Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "e1000.h"
   5#include <net/ip6_checksum.h>
   6#include <linux/io.h>
   7#include <linux/prefetch.h>
   8#include <linux/bitops.h>
   9#include <linux/if_vlan.h>
  10
  11char e1000_driver_name[] = "e1000";
  12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
 
 
  13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  14
  15/* e1000_pci_tbl - PCI Device ID Table
  16 *
  17 * Last entry must be all 0s
  18 *
  19 * Macro expands to...
  20 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  21 */
  22static const struct pci_device_id e1000_pci_tbl[] = {
  23	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  24	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  25	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  26	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  27	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  28	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  29	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  30	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  31	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  32	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  33	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  34	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  35	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  36	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  37	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  38	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  39	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  40	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  41	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  42	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  43	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  44	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  45	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  46	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  47	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  48	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  49	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  50	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  53	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  54	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  55	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  57	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  58	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  59	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  60	/* required last entry */
  61	{0,}
  62};
  63
  64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  65
  66int e1000_up(struct e1000_adapter *adapter);
  67void e1000_down(struct e1000_adapter *adapter);
  68void e1000_reinit_locked(struct e1000_adapter *adapter);
  69void e1000_reset(struct e1000_adapter *adapter);
  70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  75				    struct e1000_tx_ring *txdr);
  76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  77				    struct e1000_rx_ring *rxdr);
  78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  79				    struct e1000_tx_ring *tx_ring);
  80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  81				    struct e1000_rx_ring *rx_ring);
  82void e1000_update_stats(struct e1000_adapter *adapter);
  83
  84static int e1000_init_module(void);
  85static void e1000_exit_module(void);
  86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  87static void e1000_remove(struct pci_dev *pdev);
  88static int e1000_alloc_queues(struct e1000_adapter *adapter);
  89static int e1000_sw_init(struct e1000_adapter *adapter);
  90int e1000_open(struct net_device *netdev);
  91int e1000_close(struct net_device *netdev);
  92static void e1000_configure_tx(struct e1000_adapter *adapter);
  93static void e1000_configure_rx(struct e1000_adapter *adapter);
  94static void e1000_setup_rctl(struct e1000_adapter *adapter);
  95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  98				struct e1000_tx_ring *tx_ring);
  99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 100				struct e1000_rx_ring *rx_ring);
 101static void e1000_set_rx_mode(struct net_device *netdev);
 102static void e1000_update_phy_info_task(struct work_struct *work);
 103static void e1000_watchdog(struct work_struct *work);
 104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 106				    struct net_device *netdev);
 
 107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 108static int e1000_set_mac(struct net_device *netdev, void *p);
 109static irqreturn_t e1000_intr(int irq, void *data);
 110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 111			       struct e1000_tx_ring *tx_ring);
 112static int e1000_clean(struct napi_struct *napi, int budget);
 113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 114			       struct e1000_rx_ring *rx_ring,
 115			       int *work_done, int work_to_do);
 116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 117				     struct e1000_rx_ring *rx_ring,
 118				     int *work_done, int work_to_do);
 119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 120					 struct e1000_rx_ring *rx_ring,
 121					 int cleaned_count)
 122{
 123}
 124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 125				   struct e1000_rx_ring *rx_ring,
 126				   int cleaned_count);
 127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 128					 struct e1000_rx_ring *rx_ring,
 129					 int cleaned_count);
 130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 132			   int cmd);
 133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
 136static void e1000_reset_task(struct work_struct *work);
 137static void e1000_smartspeed(struct e1000_adapter *adapter);
 138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 139				       struct sk_buff *skb);
 140
 141static bool e1000_vlan_used(struct e1000_adapter *adapter);
 142static void e1000_vlan_mode(struct net_device *netdev,
 143			    netdev_features_t features);
 144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 145				     bool filter_on);
 146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 147				 __be16 proto, u16 vid);
 148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 149				  __be16 proto, u16 vid);
 150static void e1000_restore_vlan(struct e1000_adapter *adapter);
 151
 152static int e1000_suspend(struct device *dev);
 153static int e1000_resume(struct device *dev);
 
 
 154static void e1000_shutdown(struct pci_dev *pdev);
 155
 156#ifdef CONFIG_NET_POLL_CONTROLLER
 157/* for netdump / net console */
 158static void e1000_netpoll (struct net_device *netdev);
 159#endif
 160
 161#define COPYBREAK_DEFAULT 256
 162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 163module_param(copybreak, uint, 0644);
 164MODULE_PARM_DESC(copybreak,
 165	"Maximum size of packet that is copied to a new buffer on receive");
 166
 167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 168						pci_channel_state_t state);
 169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 170static void e1000_io_resume(struct pci_dev *pdev);
 171
 172static const struct pci_error_handlers e1000_err_handler = {
 173	.error_detected = e1000_io_error_detected,
 174	.slot_reset = e1000_io_slot_reset,
 175	.resume = e1000_io_resume,
 176};
 177
 178static DEFINE_SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
 179
 180static struct pci_driver e1000_driver = {
 181	.name     = e1000_driver_name,
 182	.id_table = e1000_pci_tbl,
 183	.probe    = e1000_probe,
 184	.remove   = e1000_remove,
 185	.driver.pm = pm_sleep_ptr(&e1000_pm_ops),
 
 
 
 
 186	.shutdown = e1000_shutdown,
 187	.err_handler = &e1000_err_handler
 188};
 189
 
 190MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 191MODULE_LICENSE("GPL v2");
 
 192
 193#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 194static int debug = -1;
 195module_param(debug, int, 0);
 196MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 197
 198/**
 199 * e1000_get_hw_dev - helper function for getting netdev
 200 * @hw: pointer to HW struct
 201 *
 202 * return device used by hardware layer to print debugging information
 203 *
 204 **/
 205struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 206{
 207	struct e1000_adapter *adapter = hw->back;
 208	return adapter->netdev;
 209}
 210
 211/**
 212 * e1000_init_module - Driver Registration Routine
 213 *
 214 * e1000_init_module is the first routine called when the driver is
 215 * loaded. All it does is register with the PCI subsystem.
 216 **/
 217static int __init e1000_init_module(void)
 218{
 219	int ret;
 220	pr_info("%s\n", e1000_driver_string);
 221
 222	pr_info("%s\n", e1000_copyright);
 223
 224	ret = pci_register_driver(&e1000_driver);
 225	if (copybreak != COPYBREAK_DEFAULT) {
 226		if (copybreak == 0)
 227			pr_info("copybreak disabled\n");
 228		else
 229			pr_info("copybreak enabled for "
 230				   "packets <= %u bytes\n", copybreak);
 231	}
 232	return ret;
 233}
 234
 235module_init(e1000_init_module);
 236
 237/**
 238 * e1000_exit_module - Driver Exit Cleanup Routine
 239 *
 240 * e1000_exit_module is called just before the driver is removed
 241 * from memory.
 242 **/
 243static void __exit e1000_exit_module(void)
 244{
 245	pci_unregister_driver(&e1000_driver);
 246}
 247
 248module_exit(e1000_exit_module);
 249
 250static int e1000_request_irq(struct e1000_adapter *adapter)
 251{
 252	struct net_device *netdev = adapter->netdev;
 253	irq_handler_t handler = e1000_intr;
 254	int irq_flags = IRQF_SHARED;
 255	int err;
 256
 257	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 258			  netdev);
 259	if (err) {
 260		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 261	}
 262
 263	return err;
 264}
 265
 266static void e1000_free_irq(struct e1000_adapter *adapter)
 267{
 268	struct net_device *netdev = adapter->netdev;
 269
 270	free_irq(adapter->pdev->irq, netdev);
 271}
 272
 273/**
 274 * e1000_irq_disable - Mask off interrupt generation on the NIC
 275 * @adapter: board private structure
 276 **/
 277static void e1000_irq_disable(struct e1000_adapter *adapter)
 278{
 279	struct e1000_hw *hw = &adapter->hw;
 280
 281	ew32(IMC, ~0);
 282	E1000_WRITE_FLUSH();
 283	synchronize_irq(adapter->pdev->irq);
 284}
 285
 286/**
 287 * e1000_irq_enable - Enable default interrupt generation settings
 288 * @adapter: board private structure
 289 **/
 290static void e1000_irq_enable(struct e1000_adapter *adapter)
 291{
 292	struct e1000_hw *hw = &adapter->hw;
 293
 294	ew32(IMS, IMS_ENABLE_MASK);
 295	E1000_WRITE_FLUSH();
 296}
 297
 298static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 299{
 300	struct e1000_hw *hw = &adapter->hw;
 301	struct net_device *netdev = adapter->netdev;
 302	u16 vid = hw->mng_cookie.vlan_id;
 303	u16 old_vid = adapter->mng_vlan_id;
 304
 305	if (!e1000_vlan_used(adapter))
 306		return;
 307
 308	if (!test_bit(vid, adapter->active_vlans)) {
 309		if (hw->mng_cookie.status &
 310		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 311			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 312			adapter->mng_vlan_id = vid;
 313		} else {
 314			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 315		}
 316		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 317		    (vid != old_vid) &&
 318		    !test_bit(old_vid, adapter->active_vlans))
 319			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 320					       old_vid);
 321	} else {
 322		adapter->mng_vlan_id = vid;
 323	}
 324}
 325
 326static void e1000_init_manageability(struct e1000_adapter *adapter)
 327{
 328	struct e1000_hw *hw = &adapter->hw;
 329
 330	if (adapter->en_mng_pt) {
 331		u32 manc = er32(MANC);
 332
 333		/* disable hardware interception of ARP */
 334		manc &= ~(E1000_MANC_ARP_EN);
 335
 336		ew32(MANC, manc);
 337	}
 338}
 339
 340static void e1000_release_manageability(struct e1000_adapter *adapter)
 341{
 342	struct e1000_hw *hw = &adapter->hw;
 343
 344	if (adapter->en_mng_pt) {
 345		u32 manc = er32(MANC);
 346
 347		/* re-enable hardware interception of ARP */
 348		manc |= E1000_MANC_ARP_EN;
 349
 350		ew32(MANC, manc);
 351	}
 352}
 353
 354/**
 355 * e1000_configure - configure the hardware for RX and TX
 356 * @adapter: private board structure
 357 **/
 358static void e1000_configure(struct e1000_adapter *adapter)
 359{
 360	struct net_device *netdev = adapter->netdev;
 361	int i;
 362
 363	e1000_set_rx_mode(netdev);
 364
 365	e1000_restore_vlan(adapter);
 366	e1000_init_manageability(adapter);
 367
 368	e1000_configure_tx(adapter);
 369	e1000_setup_rctl(adapter);
 370	e1000_configure_rx(adapter);
 371	/* call E1000_DESC_UNUSED which always leaves
 372	 * at least 1 descriptor unused to make sure
 373	 * next_to_use != next_to_clean
 374	 */
 375	for (i = 0; i < adapter->num_rx_queues; i++) {
 376		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 377		adapter->alloc_rx_buf(adapter, ring,
 378				      E1000_DESC_UNUSED(ring));
 379	}
 380}
 381
 382int e1000_up(struct e1000_adapter *adapter)
 383{
 384	struct e1000_hw *hw = &adapter->hw;
 385
 386	/* hardware has been reset, we need to reload some things */
 387	e1000_configure(adapter);
 388
 389	clear_bit(__E1000_DOWN, &adapter->flags);
 390
 391	napi_enable(&adapter->napi);
 392
 393	e1000_irq_enable(adapter);
 394
 395	netif_wake_queue(adapter->netdev);
 396
 397	/* fire a link change interrupt to start the watchdog */
 398	ew32(ICS, E1000_ICS_LSC);
 399	return 0;
 400}
 401
 402/**
 403 * e1000_power_up_phy - restore link in case the phy was powered down
 404 * @adapter: address of board private structure
 405 *
 406 * The phy may be powered down to save power and turn off link when the
 407 * driver is unloaded and wake on lan is not enabled (among others)
 408 * *** this routine MUST be followed by a call to e1000_reset ***
 409 **/
 410void e1000_power_up_phy(struct e1000_adapter *adapter)
 411{
 412	struct e1000_hw *hw = &adapter->hw;
 413	u16 mii_reg = 0;
 414
 415	/* Just clear the power down bit to wake the phy back up */
 416	if (hw->media_type == e1000_media_type_copper) {
 417		/* according to the manual, the phy will retain its
 418		 * settings across a power-down/up cycle
 419		 */
 420		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 421		mii_reg &= ~MII_CR_POWER_DOWN;
 422		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 423	}
 424}
 425
 426static void e1000_power_down_phy(struct e1000_adapter *adapter)
 427{
 428	struct e1000_hw *hw = &adapter->hw;
 429
 430	/* Power down the PHY so no link is implied when interface is down *
 431	 * The PHY cannot be powered down if any of the following is true *
 432	 * (a) WoL is enabled
 433	 * (b) AMT is active
 434	 * (c) SoL/IDER session is active
 435	 */
 436	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 437	   hw->media_type == e1000_media_type_copper) {
 438		u16 mii_reg = 0;
 439
 440		switch (hw->mac_type) {
 441		case e1000_82540:
 442		case e1000_82545:
 443		case e1000_82545_rev_3:
 444		case e1000_82546:
 445		case e1000_ce4100:
 446		case e1000_82546_rev_3:
 447		case e1000_82541:
 448		case e1000_82541_rev_2:
 449		case e1000_82547:
 450		case e1000_82547_rev_2:
 451			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 452				goto out;
 453			break;
 454		default:
 455			goto out;
 456		}
 457		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 458		mii_reg |= MII_CR_POWER_DOWN;
 459		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 460		msleep(1);
 461	}
 462out:
 463	return;
 464}
 465
 466static void e1000_down_and_stop(struct e1000_adapter *adapter)
 467{
 468	set_bit(__E1000_DOWN, &adapter->flags);
 469
 470	cancel_delayed_work_sync(&adapter->watchdog_task);
 471
 472	/*
 473	 * Since the watchdog task can reschedule other tasks, we should cancel
 474	 * it first, otherwise we can run into the situation when a work is
 475	 * still running after the adapter has been turned down.
 476	 */
 477
 478	cancel_delayed_work_sync(&adapter->phy_info_task);
 479	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 480
 481	/* Only kill reset task if adapter is not resetting */
 482	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 483		cancel_work_sync(&adapter->reset_task);
 484}
 485
 486void e1000_down(struct e1000_adapter *adapter)
 487{
 488	struct e1000_hw *hw = &adapter->hw;
 489	struct net_device *netdev = adapter->netdev;
 490	u32 rctl, tctl;
 491
 
 
 492	/* disable receives in the hardware */
 493	rctl = er32(RCTL);
 494	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 495	/* flush and sleep below */
 496
 497	netif_tx_disable(netdev);
 498
 499	/* disable transmits in the hardware */
 500	tctl = er32(TCTL);
 501	tctl &= ~E1000_TCTL_EN;
 502	ew32(TCTL, tctl);
 503	/* flush both disables and wait for them to finish */
 504	E1000_WRITE_FLUSH();
 505	msleep(10);
 506
 507	/* Set the carrier off after transmits have been disabled in the
 508	 * hardware, to avoid race conditions with e1000_watchdog() (which
 509	 * may be running concurrently to us, checking for the carrier
 510	 * bit to decide whether it should enable transmits again). Such
 511	 * a race condition would result into transmission being disabled
 512	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
 513	 */
 514	netif_carrier_off(netdev);
 515
 516	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
 517	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
 518	napi_disable(&adapter->napi);
 519
 520	e1000_irq_disable(adapter);
 521
 522	/* Setting DOWN must be after irq_disable to prevent
 523	 * a screaming interrupt.  Setting DOWN also prevents
 524	 * tasks from rescheduling.
 525	 */
 526	e1000_down_and_stop(adapter);
 527
 528	adapter->link_speed = 0;
 529	adapter->link_duplex = 0;
 530
 531	e1000_reset(adapter);
 532	e1000_clean_all_tx_rings(adapter);
 533	e1000_clean_all_rx_rings(adapter);
 534}
 535
 536void e1000_reinit_locked(struct e1000_adapter *adapter)
 537{
 
