Loading...
1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2/* QLogic qede NIC Driver
3 * Copyright (c) 2015-2017 QLogic Corporation
4 * Copyright (c) 2019-2020 Marvell International Ltd.
5 */
6
7#include <linux/crash_dump.h>
8#include <linux/module.h>
9#include <linux/pci.h>
10#include <linux/device.h>
11#include <linux/netdevice.h>
12#include <linux/etherdevice.h>
13#include <linux/skbuff.h>
14#include <linux/errno.h>
15#include <linux/list.h>
16#include <linux/string.h>
17#include <linux/dma-mapping.h>
18#include <linux/interrupt.h>
19#include <asm/byteorder.h>
20#include <asm/param.h>
21#include <linux/io.h>
22#include <linux/netdev_features.h>
23#include <linux/udp.h>
24#include <linux/tcp.h>
25#include <net/udp_tunnel.h>
26#include <linux/ip.h>
27#include <net/ipv6.h>
28#include <net/tcp.h>
29#include <linux/if_ether.h>
30#include <linux/if_vlan.h>
31#include <linux/pkt_sched.h>
32#include <linux/ethtool.h>
33#include <linux/in.h>
34#include <linux/random.h>
35#include <net/ip6_checksum.h>
36#include <linux/bitops.h>
37#include <linux/vmalloc.h>
38#include "qede.h"
39#include "qede_ptp.h"
40
41MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
42MODULE_LICENSE("GPL");
43
44static uint debug;
45module_param(debug, uint, 0);
46MODULE_PARM_DESC(debug, " Default debug msglevel");
47
48static const struct qed_eth_ops *qed_ops;
49
50#define CHIP_NUM_57980S_40 0x1634
51#define CHIP_NUM_57980S_10 0x1666
52#define CHIP_NUM_57980S_MF 0x1636
53#define CHIP_NUM_57980S_100 0x1644
54#define CHIP_NUM_57980S_50 0x1654
55#define CHIP_NUM_57980S_25 0x1656
56#define CHIP_NUM_57980S_IOV 0x1664
57#define CHIP_NUM_AH 0x8070
58#define CHIP_NUM_AH_IOV 0x8090
59
60#ifndef PCI_DEVICE_ID_NX2_57980E
61#define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
62#define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
63#define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
64#define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
65#define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
66#define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
67#define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
68#define PCI_DEVICE_ID_AH CHIP_NUM_AH
69#define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV
70
71#endif
72
73enum qede_pci_private {
74 QEDE_PRIVATE_PF,
75 QEDE_PRIVATE_VF
76};
77
78static const struct pci_device_id qede_pci_tbl[] = {
79 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
80 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
81 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
82 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
83 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
84 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
85#ifdef CONFIG_QED_SRIOV
86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
87#endif
88 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
89#ifdef CONFIG_QED_SRIOV
90 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
91#endif
92 { 0 }
93};
94
95MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
96
97static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
98static pci_ers_result_t
99qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
100
101#define TX_TIMEOUT (5 * HZ)
102
103/* Utilize last protocol index for XDP */
104#define XDP_PI 11
105
106static void qede_remove(struct pci_dev *pdev);
107static void qede_shutdown(struct pci_dev *pdev);
108static void qede_link_update(void *dev, struct qed_link_output *link);
109static void qede_schedule_recovery_handler(void *dev);
110static void qede_recovery_handler(struct qede_dev *edev);
111static void qede_schedule_hw_err_handler(void *dev,
112 enum qed_hw_err_type err_type);
113static void qede_get_eth_tlv_data(void *edev, void *data);
114static void qede_get_generic_tlv_data(void *edev,
115 struct qed_generic_tlvs *data);
116static void qede_generic_hw_err_handler(struct qede_dev *edev);
117#ifdef CONFIG_QED_SRIOV
118static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
119 __be16 vlan_proto)
120{
121 struct qede_dev *edev = netdev_priv(ndev);
122
123 if (vlan > 4095) {
124 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
125 return -EINVAL;
126 }
127
128 if (vlan_proto != htons(ETH_P_8021Q))
129 return -EPROTONOSUPPORT;
130
131 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
132 vlan, vf);
133
134 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
135}
136
137static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
138{
139 struct qede_dev *edev = netdev_priv(ndev);
140
141 DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
142
143 if (!is_valid_ether_addr(mac)) {
144 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
145 return -EINVAL;
146 }
147
148 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
149}
150
151static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
152{
153 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
154 struct qed_dev_info *qed_info = &edev->dev_info.common;
155 struct qed_update_vport_params *vport_params;
156 int rc;
157
158 vport_params = vzalloc(sizeof(*vport_params));
159 if (!vport_params)
160 return -ENOMEM;
161 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
162
163 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
164
165 /* Enable/Disable Tx switching for PF */
166 if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
167 !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
168 vport_params->vport_id = 0;
169 vport_params->update_tx_switching_flg = 1;
170 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
171 edev->ops->vport_update(edev->cdev, vport_params);
172 }
173
174 vfree(vport_params);
175 return rc;
176}
177#endif
178
179static int __maybe_unused qede_suspend(struct device *dev)
180{
181 dev_info(dev, "Device does not support suspend operation\n");
182
183 return -EOPNOTSUPP;
184}
185
186static DEFINE_SIMPLE_DEV_PM_OPS(qede_pm_ops, qede_suspend, NULL);
187
188static const struct pci_error_handlers qede_err_handler = {
189 .error_detected = qede_io_error_detected,
190};
191
192static struct pci_driver qede_pci_driver = {
193 .name = "qede",
194 .id_table = qede_pci_tbl,
195 .probe = qede_probe,
196 .remove = qede_remove,
197 .shutdown = qede_shutdown,
198#ifdef CONFIG_QED_SRIOV
199 .sriov_configure = qede_sriov_configure,
200#endif
201 .err_handler = &qede_err_handler,
202 .driver.pm = &qede_pm_ops,
203};
204
205static struct qed_eth_cb_ops qede_ll_ops = {
206 {
207#ifdef CONFIG_RFS_ACCEL
208 .arfs_filter_op = qede_arfs_filter_op,
209#endif
210 .link_update = qede_link_update,
211 .schedule_recovery_handler = qede_schedule_recovery_handler,
212 .schedule_hw_err_handler = qede_schedule_hw_err_handler,
213 .get_generic_tlv_data = qede_get_generic_tlv_data,
214 .get_protocol_tlv_data = qede_get_eth_tlv_data,
215 },
216 .force_mac = qede_force_mac,
217 .ports_update = qede_udp_ports_update,
218};
219
220static int qede_netdev_event(struct notifier_block *this, unsigned long event,
221 void *ptr)
222{
223 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
224 struct ethtool_drvinfo drvinfo;
225 struct qede_dev *edev;
226
227 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
228 goto done;
229
230 /* Check whether this is a qede device */
231 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
232 goto done;
233
234 memset(&drvinfo, 0, sizeof(drvinfo));
235 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
236 if (strcmp(drvinfo.driver, "qede"))
237 goto done;
238 edev = netdev_priv(ndev);
239
240 switch (event) {
241 case NETDEV_CHANGENAME:
242 /* Notify qed of the name change */
243 if (!edev->ops || !edev->ops->common)
244 goto done;
245 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
246 break;
247 case NETDEV_CHANGEADDR:
248 edev = netdev_priv(ndev);
249 qede_rdma_event_changeaddr(edev);
250 break;
251 }
252
253done:
254 return NOTIFY_DONE;
255}
256
257static struct notifier_block qede_netdev_notifier = {
258 .notifier_call = qede_netdev_event,
259};
260
261static
262int __init qede_init(void)
263{
264 int ret;
265
266 pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
267
268 qede_forced_speed_maps_init();
269
270 qed_ops = qed_get_eth_ops();
271 if (!qed_ops) {
272 pr_notice("Failed to get qed ethtool operations\n");
273 return -EINVAL;
274 }
275
276 /* Must register notifier before pci ops, since we might miss
277 * interface rename after pci probe and netdev registration.
278 */
279 ret = register_netdevice_notifier(&qede_netdev_notifier);
280 if (ret) {
281 pr_notice("Failed to register netdevice_notifier\n");
282 qed_put_eth_ops();
283 return -EINVAL;
284 }
285
286 ret = pci_register_driver(&qede_pci_driver);
287 if (ret) {
288 pr_notice("Failed to register driver\n");
289 unregister_netdevice_notifier(&qede_netdev_notifier);
290 qed_put_eth_ops();
291 return -EINVAL;
292 }
293
294 return 0;
295}
296
297static void __exit qede_cleanup(void)
298{
299 if (debug & QED_LOG_INFO_MASK)
300 pr_info("qede_cleanup called\n");
301
302 unregister_netdevice_notifier(&qede_netdev_notifier);
303 pci_unregister_driver(&qede_pci_driver);
304 qed_put_eth_ops();
305}
306
307module_init(qede_init);
308module_exit(qede_cleanup);
309
310static int qede_open(struct net_device *ndev);
311static int qede_close(struct net_device *ndev);
312
313void qede_fill_by_demand_stats(struct qede_dev *edev)
314{
315 struct qede_stats_common *p_common = &edev->stats.common;
316 struct qed_eth_stats stats;
317
318 edev->ops->get_vport_stats(edev->cdev, &stats);
319
320 spin_lock(&edev->stats_lock);
321
322 p_common->no_buff_discards = stats.common.no_buff_discards;
323 p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
324 p_common->ttl0_discard = stats.common.ttl0_discard;
325 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
326 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
327 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
328 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
329 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
330 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
331 p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
332 p_common->mac_filter_discards = stats.common.mac_filter_discards;
333 p_common->gft_filter_drop = stats.common.gft_filter_drop;
334
335 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
336 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
337 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
338 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
339 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
340 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
341 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
342 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
343 p_common->coalesced_events = stats.common.tpa_coalesced_events;
344 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
345 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
346 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
347
348 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
349 p_common->rx_65_to_127_byte_packets =
350 stats.common.rx_65_to_127_byte_packets;
351 p_common->rx_128_to_255_byte_packets =
352 stats.common.rx_128_to_255_byte_packets;
353 p_common->rx_256_to_511_byte_packets =
354 stats.common.rx_256_to_511_byte_packets;
355 p_common->rx_512_to_1023_byte_packets =
356 stats.common.rx_512_to_1023_byte_packets;
357 p_common->rx_1024_to_1518_byte_packets =
358 stats.common.rx_1024_to_1518_byte_packets;
359 p_common->rx_crc_errors = stats.common.rx_crc_errors;
360 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
361 p_common->rx_pause_frames = stats.common.rx_pause_frames;
362 p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
363 p_common->rx_align_errors = stats.common.rx_align_errors;
364 p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
365 p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
366 p_common->rx_jabbers = stats.common.rx_jabbers;
367 p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
368 p_common->rx_fragments = stats.common.rx_fragments;
369 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
370 p_common->tx_65_to_127_byte_packets =
371 stats.common.tx_65_to_127_byte_packets;
372 p_common->tx_128_to_255_byte_packets =
373 stats.common.tx_128_to_255_byte_packets;
374 p_common->tx_256_to_511_byte_packets =
375 stats.common.tx_256_to_511_byte_packets;
376 p_common->tx_512_to_1023_byte_packets =
377 stats.common.tx_512_to_1023_byte_packets;
378 p_common->tx_1024_to_1518_byte_packets =
379 stats.common.tx_1024_to_1518_byte_packets;
380 p_common->tx_pause_frames = stats.common.tx_pause_frames;
381 p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
382 p_common->brb_truncates = stats.common.brb_truncates;
383 p_common->brb_discards = stats.common.brb_discards;
384 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
385 p_common->link_change_count = stats.common.link_change_count;
386 p_common->ptp_skip_txts = edev->ptp_skip_txts;
387
388 if (QEDE_IS_BB(edev)) {
389 struct qede_stats_bb *p_bb = &edev->stats.bb;
390
391 p_bb->rx_1519_to_1522_byte_packets =
392 stats.bb.rx_1519_to_1522_byte_packets;
393 p_bb->rx_1519_to_2047_byte_packets =
394 stats.bb.rx_1519_to_2047_byte_packets;
395 p_bb->rx_2048_to_4095_byte_packets =
396 stats.bb.rx_2048_to_4095_byte_packets;
397 p_bb->rx_4096_to_9216_byte_packets =
398 stats.bb.rx_4096_to_9216_byte_packets;
399 p_bb->rx_9217_to_16383_byte_packets =
400 stats.bb.rx_9217_to_16383_byte_packets;
401 p_bb->tx_1519_to_2047_byte_packets =
402 stats.bb.tx_1519_to_2047_byte_packets;
403 p_bb->tx_2048_to_4095_byte_packets =
404 stats.bb.tx_2048_to_4095_byte_packets;
405 p_bb->tx_4096_to_9216_byte_packets =
406 stats.bb.tx_4096_to_9216_byte_packets;
407 p_bb->tx_9217_to_16383_byte_packets =
408 stats.bb.tx_9217_to_16383_byte_packets;
409 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
410 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
411 } else {
412 struct qede_stats_ah *p_ah = &edev->stats.ah;
413
414 p_ah->rx_1519_to_max_byte_packets =
415 stats.ah.rx_1519_to_max_byte_packets;
416 p_ah->tx_1519_to_max_byte_packets =
417 stats.ah.tx_1519_to_max_byte_packets;
418 }
419
420 spin_unlock(&edev->stats_lock);
421}
422
423static void qede_get_stats64(struct net_device *dev,
424 struct rtnl_link_stats64 *stats)
425{
426 struct qede_dev *edev = netdev_priv(dev);
427 struct qede_stats_common *p_common;
428
429 p_common = &edev->stats.common;
430
431 spin_lock(&edev->stats_lock);
432
433 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
434 p_common->rx_bcast_pkts;
435 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
436 p_common->tx_bcast_pkts;
437
438 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
439 p_common->rx_bcast_bytes;
440 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
441 p_common->tx_bcast_bytes;
442
443 stats->tx_errors = p_common->tx_err_drop_pkts;
444 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
445
446 stats->rx_fifo_errors = p_common->no_buff_discards;
447
448 if (QEDE_IS_BB(edev))
449 stats->collisions = edev->stats.bb.tx_total_collisions;
450 stats->rx_crc_errors = p_common->rx_crc_errors;
451 stats->rx_frame_errors = p_common->rx_align_errors;
452
453 spin_unlock(&edev->stats_lock);
454}
455
456#ifdef CONFIG_QED_SRIOV
457static int qede_get_vf_config(struct net_device *dev, int vfidx,
458 struct ifla_vf_info *ivi)
459{
460 struct qede_dev *edev = netdev_priv(dev);
461
462 if (!edev->ops)
463 return -EINVAL;
464
465 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
466}
467
468static int qede_set_vf_rate(struct net_device *dev, int vfidx,
469 int min_tx_rate, int max_tx_rate)
470{
471 struct qede_dev *edev = netdev_priv(dev);
472
473 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
474 max_tx_rate);
475}
476
477static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
478{
479 struct qede_dev *edev = netdev_priv(dev);
480
481 if (!edev->ops)
482 return -EINVAL;
483
484 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
485}
486
487static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
488 int link_state)
489{
490 struct qede_dev *edev = netdev_priv(dev);
491
492 if (!edev->ops)
493 return -EINVAL;
494
495 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
496}
497
498static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
499{
500 struct qede_dev *edev = netdev_priv(dev);
501
502 if (!edev->ops)
503 return -EINVAL;
504
505 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
506}
507#endif
508
509static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
510{
511 struct qede_dev *edev = netdev_priv(dev);
512
513 if (!netif_running(dev))
514 return -EAGAIN;
515
516 switch (cmd) {
517 case SIOCSHWTSTAMP:
518 return qede_ptp_hw_ts(edev, ifr);
519 default:
520 DP_VERBOSE(edev, QED_MSG_DEBUG,
521 "default IOCTL cmd 0x%x\n", cmd);
522 return -EOPNOTSUPP;
523 }
524
525 return 0;
526}
527
528static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp)
529{
530 char *p_sb = (char *)fp->sb_info->sb_virt;
531 u32 sb_size, i;
532
533 sb_size = sizeof(struct status_block);
534
535 for (i = 0; i < sb_size; i += 8)
536 DP_NOTICE(edev,
537 "%02hhX %02hhX %02hhX %02hhX %02hhX %02hhX %02hhX %02hhX\n",
538 p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3],
539 p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]);
540}
541
542static void
543qede_txq_fp_log_metadata(struct qede_dev *edev,
544 struct qede_fastpath *fp, struct qede_tx_queue *txq)
545{
546 struct qed_chain *p_chain = &txq->tx_pbl;
547
548 /* Dump txq/fp/sb ids etc. other metadata */
549 DP_NOTICE(edev,
550 "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n",
551 fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos,
552 p_chain, p_chain->capacity, p_chain->size, jiffies, HZ);
553
554 /* Dump all the relevant prod/cons indexes */
555 DP_NOTICE(edev,
556 "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n",
557 le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons,
558 qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain));
559}
560
561static void
562qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq)
563{
564 struct qed_sb_info_dbg sb_dbg;
565 int rc;
566
567 /* sb info */
568 qede_fp_sb_dump(edev, fp);
569
570 memset(&sb_dbg, 0, sizeof(sb_dbg));
571 rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg);
572
573 DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n",
574 sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]);
575
576 /* report to mfw */
577 edev->ops->common->mfw_report(edev->cdev,
578 "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
579 txq->index, le16_to_cpu(*txq->hw_cons_ptr),
580 qed_chain_get_cons_idx(&txq->tx_pbl),
581 qed_chain_get_prod_idx(&txq->tx_pbl), jiffies);
582 if (!rc)
583 edev->ops->common->mfw_report(edev->cdev,
584 "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n",
585 txq->index, fp->sb_info->igu_sb_id,
586 sb_dbg.igu_prod, sb_dbg.igu_cons,
587 sb_dbg.pi[TX_PI(txq->cos)]);
588}
589
590static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
591{
592 struct qede_dev *edev = netdev_priv(dev);
593 int i;
594
595 netif_carrier_off(dev);
596 DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
597
598 for_each_queue(i) {
599 struct qede_tx_queue *txq;
600 struct qede_fastpath *fp;
601 int cos;
602
603 fp = &edev->fp_array[i];
604 if (!(fp->type & QEDE_FASTPATH_TX))
605 continue;
606
607 for_each_cos_in_txq(edev, cos) {
608 txq = &fp->txq[cos];
609
610 /* Dump basic metadata for all queues */
611 qede_txq_fp_log_metadata(edev, fp, txq);
612
613 if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
614 qed_chain_get_prod_idx(&txq->tx_pbl))
615 qede_tx_log_print(edev, fp, txq);
616 }
617 }
618
619 if (IS_VF(edev))
620 return;
621
622 if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
623 edev->state == QEDE_STATE_RECOVERY) {
624 DP_INFO(edev,
625 "Avoid handling a Tx timeout while another HW error is being handled\n");
626 return;
627 }
628
629 set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
630 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
631 schedule_delayed_work(&edev->sp_task, 0);
632}
633
634static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
635{
636 struct qede_dev *edev = netdev_priv(ndev);
637 int cos, count, offset;
638
639 if (num_tc > edev->dev_info.num_tc)
640 return -EINVAL;
641
642 netdev_reset_tc(ndev);
643 netdev_set_num_tc(ndev, num_tc);
644
645 for_each_cos_in_txq(edev, cos) {
646 count = QEDE_TSS_COUNT(edev);
647 offset = cos * QEDE_TSS_COUNT(edev);
648 netdev_set_tc_queue(ndev, cos, count, offset);
649 }
650
651 return 0;
652}
653
654static int
655qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
656 __be16 proto)
657{
658 switch (f->command) {
659 case FLOW_CLS_REPLACE:
660 return qede_add_tc_flower_fltr(edev, proto, f);
661 case FLOW_CLS_DESTROY:
662 return qede_delete_flow_filter(edev, f->cookie);
663 default:
664 return -EOPNOTSUPP;
665 }
666}
667
668static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
669 void *cb_priv)
670{
671 struct flow_cls_offload *f;
672 struct qede_dev *edev = cb_priv;
673
674 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
675 return -EOPNOTSUPP;
676
677 switch (type) {
678 case TC_SETUP_CLSFLOWER:
679 f = type_data;
680 return qede_set_flower(edev, f, f->common.protocol);
681 default:
682 return -EOPNOTSUPP;
683 }
684}
685
686static LIST_HEAD(qede_block_cb_list);
687
688static int
689qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
690 void *type_data)
691{
692 struct qede_dev *edev = netdev_priv(dev);
693 struct tc_mqprio_qopt *mqprio;
694
695 switch (type) {
696 case TC_SETUP_BLOCK:
697 return flow_block_cb_setup_simple(type_data,
698 &qede_block_cb_list,
699 qede_setup_tc_block_cb,
700 edev, edev, true);
701 case TC_SETUP_QDISC_MQPRIO:
702 mqprio = type_data;
703
704 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
705 return qede_setup_tc(dev, mqprio->num_tc);
706 default:
707 return -EOPNOTSUPP;
708 }
709}
710
711static const struct net_device_ops qede_netdev_ops = {
712 .ndo_open = qede_open,
713 .ndo_stop = qede_close,
714 .ndo_start_xmit = qede_start_xmit,
715 .ndo_select_queue = qede_select_queue,
716 .ndo_set_rx_mode = qede_set_rx_mode,
717 .ndo_set_mac_address = qede_set_mac_addr,
718 .ndo_validate_addr = eth_validate_addr,
719 .ndo_change_mtu = qede_change_mtu,
720 .ndo_eth_ioctl = qede_ioctl,
721 .ndo_tx_timeout = qede_tx_timeout,
722#ifdef CONFIG_QED_SRIOV
723 .ndo_set_vf_mac = qede_set_vf_mac,
724 .ndo_set_vf_vlan = qede_set_vf_vlan,
725 .ndo_set_vf_trust = qede_set_vf_trust,
726#endif
727 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
728 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
729 .ndo_fix_features = qede_fix_features,
730 .ndo_set_features = qede_set_features,
731 .ndo_get_stats64 = qede_get_stats64,
732#ifdef CONFIG_QED_SRIOV
733 .ndo_set_vf_link_state = qede_set_vf_link_state,
734 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
735 .ndo_get_vf_config = qede_get_vf_config,
736 .ndo_set_vf_rate = qede_set_vf_rate,
737#endif
738 .ndo_features_check = qede_features_check,
739 .ndo_bpf = qede_xdp,
740#ifdef CONFIG_RFS_ACCEL
741 .ndo_rx_flow_steer = qede_rx_flow_steer,
742#endif
743 .ndo_xdp_xmit = qede_xdp_transmit,
744 .ndo_setup_tc = qede_setup_tc_offload,
745};
746
747static const struct net_device_ops qede_netdev_vf_ops = {
748 .ndo_open = qede_open,
749 .ndo_stop = qede_close,
750 .ndo_start_xmit = qede_start_xmit,
751 .ndo_select_queue = qede_select_queue,
752 .ndo_set_rx_mode = qede_set_rx_mode,
753 .ndo_set_mac_address = qede_set_mac_addr,
754 .ndo_validate_addr = eth_validate_addr,
755 .ndo_change_mtu = qede_change_mtu,
756 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
757 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
758 .ndo_fix_features = qede_fix_features,
759 .ndo_set_features = qede_set_features,
760 .ndo_get_stats64 = qede_get_stats64,
761 .ndo_features_check = qede_features_check,
762};
763
764static const struct net_device_ops qede_netdev_vf_xdp_ops = {
765 .ndo_open = qede_open,
766 .ndo_stop = qede_close,
767 .ndo_start_xmit = qede_start_xmit,
768 .ndo_select_queue = qede_select_queue,
769 .ndo_set_rx_mode = qede_set_rx_mode,
770 .ndo_set_mac_address = qede_set_mac_addr,
771 .ndo_validate_addr = eth_validate_addr,
772 .ndo_change_mtu = qede_change_mtu,
773 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
774 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
775 .ndo_fix_features = qede_fix_features,
776 .ndo_set_features = qede_set_features,
777 .ndo_get_stats64 = qede_get_stats64,
778 .ndo_features_check = qede_features_check,
779 .ndo_bpf = qede_xdp,
780 .ndo_xdp_xmit = qede_xdp_transmit,
781};
782
783/* -------------------------------------------------------------------------
784 * START OF PROBE / REMOVE
785 * -------------------------------------------------------------------------
786 */
787
788static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
789 struct pci_dev *pdev,
790 struct qed_dev_eth_info *info,
791 u32 dp_module, u8 dp_level)
792{
793 struct net_device *ndev;
794 struct qede_dev *edev;
795
796 ndev = alloc_etherdev_mqs(sizeof(*edev),
797 info->num_queues * info->num_tc,
798 info->num_queues);
799 if (!ndev) {
800 pr_err("etherdev allocation failed\n");
801 return NULL;
802 }
803
804 edev = netdev_priv(ndev);
805 edev->ndev = ndev;
806 edev->cdev = cdev;
807 edev->pdev = pdev;
808 edev->dp_module = dp_module;
809 edev->dp_level = dp_level;
810 edev->ops = qed_ops;
811
812 if (is_kdump_kernel()) {
813 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
814 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
815 } else {
816 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
817 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
818 }
819
820 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
821 info->num_queues, info->num_queues);
822
823 SET_NETDEV_DEV(ndev, &pdev->dev);
824
825 memset(&edev->stats, 0, sizeof(edev->stats));
826 memcpy(&edev->dev_info, info, sizeof(*info));
827
828 /* As ethtool doesn't have the ability to show WoL behavior as
829 * 'default', if device supports it declare it's enabled.
