Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
   2/* QLogic qede NIC Driver
   3 * Copyright (c) 2015-2017  QLogic Corporation
   4 * Copyright (c) 2019-2020 Marvell International Ltd.
   5 */
 
 
 
   6
   7#include <linux/crash_dump.h>
   8#include <linux/module.h>
   9#include <linux/pci.h>
 
  10#include <linux/device.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/skbuff.h>
  14#include <linux/errno.h>
  15#include <linux/list.h>
  16#include <linux/string.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/interrupt.h>
  19#include <asm/byteorder.h>
  20#include <asm/param.h>
  21#include <linux/io.h>
  22#include <linux/netdev_features.h>
  23#include <linux/udp.h>
  24#include <linux/tcp.h>
  25#include <net/udp_tunnel.h>
  26#include <linux/ip.h>
  27#include <net/ipv6.h>
  28#include <net/tcp.h>
  29#include <linux/if_ether.h>
  30#include <linux/if_vlan.h>
  31#include <linux/pkt_sched.h>
  32#include <linux/ethtool.h>
  33#include <linux/in.h>
  34#include <linux/random.h>
  35#include <net/ip6_checksum.h>
  36#include <linux/bitops.h>
  37#include <linux/vmalloc.h>
  38#include "qede.h"
  39#include "qede_ptp.h"
 
 
  40
  41MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
  42MODULE_LICENSE("GPL");
 
  43
  44static uint debug;
  45module_param(debug, uint, 0);
  46MODULE_PARM_DESC(debug, " Default debug msglevel");
  47
  48static const struct qed_eth_ops *qed_ops;
  49
  50#define CHIP_NUM_57980S_40		0x1634
  51#define CHIP_NUM_57980S_10		0x1666
  52#define CHIP_NUM_57980S_MF		0x1636
  53#define CHIP_NUM_57980S_100		0x1644
  54#define CHIP_NUM_57980S_50		0x1654
  55#define CHIP_NUM_57980S_25		0x1656
  56#define CHIP_NUM_57980S_IOV		0x1664
  57#define CHIP_NUM_AH			0x8070
  58#define CHIP_NUM_AH_IOV			0x8090
  59
  60#ifndef PCI_DEVICE_ID_NX2_57980E
  61#define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
  62#define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
  63#define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
  64#define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
  65#define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
  66#define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
  67#define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
  68#define PCI_DEVICE_ID_AH		CHIP_NUM_AH
  69#define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
  70
  71#endif
  72
  73enum qede_pci_private {
  74	QEDE_PRIVATE_PF,
  75	QEDE_PRIVATE_VF
  76};
  77
  78static const struct pci_device_id qede_pci_tbl[] = {
  79	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
  80	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
  81	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
  82	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
  83	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
  84	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
  85#ifdef CONFIG_QED_SRIOV
  86	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
  87#endif
  88	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
  89#ifdef CONFIG_QED_SRIOV
  90	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
  91#endif
  92	{ 0 }
  93};
  94
  95MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
  96
  97static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  98static pci_ers_result_t
  99qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
 100
 101#define TX_TIMEOUT		(5 * HZ)
 102
 103/* Utilize last protocol index for XDP */
 104#define XDP_PI	11
 105
 106static void qede_remove(struct pci_dev *pdev);
 107static void qede_shutdown(struct pci_dev *pdev);
 108static void qede_link_update(void *dev, struct qed_link_output *link);
 109static void qede_schedule_recovery_handler(void *dev);
 110static void qede_recovery_handler(struct qede_dev *edev);
 111static void qede_schedule_hw_err_handler(void *dev,
 112					 enum qed_hw_err_type err_type);
 113static void qede_get_eth_tlv_data(void *edev, void *data);
 114static void qede_get_generic_tlv_data(void *edev,
 115				      struct qed_generic_tlvs *data);
 116static void qede_generic_hw_err_handler(struct qede_dev *edev);
 
 
 
 
 
 
 117#ifdef CONFIG_QED_SRIOV
 118static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
 119			    __be16 vlan_proto)
 120{
 121	struct qede_dev *edev = netdev_priv(ndev);
 122
 123	if (vlan > 4095) {
 124		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
 125		return -EINVAL;
 126	}
 127
 128	if (vlan_proto != htons(ETH_P_8021Q))
 129		return -EPROTONOSUPPORT;
 130
 131	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
 132		   vlan, vf);
 133
 134	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
 135}
 136
 137static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
 138{
 139	struct qede_dev *edev = netdev_priv(ndev);
 140
 141	DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
 
 
 142
 143	if (!is_valid_ether_addr(mac)) {
 144		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
 145		return -EINVAL;
 146	}
 147
 148	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
 149}
 150
 151static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
 152{
 153	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
 154	struct qed_dev_info *qed_info = &edev->dev_info.common;
 155	struct qed_update_vport_params *vport_params;
 156	int rc;
 157
 158	vport_params = vzalloc(sizeof(*vport_params));
 159	if (!vport_params)
 160		return -ENOMEM;
 161	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
 162
 163	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
 164
 165	/* Enable/Disable Tx switching for PF */
 166	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
 167	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
 168		vport_params->vport_id = 0;
 169		vport_params->update_tx_switching_flg = 1;
 170		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
 171		edev->ops->vport_update(edev->cdev, vport_params);
 
 
 
 172	}
 173
 174	vfree(vport_params);
 175	return rc;
 176}
 177#endif
 178
 179static int __maybe_unused qede_suspend(struct device *dev)
 180{
 181	dev_info(dev, "Device does not support suspend operation\n");
 182
 183	return -EOPNOTSUPP;
 184}
 185
 186static DEFINE_SIMPLE_DEV_PM_OPS(qede_pm_ops, qede_suspend, NULL);
 187
 188static const struct pci_error_handlers qede_err_handler = {
 189	.error_detected = qede_io_error_detected,
 190};
 191
 192static struct pci_driver qede_pci_driver = {
 193	.name = "qede",
 194	.id_table = qede_pci_tbl,
 195	.probe = qede_probe,
 196	.remove = qede_remove,
 197	.shutdown = qede_shutdown,
 198#ifdef CONFIG_QED_SRIOV
 199	.sriov_configure = qede_sriov_configure,
 200#endif
 201	.err_handler = &qede_err_handler,
 202	.driver.pm = &qede_pm_ops,
 203};
 204
 
 
 
 
 
 
 
 
 
 
 
 
 205static struct qed_eth_cb_ops qede_ll_ops = {
 206	{
 207#ifdef CONFIG_RFS_ACCEL
 208		.arfs_filter_op = qede_arfs_filter_op,
 209#endif
 210		.link_update = qede_link_update,
 211		.schedule_recovery_handler = qede_schedule_recovery_handler,
 212		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
 213		.get_generic_tlv_data = qede_get_generic_tlv_data,
 214		.get_protocol_tlv_data = qede_get_eth_tlv_data,
 215	},
 216	.force_mac = qede_force_mac,
 217	.ports_update = qede_udp_ports_update,
 218};
 219
 220static int qede_netdev_event(struct notifier_block *this, unsigned long event,
 221			     void *ptr)
 222{
 223	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
 224	struct ethtool_drvinfo drvinfo;
 225	struct qede_dev *edev;
 226
 227	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
 228		goto done;
 229
 230	/* Check whether this is a qede device */
 231	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
 232		goto done;
 233
 234	memset(&drvinfo, 0, sizeof(drvinfo));
 235	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
 236	if (strcmp(drvinfo.driver, "qede"))
 237		goto done;
 238	edev = netdev_priv(ndev);
 239
 240	switch (event) {
 241	case NETDEV_CHANGENAME:
 242		/* Notify qed of the name change */
 243		if (!edev->ops || !edev->ops->common)
 244			goto done;
 245		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
 246		break;
 247	case NETDEV_CHANGEADDR:
 248		edev = netdev_priv(ndev);
 249		qede_rdma_event_changeaddr(edev);
 250		break;
 251	}
 252
 253done:
 254	return NOTIFY_DONE;
 255}
 256
 257static struct notifier_block qede_netdev_notifier = {
 258	.notifier_call = qede_netdev_event,
 259};
 260
 261static
 262int __init qede_init(void)
 263{
 264	int ret;
 265
 266	pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
 267
 268	qede_forced_speed_maps_init();
 269
 270	qed_ops = qed_get_eth_ops();
 271	if (!qed_ops) {
 272		pr_notice("Failed to get qed ethtool operations\n");
 273		return -EINVAL;
 274	}
 275
 276	/* Must register notifier before pci ops, since we might miss
 277	 * interface rename after pci probe and netdev registration.
 278	 */
 279	ret = register_netdevice_notifier(&qede_netdev_notifier);
 280	if (ret) {
 281		pr_notice("Failed to register netdevice_notifier\n");
 282		qed_put_eth_ops();
 283		return -EINVAL;
 284	}
 285
 286	ret = pci_register_driver(&qede_pci_driver);
 287	if (ret) {
 288		pr_notice("Failed to register driver\n");
 289		unregister_netdevice_notifier(&qede_netdev_notifier);
 290		qed_put_eth_ops();
 291		return -EINVAL;
 292	}
 293
 294	return 0;
 295}
 296
 297static void __exit qede_cleanup(void)
 298{
 299	if (debug & QED_LOG_INFO_MASK)
 300		pr_info("qede_cleanup called\n");
 301
 302	unregister_netdevice_notifier(&qede_netdev_notifier);
 303	pci_unregister_driver(&qede_pci_driver);
 304	qed_put_eth_ops();
 305}
 306
 307module_init(qede_init);
 308module_exit(qede_cleanup);
 309
 310static int qede_open(struct net_device *ndev);
 311static int qede_close(struct net_device *ndev);
 
 
 312
 313void qede_fill_by_demand_stats(struct qede_dev *edev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314{
 315	struct qede_stats_common *p_common = &edev->stats.common;
 316	struct qed_eth_stats stats;
 
 
 317
 318	edev->ops->get_vport_stats(edev->cdev, &stats);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319
 320	spin_lock(&edev->stats_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321
 322	p_common->no_buff_discards = stats.common.no_buff_discards;
 323	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
 324	p_common->ttl0_discard = stats.common.ttl0_discard;
 325	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
 326	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
 327	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
 328	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
 329	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
 330	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
 331	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
 332	p_common->mac_filter_discards = stats.common.mac_filter_discards;
 333	p_common->gft_filter_drop = stats.common.gft_filter_drop;
 334
 335	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
 336	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
 337	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
 338	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
 339	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
 340	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
 341	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
 342	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
 343	p_common->coalesced_events = stats.common.tpa_coalesced_events;
 344	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
 345	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
 346	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
 347
 348	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
 349	p_common->rx_65_to_127_byte_packets =
 350	    stats.common.rx_65_to_127_byte_packets;
 351	p_common->rx_128_to_255_byte_packets =
 352	    stats.common.rx_128_to_255_byte_packets;
 353	p_common->rx_256_to_511_byte_packets =
 354	    stats.common.rx_256_to_511_byte_packets;
 355	p_common->rx_512_to_1023_byte_packets =
 356	    stats.common.rx_512_to_1023_byte_packets;
 357	p_common->rx_1024_to_1518_byte_packets =
 358	    stats.common.rx_1024_to_1518_byte_packets;
 359	p_common->rx_crc_errors = stats.common.rx_crc_errors;
 360	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
 361	p_common->rx_pause_frames = stats.common.rx_pause_frames;
 362	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
 363	p_common->rx_align_errors = stats.common.rx_align_errors;
 364	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
 365	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
 366	p_common->rx_jabbers = stats.common.rx_jabbers;
 367	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
 368	p_common->rx_fragments = stats.common.rx_fragments;
 369	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
 370	p_common->tx_65_to_127_byte_packets =
 371	    stats.common.tx_65_to_127_byte_packets;
 372	p_common->tx_128_to_255_byte_packets =
 373	    stats.common.tx_128_to_255_byte_packets;
 374	p_common->tx_256_to_511_byte_packets =
 375	    stats.common.tx_256_to_511_byte_packets;
 376	p_common->tx_512_to_1023_byte_packets =
 377	    stats.common.tx_512_to_1023_byte_packets;
 378	p_common->tx_1024_to_1518_byte_packets =
 379	    stats.common.tx_1024_to_1518_byte_packets;
 380	p_common->tx_pause_frames = stats.common.tx_pause_frames;
 381	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
 382	p_common->brb_truncates = stats.common.brb_truncates;
 383	p_common->brb_discards = stats.common.brb_discards;
 384	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
 385	p_common->link_change_count = stats.common.link_change_count;
 386	p_common->ptp_skip_txts = edev->ptp_skip_txts;
 387
 388	if (QEDE_IS_BB(edev)) {
 389		struct qede_stats_bb *p_bb = &edev->stats.bb;
 390
 391		p_bb->rx_1519_to_1522_byte_packets =
 392		    stats.bb.rx_1519_to_1522_byte_packets;
 393		p_bb->rx_1519_to_2047_byte_packets =
 394		    stats.bb.rx_1519_to_2047_byte_packets;
 395		p_bb->rx_2048_to_4095_byte_packets =
 396		    stats.bb.rx_2048_to_4095_byte_packets;
 397		p_bb->rx_4096_to_9216_byte_packets =
 398		    stats.bb.rx_4096_to_9216_byte_packets;
 399		p_bb->rx_9217_to_16383_byte_packets =
 400		    stats.bb.rx_9217_to_16383_byte_packets;
 401		p_bb->tx_1519_to_2047_byte_packets =
 402		    stats.bb.tx_1519_to_2047_byte_packets;
 403		p_bb->tx_2048_to_4095_byte_packets =
 404		    stats.bb.tx_2048_to_4095_byte_packets;
 405		p_bb->tx_4096_to_9216_byte_packets =
 406		    stats.bb.tx_4096_to_9216_byte_packets;
 407		p_bb->tx_9217_to_16383_byte_packets =
 408		    stats.bb.tx_9217_to_16383_byte_packets;
 409		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
 410		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
 411	} else {
 412		struct qede_stats_ah *p_ah = &edev->stats.ah;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413
 414		p_ah->rx_1519_to_max_byte_packets =
 415		    stats.ah.rx_1519_to_max_byte_packets;
 416		p_ah->tx_1519_to_max_byte_packets =
 417		    stats.ah.tx_1519_to_max_byte_packets;
 
 
 
 418	}
 419
 420	spin_unlock(&edev->stats_lock);
 421}
 422
 423static void qede_get_stats64(struct net_device *dev,
 424			     struct rtnl_link_stats64 *stats)
 425{
 426	struct qede_dev *edev = netdev_priv(dev);
 427	struct qede_stats_common *p_common;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428
 429	p_common = &edev->stats.common;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430
 431	spin_lock(&edev->stats_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432
 433	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
 434			    p_common->rx_bcast_pkts;
 435	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
 436			    p_common->tx_bcast_pkts;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437
 438	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
 439			  p_common->rx_bcast_bytes;
 440	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
 441			  p_common->tx_bcast_bytes;
 442
 443	stats->tx_errors = p_common->tx_err_drop_pkts;
 444	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445
 446	stats->rx_fifo_errors = p_common->no_buff_discards;
 447
 448	if (QEDE_IS_BB(edev))
 449		stats->collisions = edev->stats.bb.tx_total_collisions;
 450	stats->rx_crc_errors = p_common->rx_crc_errors;
 451	stats->rx_frame_errors = p_common->rx_align_errors;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452
 453	spin_unlock(&edev->stats_lock);
 454}
 455
 456#ifdef CONFIG_QED_SRIOV
 457static int qede_get_vf_config(struct net_device *dev, int vfidx,
 458			      struct ifla_vf_info *ivi)
 459{
 460	struct qede_dev *edev = netdev_priv(dev);
 461
 462	if (!edev->ops)
 463		return -EINVAL;
 464
 465	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
 466}
 467
 468static int qede_set_vf_rate(struct net_device *dev, int vfidx,
 469			    int min_tx_rate, int max_tx_rate)
 470{
 471	struct qede_dev *edev = netdev_priv(dev);
 472
 473	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
 474					max_tx_rate);
 475}
 476
 477static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
 478{
 479	struct qede_dev *edev = netdev_priv(dev);
 480
 481	if (!edev->ops)
 482		return -EINVAL;
 483
 484	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
 485}
 486
 487static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
 488				  int link_state)
 489{
 490	struct qede_dev *edev = netdev_priv(dev);
 491
 492	if (!edev->ops)
 493		return -EINVAL;
 494
 495	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
 496}
 
 497
 498static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
 499{
 500	struct qede_dev *edev = netdev_priv(dev);
 
 501
 502	if (!edev->ops)
 503		return -EINVAL;
 
 504
 505	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506}
 507#endif
 508
 509static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 510{
 511	struct qede_dev *edev = netdev_priv(dev);
 
 
 512
 513	if (!netif_running(dev))
 514		return -EAGAIN;
 515
 516	switch (cmd) {
 517	case SIOCSHWTSTAMP:
 518		return qede_ptp_hw_ts(edev, ifr);
 519	default:
 520		DP_VERBOSE(edev, QED_MSG_DEBUG,
 521			   "default IOCTL cmd 0x%x\n", cmd);
 522		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 523	}
 524
 525	return 0;
 526}
 
 
 
 
 
 
 
 
 
 527
 528static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp)
 529{
 530	char *p_sb = (char *)fp->sb_info->sb_virt;
 531	u32 sb_size, i;
 
 
 
 
 
 
 
 
 
 
 
 
 532
 533	sb_size = sizeof(struct status_block);
 
 
 
 
 
 
 534
 535	for (i = 0; i < sb_size; i += 8)
 536		DP_NOTICE(edev,
 537			  "%02hhX %02hhX %02hhX %02hhX  %02hhX %02hhX %02hhX %02hhX\n",
 538			  p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3],
 539			  p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]);
 
 
 
 540}
 541
 542static void
 543qede_txq_fp_log_metadata(struct qede_dev *edev,
 544			 struct qede_fastpath *fp, struct qede_tx_queue *txq)
 545{
 546	struct qed_chain *p_chain = &txq->tx_pbl;
 547
 548	/* Dump txq/fp/sb ids etc. other metadata */
 549	DP_NOTICE(edev,
 550		  "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n",
 551		  fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos,
 552		  p_chain, p_chain->capacity, p_chain->size, jiffies, HZ);
 553
 554	/* Dump all the relevant prod/cons indexes */
 555	DP_NOTICE(edev,
 556		  "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n",
 557		  le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons,
 558		  qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain));
 559}
 560
 561static void
 562qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq)
 563{
 564	struct qed_sb_info_dbg sb_dbg;
 565	int rc;
 
 
 
 
 566
 567	/* sb info */
 568	qede_fp_sb_dump(edev, fp);
 569
 570	memset(&sb_dbg, 0, sizeof(sb_dbg));
 571	rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572
 573	DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n",
 574		  sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575
 576	/* report to mfw */
 577	edev->ops->common->mfw_report(edev->cdev,
 578				      "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
 579				      txq->index, le16_to_cpu(*txq->hw_cons_ptr),
 580				      qed_chain_get_cons_idx(&txq->tx_pbl),
 581				      qed_chain_get_prod_idx(&txq->tx_pbl), jiffies);
 582	if (!rc)
 583		edev->ops->common->mfw_report(edev->cdev,
 584					      "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n",
 585					      txq->index, fp->sb_info->igu_sb_id,
 586					      sb_dbg.igu_prod, sb_dbg.igu_cons,
 587					      sb_dbg.pi[TX_PI(txq->cos)]);
 588}
 589
 590static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
 591{
 592	struct qede_dev *edev = netdev_priv(dev);
 593	int i;
 594
 595	netif_carrier_off(dev);
 596	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
 597
 598	for_each_queue(i) {
 599		struct qede_tx_queue *txq;
 600		struct qede_fastpath *fp;
 601		int cos;
 602
 603		fp = &edev->fp_array[i];
 604		if (!(fp->type & QEDE_FASTPATH_TX))
 605			continue;
 
 
 606
 607		for_each_cos_in_txq(edev, cos) {
 608			txq = &fp->txq[cos];
 
 
 
 609
 610			/* Dump basic metadata for all queues */
 611			qede_txq_fp_log_metadata(edev, fp, txq);
 
 
 
 
 
 
 
 612
 613			if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
 614			    qed_chain_get_prod_idx(&txq->tx_pbl))
 615				qede_tx_log_print(edev, fp, txq);
 
 
 
 
 616		}
 617	}
 618
 619	if (IS_VF(edev))
 620		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 621
 622	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
 623	    edev->state == QEDE_STATE_RECOVERY) {
 624		DP_INFO(edev,
 625			"Avoid handling a Tx timeout while another HW error is being handled\n");
 626		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627	}
 628
 629	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
 630	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
 631	schedule_delayed_work(&edev->sp_task, 0);
 632}
 633
 634static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
 
 635{
 636	struct qede_dev *edev = netdev_priv(ndev);
 637	int cos, count, offset;
 638
 639	if (num_tc > edev->dev_info.num_tc)
 640		return -EINVAL;
 
 
 
 641
 642	netdev_reset_tc(ndev);
 643	netdev_set_num_tc(ndev, num_tc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644
 645	for_each_cos_in_txq(edev, cos) {
 646		count = QEDE_TSS_COUNT(edev);
 647		offset = cos * QEDE_TSS_COUNT(edev);
 648		netdev_set_tc_queue(ndev, cos, count, offset);
 649	}
 650
 651	return 0;
 652}
 653
 654static int
 655qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
 656		__be16 proto)
 657{
 658	switch (f->command) {
 659	case FLOW_CLS_REPLACE:
 660		return qede_add_tc_flower_fltr(edev, proto, f);
 661	case FLOW_CLS_DESTROY:
 662		return qede_delete_flow_filter(edev, f->cookie);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663	default:
 664		return -EOPNOTSUPP;
 665	}
 
 
 666}
 667
 668static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
 669				  void *cb_priv)
 670{
 671	struct flow_cls_offload *f;
 672	struct qede_dev *edev = cb_priv;
 673
 674	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
 675		return -EOPNOTSUPP;
 
 
 676
 677	switch (type) {
 678	case TC_SETUP_CLSFLOWER:
 679		f = type_data;
 680		return qede_set_flower(edev, f, f->common.protocol);
 
 
 
 
 
 
 
 
 
 
 
 
 
 681	default:
 682		return -EOPNOTSUPP;
 683	}
 
 
 684}
 685
 686static LIST_HEAD(qede_block_cb_list);
 
 687
 688static int
 689qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
 690		      void *type_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691{
 692	struct qede_dev *edev = netdev_priv(dev);
 693	struct tc_mqprio_qopt *mqprio;
 694
 695	switch (type) {
 696	case TC_SETUP_BLOCK:
 697		return flow_block_cb_setup_simple(type_data,
 698						  &qede_block_cb_list,
 699						  qede_setup_tc_block_cb,
 700						  edev, edev, true);
 701	case TC_SETUP_QDISC_MQPRIO:
 702		mqprio = type_data;
 703
 704		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
 705		return qede_setup_tc(dev, mqprio->num_tc);
 706	default:
 
 
 