 538	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 539		msleep(1);
 540
 541	/* only run the task if not already down */
 542	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
 543		e1000_down(adapter);
 544		e1000_up(adapter);
 545	}
 546
 547	clear_bit(__E1000_RESETTING, &adapter->flags);
 548}
 549
 550void e1000_reset(struct e1000_adapter *adapter)
 551{
 552	struct e1000_hw *hw = &adapter->hw;
 553	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 554	bool legacy_pba_adjust = false;
 555	u16 hwm;
 556
 557	/* Repartition Pba for greater than 9k mtu
 558	 * To take effect CTRL.RST is required.
 559	 */
 560
 561	switch (hw->mac_type) {
 562	case e1000_82542_rev2_0:
 563	case e1000_82542_rev2_1:
 564	case e1000_82543:
 565	case e1000_82544:
 566	case e1000_82540:
 567	case e1000_82541:
 568	case e1000_82541_rev_2:
 569		legacy_pba_adjust = true;
 570		pba = E1000_PBA_48K;
 571		break;
 572	case e1000_82545:
 573	case e1000_82545_rev_3:
 574	case e1000_82546:
 575	case e1000_ce4100:
 576	case e1000_82546_rev_3:
 577		pba = E1000_PBA_48K;
 578		break;
 579	case e1000_82547:
 580	case e1000_82547_rev_2:
 581		legacy_pba_adjust = true;
 582		pba = E1000_PBA_30K;
 583		break;
 584	case e1000_undefined:
 585	case e1000_num_macs:
 586		break;
 587	}
 588
 589	if (legacy_pba_adjust) {
 590		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 591			pba -= 8; /* allocate more FIFO for Tx */
 592
 593		if (hw->mac_type == e1000_82547) {
 594			adapter->tx_fifo_head = 0;
 595			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 596			adapter->tx_fifo_size =
 597				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 598			atomic_set(&adapter->tx_fifo_stall, 0);
 599		}
 600	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 601		/* adjust PBA for jumbo frames */
 602		ew32(PBA, pba);
 603
 604		/* To maintain wire speed transmits, the Tx FIFO should be
 605		 * large enough to accommodate two full transmit packets,
 606		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 607		 * the Rx FIFO should be large enough to accommodate at least
 608		 * one full receive packet and is similarly rounded up and
 609		 * expressed in KB.
 610		 */
 611		pba = er32(PBA);
 612		/* upper 16 bits has Tx packet buffer allocation size in KB */
 613		tx_space = pba >> 16;
 614		/* lower 16 bits has Rx packet buffer allocation size in KB */
 615		pba &= 0xffff;
 616		/* the Tx fifo also stores 16 bytes of information about the Tx
 617		 * but don't include ethernet FCS because hardware appends it
 618		 */
 619		min_tx_space = (hw->max_frame_size +
 620				sizeof(struct e1000_tx_desc) -
 621				ETH_FCS_LEN) * 2;
 622		min_tx_space = ALIGN(min_tx_space, 1024);
 623		min_tx_space >>= 10;
 624		/* software strips receive CRC, so leave room for it */
 625		min_rx_space = hw->max_frame_size;
 626		min_rx_space = ALIGN(min_rx_space, 1024);
 627		min_rx_space >>= 10;
 628
 629		/* If current Tx allocation is less than the min Tx FIFO size,
 630		 * and the min Tx FIFO size is less than the current Rx FIFO
 631		 * allocation, take space away from current Rx allocation
 632		 */
 633		if (tx_space < min_tx_space &&
 634		    ((min_tx_space - tx_space) < pba)) {
 635			pba = pba - (min_tx_space - tx_space);
 636
 637			/* PCI/PCIx hardware has PBA alignment constraints */
 638			switch (hw->mac_type) {
 639			case e1000_82545 ... e1000_82546_rev_3:
 640				pba &= ~(E1000_PBA_8K - 1);
 641				break;
 642			default:
 643				break;
 644			}
 645
 646			/* if short on Rx space, Rx wins and must trump Tx
 647			 * adjustment or use Early Receive if available
 648			 */
 649			if (pba < min_rx_space)
 650				pba = min_rx_space;
 651		}
 652	}
 653
 654	ew32(PBA, pba);
 655
 656	/* flow control settings:
 657	 * The high water mark must be low enough to fit one full frame
 658	 * (or the size used for early receive) above it in the Rx FIFO.
 659	 * Set it to the lower of:
 660	 * - 90% of the Rx FIFO size, and
 661	 * - the full Rx FIFO size minus the early receive size (for parts
 662	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 663	 * - the full Rx FIFO size minus one full frame
 664	 */
 665	hwm = min(((pba << 10) * 9 / 10),
 666		  ((pba << 10) - hw->max_frame_size));
 667
 668	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 669	hw->fc_low_water = hw->fc_high_water - 8;
 670	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 671	hw->fc_send_xon = 1;
 672	hw->fc = hw->original_fc;
 673
 674	/* Allow time for pending master requests to run */
 675	e1000_reset_hw(hw);
 676	if (hw->mac_type >= e1000_82544)
 677		ew32(WUC, 0);
 678
 679	if (e1000_init_hw(hw))
 680		e_dev_err("Hardware Error\n");
 681	e1000_update_mng_vlan(adapter);
 682
 683	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 684	if (hw->mac_type >= e1000_82544 &&
 685	    hw->autoneg == 1 &&
 686	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 687		u32 ctrl = er32(CTRL);
 688		/* clear phy power management bit if we are in gig only mode,
 689		 * which if enabled will attempt negotiation to 100Mb, which
 690		 * can cause a loss of link at power off or driver unload
 691		 */
 692		ctrl &= ~E1000_CTRL_SWDPIN3;
 693		ew32(CTRL, ctrl);
 694	}
 695
 696	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 697	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 698
 699	e1000_reset_adaptive(hw);
 700	e1000_phy_get_info(hw, &adapter->phy_info);
 701
 702	e1000_release_manageability(adapter);
 703}
 704
 705/* Dump the eeprom for users having checksum issues */
 706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 707{
 708	struct net_device *netdev = adapter->netdev;
 709	struct ethtool_eeprom eeprom;
 710	const struct ethtool_ops *ops = netdev->ethtool_ops;
 711	u8 *data;
 712	int i;
 713	u16 csum_old, csum_new = 0;
 714
 715	eeprom.len = ops->get_eeprom_len(netdev);
 716	eeprom.offset = 0;
 717
 718	data = kmalloc(eeprom.len, GFP_KERNEL);
 719	if (!data)
 720		return;
 721
 722	ops->get_eeprom(netdev, &eeprom, data);
 723
 724	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 725		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 726	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 727		csum_new += data[i] + (data[i + 1] << 8);
 728	csum_new = EEPROM_SUM - csum_new;
 729
 730	pr_err("/*********************/\n");
 731	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 732	pr_err("Calculated              : 0x%04x\n", csum_new);
 733
 734	pr_err("Offset    Values\n");
 735	pr_err("========  ======\n");
 736	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 737
 738	pr_err("Include this output when contacting your support provider.\n");
 739	pr_err("This is not a software error! Something bad happened to\n");
 740	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 741	pr_err("result in further problems, possibly loss of data,\n");
 742	pr_err("corruption or system hangs!\n");
 743	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 744	pr_err("which is invalid and requires you to set the proper MAC\n");
 745	pr_err("address manually before continuing to enable this network\n");
 746	pr_err("device. Please inspect the EEPROM dump and report the\n");
 747	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 748	pr_err("/*********************/\n");
 749
 750	kfree(data);
 751}
 752
 753/**
 754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 755 * @pdev: PCI device information struct
 756 *
 757 * Return true if an adapter needs ioport resources
 758 **/
 759static int e1000_is_need_ioport(struct pci_dev *pdev)
 760{
 761	switch (pdev->device) {
 762	case E1000_DEV_ID_82540EM:
 763	case E1000_DEV_ID_82540EM_LOM:
 764	case E1000_DEV_ID_82540EP:
 765	case E1000_DEV_ID_82540EP_LOM:
 766	case E1000_DEV_ID_82540EP_LP:
 767	case E1000_DEV_ID_82541EI:
 768	case E1000_DEV_ID_82541EI_MOBILE:
 769	case E1000_DEV_ID_82541ER:
 770	case E1000_DEV_ID_82541ER_LOM:
 771	case E1000_DEV_ID_82541GI:
 772	case E1000_DEV_ID_82541GI_LF:
 773	case E1000_DEV_ID_82541GI_MOBILE:
 774	case E1000_DEV_ID_82544EI_COPPER:
 775	case E1000_DEV_ID_82544EI_FIBER:
 776	case E1000_DEV_ID_82544GC_COPPER:
 777	case E1000_DEV_ID_82544GC_LOM:
 778	case E1000_DEV_ID_82545EM_COPPER:
 779	case E1000_DEV_ID_82545EM_FIBER:
 780	case E1000_DEV_ID_82546EB_COPPER:
 781	case E1000_DEV_ID_82546EB_FIBER:
 782	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 783		return true;
 784	default:
 785		return false;
 786	}
 787}
 788
 789static netdev_features_t e1000_fix_features(struct net_device *netdev,
 790	netdev_features_t features)
 791{
 792	/* Since there is no support for separate Rx/Tx vlan accel
 793	 * enable/disable make sure Tx flag is always in same state as Rx.
 794	 */
 795	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 796		features |= NETIF_F_HW_VLAN_CTAG_TX;
 797	else
 798		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 799
 800	return features;
 801}
 802
 803static int e1000_set_features(struct net_device *netdev,
 804	netdev_features_t features)
 805{
 806	struct e1000_adapter *adapter = netdev_priv(netdev);
 807	netdev_features_t changed = features ^ netdev->features;
 808
 809	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 810		e1000_vlan_mode(netdev, features);
 811
 812	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 813		return 0;
 814
 815	netdev->features = features;
 816	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 817
 818	if (netif_running(netdev))
 819		e1000_reinit_locked(adapter);
 820	else
 821		e1000_reset(adapter);
 822
 823	return 1;
 824}
 825
 826static const struct net_device_ops e1000_netdev_ops = {
 827	.ndo_open		= e1000_open,
 828	.ndo_stop		= e1000_close,
 829	.ndo_start_xmit		= e1000_xmit_frame,
 