830 */
831 if (edev->dev_info.common.wol_support)
832 edev->wol_enabled = true;
833
834 INIT_LIST_HEAD(&edev->vlan_list);
835
836 return edev;
837}
838
839static void qede_init_ndev(struct qede_dev *edev)
840{
841 struct net_device *ndev = edev->ndev;
842 struct pci_dev *pdev = edev->pdev;
843 bool udp_tunnel_enable = false;
844 netdev_features_t hw_features;
845
846 pci_set_drvdata(pdev, ndev);
847
848 ndev->mem_start = edev->dev_info.common.pci_mem_start;
849 ndev->base_addr = ndev->mem_start;
850 ndev->mem_end = edev->dev_info.common.pci_mem_end;
851 ndev->irq = edev->dev_info.common.pci_irq;
852
853 ndev->watchdog_timeo = TX_TIMEOUT;
854
855 if (IS_VF(edev)) {
856 if (edev->dev_info.xdp_supported)
857 ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
858 else
859 ndev->netdev_ops = &qede_netdev_vf_ops;
860 } else {
861 ndev->netdev_ops = &qede_netdev_ops;
862 }
863
864 qede_set_ethtool_ops(ndev);
865
866 ndev->priv_flags |= IFF_UNICAST_FLT;
867
868 /* user-changeble features */
869 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
870 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
871 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
872
873 if (edev->dev_info.common.b_arfs_capable)
874 hw_features |= NETIF_F_NTUPLE;
875
876 if (edev->dev_info.common.vxlan_enable ||
877 edev->dev_info.common.geneve_enable)
878 udp_tunnel_enable = true;
879
880 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
881 hw_features |= NETIF_F_TSO_ECN;
882 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
883 NETIF_F_SG | NETIF_F_TSO |
884 NETIF_F_TSO_ECN | NETIF_F_TSO6 |
885 NETIF_F_RXCSUM;
886 }
887
888 if (udp_tunnel_enable) {
889 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
890 NETIF_F_GSO_UDP_TUNNEL_CSUM);
891 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
892 NETIF_F_GSO_UDP_TUNNEL_CSUM);
893
894 qede_set_udp_tunnels(edev);
895 }
896
897 if (edev->dev_info.common.gre_enable) {
898 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
899 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
900 NETIF_F_GSO_GRE_CSUM);
901 }
902
903 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
904 NETIF_F_HIGHDMA;
905 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
906 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
907 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
908
909 ndev->hw_features = hw_features;
910
911 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
912 NETDEV_XDP_ACT_NDO_XMIT;
913
914 /* MTU range: 46 - 9600 */
915 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
916 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
917
918 /* Set network device HW mac */
919 eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
920
921 ndev->mtu = edev->dev_info.common.mtu;
922}
923
924/* This function converts from 32b param to two params of level and module
925 * Input 32b decoding:
926 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
927 * 'happy' flow, e.g. memory allocation failed.
928 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
929 * and provide important parameters.
930 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
931 * module. VERBOSE prints are for tracking the specific flow in low level.
932 *
933 * Notice that the level should be that of the lowest required logs.
934 */
935void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
936{
937 *p_dp_level = QED_LEVEL_NOTICE;
938 *p_dp_module = 0;
939
940 if (debug & QED_LOG_VERBOSE_MASK) {
941 *p_dp_level = QED_LEVEL_VERBOSE;
942 *p_dp_module = (debug & 0x3FFFFFFF);
943 } else if (debug & QED_LOG_INFO_MASK) {
944 *p_dp_level = QED_LEVEL_INFO;
945 } else if (debug & QED_LOG_NOTICE_MASK) {
946 *p_dp_level = QED_LEVEL_NOTICE;
947 }
948}
949
950static void qede_free_fp_array(struct qede_dev *edev)
951{
952 if (edev->fp_array) {
953 struct qede_fastpath *fp;
954 int i;
955
956 for_each_queue(i) {
957 fp = &edev->fp_array[i];
958
959 kfree(fp->sb_info);
960 /* Handle mem alloc failure case where qede_init_fp
961 * didn't register xdp_rxq_info yet.
962 * Implicit only (fp->type & QEDE_FASTPATH_RX)
963 */
964 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
965 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
966 kfree(fp->rxq);
967 kfree(fp->xdp_tx);
968 kfree(fp->txq);
969 }
970 kfree(edev->fp_array);
971 }
972
973 edev->num_queues = 0;
974 edev->fp_num_tx = 0;
975 edev->fp_num_rx = 0;
976}
977
978static int qede_alloc_fp_array(struct qede_dev *edev)
979{
980 u8 fp_combined, fp_rx = edev->fp_num_rx;
981 struct qede_fastpath *fp;
982 int i;
983
984 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
985 sizeof(*edev->fp_array), GFP_KERNEL);
986 if (!edev->fp_array) {
987 DP_NOTICE(edev, "fp array allocation failed\n");
988 goto err;
989 }
990
991 if (!edev->coal_entry) {
992 edev->coal_entry = kcalloc(QEDE_MAX_RSS_CNT(edev),
993 sizeof(*edev->coal_entry),
994 GFP_KERNEL);
995 if (!edev->coal_entry) {
996 DP_ERR(edev, "coalesce entry allocation failed\n");
997 goto err;
998 }
999 }
1000
1001 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
1002
1003 /* Allocate the FP elements for Rx queues followed by combined and then
1004 * the Tx. This ordering should be maintained so that the respective
1005 * queues (Rx or Tx) will be together in the fastpath array and the
1006 * associated ids will be sequential.
1007 */
1008 for_each_queue(i) {
1009 fp = &edev->fp_array[i];
1010
1011 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
1012 if (!fp->sb_info) {
1013 DP_NOTICE(edev, "sb info struct allocation failed\n");
1014 goto err;
1015 }
1016
1017 if (fp_rx) {
1018 fp->type = QEDE_FASTPATH_RX;
1019 fp_rx--;
1020 } else if (fp_combined) {
1021 fp->type = QEDE_FASTPATH_COMBINED;
1022 fp_combined--;
1023 } else {
1024 fp->type = QEDE_FASTPATH_TX;
1025 }
1026
1027 if (fp->type & QEDE_FASTPATH_TX) {
1028 fp->txq = kcalloc(edev->dev_info.num_tc,
1029 sizeof(*fp->txq), GFP_KERNEL);
1030 if (!fp->txq)
1031 goto err;
1032 }
1033
1034 if (fp->type & QEDE_FASTPATH_RX) {
1035 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
1036 if (!fp->rxq)
1037 goto err;
1038
1039 if (edev->xdp_prog) {
1040 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
1041 GFP_KERNEL);
1042 if (!fp->xdp_tx)
1043 goto err;
1044 fp->type |= QEDE_FASTPATH_XDP;
1045 }
1046 }
1047 }
1048
1049 return 0;
1050err:
1051 qede_free_fp_array(edev);
1052 return -ENOMEM;
1053}
1054
1055/* The qede lock is used to protect driver state change and driver flows that
1056 * are not reentrant.
1057 */
1058void __qede_lock(struct qede_dev *edev)
1059{
1060 mutex_lock(&edev->qede_lock);
1061}
1062
1063void __qede_unlock(struct qede_dev *edev)
1064{
1065 mutex_unlock(&edev->qede_lock);
1066}
1067
1068/* This version of the lock should be used when acquiring the RTNL lock is also
1069 * needed in addition to the internal qede lock.
1070 */
1071static void qede_lock(struct qede_dev *edev)
1072{
1073 rtnl_lock();
1074 __qede_lock(edev);
1075}
1076
1077static void qede_unlock(struct qede_dev *edev)
1078{
1079 __qede_unlock(edev);
1080 rtnl_unlock();
1081}
1082
1083static void qede_periodic_task(struct work_struct *work)
1084{
1085 struct qede_dev *edev = container_of(work, struct qede_dev,
1086 periodic_task.work);
1087
1088 qede_fill_by_demand_stats(edev);
1089 schedule_delayed_work(&edev->periodic_task, edev->stats_coal_ticks);
1090}
1091
1092static void qede_init_periodic_task(struct qede_dev *edev)
1093{
1094 INIT_DELAYED_WORK(&edev->periodic_task, qede_periodic_task);
1095 spin_lock_init(&edev->stats_lock);
1096 edev->stats_coal_usecs = USEC_PER_SEC;
1097 edev->stats_coal_ticks = usecs_to_jiffies(USEC_PER_SEC);
1098}
1099
1100static void qede_sp_task(struct work_struct *work)
1101{
1102 struct qede_dev *edev = container_of(work, struct qede_dev,
1103 sp_task.work);
1104
1105 /* Disable execution of this deferred work once
1106 * qede removal is in progress, this stop any future
1107 * scheduling of sp_task.
1108 */
1109 if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1110 return;
1111
1112 /* The locking scheme depends on the specific flag:
1113 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1114 * ensure that ongoing flows are ended and new ones are not started.
1115 * In other cases - only the internal qede lock should be acquired.
1116 */
1117
1118 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1119 cancel_delayed_work_sync(&edev->periodic_task);
1120#ifdef CONFIG_QED_SRIOV
1121 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1122 * The recovery of the active VFs is currently not supported.
1123 */
1124 if (pci_num_vf(edev->pdev))
1125 qede_sriov_configure(edev->pdev, 0);
1126#endif
1127 qede_lock(edev);
1128 qede_recovery_handler(edev);
1129 qede_unlock(edev);
1130 }
1131
1132 __qede_lock(edev);
1133
1134 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1135 if (edev->state == QEDE_STATE_OPEN)
1136 qede_config_rx_mode(edev->ndev);
1137
1138#ifdef CONFIG_RFS_ACCEL
1139 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1140 if (edev->state == QEDE_STATE_OPEN)
1141 qede_process_arfs_filters(edev, false);
1142 }
1143#endif
1144 if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1145 qede_generic_hw_err_handler(edev);
1146 __qede_unlock(edev);
1147
1148 if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1149#ifdef CONFIG_QED_SRIOV
1150 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1151 * The recovery of the active VFs is currently not supported.
1152 */
1153 if (pci_num_vf(edev->pdev))
1154 qede_sriov_configure(edev->pdev, 0);
1155#endif
1156 edev->ops->common->recovery_process(edev->cdev);
1157 }
1158}
1159
1160static void qede_update_pf_params(struct qed_dev *cdev)
1161{
1162 struct qed_pf_params pf_params;
1163 u16 num_cons;
1164
1165 /* 64 rx + 64 tx + 64 XDP */
1166 memset(&pf_params, 0, sizeof(struct qed_pf_params));
1167
1168 /* 1 rx + 1 xdp + max tx cos */
1169 num_cons = QED_MIN_L2_CONS;
1170
1171 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1172
1173 /* Same for VFs - make sure they'll have sufficient connections
1174 * to support XDP Tx queues.
1175 */
1176 pf_params.eth_pf_params.num_vf_cons = 48;
1177
1178 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1179 qed_ops->common->update_pf_params(cdev, &pf_params);
1180}
1181
1182#define QEDE_FW_VER_STR_SIZE 80
1183
1184static void qede_log_probe(struct qede_dev *edev)
1185{
1186 struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1187 u8 buf[QEDE_FW_VER_STR_SIZE];
1188 size_t left_size;
1189
1190 snprintf(buf, QEDE_FW_VER_STR_SIZE,
1191 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1192 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1193 p_dev_info->fw_eng,
1194 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1195 QED_MFW_VERSION_3_OFFSET,
1196 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1197 QED_MFW_VERSION_2_OFFSET,
1198 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1199 QED_MFW_VERSION_1_OFFSET,
1200 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1201 QED_MFW_VERSION_0_OFFSET);
1202
1203 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1204 if (p_dev_info->mbi_version && left_size)
1205 snprintf(buf + strlen(buf), left_size,
1206 " [MBI %d.%d.%d]",
1207 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1208 QED_MBI_VERSION_2_OFFSET,
1209 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1210 QED_MBI_VERSION_1_OFFSET,
1211 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1212 QED_MBI_VERSION_0_OFFSET);
1213
1214 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1215 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1216 buf, edev->ndev->name);
1217}
1218
1219enum qede_probe_mode {
1220 QEDE_PROBE_NORMAL,
1221 QEDE_PROBE_RECOVERY,
1222};
1223
1224static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1225 bool is_vf, enum qede_probe_mode mode)
1226{
1227 struct qed_probe_params probe_params;
1228 struct qed_slowpath_params sp_params;
1229 struct qed_dev_eth_info dev_info;
1230 struct qede_dev *edev;
1231 struct qed_dev *cdev;
1232 int rc;
1233
1234 if (unlikely(dp_level & QED_LEVEL_INFO))
1235 pr_notice("Starting qede probe\n");
1236
1237 memset(&probe_params, 0, sizeof(probe_params));
1238 probe_params.protocol = QED_PROTOCOL_ETH;
1239 probe_params.dp_module = dp_module;
1240 probe_params.dp_level = dp_level;
1241 probe_params.is_vf = is_vf;
1242 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1243 cdev = qed_ops->common->probe(pdev, &probe_params);
1244 if (!cdev) {
1245 rc = -ENODEV;
1246 goto err0;
1247 }
1248
1249 qede_update_pf_params(cdev);
1250
1251 /* Start the Slowpath-process */
1252 memset(&sp_params, 0, sizeof(sp_params));
1253 sp_params.int_mode = QED_INT_MODE_MSIX;
1254 strscpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1255 rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1256 if (rc) {
1257 pr_notice("Cannot start slowpath\n");
1258 goto err1;
1259 }
1260
1261 /* Learn information crucial for qede to progress */
1262 rc = qed_ops->fill_dev_info(cdev, &dev_info);
1263 if (rc)
1264 goto err2;
1265
1266 if (mode != QEDE_PROBE_RECOVERY) {
1267 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1268 dp_level);
1269 if (!edev) {
1270 rc = -ENOMEM;
1271 goto err2;
1272 }
1273
1274 edev->devlink = qed_ops->common->devlink_register(cdev);
1275 if (IS_ERR(edev->devlink)) {
1276 DP_NOTICE(edev, "Cannot register devlink\n");
1277 rc = PTR_ERR(edev->devlink);
1278 edev->devlink = NULL;
1279 goto err3;
1280 }
1281 } else {
1282 struct net_device *ndev = pci_get_drvdata(pdev);
1283 struct qed_devlink *qdl;
1284
1285 edev = netdev_priv(ndev);
1286 qdl = devlink_priv(edev->devlink);
1287 qdl->cdev = cdev;
1288 edev->cdev = cdev;
1289 memset(&edev->stats, 0, sizeof(edev->stats));
1290 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1291 }
1292
1293 if (is_vf)
1294 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1295
1296 qede_init_ndev(edev);
1297
1298 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1299 if (rc)
1300 goto err3;
1301
1302 if (mode != QEDE_PROBE_RECOVERY) {
1303 /* Prepare the lock prior to the registration of the netdev,
1304 * as once it's registered we might reach flows requiring it
1305 * [it's even possible to reach a flow needing it directly
1306 * from there, although it's unlikely].
1307 */
1308 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1309 mutex_init(&edev->qede_lock);
1310 qede_init_periodic_task(edev);
1311
1312 rc = register_netdev(edev->ndev);
1313 if (rc) {
1314 DP_NOTICE(edev, "Cannot register net-device\n");
1315 goto err4;
1316 }
1317 }
1318
1319 edev->ops->common->set_name(cdev, edev->ndev->name);
1320
1321 /* PTP not supported on VFs */
1322 if (!is_vf)
1323 qede_ptp_enable(edev);
1324
1325 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1326
1327#ifdef CONFIG_DCB
1328 if (!IS_VF(edev))
1329 qede_set_dcbnl_ops(edev->ndev);
1330#endif
1331
1332 edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1333
1334 qede_log_probe(edev);
1335
1336 /* retain user config (for example - after recovery) */
1337 if (edev->stats_coal_usecs)
1338 schedule_delayed_work(&edev->periodic_task, 0);
1339
1340 return 0;
1341
1342err4:
1343 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1344err3:
1345 if (mode != QEDE_PROBE_RECOVERY)
1346 free_netdev(edev->ndev);
1347 else
1348 edev->cdev = NULL;
1349err2:
1350 qed_ops->common->slowpath_stop(cdev);
1351err1:
1352 qed_ops->common->remove(cdev);
1353err0:
1354 return rc;
1355}
1356
1357static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1358{
1359 bool is_vf = false;
1360 u32 dp_module = 0;
1361 u8 dp_level = 0;
1362
1363 switch ((enum qede_pci_private)id->driver_data) {
1364 case QEDE_PRIVATE_VF:
1365 if (debug & QED_LOG_VERBOSE_MASK)
1366 dev_err(&pdev->dev, "Probing a VF\n");
1367 is_vf = true;
1368 break;
1369 default:
1370 if (debug & QED_LOG_VERBOSE_MASK)
1371 dev_err(&pdev->dev, "Probing a PF\n");
1372 }
1373
1374 qede_config_debug(debug, &dp_module, &dp_level);
1375
1376 return __qede_probe(pdev, dp_module, dp_level, is_vf,
1377 QEDE_PROBE_NORMAL);
1378}
1379
1380enum qede_remove_mode {
1381 QEDE_REMOVE_NORMAL,
1382 QEDE_REMOVE_RECOVERY,
1383};
1384
1385static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1386{
1387 struct net_device *ndev = pci_get_drvdata(pdev);
1388 struct qede_dev *edev;
1389 struct qed_dev *cdev;
1390
1391 if (!ndev) {
1392 dev_info(&pdev->dev, "Device has already been removed\n");
1393 return;
1394 }
1395
1396 edev = netdev_priv(ndev);
1397 cdev = edev->cdev;
1398
1399 DP_INFO(edev, "Starting qede_remove\n");
1400
1401 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1402
1403 if (mode != QEDE_REMOVE_RECOVERY) {
1404 set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1405 unregister_netdev(ndev);
1406
1407 cancel_delayed_work_sync(&edev->sp_task);
1408 cancel_delayed_work_sync(&edev->periodic_task);
1409
1410 edev->ops->common->set_power_state(cdev, PCI_D0);
1411
1412 pci_set_drvdata(pdev, NULL);
1413 }
1414
1415 qede_ptp_disable(edev);
1416
1417 /* Use global ops since we've freed edev */
1418 qed_ops->common->slowpath_stop(cdev);
1419 if (system_state == SYSTEM_POWER_OFF)
1420 return;
1421
1422 if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1423 qed_ops->common->devlink_unregister(edev->devlink);
1424 edev->devlink = NULL;
1425 }
1426 qed_ops->common->remove(cdev);
1427 edev->cdev = NULL;
1428
1429 /* Since this can happen out-of-sync with other flows,
1430 * don't release the netdevice until after slowpath stop
1431 * has been called to guarantee various other contexts
1432 * [e.g., QED register callbacks] won't break anything when
1433 * accessing the netdevice.