 707		return -EOPNOTSUPP;
 708	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709}
 710
 711static const struct net_device_ops qede_netdev_ops = {
 712	.ndo_open		= qede_open,
 713	.ndo_stop		= qede_close,
 714	.ndo_start_xmit		= qede_start_xmit,
 715	.ndo_select_queue	= qede_select_queue,
 716	.ndo_set_rx_mode	= qede_set_rx_mode,
 717	.ndo_set_mac_address	= qede_set_mac_addr,
 718	.ndo_validate_addr	= eth_validate_addr,
 719	.ndo_change_mtu		= qede_change_mtu,
 720	.ndo_eth_ioctl		= qede_ioctl,
 721	.ndo_tx_timeout		= qede_tx_timeout,
 722#ifdef CONFIG_QED_SRIOV
 723	.ndo_set_vf_mac		= qede_set_vf_mac,
 724	.ndo_set_vf_vlan	= qede_set_vf_vlan,
 725	.ndo_set_vf_trust	= qede_set_vf_trust,
 726#endif
 727	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
 728	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
 729	.ndo_fix_features	= qede_fix_features,
 730	.ndo_set_features	= qede_set_features,
 731	.ndo_get_stats64	= qede_get_stats64,
 732#ifdef CONFIG_QED_SRIOV
 733	.ndo_set_vf_link_state	= qede_set_vf_link_state,
 734	.ndo_set_vf_spoofchk	= qede_set_vf_spoofchk,
 735	.ndo_get_vf_config	= qede_get_vf_config,
 736	.ndo_set_vf_rate	= qede_set_vf_rate,
 737#endif
 738	.ndo_features_check	= qede_features_check,
 739	.ndo_bpf		= qede_xdp,
 740#ifdef CONFIG_RFS_ACCEL
 741	.ndo_rx_flow_steer	= qede_rx_flow_steer,
 742#endif
 743	.ndo_xdp_xmit		= qede_xdp_transmit,
 744	.ndo_setup_tc		= qede_setup_tc_offload,
 745};
 746
 747static const struct net_device_ops qede_netdev_vf_ops = {
 748	.ndo_open		= qede_open,
 749	.ndo_stop		= qede_close,
 750	.ndo_start_xmit		= qede_start_xmit,
 751	.ndo_select_queue	= qede_select_queue,
 752	.ndo_set_rx_mode	= qede_set_rx_mode,
 753	.ndo_set_mac_address	= qede_set_mac_addr,
 754	.ndo_validate_addr	= eth_validate_addr,
 755	.ndo_change_mtu		= qede_change_mtu,
 756	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
 757	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
 758	.ndo_fix_features	= qede_fix_features,
 759	.ndo_set_features	= qede_set_features,
 760	.ndo_get_stats64	= qede_get_stats64,
 761	.ndo_features_check	= qede_features_check,
 762};
 763
 764static const struct net_device_ops qede_netdev_vf_xdp_ops = {
 765	.ndo_open		= qede_open,
 766	.ndo_stop		= qede_close,
 767	.ndo_start_xmit		= qede_start_xmit,
 768	.ndo_select_queue	= qede_select_queue,
 769	.ndo_set_rx_mode	= qede_set_rx_mode,
 770	.ndo_set_mac_address	= qede_set_mac_addr,
 771	.ndo_validate_addr	= eth_validate_addr,
 772	.ndo_change_mtu		= qede_change_mtu,
 773	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
 774	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
 775	.ndo_fix_features	= qede_fix_features,
 776	.ndo_set_features	= qede_set_features,
 777	.ndo_get_stats64	= qede_get_stats64,
 778	.ndo_features_check	= qede_features_check,
 779	.ndo_bpf		= qede_xdp,
 780	.ndo_xdp_xmit		= qede_xdp_transmit,
 781};
 782
 783/* -------------------------------------------------------------------------
 784 * START OF PROBE / REMOVE
 785 * -------------------------------------------------------------------------
 786 */
 787
 788static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
 789					    struct pci_dev *pdev,
 790					    struct qed_dev_eth_info *info,
 791					    u32 dp_module, u8 dp_level)
 792{
 793	struct net_device *ndev;
 794	struct qede_dev *edev;
 795
 796	ndev = alloc_etherdev_mqs(sizeof(*edev),
 797				  info->num_queues * info->num_tc,
 798				  info->num_queues);
 799	if (!ndev) {
 800		pr_err("etherdev allocation failed\n");
 801		return NULL;
 802	}
 803
 804	edev = netdev_priv(ndev);
 805	edev->ndev = ndev;
 806	edev->cdev = cdev;
 807	edev->pdev = pdev;
 808	edev->dp_module = dp_module;
 809	edev->dp_level = dp_level;
 810	edev->ops = qed_ops;
 811
 812	if (is_kdump_kernel()) {
 813		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
 814		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
 815	} else {
 816		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
 817		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
 818	}
 819
 820	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
 821		info->num_queues, info->num_queues);
 822
 823	SET_NETDEV_DEV(ndev, &pdev->dev);
 824
 825	memset(&edev->stats, 0, sizeof(edev->stats));
 826	memcpy(&edev->dev_info, info, sizeof(*info));
 827
 828	/* As ethtool doesn't have the ability to show WoL behavior as
 829	 * 'default', if device supports it declare it's enabled.
 830	 */
 831	if (edev->dev_info.common.wol_support)
 832		edev->wol_enabled = true;
 833
 834	INIT_LIST_HEAD(&edev->vlan_list);
 835
 836	return edev;
 837}
 838
 839static void qede_init_ndev(struct qede_dev *edev)
 840{
 841	struct net_device *ndev = edev->ndev;
 842	struct pci_dev *pdev = edev->pdev;
 843	bool udp_tunnel_enable = false;
 844	netdev_features_t hw_features;
 845
 846	pci_set_drvdata(pdev, ndev);
 847
 848	ndev->mem_start = edev->dev_info.common.pci_mem_start;
 849	ndev->base_addr = ndev->mem_start;
 850	ndev->mem_end = edev->dev_info.common.pci_mem_end;
 851	ndev->irq = edev->dev_info.common.pci_irq;
 852
 853	ndev->watchdog_timeo = TX_TIMEOUT;
 854
 855	if (IS_VF(edev)) {
 856		if (edev->dev_info.xdp_supported)
 857			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
 858		else
 859			ndev->netdev_ops = &qede_netdev_vf_ops;
 860	} else {
 861		ndev->netdev_ops = &qede_netdev_ops;
 862	}
 863
 864	qede_set_ethtool_ops(ndev);
 865
 866	ndev->priv_flags |= IFF_UNICAST_FLT;
 867
 868	/* user-changeble features */
 869	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
 870		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 871		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
 872
 873	if (edev->dev_info.common.b_arfs_capable)
 874		hw_features |= NETIF_F_NTUPLE;
 875
 876	if (edev->dev_info.common.vxlan_enable ||
 877	    edev->dev_info.common.geneve_enable)
 878		udp_tunnel_enable = true;
 879
 880	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
 881		hw_features |= NETIF_F_TSO_ECN;
 882		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 883					NETIF_F_SG | NETIF_F_TSO |
 884					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
 885					NETIF_F_RXCSUM;
 886	}
 887
 888	if (udp_tunnel_enable) {
 889		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
 890				NETIF_F_GSO_UDP_TUNNEL_CSUM);
 891		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
 892					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
 893
 894		qede_set_udp_tunnels(edev);
 895	}
 896
 897	if (edev->dev_info.common.gre_enable) {
 898		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
 899		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
 900					  NETIF_F_GSO_GRE_CSUM);
 901	}
 902
 903	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
 904			      NETIF_F_HIGHDMA;
 905	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
 906			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
 907			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
 908
 909	ndev->hw_features = hw_features;
 910
 911	ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
 912			     NETDEV_XDP_ACT_NDO_XMIT;
 913
 914	/* MTU range: 46 - 9600 */
 915	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
 916	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
 917
 918	/* Set network device HW mac */
 919	eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
 920
 921	ndev->mtu = edev->dev_info.common.mtu;
 922}
 923
 924/* This function converts from 32b param to two params of level and module
 925 * Input 32b decoding:
 926 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
 927 * 'happy' flow, e.g. memory allocation failed.
 928 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
 929 * and provide important parameters.
 930 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
 931 * module. VERBOSE prints are for tracking the specific flow in low level.
 932 *
 933 * Notice that the level should be that of the lowest required logs.
 934 */
 935void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
 936{
 937	*p_dp_level = QED_LEVEL_NOTICE;
 938	*p_dp_module = 0;
 939
 940	if (debug & QED_LOG_VERBOSE_MASK) {
 941		*p_dp_level = QED_LEVEL_VERBOSE;
 942		*p_dp_module = (debug & 0x3FFFFFFF);
 943	} else if (debug & QED_LOG_INFO_MASK) {
 944		*p_dp_level = QED_LEVEL_INFO;
 945	} else if (debug & QED_LOG_NOTICE_MASK) {
 946		*p_dp_level = QED_LEVEL_NOTICE;
 947	}
 948}
 949
 950static void qede_free_fp_array(struct qede_dev *edev)
 951{
 952	if (edev->fp_array) {
 953		struct qede_fastpath *fp;
 954		int i;
 955
 956		for_each_queue(i) {
 957			fp = &edev->fp_array[i];
 958
 959			kfree(fp->sb_info);
 960			/* Handle mem alloc failure case where qede_init_fp
 961			 * didn't register xdp_rxq_info yet.
 962			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
 963			 */
 964			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
 965				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
 966			kfree(fp->rxq);
 967			kfree(fp->xdp_tx);
 968			kfree(fp->txq);
 969		}
 970		kfree(edev->fp_array);
 971	}
 972
 973	edev->num_queues = 0;
 974	edev->fp_num_tx = 0;
 975	edev->fp_num_rx = 0;
 976}
 977
 978static int qede_alloc_fp_array(struct qede_dev *edev)
 979{
 980	u8 fp_combined, fp_rx = edev->fp_num_rx;
 981	struct qede_fastpath *fp;
 982	int i;
 983
 984	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
 985				 sizeof(*edev->fp_array), GFP_KERNEL);
 986	if (!edev->fp_array) {
 987		DP_NOTICE(edev, "fp array allocation failed\n");
 988		goto err;
 989	}
 990
 991	if (!edev->coal_entry) {
 992		edev->coal_entry = kcalloc(QEDE_MAX_RSS_CNT(edev),
 993					   sizeof(*edev->coal_entry),
 994					   GFP_KERNEL);
 995		if (!edev->coal_entry) {
 996			DP_ERR(edev, "coalesce entry allocation failed\n");
 997			goto err;
 998		}
 999	}
1000
1001	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
1002
1003	/* Allocate the FP elements for Rx queues followed by combined and then
1004	 * the Tx. This ordering should be maintained so that the respective
1005	 * queues (Rx or Tx) will be together in the fastpath array and the
1006	 * associated ids will be sequential.
1007	 */
1008	for_each_queue(i) {
1009		fp = &edev->fp_array[i];
1010
1011		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
1012		if (!fp->sb_info) {
1013			DP_NOTICE(edev, "sb info struct allocation failed\n");
1014			goto err;
1015		}
1016
1017		if (fp_rx) {
1018			fp->type = QEDE_FASTPATH_RX;
1019			fp_rx--;
1020		} else if (fp_combined) {
1021			fp->type = QEDE_FASTPATH_COMBINED;
1022			fp_combined--;
1023		} else {
1024			fp->type = QEDE_FASTPATH_TX;
1025		}
1026
1027		if (fp->type & QEDE_FASTPATH_TX) {
1028			fp->txq = kcalloc(edev->dev_info.num_tc,
1029					  sizeof(*fp->txq), GFP_KERNEL);
1030			if (!fp->txq)
1031				goto err;
1032		}
1033
1034		if (fp->type & QEDE_FASTPATH_RX) {
1035			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
1036			if (!fp->rxq)
1037				goto err;
1038
1039			if (edev->xdp_prog) {
1040				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
1041						     GFP_KERNEL);
1042				if (!fp->xdp_tx)
1043					goto err;
1044				fp->type |= QEDE_FASTPATH_XDP;
1045			}
1046		}
1047	}
1048
1049	return 0;
1050err:
1051	qede_free_fp_array(edev);
1052	return -ENOMEM;
1053}
1054
1055/* The qede lock is used to protect driver state change and driver flows that
1056 * are not reentrant.
1057 */
1058void __qede_lock(struct qede_dev *edev)
1059{
1060	mutex_lock(&edev->qede_lock);
1061}
1062
1063void __qede_unlock(struct qede_dev *edev)
1064{
1065	mutex_unlock(&edev->qede_lock);
1066}
1067
1068/* This version of the lock should be used when acquiring the RTNL lock is also
1069 * needed in addition to the internal qede lock.
1070 */
1071static void qede_lock(struct qede_dev *edev)
1072{
1073	rtnl_lock();
1074	__qede_lock(edev);
1075}
1076
1077static void qede_unlock(struct qede_dev *edev)
1078{
1079	__qede_unlock(edev);
1080	rtnl_unlock();
1081}
1082
1083static void qede_periodic_task(struct work_struct *work)
1084{
1085	struct qede_dev *edev = container_of(work, struct qede_dev,
1086					     periodic_task.work);
1087
1088	qede_fill_by_demand_stats(edev);
1089	schedule_delayed_work(&edev->periodic_task, edev->stats_coal_ticks);
1090}
1091
1092static void qede_init_periodic_task(struct qede_dev *edev)
1093{
1094	INIT_DELAYED_WORK(&edev->periodic_task, qede_periodic_task);
1095	spin_lock_init(&edev->stats_lock);
1096	edev->stats_coal_usecs = USEC_PER_SEC;
1097	edev->stats_coal_ticks = usecs_to_jiffies(USEC_PER_SEC);
1098}
1099
1100static void qede_sp_task(struct work_struct *work)
1101{
1102	struct qede_dev *edev = container_of(work, struct qede_dev,
1103					     sp_task.work);
1104
1105	/* Disable execution of this deferred work once
1106	 * qede removal is in progress, this stop any future
1107	 * scheduling of sp_task.
1108	 */
1109	if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1110		return;
1111
1112	/* The locking scheme depends on the specific flag:
1113	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1114	 * ensure that ongoing flows are ended and new ones are not started.
1115	 * In other cases - only the internal qede lock should be acquired.
1116	 */
1117
1118	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1119		cancel_delayed_work_sync(&edev->periodic_task);
1120#ifdef CONFIG_QED_SRIOV
1121		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1122		 * The recovery of the active VFs is currently not supported.
1123		 */
1124		if (pci_num_vf(edev->pdev))
1125			qede_sriov_configure(edev->pdev, 0);
1126#endif
1127		qede_lock(edev);
1128		qede_recovery_handler(edev);
1129		qede_unlock(edev);
1130	}
1131
1132	__qede_lock(edev);
1133
1134	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1135		if (edev->state == QEDE_STATE_OPEN)
1136			qede_config_rx_mode(edev->ndev);
1137
1138#ifdef CONFIG_RFS_ACCEL
1139	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1140		if (edev->state == QEDE_STATE_OPEN)
1141			qede_process_arfs_filters(edev, false);
1142	}
1143#endif
1144	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1145		qede_generic_hw_err_handler(edev);
1146	__qede_unlock(edev);
1147
1148	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1149#ifdef CONFIG_QED_SRIOV
1150		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1151		 * The recovery of the active VFs is currently not supported.
1152		 */
1153		if (pci_num_vf(edev->pdev))
1154			qede_sriov_configure(edev->pdev, 0);
1155#endif
1156		edev->ops->common->recovery_process(edev->cdev);
 
 
 
 
1157	}
 
 
1158}
1159
1160static void qede_update_pf_params(struct qed_dev *cdev)
1161{
1162	struct qed_pf_params pf_params;
1163	u16 num_cons;
1164
1165	/* 64 rx + 64 tx + 64 XDP */
1166	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1167
1168	/* 1 rx + 1 xdp + max tx cos */
1169	num_cons = QED_MIN_L2_CONS;
1170
1171	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1172
1173	/* Same for VFs - make sure they'll have sufficient connections
1174	 * to support XDP Tx queues.
1175	 */
1176	pf_params.eth_pf_params.num_vf_cons = 48;
1177
1178	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1179	qed_ops->common->update_pf_params(cdev, &pf_params);
1180}
1181
1182#define QEDE_FW_VER_STR_SIZE	80
1183
1184static void qede_log_probe(struct qede_dev *edev)
1185{
1186	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1187	u8 buf[QEDE_FW_VER_STR_SIZE];
1188	size_t left_size;
1189
1190	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1191		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1192		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1193		 p_dev_info->fw_eng,
1194		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1195		 QED_MFW_VERSION_3_OFFSET,
1196		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1197		 QED_MFW_VERSION_2_OFFSET,
1198		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1199		 QED_MFW_VERSION_1_OFFSET,
1200		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1201		 QED_MFW_VERSION_0_OFFSET);
1202
1203	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1204	if (p_dev_info->mbi_version && left_size)
1205		snprintf(buf + strlen(buf), left_size,
1206			 " [MBI %d.%d.%d]",
1207			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1208			 QED_MBI_VERSION_2_OFFSET,
1209			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1210			 QED_MBI_VERSION_1_OFFSET,
1211			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1212			 QED_MBI_VERSION_0_OFFSET);
1213
1214	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1215		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1216		buf, edev->ndev->name);
1217}
1218
1219enum qede_probe_mode {
1220	QEDE_PROBE_NORMAL,
1221	QEDE_PROBE_RECOVERY,
1222};
1223
1224static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1225			bool is_vf, enum qede_probe_mode mode)
1226{
1227	struct qed_probe_params probe_params;
1228	struct qed_slowpath_params sp_params;
1229	struct qed_dev_eth_info dev_info;
1230	struct qede_dev *edev;
1231	struct qed_dev *cdev;
1232	int rc;
1233
1234	if (unlikely(dp_level & QED_LEVEL_INFO))
1235		pr_notice("Starting qede probe\n");
1236
1237	memset(&probe_params, 0, sizeof(probe_params));
1238	probe_params.protocol = QED_PROTOCOL_ETH;
1239	probe_params.dp_module = dp_module;
1240	probe_params.dp_level = dp_level;
1241	probe_params.is_vf = is_vf;
1242	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1243	cdev = qed_ops->common->probe(pdev, &probe_params);
1244	if (!cdev) {
1245		rc = -ENODEV;
1246		goto err0;
1247	}
1248
1249	qede_update_pf_params(cdev);
1250
1251	/* Start the Slowpath-process */
1252	memset(&sp_params, 0, sizeof(sp_params));
1253	sp_params.int_mode = QED_INT_MODE_MSIX;
1254	strscpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
 
 
 
 
1255	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1256	if (rc) {
1257		pr_notice("Cannot start slowpath\n");
1258		goto err1;
1259	}
1260
1261	/* Learn information crucial for qede to progress */
1262	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1263	if (rc)
1264		goto err2;
1265
1266	if (mode != QEDE_PROBE_RECOVERY) {
1267		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1268					   dp_level);
1269		if (!edev) {
1270			rc = -ENOMEM;
1271			goto err2;
1272		}
1273
1274		edev->devlink = qed_ops->common->devlink_register(cdev);
1275		if (IS_ERR(edev->devlink)) {
1276			DP_NOTICE(edev, "Cannot register devlink\n");
1277			rc = PTR_ERR(edev->devlink);
1278			edev->devlink = NULL;
1279			goto err3;
1280		}
1281	} else {
1282		struct net_device *ndev = pci_get_drvdata(pdev);
1283		struct qed_devlink *qdl;
1284
1285		edev = netdev_priv(ndev);
1286		qdl = devlink_priv(edev->devlink);
1287		qdl->cdev = cdev;
1288		edev->cdev = cdev;
1289		memset(&edev->stats, 0, sizeof(edev->stats));
1290		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1291	}
1292
1293	if (is_vf)
1294		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1295
1296	qede_init_ndev(edev);
1297
1298	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1299	if (rc)
1300		goto err3;
1301
1302	if (mode != QEDE_PROBE_RECOVERY) {
1303		/* Prepare the lock prior to the registration of the netdev,
1304		 * as once it's registered we might reach flows requiring it
1305		 * [it's even possible to reach a flow needing it directly
1306		 * from there, although it's unlikely].
1307		 */
1308		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1309		mutex_init(&edev->qede_lock);
1310		qede_init_periodic_task(edev);
1311
1312		rc = register_netdev(edev->ndev);
1313		if (rc) {
1314			DP_NOTICE(edev, "Cannot register net-device\n");
1315			goto err4;
1316		}
1317	}
1318
1319	edev->ops->common->set_name(cdev, edev->ndev->name);
1320
1321	/* PTP not supported on VFs */
1322	if (!is_vf)
1323		qede_ptp_enable(edev);
1324
1325	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1326
1327#ifdef CONFIG_DCB
1328	if (!IS_VF(edev))
1329		qede_set_dcbnl_ops(edev->ndev);
1330#endif
1331
 
 
1332	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1333
1334	qede_log_probe(edev);
1335
1336	/* retain user config (for example - after recovery) */
1337	if (edev->stats_coal_usecs)
1338		schedule_delayed_work(&edev->periodic_task, 0);
1339
1340	return 0;
1341
1342err4:
1343	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1344err3:
1345	if (mode != QEDE_PROBE_RECOVERY)
1346		free_netdev(edev->ndev);
1347	else
1348		edev->cdev = NULL;
1349err2:
1350	qed_ops->common->slowpath_stop(cdev);
1351err1:
1352	qed_ops->common->remove(cdev);
1353err0:
1354	return rc;
1355}
1356
1357static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1358{
1359	bool is_vf = false;
1360	u32 dp_module = 0;
1361	u8 dp_level = 0;
1362
1363	switch ((enum qede_pci_private)id->driver_data) {
1364	case QEDE_PRIVATE_VF:
1365		if (debug & QED_LOG_VERBOSE_MASK)
1366			dev_err(&pdev->dev, "Probing a VF\n");
1367		is_vf = true;
1368		break;
1369	default:
1370		if (debug & QED_LOG_VERBOSE_MASK)
1371			dev_err(&pdev->dev, "Probing a PF\n");
1372	}
1373
1374	qede_config_debug(debug, &dp_module, &dp_level);
1375
1376	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1377			    QEDE_PROBE_NORMAL);
1378}
1379
1380enum qede_remove_mode {
1381	QEDE_REMOVE_NORMAL,
1382	QEDE_REMOVE_RECOVERY,
1383};
1384
1385static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1386{
1387	struct net_device *ndev = pci_get_drvdata(pdev);
1388	struct qede_dev *edev;
1389	struct qed_dev *cdev;
1390
1391	if (!ndev) {
1392		dev_info(&pdev->dev, "Device has already been removed\n");
1393		return;
1394	}
1395
1396	edev = netdev_priv(ndev);
1397	cdev = edev->cdev;
1398
1399	DP_INFO(edev, "Starting qede_remove\n");
1400
1401	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1402
1403	if (mode != QEDE_REMOVE_RECOVERY) {
1404		set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1405		unregister_netdev(ndev);
1406
1407		cancel_delayed_work_sync(&edev->sp_task);
1408		cancel_delayed_work_sync(&edev->periodic_task);
1409
1410		edev->ops->common->set_power_state(cdev, PCI_D0);
1411
1412		pci_set_drvdata(pdev, NULL);
1413	}
1414
1415	qede_ptp_disable(edev);
 
 
 
 
1416
1417	/* Use global ops since we've freed edev */
1418	qed_ops->common->slowpath_stop(cdev);
1419	if (system_state == SYSTEM_POWER_OFF)
1420		return;
1421
1422	if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1423		qed_ops->common->devlink_unregister(edev->devlink);
1424		edev->devlink = NULL;
1425	}
1426	qed_ops->common->remove(cdev);
1427	edev->cdev = NULL;
1428
1429	/* Since this can happen out-of-sync with other flows,
1430	 * don't release the netdevice until after slowpath stop
1431	 * has been called to guarantee various other contexts
1432	 * [e.g., QED register callbacks] won't break anything when
1433	 * accessing the netdevice.
1434	 */
1435	if (mode != QEDE_REMOVE_RECOVERY) {
1436		kfree(edev->coal_entry);
1437		free_netdev(ndev);
1438	}
1439
1440	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1441}
1442
1443static void qede_remove(struct pci_dev *pdev)
1444{
1445	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1446}
1447
1448static void qede_shutdown(struct pci_dev *pdev)
1449{
1450	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1451}
1452
1453/* -------------------------------------------------------------------------
1454 * START OF LOAD / UNLOAD
1455 * -------------------------------------------------------------------------
1456 */
1457
1458static int qede_set_num_queues(struct qede_dev *edev)
1459{
1460	int rc;
1461	u16 rss_num;
1462
1463	/* Setup queues according to possible resources*/
1464	if (edev->req_queues)
1465		rss_num = edev->req_queues;
1466	else
1467		rss_num = netif_get_num_default_rss_queues() *
1468			  edev->dev_info.common.num_hwfns;
1469
1470	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1471
1472	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1473	if (rc > 0) {
1474		/* Managed to request interrupts for our queues */
1475		edev->num_queues = rc;
1476		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1477			QEDE_QUEUE_CNT(edev), rss_num);
1478		rc = 0;
1479	}
1480
1481	edev->fp_num_tx = edev->req_num_tx;
1482	edev->fp_num_rx = edev->req_num_rx;
1483
1484	return rc;
1485}
1486
1487static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1488			     u16 sb_id)
1489{
1490	if (sb_info->sb_virt) {
1491		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1492					      QED_SB_TYPE_L2_QUEUE);
1493		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1494				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1495		memset(sb_info, 0, sizeof(*sb_info));
1496	}
1497}
1498
1499/* This function allocates fast-path status block memory */
1500static int qede_alloc_mem_sb(struct qede_dev *edev,
1501			     struct qed_sb_info *sb_info, u16 sb_id)
1502{
1503	struct status_block *sb_virt;
1504	dma_addr_t sb_phys;
1505	int rc;
1506
1507	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1508				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1509	if (!sb_virt) {
1510		DP_ERR(edev, "Status block allocation failed\n");
1511		return -ENOMEM;
1512	}
1513
1514	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1515					sb_virt, sb_phys, sb_id,
1516					QED_SB_TYPE_L2_QUEUE);
1517	if (rc) {
1518		DP_ERR(edev, "Status block initialization failed\n");
1519		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1520				  sb_virt, sb_phys);
1521		return rc;
1522	}
1523
1524	return 0;
1525}
1526
1527static void qede_free_rx_buffers(struct qede_dev *edev,
1528				 struct qede_rx_queue *rxq)
1529{
1530	u16 i;
1531
1532	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1533		struct sw_rx_data *rx_buf;
1534		struct page *data;
1535
1536		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1537		data = rx_buf->data;
1538
1539		dma_unmap_page(&edev->pdev->dev,
1540			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1541
1542		rx_buf->data = NULL;
1543		__free_page(data);
1544	}
1545}
1546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1548{
 
 
1549	/* Free rx buffers */
1550	qede_free_rx_buffers(edev, rxq);
1551
1552	/* Free the parallel SW ring */
1553	kfree(rxq->sw_rx_ring);
1554
1555	/* Free the real RQ ring used by FW */
1556	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1557	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1558}
1559
1560static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1561{
 
1562	int i;
1563
 
 
 
 
 
 
 
 
 
 
 
 
1564	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1565		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
 
1566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1567		tpa_info->state = QEDE_AGG_STATE_NONE;
1568	}
 
 
 
 
 
 
1569}
1570
1571/* This function allocates all memory needed per Rx queue */
1572static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1573{
1574	struct qed_chain_init_params params = {
1575		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1576		.num_elems	= RX_RING_SIZE,
1577	};
1578	struct qed_dev *cdev = edev->cdev;
1579	int i, rc, size;
1580
1581	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1582
1583	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1584
1585	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1586	size = rxq->rx_headroom +
1587	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1588
1589	/* Make sure that the headroom and  payload fit in a single page */
1590	if (rxq->rx_buf_size + size > PAGE_SIZE)
1591		rxq->rx_buf_size = PAGE_SIZE - size;
1592
1593	/* Segment size to split a page in multiple equal parts,
1594	 * unless XDP is used in which case we'd use the entire page.
1595	 */
1596	if (!edev->xdp_prog) {
1597		size = size + rxq->rx_buf_size;
1598		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1599	} else {
1600		rxq->rx_buf_seg_size = PAGE_SIZE;
1601		edev->ndev->features &= ~NETIF_F_GRO_HW;
1602	}
1603
1604	/* Allocate the parallel driver ring for Rx buffers */
1605	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1606	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1607	if (!rxq->sw_rx_ring) {
1608		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1609		rc = -ENOMEM;
1610		goto err;
1611	}
1612
1613	/* Allocate FW Rx ring  */
1614	params.mode = QED_CHAIN_MODE_NEXT_PTR;
1615	params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1616	params.elem_size = sizeof(struct eth_rx_bd);
 
 
 
 
1617
1618	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1619	if (rc)
1620		goto err;
1621
1622	/* Allocate FW completion ring */
1623	params.mode = QED_CHAIN_MODE_PBL;
1624	params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1625	params.elem_size = sizeof(union eth_rx_cqe);
1626
1627	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
 
 
1628	if (rc)
1629		goto err;
1630
1631	/* Allocate buffers for the Rx ring */
1632	rxq->filled_buffers = 0;
1633	for (i = 0; i < rxq->num_rx_buffers; i++) {
1634		rc = qede_alloc_rx_buffer(rxq, false);
1635		if (rc) {
1636			DP_ERR(edev,
1637			       "Rx buffers allocation failed at index %d\n", i);
1638			goto err;
1639		}
1640	}
1641
1642	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1643	if (!edev->gro_disable)
1644		qede_set_tpa_param(rxq);
1645err:
1646	return rc;
1647}
1648
1649static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1650{
1651	/* Free the parallel SW ring */
1652	if (txq->is_xdp)
1653		kfree(txq->sw_tx_ring.xdp);
1654	else
1655		kfree(txq->sw_tx_ring.skbs);
1656
1657	/* Free the real RQ ring used by FW */
1658	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1659}
1660
1661/* This function allocates all memory needed per Tx queue */
1662static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1663{
1664	struct qed_chain_init_params params = {
1665		.mode		= QED_CHAIN_MODE_PBL,
1666		.intended_use	= QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1667		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1668		.num_elems	= edev->q_num_tx_buffers,
1669		.elem_size	= sizeof(union eth_tx_bd_types),
1670	};
1671	int size, rc;
1672
1673	txq->num_tx_buffers = edev->q_num_tx_buffers;
1674
1675	/* Allocate the parallel driver ring for Tx buffers */
1676	if (txq->is_xdp) {
1677		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1678		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1679		if (!txq->sw_tx_ring.xdp)
1680			goto err;
1681	} else {
1682		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1683		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1684		if (!txq->sw_tx_ring.skbs)
1685			goto err;
1686	}
1687
1688	rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
 
 
 
 
 