 830	.ndo_set_rx_mode	= e1000_set_rx_mode,
 831	.ndo_set_mac_address	= e1000_set_mac,
 832	.ndo_tx_timeout		= e1000_tx_timeout,
 833	.ndo_change_mtu		= e1000_change_mtu,
 834	.ndo_eth_ioctl		= e1000_ioctl,
 835	.ndo_validate_addr	= eth_validate_addr,
 836	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 837	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 838#ifdef CONFIG_NET_POLL_CONTROLLER
 839	.ndo_poll_controller	= e1000_netpoll,
 840#endif
 841	.ndo_fix_features	= e1000_fix_features,
 842	.ndo_set_features	= e1000_set_features,
 843};
 844
 845/**
 846 * e1000_init_hw_struct - initialize members of hw struct
 847 * @adapter: board private struct
 848 * @hw: structure used by e1000_hw.c
 849 *
 850 * Factors out initialization of the e1000_hw struct to its own function
 851 * that can be called very early at init (just after struct allocation).
 852 * Fields are initialized based on PCI device information and
 853 * OS network device settings (MTU size).
 854 * Returns negative error codes if MAC type setup fails.
 855 */
 856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 857				struct e1000_hw *hw)
 858{
 859	struct pci_dev *pdev = adapter->pdev;
 860
 861	/* PCI config space info */
 862	hw->vendor_id = pdev->vendor;
 863	hw->device_id = pdev->device;
 864	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 865	hw->subsystem_id = pdev->subsystem_device;
 866	hw->revision_id = pdev->revision;
 867
 868	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 869
 870	hw->max_frame_size = adapter->netdev->mtu +
 871			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 872	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 873
 874	/* identify the MAC */
 875	if (e1000_set_mac_type(hw)) {
 876		e_err(probe, "Unknown MAC Type\n");
 877		return -EIO;
 878	}
 879
 880	switch (hw->mac_type) {
 881	default:
 882		break;
 883	case e1000_82541:
 884	case e1000_82547:
 885	case e1000_82541_rev_2:
 886	case e1000_82547_rev_2:
 887		hw->phy_init_script = 1;
 888		break;
 889	}
 890
 891	e1000_set_media_type(hw);
 892	e1000_get_bus_info(hw);
 893
 894	hw->wait_autoneg_complete = false;
 895	hw->tbi_compatibility_en = true;
 896	hw->adaptive_ifs = true;
 897
 898	/* Copper options */
 899
 900	if (hw->media_type == e1000_media_type_copper) {
 901		hw->mdix = AUTO_ALL_MODES;
 902		hw->disable_polarity_correction = false;
 903		hw->master_slave = E1000_MASTER_SLAVE;
 904	}
 905
 906	return 0;
 907}
 908
 909/**
 910 * e1000_probe - Device Initialization Routine
 911 * @pdev: PCI device information struct
 912 * @ent: entry in e1000_pci_tbl
 913 *
 914 * Returns 0 on success, negative on failure
 915 *
 916 * e1000_probe initializes an adapter identified by a pci_dev structure.
 917 * The OS initialization, configuring of the adapter private structure,
 918 * and a hardware reset occur.
 919 **/
 920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 921{
 922	struct net_device *netdev;
 923	struct e1000_adapter *adapter = NULL;
 924	struct e1000_hw *hw;
 925
 926	static int cards_found;
 927	static int global_quad_port_a; /* global ksp3 port a indication */
 928	int i, err, pci_using_dac;
 929	u16 eeprom_data = 0;
 930	u16 tmp = 0;
 931	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 932	int bars, need_ioport;
 933	bool disable_dev = false;
 934
 935	/* do not allocate ioport bars when not needed */
 936	need_ioport = e1000_is_need_ioport(pdev);
 937	if (need_ioport) {
 938		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 939		err = pci_enable_device(pdev);
 940	} else {
 941		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 942		err = pci_enable_device_mem(pdev);
 943	}
 944	if (err)
 945		return err;
 946
 947	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 948	if (err)
 949		goto err_pci_reg;
 950
 951	pci_set_master(pdev);
 952	err = pci_save_state(pdev);
 953	if (err)
 954		goto err_alloc_etherdev;
 955
 956	err = -ENOMEM;
 957	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 958	if (!netdev)
 959		goto err_alloc_etherdev;
 960
 961	SET_NETDEV_DEV(netdev, &pdev->dev);
 962
 963	pci_set_drvdata(pdev, netdev);
 964	adapter = netdev_priv(netdev);
 965	adapter->netdev = netdev;
 966	adapter->pdev = pdev;
 967	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 968	adapter->bars = bars;
 969	adapter->need_ioport = need_ioport;
 970
 971	hw = &adapter->hw;
 972	hw->back = adapter;
 973
 974	err = -EIO;
 975	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 976	if (!hw->hw_addr)
 977		goto err_ioremap;
 978
 979	if (adapter->need_ioport) {
 980		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
 981			if (pci_resource_len(pdev, i) == 0)
 982				continue;
 983			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 984				hw->io_base = pci_resource_start(pdev, i);
 985				break;
 986			}
 987		}
 988	}
 989
 990	/* make ready for any if (hw->...) below */
 991	err = e1000_init_hw_struct(adapter, hw);
 992	if (err)
 993		goto err_sw_init;
 994
 995	/* there is a workaround being applied below that limits
 996	 * 64-bit DMA addresses to 64-bit hardware.  There are some
 997	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
 998	 */
 999	pci_using_dac = 0;
1000	if ((hw->bus_type == e1000_bus_type_pcix) &&
1001	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002		pci_using_dac = 1;
1003	} else {
1004		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005		if (err) {
1006			pr_err("No usable DMA config, aborting\n");
1007			goto err_dma;
1008		}
1009	}
1010
1011	netdev->netdev_ops = &e1000_netdev_ops;
1012	e1000_set_ethtool_ops(netdev);
1013	netdev->watchdog_timeo = 5 * HZ;
1014	netif_napi_add(netdev, &adapter->napi, e1000_clean);
1015
1016	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1017
1018	adapter->bd_number = cards_found;
1019
1020	/* setup the private structure */
1021
1022	err = e1000_sw_init(adapter);
1023	if (err)
1024		goto err_sw_init;
1025
1026	err = -EIO;
1027	if (hw->mac_type == e1000_ce4100) {
1028		hw->ce4100_gbe_mdio_base_virt =
1029					ioremap(pci_resource_start(pdev, BAR_1),
1030						pci_resource_len(pdev, BAR_1));
1031
1032		if (!hw->ce4100_gbe_mdio_base_virt)
1033			goto err_mdio_ioremap;
1034	}
1035
1036	if (hw->mac_type >= e1000_82543) {
1037		netdev->hw_features = NETIF_F_SG |
1038				   NETIF_F_HW_CSUM |
1039				   NETIF_F_HW_VLAN_CTAG_RX;
1040		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041				   NETIF_F_HW_VLAN_CTAG_FILTER;
1042	}
1043
1044	if ((hw->mac_type >= e1000_82544) &&
1045	   (hw->mac_type != e1000_82547))
1046		netdev->hw_features |= NETIF_F_TSO;
1047
1048	netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050	netdev->features |= netdev->hw_features;
1051	netdev->hw_features |= (NETIF_F_RXCSUM |
1052				NETIF_F_RXALL |
1053				NETIF_F_RXFCS);
1054
1055	if (pci_using_dac) {
1056		netdev->features |= NETIF_F_HIGHDMA;
1057		netdev->vlan_features |= NETIF_F_HIGHDMA;
1058	}
1059
1060	netdev->vlan_features |= (NETIF_F_TSO |
1061				  NETIF_F_HW_CSUM |
1062				  NETIF_F_SG);
1063
1064	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067		netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069	/* MTU range: 46 - 16110 */
1070	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075	/* initialize eeprom parameters */
1076	if (e1000_init_eeprom_params(hw)) {
1077		e_err(probe, "EEPROM initialization failed\n");
1078		goto err_eeprom;
1079	}
1080
1081	/* before reading the EEPROM, reset the controller to
1082	 * put the device in a known good starting state
1083	 */
1084
1085	e1000_reset_hw(hw);
1086
1087	/* make sure the EEPROM is good */
1088	if (e1000_validate_eeprom_checksum(hw) < 0) {
1089		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090		e1000_dump_eeprom(adapter);
1091		/* set MAC address to all zeroes to invalidate and temporary
1092		 * disable this device for the user. This blocks regular
1093		 * traffic while still permitting ethtool ioctls from reaching
1094		 * the hardware as well as allowing the user to run the
1095		 * interface after manually setting a hw addr using
1096		 * `ip set address`
1097		 */
1098		memset(hw->mac_addr, 0, netdev->addr_len);
1099	} else {
1100		/* copy the MAC address out of the EEPROM */
1101		if (e1000_read_mac_addr(hw))
1102			e_err(probe, "EEPROM Read Error\n");
1103	}
1104	/* don't block initialization here due to bad MAC address */
1105	eth_hw_addr_set(netdev, hw->mac_addr);
1106
1107	if (!is_valid_ether_addr(netdev->dev_addr))
1108		e_err(probe, "Invalid MAC Address\n");
1109
1110
1111	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113			  e1000_82547_tx_fifo_stall_task);
1114	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117	e1000_check_options(adapter);
1118
1119	/* Initial Wake on LAN setting
1120	 * If APM wake is enabled in the EEPROM,
1121	 * enable the ACPI Magic Packet filter
1122	 */
1123
1124	switch (hw->mac_type) {
1125	case e1000_82542_rev2_0:
1126	case e1000_82542_rev2_1:
1127	case e1000_82543:
1128		break;
1129	case e1000_82544:
1130		e1000_read_eeprom(hw,
1131			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133		break;
1134	case e1000_82546:
1135	case e1000_82546_rev_3:
1136		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137			e1000_read_eeprom(hw,
1138				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139			break;
1140		}
1141		fallthrough;
1142	default:
1143		e1000_read_eeprom(hw,
1144			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145		break;
1146	}
1147	if (eeprom_data & eeprom_apme_mask)
1148		adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150	/* now that we have the eeprom settings, apply the special cases
1151	 * where the eeprom may be wrong or the board simply won't support
1152	 * wake on lan on a particular port
1153	 */
1154	switch (pdev->device) {
1155	case E1000_DEV_ID_82546GB_PCIE:
1156		adapter->eeprom_wol = 0;
1157		break;
1158	case E1000_DEV_ID_82546EB_FIBER:
1159	case E1000_DEV_ID_82546GB_FIBER:
1160		/* Wake events only supported on port A for dual fiber
1161		 * regardless of eeprom setting
1162		 */
1163		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164			adapter->eeprom_wol = 0;
1165		break;
1166	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167		/* if quad port adapter, disable WoL on all but port A */
1168		if (global_quad_port_a != 0)
1169			adapter->eeprom_wol = 0;
1170		else
1171			adapter->quad_port_a = true;
1172		/* Reset for multiple quad port adapters */
1173		if (++global_quad_port_a == 4)
1174			global_quad_port_a = 0;
1175		break;
1176	}
1177
1178	/* initialize the wol settings based on the eeprom settings */
1179	adapter->wol = adapter->eeprom_wol;
1180	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182	/* Auto detect PHY address */
1183	if (hw->mac_type == e1000_ce4100) {
1184		for (i = 0; i < 32; i++) {
1185			hw->phy_addr = i;
1186			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188			if (tmp != 0 && tmp != 0xFF)
1189				break;
1190		}
1191
1192		if (i >= 32)
1193			goto err_eeprom;
1194	}
1195
1196	/* reset the hardware with the new settings */
1197	e1000_reset(adapter);
1198
1199	strcpy(netdev->name, "eth%d");
1200	err = register_netdev(netdev);
1201	if (err)
1202		goto err_register;
1203
1204	e1000_vlan_filter_on_off(adapter, false);
1205
1206	/* print bus type/speed/width info */
1207	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214	       netdev->dev_addr);
1215
1216	/* carrier off reporting is important to ethtool even BEFORE open */
1217	netif_carrier_off(netdev);
1218
1219	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221	cards_found++;
1222	return 0;
1223
1224err_register:
1225err_eeprom:
1226	e1000_phy_hw_reset(hw);
1227
1228	if (hw->flash_address)
1229		iounmap(hw->flash_address);
1230	kfree(adapter->tx_ring);
1231	kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235	iounmap(hw->ce4100_gbe_mdio_base_virt);
1236	iounmap(hw->hw_addr);
1237err_ioremap:
1238	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239	free_netdev(netdev);
1240err_alloc_etherdev:
1241	pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243	if (!adapter || disable_dev)
1244		pci_disable_device(pdev);
1245	return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259	struct net_device *netdev = pci_get_drvdata(pdev);
1260	struct e1000_adapter *adapter = netdev_priv(netdev);
1261	struct e1000_hw *hw = &adapter->hw;
1262	bool disable_dev;
1263
1264	e1000_down_and_stop(adapter);
1265	e1000_release_manageability(adapter);
1266
1267	unregister_netdev(netdev);
1268
1269	e1000_phy_hw_reset(hw);
1270
1271	kfree(adapter->tx_ring);
1272	kfree(adapter->rx_ring);
1273
1274	if (hw->mac_type == e1000_ce4100)
1275		iounmap(hw->ce4100_gbe_mdio_base_virt);
1276	iounmap(hw->hw_addr);
1277	if (hw->flash_address)
1278		iounmap(hw->flash_address);
1279	pci_release_selected_regions(pdev, adapter->bars);
1280
1281	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282	free_netdev(netdev);
1283
1284	if (disable_dev)
1285		pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299	adapter->num_tx_queues = 1;
1300	adapter->num_rx_queues = 1;
1301
1302	if (e1000_alloc_queues(adapter)) {
1303		e_err(probe, "Unable to allocate memory for queues\n");
1304		return -ENOMEM;
1305	}
1306
1307	/* Explicitly disable IRQ since the NIC can be in any state. */
1308	e1000_irq_disable(adapter);
1309
1310	spin_lock_init(&adapter->stats_lock);
1311
1312	set_bit(__E1000_DOWN, &adapter->flags);
1313
1314	return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328	if (!adapter->tx_ring)
1329		return -ENOMEM;
1330
1331	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333	if (!adapter->rx_ring) {
1334		kfree(adapter->tx_ring);
1335		return -ENOMEM;
1336	}
1337
1338	return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP).  At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355	struct e1000_adapter *adapter = netdev_priv(netdev);
1356	struct e1000_hw *hw = &adapter->hw;
1357	int err;
1358
1359	/* disallow open during test */
1360	if (test_bit(__E1000_TESTING, &adapter->flags))
1361		return -EBUSY;
1362
1363	netif_carrier_off(netdev);
1364
1365	/* allocate transmit descriptors */
1366	err = e1000_setup_all_tx_resources(adapter);
1367	if (err)
1368		goto err_setup_tx;
1369
1370	/* allocate receive descriptors */
1371	err = e1000_setup_all_rx_resources(adapter);
1372	if (err)
1373		goto err_setup_rx;
1374
1375	e1000_power_up_phy(adapter);
1376
1377	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378	if ((hw->mng_cookie.status &
1379			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380		e1000_update_mng_vlan(adapter);
1381	}
1382
1383	/* before we allocate an interrupt, we must be ready to handle it.
1384	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385	 * as soon as we call pci_request_irq, so we have to setup our
1386	 * clean_rx handler before we do so.
1387	 */
1388	e1000_configure(adapter);
1389
1390	err = e1000_request_irq(adapter);
1391	if (err)
1392		goto err_req_irq;
1393
1394	/* From here on the code is the same as e1000_up() */
1395	clear_bit(__E1000_DOWN, &adapter->flags);
1396
1397	netif_napi_set_irq(&adapter->napi, adapter->pdev->irq);
1398	napi_enable(&adapter->napi);
1399	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
1400	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
1401
1402	e1000_irq_enable(adapter);
1403
1404	netif_start_queue(netdev);
1405
1406	/* fire a link status change interrupt to start the watchdog */
1407	ew32(ICS, E1000_ICS_LSC);
1408
1409	return E1000_SUCCESS;
1410
1411err_req_irq:
1412	e1000_power_down_phy(adapter);
1413	e1000_free_all_rx_resources(adapter);
1414err_setup_rx:
1415	e1000_free_all_tx_resources(adapter);
1416err_setup_tx:
1417	e1000_reset(adapter);
1418
1419	return err;
1420}
1421
1422/**
1423 * e1000_close - Disables a network interface
1424 * @netdev: network interface device structure
1425 *
1426 * Returns 0, this is not allowed to fail
1427 *
1428 * The close entry point is called when an interface is de-activated
1429 * by the OS.  The hardware is still under the drivers control, but
1430 * needs to be disabled.  A global MAC reset is issued to stop the
1431 * hardware, and all transmit and receive resources are freed.
1432 **/
1433int e1000_close(struct net_device *netdev)
1434{
1435	struct e1000_adapter *adapter = netdev_priv(netdev);
1436	struct e1000_hw *hw = &adapter->hw;
1437	int count = E1000_CHECK_RESET_COUNT;
1438
1439	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1440		usleep_range(10000, 20000);
1441
1442	WARN_ON(count < 0);
1443
1444	/* signal that we're down so that the reset task will no longer run */
1445	set_bit(__E1000_DOWN, &adapter->flags);
1446	clear_bit(__E1000_RESETTING, &adapter->flags);
1447
1448	e1000_down(adapter);
1449	e1000_power_down_phy(adapter);
1450	e1000_free_irq(adapter);
1451
1452	e1000_free_all_tx_resources(adapter);
1453	e1000_free_all_rx_resources(adapter);
1454
1455	/* kill manageability vlan ID if supported, but not if a vlan with
1456	 * the same ID is registered on the host OS (let 8021q kill it)
1457	 */
1458	if ((hw->mng_cookie.status &
1459	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1460	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1461		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1462				       adapter->mng_vlan_id);
1463	}
1464
1465	return 0;
1466}
1467
1468/**
1469 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1470 * @adapter: address of board private structure
1471 * @start: address of beginning of memory
1472 * @len: length of memory
1473 **/
1474static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1475				  unsigned long len)
1476{
1477	struct e1000_hw *hw = &adapter->hw;
1478	unsigned long begin = (unsigned long)start;
1479	unsigned long end = begin + len;
1480
1481	/* First rev 82545 and 82546 need to not allow any memory
1482	 * write location to cross 64k boundary due to errata 23
1483	 */
1484	if (hw->mac_type == e1000_82545 ||
1485	    hw->mac_type == e1000_ce4100 ||
1486	    hw->mac_type == e1000_82546) {
1487		return ((begin ^ (end - 1)) >> 16) == 0;
1488	}
1489
1490	return true;
1491}
1492
1493/**
1494 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1495 * @adapter: board private structure
1496 * @txdr:    tx descriptor ring (for a specific queue) to setup
1497 *
1498 * Return 0 on success, negative on failure
1499 **/
1500static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1501				    struct e1000_tx_ring *txdr)
1502{
1503	struct pci_dev *pdev = adapter->pdev;
1504	int size;
1505
1506	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1507	txdr->buffer_info = vzalloc(size);
1508	if (!txdr->buffer_info)
1509		return -ENOMEM;
1510
1511	/* round up to nearest 4K */
1512
1513	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1514	txdr->size = ALIGN(txdr->size, 4096);
1515
1516	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1517					GFP_KERNEL);
1518	if (!txdr->desc) {
1519setup_tx_desc_die:
1520		vfree(txdr->buffer_info);
1521		return -ENOMEM;
1522	}
1523
1524	/* Fix for errata 23, can't cross 64kB boundary */
1525	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1526		void *olddesc = txdr->desc;
1527		dma_addr_t olddma = txdr->dma;
1528		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1529		      txdr->size, txdr->desc);
1530		/* Try again, without freeing the previous */
1531		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1532						&txdr->dma, GFP_KERNEL);
1533		/* Failed allocation, critical failure */
1534		if (!txdr->desc) {
1535			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1536					  olddma);
1537			goto setup_tx_desc_die;
1538		}
1539
1540		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1541			/* give up */
1542			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1543					  txdr->dma);
1544			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545					  olddma);
1546			e_err(probe, "Unable to allocate aligned memory "
1547			      "for the transmit descriptor ring\n");
1548			vfree(txdr->buffer_info);
1549			return -ENOMEM;
1550		} else {
1551			/* Free old allocation, new allocation was successful */
1552			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553					  olddma);
1554		}
1555	}
1556	memset(txdr->desc, 0, txdr->size);
1557
1558	txdr->next_to_use = 0;
1559	txdr->next_to_clean = 0;
1560
1561	return 0;
1562}
1563
1564/**
1565 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1566 * 				  (Descriptors) for all queues
1567 * @adapter: board private structure
1568 *
1569 * Return 0 on success, negative on failure
1570 **/
1571int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1572{
1573	int i, err = 0;
1574
1575	for (i = 0; i < adapter->num_tx_queues; i++) {
1576		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1577		if (err) {
1578			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1579			for (i-- ; i >= 0; i--)
1580				e1000_free_tx_resources(adapter,
1581							&adapter->tx_ring[i]);
1582			break;
1583		}
1584	}
1585
1586	return err;
1587}
1588
1589/**
1590 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1591 * @adapter: board private structure
1592 *
1593 * Configure the Tx unit of the MAC after a reset.
1594 **/
1595static void e1000_configure_tx(struct e1000_adapter *adapter)
1596{
1597	u64 tdba;
1598	struct e1000_hw *hw = &adapter->hw;
1599	u32 tdlen, tctl, tipg;
1600	u32 ipgr1, ipgr2;
1601
1602	/* Setup the HW Tx Head and Tail descriptor pointers */
1603
1604	switch (adapter->num_tx_queues) {
1605	case 1:
1606	default:
1607		tdba = adapter->tx_ring[0].dma;
1608		tdlen = adapter->tx_ring[0].count *
1609			sizeof(struct e1000_tx_desc);
1610		ew32(TDLEN, tdlen);
1611		ew32(TDBAH, (tdba >> 32));
1612		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1613		ew32(TDT, 0);
1614		ew32(TDH, 0);
1615		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1616					   E1000_TDH : E1000_82542_TDH);
1617		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1618					   E1000_TDT : E1000_82542_TDT);
1619		break;
1620	}
1621
1622	/* Set the default values for the Tx Inter Packet Gap timer */
1623	if ((hw->media_type == e1000_media_type_fiber ||
1624	     hw->media_type == e1000_media_type_internal_serdes))
1625		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1626	else
1627		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1628
1629	switch (hw->mac_type) {
1630	case e1000_82542_rev2_0:
1631	case e1000_82542_rev2_1:
1632		tipg = DEFAULT_82542_TIPG_IPGT;
1633		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1634		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1635		break;
1636	default:
1637		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1638		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1639		break;
1640	}
1641	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1642	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1643	ew32(TIPG, tipg);
1644
1645	/* Set the Tx Interrupt Delay register */
1646
1647	ew32(TIDV, adapter->tx_int_delay);
1648	if (hw->mac_type >= e1000_82540)
1649		ew32(TADV, adapter->tx_abs_int_delay);
1650
1651	/* Program the Transmit Control Register */
1652
1653	tctl = er32(TCTL);
1654	tctl &= ~E1000_TCTL_CT;
1655	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1656		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1657
1658	e1000_config_collision_dist(hw);
1659
1660	/* Setup Transmit Descriptor Settings for eop descriptor */
1661	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1662
1663	/* only set IDE if we are delaying interrupts using the timers */
1664	if (adapter->tx_int_delay)
