = dma_common_get_sgtable,
425	.alloc_pages_op = dma_common_alloc_pages,
426	.free_pages = dma_common_free_pages,
427	.max_mapping_size = swiotlb_max_mapping_size,
428};
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright 2010
  4 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  5 *
  6 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  7 *
  8 * PV guests under Xen are running in an non-contiguous memory architecture.
  9 *
 10 * When PCI pass-through is utilized, this necessitates an IOMMU for
 11 * translating bus (DMA) to virtual and vice-versa and also providing a
 12 * mechanism to have contiguous pages for device drivers operations (say DMA
 13 * operations).
 14 *
 15 * Specifically, under Xen the Linux idea of pages is an illusion. It
 16 * assumes that pages start at zero and go up to the available memory. To
 17 * help with that, the Linux Xen MMU provides a lookup mechanism to
 18 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 20 * memory is not contiguous. Xen hypervisor stitches memory for guests
 21 * from different pools, which means there is no guarantee that PFN==MFN
 22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 23 * allocated in descending order (high to low), meaning the guest might
 24 * never get any MFN's under the 4GB mark.
 25 */
 26
 27#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
 28
 29#include <linux/memblock.h>
 30#include <linux/dma-direct.h>
 31#include <linux/dma-map-ops.h>
 32#include <linux/export.h>
 33#include <xen/swiotlb-xen.h>
 34#include <xen/page.h>
 35#include <xen/xen-ops.h>
 36#include <xen/hvc-console.h>
 37
 38#include <asm/dma-mapping.h>
 39#include <asm/xen/page-coherent.h>
 40
 41#include <trace/events/swiotlb.h>
 42#define MAX_DMA_BITS 32
 43
 44/*
 45 * Quick lookup value of the bus address of the IOTLB.
 46 */
 47
 48static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
 49{
 50	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
 51	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
 52
 53	baddr |= paddr & ~XEN_PAGE_MASK;
 54	return baddr;
 55}
 56
 57static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
 58{
 59	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
 60}
 61
 62static inline phys_addr_t xen_bus_to_phys(struct device *dev,
 63					  phys_addr_t baddr)
 64{
 65	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
 66	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
 67			    (baddr & ~XEN_PAGE_MASK);
 68
 69	return paddr;
 70}
 71
 72static inline phys_addr_t xen_dma_to_phys(struct device *dev,
 73					  dma_addr_t dma_addr)
 74{
 75	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
 76}
 77
 
 
 
 
 
 
 
 
 78static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
 79{
 80	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
 81	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
 82
 83	next_bfn = pfn_to_bfn(xen_pfn);
 84
 85	for (i = 1; i < nr_pages; i++)
 86		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
 87			return 1;
 88
 89	return 0;
 90}
 91
 92static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
 
 93{
 94	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
 95	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
 96	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
 97
 98	/* If the address is outside our domain, it CAN
 99	 * have the same virtual address as another address
100	 * in our domain. Therefore _only_ check address within our domain.
101	 */
102	if (pfn_valid(PFN_DOWN(paddr)))
103		return is_swiotlb_buffer(paddr);
104	return 0;
105}
106
107static int xen_swiotlb_fixup(void *buf, unsigned long nslabs)
 
108{
109	int i, rc;
110	int dma_bits;
 
111	dma_addr_t dma_handle;
112	phys_addr_t p = virt_to_phys(buf);
113
114	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
 