1434 */
1435 if (mode != QEDE_REMOVE_RECOVERY) {
1436 kfree(edev->coal_entry);
1437 free_netdev(ndev);
1438 }
1439
1440 dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1441}
1442
1443static void qede_remove(struct pci_dev *pdev)
1444{
1445 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1446}
1447
1448static void qede_shutdown(struct pci_dev *pdev)
1449{
1450 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1451}
1452
1453/* -------------------------------------------------------------------------
1454 * START OF LOAD / UNLOAD
1455 * -------------------------------------------------------------------------
1456 */
1457
1458static int qede_set_num_queues(struct qede_dev *edev)
1459{
1460 int rc;
1461 u16 rss_num;
1462
1463 /* Setup queues according to possible resources*/
1464 if (edev->req_queues)
1465 rss_num = edev->req_queues;
1466 else
1467 rss_num = netif_get_num_default_rss_queues() *
1468 edev->dev_info.common.num_hwfns;
1469
1470 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1471
1472 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1473 if (rc > 0) {
1474 /* Managed to request interrupts for our queues */
1475 edev->num_queues = rc;
1476 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1477 QEDE_QUEUE_CNT(edev), rss_num);
1478 rc = 0;
1479 }
1480
1481 edev->fp_num_tx = edev->req_num_tx;
1482 edev->fp_num_rx = edev->req_num_rx;
1483
1484 return rc;
1485}
1486
1487static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1488 u16 sb_id)
1489{
1490 if (sb_info->sb_virt) {
1491 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1492 QED_SB_TYPE_L2_QUEUE);
1493 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1494 (void *)sb_info->sb_virt, sb_info->sb_phys);
1495 memset(sb_info, 0, sizeof(*sb_info));
1496 }
1497}
1498
1499/* This function allocates fast-path status block memory */
1500static int qede_alloc_mem_sb(struct qede_dev *edev,
1501 struct qed_sb_info *sb_info, u16 sb_id)
1502{
1503 struct status_block *sb_virt;
1504 dma_addr_t sb_phys;
1505 int rc;
1506
1507 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1508 sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1509 if (!sb_virt) {
1510 DP_ERR(edev, "Status block allocation failed\n");
1511 return -ENOMEM;
1512 }
1513
1514 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1515 sb_virt, sb_phys, sb_id,
1516 QED_SB_TYPE_L2_QUEUE);
1517 if (rc) {
1518 DP_ERR(edev, "Status block initialization failed\n");
1519 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1520 sb_virt, sb_phys);
1521 return rc;
1522 }
1523
1524 return 0;
1525}
1526
1527static void qede_free_rx_buffers(struct qede_dev *edev,
1528 struct qede_rx_queue *rxq)
1529{
1530 u16 i;
1531
1532 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1533 struct sw_rx_data *rx_buf;
1534 struct page *data;
1535
1536 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1537 data = rx_buf->data;
1538
1539 dma_unmap_page(&edev->pdev->dev,
1540 rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1541
1542 rx_buf->data = NULL;
1543 __free_page(data);
1544 }
1545}
1546
1547static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1548{
1549 /* Free rx buffers */
1550 qede_free_rx_buffers(edev, rxq);
1551
1552 /* Free the parallel SW ring */
1553 kfree(rxq->sw_rx_ring);
1554
1555 /* Free the real RQ ring used by FW */
1556 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1557 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1558}
1559
1560static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1561{
1562 int i;
1563
1564 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1565 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1566
1567 tpa_info->state = QEDE_AGG_STATE_NONE;
1568 }
1569}
1570
1571/* This function allocates all memory needed per Rx queue */
1572static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1573{
1574 struct qed_chain_init_params params = {
1575 .cnt_type = QED_CHAIN_CNT_TYPE_U16,
1576 .num_elems = RX_RING_SIZE,
1577 };
1578 struct qed_dev *cdev = edev->cdev;
1579 int i, rc, size;
1580
1581 rxq->num_rx_buffers = edev->q_num_rx_buffers;
1582
1583 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1584
1585 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1586 size = rxq->rx_headroom +
1587 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1588
1589 /* Make sure that the headroom and payload fit in a single page */
1590 if (rxq->rx_buf_size + size > PAGE_SIZE)
1591 rxq->rx_buf_size = PAGE_SIZE - size;
1592
1593 /* Segment size to split a page in multiple equal parts,
1594 * unless XDP is used in which case we'd use the entire page.
1595 */
1596 if (!edev->xdp_prog) {
1597 size = size + rxq->rx_buf_size;
1598 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1599 } else {
1600 rxq->rx_buf_seg_size = PAGE_SIZE;
1601 edev->ndev->features &= ~NETIF_F_GRO_HW;
1602 }
1603
1604 /* Allocate the parallel driver ring for Rx buffers */
1605 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1606 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1607 if (!rxq->sw_rx_ring) {
1608 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1609 rc = -ENOMEM;
1610 goto err;
1611 }
1612
1613 /* Allocate FW Rx ring */
1614 params.mode = QED_CHAIN_MODE_NEXT_PTR;
1615 params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1616 params.elem_size = sizeof(struct eth_rx_bd);
1617
1618 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, ¶ms);
1619 if (rc)
1620 goto err;
1621
1622 /* Allocate FW completion ring */
1623 params.mode = QED_CHAIN_MODE_PBL;
1624 params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1625 params.elem_size = sizeof(union eth_rx_cqe);
1626
1627 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, ¶ms);
1628 if (rc)
1629 goto err;
1630
1631 /* Allocate buffers for the Rx ring */
1632 rxq->filled_buffers = 0;
1633 for (i = 0; i < rxq->num_rx_buffers; i++) {
1634 rc = qede_alloc_rx_buffer(rxq, false);
1635 if (rc) {
1636 DP_ERR(edev,
1637 "Rx buffers allocation failed at index %d\n", i);
1638 goto err;
1639 }
1640 }
1641
1642 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1643 if (!edev->gro_disable)
1644 qede_set_tpa_param(rxq);
1645err:
1646 return rc;
1647}
1648
1649static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1650{
1651 /* Free the parallel SW ring */
1652 if (txq->is_xdp)
1653 kfree(txq->sw_tx_ring.xdp);
1654 else
1655 kfree(txq->sw_tx_ring.skbs);
1656
1657 /* Free the real RQ ring used by FW */
1658 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1659}
1660
1661/* This function allocates all memory needed per Tx queue */
1662static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1663{
1664 struct qed_chain_init_params params = {
1665 .mode = QED_CHAIN_MODE_PBL,
1666 .intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1667 .cnt_type = QED_CHAIN_CNT_TYPE_U16,
1668 .num_elems = edev->q_num_tx_buffers,
1669 .elem_size = sizeof(union eth_tx_bd_types),
1670 };
1671 int size, rc;
1672
1673 txq->num_tx_buffers = edev->q_num_tx_buffers;
1674
1675 /* Allocate the parallel driver ring for Tx buffers */
1676 if (txq->is_xdp) {
1677 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1678 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1679 if (!txq->sw_tx_ring.xdp)
1680 goto err;
1681 } else {
1682 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1683 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1684 if (!txq->sw_tx_ring.skbs)
1685 goto err;
1686 }
1687
1688 rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, ¶ms);
1689 if (rc)
1690 goto err;
1691
1692 return 0;
1693
1694err:
1695 qede_free_mem_txq(edev, txq);
1696 return -ENOMEM;
1697}
1698
1699/* This function frees all memory of a single fp */
1700static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1701{
1702 qede_free_mem_sb(edev, fp->sb_info, fp->id);
1703
1704 if (fp->type & QEDE_FASTPATH_RX)
1705 qede_free_mem_rxq(edev, fp->rxq);
1706
1707 if (fp->type & QEDE_FASTPATH_XDP)
1708 qede_free_mem_txq(edev, fp->xdp_tx);
1709
1710 if (fp->type & QEDE_FASTPATH_TX) {
1711 int cos;
1712
1713 for_each_cos_in_txq(edev, cos)
1714 qede_free_mem_txq(edev, &fp->txq[cos]);
1715 }
1716}
1717
1718/* This function allocates all memory needed for a single fp (i.e. an entity
1719 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1720 */
1721static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1722{
1723 int rc = 0;
1724
1725 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1726 if (rc)
1727 goto out;
1728
1729 if (fp->type & QEDE_FASTPATH_RX) {
1730 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1731 if (rc)
1732 goto out;
1733 }
1734
1735 if (fp->type & QEDE_FASTPATH_XDP) {
1736 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1737 if (rc)
1738 goto out;
1739 }
1740
1741 if (fp->type & QEDE_FASTPATH_TX) {
1742 int cos;
1743
1744 for_each_cos_in_txq(edev, cos) {
1745 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1746 if (rc)
1747 goto out;
1748 }
1749 }
1750
1751out:
1752 return rc;
1753}
1754
1755static void qede_free_mem_load(struct qede_dev *edev)
1756{
1757 int i;
1758
1759 for_each_queue(i) {
1760 struct qede_fastpath *fp = &edev->fp_array[i];
1761
1762 qede_free_mem_fp(edev, fp);
1763 }
1764}
1765
1766/* This function allocates all qede memory at NIC load. */
1767static int qede_alloc_mem_load(struct qede_dev *edev)
1768{
1769 int rc = 0, queue_id;
1770
1771 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1772 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1773
1774 rc = qede_alloc_mem_fp(edev, fp);
1775 if (rc) {
1776 DP_ERR(edev,
1777 "Failed to allocate memory for fastpath - rss id = %d\n",
1778 queue_id);
1779 qede_free_mem_load(edev);
1780 return rc;
1781 }
1782 }
1783
1784 return 0;
1785}
1786
1787static void qede_empty_tx_queue(struct qede_dev *edev,
1788 struct qede_tx_queue *txq)
1789{
1790 unsigned int pkts_compl = 0, bytes_compl = 0;
1791 struct netdev_queue *netdev_txq;
1792 int rc, len = 0;
1793
1794 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1795
1796 while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1797 qed_chain_get_prod_idx(&txq->tx_pbl)) {
1798 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1799 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1800 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1801 qed_chain_get_prod_idx(&txq->tx_pbl));
1802
1803 rc = qede_free_tx_pkt(edev, txq, &len);
1804 if (rc) {
1805 DP_NOTICE(edev,
1806 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1807 txq->index,
1808 qed_chain_get_cons_idx(&txq->tx_pbl),
1809 qed_chain_get_prod_idx(&txq->tx_pbl));
1810 break;
1811 }
1812
1813 bytes_compl += len;
1814 pkts_compl++;
1815 txq->sw_tx_cons++;
1816 }
1817
1818 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1819}
1820
1821static void qede_empty_tx_queues(struct qede_dev *edev)
1822{
1823 int i;
1824
1825 for_each_queue(i)
1826 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1827 int cos;
1828
1829 for_each_cos_in_txq(edev, cos) {
1830 struct qede_fastpath *fp;
1831
1832 fp = &edev->fp_array[i];
1833 qede_empty_tx_queue(edev,
1834 &fp->txq[cos]);
1835 }
1836 }
1837}
1838
1839/* This function inits fp content and resets the SB, RXQ and TXQ structures */
1840static void qede_init_fp(struct qede_dev *edev)
1841{
1842 int queue_id, rxq_index = 0, txq_index = 0;
1843 struct qede_fastpath *fp;
1844 bool init_xdp = false;
1845
1846 for_each_queue(queue_id) {
1847 fp = &edev->fp_array[queue_id];
1848
1849 fp->edev = edev;
1850 fp->id = queue_id;
1851
1852 if (fp->type & QEDE_FASTPATH_XDP) {
1853 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1854 rxq_index);
1855 fp->xdp_tx->is_xdp = 1;
1856
1857 spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1858 init_xdp = true;
1859 }
1860
1861 if (fp->type & QEDE_FASTPATH_RX) {
1862 fp->rxq->rxq_id = rxq_index++;
1863
1864 /* Determine how to map buffers for this queue */
1865 if (fp->type & QEDE_FASTPATH_XDP)
1866 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1867 else
1868 fp->rxq->data_direction = DMA_FROM_DEVICE;
1869 fp->rxq->dev = &edev->pdev->dev;
1870
1871 /* Driver have no error path from here */
1872 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1873 fp->rxq->rxq_id, 0) < 0);
1874
1875 if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1876 MEM_TYPE_PAGE_ORDER0,
1877 NULL)) {
1878 DP_NOTICE(edev,
1879 "Failed to register XDP memory model\n");
1880 }
1881 }
1882
1883 if (fp->type & QEDE_FASTPATH_TX) {
1884 int cos;
1885
1886 for_each_cos_in_txq(edev, cos) {
1887 struct qede_tx_queue *txq = &fp->txq[cos];
1888 u16 ndev_tx_id;
1889
1890 txq->cos = cos;
1891 txq->index = txq_index;
1892 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1893 txq->ndev_txq_id = ndev_tx_id;
1894
1895 if (edev->dev_info.is_legacy)
1896 txq->is_legacy = true;
1897 txq->dev = &edev->pdev->dev;
1898 }
1899
1900 txq_index++;
1901 }
1902
1903 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1904 edev->ndev->name, queue_id);
1905 }
1906
1907 if (init_xdp) {
1908 edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1909 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1910 }
1911}
1912
1913static int qede_set_real_num_queues(struct qede_dev *edev)
1914{
1915 int rc = 0;
1916
1917 rc = netif_set_real_num_tx_queues(edev->ndev,
1918 QEDE_TSS_COUNT(edev) *
1919 edev->dev_info.num_tc);
1920 if (rc) {
1921 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1922 return rc;
1923 }
1924
1925 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1926 if (rc) {
1927 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1928 return rc;
1929 }
1930
1931 return 0;
1932}
1933
1934static void qede_napi_disable_remove(struct qede_dev *edev)
1935{
1936 int i;
1937
1938 for_each_queue(i) {
1939 napi_disable(&edev->fp_array[i].napi);
1940
1941 netif_napi_del(&edev->fp_array[i].napi);
1942 }
1943}
1944
1945static void qede_napi_add_enable(struct qede_dev *edev)
1946{
1947 int i;
1948
1949 /* Add NAPI objects */
1950 for_each_queue(i) {
1951 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, qede_poll);
1952 napi_enable(&edev->fp_array[i].napi);
1953 }
1954}
1955
1956static void qede_sync_free_irqs(struct qede_dev *edev)
1957{
1958 int i;
1959
1960 for (i = 0; i < edev->int_info.used_cnt; i++) {
1961 if (edev->int_info.msix_cnt) {
1962 free_irq(edev->int_info.msix[i].vector,
1963 &edev->fp_array[i]);
1964 } else {
1965 edev->ops->common->simd_handler_clean(edev->cdev, i);
1966 }
1967 }
1968
1969 edev->int_info.used_cnt = 0;
1970 edev->int_info.msix_cnt = 0;
1971}
1972
1973static int qede_req_msix_irqs(struct qede_dev *edev)
1974{
1975 int i, rc;
1976
1977 /* Sanitize number of interrupts == number of prepared RSS queues */
1978 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1979 DP_ERR(edev,
1980 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1981 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1982 return -EINVAL;
1983 }
1984
1985 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1986#ifdef CONFIG_RFS_ACCEL
1987 struct qede_fastpath *fp = &edev->fp_array[i];
1988
1989 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1990 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1991 edev->int_info.msix[i].vector);
1992 if (rc) {
1993 DP_ERR(edev, "Failed to add CPU rmap\n");
1994 qede_free_arfs(edev);
1995 }
1996 }
1997#endif
1998 rc = request_irq(edev->int_info.msix[i].vector,
1999 qede_msix_fp_int, 0, edev->fp_array[i].name,
2000 &edev->fp_array[i]);
2001 if (rc) {
2002 DP_ERR(edev, "Request fp %d irq failed\n", i);
2003#ifdef CONFIG_RFS_ACCEL
2004 if (edev->ndev->rx_cpu_rmap)
2005 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2006
2007 edev->ndev->rx_cpu_rmap = NULL;
2008#endif
2009 qede_sync_free_irqs(edev);
2010 return rc;
2011 }
2012 DP_VERBOSE(edev, NETIF_MSG_INTR,
2013 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
2014 edev->fp_array[i].name, i,
2015 &edev->fp_array[i]);
2016 edev->int_info.used_cnt++;
2017 }
2018
2019 return 0;
2020}
2021
2022static void qede_simd_fp_handler(void *cookie)
2023{
2024 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
2025
2026 napi_schedule_irqoff(&fp->napi);
2027}
2028
2029static int qede_setup_irqs(struct qede_dev *edev)
2030{
2031 int i, rc = 0;
2032
2033 /* Learn Interrupt configuration */
2034 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
2035 if (rc)
2036 return rc;
2037
2038 if (edev->int_info.msix_cnt) {
2039 rc = qede_req_msix_irqs(edev);
2040 if (rc)
2041 return rc;
2042 edev->ndev->irq = edev->int_info.msix[0].vector;
2043 } else {
2044 const struct qed_common_ops *ops;
2045
2046 /* qed should learn receive the RSS ids and callbacks */
2047 ops = edev->ops->common;
2048 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
2049 ops->simd_handler_config(edev->cdev,
2050 &edev->fp_array[i], i,
2051 qede_simd_fp_handler);
2052 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
2053 }
2054 return 0;
2055}
2056
2057static int qede_drain_txq(struct qede_dev *edev,
2058 struct qede_tx_queue *txq, bool allow_drain)
2059{
2060 int rc, cnt = 1000;
2061
2062 while (txq->sw_tx_cons != txq->sw_tx_prod) {
2063 if (!cnt) {
2064 if (allow_drain) {
2065 DP_NOTICE(edev,
2066 "Tx queue[%d] is stuck, requesting MCP to drain\n",
2067 txq->index);
2068 rc = edev->ops->common->drain(edev->cdev);
2069 if (rc)
2070 return rc;
2071 return qede_drain_txq(edev, txq, false);
2072 }
2073 DP_NOTICE(edev,
2074 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2075 txq->index, txq->sw_tx_prod,
2076 txq->sw_tx_cons);
2077 return -ENODEV;
2078 }
2079 cnt--;
2080 usleep_range(1000, 2000);
2081 barrier();
2082 }
2083
2084 /* FW finished processing, wait for HW to transmit all tx packets */
2085 usleep_range(1000, 2000);
2086
2087 return 0;
2088}
2089
2090static int qede_stop_txq(struct qede_dev *edev,
2091 struct qede_tx_queue *txq, int rss_id)
2092{
2093 /* delete doorbell from doorbell recovery mechanism */
2094 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
2095 &txq->tx_db);
2096
2097 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
2098}
2099
2100static int qede_stop_queues(struct qede_dev *edev)
2101{
2102 struct qed_update_vport_params *vport_update_params;
2103 struct qed_dev *cdev = edev->cdev;
2104 struct qede_fastpath *fp;
2105 int rc, i;
2106
2107 /* Disable the vport */
2108 vport_update_params = vzalloc(sizeof(*vport_update_params));
2109 if (!vport_update_params)
2110 return -ENOMEM;
2111
2112 vport_update_params->vport_id = 0;
2113 vport_update_params->update_vport_active_flg = 1;
2114 vport_update_params->vport_active_flg = 0;
2115 vport_update_params->update_rss_flg = 0;
2116
2117 rc = edev->ops->vport_update(cdev, vport_update_params);
2118 vfree(vport_update_params);
2119
2120 if (rc) {
2121 DP_ERR(edev, "Failed to update vport\n");
2122 return rc;
2123 }
2124
2125 /* Flush Tx queues. If needed, request drain from MCP */
2126 for_each_queue(i) {
2127 fp = &edev->fp_array[i];
2128
2129 if (fp->type & QEDE_FASTPATH_TX) {
2130 int cos;
2131
2132 for_each_cos_in_txq(edev, cos) {
2133 rc = qede_drain_txq(edev, &fp->txq[cos], true);
2134 if (rc)
2135 return rc;
2136 }
2137 }
2138
2139 if (fp->type & QEDE_FASTPATH_XDP) {
2140 rc = qede_drain_txq(edev, fp->xdp_tx, true);
2141 if (rc)
2142 return rc;
2143 }
2144 }
2145
2146 /* Stop all Queues in reverse order */
2147 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2148 fp = &edev->fp_array[i];
2149
2150 /* Stop the Tx Queue(s) */
2151 if (fp->type & QEDE_FASTPATH_TX) {
2152 int cos;
2153
2154 for_each_cos_in_txq(edev, cos) {
2155 rc = qede_stop_txq(edev, &fp->txq[cos], i);
2156 if (rc)
2157 return rc;
2158 }
2159 }
2160
2161 /* Stop the Rx Queue */
2162 if (fp->type & QEDE_FASTPATH_RX) {
2163 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2164 if (rc) {
2165 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2166 return rc;
2167 }
2168 }
2169
2170 /* Stop the XDP forwarding queue */
2171 if (fp->type & QEDE_FASTPATH_XDP) {
2172 rc = qede_stop_txq(edev, fp->xdp_tx, i);
2173 if (rc)
2174 return rc;
2175
2176 bpf_prog_put(fp->rxq->xdp_prog);
2177 }
2178 }
2179
2180 /* Stop the vport */
2181 rc = edev->ops->vport_stop(cdev, 0);
2182 if (rc)
2183 DP_ERR(edev, "Failed to stop VPORT\n");
2184
2185 return rc;
2186}
2187
2188static int qede_start_txq(struct qede_dev *edev,
2189 struct qede_fastpath *fp,
2190 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2191{
2192 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2193 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2194 struct qed_queue_start_common_params params;
2195 struct qed_txq_start_ret_params ret_params;
2196 int rc;
2197
2198 memset(¶ms, 0, sizeof(params));
2199 memset(&ret_params, 0, sizeof(ret_params));
2200
2201 /* Let the XDP queue share the queue-zone with one of the regular txq.