1665		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1666
1667	if (hw->mac_type < e1000_82543)
1668		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1669	else
1670		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1671
1672	/* Cache if we're 82544 running in PCI-X because we'll
1673	 * need this to apply a workaround later in the send path.
1674	 */
1675	if (hw->mac_type == e1000_82544 &&
1676	    hw->bus_type == e1000_bus_type_pcix)
1677		adapter->pcix_82544 = true;
1678
1679	ew32(TCTL, tctl);
1680
1681}
1682
1683/**
1684 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1685 * @adapter: board private structure
1686 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1687 *
1688 * Returns 0 on success, negative on failure
1689 **/
1690static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1691				    struct e1000_rx_ring *rxdr)
1692{
1693	struct pci_dev *pdev = adapter->pdev;
1694	int size, desc_len;
1695
1696	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1697	rxdr->buffer_info = vzalloc(size);
1698	if (!rxdr->buffer_info)
1699		return -ENOMEM;
1700
1701	desc_len = sizeof(struct e1000_rx_desc);
1702
1703	/* Round up to nearest 4K */
1704
1705	rxdr->size = rxdr->count * desc_len;
1706	rxdr->size = ALIGN(rxdr->size, 4096);
1707
1708	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1709					GFP_KERNEL);
1710	if (!rxdr->desc) {
1711setup_rx_desc_die:
1712		vfree(rxdr->buffer_info);
1713		return -ENOMEM;
1714	}
1715
1716	/* Fix for errata 23, can't cross 64kB boundary */
1717	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1718		void *olddesc = rxdr->desc;
1719		dma_addr_t olddma = rxdr->dma;
1720		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1721		      rxdr->size, rxdr->desc);
1722		/* Try again, without freeing the previous */
1723		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1724						&rxdr->dma, GFP_KERNEL);
1725		/* Failed allocation, critical failure */
1726		if (!rxdr->desc) {
1727			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1728					  olddma);
1729			goto setup_rx_desc_die;
1730		}
1731
1732		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1733			/* give up */
1734			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1735					  rxdr->dma);
1736			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737					  olddma);
1738			e_err(probe, "Unable to allocate aligned memory for "
1739			      "the Rx descriptor ring\n");
1740			goto setup_rx_desc_die;
1741		} else {
1742			/* Free old allocation, new allocation was successful */
1743			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1744					  olddma);
1745		}
1746	}
1747	memset(rxdr->desc, 0, rxdr->size);
1748
1749	rxdr->next_to_clean = 0;
1750	rxdr->next_to_use = 0;
1751	rxdr->rx_skb_top = NULL;
1752
1753	return 0;
1754}
1755
1756/**
1757 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1758 * 				  (Descriptors) for all queues
1759 * @adapter: board private structure
1760 *
1761 * Return 0 on success, negative on failure
1762 **/
1763int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1764{
1765	int i, err = 0;
1766
1767	for (i = 0; i < adapter->num_rx_queues; i++) {
1768		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1769		if (err) {
1770			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1771			for (i-- ; i >= 0; i--)
1772				e1000_free_rx_resources(adapter,
1773							&adapter->rx_ring[i]);
1774			break;
1775		}
1776	}
1777
1778	return err;
1779}
1780
1781/**
1782 * e1000_setup_rctl - configure the receive control registers
1783 * @adapter: Board private structure
1784 **/
1785static void e1000_setup_rctl(struct e1000_adapter *adapter)
1786{
1787	struct e1000_hw *hw = &adapter->hw;
1788	u32 rctl;
1789
1790	rctl = er32(RCTL);
1791
1792	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1793
1794	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1795		E1000_RCTL_RDMTS_HALF |
1796		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1797
1798	if (hw->tbi_compatibility_on == 1)
1799		rctl |= E1000_RCTL_SBP;
1800	else
1801		rctl &= ~E1000_RCTL_SBP;
1802
1803	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1804		rctl &= ~E1000_RCTL_LPE;
1805	else
1806		rctl |= E1000_RCTL_LPE;
1807
1808	/* Setup buffer sizes */
1809	rctl &= ~E1000_RCTL_SZ_4096;
1810	rctl |= E1000_RCTL_BSEX;
1811	switch (adapter->rx_buffer_len) {
1812	case E1000_RXBUFFER_2048:
1813	default:
1814		rctl |= E1000_RCTL_SZ_2048;
1815		rctl &= ~E1000_RCTL_BSEX;
1816		break;
1817	case E1000_RXBUFFER_4096:
1818		rctl |= E1000_RCTL_SZ_4096;
1819		break;
1820	case E1000_RXBUFFER_8192:
1821		rctl |= E1000_RCTL_SZ_8192;
1822		break;
1823	case E1000_RXBUFFER_16384:
1824		rctl |= E1000_RCTL_SZ_16384;
1825		break;
1826	}
1827
1828	/* This is useful for sniffing bad packets. */
1829	if (adapter->netdev->features & NETIF_F_RXALL) {
1830		/* UPE and MPE will be handled by normal PROMISC logic
1831		 * in e1000e_set_rx_mode
1832		 */
1833		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1834			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1835			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1836
1837		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1838			  E1000_RCTL_DPF | /* Allow filtered pause */
1839			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1840		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1841		 * and that breaks VLANs.
1842		 */
1843	}
1844
1845	ew32(RCTL, rctl);
1846}
1847
1848/**
1849 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850 * @adapter: board private structure
1851 *
1852 * Configure the Rx unit of the MAC after a reset.
1853 **/
1854static void e1000_configure_rx(struct e1000_adapter *adapter)
1855{
1856	u64 rdba;
1857	struct e1000_hw *hw = &adapter->hw;
1858	u32 rdlen, rctl, rxcsum;
1859
1860	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1861		rdlen = adapter->rx_ring[0].count *
1862			sizeof(struct e1000_rx_desc);
1863		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1864		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1865	} else {
1866		rdlen = adapter->rx_ring[0].count *
1867			sizeof(struct e1000_rx_desc);
1868		adapter->clean_rx = e1000_clean_rx_irq;
1869		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870	}
1871
1872	/* disable receives while setting up the descriptors */
1873	rctl = er32(RCTL);
1874	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1875
1876	/* set the Receive Delay Timer Register */
1877	ew32(RDTR, adapter->rx_int_delay);
1878
1879	if (hw->mac_type >= e1000_82540) {
1880		ew32(RADV, adapter->rx_abs_int_delay);
1881		if (adapter->itr_setting != 0)
1882			ew32(ITR, 1000000000 / (adapter->itr * 256));
1883	}
1884
1885	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1886	 * the Base and Length of the Rx Descriptor Ring
1887	 */
1888	switch (adapter->num_rx_queues) {
1889	case 1:
1890	default:
1891		rdba = adapter->rx_ring[0].dma;
1892		ew32(RDLEN, rdlen);
1893		ew32(RDBAH, (rdba >> 32));
1894		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895		ew32(RDT, 0);
1896		ew32(RDH, 0);
1897		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1898					   E1000_RDH : E1000_82542_RDH);
1899		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1900					   E1000_RDT : E1000_82542_RDT);
1901		break;
1902	}
1903
1904	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1905	if (hw->mac_type >= e1000_82543) {
1906		rxcsum = er32(RXCSUM);
1907		if (adapter->rx_csum)
1908			rxcsum |= E1000_RXCSUM_TUOFL;
1909		else
1910			/* don't need to clear IPPCSE as it defaults to 0 */
1911			rxcsum &= ~E1000_RXCSUM_TUOFL;
1912		ew32(RXCSUM, rxcsum);
1913	}
1914
1915	/* Enable Receives */
1916	ew32(RCTL, rctl | E1000_RCTL_EN);
1917}
1918
1919/**
1920 * e1000_free_tx_resources - Free Tx Resources per Queue
1921 * @adapter: board private structure
1922 * @tx_ring: Tx descriptor ring for a specific queue
1923 *
1924 * Free all transmit software resources
1925 **/
1926static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1927				    struct e1000_tx_ring *tx_ring)
1928{
1929	struct pci_dev *pdev = adapter->pdev;
1930
1931	e1000_clean_tx_ring(adapter, tx_ring);
1932
1933	vfree(tx_ring->buffer_info);
1934	tx_ring->buffer_info = NULL;
1935
1936	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1937			  tx_ring->dma);
1938
1939	tx_ring->desc = NULL;
1940}
1941
1942/**
1943 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1944 * @adapter: board private structure
1945 *
1946 * Free all transmit software resources
1947 **/
1948void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1949{
1950	int i;
1951
1952	for (i = 0; i < adapter->num_tx_queues; i++)
1953		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1954}
1955
1956static void
1957e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1958				 struct e1000_tx_buffer *buffer_info,
1959				 int budget)
1960{
1961	if (buffer_info->dma) {
1962		if (buffer_info->mapped_as_page)
1963			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1964				       buffer_info->length, DMA_TO_DEVICE);
1965		else
1966			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1967					 buffer_info->length,
1968					 DMA_TO_DEVICE);
1969		buffer_info->dma = 0;
1970	}
1971	if (buffer_info->skb) {
1972		napi_consume_skb(buffer_info->skb, budget);
1973		buffer_info->skb = NULL;
1974	}
1975	buffer_info->time_stamp = 0;
1976	/* buffer_info must be completely set up in the transmit path */
1977}
1978
1979/**
1980 * e1000_clean_tx_ring - Free Tx Buffers
1981 * @adapter: board private structure
1982 * @tx_ring: ring to be cleaned
1983 **/
1984static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1985				struct e1000_tx_ring *tx_ring)
1986{
1987	struct e1000_hw *hw = &adapter->hw;
1988	struct e1000_tx_buffer *buffer_info;
1989	unsigned long size;
1990	unsigned int i;
1991
1992	/* Free all the Tx ring sk_buffs */
1993
1994	for (i = 0; i < tx_ring->count; i++) {
1995		buffer_info = &tx_ring->buffer_info[i];
1996		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1997	}
1998
1999	netdev_reset_queue(adapter->netdev);
2000	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2001	memset(tx_ring->buffer_info, 0, size);
2002
2003	/* Zero out the descriptor ring */
2004
2005	memset(tx_ring->desc, 0, tx_ring->size);
2006
2007	tx_ring->next_to_use = 0;
2008	tx_ring->next_to_clean = 0;
2009	tx_ring->last_tx_tso = false;
2010
2011	writel(0, hw->hw_addr + tx_ring->tdh);
2012	writel(0, hw->hw_addr + tx_ring->tdt);
2013}
2014
2015/**
2016 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2017 * @adapter: board private structure
2018 **/
2019static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2020{
2021	int i;
2022
2023	for (i = 0; i < adapter->num_tx_queues; i++)
2024		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2025}
2026
2027/**
2028 * e1000_free_rx_resources - Free Rx Resources
2029 * @adapter: board private structure
2030 * @rx_ring: ring to clean the resources from
2031 *
2032 * Free all receive software resources
2033 **/
2034static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2035				    struct e1000_rx_ring *rx_ring)
2036{
2037	struct pci_dev *pdev = adapter->pdev;
2038
2039	e1000_clean_rx_ring(adapter, rx_ring);
2040
2041	vfree(rx_ring->buffer_info);
2042	rx_ring->buffer_info = NULL;
2043
2044	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2045			  rx_ring->dma);
2046
2047	rx_ring->desc = NULL;
2048}
2049
2050/**
2051 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052 * @adapter: board private structure
2053 *
2054 * Free all receive software resources
2055 **/
2056void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2057{
2058	int i;
2059
2060	for (i = 0; i < adapter->num_rx_queues; i++)
2061		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2062}
2063
2064#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2065static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2066{
2067	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2068		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2069}
2070
2071static void *e1000_alloc_frag(const struct e1000_adapter *a)
2072{
2073	unsigned int len = e1000_frag_len(a);
2074	u8 *data = netdev_alloc_frag(len);
2075
2076	if (likely(data))
2077		data += E1000_HEADROOM;
2078	return data;
2079}
2080
2081/**
2082 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2083 * @adapter: board private structure
2084 * @rx_ring: ring to free buffers from
2085 **/
2086static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2087				struct e1000_rx_ring *rx_ring)
2088{
2089	struct e1000_hw *hw = &adapter->hw;
2090	struct e1000_rx_buffer *buffer_info;
2091	struct pci_dev *pdev = adapter->pdev;
2092	unsigned long size;
2093	unsigned int i;
2094
2095	/* Free all the Rx netfrags */
2096	for (i = 0; i < rx_ring->count; i++) {
2097		buffer_info = &rx_ring->buffer_info[i];
2098		if (adapter->clean_rx == e1000_clean_rx_irq) {
2099			if (buffer_info->dma)
2100				dma_unmap_single(&pdev->dev, buffer_info->dma,
2101						 adapter->rx_buffer_len,
2102						 DMA_FROM_DEVICE);
2103			if (buffer_info->rxbuf.data) {
2104				skb_free_frag(buffer_info->rxbuf.data);
2105				buffer_info->rxbuf.data = NULL;
2106			}
2107		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2108			if (buffer_info->dma)
2109				dma_unmap_page(&pdev->dev, buffer_info->dma,
2110					       adapter->rx_buffer_len,
2111					       DMA_FROM_DEVICE);
2112			if (buffer_info->rxbuf.page) {
2113				put_page(buffer_info->rxbuf.page);
2114				buffer_info->rxbuf.page = NULL;
2115			}
2116		}
2117
2118		buffer_info->dma = 0;
2119	}
2120
2121	/* there also may be some cached data from a chained receive */
2122	napi_free_frags(&adapter->napi);
2123	rx_ring->rx_skb_top = NULL;
2124
2125	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2126	memset(rx_ring->buffer_info, 0, size);
2127
2128	/* Zero out the descriptor ring */
2129	memset(rx_ring->desc, 0, rx_ring->size);
2130
2131	rx_ring->next_to_clean = 0;
2132	rx_ring->next_to_use = 0;
2133
2134	writel(0, hw->hw_addr + rx_ring->rdh);
2135	writel(0, hw->hw_addr + rx_ring->rdt);
2136}
2137
2138/**
2139 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2140 * @adapter: board private structure
2141 **/
2142static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2143{
2144	int i;
2145
2146	for (i = 0; i < adapter->num_rx_queues; i++)
2147		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2148}
2149
2150/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2151 * and memory write and invalidate disabled for certain operations
2152 */
2153static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2154{
2155	struct e1000_hw *hw = &adapter->hw;
2156	struct net_device *netdev = adapter->netdev;
2157	u32 rctl;
2158
2159	e1000_pci_clear_mwi(hw);
2160
2161	rctl = er32(RCTL);
2162	rctl |= E1000_RCTL_RST;
2163	ew32(RCTL, rctl);
2164	E1000_WRITE_FLUSH();
2165	mdelay(5);
2166
2167	if (netif_running(netdev))
2168		e1000_clean_all_rx_rings(adapter);
2169}
2170
2171static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2172{
2173	struct e1000_hw *hw = &adapter->hw;
2174	struct net_device *netdev = adapter->netdev;
2175	u32 rctl;
2176
2177	rctl = er32(RCTL);
2178	rctl &= ~E1000_RCTL_RST;
2179	ew32(RCTL, rctl);
2180	E1000_WRITE_FLUSH();
2181	mdelay(5);
2182
2183	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2184		e1000_pci_set_mwi(hw);
2185
2186	if (netif_running(netdev)) {
2187		/* No need to loop, because 82542 supports only 1 queue */
2188		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2189		e1000_configure_rx(adapter);
2190		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2191	}
2192}
2193
2194/**
2195 * e1000_set_mac - Change the Ethernet Address of the NIC
2196 * @netdev: network interface device structure
2197 * @p: pointer to an address structure
2198 *
2199 * Returns 0 on success, negative on failure
2200 **/
2201static int e1000_set_mac(struct net_device *netdev, void *p)
2202{
2203	struct e1000_adapter *adapter = netdev_priv(netdev);
2204	struct e1000_hw *hw = &adapter->hw;
2205	struct sockaddr *addr = p;
2206
2207	if (!is_valid_ether_addr(addr->sa_data))
2208		return -EADDRNOTAVAIL;
2209
2210	/* 82542 2.0 needs to be in reset to write receive address registers */
2211
2212	if (hw->mac_type == e1000_82542_rev2_0)
2213		e1000_enter_82542_rst(adapter);
2214
2215	eth_hw_addr_set(netdev, addr->sa_data);
2216	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2217
2218	e1000_rar_set(hw, hw->mac_addr, 0);
2219
2220	if (hw->mac_type == e1000_82542_rev2_0)
2221		e1000_leave_82542_rst(adapter);
2222
2223	return 0;
2224}
2225
2226/**
2227 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2228 * @netdev: network interface device structure
2229 *
2230 * The set_rx_mode entry point is called whenever the unicast or multicast
2231 * address lists or the network interface flags are updated. This routine is
2232 * responsible for configuring the hardware for proper unicast, multicast,
2233 * promiscuous mode, and all-multi behavior.
2234 **/
2235static void e1000_set_rx_mode(struct net_device *netdev)
2236{
2237	struct e1000_adapter *adapter = netdev_priv(netdev);
2238	struct e1000_hw *hw = &adapter->hw;
2239	struct netdev_hw_addr *ha;
2240	bool use_uc = false;
2241	u32 rctl;
2242	u32 hash_value;
2243	int i, rar_entries = E1000_RAR_ENTRIES;
2244	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2245	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2246
2247	if (!mcarray)
2248		return;
2249
2250	/* Check for Promiscuous and All Multicast modes */
2251
2252	rctl = er32(RCTL);
2253
2254	if (netdev->flags & IFF_PROMISC) {
2255		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2256		rctl &= ~E1000_RCTL_VFE;
2257	} else {
2258		if (netdev->flags & IFF_ALLMULTI)
2259			rctl |= E1000_RCTL_MPE;
2260		else
2261			rctl &= ~E1000_RCTL_MPE;
2262		/* Enable VLAN filter if there is a VLAN */
2263		if (e1000_vlan_used(adapter))
2264			rctl |= E1000_RCTL_VFE;
2265	}
2266
2267	if (netdev_uc_count(netdev) > rar_entries - 1) {
2268		rctl |= E1000_RCTL_UPE;
2269	} else if (!(netdev->flags & IFF_PROMISC)) {
2270		rctl &= ~E1000_RCTL_UPE;
2271		use_uc = true;
2272	}
2273
2274	ew32(RCTL, rctl);
2275
2276	/* 82542 2.0 needs to be in reset to write receive address registers */
2277
2278	if (hw->mac_type == e1000_82542_rev2_0)
2279		e1000_enter_82542_rst(adapter);
2280
2281	/* load the first 14 addresses into the exact filters 1-14. Unicast
2282	 * addresses take precedence to avoid disabling unicast filtering
2283	 * when possible.
2284	 *
2285	 * RAR 0 is used for the station MAC address
2286	 * if there are not 14 addresses, go ahead and clear the filters
2287	 */
2288	i = 1;
2289	if (use_uc)
2290		netdev_for_each_uc_addr(ha, netdev) {
2291			if (i == rar_entries)
2292				break;
2293			e1000_rar_set(hw, ha->addr, i++);
2294		}
2295
2296	netdev_for_each_mc_addr(ha, netdev) {
2297		if (i == rar_entries) {
2298			/* load any remaining addresses into the hash table */
2299			u32 hash_reg, hash_bit, mta;
2300			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2301			hash_reg = (hash_value >> 5) & 0x7F;
2302			hash_bit = hash_value & 0x1F;
2303			mta = (1 << hash_bit);
2304			mcarray[hash_reg] |= mta;
2305		} else {
2306			e1000_rar_set(hw, ha->addr, i++);
2307		}
2308	}
2309
2310	for (; i < rar_entries; i++) {
2311		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2312		E1000_WRITE_FLUSH();
2313		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2314		E1000_WRITE_FLUSH();
2315	}
2316
2317	/* write the hash table completely, write from bottom to avoid
2318	 * both stupid write combining chipsets, and flushing each write
2319	 */
2320	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2321		/* If we are on an 82544 has an errata where writing odd
2322		 * offsets overwrites the previous even offset, but writing
2323		 * backwards over the range solves the issue by always
2324		 * writing the odd offset first
2325		 */
2326		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2327	}
2328	E1000_WRITE_FLUSH();
2329
2330	if (hw->mac_type == e1000_82542_rev2_0)
2331		e1000_leave_82542_rst(adapter);
2332
2333	kfree(mcarray);
2334}
2335
2336/**
2337 * e1000_update_phy_info_task - get phy info
2338 * @work: work struct contained inside adapter struct
2339 *
2340 * Need to wait a few seconds after link up to get diagnostic information from
2341 * the phy
2342 */
2343static void e1000_update_phy_info_task(struct work_struct *work)
2344{
2345	struct e1000_adapter *adapter = container_of(work,
2346						     struct e1000_adapter,
2347						     phy_info_task.work);
2348
2349	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2350}
2351
2352/**
2353 * e1000_82547_tx_fifo_stall_task - task to complete work
2354 * @work: work struct contained inside adapter struct
2355 **/
2356static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2357{
2358	struct e1000_adapter *adapter = container_of(work,
2359						     struct e1000_adapter,
2360						     fifo_stall_task.work);
2361	struct e1000_hw *hw = &adapter->hw;
2362	struct net_device *netdev = adapter->netdev;
2363	u32 tctl;
2364
2365	if (atomic_read(&adapter->tx_fifo_stall)) {
2366		if ((er32(TDT) == er32(TDH)) &&
2367		   (er32(TDFT) == er32(TDFH)) &&
2368		   (er32(TDFTS) == er32(TDFHS))) {
2369			tctl = er32(TCTL);
2370			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2371			ew32(TDFT, adapter->tx_head_addr);
2372			ew32(TDFH, adapter->tx_head_addr);
2373			ew32(TDFTS, adapter->tx_head_addr);
2374			ew32(TDFHS, adapter->tx_head_addr);
2375			ew32(TCTL, tctl);
2376			E1000_WRITE_FLUSH();
2377
2378			adapter->tx_fifo_head = 0;
2379			atomic_set(&adapter->tx_fifo_stall, 0);
2380			netif_wake_queue(netdev);
2381		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2382			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2383		}
2384	}
2385}
2386
2387bool e1000_has_link(struct e1000_adapter *adapter)
2388{
2389	struct e1000_hw *hw = &adapter->hw;
2390	bool link_active = false;
2391
2392	/* get_link_status is set on LSC (link status) interrupt or rx
2393	 * sequence error interrupt (except on intel ce4100).
2394	 * get_link_status will stay false until the
2395	 * e1000_check_for_link establishes link for copper adapters
2396	 * ONLY
2397	 */
2398	switch (hw->media_type) {
2399	case e1000_media_type_copper:
2400		if (hw->mac_type == e1000_ce4100)
2401			hw->get_link_status = 1;
2402		if (hw->get_link_status) {
2403			e1000_check_for_link(hw);
2404			link_active = !hw->get_link_status;
2405		} else {
2406			link_active = true;
2407		}
2408		break;
2409	case e1000_media_type_fiber:
2410		e1000_check_for_link(hw);
2411		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2412		break;
2413	case e1000_media_type_internal_serdes:
2414		e1000_check_for_link(hw);
2415		link_active = hw->serdes_has_link;
2416		break;
2417	default:
2418		break;
2419	}
2420
2421	return link_active;
2422}
2423
2424/**
2425 * e1000_watchdog - work function
2426 * @work: work struct contained inside adapter struct
2427 **/
2428static void e1000_watchdog(struct work_struct *work)
2429{
2430	struct e1000_adapter *adapter = container_of(work,
2431						     struct e1000_adapter,
2432						     watchdog_task.work);
2433	struct e1000_hw *hw = &adapter->hw;
2434	struct net_device *netdev = adapter->netdev;
2435	struct e1000_tx_ring *txdr = adapter->tx_ring;
2436	u32 link, tctl;
2437
2438	link = e1000_has_link(adapter);
2439	if ((netif_carrier_ok(netdev)) && link)
2440		goto link_up;
2441
2442	if (link) {
2443		if (!netif_carrier_ok(netdev)) {
2444			u32 ctrl;
 