1689	if (rc)
1690		goto err;
1691
1692	return 0;
1693
1694err:
1695	qede_free_mem_txq(edev, txq);
1696	return -ENOMEM;
1697}
1698
1699/* This function frees all memory of a single fp */
1700static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1701{
1702	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1703
1704	if (fp->type & QEDE_FASTPATH_RX)
1705		qede_free_mem_rxq(edev, fp->rxq);
1706
1707	if (fp->type & QEDE_FASTPATH_XDP)
1708		qede_free_mem_txq(edev, fp->xdp_tx);
1709
1710	if (fp->type & QEDE_FASTPATH_TX) {
1711		int cos;
1712
1713		for_each_cos_in_txq(edev, cos)
1714			qede_free_mem_txq(edev, &fp->txq[cos]);
1715	}
1716}
1717
1718/* This function allocates all memory needed for a single fp (i.e. an entity
1719 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1720 */
1721static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1722{
1723	int rc = 0;
1724
1725	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1726	if (rc)
1727		goto out;
1728
1729	if (fp->type & QEDE_FASTPATH_RX) {
1730		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1731		if (rc)
1732			goto out;
1733	}
1734
1735	if (fp->type & QEDE_FASTPATH_XDP) {
1736		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1737		if (rc)
1738			goto out;
1739	}
1740
1741	if (fp->type & QEDE_FASTPATH_TX) {
1742		int cos;
1743
1744		for_each_cos_in_txq(edev, cos) {
1745			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1746			if (rc)
1747				goto out;
1748		}
1749	}
1750
1751out:
1752	return rc;
1753}
1754
1755static void qede_free_mem_load(struct qede_dev *edev)
1756{
1757	int i;
1758
1759	for_each_queue(i) {
1760		struct qede_fastpath *fp = &edev->fp_array[i];
1761
1762		qede_free_mem_fp(edev, fp);
1763	}
1764}
1765
1766/* This function allocates all qede memory at NIC load. */
1767static int qede_alloc_mem_load(struct qede_dev *edev)
1768{
1769	int rc = 0, queue_id;
1770
1771	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1772		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1773
1774		rc = qede_alloc_mem_fp(edev, fp);
1775		if (rc) {
1776			DP_ERR(edev,
1777			       "Failed to allocate memory for fastpath - rss id = %d\n",
1778			       queue_id);
1779			qede_free_mem_load(edev);
1780			return rc;
1781		}
1782	}
1783
1784	return 0;
1785}
1786
1787static void qede_empty_tx_queue(struct qede_dev *edev,
1788				struct qede_tx_queue *txq)
1789{
1790	unsigned int pkts_compl = 0, bytes_compl = 0;
1791	struct netdev_queue *netdev_txq;
1792	int rc, len = 0;
1793
1794	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1795
1796	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1797	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1798		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1799			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1800			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1801			   qed_chain_get_prod_idx(&txq->tx_pbl));
1802
1803		rc = qede_free_tx_pkt(edev, txq, &len);
1804		if (rc) {
1805			DP_NOTICE(edev,
1806				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1807				  txq->index,
1808				  qed_chain_get_cons_idx(&txq->tx_pbl),
1809				  qed_chain_get_prod_idx(&txq->tx_pbl));
1810			break;
1811		}
1812
1813		bytes_compl += len;
1814		pkts_compl++;
1815		txq->sw_tx_cons++;
1816	}
1817
1818	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1819}
1820
1821static void qede_empty_tx_queues(struct qede_dev *edev)
1822{
1823	int i;
1824
1825	for_each_queue(i)
1826		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1827			int cos;
1828
1829			for_each_cos_in_txq(edev, cos) {
1830				struct qede_fastpath *fp;
1831
1832				fp = &edev->fp_array[i];
1833				qede_empty_tx_queue(edev,
1834						    &fp->txq[cos]);
1835			}
1836		}
1837}
1838
1839/* This function inits fp content and resets the SB, RXQ and TXQ structures */
1840static void qede_init_fp(struct qede_dev *edev)
1841{
1842	int queue_id, rxq_index = 0, txq_index = 0;
1843	struct qede_fastpath *fp;
1844	bool init_xdp = false;
1845
1846	for_each_queue(queue_id) {
1847		fp = &edev->fp_array[queue_id];
1848
1849		fp->edev = edev;
1850		fp->id = queue_id;
1851
1852		if (fp->type & QEDE_FASTPATH_XDP) {
1853			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1854								rxq_index);
1855			fp->xdp_tx->is_xdp = 1;
1856
1857			spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1858			init_xdp = true;
1859		}
1860
1861		if (fp->type & QEDE_FASTPATH_RX) {
1862			fp->rxq->rxq_id = rxq_index++;
1863
1864			/* Determine how to map buffers for this queue */
1865			if (fp->type & QEDE_FASTPATH_XDP)
1866				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1867			else
1868				fp->rxq->data_direction = DMA_FROM_DEVICE;
1869			fp->rxq->dev = &edev->pdev->dev;
1870
1871			/* Driver have no error path from here */
1872			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1873						 fp->rxq->rxq_id, 0) < 0);
1874
1875			if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1876						       MEM_TYPE_PAGE_ORDER0,
1877						       NULL)) {
1878				DP_NOTICE(edev,
1879					  "Failed to register XDP memory model\n");
1880			}
1881		}
1882
1883		if (fp->type & QEDE_FASTPATH_TX) {
1884			int cos;
1885
1886			for_each_cos_in_txq(edev, cos) {
1887				struct qede_tx_queue *txq = &fp->txq[cos];
1888				u16 ndev_tx_id;
1889
1890				txq->cos = cos;
1891				txq->index = txq_index;
1892				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1893				txq->ndev_txq_id = ndev_tx_id;
1894
1895				if (edev->dev_info.is_legacy)
1896					txq->is_legacy = true;
1897				txq->dev = &edev->pdev->dev;
1898			}
1899
1900			txq_index++;
1901		}
1902
1903		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1904			 edev->ndev->name, queue_id);
1905	}
1906
1907	if (init_xdp) {
1908		edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1909		DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1910	}
1911}
1912
1913static int qede_set_real_num_queues(struct qede_dev *edev)
1914{
1915	int rc = 0;
1916
1917	rc = netif_set_real_num_tx_queues(edev->ndev,
1918					  QEDE_TSS_COUNT(edev) *
1919					  edev->dev_info.num_tc);
1920	if (rc) {
1921		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1922		return rc;
1923	}
1924
1925	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1926	if (rc) {
1927		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1928		return rc;
1929	}
1930
1931	return 0;
1932}
1933
1934static void qede_napi_disable_remove(struct qede_dev *edev)
1935{
1936	int i;
1937
1938	for_each_queue(i) {
1939		napi_disable(&edev->fp_array[i].napi);
1940
1941		netif_napi_del(&edev->fp_array[i].napi);
1942	}
1943}
1944
1945static void qede_napi_add_enable(struct qede_dev *edev)
1946{
1947	int i;
1948
1949	/* Add NAPI objects */
1950	for_each_queue(i) {
1951		netif_napi_add(edev->ndev, &edev->fp_array[i].napi, qede_poll);
 
1952		napi_enable(&edev->fp_array[i].napi);
1953	}
1954}
1955
1956static void qede_sync_free_irqs(struct qede_dev *edev)
1957{
1958	int i;
1959
1960	for (i = 0; i < edev->int_info.used_cnt; i++) {
1961		if (edev->int_info.msix_cnt) {
 
1962			free_irq(edev->int_info.msix[i].vector,
1963				 &edev->fp_array[i]);
1964		} else {
1965			edev->ops->common->simd_handler_clean(edev->cdev, i);
1966		}
1967	}
1968
1969	edev->int_info.used_cnt = 0;
1970	edev->int_info.msix_cnt = 0;
1971}
1972
1973static int qede_req_msix_irqs(struct qede_dev *edev)
1974{
1975	int i, rc;
1976
1977	/* Sanitize number of interrupts == number of prepared RSS queues */
1978	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1979		DP_ERR(edev,
1980		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1981		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1982		return -EINVAL;
1983	}
1984
1985	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1986#ifdef CONFIG_RFS_ACCEL
1987		struct qede_fastpath *fp = &edev->fp_array[i];
1988
1989		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1990			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1991					      edev->int_info.msix[i].vector);
1992			if (rc) {
1993				DP_ERR(edev, "Failed to add CPU rmap\n");
1994				qede_free_arfs(edev);
1995			}
1996		}
1997#endif
1998		rc = request_irq(edev->int_info.msix[i].vector,
1999				 qede_msix_fp_int, 0, edev->fp_array[i].name,
2000				 &edev->fp_array[i]);
2001		if (rc) {
2002			DP_ERR(edev, "Request fp %d irq failed\n", i);
2003#ifdef CONFIG_RFS_ACCEL
2004			if (edev->ndev->rx_cpu_rmap)
2005				free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2006
2007			edev->ndev->rx_cpu_rmap = NULL;
2008#endif
2009			qede_sync_free_irqs(edev);
2010			return rc;
2011		}
2012		DP_VERBOSE(edev, NETIF_MSG_INTR,
2013			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
2014			   edev->fp_array[i].name, i,
2015			   &edev->fp_array[i]);
2016		edev->int_info.used_cnt++;
2017	}
2018
2019	return 0;
2020}
2021
2022static void qede_simd_fp_handler(void *cookie)
2023{
2024	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
2025
2026	napi_schedule_irqoff(&fp->napi);
2027}
2028
2029static int qede_setup_irqs(struct qede_dev *edev)
2030{
2031	int i, rc = 0;
2032
2033	/* Learn Interrupt configuration */
2034	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
2035	if (rc)
2036		return rc;
2037
2038	if (edev->int_info.msix_cnt) {
2039		rc = qede_req_msix_irqs(edev);
2040		if (rc)
2041			return rc;
2042		edev->ndev->irq = edev->int_info.msix[0].vector;
2043	} else {
2044		const struct qed_common_ops *ops;
2045
2046		/* qed should learn receive the RSS ids and callbacks */
2047		ops = edev->ops->common;
2048		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
2049			ops->simd_handler_config(edev->cdev,
2050						 &edev->fp_array[i], i,
2051						 qede_simd_fp_handler);
2052		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
2053	}
2054	return 0;
2055}
2056
2057static int qede_drain_txq(struct qede_dev *edev,
2058			  struct qede_tx_queue *txq, bool allow_drain)
2059{
2060	int rc, cnt = 1000;
2061
2062	while (txq->sw_tx_cons != txq->sw_tx_prod) {
2063		if (!cnt) {
2064			if (allow_drain) {
2065				DP_NOTICE(edev,
2066					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
2067					  txq->index);
2068				rc = edev->ops->common->drain(edev->cdev);
2069				if (rc)
2070					return rc;
2071				return qede_drain_txq(edev, txq, false);
2072			}
2073			DP_NOTICE(edev,
2074				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2075				  txq->index, txq->sw_tx_prod,
2076				  txq->sw_tx_cons);
2077			return -ENODEV;
2078		}
2079		cnt--;
2080		usleep_range(1000, 2000);
2081		barrier();
2082	}
2083
2084	/* FW finished processing, wait for HW to transmit all tx packets */
2085	usleep_range(1000, 2000);
2086
2087	return 0;
2088}
2089
2090static int qede_stop_txq(struct qede_dev *edev,
2091			 struct qede_tx_queue *txq, int rss_id)
2092{
2093	/* delete doorbell from doorbell recovery mechanism */
2094	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
2095					   &txq->tx_db);
2096
2097	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
2098}
2099
2100static int qede_stop_queues(struct qede_dev *edev)
2101{
2102	struct qed_update_vport_params *vport_update_params;
2103	struct qed_dev *cdev = edev->cdev;
2104	struct qede_fastpath *fp;
2105	int rc, i;
2106
2107	/* Disable the vport */
2108	vport_update_params = vzalloc(sizeof(*vport_update_params));
2109	if (!vport_update_params)
2110		return -ENOMEM;
2111
2112	vport_update_params->vport_id = 0;
2113	vport_update_params->update_vport_active_flg = 1;
2114	vport_update_params->vport_active_flg = 0;
2115	vport_update_params->update_rss_flg = 0;
2116
2117	rc = edev->ops->vport_update(cdev, vport_update_params);
2118	vfree(vport_update_params);
2119
 
2120	if (rc) {
2121		DP_ERR(edev, "Failed to update vport\n");
2122		return rc;
2123	}
2124
2125	/* Flush Tx queues. If needed, request drain from MCP */
2126	for_each_queue(i) {
2127		fp = &edev->fp_array[i];
2128
2129		if (fp->type & QEDE_FASTPATH_TX) {
2130			int cos;
2131
2132			for_each_cos_in_txq(edev, cos) {
2133				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2134				if (rc)
2135					return rc;
2136			}
2137		}
2138
2139		if (fp->type & QEDE_FASTPATH_XDP) {
2140			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2141			if (rc)
2142				return rc;
2143		}
2144	}
2145
2146	/* Stop all Queues in reverse order */
2147	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2148		fp = &edev->fp_array[i];
2149
2150		/* Stop the Tx Queue(s) */
2151		if (fp->type & QEDE_FASTPATH_TX) {
2152			int cos;
2153
2154			for_each_cos_in_txq(edev, cos) {
2155				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2156				if (rc)
2157					return rc;
2158			}
2159		}
2160
2161		/* Stop the Rx Queue */
2162		if (fp->type & QEDE_FASTPATH_RX) {
2163			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2164			if (rc) {
2165				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2166				return rc;
2167			}
2168		}
2169
2170		/* Stop the XDP forwarding queue */
2171		if (fp->type & QEDE_FASTPATH_XDP) {
2172			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2173			if (rc)
2174				return rc;
2175
2176			bpf_prog_put(fp->rxq->xdp_prog);
2177		}
2178	}
2179
2180	/* Stop the vport */
2181	rc = edev->ops->vport_stop(cdev, 0);
2182	if (rc)
2183		DP_ERR(edev, "Failed to stop VPORT\n");
2184
2185	return rc;
2186}
2187
2188static int qede_start_txq(struct qede_dev *edev,
2189			  struct qede_fastpath *fp,
2190			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2191{
2192	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2193	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2194	struct qed_queue_start_common_params params;
2195	struct qed_txq_start_ret_params ret_params;
2196	int rc;
2197
2198	memset(&params, 0, sizeof(params));
2199	memset(&ret_params, 0, sizeof(ret_params));
2200
2201	/* Let the XDP queue share the queue-zone with one of the regular txq.
2202	 * We don't really care about its coalescing.
2203	 */
2204	if (txq->is_xdp)
2205		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2206	else
2207		params.queue_id = txq->index;
2208
2209	params.p_sb = fp->sb_info;
2210	params.sb_idx = sb_idx;
2211	params.tc = txq->cos;
2212
2213	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2214				   page_cnt, &ret_params);
2215	if (rc) {
2216		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2217		return rc;
2218	}
2219
2220	txq->doorbell_addr = ret_params.p_doorbell;
2221	txq->handle = ret_params.p_handle;
2222
2223	/* Determine the FW consumer address associated */
2224	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2225
2226	/* Prepare the doorbell parameters */
2227	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2228	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2229	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2230		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2231	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2232
2233	/* register doorbell with doorbell recovery mechanism */
2234	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2235						&txq->tx_db, DB_REC_WIDTH_32B,
2236						DB_REC_KERNEL);
2237
2238	return rc;
2239}
2240
2241static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2242{
2243	int vlan_removal_en = 1;
2244	struct qed_dev *cdev = edev->cdev;
2245	struct qed_dev_info *qed_info = &edev->dev_info.common;
2246	struct qed_update_vport_params *vport_update_params;
2247	struct qed_queue_start_common_params q_params;
 
2248	struct qed_start_vport_params start = {0};
 
2249	int rc, i;
2250
2251	if (!edev->num_queues) {
2252		DP_ERR(edev,
2253		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2254		return -EINVAL;
2255	}
2256
2257	vport_update_params = vzalloc(sizeof(*vport_update_params));
2258	if (!vport_update_params)
2259		return -ENOMEM;
2260
2261	start.handle_ptp_pkts = !!(edev->ptp);
2262	start.gro_enable = !edev->gro_disable;
2263	start.mtu = edev->ndev->mtu;
2264	start.vport_id = 0;
2265	start.drop_ttl0 = true;
2266	start.remove_inner_vlan = vlan_removal_en;
2267	start.clear_stats = clear_stats;
2268
2269	rc = edev->ops->vport_start(cdev, &start);
2270
2271	if (rc) {
2272		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2273		goto out;
2274	}
2275
2276	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2277		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2278		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2279
2280	for_each_queue(i) {
2281		struct qede_fastpath *fp = &edev->fp_array[i];
2282		dma_addr_t p_phys_table;
2283		u32 page_cnt;
2284
2285		if (fp->type & QEDE_FASTPATH_RX) {
2286			struct qed_rxq_start_ret_params ret_params;
2287			struct qede_rx_queue *rxq = fp->rxq;
2288			__le16 *val;
2289
2290			memset(&ret_params, 0, sizeof(ret_params));
2291			memset(&q_params, 0, sizeof(q_params));
2292			q_params.queue_id = rxq->rxq_id;
2293			q_params.vport_id = 0;
2294			q_params.p_sb = fp->sb_info;
2295			q_params.sb_idx = RX_PI;
2296
2297			p_phys_table =
2298			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2299			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2300
2301			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2302						   rxq->rx_buf_size,
2303						   rxq->rx_bd_ring.p_phys_addr,
2304						   p_phys_table,
2305						   page_cnt, &ret_params);
2306			if (rc) {
2307				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2308				       rc);
2309				goto out;
2310			}
2311
2312			/* Use the return parameters */
2313			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2314			rxq->handle = ret_params.p_handle;
2315
2316			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2317			rxq->hw_cons_ptr = val;
2318
2319			qede_update_rx_prod(edev, rxq);
2320		}
2321
2322		if (fp->type & QEDE_FASTPATH_XDP) {
2323			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2324			if (rc)
2325				goto out;
2326
2327			bpf_prog_add(edev->xdp_prog, 1);
2328			fp->rxq->xdp_prog = edev->xdp_prog;
 
 
 
 
2329		}
2330
2331		if (fp->type & QEDE_FASTPATH_TX) {
2332			int cos;
2333
2334			for_each_cos_in_txq(edev, cos) {
2335				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2336						    TX_PI(cos));
2337				if (rc)
2338					goto out;
2339			}
2340		}
2341	}
2342
2343	/* Prepare and send the vport enable */
2344	vport_update_params->vport_id = start.vport_id;
2345	vport_update_params->update_vport_active_flg = 1;
2346	vport_update_params->vport_active_flg = 1;
 
2347
2348	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2349	    qed_info->tx_switching) {
2350		vport_update_params->update_tx_switching_flg = 1;
2351		vport_update_params->tx_switching_flg = 1;
2352	}
2353
2354	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2355			     &vport_update_params->update_rss_flg);
 
 
 
 
 
 
 
 
 
 
2356
2357	rc = edev->ops->vport_update(cdev, vport_update_params);
2358	if (rc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2359		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
 
 
2360
2361out:
2362	vfree(vport_update_params);
2363	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2364}
2365
2366enum qede_unload_mode {
2367	QEDE_UNLOAD_NORMAL,
2368	QEDE_UNLOAD_RECOVERY,
2369};
2370
2371static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2372			bool is_locked)
2373{
2374	struct qed_link_params link_params;
2375	int rc;
2376
2377	DP_INFO(edev, "Starting qede unload\n");
2378
2379	if (!is_locked)
2380		__qede_lock(edev);
2381
2382	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2383
2384	if (mode != QEDE_UNLOAD_RECOVERY)
2385		edev->state = QEDE_STATE_CLOSED;
2386
2387	qede_rdma_dev_event_close(edev);
2388
2389	/* Close OS Tx */
2390	netif_tx_disable(edev->ndev);
2391	netif_carrier_off(edev->ndev);
2392
2393	if (mode != QEDE_UNLOAD_RECOVERY) {
2394		/* Reset the link */
2395		memset(&link_params, 0, sizeof(link_params));
2396		link_params.link_up = false;
2397		edev->ops->common->set_link(edev->cdev, &link_params);
2398
2399		rc = qede_stop_queues(edev);
2400		if (rc) {
2401#ifdef CONFIG_RFS_ACCEL
2402			if (edev->dev_info.common.b_arfs_capable) {
2403				qede_poll_for_freeing_arfs_filters(edev);
2404				if (edev->ndev->rx_cpu_rmap)
2405					free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2406
2407				edev->ndev->rx_cpu_rmap = NULL;
2408			}
2409#endif
2410			qede_sync_free_irqs(edev);
2411			goto out;
2412		}
2413
2414		DP_INFO(edev, "Stopped Queues\n");
2415	}
2416
 
 
2417	qede_vlan_mark_nonconfigured(edev);
2418	edev->ops->fastpath_stop(edev->cdev);
2419
2420	if (edev->dev_info.common.b_arfs_capable) {
2421		qede_poll_for_freeing_arfs_filters(edev);
2422		qede_free_arfs(edev);
2423	}
2424
2425	/* Release the interrupts */
2426	qede_sync_free_irqs(edev);
2427	edev->ops->common->set_fp_int(edev->cdev, 0);
2428
2429	qede_napi_disable_remove(edev);
2430
2431	if (mode == QEDE_UNLOAD_RECOVERY)
2432		qede_empty_tx_queues(edev);
2433
2434	qede_free_mem_load(edev);
2435	qede_free_fp_array(edev);
2436
2437out:
2438	if (!is_locked)
2439		__qede_unlock(edev);
2440
2441	if (mode != QEDE_UNLOAD_RECOVERY)
2442		DP_NOTICE(edev, "Link is down\n");
2443
2444	edev->ptp_skip_txts = 0;
2445
2446	DP_INFO(edev, "Ending qede unload\n");
2447}
2448
2449enum qede_load_mode {
2450	QEDE_LOAD_NORMAL,
2451	QEDE_LOAD_RELOAD,
2452	QEDE_LOAD_RECOVERY,
2453};
2454
2455static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2456		     bool is_locked)
2457{
2458	struct qed_link_params link_params;
2459	struct ethtool_coalesce coal = {};
2460	u8 num_tc;
2461	int rc, i;
2462
2463	DP_INFO(edev, "Starting qede load\n");
2464
2465	if (!is_locked)
2466		__qede_lock(edev);
2467
2468	rc = qede_set_num_queues(edev);
2469	if (rc)
2470		goto out;
2471
2472	rc = qede_alloc_fp_array(edev);
2473	if (rc)
2474		goto out;
2475
2476	qede_init_fp(edev);
2477
2478	rc = qede_alloc_mem_load(edev);
2479	if (rc)
2480		goto err1;
2481	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2482		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2483
2484	rc = qede_set_real_num_queues(edev);
2485	if (rc)
2486		goto err2;
2487
2488	if (qede_alloc_arfs(edev)) {
2489		edev->ndev->features &= ~NETIF_F_NTUPLE;
2490		edev->dev_info.common.b_arfs_capable = false;
2491	}
2492
2493	qede_napi_add_enable(edev);
2494	DP_INFO(edev, "Napi added and enabled\n");
2495
2496	rc = qede_setup_irqs(edev);
2497	if (rc)
2498		goto err3;
2499	DP_INFO(edev, "Setup IRQs succeeded\n");
2500
2501	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2502	if (rc)
2503		goto err4;
2504	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2505
2506	num_tc = netdev_get_num_tc(edev->ndev);
2507	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2508	qede_setup_tc(edev->ndev, num_tc);
2509
2510	/* Program un-configured VLANs */
2511	qede_configure_vlan_filters(edev);
2512
2513	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2514
2515	/* Ask for link-up using current configuration */
2516	memset(&link_params, 0, sizeof(link_params));
2517	link_params.link_up = true;
2518	edev->ops->common->set_link(edev->cdev, &link_params);
2519
2520	edev->state = QEDE_STATE_OPEN;
 
 
 
 
2521
2522	coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2523	coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2524
2525	for_each_queue(i) {
2526		if (edev->coal_entry[i].isvalid) {
2527			coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2528			coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2529		}
2530		__qede_unlock(edev);
2531		qede_set_per_coalesce(edev->ndev, i, &coal);
2532		__qede_lock(edev);
2533	}
2534	DP_INFO(edev, "Ending successfully qede load\n");
2535
 
2536	goto out;
2537err4:
2538	qede_sync_free_irqs(edev);
 
2539err3:
2540	qede_napi_disable_remove(edev);
2541err2:
2542	qede_free_mem_load(edev);
2543err1:
2544	edev->ops->common->set_fp_int(edev->cdev, 0);
2545	qede_free_fp_array(edev);
2546	edev->num_queues = 0;
2547	edev->fp_num_tx = 0;
2548	edev->fp_num_rx = 0;
2549out:
2550	if (!is_locked)
2551		__qede_unlock(edev);
2552
2553	return rc;
2554}
2555
2556/* 'func' should be able to run between unload and reload assuming interface
2557 * is actually running, or afterwards in case it's currently DOWN.
2558 */
2559void qede_reload(struct qede_dev *edev,
2560		 struct qede_reload_args *args, bool is_locked)
2561{
2562	if (!is_locked)
2563		__qede_lock(edev);
2564
2565	/* Since qede_lock is held, internal state wouldn't change even
2566	 * if netdev state would start transitioning. Check whether current
2567	 * internal configuration indicates device is up, then reload.
2568	 */
2569	if (edev->state == QEDE_STATE_OPEN) {
2570		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2571		if (args)
2572			args->func(edev, args);
2573		qede_load(edev, QEDE_LOAD_RELOAD, true);
2574
2575		/* Since no one is going to do it for us, re-configure */
2576		qede_config_rx_mode(edev->ndev);
2577	} else if (args) {
2578		args->func(edev, args);
2579	}
2580
2581	if (!is_locked)
2582		__qede_unlock(edev);
2583}
2584
2585/* called with rtnl_lock */
2586static int qede_open(struct net_device *ndev)
2587{
2588	struct qede_dev *edev = netdev_priv(ndev);
2589	int rc;
2590
2591	netif_carrier_off(ndev);
2592
2593	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2594
2595	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2596	if (rc)
2597		return rc;
2598
2599	udp_tunnel_nic_reset_ntf(ndev);
2600
2601	edev->ops->common->update_drv_state(edev->cdev, true);
2602
2603	return 0;
2604}
2605
2606static int qede_close(struct net_device *ndev)
2607{
2608	struct qede_dev *edev = netdev_priv(ndev);
2609
2610	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2611
2612	if (edev->cdev)
2613		edev->ops->common->update_drv_state(edev->cdev, false);
2614
2615	return 0;
2616}
2617
2618static void qede_link_update(void *dev, struct qed_link_output *link)
2619{
2620	struct qede_dev *edev = dev;
2621
2622	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2623		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2624		return;
2625	}
2626
2627	if (link->link_up) {
2628		if (!netif_carrier_ok(edev->ndev)) {
2629			DP_NOTICE(edev, "Link is up\n");
2630			netif_tx_start_all_queues(edev->ndev);
2631			netif_carrier_on(edev->ndev);
2632			qede_rdma_dev_event_open(edev);
2633		}
2634	} else {
2635		if (netif_carrier_ok(edev->ndev)) {
2636			DP_NOTICE(edev, "Link is down\n");
2637			netif_tx_disable(edev->ndev);
2638			netif_carrier_off(edev->ndev);
2639			qede_rdma_dev_event_close(edev);
2640		}
2641	}
2642}
2643
2644static void qede_schedule_recovery_handler(void *dev)
2645{
2646	struct qede_dev *edev = dev;
2647
2648	if (edev->state == QEDE_STATE_RECOVERY) {
2649		DP_NOTICE(edev,
2650			  "Avoid scheduling a recovery handling since already in recovery state\n");
2651		return;
2652	}
2653
2654	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2655	schedule_delayed_work(&edev->sp_task, 0);
2656
2657	DP_INFO(edev, "Scheduled a recovery handler\n");
2658}
2659
2660static void qede_recovery_failed(struct qede_dev *edev)
2661{
2662	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2663
2664	netif_device_detach(edev->ndev);
2665
2666	if (edev->cdev)
2667		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2668}
2669
2670static void qede_recovery_handler(struct qede_dev *edev)
2671{
2672	u32 curr_state = edev->state;
 
2673	int rc;
2674
2675	DP_NOTICE(edev, "Starting a recovery process\n");
2676
2677	/* No need to acquire first the qede_lock since is done by qede_sp_task
2678	 * before calling this function.
2679	 */
2680	edev->state = QEDE_STATE_RECOVERY;
2681
2682	edev->ops->common->recovery_prolog(edev->cdev);
2683
2684	if (curr_state == QEDE_STATE_OPEN)
2685		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2686
2687	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2688
2689	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2690			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2691	if (rc) {
2692		edev->cdev = NULL;
2693		goto err;
2694	}
2695
2696	if (curr_state == QEDE_STATE_OPEN) {
2697		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2698		if (rc)
2699			goto err;
2700
2701		qede_config_rx_mode(edev->ndev);
2702		udp_tunnel_nic_reset_ntf(edev->ndev);
 
2703	}
2704
2705	edev->state = curr_state;
 
 
 
 
2706
2707	DP_NOTICE(edev, "Recovery handling is done\n");
2708
2709	return;
2710
2711err:
2712	qede_recovery_failed(edev);
2713}
2714
2715static void qede_atomic_hw_err_handler(struct qede_dev *edev)
 
 
2716{
2717	struct qed_dev *cdev = edev->cdev;
 
 
 
 
2718
2719	DP_NOTICE(edev,
2720		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2721		  edev->err_flags);
2722
2723	/* Get a call trace of the flow that led to the error */
2724	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
 
 
 
 
 
2725
2726	/* Prevent HW attentions from being reasserted */
2727	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2728		edev->ops->common->attn_clr_enable(cdev, true);
2729
2730	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2731}
 
 
 
2732
2733static void qede_generic_hw_err_handler(struct qede_dev *edev)
2734{
2735	DP_NOTICE(edev,
2736		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2737		  edev->err_flags);
2738
2739	if (edev->devlink) {
2740		DP_NOTICE(edev, "Reporting fatal error to devlink\n");
2741		edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
 
 
 