2202 * We don't really care about its coalescing.
2203 */
2204 if (txq->is_xdp)
2205 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2206 else
2207 params.queue_id = txq->index;
2208
2209 params.p_sb = fp->sb_info;
2210 params.sb_idx = sb_idx;
2211 params.tc = txq->cos;
2212
2213 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table,
2214 page_cnt, &ret_params);
2215 if (rc) {
2216 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2217 return rc;
2218 }
2219
2220 txq->doorbell_addr = ret_params.p_doorbell;
2221 txq->handle = ret_params.p_handle;
2222
2223 /* Determine the FW consumer address associated */
2224 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2225
2226 /* Prepare the doorbell parameters */
2227 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2228 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2229 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2230 DQ_XCM_ETH_TX_BD_PROD_CMD);
2231 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2232
2233 /* register doorbell with doorbell recovery mechanism */
2234 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2235 &txq->tx_db, DB_REC_WIDTH_32B,
2236 DB_REC_KERNEL);
2237
2238 return rc;
2239}
2240
2241static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2242{
2243 int vlan_removal_en = 1;
2244 struct qed_dev *cdev = edev->cdev;
2245 struct qed_dev_info *qed_info = &edev->dev_info.common;
2246 struct qed_update_vport_params *vport_update_params;
2247 struct qed_queue_start_common_params q_params;
2248 struct qed_start_vport_params start = {0};
2249 int rc, i;
2250
2251 if (!edev->num_queues) {
2252 DP_ERR(edev,
2253 "Cannot update V-VPORT as active as there are no Rx queues\n");
2254 return -EINVAL;
2255 }
2256
2257 vport_update_params = vzalloc(sizeof(*vport_update_params));
2258 if (!vport_update_params)
2259 return -ENOMEM;
2260
2261 start.handle_ptp_pkts = !!(edev->ptp);
2262 start.gro_enable = !edev->gro_disable;
2263 start.mtu = edev->ndev->mtu;
2264 start.vport_id = 0;
2265 start.drop_ttl0 = true;
2266 start.remove_inner_vlan = vlan_removal_en;
2267 start.clear_stats = clear_stats;
2268
2269 rc = edev->ops->vport_start(cdev, &start);
2270
2271 if (rc) {
2272 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2273 goto out;
2274 }
2275
2276 DP_VERBOSE(edev, NETIF_MSG_IFUP,
2277 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2278 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2279
2280 for_each_queue(i) {
2281 struct qede_fastpath *fp = &edev->fp_array[i];
2282 dma_addr_t p_phys_table;
2283 u32 page_cnt;
2284
2285 if (fp->type & QEDE_FASTPATH_RX) {
2286 struct qed_rxq_start_ret_params ret_params;
2287 struct qede_rx_queue *rxq = fp->rxq;
2288 __le16 *val;
2289
2290 memset(&ret_params, 0, sizeof(ret_params));
2291 memset(&q_params, 0, sizeof(q_params));
2292 q_params.queue_id = rxq->rxq_id;
2293 q_params.vport_id = 0;
2294 q_params.p_sb = fp->sb_info;
2295 q_params.sb_idx = RX_PI;
2296
2297 p_phys_table =
2298 qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2299 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2300
2301 rc = edev->ops->q_rx_start(cdev, i, &q_params,
2302 rxq->rx_buf_size,
2303 rxq->rx_bd_ring.p_phys_addr,
2304 p_phys_table,
2305 page_cnt, &ret_params);
2306 if (rc) {
2307 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2308 rc);
2309 goto out;
2310 }
2311
2312 /* Use the return parameters */
2313 rxq->hw_rxq_prod_addr = ret_params.p_prod;
2314 rxq->handle = ret_params.p_handle;
2315
2316 val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2317 rxq->hw_cons_ptr = val;
2318
2319 qede_update_rx_prod(edev, rxq);
2320 }
2321
2322 if (fp->type & QEDE_FASTPATH_XDP) {
2323 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2324 if (rc)
2325 goto out;
2326
2327 bpf_prog_add(edev->xdp_prog, 1);
2328 fp->rxq->xdp_prog = edev->xdp_prog;
2329 }
2330
2331 if (fp->type & QEDE_FASTPATH_TX) {
2332 int cos;
2333
2334 for_each_cos_in_txq(edev, cos) {
2335 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2336 TX_PI(cos));
2337 if (rc)
2338 goto out;
2339 }
2340 }
2341 }
2342
2343 /* Prepare and send the vport enable */
2344 vport_update_params->vport_id = start.vport_id;
2345 vport_update_params->update_vport_active_flg = 1;
2346 vport_update_params->vport_active_flg = 1;
2347
2348 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2349 qed_info->tx_switching) {
2350 vport_update_params->update_tx_switching_flg = 1;
2351 vport_update_params->tx_switching_flg = 1;
2352 }
2353
2354 qede_fill_rss_params(edev, &vport_update_params->rss_params,
2355 &vport_update_params->update_rss_flg);
2356
2357 rc = edev->ops->vport_update(cdev, vport_update_params);
2358 if (rc)
2359 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2360
2361out:
2362 vfree(vport_update_params);
2363 return rc;
2364}
2365
2366enum qede_unload_mode {
2367 QEDE_UNLOAD_NORMAL,
2368 QEDE_UNLOAD_RECOVERY,
2369};
2370
2371static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2372 bool is_locked)
2373{
2374 struct qed_link_params link_params;
2375 int rc;
2376
2377 DP_INFO(edev, "Starting qede unload\n");
2378
2379 if (!is_locked)
2380 __qede_lock(edev);
2381
2382 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2383
2384 if (mode != QEDE_UNLOAD_RECOVERY)
2385 edev->state = QEDE_STATE_CLOSED;
2386
2387 qede_rdma_dev_event_close(edev);
2388
2389 /* Close OS Tx */
2390 netif_tx_disable(edev->ndev);
2391 netif_carrier_off(edev->ndev);
2392
2393 if (mode != QEDE_UNLOAD_RECOVERY) {
2394 /* Reset the link */
2395 memset(&link_params, 0, sizeof(link_params));
2396 link_params.link_up = false;
2397 edev->ops->common->set_link(edev->cdev, &link_params);
2398
2399 rc = qede_stop_queues(edev);
2400 if (rc) {
2401#ifdef CONFIG_RFS_ACCEL
2402 if (edev->dev_info.common.b_arfs_capable) {
2403 qede_poll_for_freeing_arfs_filters(edev);
2404 if (edev->ndev->rx_cpu_rmap)
2405 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2406
2407 edev->ndev->rx_cpu_rmap = NULL;
2408 }
2409#endif
2410 qede_sync_free_irqs(edev);
2411 goto out;
2412 }
2413
2414 DP_INFO(edev, "Stopped Queues\n");
2415 }
2416
2417 qede_vlan_mark_nonconfigured(edev);
2418 edev->ops->fastpath_stop(edev->cdev);
2419
2420 if (edev->dev_info.common.b_arfs_capable) {
2421 qede_poll_for_freeing_arfs_filters(edev);
2422 qede_free_arfs(edev);
2423 }
2424
2425 /* Release the interrupts */
2426 qede_sync_free_irqs(edev);
2427 edev->ops->common->set_fp_int(edev->cdev, 0);
2428
2429 qede_napi_disable_remove(edev);
2430
2431 if (mode == QEDE_UNLOAD_RECOVERY)
2432 qede_empty_tx_queues(edev);
2433
2434 qede_free_mem_load(edev);
2435 qede_free_fp_array(edev);
2436
2437out:
2438 if (!is_locked)
2439 __qede_unlock(edev);
2440
2441 if (mode != QEDE_UNLOAD_RECOVERY)
2442 DP_NOTICE(edev, "Link is down\n");
2443
2444 edev->ptp_skip_txts = 0;
2445
2446 DP_INFO(edev, "Ending qede unload\n");
2447}
2448
2449enum qede_load_mode {
2450 QEDE_LOAD_NORMAL,
2451 QEDE_LOAD_RELOAD,
2452 QEDE_LOAD_RECOVERY,
2453};
2454
2455static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2456 bool is_locked)
2457{
2458 struct qed_link_params link_params;
2459 struct ethtool_coalesce coal = {};
2460 u8 num_tc;
2461 int rc, i;
2462
2463 DP_INFO(edev, "Starting qede load\n");
2464
2465 if (!is_locked)
2466 __qede_lock(edev);
2467
2468 rc = qede_set_num_queues(edev);
2469 if (rc)
2470 goto out;
2471
2472 rc = qede_alloc_fp_array(edev);
2473 if (rc)
2474 goto out;
2475
2476 qede_init_fp(edev);
2477
2478 rc = qede_alloc_mem_load(edev);
2479 if (rc)
2480 goto err1;
2481 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2482 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2483
2484 rc = qede_set_real_num_queues(edev);
2485 if (rc)
2486 goto err2;
2487
2488 if (qede_alloc_arfs(edev)) {
2489 edev->ndev->features &= ~NETIF_F_NTUPLE;
2490 edev->dev_info.common.b_arfs_capable = false;
2491 }
2492
2493 qede_napi_add_enable(edev);
2494 DP_INFO(edev, "Napi added and enabled\n");
2495
2496 rc = qede_setup_irqs(edev);
2497 if (rc)
2498 goto err3;
2499 DP_INFO(edev, "Setup IRQs succeeded\n");
2500
2501 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2502 if (rc)
2503 goto err4;
2504 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2505
2506 num_tc = netdev_get_num_tc(edev->ndev);
2507 num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2508 qede_setup_tc(edev->ndev, num_tc);
2509
2510 /* Program un-configured VLANs */
2511 qede_configure_vlan_filters(edev);
2512
2513 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2514
2515 /* Ask for link-up using current configuration */
2516 memset(&link_params, 0, sizeof(link_params));
2517 link_params.link_up = true;
2518 edev->ops->common->set_link(edev->cdev, &link_params);
2519
2520 edev->state = QEDE_STATE_OPEN;
2521
2522 coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2523 coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2524
2525 for_each_queue(i) {
2526 if (edev->coal_entry[i].isvalid) {
2527 coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2528 coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2529 }
2530 __qede_unlock(edev);
2531 qede_set_per_coalesce(edev->ndev, i, &coal);
2532 __qede_lock(edev);
2533 }
2534 DP_INFO(edev, "Ending successfully qede load\n");
2535
2536 goto out;
2537err4:
2538 qede_sync_free_irqs(edev);
2539err3:
2540 qede_napi_disable_remove(edev);
2541err2:
2542 qede_free_mem_load(edev);
2543err1:
2544 edev->ops->common->set_fp_int(edev->cdev, 0);
2545 qede_free_fp_array(edev);
2546 edev->num_queues = 0;
2547 edev->fp_num_tx = 0;
2548 edev->fp_num_rx = 0;
2549out:
2550 if (!is_locked)
2551 __qede_unlock(edev);
2552
2553 return rc;
2554}
2555
2556/* 'func' should be able to run between unload and reload assuming interface
2557 * is actually running, or afterwards in case it's currently DOWN.
2558 */
2559void qede_reload(struct qede_dev *edev,
2560 struct qede_reload_args *args, bool is_locked)
2561{
2562 if (!is_locked)
2563 __qede_lock(edev);
2564
2565 /* Since qede_lock is held, internal state wouldn't change even
2566 * if netdev state would start transitioning. Check whether current
2567 * internal configuration indicates device is up, then reload.
2568 */
2569 if (edev->state == QEDE_STATE_OPEN) {
2570 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2571 if (args)
2572 args->func(edev, args);
2573 qede_load(edev, QEDE_LOAD_RELOAD, true);
2574
2575 /* Since no one is going to do it for us, re-configure */
2576 qede_config_rx_mode(edev->ndev);
2577 } else if (args) {
2578 args->func(edev, args);
2579 }
2580
2581 if (!is_locked)
2582 __qede_unlock(edev);
2583}
2584
2585/* called with rtnl_lock */
2586static int qede_open(struct net_device *ndev)
2587{
2588 struct qede_dev *edev = netdev_priv(ndev);
2589 int rc;
2590
2591 netif_carrier_off(ndev);
2592
2593 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2594
2595 rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2596 if (rc)
2597 return rc;
2598
2599 udp_tunnel_nic_reset_ntf(ndev);
2600
2601 edev->ops->common->update_drv_state(edev->cdev, true);
2602
2603 return 0;
2604}
2605
2606static int qede_close(struct net_device *ndev)
2607{
2608 struct qede_dev *edev = netdev_priv(ndev);
2609
2610 qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2611
2612 if (edev->cdev)
2613 edev->ops->common->update_drv_state(edev->cdev, false);
2614
2615 return 0;
2616}
2617
2618static void qede_link_update(void *dev, struct qed_link_output *link)
2619{
2620 struct qede_dev *edev = dev;
2621
2622 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2623 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2624 return;
2625 }
2626
2627 if (link->link_up) {
2628 if (!netif_carrier_ok(edev->ndev)) {
2629 DP_NOTICE(edev, "Link is up\n");
2630 netif_tx_start_all_queues(edev->ndev);
2631 netif_carrier_on(edev->ndev);
2632 qede_rdma_dev_event_open(edev);
2633 }
2634 } else {
2635 if (netif_carrier_ok(edev->ndev)) {
2636 DP_NOTICE(edev, "Link is down\n");
2637 netif_tx_disable(edev->ndev);
2638 netif_carrier_off(edev->ndev);
2639 qede_rdma_dev_event_close(edev);
2640 }
2641 }
2642}
2643
2644static void qede_schedule_recovery_handler(void *dev)
2645{
2646 struct qede_dev *edev = dev;
2647
2648 if (edev->state == QEDE_STATE_RECOVERY) {
2649 DP_NOTICE(edev,
2650 "Avoid scheduling a recovery handling since already in recovery state\n");
2651 return;
2652 }
2653
2654 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2655 schedule_delayed_work(&edev->sp_task, 0);
2656
2657 DP_INFO(edev, "Scheduled a recovery handler\n");
2658}
2659
2660static void qede_recovery_failed(struct qede_dev *edev)
2661{
2662 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2663
2664 netif_device_detach(edev->ndev);
2665
2666 if (edev->cdev)
2667 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2668}
2669
2670static void qede_recovery_handler(struct qede_dev *edev)
2671{
2672 u32 curr_state = edev->state;
2673 int rc;
2674
2675 DP_NOTICE(edev, "Starting a recovery process\n");
2676
2677 /* No need to acquire first the qede_lock since is done by qede_sp_task
2678 * before calling this function.
2679 */
2680 edev->state = QEDE_STATE_RECOVERY;
2681
2682 edev->ops->common->recovery_prolog(edev->cdev);
2683
2684 if (curr_state == QEDE_STATE_OPEN)
2685 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2686
2687 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2688
2689 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2690 IS_VF(edev), QEDE_PROBE_RECOVERY);
2691 if (rc) {
2692 edev->cdev = NULL;
2693 goto err;
2694 }
2695
2696 if (curr_state == QEDE_STATE_OPEN) {
2697 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2698 if (rc)
2699 goto err;
2700
2701 qede_config_rx_mode(edev->ndev);
2702 udp_tunnel_nic_reset_ntf(edev->ndev);
2703 }
2704
2705 edev->state = curr_state;
2706
2707 DP_NOTICE(edev, "Recovery handling is done\n");
2708
2709 return;
2710
2711err:
2712 qede_recovery_failed(edev);
2713}
2714
2715static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2716{
2717 struct qed_dev *cdev = edev->cdev;
2718
2719 DP_NOTICE(edev,
2720 "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2721 edev->err_flags);
2722
2723 /* Get a call trace of the flow that led to the error */
2724 WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2725
2726 /* Prevent HW attentions from being reasserted */
2727 if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2728 edev->ops->common->attn_clr_enable(cdev, true);
2729
2730 DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2731}
2732
2733static void qede_generic_hw_err_handler(struct qede_dev *edev)
2734{
2735 DP_NOTICE(edev,
2736 "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2737 edev->err_flags);
2738
2739 if (edev->devlink) {
2740 DP_NOTICE(edev, "Reporting fatal error to devlink\n");
2741 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2742 }
2743
2744 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2745
2746 DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2747}
2748
2749static void qede_set_hw_err_flags(struct qede_dev *edev,
2750 enum qed_hw_err_type err_type)
2751{
2752 unsigned long err_flags = 0;
2753
2754 switch (err_type) {
2755 case QED_HW_ERR_DMAE_FAIL:
2756 set_bit(QEDE_ERR_WARN, &err_flags);
2757 fallthrough;
2758 case QED_HW_ERR_MFW_RESP_FAIL:
2759 case QED_HW_ERR_HW_ATTN:
2760 case QED_HW_ERR_RAMROD_FAIL:
2761 case QED_HW_ERR_FW_ASSERT:
2762 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2763 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2764 /* make this error as recoverable and start recovery*/
2765 set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
2766 break;
2767
2768 default:
2769 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2770 break;
2771 }
2772
2773 edev->err_flags |= err_flags;
2774}
2775
2776static void qede_schedule_hw_err_handler(void *dev,
2777 enum qed_hw_err_type err_type)
2778{
2779 struct qede_dev *edev = dev;
2780
2781 /* Fan failure cannot be masked by handling of another HW error or by a
2782 * concurrent recovery process.
2783 */
2784 if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2785 edev->state == QEDE_STATE_RECOVERY) &&
2786 err_type != QED_HW_ERR_FAN_FAIL) {
2787 DP_INFO(edev,
2788 "Avoid scheduling an error handling while another HW error is being handled\n");
2789 return;
2790 }
2791
2792 if (err_type >= QED_HW_ERR_LAST) {
2793 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2794 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2795 return;
2796 }
2797
2798 edev->last_err_type = err_type;
2799 qede_set_hw_err_flags(edev, err_type);
2800 qede_atomic_hw_err_handler(edev);
2801 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2802 schedule_delayed_work(&edev->sp_task, 0);
2803
2804 DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2805}
2806
2807static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2808{
2809 struct netdev_queue *netdev_txq;
2810
2811 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2812 if (netif_xmit_stopped(netdev_txq))
2813 return true;
2814
2815 return false;
2816}
2817
2818static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2819{
2820 struct qede_dev *edev = dev;
2821 struct netdev_hw_addr *ha;
2822 int i;
2823
2824 if (edev->ndev->features & NETIF_F_IP_CSUM)
2825 data->feat_flags |= QED_TLV_IP_CSUM;
2826 if (edev->ndev->features & NETIF_F_TSO)
2827 data->feat_flags |= QED_TLV_LSO;
2828
2829 ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2830 eth_zero_addr(data->mac[1]);
2831 eth_zero_addr(data->mac[2]);
2832 /* Copy the first two UC macs */
2833 netif_addr_lock_bh(edev->ndev);
2834 i = 1;
2835 netdev_for_each_uc_addr(ha, edev->ndev) {
2836 ether_addr_copy(data->mac[i++], ha->addr);
2837 if (i == QED_TLV_MAC_COUNT)
2838 break;
2839 }
2840
2841 netif_addr_unlock_bh(edev->ndev);
2842}
2843
2844static void qede_get_eth_tlv_data(void *dev, void *data)
2845{
2846 struct qed_mfw_tlv_eth *etlv = data;
2847 struct qede_dev *edev = dev;
2848 struct qede_fastpath *fp;
2849 int i;
2850
2851 etlv->lso_maxoff_size = 0XFFFF;
2852 etlv->lso_maxoff_size_set = true;
2853 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2854 etlv->lso_minseg_size_set = true;
2855 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2856 etlv->prom_mode_set = true;
2857 etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2858 etlv->tx_descr_size_set = true;
2859 etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2860 etlv->rx_descr_size_set = true;
2861 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2862 etlv->iov_offload_set = true;
2863
2864 /* Fill information regarding queues; Should be done under the qede
2865 * lock to guarantee those don't change beneath our feet.
2866 */
2867 etlv->txqs_empty = true;
2868 etlv->rxqs_empty = true;
2869 etlv->num_txqs_full = 0;
2870 etlv->num_rxqs_full = 0;
2871
2872 __qede_lock(edev);
2873 for_each_queue(i) {
2874 fp = &edev->fp_array[i];
2875 if (fp->type & QEDE_FASTPATH_TX) {
2876 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2877
2878 if (txq->sw_tx_cons != txq->sw_tx_prod)
2879 etlv->txqs_empty = false;
2880 if (qede_is_txq_full(edev, txq))
2881 etlv->num_txqs_full++;
2882 }
2883 if (fp->type & QEDE_FASTPATH_RX) {
2884 if (qede_has_rx_work(fp->rxq))
2885 etlv->rxqs_empty = false;
2886
2887 /* This one is a bit tricky; Firmware might stop
2888 * placing packets if ring is not yet full.
2889 * Give an approximation.