2445			/* update snapshot of PHY registers on LSC */
2446			e1000_get_speed_and_duplex(hw,
2447						   &adapter->link_speed,
2448						   &adapter->link_duplex);
2449
2450			ctrl = er32(CTRL);
2451			pr_info("%s NIC Link is Up %d Mbps %s, "
2452				"Flow Control: %s\n",
2453				netdev->name,
2454				adapter->link_speed,
2455				adapter->link_duplex == FULL_DUPLEX ?
2456				"Full Duplex" : "Half Duplex",
2457				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2458				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2459				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2460				E1000_CTRL_TFCE) ? "TX" : "None")));
2461
2462			/* adjust timeout factor according to speed/duplex */
2463			adapter->tx_timeout_factor = 1;
2464			switch (adapter->link_speed) {
2465			case SPEED_10:
 
2466				adapter->tx_timeout_factor = 16;
2467				break;
2468			case SPEED_100:
 
2469				/* maybe add some timeout factor ? */
2470				break;
2471			}
2472
2473			/* enable transmits in the hardware */
2474			tctl = er32(TCTL);
2475			tctl |= E1000_TCTL_EN;
2476			ew32(TCTL, tctl);
2477
2478			netif_carrier_on(netdev);
2479			if (!test_bit(__E1000_DOWN, &adapter->flags))
2480				schedule_delayed_work(&adapter->phy_info_task,
2481						      2 * HZ);
2482			adapter->smartspeed = 0;
2483		}
2484	} else {
2485		if (netif_carrier_ok(netdev)) {
2486			adapter->link_speed = 0;
2487			adapter->link_duplex = 0;
2488			pr_info("%s NIC Link is Down\n",
2489				netdev->name);
2490			netif_carrier_off(netdev);
2491
2492			if (!test_bit(__E1000_DOWN, &adapter->flags))
2493				schedule_delayed_work(&adapter->phy_info_task,
2494						      2 * HZ);
2495		}
2496
2497		e1000_smartspeed(adapter);
2498	}
2499
2500link_up:
2501	e1000_update_stats(adapter);
2502
2503	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2504	adapter->tpt_old = adapter->stats.tpt;
2505	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2506	adapter->colc_old = adapter->stats.colc;
2507
2508	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2509	adapter->gorcl_old = adapter->stats.gorcl;
2510	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2511	adapter->gotcl_old = adapter->stats.gotcl;
2512
2513	e1000_update_adaptive(hw);
2514
2515	if (!netif_carrier_ok(netdev)) {
2516		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2517			/* We've lost link, so the controller stops DMA,
2518			 * but we've got queued Tx work that's never going
2519			 * to get done, so reset controller to flush Tx.
2520			 * (Do the reset outside of interrupt context).
2521			 */
2522			adapter->tx_timeout_count++;
2523			schedule_work(&adapter->reset_task);
2524			/* exit immediately since reset is imminent */
2525			return;
2526		}
2527	}
2528
2529	/* Simple mode for Interrupt Throttle Rate (ITR) */
2530	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2532		 * Total asymmetrical Tx or Rx gets ITR=8000;
2533		 * everyone else is between 2000-8000.
2534		 */
2535		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2536		u32 dif = (adapter->gotcl > adapter->gorcl ?
2537			    adapter->gotcl - adapter->gorcl :
2538			    adapter->gorcl - adapter->gotcl) / 10000;
2539		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2540
2541		ew32(ITR, 1000000000 / (itr * 256));
2542	}
2543
2544	/* Cause software interrupt to ensure rx ring is cleaned */
2545	ew32(ICS, E1000_ICS_RXDMT0);
2546
2547	/* Force detection of hung controller every watchdog period */
2548	adapter->detect_tx_hung = true;
2549
2550	/* Reschedule the task */
2551	if (!test_bit(__E1000_DOWN, &adapter->flags))
2552		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2553}
2554
2555enum latency_range {
2556	lowest_latency = 0,
2557	low_latency = 1,
2558	bulk_latency = 2,
2559	latency_invalid = 255
2560};
2561
2562/**
2563 * e1000_update_itr - update the dynamic ITR value based on statistics
2564 * @adapter: pointer to adapter
2565 * @itr_setting: current adapter->itr
2566 * @packets: the number of packets during this measurement interval
2567 * @bytes: the number of bytes during this measurement interval
2568 *
2569 *      Stores a new ITR value based on packets and byte
2570 *      counts during the last interrupt.  The advantage of per interrupt
2571 *      computation is faster updates and more accurate ITR for the current
2572 *      traffic pattern.  Constants in this function were computed
2573 *      based on theoretical maximum wire speed and thresholds were set based
2574 *      on testing data as well as attempting to minimize response time
2575 *      while increasing bulk throughput.
2576 *      this functionality is controlled by the InterruptThrottleRate module
2577 *      parameter (see e1000_param.c)
2578 **/
2579static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2580				     u16 itr_setting, int packets, int bytes)
2581{
2582	unsigned int retval = itr_setting;
2583	struct e1000_hw *hw = &adapter->hw;
2584
2585	if (unlikely(hw->mac_type < e1000_82540))
2586		goto update_itr_done;
2587
2588	if (packets == 0)
2589		goto update_itr_done;
2590
2591	switch (itr_setting) {
2592	case lowest_latency:
2593		/* jumbo frames get bulk treatment*/
2594		if (bytes/packets > 8000)
2595			retval = bulk_latency;
2596		else if ((packets < 5) && (bytes > 512))
2597			retval = low_latency;
2598		break;
2599	case low_latency:  /* 50 usec aka 20000 ints/s */
2600		if (bytes > 10000) {
2601			/* jumbo frames need bulk latency setting */
2602			if (bytes/packets > 8000)
2603				retval = bulk_latency;
2604			else if ((packets < 10) || ((bytes/packets) > 1200))
2605				retval = bulk_latency;
2606			else if ((packets > 35))
2607				retval = lowest_latency;
2608		} else if (bytes/packets > 2000)
2609			retval = bulk_latency;
2610		else if (packets <= 2 && bytes < 512)
2611			retval = lowest_latency;
2612		break;
2613	case bulk_latency: /* 250 usec aka 4000 ints/s */
2614		if (bytes > 25000) {
2615			if (packets > 35)
2616				retval = low_latency;
2617		} else if (bytes < 6000) {
2618			retval = low_latency;
2619		}
2620		break;
2621	}
2622
2623update_itr_done:
2624	return retval;
2625}
2626
2627static void e1000_set_itr(struct e1000_adapter *adapter)
2628{
2629	struct e1000_hw *hw = &adapter->hw;
2630	u16 current_itr;
2631	u32 new_itr = adapter->itr;
2632
2633	if (unlikely(hw->mac_type < e1000_82540))
2634		return;
2635
2636	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2637	if (unlikely(adapter->link_speed != SPEED_1000)) {
 