2742	}
2743
2744	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2745
2746	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2747}
2748
2749static void qede_set_hw_err_flags(struct qede_dev *edev,
2750				  enum qed_hw_err_type err_type)
2751{
2752	unsigned long err_flags = 0;
2753
2754	switch (err_type) {
2755	case QED_HW_ERR_DMAE_FAIL:
2756		set_bit(QEDE_ERR_WARN, &err_flags);
2757		fallthrough;
2758	case QED_HW_ERR_MFW_RESP_FAIL:
2759	case QED_HW_ERR_HW_ATTN:
2760	case QED_HW_ERR_RAMROD_FAIL:
2761	case QED_HW_ERR_FW_ASSERT:
2762		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2763		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2764		/* make this error as recoverable and start recovery*/
2765		set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
2766		break;
2767
2768	default:
2769		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2770		break;
2771	}
2772
2773	edev->err_flags |= err_flags;
 
 
2774}
2775
2776static void qede_schedule_hw_err_handler(void *dev,
2777					 enum qed_hw_err_type err_type)
2778{
2779	struct qede_dev *edev = dev;
2780
2781	/* Fan failure cannot be masked by handling of another HW error or by a
2782	 * concurrent recovery process.
2783	 */
2784	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2785	     edev->state == QEDE_STATE_RECOVERY) &&
2786	     err_type != QED_HW_ERR_FAN_FAIL) {
2787		DP_INFO(edev,
2788			"Avoid scheduling an error handling while another HW error is being handled\n");
2789		return;
2790	}
2791
2792	if (err_type >= QED_HW_ERR_LAST) {
2793		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2794		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2795		return;
2796	}
2797
2798	edev->last_err_type = err_type;
2799	qede_set_hw_err_flags(edev, err_type);
2800	qede_atomic_hw_err_handler(edev);
2801	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2802	schedule_delayed_work(&edev->sp_task, 0);
2803
2804	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2805}
2806
2807static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
 
2808{
2809	struct netdev_queue *netdev_txq;
 
 
 
 
 
 
2810
2811	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2812	if (netif_xmit_stopped(netdev_txq))
2813		return true;
2814
2815	return false;
2816}
2817
2818static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2819{
2820	struct qede_dev *edev = dev;
2821	struct netdev_hw_addr *ha;
2822	int i;
 
2823
2824	if (edev->ndev->features & NETIF_F_IP_CSUM)
2825		data->feat_flags |= QED_TLV_IP_CSUM;
2826	if (edev->ndev->features & NETIF_F_TSO)
2827		data->feat_flags |= QED_TLV_LSO;
2828
2829	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2830	eth_zero_addr(data->mac[1]);
2831	eth_zero_addr(data->mac[2]);
2832	/* Copy the first two UC macs */
2833	netif_addr_lock_bh(edev->ndev);
2834	i = 1;
2835	netdev_for_each_uc_addr(ha, edev->ndev) {
2836		ether_addr_copy(data->mac[i++], ha->addr);
2837		if (i == QED_TLV_MAC_COUNT)
2838			break;
2839	}
2840
2841	netif_addr_unlock_bh(edev->ndev);
2842}
2843
2844static void qede_get_eth_tlv_data(void *dev, void *data)
2845{
2846	struct qed_mfw_tlv_eth *etlv = data;
2847	struct qede_dev *edev = dev;
2848	struct qede_fastpath *fp;
2849	int i;
2850
2851	etlv->lso_maxoff_size = 0XFFFF;
2852	etlv->lso_maxoff_size_set = true;
2853	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2854	etlv->lso_minseg_size_set = true;
2855	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2856	etlv->prom_mode_set = true;
2857	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2858	etlv->tx_descr_size_set = true;
2859	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2860	etlv->rx_descr_size_set = true;
2861	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2862	etlv->iov_offload_set = true;
2863
2864	/* Fill information regarding queues; Should be done under the qede
2865	 * lock to guarantee those don't change beneath our feet.
2866	 */
2867	etlv->txqs_empty = true;
2868	etlv->rxqs_empty = true;
2869	etlv->num_txqs_full = 0;
2870	etlv->num_rxqs_full = 0;
2871
2872	__qede_lock(edev);
2873	for_each_queue(i) {
2874		fp = &edev->fp_array[i];
2875		if (fp->type & QEDE_FASTPATH_TX) {
2876			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
 
 
2877
2878			if (txq->sw_tx_cons != txq->sw_tx_prod)
2879				etlv->txqs_empty = false;
2880			if (qede_is_txq_full(edev, txq))
2881				etlv->num_txqs_full++;
2882		}
2883		if (fp->type & QEDE_FASTPATH_RX) {
2884			if (qede_has_rx_work(fp->rxq))
2885				etlv->rxqs_empty = false;
2886
2887			/* This one is a bit tricky; Firmware might stop
2888			 * placing packets if ring is not yet full.
2889			 * Give an approximation.
2890			 */
2891			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2892			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2893			    RX_RING_SIZE - 100)
2894				etlv->num_rxqs_full++;
2895		}
2896	}
2897	__qede_unlock(edev);
2898
2899	etlv->txqs_empty_set = true;
2900	etlv->rxqs_empty_set = true;
2901	etlv->num_txqs_full_set = true;
2902	etlv->num_rxqs_full_set = true;
2903}
2904
2905/**
2906 * qede_io_error_detected(): Called when PCI error is detected
2907 *
2908 * @pdev: Pointer to PCI device
2909 * @state: The current pci connection state
2910 *
2911 *Return: pci_ers_result_t.
2912 *
2913 * This function is called after a PCI bus error affecting
2914 * this device has been detected.
2915 */
2916static pci_ers_result_t
2917qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2918{
2919	struct net_device *dev = pci_get_drvdata(pdev);
2920	struct qede_dev *edev = netdev_priv(dev);
2921
2922	if (!edev)
2923		return PCI_ERS_RESULT_NONE;
2924
2925	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2926
2927	__qede_lock(edev);
2928	if (edev->state == QEDE_STATE_RECOVERY) {
2929		DP_NOTICE(edev, "Device already in the recovery state\n");
2930		__qede_unlock(edev);
2931		return PCI_ERS_RESULT_NONE;
2932	}
2933
2934	/* PF handles the recovery of its VFs */
2935	if (IS_VF(edev)) {
2936		DP_VERBOSE(edev, QED_MSG_IOV,
2937			   "VF recovery is handled by its PF\n");
2938		__qede_unlock(edev);
2939		return PCI_ERS_RESULT_RECOVERED;
 
 
 
2940	}
2941
2942	/* Close OS Tx */
2943	netif_tx_disable(edev->ndev);
2944	netif_carrier_off(edev->ndev);
2945
2946	set_bit(QEDE_SP_AER, &edev->sp_flags);
2947	schedule_delayed_work(&edev->sp_task, 0);
2948
2949	__qede_unlock(edev);
2950
2951	return PCI_ERS_RESULT_CAN_RECOVER;
2952}
v4.10.11
 
   1/* QLogic qede NIC Driver
   2* Copyright (c) 2015 QLogic Corporation
   3*
   4* This software is available under the terms of the GNU General Public License
   5* (GPL) Version 2, available from the file COPYING in the main directory of
   6* this source tree.
   7*/
   8
 
   9#include <linux/module.h>
  10#include <linux/pci.h>
  11#include <linux/version.h>
  12#include <linux/device.h>
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/skbuff.h>
  16#include <linux/errno.h>
  17#include <linux/list.h>
  18#include <linux/string.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/interrupt.h>
  21#include <asm/byteorder.h>
  22#include <asm/param.h>
  23#include <linux/io.h>
  24#include <linux/netdev_features.h>
  25#include <linux/udp.h>
  26#include <linux/tcp.h>
  27#include <net/udp_tunnel.h>
  28#include <linux/ip.h>
  29#include <net/ipv6.h>
  30#include <net/tcp.h>
  31#include <linux/if_ether.h>
  32#include <linux/if_vlan.h>
  33#include <linux/pkt_sched.h>
  34#include <linux/ethtool.h>
  35#include <linux/in.h>
  36#include <linux/random.h>
  37#include <net/ip6_checksum.h>
  38#include <linux/bitops.h>
  39#include <linux/qed/qede_roce.h>
  40#include "qede.h"
  41
  42static char version[] =
  43	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
  44
  45MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
  46MODULE_LICENSE("GPL");
  47MODULE_VERSION(DRV_MODULE_VERSION);
  48
  49static uint debug;
  50module_param(debug, uint, 0);
  51MODULE_PARM_DESC(debug, " Default debug msglevel");
  52
  53static const struct qed_eth_ops *qed_ops;
  54
  55#define CHIP_NUM_57980S_40		0x1634
  56#define CHIP_NUM_57980S_10		0x1666
  57#define CHIP_NUM_57980S_MF		0x1636
  58#define CHIP_NUM_57980S_100		0x1644
  59#define CHIP_NUM_57980S_50		0x1654
  60#define CHIP_NUM_57980S_25		0x1656
  61#define CHIP_NUM_57980S_IOV		0x1664
 
 
  62
  63#ifndef PCI_DEVICE_ID_NX2_57980E
  64#define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
  65#define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
  66#define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
  67#define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
  68#define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
  69#define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
  70#define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
 
 
 
  71#endif
  72
  73enum qede_pci_private {
  74	QEDE_PRIVATE_PF,
  75	QEDE_PRIVATE_VF
  76};
  77
  78static const struct pci_device_id qede_pci_tbl[] = {
  79	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
  80	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
  81	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
  82	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
  83	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
  84	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
  85#ifdef CONFIG_QED_SRIOV
  86	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
  87#endif
 
 
 
 
  88	{ 0 }
  89};
  90
  91MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
  92
  93static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
 
 
  94
  95#define TX_TIMEOUT		(5 * HZ)
  96
  97/* Utilize last protocol index for XDP */
  98#define XDP_PI	11
  99
 100static void qede_remove(struct pci_dev *pdev);
 101static void qede_shutdown(struct pci_dev *pdev);
 102static void qede_link_update(void *dev, struct qed_link_output *link);
 103
 104/* The qede lock is used to protect driver state change and driver flows that
 105 * are not reentrant.
 106 */
 107void __qede_lock(struct qede_dev *edev)
 108{
 109	mutex_lock(&edev->qede_lock);
 110}
 111
 112void __qede_unlock(struct qede_dev *edev)
 113{
 114	mutex_unlock(&edev->qede_lock);
 115}
 116
 117#ifdef CONFIG_QED_SRIOV
 118static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
 119			    __be16 vlan_proto)
 120{
 121	struct qede_dev *edev = netdev_priv(ndev);
 122
 123	if (vlan > 4095) {
 124		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
 125		return -EINVAL;
 126	}
 127
 128	if (vlan_proto != htons(ETH_P_8021Q))
 129		return -EPROTONOSUPPORT;
 130
 131	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
 132		   vlan, vf);
 133
 134	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
 135}
 136
 137static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
 138{
 139	struct qede_dev *edev = netdev_priv(ndev);
 140
 141	DP_VERBOSE(edev, QED_MSG_IOV,
 142		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
 143		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
 144
 145	if (!is_valid_ether_addr(mac)) {
 146		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
 147		return -EINVAL;
 148	}
 149
 150	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
 151}
 152
 153static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
 154{
 155	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
 156	struct qed_dev_info *qed_info = &edev->dev_info.common;
 
 157	int rc;
 158
 
 
 
 159	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
 160
 161	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
 162
 163	/* Enable/Disable Tx switching for PF */
 164	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
 165	    qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
 166		struct qed_update_vport_params params;
 167
 168		memset(&params, 0, sizeof(params));
 169		params.vport_id = 0;
 170		params.update_tx_switching_flg = 1;
 171		params.tx_switching_flg = num_vfs_param ? 1 : 0;
 172		edev->ops->vport_update(edev->cdev, &params);
 173	}
 174
 
 175	return rc;
 176}
 177#endif
 178
 
 
 
 
 
 
 
 
 
 
 
 
 
 179static struct pci_driver qede_pci_driver = {
 180	.name = "qede",
 181	.id_table = qede_pci_tbl,
 182	.probe = qede_probe,
 183	.remove = qede_remove,
 184	.shutdown = qede_shutdown,
 185#ifdef CONFIG_QED_SRIOV
 186	.sriov_configure = qede_sriov_configure,
 187#endif
 
 
 188};
 189
 190static void qede_force_mac(void *dev, u8 *mac, bool forced)
 191{
 192	struct qede_dev *edev = dev;
 193
 194	/* MAC hints take effect only if we haven't set one already */
 195	if (is_valid_ether_addr(edev->ndev->dev_addr) && !forced)
 196		return;
 197
 198	ether_addr_copy(edev->ndev->dev_addr, mac);
 199	ether_addr_copy(edev->primary_mac, mac);
 200}
 201
 202static struct qed_eth_cb_ops qede_ll_ops = {
 203	{
 
 
 
 204		.link_update = qede_link_update,
 
 
 
 
 205	},
 206	.force_mac = qede_force_mac,
 
 207};
 208
 209static int qede_netdev_event(struct notifier_block *this, unsigned long event,
 210			     void *ptr)
 211{
 212	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
 213	struct ethtool_drvinfo drvinfo;
 214	struct qede_dev *edev;
 215
 216	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
 217		goto done;
 218
 219	/* Check whether this is a qede device */
 220	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
 221		goto done;
 222
 223	memset(&drvinfo, 0, sizeof(drvinfo));
 224	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
 225	if (strcmp(drvinfo.driver, "qede"))
 226		goto done;
 227	edev = netdev_priv(ndev);
 228
 229	switch (event) {
 230	case NETDEV_CHANGENAME:
 231		/* Notify qed of the name change */
 232		if (!edev->ops || !edev->ops->common)
 233			goto done;
 234		edev->ops->common->set_id(edev->cdev, edev->ndev->name, "qede");
 235		break;
 236	case NETDEV_CHANGEADDR:
 237		edev = netdev_priv(ndev);
 238		qede_roce_event_changeaddr(edev);
 239		break;
 240	}
 241
 242done:
 243	return NOTIFY_DONE;
 244}
 245
 246static struct notifier_block qede_netdev_notifier = {
 247	.notifier_call = qede_netdev_event,
 248};
 249
 250static
 251int __init qede_init(void)
 252{
 253	int ret;
 254
 255	pr_info("qede_init: %s\n", version);
 
 
 256
 257	qed_ops = qed_get_eth_ops();
 258	if (!qed_ops) {
 259		pr_notice("Failed to get qed ethtool operations\n");
 260		return -EINVAL;
 261	}
 262
 263	/* Must register notifier before pci ops, since we might miss
 264	 * interface rename after pci probe and netdev registeration.
 265	 */
 266	ret = register_netdevice_notifier(&qede_netdev_notifier);
 267	if (ret) {
 268		pr_notice("Failed to register netdevice_notifier\n");
 269		qed_put_eth_ops();
 270		return -EINVAL;
 271	}
 272
 273	ret = pci_register_driver(&qede_pci_driver);
 274	if (ret) {
 275		pr_notice("Failed to register driver\n");
 276		unregister_netdevice_notifier(&qede_netdev_notifier);
 277		qed_put_eth_ops();
 278		return -EINVAL;
 279	}
 280
 281	return 0;
 282}
 283
 284static void __exit qede_cleanup(void)
 285{
 286	if (debug & QED_LOG_INFO_MASK)
 287		pr_info("qede_cleanup called\n");
 288
 289	unregister_netdevice_notifier(&qede_netdev_notifier);
 290	pci_unregister_driver(&qede_pci_driver);
 291	qed_put_eth_ops();
 292}
 293
 294module_init(qede_init);
 295module_exit(qede_cleanup);
 296
 297/* -------------------------------------------------------------------------
 298 * START OF FAST-PATH
 299 * -------------------------------------------------------------------------
 300 */
 301
 302/* Unmap the data and free skb */
 303static int qede_free_tx_pkt(struct qede_dev *edev,
 304			    struct qede_tx_queue *txq, int *len)
 305{
 306	u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
 307	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
 308	struct eth_tx_1st_bd *first_bd;
 309	struct eth_tx_bd *tx_data_bd;
 310	int bds_consumed = 0;
 311	int nbds;
 312	bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
 313	int i, split_bd_len = 0;
 314
 315	if (unlikely(!skb)) {
 316		DP_ERR(edev,
 317		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
 318		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
 319		return -1;
 320	}
 321
 322	*len = skb->len;
 323
 324	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
 325
 326	bds_consumed++;
 327
 328	nbds = first_bd->data.nbds;
 329
 330	if (data_split) {
 331		struct eth_tx_bd *split = (struct eth_tx_bd *)
 332			qed_chain_consume(&txq->tx_pbl);
 333		split_bd_len = BD_UNMAP_LEN(split);
 334		bds_consumed++;
 335	}
 336	dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
 337			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 338
 339	/* Unmap the data of the skb frags */
 340	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
 341		tx_data_bd = (struct eth_tx_bd *)
 342			qed_chain_consume(&txq->tx_pbl);
 343		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
 344			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 345	}
 346
 347	while (bds_consumed++ < nbds)
 348		qed_chain_consume(&txq->tx_pbl);
 349
 350	/* Free skb */
 351	dev_kfree_skb_any(skb);
 352	txq->sw_tx_ring.skbs[idx].skb = NULL;
 353	txq->sw_tx_ring.skbs[idx].flags = 0;
 354
 355	return 0;
 356}
 357
 358/* Unmap the data and free skb when mapping failed during start_xmit */
 359static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
 360				    struct eth_tx_1st_bd *first_bd,
 361				    int nbd, bool data_split)
 362{
 363	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
 364	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
 365	struct eth_tx_bd *tx_data_bd;
 366	int i, split_bd_len = 0;
 367
 368	/* Return prod to its position before this skb was handled */
 369	qed_chain_set_prod(&txq->tx_pbl,
 370			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
 371
 372	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
 373
 374	if (data_split) {
 375		struct eth_tx_bd *split = (struct eth_tx_bd *)
 376					  qed_chain_produce(&txq->tx_pbl);
 377		split_bd_len = BD_UNMAP_LEN(split);
 378		nbd--;
 379	}
 380
 381	dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
 382			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 383
 384	/* Unmap the data of the skb frags */
 385	for (i = 0; i < nbd; i++) {
 386		tx_data_bd = (struct eth_tx_bd *)
 387			qed_chain_produce(&txq->tx_pbl);
 388		if (tx_data_bd->nbytes)
 389			dma_unmap_page(txq->dev,
 390				       BD_UNMAP_ADDR(tx_data_bd),
 391				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 392	}
 393
 394	/* Return again prod to its position before this skb was handled */
 395	qed_chain_set_prod(&txq->tx_pbl,
 396			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
 397
 398	/* Free skb */
 399	dev_kfree_skb_any(skb);
 400	txq->sw_tx_ring.skbs[idx].skb = NULL;
 401	txq->sw_tx_ring.skbs[idx].flags = 0;
 402}
 403
 404static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
 405{
 406	u32 rc = XMIT_L4_CSUM;
 407	__be16 l3_proto;
 408
 409	if (skb->ip_summed != CHECKSUM_PARTIAL)
 410		return XMIT_PLAIN;
 411
 412	l3_proto = vlan_get_protocol(skb);
 413	if (l3_proto == htons(ETH_P_IPV6) &&
 414	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
 415		*ipv6_ext = 1;
 416
 417	if (skb->encapsulation) {
 418		rc |= XMIT_ENC;
 419		if (skb_is_gso(skb)) {
 420			unsigned short gso_type = skb_shinfo(skb)->gso_type;
 421
 422			if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
 423			    (gso_type & SKB_GSO_GRE_CSUM))
 424				rc |= XMIT_ENC_GSO_L4_CSUM;
 425
 426			rc |= XMIT_LSO;
 427			return rc;
 428		}
 429	}
 430
 431	if (skb_is_gso(skb))
 432		rc |= XMIT_LSO;
 433
 434	return rc;
 435}
 436
 437static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
 438					 struct eth_tx_2nd_bd *second_bd,
 439					 struct eth_tx_3rd_bd *third_bd)
 440{
 441	u8 l4_proto;
 442	u16 bd2_bits1 = 0, bd2_bits2 = 0;
 443
 444	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
 445
 446	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
 447		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
 448		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
 449
 450	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
 451		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
 452
 453	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
 454		l4_proto = ipv6_hdr(skb)->nexthdr;
 455	else
 456		l4_proto = ip_hdr(skb)->protocol;
 457
 458	if (l4_proto == IPPROTO_UDP)
 459		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
 460
 461	if (third_bd)
 462		third_bd->data.bitfields |=
 463			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
 464				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
 465				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
 466
 467	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
 468	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
 469}
 470
 471static int map_frag_to_bd(struct qede_tx_queue *txq,
 472			  skb_frag_t *frag, struct eth_tx_bd *bd)
 473{
 474	dma_addr_t mapping;
 475
 476	/* Map skb non-linear frag data for DMA */
 477	mapping = skb_frag_dma_map(txq->dev, frag, 0,
 478				   skb_frag_size(frag), DMA_TO_DEVICE);
 479	if (unlikely(dma_mapping_error(txq->dev, mapping)))
 480		return -ENOMEM;
 481
 482	/* Setup the data pointer of the frag data */
 483	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
 484
 485	return 0;
 486}
 487
 488static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
 489{
 490	if (is_encap_pkt)
 491		return (skb_inner_transport_header(skb) +
 492			inner_tcp_hdrlen(skb) - skb->data);
 493	else
 494		return (skb_transport_header(skb) +
 495			tcp_hdrlen(skb) - skb->data);
 496}
 497
 498/* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
 499#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
 500static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
 501{
 502	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
 503
 504	if (xmit_type & XMIT_LSO) {
 505		int hlen;
 506
 507		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
 508
 509		/* linear payload would require its own BD */
 510		if (skb_headlen(skb) > hlen)
 511			allowed_frags--;
 512	}
 513
 514	return (skb_shinfo(skb)->nr_frags > allowed_frags);
 515}
 516#endif
 517
 518static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
 519{
 520	/* wmb makes sure that the BDs data is updated before updating the
 521	 * producer, otherwise FW may read old data from the BDs.
 522	 */
 523	wmb();
 524	barrier();
 525	writel(txq->tx_db.raw, txq->doorbell_addr);
 526
 527	/* mmiowb is needed to synchronize doorbell writes from more than one
 528	 * processor. It guarantees that the write arrives to the device before
 529	 * the queue lock is released and another start_xmit is called (possibly
 530	 * on another CPU). Without this barrier, the next doorbell can bypass
 531	 * this doorbell. This is applicable to IA64/Altix systems.
 532	 */
 533	mmiowb();
 534}
 535
 536static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
 537			 struct sw_rx_data *metadata, u16 padding, u16 length)
 538{
 539	struct qede_tx_queue *txq = fp->xdp_tx;
 540	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
 541	struct eth_tx_1st_bd *first_bd;
 542
 543	if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
 544		txq->stopped_cnt++;
 545		return -ENOMEM;
 546	}
 547
 548	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
 549
 550	memset(first_bd, 0, sizeof(*first_bd));
 551	first_bd->data.bd_flags.bitfields =
 552	    BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
 553	first_bd->data.bitfields |=
 554	    (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
 555	    ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
 556	first_bd->data.nbds = 1;
 557
 558	/* We can safely ignore the offset, as it's 0 for XDP */
 559	BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
 560
 561	/* Synchronize the buffer back to device, as program [probably]
 562	 * has changed it.
 563	 */
 564	dma_sync_single_for_device(&edev->pdev->dev,
 565				   metadata->mapping + padding,
 566				   length, PCI_DMA_TODEVICE);
 567
 568	txq->sw_tx_ring.pages[idx] = metadata->data;
 569	txq->sw_tx_prod++;
 570
 571	/* Mark the fastpath for future XDP doorbell */
 572	fp->xdp_xmit = 1;
 573
 574	return 0;
 575}
 576
 577/* Main transmit function */
 578static netdev_tx_t qede_start_xmit(struct sk_buff *skb,
 579				   struct net_device *ndev)
 580{
 581	struct qede_dev *edev = netdev_priv(ndev);
 582	struct netdev_queue *netdev_txq;
 583	struct qede_tx_queue *txq;
 584	struct eth_tx_1st_bd *first_bd;
 585	struct eth_tx_2nd_bd *second_bd = NULL;
 586	struct eth_tx_3rd_bd *third_bd = NULL;
 587	struct eth_tx_bd *tx_data_bd = NULL;
 588	u16 txq_index;
 589	u8 nbd = 0;
 590	dma_addr_t mapping;
 591	int rc, frag_idx = 0, ipv6_ext = 0;
 592	u8 xmit_type;
 593	u16 idx;
 594	u16 hlen;
 595	bool data_split = false;
 596
 597	/* Get tx-queue context and netdev index */
 598	txq_index = skb_get_queue_mapping(skb);
 599	WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
 600	txq = edev->fp_array[edev->fp_num_rx + txq_index].txq;
 601	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
 602
 603	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
 604
 605	xmit_type = qede_xmit_type(skb, &ipv6_ext);
 606
 607#if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
 608	if (qede_pkt_req_lin(skb, xmit_type)) {
 609		if (skb_linearize(skb)) {
 610			DP_NOTICE(edev,
 611				  "SKB linearization failed - silently dropping this SKB\n");
 612			dev_kfree_skb_any(skb);
 613			return NETDEV_TX_OK;
 614		}
 615	}
 616#endif
 617
 618	/* Fill the entry in the SW ring and the BDs in the FW ring */
 619	idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
 620	txq->sw_tx_ring.skbs[idx].skb = skb;
 621	first_bd = (struct eth_tx_1st_bd *)
 622		   qed_chain_produce(&txq->tx_pbl);
 623	memset(first_bd, 0, sizeof(*first_bd));
 624	first_bd->data.bd_flags.bitfields =
 625		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
 626
 627	/* Map skb linear data for DMA and set in the first BD */
 628	mapping = dma_map_single(txq->dev, skb->data,
 629				 skb_headlen(skb), DMA_TO_DEVICE);
 630	if (unlikely(dma_mapping_error(txq->dev, mapping))) {
 631		DP_NOTICE(edev, "SKB mapping failed\n");
 632		qede_free_failed_tx_pkt(txq, first_bd, 0, false);
 633		qede_update_tx_producer(txq);
 634		return NETDEV_TX_OK;
 635	}
 636	nbd++;
 637	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
 638
 639	/* In case there is IPv6 with extension headers or LSO we need 2nd and
 640	 * 3rd BDs.
 641	 */
 642	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
 643		second_bd = (struct eth_tx_2nd_bd *)
 644			qed_chain_produce(&txq->tx_pbl);
 645		memset(second_bd, 0, sizeof(*second_bd));
 646
 647		nbd++;
 648		third_bd = (struct eth_tx_3rd_bd *)
 649			qed_chain_produce(&txq->tx_pbl);
 650		memset(third_bd, 0, sizeof(*third_bd));
 651
 652		nbd++;
 653		/* We need to fill in additional data in second_bd... */
 654		tx_data_bd = (struct eth_tx_bd *)second_bd;
 655	}
 656
 657	if (skb_vlan_tag_present(skb)) {
 658		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 659		first_bd->data.bd_flags.bitfields |=
 660			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
 661	}
 662
 663	/* Fill the parsing flags & params according to the requested offload */
 664	if (xmit_type & XMIT_L4_CSUM) {
 665		/* We don't re-calculate IP checksum as it is already done by
 666		 * the upper stack
 667		 */
 668		first_bd->data.bd_flags.bitfields |=
 669			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
 670
 671		if (xmit_type & XMIT_ENC) {
 672			first_bd->data.bd_flags.bitfields |=
 673				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
 674			first_bd->data.bitfields |=
 675			    1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
 676		}
 677
 678		/* Legacy FW had flipped behavior in regard to this bit -
 679		 * I.e., needed to set to prevent FW from touching encapsulated
 680		 * packets when it didn't need to.
 681		 */
 682		if (unlikely(txq->is_legacy))
 683			first_bd->data.bitfields ^=
 684			    1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
 685
 686		/* If the packet is IPv6 with extension header, indicate that
 687		 * to FW and pass few params, since the device cracker doesn't
 688		 * support parsing IPv6 with extension header/s.
 689		 */
 690		if (unlikely(ipv6_ext))
 691			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
 692	}
 693
 694	if (xmit_type & XMIT_LSO) {
 695		first_bd->data.bd_flags.bitfields |=
 696			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
 697		third_bd->data.lso_mss =
 698			cpu_to_le16(skb_shinfo(skb)->gso_size);
 699
 700		if (unlikely(xmit_type & XMIT_ENC)) {
 701			first_bd->data.bd_flags.bitfields |=
 702				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
 703
 704			if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
 705				u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
 706
 707				first_bd->data.bd_flags.bitfields |= 1 << tmp;
 708			}
 709			hlen = qede_get_skb_hlen(skb, true);
 710		} else {
 711			first_bd->data.bd_flags.bitfields |=
 712				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
 713			hlen = qede_get_skb_hlen(skb, false);
 714		}
 715
 716		/* @@@TBD - if will not be removed need to check */
 717		third_bd->data.bitfields |=
 718			cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
 719
 720		/* Make life easier for FW guys who can't deal with header and
 721		 * data on same BD. If we need to split, use the second bd...
 722		 */
 723		if (unlikely(skb_headlen(skb) > hlen)) {
 724			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 725				   "TSO split header size is %d (%x:%x)\n",
 726				   first_bd->nbytes, first_bd->addr.hi,
 727				   first_bd->addr.lo);
 728
 729			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
 730					   le32_to_cpu(first_bd->addr.lo)) +
 731					   hlen;
 732
 733			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
 734					      le16_to_cpu(first_bd->nbytes) -
 735					      hlen);
 736
 737			/* this marks the BD as one that has no
 738			 * individual mapping
 739			 */
 740			txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
 741
 742			first_bd->nbytes = cpu_to_le16(hlen);
 743
 744			tx_data_bd = (struct eth_tx_bd *)third_bd;
 745			data_split = true;
 746		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747	} else {
 748		first_bd->data.bitfields |=
 749		    (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
 750		    ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
 751	}
 752
 753	/* Handle fragmented skb */
 754	/* special handle for frags inside 2nd and 3rd bds.. */
 755	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
 756		rc = map_frag_to_bd(txq,
 757				    &skb_shinfo(skb)->frags[frag_idx],
 758				    tx_data_bd);
 759		if (rc) {
 760			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
 761			qede_update_tx_producer(txq);
 762			return NETDEV_TX_OK;
 763		}
 764
 765		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
 766			tx_data_bd = (struct eth_tx_bd *)third_bd;
 767		else
 768			tx_data_bd = NULL;
 769
 770		frag_idx++;
 771	}
 772
 773	/* map last frags into 4th, 5th .... */
 774	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
 775		tx_data_bd = (struct eth_tx_bd *)
 776			     qed_chain_produce(&txq->tx_pbl);
 777
 778		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
 779
 780		rc = map_frag_to_bd(txq,
 781				    &skb_shinfo(skb)->frags[frag_idx],
 782				    tx_data_bd);
 783		if (rc) {
 784			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
 785			qede_update_tx_producer(txq);
 786			return NETDEV_TX_OK;
 787		}
 788	}
 789
 790	/* update the first BD with the actual num BDs */
 791	first_bd->data.nbds = nbd;
 792
 793	netdev_tx_sent_queue(netdev_txq, skb->len);
 794
 795	skb_tx_timestamp(skb);
 796
 797	/* Advance packet producer only before sending the packet since mapping
 798	 * of pages may fail.
 799	 */
 800	txq->sw_tx_prod++;
 801
 802	/* 'next page' entries are counted in the producer value */
 803	txq->tx_db.data.bd_prod =
 804		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
 805
 806	if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
 807		qede_update_tx_producer(txq);
 808
 809	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
 810		      < (MAX_SKB_FRAGS + 1))) {
 811		if (skb->xmit_more)
 812			qede_update_tx_producer(txq);
 813
 814		netif_tx_stop_queue(netdev_txq);
 815		txq->stopped_cnt++;
 816		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 817			   "Stop queue was called\n");
 818		/* paired memory barrier is in qede_tx_int(), we have to keep
 819		 * ordering of set_bit() in netif_tx_stop_queue() and read of
 820		 * fp->bd_tx_cons
 821		 */
 822		smp_mb();
 823
 824		if (qed_chain_get_elem_left(&txq->tx_pbl)
 825		     >= (MAX_SKB_FRAGS + 1) &&
 826		    (edev->state == QEDE_STATE_OPEN)) {
 827			netif_tx_wake_queue(netdev_txq);
 828			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
 829				   "Wake queue was called\n");
 830		}
 831	}
 832
 833	return NETDEV_TX_OK;
 834}
 835
 836int qede_txq_has_work(struct qede_tx_queue *txq)
 