2890 */
2891 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2892 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2893 RX_RING_SIZE - 100)
2894 etlv->num_rxqs_full++;
2895 }
2896 }
2897 __qede_unlock(edev);
2898
2899 etlv->txqs_empty_set = true;
2900 etlv->rxqs_empty_set = true;
2901 etlv->num_txqs_full_set = true;
2902 etlv->num_rxqs_full_set = true;
2903}
2904
2905/**
2906 * qede_io_error_detected(): Called when PCI error is detected
2907 *
2908 * @pdev: Pointer to PCI device
2909 * @state: The current pci connection state
2910 *
2911 *Return: pci_ers_result_t.
2912 *
2913 * This function is called after a PCI bus error affecting
2914 * this device has been detected.
2915 */
2916static pci_ers_result_t
2917qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2918{
2919 struct net_device *dev = pci_get_drvdata(pdev);
2920 struct qede_dev *edev = netdev_priv(dev);
2921
2922 if (!edev)
2923 return PCI_ERS_RESULT_NONE;
2924
2925 DP_NOTICE(edev, "IO error detected [%d]\n", state);
2926
2927 __qede_lock(edev);
2928 if (edev->state == QEDE_STATE_RECOVERY) {
2929 DP_NOTICE(edev, "Device already in the recovery state\n");
2930 __qede_unlock(edev);
2931 return PCI_ERS_RESULT_NONE;
2932 }
2933
2934 /* PF handles the recovery of its VFs */
2935 if (IS_VF(edev)) {
2936 DP_VERBOSE(edev, QED_MSG_IOV,
2937 "VF recovery is handled by its PF\n");
2938 __qede_unlock(edev);
2939 return PCI_ERS_RESULT_RECOVERED;
2940 }
2941
2942 /* Close OS Tx */
2943 netif_tx_disable(edev->ndev);
2944 netif_carrier_off(edev->ndev);
2945
2946 set_bit(QEDE_SP_AER, &edev->sp_flags);
2947 schedule_delayed_work(&edev->sp_task, 0);
2948
2949 __qede_unlock(edev);
2950
2951 return PCI_ERS_RESULT_CAN_RECOVER;
2952}
1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2/* QLogic qede NIC Driver
3 * Copyright (c) 2015-2017 QLogic Corporation
4 * Copyright (c) 2019-2020 Marvell International Ltd.
5 */
6
7#include <linux/crash_dump.h>
8#include <linux/module.h>
9#include <linux/pci.h>
10#include <linux/device.h>
11#include <linux/netdevice.h>
12#include <linux/etherdevice.h>
13#include <linux/skbuff.h>
14#include <linux/errno.h>
15#include <linux/list.h>
16#include <linux/string.h>
17#include <linux/dma-mapping.h>
18#include <linux/interrupt.h>
19#include <asm/byteorder.h>
20#include <asm/param.h>
21#include <linux/io.h>
22#include <linux/netdev_features.h>
23#include <linux/udp.h>
24#include <linux/tcp.h>
25#include <net/udp_tunnel.h>
26#include <linux/ip.h>
27#include <net/ipv6.h>
28#include <net/tcp.h>
29#include <linux/if_ether.h>
30#include <linux/if_vlan.h>
31#include <linux/pkt_sched.h>
32#include <linux/ethtool.h>
33#include <linux/in.h>
34#include <linux/random.h>
35#include <net/ip6_checksum.h>
36#include <linux/bitops.h>
37#include <linux/vmalloc.h>
38#include <linux/aer.h>
39#include "qede.h"
40#include "qede_ptp.h"
41
42static char version[] =
43 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
44
45MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46MODULE_LICENSE("GPL");
47MODULE_VERSION(DRV_MODULE_VERSION);
48
49static uint debug;
50module_param(debug, uint, 0);
51MODULE_PARM_DESC(debug, " Default debug msglevel");
52
53static const struct qed_eth_ops *qed_ops;
54
55#define CHIP_NUM_57980S_40 0x1634
56#define CHIP_NUM_57980S_10 0x1666
57#define CHIP_NUM_57980S_MF 0x1636
58#define CHIP_NUM_57980S_100 0x1644
59#define CHIP_NUM_57980S_50 0x1654
60#define CHIP_NUM_57980S_25 0x1656
61#define CHIP_NUM_57980S_IOV 0x1664
62#define CHIP_NUM_AH 0x8070
63#define CHIP_NUM_AH_IOV 0x8090
64
65#ifndef PCI_DEVICE_ID_NX2_57980E
66#define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
67#define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
68#define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
69#define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
70#define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
71#define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
72#define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
73#define PCI_DEVICE_ID_AH CHIP_NUM_AH
74#define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV
75
76#endif
77
78enum qede_pci_private {
79 QEDE_PRIVATE_PF,
80 QEDE_PRIVATE_VF
81};
82
83static const struct pci_device_id qede_pci_tbl[] = {
84 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
85 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
87 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
88 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
89 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
90#ifdef CONFIG_QED_SRIOV
91 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
92#endif
93 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
94#ifdef CONFIG_QED_SRIOV
95 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
96#endif
97 { 0 }
98};
99
100MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
101
102static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
103static pci_ers_result_t
104qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
105
106#define TX_TIMEOUT (5 * HZ)
107
108/* Utilize last protocol index for XDP */
109#define XDP_PI 11
110
111static void qede_remove(struct pci_dev *pdev);
112static void qede_shutdown(struct pci_dev *pdev);
113static void qede_link_update(void *dev, struct qed_link_output *link);
114static void qede_schedule_recovery_handler(void *dev);
115static void qede_recovery_handler(struct qede_dev *edev);
116static void qede_schedule_hw_err_handler(void *dev,
117 enum qed_hw_err_type err_type);
118static void qede_get_eth_tlv_data(void *edev, void *data);
119static void qede_get_generic_tlv_data(void *edev,
120 struct qed_generic_tlvs *data);
121static void qede_generic_hw_err_handler(struct qede_dev *edev);
122#ifdef CONFIG_QED_SRIOV
123static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
124 __be16 vlan_proto)
125{
126 struct qede_dev *edev = netdev_priv(ndev);
127
128 if (vlan > 4095) {
129 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
130 return -EINVAL;
131 }
132
133 if (vlan_proto != htons(ETH_P_8021Q))
134 return -EPROTONOSUPPORT;
135
136 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
137 vlan, vf);
138
139 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
140}
141
142static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
143{
144 struct qede_dev *edev = netdev_priv(ndev);
145
146 DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
147
148 if (!is_valid_ether_addr(mac)) {
149 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
150 return -EINVAL;
151 }
152
153 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
154}
155
156static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
157{
158 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
159 struct qed_dev_info *qed_info = &edev->dev_info.common;
160 struct qed_update_vport_params *vport_params;
161 int rc;
162
163 vport_params = vzalloc(sizeof(*vport_params));
164 if (!vport_params)
165 return -ENOMEM;
166 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
167
168 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
169
170 /* Enable/Disable Tx switching for PF */
171 if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
172 !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
173 vport_params->vport_id = 0;
174 vport_params->update_tx_switching_flg = 1;
175 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
176 edev->ops->vport_update(edev->cdev, vport_params);
177 }
178
179 vfree(vport_params);
180 return rc;
181}
182#endif
183
184static const struct pci_error_handlers qede_err_handler = {
185 .error_detected = qede_io_error_detected,
186};
187
188static struct pci_driver qede_pci_driver = {
189 .name = "qede",
190 .id_table = qede_pci_tbl,
191 .probe = qede_probe,
192 .remove = qede_remove,
193 .shutdown = qede_shutdown,
194#ifdef CONFIG_QED_SRIOV
195 .sriov_configure = qede_sriov_configure,
196#endif
197 .err_handler = &qede_err_handler,
198};
199
200static struct qed_eth_cb_ops qede_ll_ops = {
201 {
202#ifdef CONFIG_RFS_ACCEL
203 .arfs_filter_op = qede_arfs_filter_op,
204#endif
205 .link_update = qede_link_update,
206 .schedule_recovery_handler = qede_schedule_recovery_handler,
207 .schedule_hw_err_handler = qede_schedule_hw_err_handler,
208 .get_generic_tlv_data = qede_get_generic_tlv_data,
209 .get_protocol_tlv_data = qede_get_eth_tlv_data,
210 },
211 .force_mac = qede_force_mac,
212 .ports_update = qede_udp_ports_update,
213};
214
215static int qede_netdev_event(struct notifier_block *this, unsigned long event,
216 void *ptr)
217{
218 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
219 struct ethtool_drvinfo drvinfo;
220 struct qede_dev *edev;
221
222 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
223 goto done;
224
225 /* Check whether this is a qede device */
226 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
227 goto done;
228
229 memset(&drvinfo, 0, sizeof(drvinfo));
230 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
231 if (strcmp(drvinfo.driver, "qede"))
232 goto done;
233 edev = netdev_priv(ndev);
234
235 switch (event) {
236 case NETDEV_CHANGENAME:
237 /* Notify qed of the name change */
238 if (!edev->ops || !edev->ops->common)
239 goto done;
240 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
241 break;
242 case NETDEV_CHANGEADDR:
243 edev = netdev_priv(ndev);
244 qede_rdma_event_changeaddr(edev);
245 break;
246 }
247
248done:
249 return NOTIFY_DONE;
250}
251
252static struct notifier_block qede_netdev_notifier = {
253 .notifier_call = qede_netdev_event,
254};
255
256static
257int __init qede_init(void)
258{
259 int ret;
260
261 pr_info("qede_init: %s\n", version);
262
263 qede_forced_speed_maps_init();
264
265 qed_ops = qed_get_eth_ops();
266 if (!qed_ops) {
267 pr_notice("Failed to get qed ethtool operations\n");
268 return -EINVAL;
269 }
270
271 /* Must register notifier before pci ops, since we might miss
272 * interface rename after pci probe and netdev registration.
273 */
274 ret = register_netdevice_notifier(&qede_netdev_notifier);
275 if (ret) {
276 pr_notice("Failed to register netdevice_notifier\n");
277 qed_put_eth_ops();
278 return -EINVAL;
279 }
280
281 ret = pci_register_driver(&qede_pci_driver);
282 if (ret) {
283 pr_notice("Failed to register driver\n");
284 unregister_netdevice_notifier(&qede_netdev_notifier);
285 qed_put_eth_ops();
286 return -EINVAL;
287 }
288
289 return 0;
290}
291
292static void __exit qede_cleanup(void)
293{
294 if (debug & QED_LOG_INFO_MASK)
295 pr_info("qede_cleanup called\n");
296
297 unregister_netdevice_notifier(&qede_netdev_notifier);
298 pci_unregister_driver(&qede_pci_driver);
299 qed_put_eth_ops();
300}
301
302module_init(qede_init);
303module_exit(qede_cleanup);
304
305static int qede_open(struct net_device *ndev);
306static int qede_close(struct net_device *ndev);
307
308void qede_fill_by_demand_stats(struct qede_dev *edev)
309{
310 struct qede_stats_common *p_common = &edev->stats.common;
311 struct qed_eth_stats stats;
312
313 edev->ops->get_vport_stats(edev->cdev, &stats);
314
315 p_common->no_buff_discards = stats.common.no_buff_discards;
316 p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
317 p_common->ttl0_discard = stats.common.ttl0_discard;
318 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
319 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
320 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
321 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
322 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
323 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
324 p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
325 p_common->mac_filter_discards = stats.common.mac_filter_discards;
326 p_common->gft_filter_drop = stats.common.gft_filter_drop;
327
328 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
329 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
330 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
331 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
332 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
333 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
334 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
335 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
336 p_common->coalesced_events = stats.common.tpa_coalesced_events;
337 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
338 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
339 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
340
341 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
342 p_common->rx_65_to_127_byte_packets =
343 stats.common.rx_65_to_127_byte_packets;
344 p_common->rx_128_to_255_byte_packets =
345 stats.common.rx_128_to_255_byte_packets;
346 p_common->rx_256_to_511_byte_packets =
347 stats.common.rx_256_to_511_byte_packets;
348 p_common->rx_512_to_1023_byte_packets =
349 stats.common.rx_512_to_1023_byte_packets;
350 p_common->rx_1024_to_1518_byte_packets =
351 stats.common.rx_1024_to_1518_byte_packets;
352 p_common->rx_crc_errors = stats.common.rx_crc_errors;
353 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
354 p_common->rx_pause_frames = stats.common.rx_pause_frames;
355 p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
356 p_common->rx_align_errors = stats.common.rx_align_errors;
357 p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
358 p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
359 p_common->rx_jabbers = stats.common.rx_jabbers;
360 p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
361 p_common->rx_fragments = stats.common.rx_fragments;
362 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
363 p_common->tx_65_to_127_byte_packets =
364 stats.common.tx_65_to_127_byte_packets;
365 p_common->tx_128_to_255_byte_packets =
366 stats.common.tx_128_to_255_byte_packets;
367 p_common->tx_256_to_511_byte_packets =
368 stats.common.tx_256_to_511_byte_packets;
369 p_common->tx_512_to_1023_byte_packets =
370 stats.common.tx_512_to_1023_byte_packets;
371 p_common->tx_1024_to_1518_byte_packets =
372 stats.common.tx_1024_to_1518_byte_packets;
373 p_common->tx_pause_frames = stats.common.tx_pause_frames;
374 p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
375 p_common->brb_truncates = stats.common.brb_truncates;
376 p_common->brb_discards = stats.common.brb_discards;
377 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
378 p_common->link_change_count = stats.common.link_change_count;
379 p_common->ptp_skip_txts = edev->ptp_skip_txts;
380
381 if (QEDE_IS_BB(edev)) {
382 struct qede_stats_bb *p_bb = &edev->stats.bb;
383
384 p_bb->rx_1519_to_1522_byte_packets =
385 stats.bb.rx_1519_to_1522_byte_packets;
386 p_bb->rx_1519_to_2047_byte_packets =
387 stats.bb.rx_1519_to_2047_byte_packets;
388 p_bb->rx_2048_to_4095_byte_packets =
389 stats.bb.rx_2048_to_4095_byte_packets;
390 p_bb->rx_4096_to_9216_byte_packets =
391 stats.bb.rx_4096_to_9216_byte_packets;
392 p_bb->rx_9217_to_16383_byte_packets =
393 stats.bb.rx_9217_to_16383_byte_packets;
394 p_bb->tx_1519_to_2047_byte_packets =
395 stats.bb.tx_1519_to_2047_byte_packets;
396 p_bb->tx_2048_to_4095_byte_packets =
397 stats.bb.tx_2048_to_4095_byte_packets;
398 p_bb->tx_4096_to_9216_byte_packets =
399 stats.bb.tx_4096_to_9216_byte_packets;
400 p_bb->tx_9217_to_16383_byte_packets =
401 stats.bb.tx_9217_to_16383_byte_packets;
402 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
403 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
404 } else {
405 struct qede_stats_ah *p_ah = &edev->stats.ah;
406
407 p_ah->rx_1519_to_max_byte_packets =
408 stats.ah.rx_1519_to_max_byte_packets;
409 p_ah->tx_1519_to_max_byte_packets =
410 stats.ah.tx_1519_to_max_byte_packets;
411 }
412}
413
414static void qede_get_stats64(struct net_device *dev,
415 struct rtnl_link_stats64 *stats)
416{
417 struct qede_dev *edev = netdev_priv(dev);
418 struct qede_stats_common *p_common;
419
420 qede_fill_by_demand_stats(edev);
421 p_common = &edev->stats.common;
422
423 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
424 p_common->rx_bcast_pkts;
425 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
426 p_common->tx_bcast_pkts;
427
428 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
429 p_common->rx_bcast_bytes;
430 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
431 p_common->tx_bcast_bytes;
432
433 stats->tx_errors = p_common->tx_err_drop_pkts;
434 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
435
436 stats->rx_fifo_errors = p_common->no_buff_discards;
437
438 if (QEDE_IS_BB(edev))
439 stats->collisions = edev->stats.bb.tx_total_collisions;
440 stats->rx_crc_errors = p_common->rx_crc_errors;
441 stats->rx_frame_errors = p_common->rx_align_errors;
442}
443
444#ifdef CONFIG_QED_SRIOV
445static int qede_get_vf_config(struct net_device *dev, int vfidx,
446 struct ifla_vf_info *ivi)
447{
448 struct qede_dev *edev = netdev_priv(dev);
449
450 if (!edev->ops)
451 return -EINVAL;
452
453 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
454}
455
456static int qede_set_vf_rate(struct net_device *dev, int vfidx,
457 int min_tx_rate, int max_tx_rate)
458{
459 struct qede_dev *edev = netdev_priv(dev);
460
461 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
462 max_tx_rate);
463}
464
465static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
466{
467 struct qede_dev *edev = netdev_priv(dev);
468
469 if (!edev->ops)
470 return -EINVAL;
471
472 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
473}
474
475static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
476 int link_state)
477{
478 struct qede_dev *edev = netdev_priv(dev);
479
480 if (!edev->ops)
481 return -EINVAL;
482
483 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
484}
485
486static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
487{
488 struct qede_dev *edev = netdev_priv(dev);
489
490 if (!edev->ops)
491 return -EINVAL;
492
493 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
494}
495#endif
496
497static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
498{
499 struct qede_dev *edev = netdev_priv(dev);
500
501 if (!netif_running(dev))
502 return -EAGAIN;
503
504 switch (cmd) {
505 case SIOCSHWTSTAMP:
506 return qede_ptp_hw_ts(edev, ifr);
507 default:
508 DP_VERBOSE(edev, QED_MSG_DEBUG,
509 "default IOCTL cmd 0x%x\n", cmd);
510 return -EOPNOTSUPP;
511 }
512
513 return 0;
514}
515
516static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
517{
518 DP_NOTICE(edev,
519 "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
520 txq->index, le16_to_cpu(*txq->hw_cons_ptr),
521 qed_chain_get_cons_idx(&txq->tx_pbl),
522 qed_chain_get_prod_idx(&txq->tx_pbl),
523 jiffies);
524}
525
526static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
527{
528 struct qede_dev *edev = netdev_priv(dev);
529 struct qede_tx_queue *txq;
530 int cos;
531
532 netif_carrier_off(dev);
533 DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
534
535 if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
536 return;
537
538 for_each_cos_in_txq(edev, cos) {
539 txq = &edev->fp_array[txqueue].txq[cos];
540
541 if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
542 qed_chain_get_prod_idx(&txq->tx_pbl))
543 qede_tx_log_print(edev, txq);
544 }
545
546 if (IS_VF(edev))
547 return;
548
549 if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
550 edev->state == QEDE_STATE_RECOVERY) {
551 DP_INFO(edev,
552 "Avoid handling a Tx timeout while another HW error is being handled\n");
553 return;
554 }
555
556 set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
557 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
558 schedule_delayed_work(&edev->sp_task, 0);
559}
560
561static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
562{
563 struct qede_dev *edev = netdev_priv(ndev);
564 int cos, count, offset;
565
566 if (num_tc > edev->dev_info.num_tc)
567 return -EINVAL;
568
569 netdev_reset_tc(ndev);
570 netdev_set_num_tc(ndev, num_tc);
571
572 for_each_cos_in_txq(edev, cos) {
573 count = QEDE_TSS_COUNT(edev);
574 offset = cos * QEDE_TSS_COUNT(edev);
575 netdev_set_tc_queue(ndev, cos, count, offset);
576 }
577
578 return 0;
579}
580
581static int
582qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
583 __be16 proto)
584{
585 switch (f->command) {
586 case FLOW_CLS_REPLACE:
587 return qede_add_tc_flower_fltr(edev, proto, f);
588 case FLOW_CLS_DESTROY:
589 return qede_delete_flow_filter(edev, f->cookie);
590 default:
591 return -EOPNOTSUPP;
592 }
593}
594
595static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
596 void *cb_priv)
597{
598 struct flow_cls_offload *f;
599 struct qede_dev *edev = cb_priv;
600
601 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
602 return -EOPNOTSUPP;
603
604 switch (type) {
605 case TC_SETUP_CLSFLOWER:
606 f = type_data;
607 return qede_set_flower(edev, f, f->common.protocol);
608 default:
609 return -EOPNOTSUPP;
610 }
611}
612
613static LIST_HEAD(qede_block_cb_list);
614
615static int
616qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
617 void *type_data)
618{
619 struct qede_dev *edev = netdev_priv(dev);
620 struct tc_mqprio_qopt *mqprio;
621
622 switch (type) {
623 case TC_SETUP_BLOCK:
624 return flow_block_cb_setup_simple(type_data,
625 &qede_block_cb_list,
626 qede_setup_tc_block_cb,
627 edev, edev, true);
628 case TC_SETUP_QDISC_MQPRIO:
629 mqprio = type_data;
630
631 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
632 return qede_setup_tc(dev, mqprio->num_tc);
633 default:
634 return -EOPNOTSUPP;
635 }
636}
637
638static const struct net_device_ops qede_netdev_ops = {
639 .ndo_open = qede_open,
640 .ndo_stop = qede_close,
641 .ndo_start_xmit = qede_start_xmit,
642 .ndo_select_queue = qede_select_queue,
643 .ndo_set_rx_mode = qede_set_rx_mode,
644 .ndo_set_mac_address = qede_set_mac_addr,
645 .ndo_validate_addr = eth_validate_addr,
646 .ndo_change_mtu = qede_change_mtu,
647 .ndo_do_ioctl = qede_ioctl,
648 .ndo_tx_timeout = qede_tx_timeout,
649#ifdef CONFIG_QED_SRIOV
650 .ndo_set_vf_mac = qede_set_vf_mac,
651 .ndo_set_vf_vlan = qede_set_vf_vlan,
652 .ndo_set_vf_trust = qede_set_vf_trust,
653#endif
654 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
655 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
656 .ndo_fix_features = qede_fix_features,
657 .ndo_set_features = qede_set_features,
658 .ndo_get_stats64 = qede_get_stats64,
659#ifdef CONFIG_QED_SRIOV
660 .ndo_set_vf_link_state = qede_set_vf_link_state,
661 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
662 .ndo_get_vf_config = qede_get_vf_config,
663 .ndo_set_vf_rate = qede_set_vf_rate,
664#endif
665 .ndo_features_check = qede_features_check,
666 .ndo_bpf = qede_xdp,
667#ifdef CONFIG_RFS_ACCEL
668 .ndo_rx_flow_steer = qede_rx_flow_steer,
669#endif
670 .ndo_xdp_xmit = qede_xdp_transmit,
671 .ndo_setup_tc = qede_setup_tc_offload,
672};
673
674static const struct net_device_ops qede_netdev_vf_ops = {
675 .ndo_open = qede_open,
676 .ndo_stop = qede_close,
677 .ndo_start_xmit = qede_start_xmit,
678 .ndo_select_queue = qede_select_queue,
679 .ndo_set_rx_mode = qede_set_rx_mode,
680 .ndo_set_mac_address = qede_set_mac_addr,
681 .ndo_validate_addr = eth_validate_addr,
682 .ndo_change_mtu = qede_change_mtu,
683 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
684 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
685 .ndo_fix_features = qede_fix_features,
686 .ndo_set_features = qede_set_features,
687 .ndo_get_stats64 = qede_get_stats64,
688 .ndo_features_check = qede_features_check,
689};
690
691static const struct net_device_ops qede_netdev_vf_xdp_ops = {
692 .ndo_open = qede_open,
693 .ndo_stop = qede_close,
694 .ndo_start_xmit = qede_start_xmit,
695 .ndo_select_queue = qede_select_queue,
696 .ndo_set_rx_mode = qede_set_rx_mode,
697 .ndo_set_mac_address = qede_set_mac_addr,
698 .ndo_validate_addr = eth_validate_addr,
699 .ndo_change_mtu = qede_change_mtu,
700 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
701 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
702 .ndo_fix_features = qede_fix_features,
703 .ndo_set_features = qede_set_features,
704 .ndo_get_stats64 = qede_get_stats64,
705 .ndo_features_check = qede_features_check,
706 .ndo_bpf = qede_xdp,
707 .ndo_xdp_xmit = qede_xdp_transmit,
708};
709
710/* -------------------------------------------------------------------------
711 * START OF PROBE / REMOVE
712 * -------------------------------------------------------------------------
713 */
714
715static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
716 struct pci_dev *pdev,
717 struct qed_dev_eth_info *info,
718 u32 dp_module, u8 dp_level)
719{
720 struct net_device *ndev;
721 struct qede_dev *edev;
722
723 ndev = alloc_etherdev_mqs(sizeof(*edev),
724 info->num_queues * info->num_tc,
725 info->num_queues);
726 if (!ndev) {
727 pr_err("etherdev allocation failed\n");
728 return NULL;
729 }
730
731 edev = netdev_priv(ndev);
732 edev->ndev = ndev;
733 edev->cdev = cdev;
734 edev->pdev = pdev;
735 edev->dp_module = dp_module;
736 edev->dp_level = dp_level;
737 edev->ops = qed_ops;
738
739 if (is_kdump_kernel()) {
740 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
741 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
742 } else {
743 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
744 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
745 }
746
747 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
748 info->num_queues, info->num_queues);
749
750 SET_NETDEV_DEV(ndev, &pdev->dev);
751
752 memset(&edev->stats, 0, sizeof(edev->stats));
753 memcpy(&edev->dev_info, info, sizeof(*info));
754
755 /* As ethtool doesn't have the ability to show WoL behavior as
756 * 'default', if device supports it declare it's enabled.