2638		new_itr = 4000;
2639		goto set_itr_now;
2640	}
2641
2642	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2643					   adapter->total_tx_packets,
2644					   adapter->total_tx_bytes);
2645	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2646	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2647		adapter->tx_itr = low_latency;
2648
2649	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2650					   adapter->total_rx_packets,
2651					   adapter->total_rx_bytes);
2652	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2653	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2654		adapter->rx_itr = low_latency;
2655
2656	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2657
2658	switch (current_itr) {
2659	/* counts and packets in update_itr are dependent on these numbers */
2660	case lowest_latency:
2661		new_itr = 70000;
2662		break;
2663	case low_latency:
2664		new_itr = 20000; /* aka hwitr = ~200 */
2665		break;
2666	case bulk_latency:
2667		new_itr = 4000;
2668		break;
2669	default:
2670		break;
2671	}
2672
2673set_itr_now:
2674	if (new_itr != adapter->itr) {
2675		/* this attempts to bias the interrupt rate towards Bulk
2676		 * by adding intermediate steps when interrupt rate is
2677		 * increasing
2678		 */
2679		new_itr = new_itr > adapter->itr ?
2680			  min(adapter->itr + (new_itr >> 2), new_itr) :
2681			  new_itr;
2682		adapter->itr = new_itr;
2683		ew32(ITR, 1000000000 / (new_itr * 256));
2684	}
2685}
2686
2687#define E1000_TX_FLAGS_CSUM		0x00000001
2688#define E1000_TX_FLAGS_VLAN		0x00000002
2689#define E1000_TX_FLAGS_TSO		0x00000004
2690#define E1000_TX_FLAGS_IPV4		0x00000008
2691#define E1000_TX_FLAGS_NO_FCS		0x00000010
2692#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2693#define E1000_TX_FLAGS_VLAN_SHIFT	16
2694
2695static int e1000_tso(struct e1000_adapter *adapter,
2696		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2697		     __be16 protocol)
2698{
2699	struct e1000_context_desc *context_desc;
2700	struct e1000_tx_buffer *buffer_info;
2701	unsigned int i;
2702	u32 cmd_length = 0;
2703	u16 ipcse = 0, tucse, mss;
2704	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2705
2706	if (skb_is_gso(skb)) {
2707		int err;
2708
2709		err = skb_cow_head(skb, 0);
2710		if (err < 0)
2711			return err;
2712
2713		hdr_len = skb_tcp_all_headers(skb);
2714		mss = skb_shinfo(skb)->gso_size;
2715		if (protocol == htons(ETH_P_IP)) {
2716			struct iphdr *iph = ip_hdr(skb);
2717			iph->tot_len = 0;
2718			iph->check = 0;
2719			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2720								 iph->daddr, 0,
2721								 IPPROTO_TCP,
2722								 0);
2723			cmd_length = E1000_TXD_CMD_IP;
2724			ipcse = skb_transport_offset(skb) - 1;
2725		} else if (skb_is_gso_v6(skb)) {
2726			tcp_v6_gso_csum_prep(skb);
 
 
 
 
2727			ipcse = 0;
2728		}
2729		ipcss = skb_network_offset(skb);
2730		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2731		tucss = skb_transport_offset(skb);
2732		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2733		tucse = 0;
2734
2735		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2736			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2737
2738		i = tx_ring->next_to_use;
2739		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2740		buffer_info = &tx_ring->buffer_info[i];
2741
2742		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2743		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2744		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2745		context_desc->upper_setup.tcp_fields.tucss = tucss;
2746		context_desc->upper_setup.tcp_fields.tucso = tucso;
2747		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2748		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2749		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2750		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2751
2752		buffer_info->time_stamp = jiffies;
2753		buffer_info->next_to_watch = i;
2754
2755		if (++i == tx_ring->count)
2756			i = 0;
2757
2758		tx_ring->next_to_use = i;
2759
2760		return true;
2761	}
2762	return false;
2763}
2764
2765static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2767			  __be16 protocol)
2768{
2769	struct e1000_context_desc *context_desc;
2770	struct e1000_tx_buffer *buffer_info;
2771	unsigned int i;
2772	u8 css;
2773	u32 cmd_len = E1000_TXD_CMD_DEXT;
2774
2775	if (skb->ip_summed != CHECKSUM_PARTIAL)
2776		return false;
2777
2778	switch (protocol) {
2779	case cpu_to_be16(ETH_P_IP):
2780		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781			cmd_len |= E1000_TXD_CMD_TCP;
2782		break;
2783	case cpu_to_be16(ETH_P_IPV6):
2784		/* XXX not handling all IPV6 headers */
2785		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786			cmd_len |= E1000_TXD_CMD_TCP;
2787		break;
2788	default:
2789		if (unlikely(net_ratelimit()))
2790			e_warn(drv, "checksum_partial proto=%x!\n",
2791			       skb->protocol);
2792		break;
2793	}
2794
2795	css = skb_checksum_start_offset(skb);
2796
2797	i = tx_ring->next_to_use;
2798	buffer_info = &tx_ring->buffer_info[i];
2799	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800
2801	context_desc->lower_setup.ip_config = 0;
2802	context_desc->upper_setup.tcp_fields.tucss = css;
2803	context_desc->upper_setup.tcp_fields.tucso =
2804		css + skb->csum_offset;
2805	context_desc->upper_setup.tcp_fields.tucse = 0;
2806	context_desc->tcp_seg_setup.data = 0;
2807	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808
2809	buffer_info->time_stamp = jiffies;
2810	buffer_info->next_to_watch = i;
2811
2812	if (unlikely(++i == tx_ring->count))
2813		i = 0;
2814
2815	tx_ring->next_to_use = i;
2816
2817	return true;
2818}
2819
2820#define E1000_MAX_TXD_PWR	12
2821#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2822
2823static int e1000_tx_map(struct e1000_adapter *adapter,
2824			struct e1000_tx_ring *tx_ring,
2825			struct sk_buff *skb, unsigned int first,
2826			unsigned int max_per_txd, unsigned int nr_frags,
2827			unsigned int mss)
2828{
2829	struct e1000_hw *hw = &adapter->hw;
2830	struct pci_dev *pdev = adapter->pdev;
2831	struct e1000_tx_buffer *buffer_info;
2832	unsigned int len = skb_headlen(skb);
2833	unsigned int offset = 0, size, count = 0, i;
2834	unsigned int f, bytecount, segs;
2835
2836	i = tx_ring->next_to_use;
2837
2838	while (len) {
2839		buffer_info = &tx_ring->buffer_info[i];
2840		size = min(len, max_per_txd);
2841		/* Workaround for Controller erratum --
2842		 * descriptor for non-tso packet in a linear SKB that follows a
2843		 * tso gets written back prematurely before the data is fully
2844		 * DMA'd to the controller
2845		 */
2846		if (!skb->data_len && tx_ring->last_tx_tso &&
2847		    !skb_is_gso(skb)) {
2848			tx_ring->last_tx_tso = false;
2849			size -= 4;
2850		}
2851
2852		/* Workaround for premature desc write-backs
2853		 * in TSO mode.  Append 4-byte sentinel desc
2854		 */
2855		if (unlikely(mss && !nr_frags && size == len && size > 8))
2856			size -= 4;
2857		/* work-around for errata 10 and it applies
2858		 * to all controllers in PCI-X mode
2859		 * The fix is to make sure that the first descriptor of a
2860		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2861		 */
2862		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2863			     (size > 2015) && count == 0))
2864			size = 2015;
2865
2866		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2867		 * terminating buffers within evenly-aligned dwords.
2868		 */
2869		if (unlikely(adapter->pcix_82544 &&
2870		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2871		   size > 4))
2872			size -= 4;
2873
2874		buffer_info->length = size;
2875		/* set time_stamp *before* dma to help avoid a possible race */
2876		buffer_info->time_stamp = jiffies;
2877		buffer_info->mapped_as_page = false;
2878		buffer_info->dma = dma_map_single(&pdev->dev,
2879						  skb->data + offset,
2880						  size, DMA_TO_DEVICE);
2881		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2882			goto dma_error;
2883		buffer_info->next_to_watch = i;
2884
2885		len -= size;
2886		offset += size;
2887		count++;
2888		if (len) {
2889			i++;
2890			if (unlikely(i == tx_ring->count))
2891				i = 0;
2892		}
2893	}
2894
2895	for (f = 0; f < nr_frags; f++) {
2896		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2897
 
2898		len = skb_frag_size(frag);
2899		offset = 0;
2900
2901		while (len) {
2902			unsigned long bufend;
2903			i++;
2904			if (unlikely(i == tx_ring->count))
2905				i = 0;
2906
2907			buffer_info = &tx_ring->buffer_info[i];
2908			size = min(len, max_per_txd);
2909			/* Workaround for premature desc write-backs
2910			 * in TSO mode.  Append 4-byte sentinel desc
2911			 */
2912			if (unlikely(mss && f == (nr_frags-1) &&
2913			    size == len && size > 8))
2914				size -= 4;
2915			/* Workaround for potential 82544 hang in PCI-X.
2916			 * Avoid terminating buffers within evenly-aligned
2917			 * dwords.
2918			 */
2919			bufend = (unsigned long)
2920				page_to_phys(skb_frag_page(frag));
2921			bufend += offset + size - 1;
2922			if (unlikely(adapter->pcix_82544 &&
2923				     !(bufend & 4) &&
2924				     size > 4))
2925				size -= 4;
2926
2927			buffer_info->length = size;
2928			buffer_info->time_stamp = jiffies;
2929			buffer_info->mapped_as_page = true;
2930			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2931						offset, size, DMA_TO_DEVICE);
2932			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2933				goto dma_error;
2934			buffer_info->next_to_watch = i;
2935
2936			len -= size;
2937			offset += size;
2938			count++;
2939		}
2940	}
2941
2942	segs = skb_shinfo(skb)->gso_segs ?: 1;
2943	/* multiply data chunks by size of headers */
2944	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2945
2946	tx_ring->buffer_info[i].skb = skb;
2947	tx_ring->buffer_info[i].segs = segs;
2948	tx_ring->buffer_info[i].bytecount = bytecount;
2949	tx_ring->buffer_info[first].next_to_watch = i;
2950
2951	return count;
2952
2953dma_error:
2954	dev_err(&pdev->dev, "TX DMA map failed\n");
2955	buffer_info->dma = 0;
2956	if (count)
2957		count--;
2958
2959	while (count--) {
2960		if (i == 0)
2961			i += tx_ring->count;
2962		i--;
2963		buffer_info = &tx_ring->buffer_info[i];
2964		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2965	}
2966
2967	return 0;
2968}
2969
2970static void e1000_tx_queue(struct e1000_adapter *adapter,
2971			   struct e1000_tx_ring *tx_ring, int tx_flags,
2972			   int count)
2973{
2974	struct e1000_tx_desc *tx_desc = NULL;
2975	struct e1000_tx_buffer *buffer_info;
2976	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977	unsigned int i;
2978
2979	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981			     E1000_TXD_CMD_TSE;
2982		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
2984		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986	}
2987
2988	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991	}
2992
2993	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994		txd_lower |= E1000_TXD_CMD_VLE;
2995		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996	}
2997
2998	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000
3001	i = tx_ring->next_to_use;
3002
3003	while (count--) {
3004		buffer_info = &tx_ring->buffer_info[i];
3005		tx_desc = E1000_TX_DESC(*tx_ring, i);
3006		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007		tx_desc->lower.data =
3008			cpu_to_le32(txd_lower | buffer_info->length);
3009		tx_desc->upper.data = cpu_to_le32(txd_upper);
3010		if (unlikely(++i == tx_ring->count))
3011			i = 0;
3012	}
3013
3014	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3015
3016	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3017	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3019
3020	/* Force memory writes to complete before letting h/w
3021	 * know there are new descriptors to fetch.  (Only
3022	 * applicable for weak-ordered memory model archs,
3023	 * such as IA-64).
3024	 */
3025	dma_wmb();
3026
3027	tx_ring->next_to_use = i;
3028}
3029
3030/* 82547 workaround to avoid controller hang in half-duplex environment.
3031 * The workaround is to avoid queuing a large packet that would span
3032 * the internal Tx FIFO ring boundary by notifying the stack to resend
3033 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3034 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3035 * to the beginning of the Tx FIFO.
3036 */
3037
3038#define E1000_FIFO_HDR			0x10
3039#define E1000_82547_PAD_LEN		0x3E0
3040
3041static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3042				       struct sk_buff *skb)
3043{
3044	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3045	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3046
3047	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3048
3049	if (adapter->link_duplex != HALF_DUPLEX)
3050		goto no_fifo_stall_required;
3051
3052	if (atomic_read(&adapter->tx_fifo_stall))
3053		return 1;
3054
3055	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3056		atomic_set(&adapter->tx_fifo_stall, 1);
3057		return 1;
3058	}
3059
3060no_fifo_stall_required:
3061	adapter->tx_fifo_head += skb_fifo_len;
3062	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3063		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064	return 0;
3065}
3066
3067static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3068{
3069	struct e1000_adapter *adapter = netdev_priv(netdev);
3070	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3071
3072	netif_stop_queue(netdev);
3073	/* Herbert's original patch had:
3074	 *  smp_mb__after_netif_stop_queue();
3075	 * but since that doesn't exist yet, just open code it.
3076	 */
3077	smp_mb();
3078
3079	/* We need to check again in a case another CPU has just
3080	 * made room available.
3081	 */
3082	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083		return -EBUSY;
3084
3085	/* A reprieve! */
3086	netif_start_queue(netdev);
3087	++adapter->restart_queue;
3088	return 0;
3089}
3090
3091static int e1000_maybe_stop_tx(struct net_device *netdev,
3092			       struct e1000_tx_ring *tx_ring, int size)
3093{
3094	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3095		return 0;
3096	return __e1000_maybe_stop_tx(netdev, size);
3097}
3098
3099#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3100static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3101				    struct net_device *netdev)
3102{
3103	struct e1000_adapter *adapter = netdev_priv(netdev);
3104	struct e1000_hw *hw = &adapter->hw;
3105	struct e1000_tx_ring *tx_ring;
3106	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3107	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3108	unsigned int tx_flags = 0;
3109	unsigned int len = skb_headlen(skb);
3110	unsigned int nr_frags;
3111	unsigned int mss;
3112	int count = 0;
3113	int tso;
3114	unsigned int f;
3115	__be16 protocol = vlan_get_protocol(skb);
3116
3117	/* This goes back to the question of how to logically map a Tx queue
3118	 * to a flow.  Right now, performance is impacted slightly negatively
3119	 * if using multiple Tx queues.  If the stack breaks away from a
3120	 * single qdisc implementation, we can look at this again.
3121	 */
3122	tx_ring = adapter->tx_ring;
3123
3124	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3125	 * packets may get corrupted during padding by HW.
3126	 * To WA this issue, pad all small packets manually.
3127	 */
3128	if (eth_skb_pad(skb))
3129		return NETDEV_TX_OK;
3130
3131	mss = skb_shinfo(skb)->gso_size;
3132	/* The controller does a simple calculation to
3133	 * make sure there is enough room in the FIFO before
3134	 * initiating the DMA for each buffer.  The calc is:
3135	 * 4 = ceil(buffer len/mss).  To make sure we don't
3136	 * overrun the FIFO, adjust the max buffer len if mss
3137	 * drops.
3138	 */
3139	if (mss) {
3140		u8 hdr_len;
3141		max_per_txd = min(mss << 2, max_per_txd);
3142		max_txd_pwr = fls(max_per_txd) - 1;
3143
3144		hdr_len = skb_tcp_all_headers(skb);
3145		if (skb->data_len && hdr_len == len) {
3146			switch (hw->mac_type) {
3147			case e1000_82544: {
3148				unsigned int pull_size;
3149
3150				/* Make sure we have room to chop off 4 bytes,
3151				 * and that the end alignment will work out to
3152				 * this hardware's requirements
3153				 * NOTE: this is a TSO only workaround
3154				 * if end byte alignment not correct move us
3155				 * into the next dword
3156				 */
3157				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3158				    & 4)
3159					break;
 