 837{
 838	u16 hw_bd_cons;
 839
 840	/* Tell compiler that consumer and producer can change */
 841	barrier();
 842	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 843	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
 844		return 0;
 845
 846	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
 847}
 848
 849static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
 850{
 851	struct eth_tx_1st_bd *bd;
 852	u16 hw_bd_cons;
 853
 854	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 855	barrier();
 856
 857	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
 858		bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
 859
 860		dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(bd),
 861				 PAGE_SIZE, DMA_BIDIRECTIONAL);
 862		__free_page(txq->sw_tx_ring.pages[txq->sw_tx_cons &
 863						  NUM_TX_BDS_MAX]);
 864
 865		txq->sw_tx_cons++;
 866		txq->xmit_pkts++;
 867	}
 868}
 869
 870static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
 871{
 872	struct netdev_queue *netdev_txq;
 873	u16 hw_bd_cons;
 874	unsigned int pkts_compl = 0, bytes_compl = 0;
 875	int rc;
 876
 877	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
 878
 879	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 880	barrier();
 881
 882	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
 883		int len = 0;
 884
 885		rc = qede_free_tx_pkt(edev, txq, &len);
 886		if (rc) {
 887			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
 888				  hw_bd_cons,
 889				  qed_chain_get_cons_idx(&txq->tx_pbl));
 890			break;
 891		}
 892
 893		bytes_compl += len;
 894		pkts_compl++;
 895		txq->sw_tx_cons++;
 896		txq->xmit_pkts++;
 897	}
 898
 899	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
 900
 901	/* Need to make the tx_bd_cons update visible to start_xmit()
 902	 * before checking for netif_tx_queue_stopped().  Without the
 903	 * memory barrier, there is a small possibility that
 904	 * start_xmit() will miss it and cause the queue to be stopped
 905	 * forever.
 906	 * On the other hand we need an rmb() here to ensure the proper
 907	 * ordering of bit testing in the following
 908	 * netif_tx_queue_stopped(txq) call.
 909	 */
 910	smp_mb();
 911
 912	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
 913		/* Taking tx_lock is needed to prevent reenabling the queue
 914		 * while it's empty. This could have happen if rx_action() gets
 915		 * suspended in qede_tx_int() after the condition before
 916		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
 917		 *
 918		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
 919		 * sends some packets consuming the whole queue again->
 920		 * stops the queue
 921		 */
 922
 923		__netif_tx_lock(netdev_txq, smp_processor_id());
 924
 925		if ((netif_tx_queue_stopped(netdev_txq)) &&
 926		    (edev->state == QEDE_STATE_OPEN) &&
 927		    (qed_chain_get_elem_left(&txq->tx_pbl)
 928		      >= (MAX_SKB_FRAGS + 1))) {
 929			netif_tx_wake_queue(netdev_txq);
 930			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
 931				   "Wake queue was called\n");
 932		}
 933
 934		__netif_tx_unlock(netdev_txq);
 935	}
 936
 937	return 0;
 938}
 939
 940bool qede_has_rx_work(struct qede_rx_queue *rxq)
 941{
 942	u16 hw_comp_cons, sw_comp_cons;
 943
 944	/* Tell compiler that status block fields can change */
 945	barrier();
 946
 947	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
 948	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
 949
 950	return hw_comp_cons != sw_comp_cons;
 951}
 952
 953static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
 954{
 955	qed_chain_consume(&rxq->rx_bd_ring);
 956	rxq->sw_rx_cons++;
 957}
 958
 959/* This function reuses the buffer(from an offset) from
 960 * consumer index to producer index in the bd ring
 961 */
 962static inline void qede_reuse_page(struct qede_rx_queue *rxq,
 963				   struct sw_rx_data *curr_cons)
 964{
 965	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
 966	struct sw_rx_data *curr_prod;
 967	dma_addr_t new_mapping;
 968
 969	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
 970	*curr_prod = *curr_cons;
 971
 972	new_mapping = curr_prod->mapping + curr_prod->page_offset;
 973
 974	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
 975	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
 976
 977	rxq->sw_rx_prod++;
 978	curr_cons->data = NULL;
 979}
 980
 981/* In case of allocation failures reuse buffers
 982 * from consumer index to produce buffers for firmware
 983 */
 984void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
 985{
 986	struct sw_rx_data *curr_cons;
 987
 988	for (; count > 0; count--) {
 989		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 990		qede_reuse_page(rxq, curr_cons);
 991		qede_rx_bd_ring_consume(rxq);
 992	}
 993}
 994
 995static int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
 996{
 997	struct sw_rx_data *sw_rx_data;
 998	struct eth_rx_bd *rx_bd;
 999	dma_addr_t mapping;
1000	struct page *data;
1001
1002	data = alloc_pages(GFP_ATOMIC, 0);
1003	if (unlikely(!data))
1004		return -ENOMEM;
1005
1006	/* Map the entire page as it would be used
1007	 * for multiple RX buffer segment size mapping.
1008	 */
1009	mapping = dma_map_page(rxq->dev, data, 0,
1010			       PAGE_SIZE, rxq->data_direction);
1011	if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
1012		__free_page(data);
1013		return -ENOMEM;
1014	}
1015
1016	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1017	sw_rx_data->page_offset = 0;
1018	sw_rx_data->data = data;
1019	sw_rx_data->mapping = mapping;
1020
1021	/* Advance PROD and get BD pointer */
1022	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
1023	WARN_ON(!rx_bd);
1024	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1025	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1026
1027	rxq->sw_rx_prod++;
1028
1029	return 0;
1030}
1031
1032static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
1033					 struct sw_rx_data *curr_cons)
1034{
1035	/* Move to the next segment in the page */
1036	curr_cons->page_offset += rxq->rx_buf_seg_size;
1037
1038	if (curr_cons->page_offset == PAGE_SIZE) {
1039		if (unlikely(qede_alloc_rx_buffer(rxq))) {
1040			/* Since we failed to allocate new buffer
1041			 * current buffer can be used again.
1042			 */
1043			curr_cons->page_offset -= rxq->rx_buf_seg_size;
1044
1045			return -ENOMEM;
1046		}
1047
1048		dma_unmap_page(rxq->dev, curr_cons->mapping,
1049			       PAGE_SIZE, rxq->data_direction);
1050	} else {
1051		/* Increment refcount of the page as we don't want
1052		 * network stack to take the ownership of the page
1053		 * which can be recycled multiple times by the driver.
1054		 */
1055		page_ref_inc(curr_cons->data);
1056		qede_reuse_page(rxq, curr_cons);
1057	}
1058
1059	return 0;
1060}
1061
1062void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
1063{
1064	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
1065	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
1066	struct eth_rx_prod_data rx_prods = {0};
1067
1068	/* Update producers */
1069	rx_prods.bd_prod = cpu_to_le16(bd_prod);
1070	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
1071
1072	/* Make sure that the BD and SGE data is updated before updating the
1073	 * producers since FW might read the BD/SGE right after the producer
1074	 * is updated.
1075	 */
1076	wmb();
1077
1078	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
1079			(u32 *)&rx_prods);
1080
1081	/* mmiowb is needed to synchronize doorbell writes from more than one
1082	 * processor. It guarantees that the write arrives to the device before
1083	 * the napi lock is released and another qede_poll is called (possibly
1084	 * on another CPU). Without this barrier, the next doorbell can bypass
1085	 * this doorbell. This is applicable to IA64/Altix systems.
1086	 */
1087	mmiowb();
1088}
1089
1090static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
1091{
1092	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
1093	enum rss_hash_type htype;
1094	u32 hash = 0;
1095
1096	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
1097	if (htype) {
1098		hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
1099			     (htype == RSS_HASH_TYPE_IPV6)) ?
1100			    PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
1101		hash = le32_to_cpu(rss_hash);
1102	}
1103	skb_set_hash(skb, hash, hash_type);
1104}
1105
1106static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
1107{
1108	skb_checksum_none_assert(skb);
1109
1110	if (csum_flag & QEDE_CSUM_UNNECESSARY)
1111		skb->ip_summed = CHECKSUM_UNNECESSARY;
1112
1113	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
1114		skb->csum_level = 1;
1115}
1116
1117static inline void qede_skb_receive(struct qede_dev *edev,
1118				    struct qede_fastpath *fp,
1119				    struct qede_rx_queue *rxq,
1120				    struct sk_buff *skb, u16 vlan_tag)
1121{
1122	if (vlan_tag)
1123		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1124
1125	napi_gro_receive(&fp->napi, skb);
1126	fp->rxq->rcv_pkts++;
1127}
1128
1129static void qede_set_gro_params(struct qede_dev *edev,
1130				struct sk_buff *skb,
1131				struct eth_fast_path_rx_tpa_start_cqe *cqe)
1132{
1133	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1134
1135	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1136	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1137		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1138	else
1139		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1140
1141	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1142					cqe->header_len;
1143}
1144
1145static int qede_fill_frag_skb(struct qede_dev *edev,
1146			      struct qede_rx_queue *rxq,
1147			      u8 tpa_agg_index, u16 len_on_bd)
1148{
1149	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1150							 NUM_RX_BDS_MAX];
1151	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1152	struct sk_buff *skb = tpa_info->skb;
1153
1154	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
1155		goto out;
1156
1157	/* Add one frag and update the appropriate fields in the skb */
1158	skb_fill_page_desc(skb, tpa_info->frag_id++,
1159			   current_bd->data, current_bd->page_offset,
1160			   len_on_bd);
1161
1162	if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
1163		/* Incr page ref count to reuse on allocation failure
1164		 * so that it doesn't get freed while freeing SKB.
1165		 */
1166		page_ref_inc(current_bd->data);
1167		goto out;
1168	}
1169
1170	qed_chain_consume(&rxq->rx_bd_ring);
1171	rxq->sw_rx_cons++;
1172
1173	skb->data_len += len_on_bd;
1174	skb->truesize += rxq->rx_buf_seg_size;
1175	skb->len += len_on_bd;
1176
1177	return 0;
1178
1179out:
1180	tpa_info->state = QEDE_AGG_STATE_ERROR;
1181	qede_recycle_rx_bd_ring(rxq, 1);
1182
1183	return -ENOMEM;
1184}
1185
1186static void qede_tpa_start(struct qede_dev *edev,
1187			   struct qede_rx_queue *rxq,
1188			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
1189{
1190	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1191	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1192	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1193	struct sw_rx_data *replace_buf = &tpa_info->buffer;
1194	dma_addr_t mapping = tpa_info->buffer_mapping;
1195	struct sw_rx_data *sw_rx_data_cons;
1196	struct sw_rx_data *sw_rx_data_prod;
1197
1198	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1199	sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1200
1201	/* Use pre-allocated replacement buffer - we can't release the agg.
1202	 * start until its over and we don't want to risk allocation failing
1203	 * here, so re-allocate when aggregation will be over.
1204	 */
1205	sw_rx_data_prod->mapping = replace_buf->mapping;
1206
1207	sw_rx_data_prod->data = replace_buf->data;
1208	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1209	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1210	sw_rx_data_prod->page_offset = replace_buf->page_offset;
1211
1212	rxq->sw_rx_prod++;
1213
1214	/* move partial skb from cons to pool (don't unmap yet)
1215	 * save mapping, incase we drop the packet later on.
1216	 */
1217	tpa_info->buffer = *sw_rx_data_cons;
1218	mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1219			   le32_to_cpu(rx_bd_cons->addr.lo));
1220
1221	tpa_info->buffer_mapping = mapping;
1222	rxq->sw_rx_cons++;
1223
1224	/* set tpa state to start only if we are able to allocate skb
1225	 * for this aggregation, otherwise mark as error and aggregation will
1226	 * be dropped
1227	 */
1228	tpa_info->skb = netdev_alloc_skb(edev->ndev,
1229					 le16_to_cpu(cqe->len_on_first_bd));
1230	if (unlikely(!tpa_info->skb)) {
1231		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1232		tpa_info->state = QEDE_AGG_STATE_ERROR;
1233		goto cons_buf;
1234	}
1235
1236	/* Start filling in the aggregation info */
1237	skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1238	tpa_info->frag_id = 0;
1239	tpa_info->state = QEDE_AGG_STATE_START;
1240
1241	/* Store some information from first CQE */
1242	tpa_info->start_cqe_placement_offset = cqe->placement_offset;
1243	tpa_info->start_cqe_bd_len = le16_to_cpu(cqe->len_on_first_bd);
1244	if ((le16_to_cpu(cqe->pars_flags.flags) >>
1245	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1246	    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1247		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1248	else
1249		tpa_info->vlan_tag = 0;
1250
1251	qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
1252
1253	/* This is needed in order to enable forwarding support */
1254	qede_set_gro_params(edev, tpa_info->skb, cqe);
1255
1256cons_buf: /* We still need to handle bd_len_list to consume buffers */
1257	if (likely(cqe->ext_bd_len_list[0]))
1258		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1259				   le16_to_cpu(cqe->ext_bd_len_list[0]));
1260
1261	if (unlikely(cqe->ext_bd_len_list[1])) {
1262		DP_ERR(edev,
1263		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1264		tpa_info->state = QEDE_AGG_STATE_ERROR;
1265	}
1266}
1267
1268#ifdef CONFIG_INET
1269static void qede_gro_ip_csum(struct sk_buff *skb)
1270{
1271	const struct iphdr *iph = ip_hdr(skb);
1272	struct tcphdr *th;
1273
1274	skb_set_transport_header(skb, sizeof(struct iphdr));
1275	th = tcp_hdr(skb);
1276
1277	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1278				  iph->saddr, iph->daddr, 0);
1279
1280	tcp_gro_complete(skb);
1281}
1282
1283static void qede_gro_ipv6_csum(struct sk_buff *skb)
1284{
1285	struct ipv6hdr *iph = ipv6_hdr(skb);
1286	struct tcphdr *th;
1287
1288	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1289	th = tcp_hdr(skb);
1290
1291	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1292				  &iph->saddr, &iph->daddr, 0);
1293	tcp_gro_complete(skb);
1294}
1295#endif
1296
1297static void qede_gro_receive(struct qede_dev *edev,
1298			     struct qede_fastpath *fp,
1299			     struct sk_buff *skb,
1300			     u16 vlan_tag)
1301{
1302	/* FW can send a single MTU sized packet from gro flow
1303	 * due to aggregation timeout/last segment etc. which
1304	 * is not expected to be a gro packet. If a skb has zero
1305	 * frags then simply push it in the stack as non gso skb.
1306	 */
1307	if (unlikely(!skb->data_len)) {
1308		skb_shinfo(skb)->gso_type = 0;
1309		skb_shinfo(skb)->gso_size = 0;
1310		goto send_skb;
1311	}
1312
1313#ifdef CONFIG_INET
1314	if (skb_shinfo(skb)->gso_size) {
1315		skb_reset_network_header(skb);
1316
1317		switch (skb->protocol) {
1318		case htons(ETH_P_IP):
1319			qede_gro_ip_csum(skb);
1320			break;
1321		case htons(ETH_P_IPV6):
1322			qede_gro_ipv6_csum(skb);
1323			break;
1324		default:
1325			DP_ERR(edev,
1326			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1327			       ntohs(skb->protocol));
1328		}
1329	}
1330#endif
1331
1332send_skb:
1333	skb_record_rx_queue(skb, fp->rxq->rxq_id);
1334	qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
1335}
1336
1337static inline void qede_tpa_cont(struct qede_dev *edev,
1338				 struct qede_rx_queue *rxq,
1339				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1340{
1341	int i;
1342
1343	for (i = 0; cqe->len_list[i]; i++)
1344		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1345				   le16_to_cpu(cqe->len_list[i]));
1346
1347	if (unlikely(i > 1))
1348		DP_ERR(edev,
1349		       "Strange - TPA cont with more than a single len_list entry\n");
1350}
1351
1352static void qede_tpa_end(struct qede_dev *edev,
1353			 struct qede_fastpath *fp,
1354			 struct eth_fast_path_rx_tpa_end_cqe *cqe)
1355{
1356	struct qede_rx_queue *rxq = fp->rxq;
1357	struct qede_agg_info *tpa_info;
1358	struct sk_buff *skb;
1359	int i;
1360
1361	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1362	skb = tpa_info->skb;
1363
1364	for (i = 0; cqe->len_list[i]; i++)
1365		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1366				   le16_to_cpu(cqe->len_list[i]));
1367	if (unlikely(i > 1))
1368		DP_ERR(edev,
1369		       "Strange - TPA emd with more than a single len_list entry\n");
1370
1371	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
1372		goto err;
1373
1374	/* Sanity */
1375	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1376		DP_ERR(edev,
1377		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1378		       cqe->num_of_bds, tpa_info->frag_id);
1379	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1380		DP_ERR(edev,
1381		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1382		       le16_to_cpu(cqe->total_packet_len), skb->len);
1383
1384	memcpy(skb->data,
1385	       page_address(tpa_info->buffer.data) +
1386	       tpa_info->start_cqe_placement_offset +
1387	       tpa_info->buffer.page_offset, tpa_info->start_cqe_bd_len);
1388
1389	/* Finalize the SKB */
1390	skb->protocol = eth_type_trans(skb, edev->ndev);
1391	skb->ip_summed = CHECKSUM_UNNECESSARY;
1392
1393	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1394	 * to skb_shinfo(skb)->gso_segs
1395	 */
1396	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1397
1398	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1399
1400	tpa_info->state = QEDE_AGG_STATE_NONE;
1401
1402	return;
1403err:
1404	tpa_info->state = QEDE_AGG_STATE_NONE;
1405	dev_kfree_skb_any(tpa_info->skb);
1406	tpa_info->skb = NULL;
1407}
1408
1409static bool qede_tunn_exist(u16 flag)
1410{
1411	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1412			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1413}
1414
1415static u8 qede_check_tunn_csum(u16 flag)
1416{
1417	u16 csum_flag = 0;
1418	u8 tcsum = 0;
1419
1420	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1421		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1422		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1423			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1424
1425	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1426		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1427		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1428			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1429		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1430	}
1431
1432	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1433		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1434		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1435		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1436
1437	if (csum_flag & flag)
1438		return QEDE_CSUM_ERROR;
1439
1440	return QEDE_CSUM_UNNECESSARY | tcsum;
1441}
1442
1443static u8 qede_check_notunn_csum(u16 flag)
1444{
1445	u16 csum_flag = 0;
1446	u8 csum = 0;
1447
1448	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1449		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1450		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1451			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1452		csum = QEDE_CSUM_UNNECESSARY;
1453	}
1454
1455	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1456		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1457
1458	if (csum_flag & flag)
1459		return QEDE_CSUM_ERROR;
1460
1461	return csum;
1462}
1463
1464static u8 qede_check_csum(u16 flag)
1465{
1466	if (!qede_tunn_exist(flag))
1467		return qede_check_notunn_csum(flag);
1468	else
1469		return qede_check_tunn_csum(flag);
1470}
1471
1472static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1473				      u16 flag)
1474{
1475	u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1476
1477	if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1478			     ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1479	    (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1480		     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1481		return true;
1482
1483	return false;
1484}
1485
1486/* Return true iff packet is to be passed to stack */
1487static bool qede_rx_xdp(struct qede_dev *edev,
1488			struct qede_fastpath *fp,
1489			struct qede_rx_queue *rxq,
1490			struct bpf_prog *prog,
1491			struct sw_rx_data *bd,
1492			struct eth_fast_path_rx_reg_cqe *cqe)
1493{
1494	u16 len = le16_to_cpu(cqe->len_on_first_bd);
1495	struct xdp_buff xdp;
1496	enum xdp_action act;
1497
1498	xdp.data = page_address(bd->data) + cqe->placement_offset;
1499	xdp.data_end = xdp.data + len;
1500
1501	/* Queues always have a full reset currently, so for the time
1502	 * being until there's atomic program replace just mark read
1503	 * side for map helpers.
1504	 */
1505	rcu_read_lock();
1506	act = bpf_prog_run_xdp(prog, &xdp);
1507	rcu_read_unlock();
1508
1509	if (act == XDP_PASS)
1510		return true;
1511
1512	/* Count number of packets not to be passed to stack */
1513	rxq->xdp_no_pass++;
1514
1515	switch (act) {
1516	case XDP_TX:
1517		/* We need the replacement buffer before transmit. */
1518		if (qede_alloc_rx_buffer(rxq)) {
1519			qede_recycle_rx_bd_ring(rxq, 1);
1520			return false;
1521		}
1522
1523		/* Now if there's a transmission problem, we'd still have to
1524		 * throw current buffer, as replacement was already allocated.
1525		 */
1526		if (qede_xdp_xmit(edev, fp, bd, cqe->placement_offset, len)) {
1527			dma_unmap_page(rxq->dev, bd->mapping,
1528				       PAGE_SIZE, DMA_BIDIRECTIONAL);
1529			__free_page(bd->data);
1530		}
1531
1532		/* Regardless, we've consumed an Rx BD */
1533		qede_rx_bd_ring_consume(rxq);
1534		return false;
1535
1536	default:
1537		bpf_warn_invalid_xdp_action(act);
1538	case XDP_ABORTED:
1539	case XDP_DROP:
1540		qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1541	}
1542
1543	return false;
1544}
1545
1546static struct sk_buff *qede_rx_allocate_skb(struct qede_dev *edev,
1547					    struct qede_rx_queue *rxq,
1548					    struct sw_rx_data *bd, u16 len,
1549					    u16 pad)
1550{
1551	unsigned int offset = bd->page_offset;
1552	struct skb_frag_struct *frag;
1553	struct page *page = bd->data;
1554	unsigned int pull_len;
1555	struct sk_buff *skb;
1556	unsigned char *va;
1557
1558	/* Allocate a new SKB with a sufficient large header len */
1559	skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1560	if (unlikely(!skb))
1561		return NULL;
1562
1563	/* Copy data into SKB - if it's small, we can simply copy it and
1564	 * re-use the already allcoated & mapped memory.
1565	 */
1566	if (len + pad <= edev->rx_copybreak) {
1567		memcpy(skb_put(skb, len),
1568		       page_address(page) + pad + offset, len);
1569		qede_reuse_page(rxq, bd);
1570		goto out;
1571	}
1572
1573	frag = &skb_shinfo(skb)->frags[0];
1574
1575	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1576			page, pad + offset, len, rxq->rx_buf_seg_size);
1577
1578	va = skb_frag_address(frag);
1579	pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1580
1581	/* Align the pull_len to optimize memcpy */
1582	memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1583
1584	/* Correct the skb & frag sizes offset after the pull */
1585	skb_frag_size_sub(frag, pull_len);
1586	frag->page_offset += pull_len;
1587	skb->data_len -= pull_len;
1588	skb->tail += pull_len;
1589
1590	if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
1591		/* Incr page ref count to reuse on allocation failure so
1592		 * that it doesn't get freed while freeing SKB [as its
1593		 * already mapped there].
1594		 */
1595		page_ref_inc(page);
1596		dev_kfree_skb_any(skb);
1597		return NULL;
1598	}
1599
1600out:
1601	/* We've consumed the first BD and prepared an SKB */
1602	qede_rx_bd_ring_consume(rxq);
1603	return skb;
1604}
1605
1606static int qede_rx_build_jumbo(struct qede_dev *edev,
1607			       struct qede_rx_queue *rxq,
1608			       struct sk_buff *skb,
1609			       struct eth_fast_path_rx_reg_cqe *cqe,
1610			       u16 first_bd_len)
1611{
1612	u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1613	struct sw_rx_data *bd;
1614	u16 bd_cons_idx;
1615	u8 num_frags;
1616
1617	pkt_len -= first_bd_len;
1618
1619	/* We've already used one BD for the SKB. Now take care of the rest */
1620	for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1621		u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1622		    pkt_len;
1623
1624		if (unlikely(!cur_size)) {
1625			DP_ERR(edev,
1626			       "Still got %d BDs for mapping jumbo, but length became 0\n",
1627			       num_frags);
1628			goto out;
1629		}
1630
1631		/* We need a replacement buffer for each BD */
1632		if (unlikely(qede_alloc_rx_buffer(rxq)))
1633			goto out;
1634
1635		/* Now that we've allocated the replacement buffer,
1636		 * we can safely consume the next BD and map it to the SKB.
1637		 */
1638		bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1639		bd = &rxq->sw_rx_ring[bd_cons_idx];
1640		qede_rx_bd_ring_consume(rxq);
1641
1642		dma_unmap_page(rxq->dev, bd->mapping,
1643			       PAGE_SIZE, DMA_FROM_DEVICE);
1644
1645		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
1646				   bd->data, 0, cur_size);
1647
1648		skb->truesize += PAGE_SIZE;
1649		skb->data_len += cur_size;
1650		skb->len += cur_size;
1651		pkt_len -= cur_size;
1652	}
1653
1654	if (unlikely(pkt_len))
1655		DP_ERR(edev,
1656		       "Mapped all BDs of jumbo, but still have %d bytes\n",
1657		       pkt_len);
1658
1659out:
1660	return num_frags;
1661}
1662
1663static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1664				   struct qede_fastpath *fp,
1665				   struct qede_rx_queue *rxq,
1666				   union eth_rx_cqe *cqe,
1667				   enum eth_rx_cqe_type type)
1668{
1669	switch (type) {
1670	case ETH_RX_CQE_TYPE_TPA_START:
1671		qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1672		return 0;
1673	case ETH_RX_CQE_TYPE_TPA_CONT:
1674		qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1675		return 0;
1676	case ETH_RX_CQE_TYPE_TPA_END:
1677		qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1678		return 1;
1679	default:
1680		return 0;
1681	}
1682}
1683
1684static int qede_rx_process_cqe(struct qede_dev *edev,
1685			       struct qede_fastpath *fp,
1686			       struct qede_rx_queue *rxq)
1687{
1688	struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1689	struct eth_fast_path_rx_reg_cqe *fp_cqe;
1690	u16 len, pad, bd_cons_idx, parse_flag;
1691	enum eth_rx_cqe_type cqe_type;
1692	union eth_rx_cqe *cqe;
1693	struct sw_rx_data *bd;
1694	struct sk_buff *skb;
1695	__le16 flags;
1696	u8 csum_flag;
1697
1698	/* Get the CQE from the completion ring */
1699	cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1700	cqe_type = cqe->fast_path_regular.type;
1701
1702	/* Process an unlikely slowpath event */
1703	if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1704		struct eth_slow_path_rx_cqe *sp_cqe;
1705
1706		sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1707		edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1708		return 0;
1709	}
1710
1711	/* Handle TPA cqes */
1712	if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1713		return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1714
1715	/* Get the data from the SW ring; Consume it only after it's evident
1716	 * we wouldn't recycle it.
1717	 */
1718	bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1719	bd = &rxq->sw_rx_ring[bd_cons_idx];
1720
1721	fp_cqe = &cqe->fast_path_regular;
1722	len = le16_to_cpu(fp_cqe->len_on_first_bd);
1723	pad = fp_cqe->placement_offset;
1724
1725	/* Run eBPF program if one is attached */
1726	if (xdp_prog)
1727		if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe))
1728			return 1;
1729
1730	/* If this is an error packet then drop it */
1731	flags = cqe->fast_path_regular.pars_flags.flags;
1732	parse_flag = le16_to_cpu(flags);
1733
1734	csum_flag = qede_check_csum(parse_flag);
1735	if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1736		if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag)) {
1737			rxq->rx_ip_frags++;
1738		} else {
1739			DP_NOTICE(edev,
1740				  "CQE has error, flags = %x, dropping incoming packet\n",
1741				  parse_flag);
1742			rxq->rx_hw_errors++;
1743			qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1744			return 0;
1745		}
1746	}
1747
1748	/* Basic validation passed; Need to prepare an SKB. This would also
1749	 * guarantee to finally consume the first BD upon success.
1750	 */
1751	skb = qede_rx_allocate_skb(edev, rxq, bd, len, pad);
1752	if (!skb) {
1753		rxq->rx_alloc_errors++;
1754		qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1755		return 0;
1756	}
1757
1758	/* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1759	 * by a single cqe.
1760	 */
1761	if (fp_cqe->bd_num > 1) {
1762		u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1763							 fp_cqe, len);
1764
1765		if (unlikely(unmapped_frags > 0)) {
1766			qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1767			dev_kfree_skb_any(skb);
1768			return 0;
1769		}
1770	}
1771
1772	/* The SKB contains all the data. Now prepare meta-magic */
1773	skb->protocol = eth_type_trans(skb, edev->ndev);
1774	qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1775	qede_set_skb_csum(skb, csum_flag);
1776	skb_record_rx_queue(skb, rxq->rxq_id);
1777
1778	/* SKB is prepared - pass it to stack */
1779	qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1780
1781	return 1;
1782}
1783
1784static int qede_rx_int(struct qede_fastpath *fp, int budget)
1785{
1786	struct qede_rx_queue *rxq = fp->rxq;
1787	struct qede_dev *edev = fp->edev;
1788	u16 hw_comp_cons, sw_comp_cons;
1789	int work_done = 0;
1790
1791	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1792	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1793
1794	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1795	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1796	 * read before it is written by FW, then FW writes CQE and SB, and then
1797	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1798	 */
1799	rmb();
1800
1801	/* Loop to complete all indicated BDs */
1802	while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1803		qede_rx_process_cqe(edev, fp, rxq);
1804		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1805		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1806		work_done++;
1807	}
1808
1809	/* Update producers */
1810	qede_update_rx_prod(edev, rxq);
1811
1812	return work_done;
1813}
1814
1815static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1816{
1817	qed_sb_update_sb_idx(fp->sb_info);
1818
1819	/* *_has_*_work() reads the status block, thus we need to ensure that
1820	 * status block indices have been actually read (qed_sb_update_sb_idx)
1821	 * prior to this check (*_has_*_work) so that we won't write the
1822	 * "newer" value of the status block to HW (if there was a DMA right
1823	 * after qede_has_rx_work and if there is no rmb, the memory reading
1824	 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1825	 * In this case there will never be another interrupt until there is
1826	 * another update of the status block, while there is still unhandled
1827	 * work.
1828	 */
1829	rmb();
1830
1831	if (likely(fp->type & QEDE_FASTPATH_RX))
1832		if (qede_has_rx_work(fp->rxq))
1833			return true;
1834
1835	if (fp->type & QEDE_FASTPATH_XDP)
1836		if (qede_txq_has_work(fp->xdp_tx))
1837			return true;
1838
1839	if (likely(fp->type & QEDE_FASTPATH_TX))
1840		if (qede_txq_has_work(fp->txq))
1841			return true;
1842
1843	return false;
1844}
1845
1846static int qede_poll(struct napi_struct *napi, int budget)
1847{
1848	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1849						napi);
1850	struct qede_dev *edev = fp->edev;
1851	int rx_work_done = 0;
1852
1853	if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq))
1854		qede_tx_int(edev, fp->txq);
1855
1856	if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1857		qede_xdp_tx_int(edev, fp->xdp_tx);
1858
1859	rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1860			qede_has_rx_work(fp->rxq)) ?
1861			qede_rx_int(fp, budget) : 0;
1862	if (rx_work_done < budget) {
1863		if (!qede_poll_is_more_work(fp)) {
1864			napi_complete(napi);
1865
1866			/* Update and reenable interrupts */
1867			qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1868		} else {
1869			rx_work_done = budget;
1870		}
1871	}
1872
1873	if (fp->xdp_xmit) {
1874		u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1875
1876		fp->xdp_xmit = 0;
1877		fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1878		qede_update_tx_producer(fp->xdp_tx);
1879	}
1880
1881	return rx_work_done;
1882}
1883
1884static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1885{
1886	struct qede_fastpath *fp = fp_cookie;
1887
1888	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1889
1890	napi_schedule_irqoff(&fp->napi);
1891	return IRQ_HANDLED;
1892}
1893
1894/* -------------------------------------------------------------------------
1895 * END OF FAST-PATH
1896 * -------------------------------------------------------------------------
1897 */
1898
1899static int qede_open(struct net_device *ndev);
1900static int qede_close(struct net_device *ndev);
1901static int qede_set_mac_addr(struct net_device *ndev, void *p);
1902static void qede_set_rx_mode(struct net_device *ndev);
1903static void qede_config_rx_mode(struct net_device *ndev);
1904
1905static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1906				 enum qed_filter_xcast_params_type opcode,
1907				 unsigned char mac[ETH_ALEN])
1908{
1909	struct qed_filter_params filter_cmd;
1910
1911	memset(&filter_cmd, 0, sizeof(filter_cmd));
1912	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1913	filter_cmd.filter.ucast.type = opcode;
1914	filter_cmd.filter.ucast.mac_valid = 1;
1915	ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1916
1917	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1918}
1919
1920static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1921				  enum qed_filter_xcast_params_type opcode,
1922				  u16 vid)
1923{
1924	struct qed_filter_params filter_cmd;
1925
1926	memset(&filter_cmd, 0, sizeof(filter_cmd));
1927	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1928	filter_cmd.filter.ucast.type = opcode;
1929	filter_cmd.filter.ucast.vlan_valid = 1;
1930	filter_cmd.filter.ucast.vlan = vid;
1931
1932	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1933}
1934
1935void qede_fill_by_demand_stats(struct qede_dev *edev)
1936{
1937	struct qed_eth_stats stats;
 