757 */
758 if (edev->dev_info.common.wol_support)
759 edev->wol_enabled = true;
760
761 INIT_LIST_HEAD(&edev->vlan_list);
762
763 return edev;
764}
765
766static void qede_init_ndev(struct qede_dev *edev)
767{
768 struct net_device *ndev = edev->ndev;
769 struct pci_dev *pdev = edev->pdev;
770 bool udp_tunnel_enable = false;
771 netdev_features_t hw_features;
772
773 pci_set_drvdata(pdev, ndev);
774
775 ndev->mem_start = edev->dev_info.common.pci_mem_start;
776 ndev->base_addr = ndev->mem_start;
777 ndev->mem_end = edev->dev_info.common.pci_mem_end;
778 ndev->irq = edev->dev_info.common.pci_irq;
779
780 ndev->watchdog_timeo = TX_TIMEOUT;
781
782 if (IS_VF(edev)) {
783 if (edev->dev_info.xdp_supported)
784 ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
785 else
786 ndev->netdev_ops = &qede_netdev_vf_ops;
787 } else {
788 ndev->netdev_ops = &qede_netdev_ops;
789 }
790
791 qede_set_ethtool_ops(ndev);
792
793 ndev->priv_flags |= IFF_UNICAST_FLT;
794
795 /* user-changeble features */
796 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
797 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
798 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
799
800 if (edev->dev_info.common.b_arfs_capable)
801 hw_features |= NETIF_F_NTUPLE;
802
803 if (edev->dev_info.common.vxlan_enable ||
804 edev->dev_info.common.geneve_enable)
805 udp_tunnel_enable = true;
806
807 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
808 hw_features |= NETIF_F_TSO_ECN;
809 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
810 NETIF_F_SG | NETIF_F_TSO |
811 NETIF_F_TSO_ECN | NETIF_F_TSO6 |
812 NETIF_F_RXCSUM;
813 }
814
815 if (udp_tunnel_enable) {
816 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
817 NETIF_F_GSO_UDP_TUNNEL_CSUM);
818 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
819 NETIF_F_GSO_UDP_TUNNEL_CSUM);
820
821 qede_set_udp_tunnels(edev);
822 }
823
824 if (edev->dev_info.common.gre_enable) {
825 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
826 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
827 NETIF_F_GSO_GRE_CSUM);
828 }
829
830 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
831 NETIF_F_HIGHDMA;
832 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
833 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
834 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
835
836 ndev->hw_features = hw_features;
837
838 /* MTU range: 46 - 9600 */
839 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
840 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
841
842 /* Set network device HW mac */
843 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
844
845 ndev->mtu = edev->dev_info.common.mtu;
846}
847
848/* This function converts from 32b param to two params of level and module
849 * Input 32b decoding:
850 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
851 * 'happy' flow, e.g. memory allocation failed.
852 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
853 * and provide important parameters.
854 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
855 * module. VERBOSE prints are for tracking the specific flow in low level.
856 *
857 * Notice that the level should be that of the lowest required logs.
858 */
859void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
860{
861 *p_dp_level = QED_LEVEL_NOTICE;
862 *p_dp_module = 0;
863
864 if (debug & QED_LOG_VERBOSE_MASK) {
865 *p_dp_level = QED_LEVEL_VERBOSE;
866 *p_dp_module = (debug & 0x3FFFFFFF);
867 } else if (debug & QED_LOG_INFO_MASK) {
868 *p_dp_level = QED_LEVEL_INFO;
869 } else if (debug & QED_LOG_NOTICE_MASK) {
870 *p_dp_level = QED_LEVEL_NOTICE;
871 }
872}
873
874static void qede_free_fp_array(struct qede_dev *edev)
875{
876 if (edev->fp_array) {
877 struct qede_fastpath *fp;
878 int i;
879
880 for_each_queue(i) {
881 fp = &edev->fp_array[i];
882
883 kfree(fp->sb_info);
884 /* Handle mem alloc failure case where qede_init_fp
885 * didn't register xdp_rxq_info yet.
886 * Implicit only (fp->type & QEDE_FASTPATH_RX)
887 */
888 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
889 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
890 kfree(fp->rxq);
891 kfree(fp->xdp_tx);
892 kfree(fp->txq);
893 }
894 kfree(edev->fp_array);
895 }
896
897 edev->num_queues = 0;
898 edev->fp_num_tx = 0;
899 edev->fp_num_rx = 0;
900}
901
902static int qede_alloc_fp_array(struct qede_dev *edev)
903{
904 u8 fp_combined, fp_rx = edev->fp_num_rx;
905 struct qede_fastpath *fp;
906 void *mem;
907 int i;
908
909 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
910 sizeof(*edev->fp_array), GFP_KERNEL);
911 if (!edev->fp_array) {
912 DP_NOTICE(edev, "fp array allocation failed\n");
913 goto err;
914 }
915
916 mem = krealloc(edev->coal_entry, QEDE_QUEUE_CNT(edev) *
917 sizeof(*edev->coal_entry), GFP_KERNEL);
918 if (!mem) {
919 DP_ERR(edev, "coalesce entry allocation failed\n");
920 kfree(edev->coal_entry);
921 goto err;
922 }
923 edev->coal_entry = mem;
924
925 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
926
927 /* Allocate the FP elements for Rx queues followed by combined and then
928 * the Tx. This ordering should be maintained so that the respective
929 * queues (Rx or Tx) will be together in the fastpath array and the
930 * associated ids will be sequential.
931 */
932 for_each_queue(i) {
933 fp = &edev->fp_array[i];
934
935 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
936 if (!fp->sb_info) {
937 DP_NOTICE(edev, "sb info struct allocation failed\n");
938 goto err;
939 }
940
941 if (fp_rx) {
942 fp->type = QEDE_FASTPATH_RX;
943 fp_rx--;
944 } else if (fp_combined) {
945 fp->type = QEDE_FASTPATH_COMBINED;
946 fp_combined--;
947 } else {
948 fp->type = QEDE_FASTPATH_TX;
949 }
950
951 if (fp->type & QEDE_FASTPATH_TX) {
952 fp->txq = kcalloc(edev->dev_info.num_tc,
953 sizeof(*fp->txq), GFP_KERNEL);
954 if (!fp->txq)
955 goto err;
956 }
957
958 if (fp->type & QEDE_FASTPATH_RX) {
959 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
960 if (!fp->rxq)
961 goto err;
962
963 if (edev->xdp_prog) {
964 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
965 GFP_KERNEL);
966 if (!fp->xdp_tx)
967 goto err;
968 fp->type |= QEDE_FASTPATH_XDP;
969 }
970 }
971 }
972
973 return 0;
974err:
975 qede_free_fp_array(edev);
976 return -ENOMEM;
977}
978
979/* The qede lock is used to protect driver state change and driver flows that
980 * are not reentrant.
981 */
982void __qede_lock(struct qede_dev *edev)
983{
984 mutex_lock(&edev->qede_lock);
985}
986
987void __qede_unlock(struct qede_dev *edev)
988{
989 mutex_unlock(&edev->qede_lock);
990}
991
992/* This version of the lock should be used when acquiring the RTNL lock is also
993 * needed in addition to the internal qede lock.
994 */
995static void qede_lock(struct qede_dev *edev)
996{
997 rtnl_lock();
998 __qede_lock(edev);
999}
1000
1001static void qede_unlock(struct qede_dev *edev)
1002{
1003 __qede_unlock(edev);
1004 rtnl_unlock();
1005}
1006
1007static void qede_sp_task(struct work_struct *work)
1008{
1009 struct qede_dev *edev = container_of(work, struct qede_dev,
1010 sp_task.work);
1011
1012 /* Disable execution of this deferred work once
1013 * qede removal is in progress, this stop any future
1014 * scheduling of sp_task.
1015 */
1016 if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1017 return;
1018
1019 /* The locking scheme depends on the specific flag:
1020 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1021 * ensure that ongoing flows are ended and new ones are not started.
1022 * In other cases - only the internal qede lock should be acquired.
1023 */
1024
1025 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1026#ifdef CONFIG_QED_SRIOV
1027 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1028 * The recovery of the active VFs is currently not supported.
1029 */
1030 if (pci_num_vf(edev->pdev))
1031 qede_sriov_configure(edev->pdev, 0);
1032#endif
1033 qede_lock(edev);
1034 qede_recovery_handler(edev);
1035 qede_unlock(edev);
1036 }
1037
1038 __qede_lock(edev);
1039
1040 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1041 if (edev->state == QEDE_STATE_OPEN)
1042 qede_config_rx_mode(edev->ndev);
1043
1044#ifdef CONFIG_RFS_ACCEL
1045 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1046 if (edev->state == QEDE_STATE_OPEN)
1047 qede_process_arfs_filters(edev, false);
1048 }
1049#endif
1050 if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1051 qede_generic_hw_err_handler(edev);
1052 __qede_unlock(edev);
1053
1054 if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1055#ifdef CONFIG_QED_SRIOV
1056 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1057 * The recovery of the active VFs is currently not supported.
1058 */
1059 if (pci_num_vf(edev->pdev))
1060 qede_sriov_configure(edev->pdev, 0);
1061#endif
1062 edev->ops->common->recovery_process(edev->cdev);
1063 }
1064}
1065
1066static void qede_update_pf_params(struct qed_dev *cdev)
1067{
1068 struct qed_pf_params pf_params;
1069 u16 num_cons;
1070
1071 /* 64 rx + 64 tx + 64 XDP */
1072 memset(&pf_params, 0, sizeof(struct qed_pf_params));
1073
1074 /* 1 rx + 1 xdp + max tx cos */
1075 num_cons = QED_MIN_L2_CONS;
1076
1077 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1078
1079 /* Same for VFs - make sure they'll have sufficient connections
1080 * to support XDP Tx queues.
1081 */
1082 pf_params.eth_pf_params.num_vf_cons = 48;
1083
1084 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1085 qed_ops->common->update_pf_params(cdev, &pf_params);
1086}
1087
1088#define QEDE_FW_VER_STR_SIZE 80
1089
1090static void qede_log_probe(struct qede_dev *edev)
1091{
1092 struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1093 u8 buf[QEDE_FW_VER_STR_SIZE];
1094 size_t left_size;
1095
1096 snprintf(buf, QEDE_FW_VER_STR_SIZE,
1097 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1098 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1099 p_dev_info->fw_eng,
1100 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1101 QED_MFW_VERSION_3_OFFSET,
1102 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1103 QED_MFW_VERSION_2_OFFSET,
1104 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1105 QED_MFW_VERSION_1_OFFSET,
1106 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1107 QED_MFW_VERSION_0_OFFSET);
1108
1109 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1110 if (p_dev_info->mbi_version && left_size)
1111 snprintf(buf + strlen(buf), left_size,
1112 " [MBI %d.%d.%d]",
1113 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1114 QED_MBI_VERSION_2_OFFSET,
1115 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1116 QED_MBI_VERSION_1_OFFSET,
1117 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1118 QED_MBI_VERSION_0_OFFSET);
1119
1120 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1121 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1122 buf, edev->ndev->name);
1123}
1124
1125enum qede_probe_mode {
1126 QEDE_PROBE_NORMAL,
1127 QEDE_PROBE_RECOVERY,
1128};
1129
1130static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1131 bool is_vf, enum qede_probe_mode mode)
1132{
1133 struct qed_probe_params probe_params;
1134 struct qed_slowpath_params sp_params;
1135 struct qed_dev_eth_info dev_info;
1136 struct qede_dev *edev;
1137 struct qed_dev *cdev;
1138 int rc;
1139
1140 if (unlikely(dp_level & QED_LEVEL_INFO))
1141 pr_notice("Starting qede probe\n");
1142
1143 memset(&probe_params, 0, sizeof(probe_params));
1144 probe_params.protocol = QED_PROTOCOL_ETH;
1145 probe_params.dp_module = dp_module;
1146 probe_params.dp_level = dp_level;
1147 probe_params.is_vf = is_vf;
1148 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1149 cdev = qed_ops->common->probe(pdev, &probe_params);
1150 if (!cdev) {
1151 rc = -ENODEV;
1152 goto err0;
1153 }
1154
1155 qede_update_pf_params(cdev);
1156
1157 /* Start the Slowpath-process */
1158 memset(&sp_params, 0, sizeof(sp_params));
1159 sp_params.int_mode = QED_INT_MODE_MSIX;
1160 sp_params.drv_major = QEDE_MAJOR_VERSION;
1161 sp_params.drv_minor = QEDE_MINOR_VERSION;
1162 sp_params.drv_rev = QEDE_REVISION_VERSION;
1163 sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1164 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1165 rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1166 if (rc) {
1167 pr_notice("Cannot start slowpath\n");
1168 goto err1;
1169 }
1170
1171 /* Learn information crucial for qede to progress */
1172 rc = qed_ops->fill_dev_info(cdev, &dev_info);
1173 if (rc)
1174 goto err2;
1175
1176 if (mode != QEDE_PROBE_RECOVERY) {
1177 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1178 dp_level);
1179 if (!edev) {
1180 rc = -ENOMEM;
1181 goto err2;
1182 }
1183
1184 edev->devlink = qed_ops->common->devlink_register(cdev);
1185 if (IS_ERR(edev->devlink)) {
1186 DP_NOTICE(edev, "Cannot register devlink\n");
1187 edev->devlink = NULL;
1188 /* Go on, we can live without devlink */
1189 }
1190 } else {
1191 struct net_device *ndev = pci_get_drvdata(pdev);
1192
1193 edev = netdev_priv(ndev);
1194
1195 if (edev->devlink) {
1196 struct qed_devlink *qdl = devlink_priv(edev->devlink);
1197
1198 qdl->cdev = cdev;
1199 }
1200 edev->cdev = cdev;
1201 memset(&edev->stats, 0, sizeof(edev->stats));
1202 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1203 }
1204
1205 if (is_vf)
1206 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1207
1208 qede_init_ndev(edev);
1209
1210 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1211 if (rc)
1212 goto err3;
1213
1214 if (mode != QEDE_PROBE_RECOVERY) {
1215 /* Prepare the lock prior to the registration of the netdev,
1216 * as once it's registered we might reach flows requiring it
1217 * [it's even possible to reach a flow needing it directly
1218 * from there, although it's unlikely].
1219 */
1220 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1221 mutex_init(&edev->qede_lock);
1222
1223 rc = register_netdev(edev->ndev);
1224 if (rc) {
1225 DP_NOTICE(edev, "Cannot register net-device\n");
1226 goto err4;
1227 }
1228 }
1229
1230 edev->ops->common->set_name(cdev, edev->ndev->name);
1231
1232 /* PTP not supported on VFs */
1233 if (!is_vf)
1234 qede_ptp_enable(edev);
1235
1236 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1237
1238#ifdef CONFIG_DCB
1239 if (!IS_VF(edev))
1240 qede_set_dcbnl_ops(edev->ndev);
1241#endif
1242
1243 edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1244
1245 qede_log_probe(edev);
1246 return 0;
1247
1248err4:
1249 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1250err3:
1251 if (mode != QEDE_PROBE_RECOVERY)
1252 free_netdev(edev->ndev);
1253 else
1254 edev->cdev = NULL;
1255err2:
1256 qed_ops->common->slowpath_stop(cdev);
1257err1:
1258 qed_ops->common->remove(cdev);
1259err0:
1260 return rc;
1261}
1262
1263static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1264{
1265 bool is_vf = false;
1266 u32 dp_module = 0;
1267 u8 dp_level = 0;
1268
1269 switch ((enum qede_pci_private)id->driver_data) {
1270 case QEDE_PRIVATE_VF:
1271 if (debug & QED_LOG_VERBOSE_MASK)
1272 dev_err(&pdev->dev, "Probing a VF\n");
1273 is_vf = true;
1274 break;
1275 default:
1276 if (debug & QED_LOG_VERBOSE_MASK)
1277 dev_err(&pdev->dev, "Probing a PF\n");
1278 }
1279
1280 qede_config_debug(debug, &dp_module, &dp_level);
1281
1282 return __qede_probe(pdev, dp_module, dp_level, is_vf,
1283 QEDE_PROBE_NORMAL);
1284}
1285
1286enum qede_remove_mode {
1287 QEDE_REMOVE_NORMAL,
1288 QEDE_REMOVE_RECOVERY,
1289};
1290
1291static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1292{
1293 struct net_device *ndev = pci_get_drvdata(pdev);
1294 struct qede_dev *edev;
1295 struct qed_dev *cdev;
1296
1297 if (!ndev) {
1298 dev_info(&pdev->dev, "Device has already been removed\n");
1299 return;
1300 }
1301
1302 edev = netdev_priv(ndev);
1303 cdev = edev->cdev;
1304
1305 DP_INFO(edev, "Starting qede_remove\n");
1306
1307 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1308
1309 if (mode != QEDE_REMOVE_RECOVERY) {
1310 set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1311 unregister_netdev(ndev);
1312
1313 cancel_delayed_work_sync(&edev->sp_task);
1314
1315 edev->ops->common->set_power_state(cdev, PCI_D0);
1316
1317 pci_set_drvdata(pdev, NULL);
1318 }
1319
1320 qede_ptp_disable(edev);
1321
1322 /* Use global ops since we've freed edev */
1323 qed_ops->common->slowpath_stop(cdev);
1324 if (system_state == SYSTEM_POWER_OFF)
1325 return;
1326
1327 if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1328 qed_ops->common->devlink_unregister(edev->devlink);
1329 edev->devlink = NULL;
1330 }
1331 qed_ops->common->remove(cdev);
1332 edev->cdev = NULL;
1333
1334 /* Since this can happen out-of-sync with other flows,
1335 * don't release the netdevice until after slowpath stop
1336 * has been called to guarantee various other contexts
1337 * [e.g., QED register callbacks] won't break anything when
1338 * accessing the netdevice.