3160				pull_size = min((unsigned int)4, skb->data_len);
3161				if (!__pskb_pull_tail(skb, pull_size)) {
3162					e_err(drv, "__pskb_pull_tail "
3163					      "failed.\n");
3164					dev_kfree_skb_any(skb);
3165					return NETDEV_TX_OK;
3166				}
3167				len = skb_headlen(skb);
3168				break;
3169			}
3170			default:
3171				/* do nothing */
3172				break;
3173			}
3174		}
3175	}
3176
3177	/* reserve a descriptor for the offload context */
3178	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3179		count++;
3180	count++;
3181
3182	/* Controller Erratum workaround */
3183	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3184		count++;
3185
3186	count += TXD_USE_COUNT(len, max_txd_pwr);
3187
3188	if (adapter->pcix_82544)
3189		count++;
3190
3191	/* work-around for errata 10 and it applies to all controllers
3192	 * in PCI-X mode, so add one more descriptor to the count
3193	 */
3194	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3195			(len > 2015)))
3196		count++;
3197
3198	nr_frags = skb_shinfo(skb)->nr_frags;
3199	for (f = 0; f < nr_frags; f++)
3200		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3201				       max_txd_pwr);
3202	if (adapter->pcix_82544)
3203		count += nr_frags;
3204
3205	/* need: count + 2 desc gap to keep tail from touching
3206	 * head, otherwise try next time
3207	 */
3208	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3209		return NETDEV_TX_BUSY;
3210
3211	if (unlikely((hw->mac_type == e1000_82547) &&
3212		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3213		netif_stop_queue(netdev);
3214		if (!test_bit(__E1000_DOWN, &adapter->flags))
3215			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3216		return NETDEV_TX_BUSY;
3217	}
3218
3219	if (skb_vlan_tag_present(skb)) {
3220		tx_flags |= E1000_TX_FLAGS_VLAN;
3221		tx_flags |= (skb_vlan_tag_get(skb) <<
3222			     E1000_TX_FLAGS_VLAN_SHIFT);
3223	}
3224
3225	first = tx_ring->next_to_use;
3226
3227	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3228	if (tso < 0) {
3229		dev_kfree_skb_any(skb);
3230		return NETDEV_TX_OK;
3231	}
3232
3233	if (likely(tso)) {
3234		if (likely(hw->mac_type != e1000_82544))
3235			tx_ring->last_tx_tso = true;
3236		tx_flags |= E1000_TX_FLAGS_TSO;
3237	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3238		tx_flags |= E1000_TX_FLAGS_CSUM;
3239
3240	if (protocol == htons(ETH_P_IP))
3241		tx_flags |= E1000_TX_FLAGS_IPV4;
3242
3243	if (unlikely(skb->no_fcs))
3244		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3245
3246	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3247			     nr_frags, mss);
3248
3249	if (count) {
3250		/* The descriptors needed is higher than other Intel drivers
3251		 * due to a number of workarounds.  The breakdown is below:
3252		 * Data descriptors: MAX_SKB_FRAGS + 1
3253		 * Context Descriptor: 1
3254		 * Keep head from touching tail: 2
3255		 * Workarounds: 3
3256		 */
3257		int desc_needed = MAX_SKB_FRAGS + 7;
3258
3259		netdev_sent_queue(netdev, skb->len);
3260		skb_tx_timestamp(skb);
3261
3262		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263
3264		/* 82544 potentially requires twice as many data descriptors
3265		 * in order to guarantee buffers don't end on evenly-aligned
3266		 * dwords
3267		 */
3268		if (adapter->pcix_82544)
3269			desc_needed += MAX_SKB_FRAGS + 1;
3270
3271		/* Make sure there is space in the ring for the next send. */
3272		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3273
3274		if (!netdev_xmit_more() ||
3275		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3276			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
 
 
 
 
 
3277		}
3278	} else {
3279		dev_kfree_skb_any(skb);
3280		tx_ring->buffer_info[first].time_stamp = 0;
3281		tx_ring->next_to_use = first;
3282	}
3283
3284	return NETDEV_TX_OK;
3285}
3286
3287#define NUM_REGS 38 /* 1 based count */
3288static void e1000_regdump(struct e1000_adapter *adapter)
3289{
3290	struct e1000_hw *hw = &adapter->hw;
3291	u32 regs[NUM_REGS];
3292	u32 *regs_buff = regs;
3293	int i = 0;
3294
3295	static const char * const reg_name[] = {
3296		"CTRL",  "STATUS",
3297		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3298		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3299		"TIDV", "TXDCTL", "TADV", "TARC0",
3300		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3301		"TXDCTL1", "TARC1",
3302		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3303		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3304		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3305	};
3306
3307	regs_buff[0]  = er32(CTRL);
3308	regs_buff[1]  = er32(STATUS);
3309
3310	regs_buff[2]  = er32(RCTL);
3311	regs_buff[3]  = er32(RDLEN);
3312	regs_buff[4]  = er32(RDH);
3313	regs_buff[5]  = er32(RDT);
3314	regs_buff[6]  = er32(RDTR);
3315
3316	regs_buff[7]  = er32(TCTL);
3317	regs_buff[8]  = er32(TDBAL);
3318	regs_buff[9]  = er32(TDBAH);
3319	regs_buff[10] = er32(TDLEN);
3320	regs_buff[11] = er32(TDH);
3321	regs_buff[12] = er32(TDT);
3322	regs_buff[13] = er32(TIDV);
3323	regs_buff[14] = er32(TXDCTL);
3324	regs_buff[15] = er32(TADV);
3325	regs_buff[16] = er32(TARC0);
3326
3327	regs_buff[17] = er32(TDBAL1);
3328	regs_buff[18] = er32(TDBAH1);
3329	regs_buff[19] = er32(TDLEN1);
3330	regs_buff[20] = er32(TDH1);
3331	regs_buff[21] = er32(TDT1);
3332	regs_buff[22] = er32(TXDCTL1);
3333	regs_buff[23] = er32(TARC1);
3334	regs_buff[24] = er32(CTRL_EXT);
3335	regs_buff[25] = er32(ERT);
3336	regs_buff[26] = er32(RDBAL0);
3337	regs_buff[27] = er32(RDBAH0);
3338	regs_buff[28] = er32(TDFH);
3339	regs_buff[29] = er32(TDFT);
3340	regs_buff[30] = er32(TDFHS);
3341	regs_buff[31] = er32(TDFTS);
3342	regs_buff[32] = er32(TDFPC);
3343	regs_buff[33] = er32(RDFH);
3344	regs_buff[34] = er32(RDFT);
3345	regs_buff[35] = er32(RDFHS);
3346	regs_buff[36] = er32(RDFTS);
3347	regs_buff[37] = er32(RDFPC);
3348
3349	pr_info("Register dump\n");
3350	for (i = 0; i < NUM_REGS; i++)
3351		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3352}
3353
3354/*
3355 * e1000_dump: Print registers, tx ring and rx ring
3356 */
3357static void e1000_dump(struct e1000_adapter *adapter)
3358{
3359	/* this code doesn't handle multiple rings */
3360	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3361	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3362	int i;
3363
3364	if (!netif_msg_hw(adapter))
3365		return;
3366
3367	/* Print Registers */
3368	e1000_regdump(adapter);
3369
3370	/* transmit dump */
3371	pr_info("TX Desc ring0 dump\n");
3372
3373	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3374	 *
3375	 * Legacy Transmit Descriptor
3376	 *   +--------------------------------------------------------------+
3377	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3378	 *   +--------------------------------------------------------------+
3379	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3380	 *   +--------------------------------------------------------------+
3381	 *   63       48 47        36 35    32 31     24 23    16 15        0
3382	 *
3383	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3384	 *   63      48 47    40 39       32 31             16 15    8 7      0
3385	 *   +----------------------------------------------------------------+
3386	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3387	 *   +----------------------------------------------------------------+
3388	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3389	 *   +----------------------------------------------------------------+
3390	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3391	 *
3392	 * Extended Data Descriptor (DTYP=0x1)
3393	 *   +----------------------------------------------------------------+
3394	 * 0 |                     Buffer Address [63:0]                      |
3395	 *   +----------------------------------------------------------------+
3396	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3397	 *   +----------------------------------------------------------------+
3398	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3399	 */
3400	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3401	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3402
3403	if (!netif_msg_tx_done(adapter))
3404		goto rx_ring_summary;
3405
3406	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3407		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3408		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3409		struct my_u { __le64 a; __le64 b; };
3410		struct my_u *u = (struct my_u *)tx_desc;
3411		const char *type;
3412
3413		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3414			type = "NTC/U";
3415		else if (i == tx_ring->next_to_use)
3416			type = "NTU";
3417		else if (i == tx_ring->next_to_clean)
3418			type = "NTC";
3419		else
3420			type = "";
3421
3422		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3423			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3424			le64_to_cpu(u->a), le64_to_cpu(u->b),
3425			(u64)buffer_info->dma, buffer_info->length,
3426			buffer_info->next_to_watch,
3427			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3428	}
3429
3430rx_ring_summary:
3431	/* receive dump */
3432	pr_info("\nRX Desc ring dump\n");
3433
3434	/* Legacy Receive Descriptor Format
3435	 *
3436	 * +-----------------------------------------------------+
3437	 * |                Buffer Address [63:0]                |
3438	 * +-----------------------------------------------------+
3439	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440	 * +-----------------------------------------------------+
3441	 * 63       48 47    40 39      32 31         16 15      0
3442	 */
3443	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3444
3445	if (!netif_msg_rx_status(adapter))
3446		goto exit;
3447
3448	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3451		struct my_u { __le64 a; __le64 b; };
3452		struct my_u *u = (struct my_u *)rx_desc;
3453		const char *type;
3454
3455		if (i == rx_ring->next_to_use)
3456			type = "NTU";
3457		else if (i == rx_ring->next_to_clean)
3458			type = "NTC";
3459		else
3460			type = "";
3461
3462		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3463			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3465	} /* for */
3466
3467	/* dump the descriptor caches */
3468	/* rx */
3469	pr_info("Rx descriptor cache in 64bit format\n");
3470	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472			i,
3473			readl(adapter->hw.hw_addr + i+4),
3474			readl(adapter->hw.hw_addr + i),
3475			readl(adapter->hw.hw_addr + i+12),
3476			readl(adapter->hw.hw_addr + i+8));
3477	}
3478	/* tx */
3479	pr_info("Tx descriptor cache in 64bit format\n");
3480	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482			i,
3483			readl(adapter->hw.hw_addr + i+4),
3484			readl(adapter->hw.hw_addr + i),
3485			readl(adapter->hw.hw_addr + i+12),
3486			readl(adapter->hw.hw_addr + i+8));
3487	}
3488exit:
3489	return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 * @txqueue: number of the Tx queue that hung (unused)
3496 **/
3497static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3498{
3499	struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501	/* Do the reset outside of interrupt context */
3502	adapter->tx_timeout_count++;
3503	schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508	struct e1000_adapter *adapter =
3509		container_of(work, struct e1000_adapter, reset_task);
3510
3511	e_err(drv, "Reset adapter\n");
3512	rtnl_lock();
3513	e1000_reinit_locked(adapter);
3514	rtnl_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
3515}
3516
3517/**
3518 * e1000_change_mtu - Change the Maximum Transfer Unit
3519 * @netdev: network interface device structure
3520 * @new_mtu: new value for maximum frame size
3521 *
3522 * Returns 0 on success, negative on failure
3523 **/
3524static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525{
3526	struct e1000_adapter *adapter = netdev_priv(netdev);
3527	struct e1000_hw *hw = &adapter->hw;
3528	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3529
3530	/* Adapter-specific max frame size limits. */
3531	switch (hw->mac_type) {
3532	case e1000_undefined ... e1000_82542_rev2_1:
3533		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3534			e_err(probe, "Jumbo Frames not supported.\n");
3535			return -EINVAL;
3536		}
3537		break;
3538	default:
3539		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3540		break;
3541	}
3542
3543	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3544		msleep(1);
3545	/* e1000_down has a dependency on max_frame_size */
3546	hw->max_frame_size = max_frame;
3547	if (netif_running(netdev)) {
3548		/* prevent buffers from being reallocated */
3549		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3550		e1000_down(adapter);
3551	}
3552
3553	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3554	 * means we reserve 2 more, this pushes us to allocate from the next
3555	 * larger slab size.
3556	 * i.e. RXBUFFER_2048 --> size-4096 slab
3557	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3558	 * fragmented skbs
3559	 */
3560
3561	if (max_frame <= E1000_RXBUFFER_2048)
3562		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3563	else
3564#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3565		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3566#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3567		adapter->rx_buffer_len = PAGE_SIZE;
3568#endif
3569
3570	/* adjust allocation if LPE protects us, and we aren't using SBP */
3571	if (!hw->tbi_compatibility_on &&
3572	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3573	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3574		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3575
3576	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3577		   netdev->mtu, new_mtu);
3578	WRITE_ONCE(netdev->mtu, new_mtu);
3579
3580	if (netif_running(netdev))
3581		e1000_up(adapter);
3582	else
3583		e1000_reset(adapter);
3584
3585	clear_bit(__E1000_RESETTING, &adapter->flags);
3586
3587	return 0;
3588}
3589
3590/**
3591 * e1000_update_stats - Update the board statistics counters
3592 * @adapter: board private structure
3593 **/
3594void e1000_update_stats(struct e1000_adapter *adapter)
3595{
3596	struct net_device *netdev = adapter->netdev;
3597	struct e1000_hw *hw = &adapter->hw;
3598	struct pci_dev *pdev = adapter->pdev;
3599	unsigned long flags;
3600	u16 phy_tmp;
3601
3602#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3603
3604	/* Prevent stats update while adapter is being reset, or if the pci
3605	 * connection is down.
3606	 */
3607	if (adapter->link_speed == 0)
3608		return;
3609	if (pci_channel_offline(pdev))
3610		return;
3611
3612	spin_lock_irqsave(&adapter->stats_lock, flags);
3613
3614	/* these counters are modified from e1000_tbi_adjust_stats,
3615	 * called from the interrupt context, so they must only
3616	 * be written while holding adapter->stats_lock
3617	 */
3618
3619	adapter->stats.crcerrs += er32(CRCERRS);
3620	adapter->stats.gprc += er32(GPRC);
3621	adapter->stats.gorcl += er32(GORCL);
3622	adapter->stats.gorch += er32(GORCH);
3623	adapter->stats.bprc += er32(BPRC);
3624	adapter->stats.mprc += er32(MPRC);
3625	adapter->stats.roc += er32(ROC);
3626
3627	adapter->stats.prc64 += er32(PRC64);
3628	adapter->stats.prc127 += er32(PRC127);
3629	adapter->stats.prc255 += er32(PRC255);
3630	adapter->stats.prc511 += er32(PRC511);
3631	adapter->stats.prc1023 += er32(PRC1023);
3632	adapter->stats.prc1522 += er32(PRC1522);
3633
3634	adapter->stats.symerrs += er32(SYMERRS);
3635	adapter->stats.mpc += er32(MPC);
3636	adapter->stats.scc += er32(SCC);
3637	adapter->stats.ecol += er32(ECOL);
3638	adapter->stats.mcc += er32(MCC);
3639	adapter->stats.latecol += er32(LATECOL);
3640	adapter->stats.dc += er32(DC);
3641	adapter->stats.sec += er32(SEC);
3642	adapter->stats.rlec += er32(RLEC);
3643	adapter->stats.xonrxc += er32(XONRXC);
3644	adapter->stats.xontxc += er32(XONTXC);
3645	adapter->stats.xoffrxc += er32(XOFFRXC);
3646	adapter->stats.xofftxc += er32(XOFFTXC);
3647	adapter->stats.fcruc += er32(FCRUC);
3648	adapter->stats.gptc += er32(GPTC);
3649	adapter->stats.gotcl += er32(GOTCL);
3650	adapter->stats.gotch += er32(GOTCH);
3651	adapter->stats.rnbc += er32(RNBC);
3652	adapter->stats.ruc += er32(RUC);
3653	adapter->stats.rfc += er32(RFC);
3654	adapter->stats.rjc += er32(RJC);
3655	adapter->stats.torl += er32(TORL);
3656	adapter->stats.torh += er32(TORH);
3657	adapter->stats.totl += er32(TOTL);
3658	adapter->stats.toth += er32(TOTH);
3659	adapter->stats.tpr += er32(TPR);
3660
3661	adapter->stats.ptc64 += er32(PTC64);
3662	adapter->stats.ptc127 += er32(PTC127);
3663	adapter->stats.ptc255 += er32(PTC255);
3664	adapter->stats.ptc511 += er32(PTC511);
3665	adapter->stats.ptc1023 += er32(PTC1023);
3666	adapter->stats.ptc1522 += er32(PTC1522);
3667
3668	adapter->stats.mptc += er32(MPTC);
3669	adapter->stats.bptc += er32(BPTC);
3670
3671	/* used for adaptive IFS */
3672
3673	hw->tx_packet_delta = er32(TPT);
3674	adapter->stats.tpt += hw->tx_packet_delta;
3675	hw->collision_delta = er32(COLC);
3676	adapter->stats.colc += hw->collision_delta;
3677
3678	if (hw->mac_type >= e1000_82543) {
3679		adapter->stats.algnerrc += er32(ALGNERRC);
3680		adapter->stats.rxerrc += er32(RXERRC);
3681		adapter->stats.tncrs += er32(TNCRS);
3682		adapter->stats.cexterr += er32(CEXTERR);
3683		adapter->stats.tsctc += er32(TSCTC);
3684		adapter->stats.tsctfc += er32(TSCTFC);
3685	}
3686
3687	/* Fill out the OS statistics structure */
3688	netdev->stats.multicast = adapter->stats.mprc;
3689	netdev->stats.collisions = adapter->stats.colc;
3690
3691	/* Rx Errors */
3692
3693	/* RLEC on some newer hardware can be incorrect so build
3694	 * our own version based on RUC and ROC
3695	 */
3696	netdev->stats.rx_errors = adapter->stats.rxerrc +
3697		adapter->stats.crcerrs + adapter->stats.algnerrc +
3698		adapter->stats.ruc + adapter->stats.roc +
3699		adapter->stats.cexterr;
3700	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3701	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3702	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3703	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3704	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3705
3706	/* Tx Errors */
3707	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3708	netdev->stats.tx_errors = adapter->stats.txerrc;
3709	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3710	netdev->stats.tx_window_errors = adapter->stats.latecol;
3711	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3712	if (hw->bad_tx_carr_stats_fd &&
3713	    adapter->link_duplex == FULL_DUPLEX) {
3714		netdev->stats.tx_carrier_errors = 0;
3715		adapter->stats.tncrs = 0;
3716	}
3717
3718	/* Tx Dropped needs to be maintained elsewhere */
3719
3720	/* Phy Stats */
3721	if (hw->media_type == e1000_media_type_copper) {
3722		if ((adapter->link_speed == SPEED_1000) &&
3723		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3724			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3725			adapter->phy_stats.idle_errors += phy_tmp;
3726		}
3727
3728		if ((hw->mac_type <= e1000_82546) &&
3729		   (hw->phy_type == e1000_phy_m88) &&
3730		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3731			adapter->phy_stats.receive_errors += phy_tmp;
3732	}
3733
3734	/* Management Stats */
3735	if (hw->has_smbus) {
3736		adapter->stats.mgptc += er32(MGTPTC);
3737		adapter->stats.mgprc += er32(MGTPRC);
3738		adapter->stats.mgpdc += er32(MGTPDC);
3739	}
3740
3741	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3742}
3743
3744/**
3745 * e1000_intr - Interrupt Handler
3746 * @irq: interrupt number
3747 * @data: pointer to a network interface device structure
3748 **/
3749static irqreturn_t e1000_intr(int irq, void *data)
3750{
3751	struct net_device *netdev = data;
3752	struct e1000_adapter *adapter = netdev_priv(netdev);
3753	struct e1000_hw *hw = &adapter->hw;
3754	u32 icr = er32(ICR);
3755
3756	if (unlikely((!icr)))
3757		return IRQ_NONE;  /* Not our interrupt */
3758
3759	/* we might have caused the interrupt, but the above
3760	 * read cleared it, and just in case the driver is
3761	 * down there is nothing to do so return handled
3762	 */
3763	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3764		return IRQ_HANDLED;
3765
3766	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3767		hw->get_link_status = 1;
3768		/* guard against interrupt when we're going down */
3769		if (!test_bit(__E1000_DOWN, &adapter->flags))
3770			schedule_delayed_work(&adapter->watchdog_task, 1);
3771	}
3772
3773	/* disable interrupts, without the synchronize_irq bit */
3774	ew32(IMC, ~0);
3775	E1000_WRITE_FLUSH();
3776
3777	if (likely(napi_schedule_prep(&adapter->napi))) {
3778		adapter->total_tx_bytes = 0;
3779		adapter->total_tx_packets = 0;
3780		adapter->total_rx_bytes = 0;
3781		adapter->total_rx_packets = 0;
3782		__napi_schedule(&adapter->napi);
3783	} else {
3784		/* this really should not happen! if it does it is basically a
3785		 * bug, but not a hard error, so enable ints and continue
3786		 */
3787		if (!test_bit(__E1000_DOWN, &adapter->flags))
3788			e1000_irq_enable(adapter);
3789	}
3790
3791	return IRQ_HANDLED;
3792}
3793
3794/**
3795 * e1000_clean - NAPI Rx polling callback
3796 * @napi: napi struct containing references to driver info
3797 * @budget: budget given to driver for receive packets
3798 **/
3799static int e1000_clean(struct napi_struct *napi, int budget)
3800{
3801	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3802						     napi);
3803	int tx_clean_complete = 0, work_done = 0;
3804
3805	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3806
3807	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3808
3809	if (!tx_clean_complete || work_done == budget)
3810		return budget;
3811
3812	/* Exit the polling mode, but don't re-enable interrupts if stack might
3813	 * poll us due to busy-polling
3814	 */
3815	if (likely(napi_complete_done(napi, work_done))) {
3816		if (likely(adapter->itr_setting & 3))
3817			e1000_set_itr(adapter);
 