1938
1939	edev->ops->get_vport_stats(edev->cdev, &stats);
1940	edev->stats.no_buff_discards = stats.no_buff_discards;
1941	edev->stats.packet_too_big_discard = stats.packet_too_big_discard;
1942	edev->stats.ttl0_discard = stats.ttl0_discard;
1943	edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1944	edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1945	edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1946	edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1947	edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1948	edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1949	edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1950	edev->stats.mac_filter_discards = stats.mac_filter_discards;
1951
1952	edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1953	edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1954	edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1955	edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1956	edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1957	edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1958	edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1959	edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1960	edev->stats.coalesced_events = stats.tpa_coalesced_events;
1961	edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1962	edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1963	edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1964
1965	edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1966	edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1967	edev->stats.rx_128_to_255_byte_packets =
1968				stats.rx_128_to_255_byte_packets;
1969	edev->stats.rx_256_to_511_byte_packets =
1970				stats.rx_256_to_511_byte_packets;
1971	edev->stats.rx_512_to_1023_byte_packets =
1972				stats.rx_512_to_1023_byte_packets;
1973	edev->stats.rx_1024_to_1518_byte_packets =
1974				stats.rx_1024_to_1518_byte_packets;
1975	edev->stats.rx_1519_to_1522_byte_packets =
1976				stats.rx_1519_to_1522_byte_packets;
1977	edev->stats.rx_1519_to_2047_byte_packets =
1978				stats.rx_1519_to_2047_byte_packets;
1979	edev->stats.rx_2048_to_4095_byte_packets =
1980				stats.rx_2048_to_4095_byte_packets;
1981	edev->stats.rx_4096_to_9216_byte_packets =
1982				stats.rx_4096_to_9216_byte_packets;
1983	edev->stats.rx_9217_to_16383_byte_packets =
1984				stats.rx_9217_to_16383_byte_packets;
1985	edev->stats.rx_crc_errors = stats.rx_crc_errors;
1986	edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1987	edev->stats.rx_pause_frames = stats.rx_pause_frames;
1988	edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1989	edev->stats.rx_align_errors = stats.rx_align_errors;
1990	edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1991	edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1992	edev->stats.rx_jabbers = stats.rx_jabbers;
1993	edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1994	edev->stats.rx_fragments = stats.rx_fragments;
1995	edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1996	edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1997	edev->stats.tx_128_to_255_byte_packets =
1998				stats.tx_128_to_255_byte_packets;
1999	edev->stats.tx_256_to_511_byte_packets =
2000				stats.tx_256_to_511_byte_packets;
2001	edev->stats.tx_512_to_1023_byte_packets =
2002				stats.tx_512_to_1023_byte_packets;
2003	edev->stats.tx_1024_to_1518_byte_packets =
2004				stats.tx_1024_to_1518_byte_packets;
2005	edev->stats.tx_1519_to_2047_byte_packets =
2006				stats.tx_1519_to_2047_byte_packets;
2007	edev->stats.tx_2048_to_4095_byte_packets =
2008				stats.tx_2048_to_4095_byte_packets;
2009	edev->stats.tx_4096_to_9216_byte_packets =
2010				stats.tx_4096_to_9216_byte_packets;
2011	edev->stats.tx_9217_to_16383_byte_packets =
2012				stats.tx_9217_to_16383_byte_packets;
2013	edev->stats.tx_pause_frames = stats.tx_pause_frames;
2014	edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
2015	edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
2016	edev->stats.tx_total_collisions = stats.tx_total_collisions;
2017	edev->stats.brb_truncates = stats.brb_truncates;
2018	edev->stats.brb_discards = stats.brb_discards;
2019	edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
2020}
2021
2022static
2023struct rtnl_link_stats64 *qede_get_stats64(struct net_device *dev,
2024					   struct rtnl_link_stats64 *stats)
2025{
2026	struct qede_dev *edev = netdev_priv(dev);
2027
2028	qede_fill_by_demand_stats(edev);
2029
2030	stats->rx_packets = edev->stats.rx_ucast_pkts +
2031			    edev->stats.rx_mcast_pkts +
2032			    edev->stats.rx_bcast_pkts;
2033	stats->tx_packets = edev->stats.tx_ucast_pkts +
2034			    edev->stats.tx_mcast_pkts +
2035			    edev->stats.tx_bcast_pkts;
2036
2037	stats->rx_bytes = edev->stats.rx_ucast_bytes +
2038			  edev->stats.rx_mcast_bytes +
2039			  edev->stats.rx_bcast_bytes;
2040
2041	stats->tx_bytes = edev->stats.tx_ucast_bytes +
2042			  edev->stats.tx_mcast_bytes +
2043			  edev->stats.tx_bcast_bytes;
2044
2045	stats->tx_errors = edev->stats.tx_err_drop_pkts;
2046	stats->multicast = edev->stats.rx_mcast_pkts +
2047			   edev->stats.rx_bcast_pkts;
2048
2049	stats->rx_fifo_errors = edev->stats.no_buff_discards;
2050
2051	stats->collisions = edev->stats.tx_total_collisions;
2052	stats->rx_crc_errors = edev->stats.rx_crc_errors;
2053	stats->rx_frame_errors = edev->stats.rx_align_errors;
2054
2055	return stats;
2056}
2057
2058#ifdef CONFIG_QED_SRIOV
2059static int qede_get_vf_config(struct net_device *dev, int vfidx,
2060			      struct ifla_vf_info *ivi)
2061{
2062	struct qede_dev *edev = netdev_priv(dev);
2063
2064	if (!edev->ops)
2065		return -EINVAL;
2066
2067	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
2068}
2069
2070static int qede_set_vf_rate(struct net_device *dev, int vfidx,
2071			    int min_tx_rate, int max_tx_rate)
2072{
2073	struct qede_dev *edev = netdev_priv(dev);
2074
2075	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
2076					max_tx_rate);
2077}
2078
2079static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
2080{
2081	struct qede_dev *edev = netdev_priv(dev);
2082
2083	if (!edev->ops)
2084		return -EINVAL;
2085
2086	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
2087}
2088
2089static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
2090				  int link_state)
2091{
2092	struct qede_dev *edev = netdev_priv(dev);
2093
2094	if (!edev->ops)
2095		return -EINVAL;
2096
2097	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
2098}
2099#endif
2100
2101static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
2102{
2103	struct qed_update_vport_params params;
2104	int rc;
2105
2106	/* Proceed only if action actually needs to be performed */
2107	if (edev->accept_any_vlan == action)
2108		return;
2109
2110	memset(&params, 0, sizeof(params));
2111
2112	params.vport_id = 0;
2113	params.accept_any_vlan = action;
2114	params.update_accept_any_vlan_flg = 1;
2115
2116	rc = edev->ops->vport_update(edev->cdev, &params);
2117	if (rc) {
2118		DP_ERR(edev, "Failed to %s accept-any-vlan\n",
2119		       action ? "enable" : "disable");
2120	} else {
2121		DP_INFO(edev, "%s accept-any-vlan\n",
2122			action ? "enabled" : "disabled");
2123		edev->accept_any_vlan = action;
2124	}
2125}
 
2126
2127static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
2128{
2129	struct qede_dev *edev = netdev_priv(dev);
2130	struct qede_vlan *vlan, *tmp;
2131	int rc = 0;
2132
2133	DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
 
2134
2135	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
2136	if (!vlan) {
2137		DP_INFO(edev, "Failed to allocate struct for vlan\n");
2138		return -ENOMEM;
2139	}
2140	INIT_LIST_HEAD(&vlan->list);
2141	vlan->vid = vid;
2142	vlan->configured = false;
2143
2144	/* Verify vlan isn't already configured */
2145	list_for_each_entry(tmp, &edev->vlan_list, list) {
2146		if (tmp->vid == vlan->vid) {
2147			DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2148				   "vlan already configured\n");
2149			kfree(vlan);
2150			return -EEXIST;
2151		}
2152	}
2153
2154	/* If interface is down, cache this VLAN ID and return */
2155	__qede_lock(edev);
2156	if (edev->state != QEDE_STATE_OPEN) {
2157		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2158			   "Interface is down, VLAN %d will be configured when interface is up\n",
2159			   vid);
2160		if (vid != 0)
2161			edev->non_configured_vlans++;
2162		list_add(&vlan->list, &edev->vlan_list);
2163		goto out;
2164	}
2165
2166	/* Check for the filter limit.
2167	 * Note - vlan0 has a reserved filter and can be added without
2168	 * worrying about quota
2169	 */
2170	if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
2171	    (vlan->vid == 0)) {
2172		rc = qede_set_ucast_rx_vlan(edev,
2173					    QED_FILTER_XCAST_TYPE_ADD,
2174					    vlan->vid);
2175		if (rc) {
2176			DP_ERR(edev, "Failed to configure VLAN %d\n",
2177			       vlan->vid);
2178			kfree(vlan);
2179			goto out;
2180		}
2181		vlan->configured = true;
2182
2183		/* vlan0 filter isn't consuming out of our quota */
2184		if (vlan->vid != 0)
2185			edev->configured_vlans++;
2186	} else {
2187		/* Out of quota; Activate accept-any-VLAN mode */
2188		if (!edev->non_configured_vlans)
2189			qede_config_accept_any_vlan(edev, true);
2190
2191		edev->non_configured_vlans++;
2192	}
2193
2194	list_add(&vlan->list, &edev->vlan_list);
2195
2196out:
2197	__qede_unlock(edev);
2198	return rc;
2199}
2200
2201static void qede_del_vlan_from_list(struct qede_dev *edev,
2202				    struct qede_vlan *vlan)
 
2203{
2204	/* vlan0 filter isn't consuming out of our quota */
2205	if (vlan->vid != 0) {
2206		if (vlan->configured)
2207			edev->configured_vlans--;
2208		else
2209			edev->non_configured_vlans--;
2210	}
2211
2212	list_del(&vlan->list);
2213	kfree(vlan);
 
 
 
2214}
2215
2216static int qede_configure_vlan_filters(struct qede_dev *edev)
 
2217{
2218	int rc = 0, real_rc = 0, accept_any_vlan = 0;
2219	struct qed_dev_eth_info *dev_info;
2220	struct qede_vlan *vlan = NULL;
2221
2222	if (list_empty(&edev->vlan_list))
2223		return 0;
2224
2225	dev_info = &edev->dev_info;
 
2226
2227	/* Configure non-configured vlans */
2228	list_for_each_entry(vlan, &edev->vlan_list, list) {
2229		if (vlan->configured)
2230			continue;
2231
2232		/* We have used all our credits, now enable accept_any_vlan */
2233		if ((vlan->vid != 0) &&
2234		    (edev->configured_vlans == dev_info->num_vlan_filters)) {
2235			accept_any_vlan = 1;
2236			continue;
2237		}
2238
2239		DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
2240
2241		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
2242					    vlan->vid);
2243		if (rc) {
2244			DP_ERR(edev, "Failed to configure VLAN %u\n",
2245			       vlan->vid);
2246			real_rc = rc;
2247			continue;
2248		}
2249
2250		vlan->configured = true;
2251		/* vlan0 filter doesn't consume our VLAN filter's quota */
2252		if (vlan->vid != 0) {
2253			edev->non_configured_vlans--;
2254			edev->configured_vlans++;
2255		}
2256	}
2257
2258	/* enable accept_any_vlan mode if we have more VLANs than credits,
2259	 * or remove accept_any_vlan mode if we've actually removed
2260	 * a non-configured vlan, and all remaining vlans are truly configured.
2261	 */
2262
2263	if (accept_any_vlan)
2264		qede_config_accept_any_vlan(edev, true);
2265	else if (!edev->non_configured_vlans)
2266		qede_config_accept_any_vlan(edev, false);
2267
2268	return real_rc;
 
 
 
 
 
 
 
 
 
 
 
2269}
2270
2271static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2272{
2273	struct qede_dev *edev = netdev_priv(dev);
2274	struct qede_vlan *vlan = NULL;
2275	int rc = 0;
 
 
2276
2277	DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
 
 
 
2278
2279	/* Find whether entry exists */
2280	__qede_lock(edev);
2281	list_for_each_entry(vlan, &edev->vlan_list, list)
2282		if (vlan->vid == vid)
2283			break;
2284
2285	if (!vlan || (vlan->vid != vid)) {
2286		DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2287			   "Vlan isn't configured\n");
2288		goto out;
2289	}
2290
2291	if (edev->state != QEDE_STATE_OPEN) {
2292		/* As interface is already down, we don't have a VPORT
2293		 * instance to remove vlan filter. So just update vlan list
2294		 */
2295		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2296			   "Interface is down, removing VLAN from list only\n");
2297		qede_del_vlan_from_list(edev, vlan);
2298		goto out;
2299	}
2300
2301	/* Remove vlan */
2302	if (vlan->configured) {
2303		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL,
2304					    vid);
2305		if (rc) {
2306			DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2307			goto out;
2308		}
2309	}
2310
2311	qede_del_vlan_from_list(edev, vlan);
2312
2313	/* We have removed a VLAN - try to see if we can
2314	 * configure non-configured VLAN from the list.
2315	 */
2316	rc = qede_configure_vlan_filters(edev);
2317
2318out:
2319	__qede_unlock(edev);
2320	return rc;
2321}
2322
2323static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2324{
2325	struct qede_vlan *vlan = NULL;
2326
2327	if (list_empty(&edev->vlan_list))
 
 
 
2328		return;
2329
2330	list_for_each_entry(vlan, &edev->vlan_list, list) {
2331		if (!vlan->configured)
2332			continue;
2333
2334		vlan->configured = false;
2335
2336		/* vlan0 filter isn't consuming out of our quota */
2337		if (vlan->vid != 0) {
2338			edev->non_configured_vlans++;
2339			edev->configured_vlans--;
2340		}
2341
2342		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2343			   "marked vlan %d as non-configured\n", vlan->vid);
2344	}
2345
2346	edev->accept_any_vlan = false;
 
 
2347}
2348
2349static void qede_set_features_reload(struct qede_dev *edev,
2350				     struct qede_reload_args *args)
2351{
2352	edev->ndev->features = args->u.features;
2353}
2354
2355int qede_set_features(struct net_device *dev, netdev_features_t features)
2356{
2357	struct qede_dev *edev = netdev_priv(dev);
2358	netdev_features_t changes = features ^ dev->features;
2359	bool need_reload = false;
2360
2361	/* No action needed if hardware GRO is disabled during driver load */
2362	if (changes & NETIF_F_GRO) {
2363		if (dev->features & NETIF_F_GRO)
2364			need_reload = !edev->gro_disable;
2365		else
2366			need_reload = edev->gro_disable;
2367	}
2368
2369	if (need_reload) {
2370		struct qede_reload_args args;
2371
2372		args.u.features = features;
2373		args.func = &qede_set_features_reload;
2374
2375		/* Make sure that we definitely need to reload.
2376		 * In case of an eBPF attached program, there will be no FW
2377		 * aggregations, so no need to actually reload.
2378		 */
2379		__qede_lock(edev);
2380		if (edev->xdp_prog)
2381			args.func(edev, &args);
2382		else
2383			qede_reload(edev, &args, true);
2384		__qede_unlock(edev);
2385
2386		return 1;
 
 
 
2387	}
2388
2389	return 0;
2390}
2391
2392static void qede_udp_tunnel_add(struct net_device *dev,
2393				struct udp_tunnel_info *ti)
 
2394{
2395	struct qede_dev *edev = netdev_priv(dev);
2396	u16 t_port = ntohs(ti->port);
2397
2398	switch (ti->type) {
2399	case UDP_TUNNEL_TYPE_VXLAN:
2400		if (edev->vxlan_dst_port)
2401			return;
2402
2403		edev->vxlan_dst_port = t_port;
2404
2405		DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d\n",
2406			   t_port);
2407
2408		set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2409		break;
2410	case UDP_TUNNEL_TYPE_GENEVE:
2411		if (edev->geneve_dst_port)
2412			return;
2413
2414		edev->geneve_dst_port = t_port;
2415
2416		DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d\n",
2417			   t_port);
2418		set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2419		break;
2420	default:
2421		return;
2422	}
2423
2424	schedule_delayed_work(&edev->sp_task, 0);
2425}
2426
2427static void qede_udp_tunnel_del(struct net_device *dev,
2428				struct udp_tunnel_info *ti)
2429{
2430	struct qede_dev *edev = netdev_priv(dev);
2431	u16 t_port = ntohs(ti->port);
2432
2433	switch (ti->type) {
2434	case UDP_TUNNEL_TYPE_VXLAN:
2435		if (t_port != edev->vxlan_dst_port)
2436			return;
2437
2438		edev->vxlan_dst_port = 0;
2439
2440		DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d\n",
2441			   t_port);
2442
2443		set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2444		break;
2445	case UDP_TUNNEL_TYPE_GENEVE:
2446		if (t_port != edev->geneve_dst_port)
2447			return;
2448
2449		edev->geneve_dst_port = 0;
2450
2451		DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d\n",
2452			   t_port);
2453		set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2454		break;
2455	default:
2456		return;
2457	}
2458
2459	schedule_delayed_work(&edev->sp_task, 0);
2460}
2461
2462/* 8B udp header + 8B base tunnel header + 32B option length */
2463#define QEDE_MAX_TUN_HDR_LEN 48
2464
2465static netdev_features_t qede_features_check(struct sk_buff *skb,
2466					     struct net_device *dev,
2467					     netdev_features_t features)
2468{
2469	if (skb->encapsulation) {
2470		u8 l4_proto = 0;
2471
2472		switch (vlan_get_protocol(skb)) {
2473		case htons(ETH_P_IP):
2474			l4_proto = ip_hdr(skb)->protocol;
2475			break;
2476		case htons(ETH_P_IPV6):
2477			l4_proto = ipv6_hdr(skb)->nexthdr;
2478			break;
2479		default:
2480			return features;
2481		}
2482
2483		/* Disable offloads for geneve tunnels, as HW can't parse
2484		 * the geneve header which has option length greater than 32B.
2485		 */
2486		if ((l4_proto == IPPROTO_UDP) &&
2487		    ((skb_inner_mac_header(skb) -
2488		      skb_transport_header(skb)) > QEDE_MAX_TUN_HDR_LEN))
2489			return features & ~(NETIF_F_CSUM_MASK |
2490					    NETIF_F_GSO_MASK);
2491	}
2492
2493	return features;
2494}
2495
2496static void qede_xdp_reload_func(struct qede_dev *edev,
2497				 struct qede_reload_args *args)
2498{
2499	struct bpf_prog *old;
 
2500
2501	old = xchg(&edev->xdp_prog, args->u.new_prog);
2502	if (old)
2503		bpf_prog_put(old);
2504}
 
 
 