1339 */
1340 if (mode != QEDE_REMOVE_RECOVERY) {
1341 kfree(edev->coal_entry);
1342 free_netdev(ndev);
1343 }
1344
1345 dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1346}
1347
1348static void qede_remove(struct pci_dev *pdev)
1349{
1350 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1351}
1352
1353static void qede_shutdown(struct pci_dev *pdev)
1354{
1355 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1356}
1357
1358/* -------------------------------------------------------------------------
1359 * START OF LOAD / UNLOAD
1360 * -------------------------------------------------------------------------
1361 */
1362
1363static int qede_set_num_queues(struct qede_dev *edev)
1364{
1365 int rc;
1366 u16 rss_num;
1367
1368 /* Setup queues according to possible resources*/
1369 if (edev->req_queues)
1370 rss_num = edev->req_queues;
1371 else
1372 rss_num = netif_get_num_default_rss_queues() *
1373 edev->dev_info.common.num_hwfns;
1374
1375 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1376
1377 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1378 if (rc > 0) {
1379 /* Managed to request interrupts for our queues */
1380 edev->num_queues = rc;
1381 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1382 QEDE_QUEUE_CNT(edev), rss_num);
1383 rc = 0;
1384 }
1385
1386 edev->fp_num_tx = edev->req_num_tx;
1387 edev->fp_num_rx = edev->req_num_rx;
1388
1389 return rc;
1390}
1391
1392static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1393 u16 sb_id)
1394{
1395 if (sb_info->sb_virt) {
1396 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1397 QED_SB_TYPE_L2_QUEUE);
1398 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1399 (void *)sb_info->sb_virt, sb_info->sb_phys);
1400 memset(sb_info, 0, sizeof(*sb_info));
1401 }
1402}
1403
1404/* This function allocates fast-path status block memory */
1405static int qede_alloc_mem_sb(struct qede_dev *edev,
1406 struct qed_sb_info *sb_info, u16 sb_id)
1407{
1408 struct status_block_e4 *sb_virt;
1409 dma_addr_t sb_phys;
1410 int rc;
1411
1412 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1413 sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1414 if (!sb_virt) {
1415 DP_ERR(edev, "Status block allocation failed\n");
1416 return -ENOMEM;
1417 }
1418
1419 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1420 sb_virt, sb_phys, sb_id,
1421 QED_SB_TYPE_L2_QUEUE);
1422 if (rc) {
1423 DP_ERR(edev, "Status block initialization failed\n");
1424 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1425 sb_virt, sb_phys);
1426 return rc;
1427 }
1428
1429 return 0;
1430}
1431
1432static void qede_free_rx_buffers(struct qede_dev *edev,
1433 struct qede_rx_queue *rxq)
1434{
1435 u16 i;
1436
1437 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1438 struct sw_rx_data *rx_buf;
1439 struct page *data;
1440
1441 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1442 data = rx_buf->data;
1443
1444 dma_unmap_page(&edev->pdev->dev,
1445 rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1446
1447 rx_buf->data = NULL;
1448 __free_page(data);
1449 }
1450}
1451
1452static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1453{
1454 /* Free rx buffers */
1455 qede_free_rx_buffers(edev, rxq);
1456
1457 /* Free the parallel SW ring */
1458 kfree(rxq->sw_rx_ring);
1459
1460 /* Free the real RQ ring used by FW */
1461 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1462 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1463}
1464
1465static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1466{
1467 int i;
1468
1469 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1470 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1471
1472 tpa_info->state = QEDE_AGG_STATE_NONE;
1473 }
1474}
1475
1476/* This function allocates all memory needed per Rx queue */
1477static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1478{
1479 struct qed_chain_init_params params = {
1480 .cnt_type = QED_CHAIN_CNT_TYPE_U16,
1481 .num_elems = RX_RING_SIZE,
1482 };
1483 struct qed_dev *cdev = edev->cdev;
1484 int i, rc, size;
1485
1486 rxq->num_rx_buffers = edev->q_num_rx_buffers;
1487
1488 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1489
1490 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1491 size = rxq->rx_headroom +
1492 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1493
1494 /* Make sure that the headroom and payload fit in a single page */
1495 if (rxq->rx_buf_size + size > PAGE_SIZE)
1496 rxq->rx_buf_size = PAGE_SIZE - size;
1497
1498 /* Segment size to split a page in multiple equal parts,
1499 * unless XDP is used in which case we'd use the entire page.
1500 */
1501 if (!edev->xdp_prog) {
1502 size = size + rxq->rx_buf_size;
1503 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1504 } else {
1505 rxq->rx_buf_seg_size = PAGE_SIZE;
1506 edev->ndev->features &= ~NETIF_F_GRO_HW;
1507 }
1508
1509 /* Allocate the parallel driver ring for Rx buffers */
1510 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1511 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1512 if (!rxq->sw_rx_ring) {
1513 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1514 rc = -ENOMEM;
1515 goto err;
1516 }
1517
1518 /* Allocate FW Rx ring */
1519 params.mode = QED_CHAIN_MODE_NEXT_PTR;
1520 params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1521 params.elem_size = sizeof(struct eth_rx_bd);
1522
1523 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, ¶ms);
1524 if (rc)
1525 goto err;
1526
1527 /* Allocate FW completion ring */
1528 params.mode = QED_CHAIN_MODE_PBL;
1529 params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1530 params.elem_size = sizeof(union eth_rx_cqe);
1531
1532 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, ¶ms);
1533 if (rc)
1534 goto err;
1535
1536 /* Allocate buffers for the Rx ring */
1537 rxq->filled_buffers = 0;
1538 for (i = 0; i < rxq->num_rx_buffers; i++) {
1539 rc = qede_alloc_rx_buffer(rxq, false);
1540 if (rc) {
1541 DP_ERR(edev,
1542 "Rx buffers allocation failed at index %d\n", i);
1543 goto err;
1544 }
1545 }
1546
1547 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1548 if (!edev->gro_disable)
1549 qede_set_tpa_param(rxq);
1550err:
1551 return rc;
1552}
1553
1554static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1555{
1556 /* Free the parallel SW ring */
1557 if (txq->is_xdp)
1558 kfree(txq->sw_tx_ring.xdp);
1559 else
1560 kfree(txq->sw_tx_ring.skbs);
1561
1562 /* Free the real RQ ring used by FW */
1563 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1564}
1565
1566/* This function allocates all memory needed per Tx queue */
1567static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1568{
1569 struct qed_chain_init_params params = {
1570 .mode = QED_CHAIN_MODE_PBL,
1571 .intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1572 .cnt_type = QED_CHAIN_CNT_TYPE_U16,
1573 .num_elems = edev->q_num_tx_buffers,
1574 .elem_size = sizeof(union eth_tx_bd_types),
1575 };
1576 int size, rc;
1577
1578 txq->num_tx_buffers = edev->q_num_tx_buffers;
1579
1580 /* Allocate the parallel driver ring for Tx buffers */
1581 if (txq->is_xdp) {
1582 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1583 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1584 if (!txq->sw_tx_ring.xdp)
1585 goto err;
1586 } else {
1587 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1588 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1589 if (!txq->sw_tx_ring.skbs)
1590 goto err;
1591 }
1592
1593 rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, ¶ms);
1594 if (rc)
1595 goto err;
1596
1597 return 0;
1598
1599err:
1600 qede_free_mem_txq(edev, txq);
1601 return -ENOMEM;
1602}
1603
1604/* This function frees all memory of a single fp */
1605static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1606{
1607 qede_free_mem_sb(edev, fp->sb_info, fp->id);
1608
1609 if (fp->type & QEDE_FASTPATH_RX)
1610 qede_free_mem_rxq(edev, fp->rxq);
1611
1612 if (fp->type & QEDE_FASTPATH_XDP)
1613 qede_free_mem_txq(edev, fp->xdp_tx);
1614
1615 if (fp->type & QEDE_FASTPATH_TX) {
1616 int cos;
1617
1618 for_each_cos_in_txq(edev, cos)
1619 qede_free_mem_txq(edev, &fp->txq[cos]);
1620 }
1621}
1622
1623/* This function allocates all memory needed for a single fp (i.e. an entity
1624 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1625 */
1626static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1627{
1628 int rc = 0;
1629
1630 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1631 if (rc)
1632 goto out;
1633
1634 if (fp->type & QEDE_FASTPATH_RX) {
1635 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1636 if (rc)
1637 goto out;
1638 }
1639
1640 if (fp->type & QEDE_FASTPATH_XDP) {
1641 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1642 if (rc)
1643 goto out;
1644 }
1645
1646 if (fp->type & QEDE_FASTPATH_TX) {
1647 int cos;
1648
1649 for_each_cos_in_txq(edev, cos) {
1650 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1651 if (rc)
1652 goto out;
1653 }
1654 }
1655
1656out:
1657 return rc;
1658}
1659
1660static void qede_free_mem_load(struct qede_dev *edev)
1661{
1662 int i;
1663
1664 for_each_queue(i) {
1665 struct qede_fastpath *fp = &edev->fp_array[i];
1666
1667 qede_free_mem_fp(edev, fp);
1668 }
1669}
1670
1671/* This function allocates all qede memory at NIC load. */
1672static int qede_alloc_mem_load(struct qede_dev *edev)
1673{
1674 int rc = 0, queue_id;
1675
1676 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1677 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1678
1679 rc = qede_alloc_mem_fp(edev, fp);
1680 if (rc) {
1681 DP_ERR(edev,
1682 "Failed to allocate memory for fastpath - rss id = %d\n",
1683 queue_id);
1684 qede_free_mem_load(edev);
1685 return rc;
1686 }
1687 }
1688
1689 return 0;
1690}
1691
1692static void qede_empty_tx_queue(struct qede_dev *edev,
1693 struct qede_tx_queue *txq)
1694{
1695 unsigned int pkts_compl = 0, bytes_compl = 0;
1696 struct netdev_queue *netdev_txq;
1697 int rc, len = 0;
1698
1699 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1700
1701 while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1702 qed_chain_get_prod_idx(&txq->tx_pbl)) {
1703 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1704 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1705 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1706 qed_chain_get_prod_idx(&txq->tx_pbl));
1707
1708 rc = qede_free_tx_pkt(edev, txq, &len);
1709 if (rc) {
1710 DP_NOTICE(edev,
1711 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1712 txq->index,
1713 qed_chain_get_cons_idx(&txq->tx_pbl),
1714 qed_chain_get_prod_idx(&txq->tx_pbl));
1715 break;
1716 }
1717
1718 bytes_compl += len;
1719 pkts_compl++;
1720 txq->sw_tx_cons++;
1721 }
1722
1723 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1724}
1725
1726static void qede_empty_tx_queues(struct qede_dev *edev)
1727{
1728 int i;
1729
1730 for_each_queue(i)
1731 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1732 int cos;
1733
1734 for_each_cos_in_txq(edev, cos) {
1735 struct qede_fastpath *fp;
1736
1737 fp = &edev->fp_array[i];
1738 qede_empty_tx_queue(edev,
1739 &fp->txq[cos]);
1740 }
1741 }
1742}
1743
1744/* This function inits fp content and resets the SB, RXQ and TXQ structures */
1745static void qede_init_fp(struct qede_dev *edev)
1746{
1747 int queue_id, rxq_index = 0, txq_index = 0;
1748 struct qede_fastpath *fp;
1749 bool init_xdp = false;
1750
1751 for_each_queue(queue_id) {
1752 fp = &edev->fp_array[queue_id];
1753
1754 fp->edev = edev;
1755 fp->id = queue_id;
1756
1757 if (fp->type & QEDE_FASTPATH_XDP) {
1758 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1759 rxq_index);
1760 fp->xdp_tx->is_xdp = 1;
1761
1762 spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1763 init_xdp = true;
1764 }
1765
1766 if (fp->type & QEDE_FASTPATH_RX) {
1767 fp->rxq->rxq_id = rxq_index++;
1768
1769 /* Determine how to map buffers for this queue */
1770 if (fp->type & QEDE_FASTPATH_XDP)
1771 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1772 else
1773 fp->rxq->data_direction = DMA_FROM_DEVICE;
1774 fp->rxq->dev = &edev->pdev->dev;
1775
1776 /* Driver have no error path from here */
1777 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1778 fp->rxq->rxq_id, 0) < 0);
1779
1780 if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1781 MEM_TYPE_PAGE_ORDER0,
1782 NULL)) {
1783 DP_NOTICE(edev,
1784 "Failed to register XDP memory model\n");
1785 }
1786 }
1787
1788 if (fp->type & QEDE_FASTPATH_TX) {
1789 int cos;
1790
1791 for_each_cos_in_txq(edev, cos) {
1792 struct qede_tx_queue *txq = &fp->txq[cos];
1793 u16 ndev_tx_id;
1794
1795 txq->cos = cos;
1796 txq->index = txq_index;
1797 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1798 txq->ndev_txq_id = ndev_tx_id;
1799
1800 if (edev->dev_info.is_legacy)
1801 txq->is_legacy = true;
1802 txq->dev = &edev->pdev->dev;
1803 }
1804
1805 txq_index++;
1806 }
1807
1808 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1809 edev->ndev->name, queue_id);
1810 }
1811
1812 if (init_xdp) {
1813 edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1814 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1815 }
1816}
1817
1818static int qede_set_real_num_queues(struct qede_dev *edev)
1819{
1820 int rc = 0;
1821
1822 rc = netif_set_real_num_tx_queues(edev->ndev,
1823 QEDE_TSS_COUNT(edev) *
1824 edev->dev_info.num_tc);
1825 if (rc) {
1826 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1827 return rc;
1828 }
1829
1830 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1831 if (rc) {
1832 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1833 return rc;
1834 }
1835
1836 return 0;
1837}
1838
1839static void qede_napi_disable_remove(struct qede_dev *edev)
1840{
1841 int i;
1842
1843 for_each_queue(i) {
1844 napi_disable(&edev->fp_array[i].napi);
1845
1846 netif_napi_del(&edev->fp_array[i].napi);
1847 }
1848}
1849
1850static void qede_napi_add_enable(struct qede_dev *edev)
1851{
1852 int i;
1853
1854 /* Add NAPI objects */
1855 for_each_queue(i) {
1856 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1857 qede_poll, NAPI_POLL_WEIGHT);
1858 napi_enable(&edev->fp_array[i].napi);
1859 }
1860}
1861
1862static void qede_sync_free_irqs(struct qede_dev *edev)
1863{
1864 int i;
1865
1866 for (i = 0; i < edev->int_info.used_cnt; i++) {
1867 if (edev->int_info.msix_cnt) {
1868 synchronize_irq(edev->int_info.msix[i].vector);
1869 free_irq(edev->int_info.msix[i].vector,
1870 &edev->fp_array[i]);
1871 } else {
1872 edev->ops->common->simd_handler_clean(edev->cdev, i);
1873 }
1874 }
1875
1876 edev->int_info.used_cnt = 0;
1877 edev->int_info.msix_cnt = 0;
1878}
1879
1880static int qede_req_msix_irqs(struct qede_dev *edev)
1881{
1882 int i, rc;
1883
1884 /* Sanitize number of interrupts == number of prepared RSS queues */
1885 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1886 DP_ERR(edev,
1887 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1888 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1889 return -EINVAL;
1890 }
1891
1892 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1893#ifdef CONFIG_RFS_ACCEL
1894 struct qede_fastpath *fp = &edev->fp_array[i];
1895
1896 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1897 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1898 edev->int_info.msix[i].vector);
1899 if (rc) {
1900 DP_ERR(edev, "Failed to add CPU rmap\n");
1901 qede_free_arfs(edev);
1902 }
1903 }
1904#endif
1905 rc = request_irq(edev->int_info.msix[i].vector,
1906 qede_msix_fp_int, 0, edev->fp_array[i].name,
1907 &edev->fp_array[i]);
1908 if (rc) {
1909 DP_ERR(edev, "Request fp %d irq failed\n", i);
1910 qede_sync_free_irqs(edev);
1911 return rc;
1912 }
1913 DP_VERBOSE(edev, NETIF_MSG_INTR,
1914 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1915 edev->fp_array[i].name, i,
1916 &edev->fp_array[i]);
1917 edev->int_info.used_cnt++;
1918 }
1919
1920 return 0;
1921}
1922
1923static void qede_simd_fp_handler(void *cookie)
1924{
1925 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1926
1927 napi_schedule_irqoff(&fp->napi);
1928}
1929
1930static int qede_setup_irqs(struct qede_dev *edev)
1931{
1932 int i, rc = 0;
1933
1934 /* Learn Interrupt configuration */
1935 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1936 if (rc)
1937 return rc;
1938
1939 if (edev->int_info.msix_cnt) {
1940 rc = qede_req_msix_irqs(edev);
1941 if (rc)
1942 return rc;
1943 edev->ndev->irq = edev->int_info.msix[0].vector;
1944 } else {
1945 const struct qed_common_ops *ops;
1946
1947 /* qed should learn receive the RSS ids and callbacks */
1948 ops = edev->ops->common;
1949 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1950 ops->simd_handler_config(edev->cdev,
1951 &edev->fp_array[i], i,
1952 qede_simd_fp_handler);
1953 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1954 }
1955 return 0;
1956}
1957
1958static int qede_drain_txq(struct qede_dev *edev,
1959 struct qede_tx_queue *txq, bool allow_drain)
1960{
1961 int rc, cnt = 1000;
1962
1963 while (txq->sw_tx_cons != txq->sw_tx_prod) {
1964 if (!cnt) {
1965 if (allow_drain) {
1966 DP_NOTICE(edev,
1967 "Tx queue[%d] is stuck, requesting MCP to drain\n",
1968 txq->index);
1969 rc = edev->ops->common->drain(edev->cdev);
1970 if (rc)
1971 return rc;
1972 return qede_drain_txq(edev, txq, false);
1973 }
1974 DP_NOTICE(edev,
1975 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1976 txq->index, txq->sw_tx_prod,
1977 txq->sw_tx_cons);
1978 return -ENODEV;
1979 }
1980 cnt--;
1981 usleep_range(1000, 2000);
1982 barrier();
1983 }
1984
1985 /* FW finished processing, wait for HW to transmit all tx packets */
1986 usleep_range(1000, 2000);
1987
1988 return 0;
1989}
1990
1991static int qede_stop_txq(struct qede_dev *edev,
1992 struct qede_tx_queue *txq, int rss_id)
1993{
1994 /* delete doorbell from doorbell recovery mechanism */
1995 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1996 &txq->tx_db);
1997
1998 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1999}
2000
2001static int qede_stop_queues(struct qede_dev *edev)
2002{
2003 struct qed_update_vport_params *vport_update_params;
2004 struct qed_dev *cdev = edev->cdev;
2005 struct qede_fastpath *fp;
2006 int rc, i;
2007
2008 /* Disable the vport */
2009 vport_update_params = vzalloc(sizeof(*vport_update_params));
2010 if (!vport_update_params)
2011 return -ENOMEM;
2012
2013 vport_update_params->vport_id = 0;
2014 vport_update_params->update_vport_active_flg = 1;
2015 vport_update_params->vport_active_flg = 0;
2016 vport_update_params->update_rss_flg = 0;
2017
2018 rc = edev->ops->vport_update(cdev, vport_update_params);
2019 vfree(vport_update_params);
2020
2021 if (rc) {
2022 DP_ERR(edev, "Failed to update vport\n");
2023 return rc;
2024 }
2025
2026 /* Flush Tx queues. If needed, request drain from MCP */
2027 for_each_queue(i) {
2028 fp = &edev->fp_array[i];
2029
2030 if (fp->type & QEDE_FASTPATH_TX) {
2031 int cos;
2032
2033 for_each_cos_in_txq(edev, cos) {
2034 rc = qede_drain_txq(edev, &fp->txq[cos], true);
2035 if (rc)
2036 return rc;
2037 }
2038 }
2039
2040 if (fp->type & QEDE_FASTPATH_XDP) {
2041 rc = qede_drain_txq(edev, fp->xdp_tx, true);
2042 if (rc)
2043 return rc;
2044 }
2045 }
2046
2047 /* Stop all Queues in reverse order */
2048 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2049 fp = &edev->fp_array[i];
2050
2051 /* Stop the Tx Queue(s) */
2052 if (fp->type & QEDE_FASTPATH_TX) {
2053 int cos;
2054
2055 for_each_cos_in_txq(edev, cos) {
2056 rc = qede_stop_txq(edev, &fp->txq[cos], i);
2057 if (rc)
2058 return rc;
2059 }
2060 }
2061
2062 /* Stop the Rx Queue */
2063 if (fp->type & QEDE_FASTPATH_RX) {
2064 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2065 if (rc) {
2066 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2067 return rc;
2068 }
2069 }
2070
2071 /* Stop the XDP forwarding queue */
2072 if (fp->type & QEDE_FASTPATH_XDP) {
2073 rc = qede_stop_txq(edev, fp->xdp_tx, i);
2074 if (rc)
2075 return rc;
2076
2077 bpf_prog_put(fp->rxq->xdp_prog);
2078 }
2079 }
2080
2081 /* Stop the vport */
2082 rc = edev->ops->vport_stop(cdev, 0);
2083 if (rc)
2084 DP_ERR(edev, "Failed to stop VPORT\n");
2085
2086 return rc;
2087}
2088
2089static int qede_start_txq(struct qede_dev *edev,
2090 struct qede_fastpath *fp,
2091 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2092{
2093 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2094 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2095 struct qed_queue_start_common_params params;
2096 struct qed_txq_start_ret_params ret_params;
2097 int rc;
2098
2099 memset(¶ms, 0, sizeof(params));
2100 memset(&ret_params, 0, sizeof(ret_params));
2101
2102 /* Let the XDP queue share the queue-zone with one of the regular txq.
2103 * We don't really care about its coalescing.