115
116	i = 0;
117	do {
118		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
119
120		do {
121			rc = xen_create_contiguous_region(
122				p + (i << IO_TLB_SHIFT),
123				get_order(slabs << IO_TLB_SHIFT),
124				dma_bits, &dma_handle);
125		} while (rc && dma_bits++ < MAX_DMA_BITS);
126		if (rc)
127			return rc;
128
129		i += slabs;
130	} while (i < nslabs);
131	return 0;
132}
133
134enum xen_swiotlb_err {
135	XEN_SWIOTLB_UNKNOWN = 0,
136	XEN_SWIOTLB_ENOMEM,
137	XEN_SWIOTLB_EFIXUP
138};
139
140static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
141{
142	switch (err) {
143	case XEN_SWIOTLB_ENOMEM:
144		return "Cannot allocate Xen-SWIOTLB buffer\n";
145	case XEN_SWIOTLB_EFIXUP:
146		return "Failed to get contiguous memory for DMA from Xen!\n"\
147		    "You either: don't have the permissions, do not have"\
148		    " enough free memory under 4GB, or the hypervisor memory"\
149		    " is too fragmented!";
150	default:
151		break;
152	}
153	return "";
154}
155
156#define DEFAULT_NSLABS		ALIGN(SZ_64M >> IO_TLB_SHIFT, IO_TLB_SEGSIZE)
157
158int __ref xen_swiotlb_init(void)
159{
160	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
161	unsigned long bytes = swiotlb_size_or_default();
162	unsigned long nslabs = bytes >> IO_TLB_SHIFT;
163	unsigned int order, repeat = 3;
164	int rc = -ENOMEM;
165	char *start;
166
167	if (io_tlb_default_mem != NULL) {
168		pr_warn("swiotlb buffer already initialized\n");
169		return -EEXIST;
170	}
171
172retry:
173	m_ret = XEN_SWIOTLB_ENOMEM;
174	order = get_order(bytes);
175
176	/*
177	 * Get IO TLB memory from any location.
178	 */
179#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
180#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
181	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
182		start = (void *)xen_get_swiotlb_free_pages(order);
183		if (start)
184			break;
185		order--;
186	}
187	if (!start)
188		goto error;
189	if (order != get_order(bytes)) {
190		pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
191			(PAGE_SIZE << order) >> 20);
192		nslabs = SLABS_PER_PAGE << order;
193		bytes = nslabs << IO_TLB_SHIFT;
194	}
195
196	/*
197	 * And replace that memory with pages under 4GB.
198	 */
199	rc = xen_swiotlb_fixup(start, nslabs);
200	if (rc) {
201		free_pages((unsigned long)start, order);
202		m_ret = XEN_SWIOTLB_EFIXUP;
203		goto error;
204	}
205	rc = swiotlb_late_init_with_tbl(start, nslabs);
206	if (rc)
207		return rc;
208	swiotlb_set_max_segment(PAGE_SIZE);
209	return 0;
210error:
211	if (repeat--) {
212		/* Min is 2MB */
213		nslabs = max(1024UL, (nslabs >> 1));
214		bytes = nslabs << IO_TLB_SHIFT;
215		pr_info("Lowering to %luMB\n", bytes >> 20);
216		goto retry;
217	}
218	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
219	return rc;
220}
221
222#ifdef CONFIG_X86
223void __init xen_swiotlb_init_early(void)
224{
225	unsigned long bytes = swiotlb_size_or_default();
226	unsigned long nslabs = bytes >> IO_TLB_SHIFT;
227	unsigned int repeat = 3;
228	char *start;
229	int rc;
230
231retry:
232	/*
233	 * Get IO TLB memory from any location.
234	 */
235	start = memblock_alloc(PAGE_ALIGN(bytes),
236			       IO_TLB_SEGSIZE << IO_TLB_SHIFT);
237	if (!start)
238		panic("%s: Failed to allocate %lu bytes\n",
239		      __func__, PAGE_ALIGN(bytes));
240
241	/*
242	 * And replace that memory with pages under 4GB.
243	 */
244	rc = xen_swiotlb_fixup(start, nslabs);
245	if (rc) {
246		memblock_free(__pa(start), PAGE_ALIGN(bytes));
247		if (repeat--) {
248			/* Min is 2MB */
249			nslabs = max(1024UL, (nslabs >> 1));
250			bytes = nslabs << IO_TLB_SHIFT;
251			pr_info("Lowering to %luMB\n", bytes >> 20);
252			goto retry;
253		}
254		panic("%s (rc:%d)", xen_swiotlb_error(XEN_SWIOTLB_EFIXUP), rc);
255	}
256
257	if (swiotlb_init_with_tbl(start, nslabs, false))
258		panic("Cannot allocate SWIOTLB buffer");
259	swiotlb_set_max_segment(PAGE_SIZE);
260}
261#endif /* CONFIG_X86 */
262
263static void *
264xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
265			   dma_addr_t *dma_handle, gfp_t flags,
266			   unsigned long attrs)
267{
268	void *ret;
269	int order = get_order(size);
270	u64 dma_mask = DMA_BIT_MASK(32);
271	phys_addr_t phys;
272	dma_addr_t dev_addr;
273
274	/*
275	* Ignore region specifiers - the kernel's ideas of
276	* pseudo-phys memory layout has nothing to do with the
277	* machine physical layout.  We can't allocate highmem
278	* because we can't return a pointer to it.
279	*/
280	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
281
282	/* Convert the size to actually allocated. */
283	size = 1UL << (order + XEN_PAGE_SHIFT);
284
285	/* On ARM this function returns an ioremap'ped virtual address for
286	 * which virt_to_phys doesn't return the corresponding physical
287	 * address. In fact on ARM virt_to_phys only works for kernel direct
288	 * mapped RAM memory. Also see comment below.
289	 */
290	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
291
 