 
2505
2506static int qede_xdp_set(struct qede_dev *edev, struct bpf_prog *prog)
2507{
2508	struct qede_reload_args args;
2509
2510	if (prog && prog->xdp_adjust_head) {
2511		DP_ERR(edev, "Does not support bpf_xdp_adjust_head()\n");
2512		return -EOPNOTSUPP;
2513	}
2514
2515	/* If we're called, there was already a bpf reference increment */
2516	args.func = &qede_xdp_reload_func;
2517	args.u.new_prog = prog;
2518	qede_reload(edev, &args, false);
2519
2520	return 0;
2521}
2522
2523static int qede_xdp(struct net_device *dev, struct netdev_xdp *xdp)
2524{
2525	struct qede_dev *edev = netdev_priv(dev);
2526
2527	switch (xdp->command) {
2528	case XDP_SETUP_PROG:
2529		return qede_xdp_set(edev, xdp->prog);
2530	case XDP_QUERY_PROG:
2531		xdp->prog_attached = !!edev->xdp_prog;
2532		return 0;
2533	default:
2534		return -EINVAL;
2535	}
2536}
2537
2538static const struct net_device_ops qede_netdev_ops = {
2539	.ndo_open = qede_open,
2540	.ndo_stop = qede_close,
2541	.ndo_start_xmit = qede_start_xmit,
2542	.ndo_set_rx_mode = qede_set_rx_mode,
2543	.ndo_set_mac_address = qede_set_mac_addr,
2544	.ndo_validate_addr = eth_validate_addr,
2545	.ndo_change_mtu = qede_change_mtu,
 
 
 
2546#ifdef CONFIG_QED_SRIOV
2547	.ndo_set_vf_mac = qede_set_vf_mac,
2548	.ndo_set_vf_vlan = qede_set_vf_vlan,
 
2549#endif
2550	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2551	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2552	.ndo_set_features = qede_set_features,
2553	.ndo_get_stats64 = qede_get_stats64,
 
2554#ifdef CONFIG_QED_SRIOV
2555	.ndo_set_vf_link_state = qede_set_vf_link_state,
2556	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2557	.ndo_get_vf_config = qede_get_vf_config,
2558	.ndo_set_vf_rate = qede_set_vf_rate,
2559#endif
2560	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
2561	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
2562	.ndo_features_check = qede_features_check,
2563	.ndo_xdp = qede_xdp,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2564};
2565
2566/* -------------------------------------------------------------------------
2567 * START OF PROBE / REMOVE
2568 * -------------------------------------------------------------------------
2569 */
2570
2571static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2572					    struct pci_dev *pdev,
2573					    struct qed_dev_eth_info *info,
2574					    u32 dp_module, u8 dp_level)
2575{
2576	struct net_device *ndev;
2577	struct qede_dev *edev;
2578
2579	ndev = alloc_etherdev_mqs(sizeof(*edev),
2580				  info->num_queues, info->num_queues);
 
2581	if (!ndev) {
2582		pr_err("etherdev allocation failed\n");
2583		return NULL;
2584	}
2585
2586	edev = netdev_priv(ndev);
2587	edev->ndev = ndev;
2588	edev->cdev = cdev;
2589	edev->pdev = pdev;
2590	edev->dp_module = dp_module;
2591	edev->dp_level = dp_level;
2592	edev->ops = qed_ops;
2593	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2594	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
 
 
 
 
 
 
2595
2596	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
2597		info->num_queues, info->num_queues);
2598
2599	SET_NETDEV_DEV(ndev, &pdev->dev);
2600
2601	memset(&edev->stats, 0, sizeof(edev->stats));
2602	memcpy(&edev->dev_info, info, sizeof(*info));
2603
 
 
 
 
 
 
2604	INIT_LIST_HEAD(&edev->vlan_list);
2605
2606	return edev;
2607}
2608
2609static void qede_init_ndev(struct qede_dev *edev)
2610{
2611	struct net_device *ndev = edev->ndev;
2612	struct pci_dev *pdev = edev->pdev;
2613	u32 hw_features;
 
2614
2615	pci_set_drvdata(pdev, ndev);
2616
2617	ndev->mem_start = edev->dev_info.common.pci_mem_start;
2618	ndev->base_addr = ndev->mem_start;
2619	ndev->mem_end = edev->dev_info.common.pci_mem_end;
2620	ndev->irq = edev->dev_info.common.pci_irq;
2621
2622	ndev->watchdog_timeo = TX_TIMEOUT;
2623
2624	ndev->netdev_ops = &qede_netdev_ops;
 
 
 
 
 
 
 
2625
2626	qede_set_ethtool_ops(ndev);
2627
2628	ndev->priv_flags |= IFF_UNICAST_FLT;
2629
2630	/* user-changeble features */
2631	hw_features = NETIF_F_GRO | NETIF_F_SG |
2632		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2633		      NETIF_F_TSO | NETIF_F_TSO6;
2634
2635	/* Encap features*/
2636	hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2637		       NETIF_F_TSO_ECN | NETIF_F_GSO_UDP_TUNNEL_CSUM |
2638		       NETIF_F_GSO_GRE_CSUM;
2639	ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2640				NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2641				NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2642				NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM |
2643				NETIF_F_GSO_UDP_TUNNEL_CSUM |
2644				NETIF_F_GSO_GRE_CSUM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2645
2646	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2647			      NETIF_F_HIGHDMA;
2648	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2649			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2650			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2651
2652	ndev->hw_features = hw_features;
2653
 
 
 
2654	/* MTU range: 46 - 9600 */
2655	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
2656	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
2657
2658	/* Set network device HW mac */
2659	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2660
2661	ndev->mtu = edev->dev_info.common.mtu;
2662}
2663
2664/* This function converts from 32b param to two params of level and module
2665 * Input 32b decoding:
2666 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2667 * 'happy' flow, e.g. memory allocation failed.
2668 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2669 * and provide important parameters.
2670 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2671 * module. VERBOSE prints are for tracking the specific flow in low level.
2672 *
2673 * Notice that the level should be that of the lowest required logs.
2674 */
2675void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2676{
2677	*p_dp_level = QED_LEVEL_NOTICE;
2678	*p_dp_module = 0;
2679
2680	if (debug & QED_LOG_VERBOSE_MASK) {
2681		*p_dp_level = QED_LEVEL_VERBOSE;
2682		*p_dp_module = (debug & 0x3FFFFFFF);
2683	} else if (debug & QED_LOG_INFO_MASK) {
2684		*p_dp_level = QED_LEVEL_INFO;
2685	} else if (debug & QED_LOG_NOTICE_MASK) {
2686		*p_dp_level = QED_LEVEL_NOTICE;
2687	}
2688}
2689
2690static void qede_free_fp_array(struct qede_dev *edev)
2691{
2692	if (edev->fp_array) {
2693		struct qede_fastpath *fp;
2694		int i;
2695
2696		for_each_queue(i) {
2697			fp = &edev->fp_array[i];
2698
2699			kfree(fp->sb_info);
 
 
 
 
 
 
2700			kfree(fp->rxq);
2701			kfree(fp->xdp_tx);
2702			kfree(fp->txq);
2703		}
2704		kfree(edev->fp_array);
2705	}
2706
2707	edev->num_queues = 0;
2708	edev->fp_num_tx = 0;
2709	edev->fp_num_rx = 0;
2710}
2711
2712static int qede_alloc_fp_array(struct qede_dev *edev)
2713{
2714	u8 fp_combined, fp_rx = edev->fp_num_rx;
2715	struct qede_fastpath *fp;
2716	int i;
2717
2718	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
2719				 sizeof(*edev->fp_array), GFP_KERNEL);
2720	if (!edev->fp_array) {
2721		DP_NOTICE(edev, "fp array allocation failed\n");
2722		goto err;
2723	}
2724
 
 
 
 
 
 
 
 
 
 
2725	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
2726
2727	/* Allocate the FP elements for Rx queues followed by combined and then
2728	 * the Tx. This ordering should be maintained so that the respective
2729	 * queues (Rx or Tx) will be together in the fastpath array and the
2730	 * associated ids will be sequential.
2731	 */
2732	for_each_queue(i) {
2733		fp = &edev->fp_array[i];
2734
2735		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
2736		if (!fp->sb_info) {
2737			DP_NOTICE(edev, "sb info struct allocation failed\n");
2738			goto err;
2739		}
2740
2741		if (fp_rx) {
2742			fp->type = QEDE_FASTPATH_RX;
2743			fp_rx--;
2744		} else if (fp_combined) {
2745			fp->type = QEDE_FASTPATH_COMBINED;
2746			fp_combined--;
2747		} else {
2748			fp->type = QEDE_FASTPATH_TX;
2749		}
2750
2751		if (fp->type & QEDE_FASTPATH_TX) {
2752			fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
 
2753			if (!fp->txq)
2754				goto err;
2755		}
2756
2757		if (fp->type & QEDE_FASTPATH_RX) {
2758			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
2759			if (!fp->rxq)
2760				goto err;
2761
2762			if (edev->xdp_prog) {
2763				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
2764						     GFP_KERNEL);
2765				if (!fp->xdp_tx)
2766					goto err;
2767				fp->type |= QEDE_FASTPATH_XDP;
2768			}
2769		}
2770	}
2771
2772	return 0;
2773err:
2774	qede_free_fp_array(edev);
2775	return -ENOMEM;
2776}
2777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2778static void qede_sp_task(struct work_struct *work)
2779{
2780	struct qede_dev *edev = container_of(work, struct qede_dev,
2781					     sp_task.work);
2782	struct qed_dev *cdev = edev->cdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2783
2784	__qede_lock(edev);
2785
2786	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2787		if (edev->state == QEDE_STATE_OPEN)
2788			qede_config_rx_mode(edev->ndev);
2789
2790	if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2791		struct qed_tunn_params tunn_params;
 
 
 
 
 
 
 
2792
2793		memset(&tunn_params, 0, sizeof(tunn_params));
2794		tunn_params.update_vxlan_port = 1;
2795		tunn_params.vxlan_port = edev->vxlan_dst_port;
2796		qed_ops->tunn_config(cdev, &tunn_params);
2797	}
2798
2799	if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2800		struct qed_tunn_params tunn_params;
2801
2802		memset(&tunn_params, 0, sizeof(tunn_params));
2803		tunn_params.update_geneve_port = 1;
2804		tunn_params.geneve_port = edev->geneve_dst_port;
2805		qed_ops->tunn_config(cdev, &tunn_params);
2806	}
2807
2808	__qede_unlock(edev);
2809}
2810
2811static void qede_update_pf_params(struct qed_dev *cdev)
2812{
2813	struct qed_pf_params pf_params;
 
2814
2815	/* 64 rx + 64 tx + 64 XDP */
2816	memset(&pf_params, 0, sizeof(struct qed_pf_params));
2817	pf_params.eth_pf_params.num_cons = 192;
 
 
 
 
 
 
 
 
 
 
 
2818	qed_ops->common->update_pf_params(cdev, &pf_params);
2819}
2820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2821enum qede_probe_mode {
2822	QEDE_PROBE_NORMAL,
 
2823};
2824
2825static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2826			bool is_vf, enum qede_probe_mode mode)
2827{
2828	struct qed_probe_params probe_params;
2829	struct qed_slowpath_params sp_params;
2830	struct qed_dev_eth_info dev_info;
2831	struct qede_dev *edev;
2832	struct qed_dev *cdev;
2833	int rc;
2834
2835	if (unlikely(dp_level & QED_LEVEL_INFO))
2836		pr_notice("Starting qede probe\n");
2837
2838	memset(&probe_params, 0, sizeof(probe_params));
2839	probe_params.protocol = QED_PROTOCOL_ETH;
2840	probe_params.dp_module = dp_module;
2841	probe_params.dp_level = dp_level;
2842	probe_params.is_vf = is_vf;
 
2843	cdev = qed_ops->common->probe(pdev, &probe_params);
2844	if (!cdev) {
2845		rc = -ENODEV;
2846		goto err0;
2847	}
2848
2849	qede_update_pf_params(cdev);
2850
2851	/* Start the Slowpath-process */
2852	memset(&sp_params, 0, sizeof(sp_params));
2853	sp_params.int_mode = QED_INT_MODE_MSIX;
2854	sp_params.drv_major = QEDE_MAJOR_VERSION;
2855	sp_params.drv_minor = QEDE_MINOR_VERSION;
2856	sp_params.drv_rev = QEDE_REVISION_VERSION;
2857	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
2858	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2859	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
2860	if (rc) {
2861		pr_notice("Cannot start slowpath\n");
2862		goto err1;
2863	}
2864
2865	/* Learn information crucial for qede to progress */
2866	rc = qed_ops->fill_dev_info(cdev, &dev_info);
2867	if (rc)
2868		goto err2;
2869
2870	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2871				   dp_level);
2872	if (!edev) {
2873		rc = -ENOMEM;
2874		goto err2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2875	}
2876
2877	if (is_vf)
2878		edev->flags |= QEDE_FLAG_IS_VF;
2879
2880	qede_init_ndev(edev);
2881
2882	rc = qede_roce_dev_add(edev);
2883	if (rc)
2884		goto err3;
2885
2886	rc = register_netdev(edev->ndev);
2887	if (rc) {
2888		DP_NOTICE(edev, "Cannot register net-device\n");
2889		goto err4;
 
 
 
 
 
 
 
 
 
 
 
2890	}
2891
2892	edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
 
 
 
 
2893
2894	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2895
2896#ifdef CONFIG_DCB
2897	if (!IS_VF(edev))
2898		qede_set_dcbnl_ops(edev->ndev);
2899#endif
2900
2901	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2902	mutex_init(&edev->qede_lock);
2903	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
2904
2905	DP_INFO(edev, "Ending successfully qede probe\n");
 
 
 
 
2906
2907	return 0;
2908
2909err4:
2910	qede_roce_dev_remove(edev);
2911err3:
2912	free_netdev(edev->ndev);
 
 
 
2913err2:
2914	qed_ops->common->slowpath_stop(cdev);
2915err1:
2916	qed_ops->common->remove(cdev);
2917err0:
2918	return rc;
2919}
2920
2921static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2922{
2923	bool is_vf = false;
2924	u32 dp_module = 0;
2925	u8 dp_level = 0;
2926
2927	switch ((enum qede_pci_private)id->driver_data) {
2928	case QEDE_PRIVATE_VF:
2929		if (debug & QED_LOG_VERBOSE_MASK)
2930			dev_err(&pdev->dev, "Probing a VF\n");
2931		is_vf = true;
2932		break;
2933	default:
2934		if (debug & QED_LOG_VERBOSE_MASK)
2935			dev_err(&pdev->dev, "Probing a PF\n");
2936	}
2937
2938	qede_config_debug(debug, &dp_module, &dp_level);
2939
2940	return __qede_probe(pdev, dp_module, dp_level, is_vf,
2941			    QEDE_PROBE_NORMAL);
2942}
2943
2944enum qede_remove_mode {
2945	QEDE_REMOVE_NORMAL,
 
2946};
2947
2948static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2949{
2950	struct net_device *ndev = pci_get_drvdata(pdev);
2951	struct qede_dev *edev = netdev_priv(ndev);
2952	struct qed_dev *cdev = edev->cdev;
 
 
 
 
 
 
 
 
2953
2954	DP_INFO(edev, "Starting qede_remove\n");
2955
2956	cancel_delayed_work_sync(&edev->sp_task);
2957
2958	unregister_netdev(ndev);
 
 
2959
2960	qede_roce_dev_remove(edev);
 
2961
2962	edev->ops->common->set_power_state(cdev, PCI_D0);
2963
2964	pci_set_drvdata(pdev, NULL);
 
2965
2966	/* Release edev's reference to XDP's bpf if such exist */
2967	if (edev->xdp_prog)
2968		bpf_prog_put(edev->xdp_prog);
2969
2970	free_netdev(ndev);
2971
2972	/* Use global ops since we've freed edev */
2973	qed_ops->common->slowpath_stop(cdev);
2974	if (system_state == SYSTEM_POWER_OFF)
2975		return;
 
 
 
 
 
2976	qed_ops->common->remove(cdev);
 
 
 
 
 
 
 
 
 
 
 
 
2977
2978	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
2979}
2980
2981static void qede_remove(struct pci_dev *pdev)
2982{
2983	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
2984}
2985
2986static void qede_shutdown(struct pci_dev *pdev)
2987{
2988	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
2989}
2990
2991/* -------------------------------------------------------------------------
2992 * START OF LOAD / UNLOAD
2993 * -------------------------------------------------------------------------
2994 */
2995
2996static int qede_set_num_queues(struct qede_dev *edev)
2997{
2998	int rc;
2999	u16 rss_num;
3000
3001	/* Setup queues according to possible resources*/
3002	if (edev->req_queues)
3003		rss_num = edev->req_queues;
3004	else
3005		rss_num = netif_get_num_default_rss_queues() *
3006			  edev->dev_info.common.num_hwfns;
3007
3008	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
3009
3010	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
3011	if (rc > 0) {
3012		/* Managed to request interrupts for our queues */
3013		edev->num_queues = rc;
3014		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
3015			QEDE_QUEUE_CNT(edev), rss_num);
3016		rc = 0;
3017	}
3018
3019	edev->fp_num_tx = edev->req_num_tx;
3020	edev->fp_num_rx = edev->req_num_rx;
3021
3022	return rc;
3023}
3024
3025static void qede_free_mem_sb(struct qede_dev *edev,
3026			     struct qed_sb_info *sb_info)
3027{
3028	if (sb_info->sb_virt)
 
 
3029		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
3030				  (void *)sb_info->sb_virt, sb_info->sb_phys);
 
 
3031}
3032
3033/* This function allocates fast-path status block memory */
3034static int qede_alloc_mem_sb(struct qede_dev *edev,
3035			     struct qed_sb_info *sb_info, u16 sb_id)
3036{
3037	struct status_block *sb_virt;
3038	dma_addr_t sb_phys;
3039	int rc;
3040
3041	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
3042				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
3043	if (!sb_virt) {
3044		DP_ERR(edev, "Status block allocation failed\n");
3045		return -ENOMEM;
3046	}
3047
3048	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
3049					sb_virt, sb_phys, sb_id,
3050					QED_SB_TYPE_L2_QUEUE);
3051	if (rc) {
3052		DP_ERR(edev, "Status block initialization failed\n");
3053		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
3054				  sb_virt, sb_phys);
3055		return rc;
3056	}
3057
3058	return 0;
3059}
3060
3061static void qede_free_rx_buffers(struct qede_dev *edev,
3062				 struct qede_rx_queue *rxq)
3063{
3064	u16 i;
3065
3066	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
3067		struct sw_rx_data *rx_buf;
3068		struct page *data;
3069
3070		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
3071		data = rx_buf->data;
3072
3073		dma_unmap_page(&edev->pdev->dev,
3074			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
3075
3076		rx_buf->data = NULL;
3077		__free_page(data);
3078	}
3079}
3080
3081static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
3082{
3083	int i;
3084
3085	if (edev->gro_disable)
3086		return;
3087
3088	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
3089		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
3090		struct sw_rx_data *replace_buf = &tpa_info->buffer;
3091
3092		if (replace_buf->data) {
3093			dma_unmap_page(&edev->pdev->dev,
3094				       replace_buf->mapping,
3095				       PAGE_SIZE, DMA_FROM_DEVICE);
3096			__free_page(replace_buf->data);
3097		}
3098	}
3099}
3100
3101static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
3102{
3103	qede_free_sge_mem(edev, rxq);
3104
3105	/* Free rx buffers */
3106	qede_free_rx_buffers(edev, rxq);
3107
3108	/* Free the parallel SW ring */
3109	kfree(rxq->sw_rx_ring);
3110
3111	/* Free the real RQ ring used by FW */
3112	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
3113	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
3114}
3115
3116static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
3117{
3118	dma_addr_t mapping;
3119	int i;
3120
3121	/* Don't perform FW aggregations in case of XDP */
3122	if (edev->xdp_prog)
3123		edev->gro_disable = 1;
3124
3125	if (edev->gro_disable)
3126		return 0;
3127
3128	if (edev->ndev->mtu > PAGE_SIZE) {
3129		edev->gro_disable = 1;
3130		return 0;
3131	}
3132
3133	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
3134		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
3135		struct sw_rx_data *replace_buf = &tpa_info->buffer;
3136
3137		replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
3138		if (unlikely(!replace_buf->data)) {
3139			DP_NOTICE(edev,
3140				  "Failed to allocate TPA skb pool [replacement buffer]\n");
3141			goto err;
3142		}
3143
3144		mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
3145				       PAGE_SIZE, DMA_FROM_DEVICE);
3146		if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
3147			DP_NOTICE(edev,
3148				  "Failed to map TPA replacement buffer\n");
3149			goto err;
3150		}
3151
3152		replace_buf->mapping = mapping;
3153		tpa_info->buffer.page_offset = 0;
3154		tpa_info->buffer_mapping = mapping;
3155		tpa_info->state = QEDE_AGG_STATE_NONE;
3156	}
3157
3158	return 0;
3159err:
3160	qede_free_sge_mem(edev, rxq);
3161	edev->gro_disable = 1;
3162	return -ENOMEM;
3163}
3164
3165/* This function allocates all memory needed per Rx queue */
3166static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
3167{
 
 
 
 
 
3168	int i, rc, size;
3169
3170	rxq->num_rx_buffers = edev->q_num_rx_buffers;
3171
3172	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
3173
3174	if (rxq->rx_buf_size > PAGE_SIZE)
3175		rxq->rx_buf_size = PAGE_SIZE;
 
 
 
 
 
3176
3177	/* Segment size to spilt a page in multiple equal parts,
3178	 * unless XDP is used in which case we'd use the entire page.
3179	 */
3180	if (!edev->xdp_prog)
3181		rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
3182	else
 
3183		rxq->rx_buf_seg_size = PAGE_SIZE;
 
 
3184
3185	/* Allocate the parallel driver ring for Rx buffers */
3186	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
3187	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
3188	if (!rxq->sw_rx_ring) {
3189		DP_ERR(edev, "Rx buffers ring allocation failed\n");
3190		rc = -ENOMEM;
3191		goto err;
3192	}
3193
3194	/* Allocate FW Rx ring  */
3195	rc = edev->ops->common->chain_alloc(edev->cdev,
3196					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
3197					    QED_CHAIN_MODE_NEXT_PTR,
3198					    QED_CHAIN_CNT_TYPE_U16,
3199					    RX_RING_SIZE,
3200					    sizeof(struct eth_rx_bd),
3201					    &rxq->rx_bd_ring);
3202
 
3203	if (rc)
3204		goto err;
3205
3206	/* Allocate FW completion ring */
3207	rc = edev->ops->common->chain_alloc(edev->cdev,
3208					    QED_CHAIN_USE_TO_CONSUME,
3209					    QED_CHAIN_MODE_PBL,
3210					    QED_CHAIN_CNT_TYPE_U16,
3211					    RX_RING_SIZE,
3212					    sizeof(union eth_rx_cqe),
3213					    &rxq->rx_comp_ring);
3214	if (rc)
3215		goto err;
3216
3217	/* Allocate buffers for the Rx ring */
 
3218	for (i = 0; i < rxq->num_rx_buffers; i++) {
3219		rc = qede_alloc_rx_buffer(rxq);
3220		if (rc) {
3221			DP_ERR(edev,
3222			       "Rx buffers allocation failed at index %d\n", i);
3223			goto err;
3224		}
3225	}
3226
3227	rc = qede_alloc_sge_mem(edev, rxq);
 
 
3228err:
3229	return rc;
3230}
3231
3232static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
3233{
3234	/* Free the parallel SW ring */
3235	if (txq->is_xdp)
3236		kfree(txq->sw_tx_ring.pages);
3237	else
3238		kfree(txq->sw_tx_ring.skbs);
3239
3240	/* Free the real RQ ring used by FW */
3241	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
3242}
3243
3244/* This function allocates all memory needed per Tx queue */
3245static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
3246{
3247	union eth_tx_bd_types *p_virt;
 
 
 
 
 
 
3248	int size, rc;
3249
3250	txq->num_tx_buffers = edev->q_num_tx_buffers;
3251
3252	/* Allocate the parallel driver ring for Tx buffers */
3253	if (txq->is_xdp) {
3254		size = sizeof(*txq->sw_tx_ring.pages) * TX_RING_SIZE;
3255		txq->sw_tx_ring.pages = kzalloc(size, GFP_KERNEL);
3256		if (!txq->sw_tx_ring.pages)
3257			goto err;
3258	} else {
3259		size = sizeof(*txq->sw_tx_ring.skbs) * TX_RING_SIZE;
3260		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
3261		if (!txq->sw_tx_ring.skbs)
3262			goto err;
3263	}
3264
3265	rc = edev->ops->common->chain_alloc(edev->cdev,
3266					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
3267					    QED_CHAIN_MODE_PBL,
3268					    QED_CHAIN_CNT_TYPE_U16,
3269					    TX_RING_SIZE,
3270					    sizeof(*p_virt), &txq->tx_pbl);
3271	if (rc)
3272		goto err;
3273
3274	return 0;
3275
3276err:
3277	qede_free_mem_txq(edev, txq);
3278	return -ENOMEM;
3279}
3280
3281/* This function frees all memory of a single fp */
3282static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
3283{
3284	qede_free_mem_sb(edev, fp->sb_info);
3285
3286	if (fp->type & QEDE_FASTPATH_RX)
3287		qede_free_mem_rxq(edev, fp->rxq);
3288
3289	if (fp->type & QEDE_FASTPATH_TX)
3290		qede_free_mem_txq(edev, fp->txq);
 
 
 
 
 
 
 
3291}
3292
3293/* This function allocates all memory needed for a single fp (i.e. an entity
3294 * which contains status block, one rx queue and/or multiple per-TC tx queues.
3295 */
3296static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
3297{
3298	int rc = 0;
3299
3300	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
3301	if (rc)
3302		goto out;
3303
3304	if (fp->type & QEDE_FASTPATH_RX) {
3305		rc = qede_alloc_mem_rxq(edev, fp->rxq);
3306		if (rc)
3307			goto out;
3308	}
3309
3310	if (fp->type & QEDE_FASTPATH_XDP) {
3311		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
3312		if (rc)
3313			goto out;
3314	}
3315
3316	if (fp->type & QEDE_FASTPATH_TX) {
3317		rc = qede_alloc_mem_txq(edev, fp->txq);
3318		if (rc)
3319			goto out;
 
 
 
 
3320	}
3321
3322out:
3323	return rc;
3324}
3325
3326static void qede_free_mem_load(struct qede_dev *edev)
3327{
3328	int i;
3329
3330	for_each_queue(i) {
3331		struct qede_fastpath *fp = &edev->fp_array[i];
3332
3333		qede_free_mem_fp(edev, fp);
3334	}
3335}
3336
3337/* This function allocates all qede memory at NIC load. */
3338static int qede_alloc_mem_load(struct qede_dev *edev)
3339{
3340	int rc = 0, queue_id;
3341
3342	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
3343		struct qede_fastpath *fp = &edev->fp_array[queue_id];
3344
3345		rc = qede_alloc_mem_fp(edev, fp);
3346		if (rc) {
3347			DP_ERR(edev,
3348			       "Failed to allocate memory for fastpath - rss id = %d\n",
3349			       queue_id);
3350			qede_free_mem_load(edev);
3351			return rc;
3352		}
3353	}
3354
3355	return 0;
3356}
3357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3358/* This function inits fp content and resets the SB, RXQ and TXQ structures */
3359static void qede_init_fp(struct qede_dev *edev)
3360{
3361	int queue_id, rxq_index = 0, txq_index = 0;
3362	struct qede_fastpath *fp;
 
3363
3364	for_each_queue(queue_id) {
3365		fp = &edev->fp_array[queue_id];
3366
3367		fp->edev = edev;
3368		fp->id = queue_id;
3369
3370		if (fp->type & QEDE_FASTPATH_XDP) {
3371			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
3372								rxq_index);
3373			fp->xdp_tx->is_xdp = 1;
 
 
 
3374		}
3375
3376		if (fp->type & QEDE_FASTPATH_RX) {
3377			fp->rxq->rxq_id = rxq_index++;
3378
3379			/* Determine how to map buffers for this queue */
3380			if (fp->type & QEDE_FASTPATH_XDP)
3381				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
3382			else
3383				fp->rxq->data_direction = DMA_FROM_DEVICE;
3384			fp->rxq->dev = &edev->pdev->dev;
 
 
 
 
 
 
 
 
 
 
 