2104 */
2105 if (txq->is_xdp)
2106 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2107 else
2108 params.queue_id = txq->index;
2109
2110 params.p_sb = fp->sb_info;
2111 params.sb_idx = sb_idx;
2112 params.tc = txq->cos;
2113
2114 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table,
2115 page_cnt, &ret_params);
2116 if (rc) {
2117 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2118 return rc;
2119 }
2120
2121 txq->doorbell_addr = ret_params.p_doorbell;
2122 txq->handle = ret_params.p_handle;
2123
2124 /* Determine the FW consumer address associated */
2125 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2126
2127 /* Prepare the doorbell parameters */
2128 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2129 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2130 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2131 DQ_XCM_ETH_TX_BD_PROD_CMD);
2132 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2133
2134 /* register doorbell with doorbell recovery mechanism */
2135 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2136 &txq->tx_db, DB_REC_WIDTH_32B,
2137 DB_REC_KERNEL);
2138
2139 return rc;
2140}
2141
2142static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2143{
2144 int vlan_removal_en = 1;
2145 struct qed_dev *cdev = edev->cdev;
2146 struct qed_dev_info *qed_info = &edev->dev_info.common;
2147 struct qed_update_vport_params *vport_update_params;
2148 struct qed_queue_start_common_params q_params;
2149 struct qed_start_vport_params start = {0};
2150 int rc, i;
2151
2152 if (!edev->num_queues) {
2153 DP_ERR(edev,
2154 "Cannot update V-VPORT as active as there are no Rx queues\n");
2155 return -EINVAL;
2156 }
2157
2158 vport_update_params = vzalloc(sizeof(*vport_update_params));
2159 if (!vport_update_params)
2160 return -ENOMEM;
2161
2162 start.handle_ptp_pkts = !!(edev->ptp);
2163 start.gro_enable = !edev->gro_disable;
2164 start.mtu = edev->ndev->mtu;
2165 start.vport_id = 0;
2166 start.drop_ttl0 = true;
2167 start.remove_inner_vlan = vlan_removal_en;
2168 start.clear_stats = clear_stats;
2169
2170 rc = edev->ops->vport_start(cdev, &start);
2171
2172 if (rc) {
2173 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2174 goto out;
2175 }
2176
2177 DP_VERBOSE(edev, NETIF_MSG_IFUP,
2178 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2179 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2180
2181 for_each_queue(i) {
2182 struct qede_fastpath *fp = &edev->fp_array[i];
2183 dma_addr_t p_phys_table;
2184 u32 page_cnt;
2185
2186 if (fp->type & QEDE_FASTPATH_RX) {
2187 struct qed_rxq_start_ret_params ret_params;
2188 struct qede_rx_queue *rxq = fp->rxq;
2189 __le16 *val;
2190
2191 memset(&ret_params, 0, sizeof(ret_params));
2192 memset(&q_params, 0, sizeof(q_params));
2193 q_params.queue_id = rxq->rxq_id;
2194 q_params.vport_id = 0;
2195 q_params.p_sb = fp->sb_info;
2196 q_params.sb_idx = RX_PI;
2197
2198 p_phys_table =
2199 qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2200 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2201
2202 rc = edev->ops->q_rx_start(cdev, i, &q_params,
2203 rxq->rx_buf_size,
2204 rxq->rx_bd_ring.p_phys_addr,
2205 p_phys_table,
2206 page_cnt, &ret_params);
2207 if (rc) {
2208 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2209 rc);
2210 goto out;
2211 }
2212
2213 /* Use the return parameters */
2214 rxq->hw_rxq_prod_addr = ret_params.p_prod;
2215 rxq->handle = ret_params.p_handle;
2216
2217 val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2218 rxq->hw_cons_ptr = val;
2219
2220 qede_update_rx_prod(edev, rxq);
2221 }
2222
2223 if (fp->type & QEDE_FASTPATH_XDP) {
2224 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2225 if (rc)
2226 goto out;
2227
2228 bpf_prog_add(edev->xdp_prog, 1);
2229 fp->rxq->xdp_prog = edev->xdp_prog;
2230 }
2231
2232 if (fp->type & QEDE_FASTPATH_TX) {
2233 int cos;
2234
2235 for_each_cos_in_txq(edev, cos) {
2236 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2237 TX_PI(cos));
2238 if (rc)
2239 goto out;
2240 }
2241 }
2242 }
2243
2244 /* Prepare and send the vport enable */
2245 vport_update_params->vport_id = start.vport_id;
2246 vport_update_params->update_vport_active_flg = 1;
2247 vport_update_params->vport_active_flg = 1;
2248
2249 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2250 qed_info->tx_switching) {
2251 vport_update_params->update_tx_switching_flg = 1;
2252 vport_update_params->tx_switching_flg = 1;
2253 }
2254
2255 qede_fill_rss_params(edev, &vport_update_params->rss_params,
2256 &vport_update_params->update_rss_flg);
2257
2258 rc = edev->ops->vport_update(cdev, vport_update_params);
2259 if (rc)
2260 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2261
2262out:
2263 vfree(vport_update_params);
2264 return rc;
2265}
2266
2267enum qede_unload_mode {
2268 QEDE_UNLOAD_NORMAL,
2269 QEDE_UNLOAD_RECOVERY,
2270};
2271
2272static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2273 bool is_locked)
2274{
2275 struct qed_link_params link_params;
2276 int rc;
2277
2278 DP_INFO(edev, "Starting qede unload\n");
2279
2280 if (!is_locked)
2281 __qede_lock(edev);
2282
2283 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2284
2285 if (mode != QEDE_UNLOAD_RECOVERY)
2286 edev->state = QEDE_STATE_CLOSED;
2287
2288 qede_rdma_dev_event_close(edev);
2289
2290 /* Close OS Tx */
2291 netif_tx_disable(edev->ndev);
2292 netif_carrier_off(edev->ndev);
2293
2294 if (mode != QEDE_UNLOAD_RECOVERY) {
2295 /* Reset the link */
2296 memset(&link_params, 0, sizeof(link_params));
2297 link_params.link_up = false;
2298 edev->ops->common->set_link(edev->cdev, &link_params);
2299
2300 rc = qede_stop_queues(edev);
2301 if (rc) {
2302 qede_sync_free_irqs(edev);
2303 goto out;
2304 }
2305
2306 DP_INFO(edev, "Stopped Queues\n");
2307 }
2308
2309 qede_vlan_mark_nonconfigured(edev);
2310 edev->ops->fastpath_stop(edev->cdev);
2311
2312 if (edev->dev_info.common.b_arfs_capable) {
2313 qede_poll_for_freeing_arfs_filters(edev);
2314 qede_free_arfs(edev);
2315 }
2316
2317 /* Release the interrupts */
2318 qede_sync_free_irqs(edev);
2319 edev->ops->common->set_fp_int(edev->cdev, 0);
2320
2321 qede_napi_disable_remove(edev);
2322
2323 if (mode == QEDE_UNLOAD_RECOVERY)
2324 qede_empty_tx_queues(edev);
2325
2326 qede_free_mem_load(edev);
2327 qede_free_fp_array(edev);
2328
2329out:
2330 if (!is_locked)
2331 __qede_unlock(edev);
2332
2333 if (mode != QEDE_UNLOAD_RECOVERY)
2334 DP_NOTICE(edev, "Link is down\n");
2335
2336 edev->ptp_skip_txts = 0;
2337
2338 DP_INFO(edev, "Ending qede unload\n");
2339}
2340
2341enum qede_load_mode {
2342 QEDE_LOAD_NORMAL,
2343 QEDE_LOAD_RELOAD,
2344 QEDE_LOAD_RECOVERY,
2345};
2346
2347static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2348 bool is_locked)
2349{
2350 struct qed_link_params link_params;
2351 struct ethtool_coalesce coal = {};
2352 u8 num_tc;
2353 int rc, i;
2354
2355 DP_INFO(edev, "Starting qede load\n");
2356
2357 if (!is_locked)
2358 __qede_lock(edev);
2359
2360 rc = qede_set_num_queues(edev);
2361 if (rc)
2362 goto out;
2363
2364 rc = qede_alloc_fp_array(edev);
2365 if (rc)
2366 goto out;
2367
2368 qede_init_fp(edev);
2369
2370 rc = qede_alloc_mem_load(edev);
2371 if (rc)
2372 goto err1;
2373 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2374 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2375
2376 rc = qede_set_real_num_queues(edev);
2377 if (rc)
2378 goto err2;
2379
2380 if (qede_alloc_arfs(edev)) {
2381 edev->ndev->features &= ~NETIF_F_NTUPLE;
2382 edev->dev_info.common.b_arfs_capable = false;
2383 }
2384
2385 qede_napi_add_enable(edev);
2386 DP_INFO(edev, "Napi added and enabled\n");
2387
2388 rc = qede_setup_irqs(edev);
2389 if (rc)
2390 goto err3;
2391 DP_INFO(edev, "Setup IRQs succeeded\n");
2392
2393 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2394 if (rc)
2395 goto err4;
2396 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2397
2398 num_tc = netdev_get_num_tc(edev->ndev);
2399 num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2400 qede_setup_tc(edev->ndev, num_tc);
2401
2402 /* Program un-configured VLANs */
2403 qede_configure_vlan_filters(edev);
2404
2405 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2406
2407 /* Ask for link-up using current configuration */
2408 memset(&link_params, 0, sizeof(link_params));
2409 link_params.link_up = true;
2410 edev->ops->common->set_link(edev->cdev, &link_params);
2411
2412 edev->state = QEDE_STATE_OPEN;
2413
2414 coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2415 coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2416
2417 for_each_queue(i) {
2418 if (edev->coal_entry[i].isvalid) {
2419 coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2420 coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2421 }
2422 __qede_unlock(edev);
2423 qede_set_per_coalesce(edev->ndev, i, &coal);
2424 __qede_lock(edev);
2425 }
2426 DP_INFO(edev, "Ending successfully qede load\n");
2427
2428 goto out;
2429err4:
2430 qede_sync_free_irqs(edev);
2431err3:
2432 qede_napi_disable_remove(edev);
2433err2:
2434 qede_free_mem_load(edev);
2435err1:
2436 edev->ops->common->set_fp_int(edev->cdev, 0);
2437 qede_free_fp_array(edev);
2438 edev->num_queues = 0;
2439 edev->fp_num_tx = 0;
2440 edev->fp_num_rx = 0;
2441out:
2442 if (!is_locked)
2443 __qede_unlock(edev);
2444
2445 return rc;
2446}
2447
2448/* 'func' should be able to run between unload and reload assuming interface
2449 * is actually running, or afterwards in case it's currently DOWN.
2450 */
2451void qede_reload(struct qede_dev *edev,
2452 struct qede_reload_args *args, bool is_locked)
2453{
2454 if (!is_locked)
2455 __qede_lock(edev);
2456
2457 /* Since qede_lock is held, internal state wouldn't change even
2458 * if netdev state would start transitioning. Check whether current
2459 * internal configuration indicates device is up, then reload.
2460 */
2461 if (edev->state == QEDE_STATE_OPEN) {
2462 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2463 if (args)
2464 args->func(edev, args);
2465 qede_load(edev, QEDE_LOAD_RELOAD, true);
2466
2467 /* Since no one is going to do it for us, re-configure */
2468 qede_config_rx_mode(edev->ndev);
2469 } else if (args) {
2470 args->func(edev, args);
2471 }
2472
2473 if (!is_locked)
2474 __qede_unlock(edev);
2475}
2476
2477/* called with rtnl_lock */
2478static int qede_open(struct net_device *ndev)
2479{
2480 struct qede_dev *edev = netdev_priv(ndev);
2481 int rc;
2482
2483 netif_carrier_off(ndev);
2484
2485 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2486
2487 rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2488 if (rc)
2489 return rc;
2490
2491 udp_tunnel_nic_reset_ntf(ndev);
2492
2493 edev->ops->common->update_drv_state(edev->cdev, true);
2494
2495 return 0;
2496}
2497
2498static int qede_close(struct net_device *ndev)
2499{
2500 struct qede_dev *edev = netdev_priv(ndev);
2501
2502 qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2503
2504 if (edev->cdev)
2505 edev->ops->common->update_drv_state(edev->cdev, false);
2506
2507 return 0;
2508}
2509
2510static void qede_link_update(void *dev, struct qed_link_output *link)
2511{
2512 struct qede_dev *edev = dev;
2513
2514 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2515 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2516 return;
2517 }
2518
2519 if (link->link_up) {
2520 if (!netif_carrier_ok(edev->ndev)) {
2521 DP_NOTICE(edev, "Link is up\n");
2522 netif_tx_start_all_queues(edev->ndev);
2523 netif_carrier_on(edev->ndev);
2524 qede_rdma_dev_event_open(edev);
2525 }
2526 } else {
2527 if (netif_carrier_ok(edev->ndev)) {
2528 DP_NOTICE(edev, "Link is down\n");
2529 netif_tx_disable(edev->ndev);
2530 netif_carrier_off(edev->ndev);
2531 qede_rdma_dev_event_close(edev);
2532 }
2533 }
2534}
2535
2536static void qede_schedule_recovery_handler(void *dev)
2537{
2538 struct qede_dev *edev = dev;
2539
2540 if (edev->state == QEDE_STATE_RECOVERY) {
2541 DP_NOTICE(edev,
2542 "Avoid scheduling a recovery handling since already in recovery state\n");
2543 return;
2544 }
2545
2546 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2547 schedule_delayed_work(&edev->sp_task, 0);
2548
2549 DP_INFO(edev, "Scheduled a recovery handler\n");
2550}
2551
2552static void qede_recovery_failed(struct qede_dev *edev)
2553{
2554 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2555
2556 netif_device_detach(edev->ndev);
2557
2558 if (edev->cdev)
2559 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2560}
2561
2562static void qede_recovery_handler(struct qede_dev *edev)
2563{
2564 u32 curr_state = edev->state;
2565 int rc;
2566
2567 DP_NOTICE(edev, "Starting a recovery process\n");
2568
2569 /* No need to acquire first the qede_lock since is done by qede_sp_task
2570 * before calling this function.
2571 */
2572 edev->state = QEDE_STATE_RECOVERY;
2573
2574 edev->ops->common->recovery_prolog(edev->cdev);
2575
2576 if (curr_state == QEDE_STATE_OPEN)
2577 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2578
2579 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2580
2581 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2582 IS_VF(edev), QEDE_PROBE_RECOVERY);
2583 if (rc) {
2584 edev->cdev = NULL;
2585 goto err;
2586 }
2587
2588 if (curr_state == QEDE_STATE_OPEN) {
2589 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2590 if (rc)
2591 goto err;
2592
2593 qede_config_rx_mode(edev->ndev);
2594 udp_tunnel_nic_reset_ntf(edev->ndev);
2595 }
2596
2597 edev->state = curr_state;
2598
2599 DP_NOTICE(edev, "Recovery handling is done\n");
2600
2601 return;
2602
2603err:
2604 qede_recovery_failed(edev);
2605}
2606
2607static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2608{
2609 struct qed_dev *cdev = edev->cdev;
2610
2611 DP_NOTICE(edev,
2612 "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2613 edev->err_flags);
2614
2615 /* Get a call trace of the flow that led to the error */
2616 WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2617
2618 /* Prevent HW attentions from being reasserted */
2619 if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2620 edev->ops->common->attn_clr_enable(cdev, true);
2621
2622 DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2623}
2624
2625static void qede_generic_hw_err_handler(struct qede_dev *edev)
2626{
2627 DP_NOTICE(edev,
2628 "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2629 edev->err_flags);
2630
2631 if (edev->devlink)
2632 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2633
2634 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2635
2636 DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2637}
2638
2639static void qede_set_hw_err_flags(struct qede_dev *edev,
2640 enum qed_hw_err_type err_type)
2641{
2642 unsigned long err_flags = 0;
2643
2644 switch (err_type) {
2645 case QED_HW_ERR_DMAE_FAIL:
2646 set_bit(QEDE_ERR_WARN, &err_flags);
2647 fallthrough;
2648 case QED_HW_ERR_MFW_RESP_FAIL:
2649 case QED_HW_ERR_HW_ATTN:
2650 case QED_HW_ERR_RAMROD_FAIL:
2651 case QED_HW_ERR_FW_ASSERT:
2652 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2653 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2654 break;
2655
2656 default:
2657 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2658 break;
2659 }
2660
2661 edev->err_flags |= err_flags;
2662}
2663
2664static void qede_schedule_hw_err_handler(void *dev,
2665 enum qed_hw_err_type err_type)
2666{
2667 struct qede_dev *edev = dev;
2668
2669 /* Fan failure cannot be masked by handling of another HW error or by a
2670 * concurrent recovery process.
2671 */
2672 if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2673 edev->state == QEDE_STATE_RECOVERY) &&
2674 err_type != QED_HW_ERR_FAN_FAIL) {
2675 DP_INFO(edev,
2676 "Avoid scheduling an error handling while another HW error is being handled\n");
2677 return;
2678 }
2679
2680 if (err_type >= QED_HW_ERR_LAST) {
2681 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2682 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2683 return;
2684 }
2685
2686 edev->last_err_type = err_type;
2687 qede_set_hw_err_flags(edev, err_type);
2688 qede_atomic_hw_err_handler(edev);
2689 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2690 schedule_delayed_work(&edev->sp_task, 0);
2691
2692 DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2693}
2694
2695static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2696{
2697 struct netdev_queue *netdev_txq;
2698
2699 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2700 if (netif_xmit_stopped(netdev_txq))
2701 return true;
2702
2703 return false;
2704}
2705
2706static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2707{
2708 struct qede_dev *edev = dev;
2709 struct netdev_hw_addr *ha;
2710 int i;
2711
2712 if (edev->ndev->features & NETIF_F_IP_CSUM)
2713 data->feat_flags |= QED_TLV_IP_CSUM;
2714 if (edev->ndev->features & NETIF_F_TSO)
2715 data->feat_flags |= QED_TLV_LSO;
2716
2717 ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2718 eth_zero_addr(data->mac[1]);
2719 eth_zero_addr(data->mac[2]);
2720 /* Copy the first two UC macs */
2721 netif_addr_lock_bh(edev->ndev);
2722 i = 1;
2723 netdev_for_each_uc_addr(ha, edev->ndev) {
2724 ether_addr_copy(data->mac[i++], ha->addr);
2725 if (i == QED_TLV_MAC_COUNT)
2726 break;
2727 }
2728
2729 netif_addr_unlock_bh(edev->ndev);
2730}
2731
2732static void qede_get_eth_tlv_data(void *dev, void *data)
2733{
2734 struct qed_mfw_tlv_eth *etlv = data;
2735 struct qede_dev *edev = dev;
2736 struct qede_fastpath *fp;
2737 int i;
2738
2739 etlv->lso_maxoff_size = 0XFFFF;
2740 etlv->lso_maxoff_size_set = true;
2741 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2742 etlv->lso_minseg_size_set = true;
2743 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2744 etlv->prom_mode_set = true;
2745 etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2746 etlv->tx_descr_size_set = true;
2747 etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2748 etlv->rx_descr_size_set = true;
2749 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2750 etlv->iov_offload_set = true;
2751
2752 /* Fill information regarding queues; Should be done under the qede
2753 * lock to guarantee those don't change beneath our feet.
2754 */
2755 etlv->txqs_empty = true;
2756 etlv->rxqs_empty = true;
2757 etlv->num_txqs_full = 0;
2758 etlv->num_rxqs_full = 0;
2759
2760 __qede_lock(edev);
2761 for_each_queue(i) {
2762 fp = &edev->fp_array[i];
2763 if (fp->type & QEDE_FASTPATH_TX) {
2764 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2765
2766 if (txq->sw_tx_cons != txq->sw_tx_prod)
2767 etlv->txqs_empty = false;
2768 if (qede_is_txq_full(edev, txq))
2769 etlv->num_txqs_full++;
2770 }
2771 if (fp->type & QEDE_FASTPATH_RX) {
2772 if (qede_has_rx_work(fp->rxq))
2773 etlv->rxqs_empty = false;
2774
2775 /* This one is a bit tricky; Firmware might stop
2776 * placing packets if ring is not yet full.
2777 * Give an approximation.
2778 */
2779 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2780 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2781 RX_RING_SIZE - 100)
2782 etlv->num_rxqs_full++;
2783 }
2784 }
2785 __qede_unlock(edev);
2786
2787 etlv->txqs_empty_set = true;
2788 etlv->rxqs_empty_set = true;
2789 etlv->num_txqs_full_set = true;
2790 etlv->num_rxqs_full_set = true;
2791}
2792
2793/**
2794 * qede_io_error_detected - called when PCI error is detected
2795 * @pdev: Pointer to PCI device
2796 * @state: The current pci connection state
2797 *
2798 * This function is called after a PCI bus error affecting
2799 * this device has been detected.
2800 */
2801static pci_ers_result_t
2802qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2803{
2804 struct net_device *dev = pci_get_drvdata(pdev);
2805 struct qede_dev *edev = netdev_priv(dev);
2806
2807 if (!edev)
2808 return PCI_ERS_RESULT_NONE;
2809
2810 DP_NOTICE(edev, "IO error detected [%d]\n", state);
2811
2812 __qede_lock(edev);
2813 if (edev->state == QEDE_STATE_RECOVERY) {
2814 DP_NOTICE(edev, "Device already in the recovery state\n");
2815 __qede_unlock(edev);
2816 return PCI_ERS_RESULT_NONE;
2817 }
2818
2819 /* PF handles the recovery of its VFs */
2820 if (IS_VF(edev)) {
2821 DP_VERBOSE(edev, QED_MSG_IOV,
2822 "VF recovery is handled by its PF\n");
2823 __qede_unlock(edev);
2824 return PCI_ERS_RESULT_RECOVERED;
2825 }
2826
2827 /* Close OS Tx */
2828 netif_tx_disable(edev->ndev);
2829 netif_carrier_off(edev->ndev);
2830
2831 set_bit(QEDE_SP_AER, &edev->sp_flags);
2832 schedule_delayed_work(&edev->sp_task, 0);
2833
2834 __qede_unlock(edev);
2835
2836 return PCI_ERS_RESULT_CAN_RECOVER;
2837}