292	if (!ret)
293		return ret;
 
294
295	if (hwdev && hwdev->coherent_dma_mask)
296		dma_mask = hwdev->coherent_dma_mask;
297
298	/* At this point dma_handle is the dma address, next we are
299	 * going to set it to the machine address.
300	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
301	 * to *dma_handle. */
302	phys = dma_to_phys(hwdev, *dma_handle);
303	dev_addr = xen_phys_to_dma(hwdev, phys);
304	if (((dev_addr + size - 1 <= dma_mask)) &&
305	    !range_straddles_page_boundary(phys, size))
306		*dma_handle = dev_addr;
307	else {
308		if (xen_create_contiguous_region(phys, order,
309						 fls64(dma_mask), dma_handle) != 0) {
310			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
311			return NULL;
312		}
313		*dma_handle = phys_to_dma(hwdev, *dma_handle);
314		SetPageXenRemapped(virt_to_page(ret));
315	}
 
316	memset(ret, 0, size);
317	return ret;
 
 
 
 
318}
319
320static void
321xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
322			  dma_addr_t dev_addr, unsigned long attrs)
323{
 
324	int order = get_order(size);
325	phys_addr_t phys;
326	u64 dma_mask = DMA_BIT_MASK(32);
327	struct page *page;
328
329	if (hwdev && hwdev->coherent_dma_mask)
330		dma_mask = hwdev->coherent_dma_mask;
331
332	/* do not use virt_to_phys because on ARM it doesn't return you the
333	 * physical address */
334	phys = xen_dma_to_phys(hwdev, dev_addr);
335
336	/* Convert the size to actually allocated. */
337	size = 1UL << (order + XEN_PAGE_SHIFT);
 
 
338
339	if (is_vmalloc_addr(vaddr))
340		page = vmalloc_to_page(vaddr);
341	else
342		page = virt_to_page(vaddr);
343
344	if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
345		     range_straddles_page_boundary(phys, size)) &&
346	    TestClearPageXenRemapped(page))
347		xen_destroy_contiguous_region(phys, order);
348
349	xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys),
350				attrs);
351}
 
352
353/*
354 * Map a single buffer of the indicated size for DMA in streaming mode.  The
355 * physical address to use is returned.
356 *
357 * Once the device is given the dma address, the device owns this memory until
358 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
359 */
360static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
361				unsigned long offset, size_t size,
362				enum dma_data_direction dir,
363				unsigned long attrs)
364{
365	phys_addr_t map, phys = page_to_phys(page) + offset;
366	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
367
368	BUG_ON(dir == DMA_NONE);
369	/*
370	 * If the address happens to be in the device's DMA window,
371	 * we can safely return the device addr and not worry about bounce
372	 * buffering it.
373	 */
374	if (dma_capable(dev, dev_addr, size, true) &&
375	    !range_straddles_page_boundary(phys, size) &&
376		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
377		swiotlb_force != SWIOTLB_FORCE)
378		goto done;
379
380	/*
381	 * Oh well, have to allocate and map a bounce buffer.
382	 */
383	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
384
385	map = swiotlb_tbl_map_single(dev, phys, size, size, dir, attrs);
386	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
387		return DMA_MAPPING_ERROR;
388
389	phys = map;
390	dev_addr = xen_phys_to_dma(dev, map);
391
392	/*
393	 * Ensure that the address returned is DMA'ble
394	 */
395	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
396		swiotlb_tbl_unmap_single(dev, map, size, dir,
397				attrs | DMA_ATTR_SKIP_CPU_SYNC);
 