3385		}
3386
3387		if (fp->type & QEDE_FASTPATH_TX) {
3388			fp->txq->index = txq_index++;
3389			if (edev->dev_info.is_legacy)
3390				fp->txq->is_legacy = 1;
3391			fp->txq->dev = &edev->pdev->dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
3392		}
3393
3394		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
3395			 edev->ndev->name, queue_id);
3396	}
3397
3398	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
 
 
 
3399}
3400
3401static int qede_set_real_num_queues(struct qede_dev *edev)
3402{
3403	int rc = 0;
3404
3405	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
 
 
3406	if (rc) {
3407		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
3408		return rc;
3409	}
3410
3411	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
3412	if (rc) {
3413		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
3414		return rc;
3415	}
3416
3417	return 0;
3418}
3419
3420static void qede_napi_disable_remove(struct qede_dev *edev)
3421{
3422	int i;
3423
3424	for_each_queue(i) {
3425		napi_disable(&edev->fp_array[i].napi);
3426
3427		netif_napi_del(&edev->fp_array[i].napi);
3428	}
3429}
3430
3431static void qede_napi_add_enable(struct qede_dev *edev)
3432{
3433	int i;
3434
3435	/* Add NAPI objects */
3436	for_each_queue(i) {
3437		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3438			       qede_poll, NAPI_POLL_WEIGHT);
3439		napi_enable(&edev->fp_array[i].napi);
3440	}
3441}
3442
3443static void qede_sync_free_irqs(struct qede_dev *edev)
3444{
3445	int i;
3446
3447	for (i = 0; i < edev->int_info.used_cnt; i++) {
3448		if (edev->int_info.msix_cnt) {
3449			synchronize_irq(edev->int_info.msix[i].vector);
3450			free_irq(edev->int_info.msix[i].vector,
3451				 &edev->fp_array[i]);
3452		} else {
3453			edev->ops->common->simd_handler_clean(edev->cdev, i);
3454		}
3455	}
3456
3457	edev->int_info.used_cnt = 0;
 
3458}
3459
3460static int qede_req_msix_irqs(struct qede_dev *edev)
3461{
3462	int i, rc;
3463
3464	/* Sanitize number of interrupts == number of prepared RSS queues */
3465	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
3466		DP_ERR(edev,
3467		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3468		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
3469		return -EINVAL;
3470	}
3471
3472	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
 
 
 
 
 
 
 
 
 
 
 
 
3473		rc = request_irq(edev->int_info.msix[i].vector,
3474				 qede_msix_fp_int, 0, edev->fp_array[i].name,
3475				 &edev->fp_array[i]);
3476		if (rc) {
3477			DP_ERR(edev, "Request fp %d irq failed\n", i);
 
 
 
 
 
 
3478			qede_sync_free_irqs(edev);
3479			return rc;
3480		}
3481		DP_VERBOSE(edev, NETIF_MSG_INTR,
3482			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3483			   edev->fp_array[i].name, i,
3484			   &edev->fp_array[i]);
3485		edev->int_info.used_cnt++;
3486	}
3487
3488	return 0;
3489}
3490
3491static void qede_simd_fp_handler(void *cookie)
3492{
3493	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3494
3495	napi_schedule_irqoff(&fp->napi);
3496}
3497
3498static int qede_setup_irqs(struct qede_dev *edev)
3499{
3500	int i, rc = 0;
3501
3502	/* Learn Interrupt configuration */
3503	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3504	if (rc)
3505		return rc;
3506
3507	if (edev->int_info.msix_cnt) {
3508		rc = qede_req_msix_irqs(edev);
3509		if (rc)
3510			return rc;
3511		edev->ndev->irq = edev->int_info.msix[0].vector;
3512	} else {
3513		const struct qed_common_ops *ops;
3514
3515		/* qed should learn receive the RSS ids and callbacks */
3516		ops = edev->ops->common;
3517		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
3518			ops->simd_handler_config(edev->cdev,
3519						 &edev->fp_array[i], i,
3520						 qede_simd_fp_handler);
3521		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
3522	}
3523	return 0;
3524}
3525
3526static int qede_drain_txq(struct qede_dev *edev,
3527			  struct qede_tx_queue *txq, bool allow_drain)
3528{
3529	int rc, cnt = 1000;
3530
3531	while (txq->sw_tx_cons != txq->sw_tx_prod) {
3532		if (!cnt) {
3533			if (allow_drain) {
3534				DP_NOTICE(edev,
3535					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
3536					  txq->index);
3537				rc = edev->ops->common->drain(edev->cdev);
3538				if (rc)
3539					return rc;
3540				return qede_drain_txq(edev, txq, false);
3541			}
3542			DP_NOTICE(edev,
3543				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3544				  txq->index, txq->sw_tx_prod,
3545				  txq->sw_tx_cons);
3546			return -ENODEV;
3547		}
3548		cnt--;
3549		usleep_range(1000, 2000);
3550		barrier();
3551	}
3552
3553	/* FW finished processing, wait for HW to transmit all tx packets */
3554	usleep_range(1000, 2000);
3555
3556	return 0;
3557}
3558
3559static int qede_stop_txq(struct qede_dev *edev,
3560			 struct qede_tx_queue *txq, int rss_id)
3561{
 
 
 
 
3562	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
3563}
3564
3565static int qede_stop_queues(struct qede_dev *edev)
3566{
3567	struct qed_update_vport_params vport_update_params;
3568	struct qed_dev *cdev = edev->cdev;
3569	struct qede_fastpath *fp;
3570	int rc, i;
3571
3572	/* Disable the vport */
3573	memset(&vport_update_params, 0, sizeof(vport_update_params));
3574	vport_update_params.vport_id = 0;
3575	vport_update_params.update_vport_active_flg = 1;
3576	vport_update_params.vport_active_flg = 0;
3577	vport_update_params.update_rss_flg = 0;
 
 
 
 
 
 
3578
3579	rc = edev->ops->vport_update(cdev, &vport_update_params);
3580	if (rc) {
3581		DP_ERR(edev, "Failed to update vport\n");
3582		return rc;
3583	}
3584
3585	/* Flush Tx queues. If needed, request drain from MCP */
3586	for_each_queue(i) {
3587		fp = &edev->fp_array[i];
3588
3589		if (fp->type & QEDE_FASTPATH_TX) {
3590			rc = qede_drain_txq(edev, fp->txq, true);
3591			if (rc)
3592				return rc;
 
 
 
 
3593		}
3594
3595		if (fp->type & QEDE_FASTPATH_XDP) {
3596			rc = qede_drain_txq(edev, fp->xdp_tx, true);
3597			if (rc)
3598				return rc;
3599		}
3600	}
3601
3602	/* Stop all Queues in reverse order */
3603	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
3604		fp = &edev->fp_array[i];
3605
3606		/* Stop the Tx Queue(s) */
3607		if (fp->type & QEDE_FASTPATH_TX) {
3608			rc = qede_stop_txq(edev, fp->txq, i);
3609			if (rc)
3610				return rc;
 
 
 
 
3611		}
3612
3613		/* Stop the Rx Queue */
3614		if (fp->type & QEDE_FASTPATH_RX) {
3615			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
3616			if (rc) {
3617				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3618				return rc;
3619			}
3620		}
3621
3622		/* Stop the XDP forwarding queue */
3623		if (fp->type & QEDE_FASTPATH_XDP) {
3624			rc = qede_stop_txq(edev, fp->xdp_tx, i);
3625			if (rc)
3626				return rc;
3627
3628			bpf_prog_put(fp->rxq->xdp_prog);
3629		}
3630	}
3631
3632	/* Stop the vport */
3633	rc = edev->ops->vport_stop(cdev, 0);
3634	if (rc)
3635		DP_ERR(edev, "Failed to stop VPORT\n");
3636
3637	return rc;
3638}
3639
3640static int qede_start_txq(struct qede_dev *edev,
3641			  struct qede_fastpath *fp,
3642			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
3643{
3644	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
3645	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
3646	struct qed_queue_start_common_params params;
3647	struct qed_txq_start_ret_params ret_params;
3648	int rc;
3649
3650	memset(&params, 0, sizeof(params));
3651	memset(&ret_params, 0, sizeof(ret_params));
3652
3653	/* Let the XDP queue share the queue-zone with one of the regular txq.
3654	 * We don't really care about its coalescing.
3655	 */
3656	if (txq->is_xdp)
3657		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
3658	else
3659		params.queue_id = txq->index;
3660
3661	params.sb = fp->sb_info->igu_sb_id;
3662	params.sb_idx = sb_idx;
 
3663
3664	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
3665				   page_cnt, &ret_params);
3666	if (rc) {
3667		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
3668		return rc;
3669	}
3670
3671	txq->doorbell_addr = ret_params.p_doorbell;
3672	txq->handle = ret_params.p_handle;
3673
3674	/* Determine the FW consumer address associated */
3675	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
3676
3677	/* Prepare the doorbell parameters */
3678	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
3679	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
3680	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
3681		  DQ_XCM_ETH_TX_BD_PROD_CMD);
3682	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3683
 
 
 
 
 
3684	return rc;
3685}
3686
3687static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
3688{
3689	int vlan_removal_en = 1;
3690	struct qed_dev *cdev = edev->cdev;
3691	struct qed_update_vport_params vport_update_params;
 
3692	struct qed_queue_start_common_params q_params;
3693	struct qed_dev_info *qed_info = &edev->dev_info.common;
3694	struct qed_start_vport_params start = {0};
3695	bool reset_rss_indir = false;
3696	int rc, i;
3697
3698	if (!edev->num_queues) {
3699		DP_ERR(edev,
3700		       "Cannot update V-VPORT as active as there are no Rx queues\n");
3701		return -EINVAL;
3702	}
3703
 
 
 
 
 
3704	start.gro_enable = !edev->gro_disable;
3705	start.mtu = edev->ndev->mtu;
3706	start.vport_id = 0;
3707	start.drop_ttl0 = true;
3708	start.remove_inner_vlan = vlan_removal_en;
3709	start.clear_stats = clear_stats;
3710
3711	rc = edev->ops->vport_start(cdev, &start);
3712
3713	if (rc) {
3714		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3715		return rc;
3716	}
3717
3718	DP_VERBOSE(edev, NETIF_MSG_IFUP,
3719		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3720		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3721
3722	for_each_queue(i) {
3723		struct qede_fastpath *fp = &edev->fp_array[i];
3724		dma_addr_t p_phys_table;
3725		u32 page_cnt;
3726
3727		if (fp->type & QEDE_FASTPATH_RX) {
3728			struct qed_rxq_start_ret_params ret_params;
3729			struct qede_rx_queue *rxq = fp->rxq;
3730			__le16 *val;
3731
3732			memset(&ret_params, 0, sizeof(ret_params));
3733			memset(&q_params, 0, sizeof(q_params));
3734			q_params.queue_id = rxq->rxq_id;
3735			q_params.vport_id = 0;
3736			q_params.sb = fp->sb_info->igu_sb_id;
3737			q_params.sb_idx = RX_PI;
3738
3739			p_phys_table =
3740			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
3741			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
3742
3743			rc = edev->ops->q_rx_start(cdev, i, &q_params,
3744						   rxq->rx_buf_size,
3745						   rxq->rx_bd_ring.p_phys_addr,
3746						   p_phys_table,
3747						   page_cnt, &ret_params);
3748			if (rc) {
3749				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
3750				       rc);
3751				return rc;
3752			}
3753
3754			/* Use the return parameters */
3755			rxq->hw_rxq_prod_addr = ret_params.p_prod;
3756			rxq->handle = ret_params.p_handle;
3757
3758			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
3759			rxq->hw_cons_ptr = val;
3760
3761			qede_update_rx_prod(edev, rxq);
3762		}
3763
3764		if (fp->type & QEDE_FASTPATH_XDP) {
3765			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
3766			if (rc)
3767				return rc;
3768
3769			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
3770			if (IS_ERR(fp->rxq->xdp_prog)) {
3771				rc = PTR_ERR(fp->rxq->xdp_prog);
3772				fp->rxq->xdp_prog = NULL;
3773				return rc;
3774			}
3775		}
3776
3777		if (fp->type & QEDE_FASTPATH_TX) {
3778			rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
3779			if (rc)
3780				return rc;
 
 
 
 
 
3781		}
3782	}
3783
3784	/* Prepare and send the vport enable */
3785	memset(&vport_update_params, 0, sizeof(vport_update_params));
3786	vport_update_params.vport_id = start.vport_id;
3787	vport_update_params.update_vport_active_flg = 1;
3788	vport_update_params.vport_active_flg = 1;
3789
3790	if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3791	    qed_info->tx_switching) {
3792		vport_update_params.update_tx_switching_flg = 1;
3793		vport_update_params.tx_switching_flg = 1;
3794	}
3795
3796	/* Fill struct with RSS params */
3797	if (QEDE_RSS_COUNT(edev) > 1) {
3798		vport_update_params.update_rss_flg = 1;
3799
3800		/* Need to validate current RSS config uses valid entries */
3801		for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3802			if (edev->rss_params.rss_ind_table[i] >=
3803			    QEDE_RSS_COUNT(edev)) {
3804				reset_rss_indir = true;
3805				break;
3806			}
3807		}
3808
3809		if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3810		    reset_rss_indir) {
3811			u16 val;
3812
3813			for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3814				u16 indir_val;
3815
3816				val = QEDE_RSS_COUNT(edev);
3817				indir_val = ethtool_rxfh_indir_default(i, val);
3818				edev->rss_params.rss_ind_table[i] = indir_val;
3819			}
3820			edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3821		}
3822
3823		if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3824			netdev_rss_key_fill(edev->rss_params.rss_key,
3825					    sizeof(edev->rss_params.rss_key));
3826			edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3827		}
3828
3829		if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3830			edev->rss_params.rss_caps = QED_RSS_IPV4 |
3831						    QED_RSS_IPV6 |
3832						    QED_RSS_IPV4_TCP |
3833						    QED_RSS_IPV6_TCP;
3834			edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3835		}
3836
3837		memcpy(&vport_update_params.rss_params, &edev->rss_params,
3838		       sizeof(vport_update_params.rss_params));
3839	} else {
3840		memset(&vport_update_params.rss_params, 0,
3841		       sizeof(vport_update_params.rss_params));
3842	}
3843
3844	rc = edev->ops->vport_update(cdev, &vport_update_params);
3845	if (rc) {
3846		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3847		return rc;
3848	}
3849
3850	return 0;
3851}
3852
3853static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3854				 enum qed_filter_xcast_params_type opcode,
3855				 unsigned char *mac, int num_macs)
3856{
3857	struct qed_filter_params filter_cmd;
3858	int i;
3859
3860	memset(&filter_cmd, 0, sizeof(filter_cmd));
3861	filter_cmd.type = QED_FILTER_TYPE_MCAST;
3862	filter_cmd.filter.mcast.type = opcode;
3863	filter_cmd.filter.mcast.num = num_macs;
3864
3865	for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3866		ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3867
3868	return edev->ops->filter_config(edev->cdev, &filter_cmd);
3869}
3870
3871enum qede_unload_mode {
3872	QEDE_UNLOAD_NORMAL,
 
3873};
3874
3875static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
3876			bool is_locked)
3877{
3878	struct qed_link_params link_params;
3879	int rc;
3880
3881	DP_INFO(edev, "Starting qede unload\n");
3882
3883	if (!is_locked)
3884		__qede_lock(edev);
3885
3886	qede_roce_dev_event_close(edev);
3887	edev->state = QEDE_STATE_CLOSED;
 
 
 
 
3888
3889	/* Close OS Tx */
3890	netif_tx_disable(edev->ndev);
3891	netif_carrier_off(edev->ndev);
3892
3893	/* Reset the link */
3894	memset(&link_params, 0, sizeof(link_params));
3895	link_params.link_up = false;
3896	edev->ops->common->set_link(edev->cdev, &link_params);
3897	rc = qede_stop_queues(edev);
3898	if (rc) {
3899		qede_sync_free_irqs(edev);
3900		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3901	}
3902
3903	DP_INFO(edev, "Stopped Queues\n");
3904
3905	qede_vlan_mark_nonconfigured(edev);
3906	edev->ops->fastpath_stop(edev->cdev);
3907
 
 
 
 
 
3908	/* Release the interrupts */
3909	qede_sync_free_irqs(edev);
3910	edev->ops->common->set_fp_int(edev->cdev, 0);
3911
3912	qede_napi_disable_remove(edev);
3913
 
 
 
3914	qede_free_mem_load(edev);
3915	qede_free_fp_array(edev);
3916
3917out:
3918	if (!is_locked)
3919		__qede_unlock(edev);
 
 
 
 
 
 
3920	DP_INFO(edev, "Ending qede unload\n");
3921}
3922
3923enum qede_load_mode {
3924	QEDE_LOAD_NORMAL,
3925	QEDE_LOAD_RELOAD,
 
3926};
3927
3928static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
3929		     bool is_locked)
3930{
3931	struct qed_link_params link_params;
3932	struct qed_link_output link_output;
3933	int rc;
 
3934
3935	DP_INFO(edev, "Starting qede load\n");
3936
3937	if (!is_locked)
3938		__qede_lock(edev);
3939
3940	rc = qede_set_num_queues(edev);
3941	if (rc)
3942		goto out;
3943
3944	rc = qede_alloc_fp_array(edev);
3945	if (rc)
3946		goto out;
3947
3948	qede_init_fp(edev);
3949
3950	rc = qede_alloc_mem_load(edev);
3951	if (rc)
3952		goto err1;
3953	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
3954		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
3955
3956	rc = qede_set_real_num_queues(edev);
3957	if (rc)
3958		goto err2;
3959
 
 
 
 
 
3960	qede_napi_add_enable(edev);
3961	DP_INFO(edev, "Napi added and enabled\n");
3962
3963	rc = qede_setup_irqs(edev);
3964	if (rc)
3965		goto err3;
3966	DP_INFO(edev, "Setup IRQs succeeded\n");
3967
3968	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
3969	if (rc)
3970		goto err4;
3971	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3972
3973	/* Add primary mac and set Rx filters */
3974	ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
 
3975
3976	/* Program un-configured VLANs */
3977	qede_configure_vlan_filters(edev);
3978
 
 
3979	/* Ask for link-up using current configuration */
3980	memset(&link_params, 0, sizeof(link_params));
3981	link_params.link_up = true;
3982	edev->ops->common->set_link(edev->cdev, &link_params);
3983
3984	/* Query whether link is already-up */
3985	memset(&link_output, 0, sizeof(link_output));
3986	edev->ops->common->get_link(edev->cdev, &link_output);
3987	qede_roce_dev_event_open(edev);
3988	qede_link_update(edev, &link_output);
3989
3990	edev->state = QEDE_STATE_OPEN;
 
3991
 
 
 
 
 
 
 
 
 
3992	DP_INFO(edev, "Ending successfully qede load\n");
3993
3994
3995	goto out;
3996err4:
3997	qede_sync_free_irqs(edev);
3998	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3999err3:
4000	qede_napi_disable_remove(edev);
4001err2:
4002	qede_free_mem_load(edev);
4003err1:
4004	edev->ops->common->set_fp_int(edev->cdev, 0);
4005	qede_free_fp_array(edev);
4006	edev->num_queues = 0;
4007	edev->fp_num_tx = 0;
4008	edev->fp_num_rx = 0;
4009out:
4010	if (!is_locked)
4011		__qede_unlock(edev);
4012
4013	return rc;
4014}
4015
4016/* 'func' should be able to run between unload and reload assuming interface
4017 * is actually running, or afterwards in case it's currently DOWN.
4018 */
4019void qede_reload(struct qede_dev *edev,
4020		 struct qede_reload_args *args, bool is_locked)
4021{
4022	if (!is_locked)
4023		__qede_lock(edev);
4024
4025	/* Since qede_lock is held, internal state wouldn't change even
4026	 * if netdev state would start transitioning. Check whether current
4027	 * internal configuration indicates device is up, then reload.
4028	 */
4029	if (edev->state == QEDE_STATE_OPEN) {
4030		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
4031		if (args)
4032			args->func(edev, args);
4033		qede_load(edev, QEDE_LOAD_RELOAD, true);
4034
4035		/* Since no one is going to do it for us, re-configure */
4036		qede_config_rx_mode(edev->ndev);
4037	} else if (args) {
4038		args->func(edev, args);
4039	}
4040
4041	if (!is_locked)
4042		__qede_unlock(edev);
4043}
4044
4045/* called with rtnl_lock */
4046static int qede_open(struct net_device *ndev)
4047{
4048	struct qede_dev *edev = netdev_priv(ndev);
4049	int rc;
4050
4051	netif_carrier_off(ndev);
4052
4053	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
4054
4055	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
4056	if (rc)
4057		return rc;
4058
4059	udp_tunnel_get_rx_info(ndev);
4060
4061	edev->ops->common->update_drv_state(edev->cdev, true);
4062
4063	return 0;
4064}
4065
4066static int qede_close(struct net_device *ndev)
4067{
4068	struct qede_dev *edev = netdev_priv(ndev);
4069
4070	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
4071
4072	edev->ops->common->update_drv_state(edev->cdev, false);
 
4073
4074	return 0;
4075}
4076
4077static void qede_link_update(void *dev, struct qed_link_output *link)
4078{
4079	struct qede_dev *edev = dev;
4080
4081	if (!netif_running(edev->ndev)) {
4082		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
4083		return;
4084	}
4085
4086	if (link->link_up) {
4087		if (!netif_carrier_ok(edev->ndev)) {
4088			DP_NOTICE(edev, "Link is up\n");
4089			netif_tx_start_all_queues(edev->ndev);
4090			netif_carrier_on(edev->ndev);
 
4091		}
4092	} else {
4093		if (netif_carrier_ok(edev->ndev)) {
4094			DP_NOTICE(edev, "Link is down\n");
4095			netif_tx_disable(edev->ndev);
4096			netif_carrier_off(edev->ndev);
 
4097		}
4098	}
4099}
4100
4101static int qede_set_mac_addr(struct net_device *ndev, void *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4102{
4103	struct qede_dev *edev = netdev_priv(ndev);
4104	struct sockaddr *addr = p;
4105	int rc;
4106
4107	ASSERT_RTNL(); /* @@@TBD To be removed */
 
 
 
 
 
4108
4109	DP_INFO(edev, "Set_mac_addr called\n");
4110
4111	if (!is_valid_ether_addr(addr->sa_data)) {
4112		DP_NOTICE(edev, "The MAC address is not valid\n");
4113		return -EFAULT;
4114	}
4115
4116	if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
4117		DP_NOTICE(edev, "qed prevents setting MAC\n");
4118		return -EINVAL;
 
 
4119	}
4120
4121	ether_addr_copy(ndev->dev_addr, addr->sa_data);
 
 
 
4122
4123	if (!netif_running(ndev))  {
4124		DP_NOTICE(edev, "The device is currently down\n");
4125		return 0;
4126	}
4127
4128	/* Remove the previous primary mac */
4129	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
4130				   edev->primary_mac);
4131	if (rc)
4132		return rc;
4133
4134	edev->ops->common->update_mac(edev->cdev, addr->sa_data);
4135
4136	/* Add MAC filter according to the new unicast HW MAC address */
4137	ether_addr_copy(edev->primary_mac, ndev->dev_addr);
4138	return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
4139				      edev->primary_mac);
4140}
4141
4142static int
4143qede_configure_mcast_filtering(struct net_device *ndev,
4144			       enum qed_filter_rx_mode_type *accept_flags)
4145{
4146	struct qede_dev *edev = netdev_priv(ndev);
4147	unsigned char *mc_macs, *temp;
4148	struct netdev_hw_addr *ha;
4149	int rc = 0, mc_count;
4150	size_t size;
4151
4152	size = 64 * ETH_ALEN;
 
 
4153
4154	mc_macs = kzalloc(size, GFP_KERNEL);
4155	if (!mc_macs) {
4156		DP_NOTICE(edev,
4157			  "Failed to allocate memory for multicast MACs\n");
4158		rc = -ENOMEM;
4159		goto exit;
4160	}
4161
4162	temp = mc_macs;
 
 
4163
4164	/* Remove all previously configured MAC filters */
4165	rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
4166				   mc_macs, 1);
4167	if (rc)
4168		goto exit;
4169
4170	netif_addr_lock_bh(ndev);
 
 
 
 
4171
4172	mc_count = netdev_mc_count(ndev);
4173	if (mc_count < 64) {
4174		netdev_for_each_mc_addr(ha, ndev) {
4175			ether_addr_copy(temp, ha->addr);
4176			temp += ETH_ALEN;
4177		}
4178	}
4179
4180	netif_addr_unlock_bh(ndev);
4181
4182	/* Check for all multicast @@@TBD resource allocation */
4183	if ((ndev->flags & IFF_ALLMULTI) ||
4184	    (mc_count > 64)) {
4185		if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
4186			*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
4187	} else {
4188		/* Add all multicast MAC filters */
4189		rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
4190					   mc_macs, mc_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4191	}
4192
4193exit:
4194	kfree(mc_macs);
4195	return rc;
4196}
4197
4198static void qede_set_rx_mode(struct net_device *ndev)
 
4199{
4200	struct qede_dev *edev = netdev_priv(ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4201
4202	set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
 
 
 
4203	schedule_delayed_work(&edev->sp_task, 0);
 
 
4204}
4205
4206/* Must be called with qede_lock held */
4207static void qede_config_rx_mode(struct net_device *ndev)
4208{
4209	enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
4210	struct qede_dev *edev = netdev_priv(ndev);
4211	struct qed_filter_params rx_mode;
4212	unsigned char *uc_macs, *temp;
4213	struct netdev_hw_addr *ha;
4214	int rc, uc_count;
4215	size_t size;
4216
4217	netif_addr_lock_bh(ndev);
 
 
4218
4219	uc_count = netdev_uc_count(ndev);
4220	size = uc_count * ETH_ALEN;
4221
4222	uc_macs = kzalloc(size, GFP_ATOMIC);
4223	if (!uc_macs) {
4224		DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
4225		netif_addr_unlock_bh(ndev);
4226		return;
4227	}
4228
4229	temp = uc_macs;
4230	netdev_for_each_uc_addr(ha, ndev) {
4231		ether_addr_copy(temp, ha->addr);
4232		temp += ETH_ALEN;
 
 
 
 
 
 
 
 
 
 
 
4233	}
4234
4235	netif_addr_unlock_bh(ndev);
 
4236
4237	/* Configure the struct for the Rx mode */
4238	memset(&rx_mode, 0, sizeof(struct qed_filter_params));
4239	rx_mode.type = QED_FILTER_TYPE_RX_MODE;
 
 
 
4240
4241	/* Remove all previous unicast secondary macs and multicast macs
4242	 * (configrue / leave the primary mac)
4243	 */
4244	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
4245				   edev->primary_mac);
4246	if (rc)
4247		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
4248
4249	/* Check for promiscuous */
4250	if ((ndev->flags & IFF_PROMISC) ||
4251	    (uc_count > edev->dev_info.num_mac_filters - 1)) {
4252		accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
4253	} else {
4254		/* Add MAC filters according to the unicast secondary macs */
4255		int i;
4256
4257		temp = uc_macs;
4258		for (i = 0; i < uc_count; i++) {
4259			rc = qede_set_ucast_rx_mac(edev,
4260						   QED_FILTER_XCAST_TYPE_ADD,
4261						   temp);
4262			if (rc)
4263				goto out;
 
4264
4265			temp += ETH_ALEN;
 
 
 
 
 
 
 
4266		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4267
4268		rc = qede_configure_mcast_filtering(ndev, &accept_flags);
4269		if (rc)
4270			goto out;
 
 
 
 
 
 
 
4271	}
4272
4273	/* take care of VLAN mode */
4274	if (ndev->flags & IFF_PROMISC) {
4275		qede_config_accept_any_vlan(edev, true);
4276	} else if (!edev->non_configured_vlans) {
4277		/* It's possible that accept_any_vlan mode is set due to a
4278		 * previous setting of IFF_PROMISC. If vlan credits are
4279		 * sufficient, disable accept_any_vlan.
4280		 */
4281		qede_config_accept_any_vlan(edev, false);
4282	}
4283
4284	rx_mode.filter.accept_flags = accept_flags;
4285	edev->ops->filter_config(edev->cdev, &rx_mode);
4286out:
4287	kfree(uc_macs);
 
 
 
 
 
 
4288}