398		return DMA_MAPPING_ERROR;
399	}
400
401done:
402	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
403		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
404			arch_sync_dma_for_device(phys, size, dir);
405		else
406			xen_dma_sync_for_device(dev, dev_addr, size, dir);
407	}
408	return dev_addr;
409}
410
411/*
412 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
413 * match what was provided for in a previous xen_swiotlb_map_page call.  All
414 * other usages are undefined.
415 *
416 * After this call, reads by the cpu to the buffer are guaranteed to see
417 * whatever the device wrote there.
418 */
419static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
420		size_t size, enum dma_data_direction dir, unsigned long attrs)
421{
422	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
 
423
424	BUG_ON(dir == DMA_NONE);
425
426	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
427		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
428			arch_sync_dma_for_cpu(paddr, size, dir);
429		else
430			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
431	}
432
433	/* NOTE: We use dev_addr here, not paddr! */
434	if (is_xen_swiotlb_buffer(hwdev, dev_addr))
435		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
 
 
436}
437
438static void
439xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
440		size_t size, enum dma_data_direction dir)
441{
442	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
 
443
444	if (!dev_is_dma_coherent(dev)) {
445		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
446			arch_sync_dma_for_cpu(paddr, size, dir);
447		else
448			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
449	}
450
451	if (is_xen_swiotlb_buffer(dev, dma_addr))
452		swiotlb_sync_single_for_cpu(dev, paddr, size, dir);
 
453}
454
455static void
456xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
457		size_t size, enum dma_data_direction dir)
458{
459	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
 
460
461	if (is_xen_swiotlb_buffer(dev, dma_addr))
462		swiotlb_sync_single_for_device(dev, paddr, size, dir);
 
463
464	if (!dev_is_dma_coherent(dev)) {
465		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
466			arch_sync_dma_for_device(paddr, size, dir);
467		else
468			xen_dma_sync_for_device(dev, dma_addr, size, dir);
469	}
470}
471
472/*
473 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
474 * concerning calls here are the same as for swiotlb_unmap_page() above.
475 */
476static void
477xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
478		enum dma_data_direction dir, unsigned long attrs)
479{
480	struct scatterlist *sg;
481	int i;
482
483	BUG_ON(dir == DMA_NONE);
484
485	for_each_sg(sgl, sg, nelems, i)
486		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
487				dir, attrs);
488
489}
490
491static int
492xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
493		enum dma_data_direction dir, unsigned long attrs)
494{
495	struct scatterlist *sg;
496	int i;
497
498	BUG_ON(dir == DMA_NONE);
499
500	for_each_sg(sgl, sg, nelems, i) {
501		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
502				sg->offset, sg->length, dir, attrs);
503		if (sg->dma_address == DMA_MAPPING_ERROR)
504			goto out_unmap;
505		sg_dma_len(sg) = sg->length;
506	}
507
508	return nelems;
509out_unmap:
510	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
511	sg_dma_len(sgl) = 0;
512	return 0;
513}
514
515static void
516xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
517			    int nelems, enum dma_data_direction dir)
518{
519	struct scatterlist *sg;
520	int i;
521
522	for_each_sg(sgl, sg, nelems, i) {
523		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
524				sg->length, dir);
525	}
526}
527
528static void
529xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
530			       int nelems, enum dma_data_direction dir)
531{
532	struct scatterlist *sg;
533	int i;
534
535	for_each_sg(sgl, sg, nelems, i) {
536		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
537				sg->length, dir);
538	}
539}
540
541/*
542 * Return whether the given device DMA address mask can be supported
543 * properly.  For example, if your device can only drive the low 24-bits
544 * during bus mastering, then you would pass 0x00ffffff as the mask to
545 * this function.
546 */
547static int
548xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
549{
550	return xen_phys_to_dma(hwdev, io_tlb_default_mem->end - 1) <= mask;
551}
552
553const struct dma_map_ops xen_swiotlb_dma_ops = {
 
554	.alloc = xen_swiotlb_alloc_coherent,
555	.free = xen_swiotlb_free_coherent,
 
 
 
 
556	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
557	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
558	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
559	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
560	.map_sg = xen_swiotlb_map_sg,
561	.unmap_sg = xen_swiotlb_unmap_sg,
562	.map_page = xen_swiotlb_map_page,
563	.unmap_page = xen_swiotlb_unmap_page,
564	.dma_supported = xen_swiotlb_dma_supported,
565	.mmap = dma_common_mmap,
566	.get_sgtable = dma_common_get_sgtable,
567	.alloc_pages = dma_common_alloc_pages,
568	.free_pages = dma_common_free_pages,
 
569};