3818		if (!test_bit(__E1000_DOWN, &adapter->flags))
3819			e1000_irq_enable(adapter);
3820	}
3821
3822	return work_done;
3823}
3824
3825/**
3826 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827 * @adapter: board private structure
3828 * @tx_ring: ring to clean
3829 **/
3830static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3831			       struct e1000_tx_ring *tx_ring)
3832{
3833	struct e1000_hw *hw = &adapter->hw;
3834	struct net_device *netdev = adapter->netdev;
3835	struct e1000_tx_desc *tx_desc, *eop_desc;
3836	struct e1000_tx_buffer *buffer_info;
3837	unsigned int i, eop;
3838	unsigned int count = 0;
3839	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3840	unsigned int bytes_compl = 0, pkts_compl = 0;
3841
3842	i = tx_ring->next_to_clean;
3843	eop = tx_ring->buffer_info[i].next_to_watch;
3844	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845
3846	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3847	       (count < tx_ring->count)) {
3848		bool cleaned = false;
3849		dma_rmb();	/* read buffer_info after eop_desc */
3850		for ( ; !cleaned; count++) {
3851			tx_desc = E1000_TX_DESC(*tx_ring, i);
3852			buffer_info = &tx_ring->buffer_info[i];
3853			cleaned = (i == eop);
3854
3855			if (cleaned) {
3856				total_tx_packets += buffer_info->segs;
3857				total_tx_bytes += buffer_info->bytecount;
3858				if (buffer_info->skb) {
3859					bytes_compl += buffer_info->skb->len;
3860					pkts_compl++;
3861				}
3862
3863			}
3864			e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3865							 64);
3866			tx_desc->upper.data = 0;
3867
3868			if (unlikely(++i == tx_ring->count))
3869				i = 0;
3870		}
3871
3872		eop = tx_ring->buffer_info[i].next_to_watch;
3873		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3874	}
3875
3876	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3877	 * which will reuse the cleaned buffers.
3878	 */
3879	smp_store_release(&tx_ring->next_to_clean, i);
3880
3881	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3882
3883#define TX_WAKE_THRESHOLD 32
3884	if (unlikely(count && netif_carrier_ok(netdev) &&
3885		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3886		/* Make sure that anybody stopping the queue after this
3887		 * sees the new next_to_clean.
3888		 */
3889		smp_mb();
3890
3891		if (netif_queue_stopped(netdev) &&
3892		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3893			netif_wake_queue(netdev);
3894			++adapter->restart_queue;
3895		}
3896	}
3897
3898	if (adapter->detect_tx_hung) {
3899		/* Detect a transmit hang in hardware, this serializes the
3900		 * check with the clearing of time_stamp and movement of i
3901		 */
3902		adapter->detect_tx_hung = false;
3903		if (tx_ring->buffer_info[eop].time_stamp &&
3904		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3905			       (adapter->tx_timeout_factor * HZ)) &&
3906		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3907
3908			/* detected Tx unit hang */
3909			e_err(drv, "Detected Tx Unit Hang\n"
3910			      "  Tx Queue             <%lu>\n"
3911			      "  TDH                  <%x>\n"
3912			      "  TDT                  <%x>\n"
3913			      "  next_to_use          <%x>\n"
3914			      "  next_to_clean        <%x>\n"
3915			      "buffer_info[next_to_clean]\n"
3916			      "  time_stamp           <%lx>\n"
3917			      "  next_to_watch        <%x>\n"
3918			      "  jiffies              <%lx>\n"
3919			      "  next_to_watch.status <%x>\n",
3920				(unsigned long)(tx_ring - adapter->tx_ring),
3921				readl(hw->hw_addr + tx_ring->tdh),
3922				readl(hw->hw_addr + tx_ring->tdt),
3923				tx_ring->next_to_use,
3924				tx_ring->next_to_clean,
3925				tx_ring->buffer_info[eop].time_stamp,
3926				eop,
3927				jiffies,
3928				eop_desc->upper.fields.status);
3929			e1000_dump(adapter);
3930			netif_stop_queue(netdev);
3931		}
3932	}
3933	adapter->total_tx_bytes += total_tx_bytes;
3934	adapter->total_tx_packets += total_tx_packets;
3935	netdev->stats.tx_bytes += total_tx_bytes;
3936	netdev->stats.tx_packets += total_tx_packets;
3937	return count < tx_ring->count;
3938}
3939
3940/**
3941 * e1000_rx_checksum - Receive Checksum Offload for 82543
3942 * @adapter:     board private structure
3943 * @status_err:  receive descriptor status and error fields
3944 * @csum:        receive descriptor csum field
3945 * @skb:         socket buffer with received data
3946 **/
3947static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3948			      u32 csum, struct sk_buff *skb)
3949{
3950	struct e1000_hw *hw = &adapter->hw;
3951	u16 status = (u16)status_err;
3952	u8 errors = (u8)(status_err >> 24);
3953
3954	skb_checksum_none_assert(skb);
3955
3956	/* 82543 or newer only */
3957	if (unlikely(hw->mac_type < e1000_82543))
3958		return;
3959	/* Ignore Checksum bit is set */
3960	if (unlikely(status & E1000_RXD_STAT_IXSM))
3961		return;
3962	/* TCP/UDP checksum error bit is set */
3963	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3964		/* let the stack verify checksum errors */
3965		adapter->hw_csum_err++;
3966		return;
3967	}
3968	/* TCP/UDP Checksum has not been calculated */
3969	if (!(status & E1000_RXD_STAT_TCPCS))
3970		return;
3971
3972	/* It must be a TCP or UDP packet with a valid checksum */
3973	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3974		/* TCP checksum is good */
3975		skb->ip_summed = CHECKSUM_UNNECESSARY;
3976	}
3977	adapter->hw_csum_good++;
3978}
3979
3980/**
3981 * e1000_consume_page - helper function for jumbo Rx path
3982 * @bi: software descriptor shadow data
3983 * @skb: skb being modified
3984 * @length: length of data being added
3985 **/
3986static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987			       u16 length)
3988{
3989	bi->rxbuf.page = NULL;
3990	skb->len += length;
3991	skb->data_len += length;
3992	skb->truesize += PAGE_SIZE;
3993}
3994
3995/**
3996 * e1000_receive_skb - helper function to handle rx indications
3997 * @adapter: board private structure
3998 * @status: descriptor status field as written by hardware
3999 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000 * @skb: pointer to sk_buff to be indicated to stack
4001 */
4002static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003			      __le16 vlan, struct sk_buff *skb)
4004{
4005	skb->protocol = eth_type_trans(skb, adapter->netdev);
4006
4007	if (status & E1000_RXD_STAT_VP) {
4008		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009
4010		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011	}
4012	napi_gro_receive(&adapter->napi, skb);
4013}
4014
4015/**
4016 * e1000_tbi_adjust_stats
4017 * @hw: Struct containing variables accessed by shared code
4018 * @stats: point to stats struct
4019 * @frame_len: The length of the frame in question
4020 * @mac_addr: The Ethernet destination address of the frame in question
4021 *
4022 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4023 */
4024static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4025				   struct e1000_hw_stats *stats,
4026				   u32 frame_len, const u8 *mac_addr)
4027{
4028	u64 carry_bit;
4029
4030	/* First adjust the frame length. */
4031	frame_len--;
4032	/* We need to adjust the statistics counters, since the hardware
4033	 * counters overcount this packet as a CRC error and undercount
4034	 * the packet as a good packet
4035	 */
4036	/* This packet should not be counted as a CRC error. */
4037	stats->crcerrs--;
4038	/* This packet does count as a Good Packet Received. */
4039	stats->gprc++;
4040
4041	/* Adjust the Good Octets received counters */
4042	carry_bit = 0x80000000 & stats->gorcl;
4043	stats->gorcl += frame_len;
4044	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4045	 * Received Count) was one before the addition,
4046	 * AND it is zero after, then we lost the carry out,
4047	 * need to add one to Gorch (Good Octets Received Count High).
4048	 * This could be simplified if all environments supported
4049	 * 64-bit integers.
4050	 */
4051	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4052		stats->gorch++;
4053	/* Is this a broadcast or multicast?  Check broadcast first,
4054	 * since the test for a multicast frame will test positive on
4055	 * a broadcast frame.
4056	 */
4057	if (is_broadcast_ether_addr(mac_addr))
4058		stats->bprc++;
4059	else if (is_multicast_ether_addr(mac_addr))
4060		stats->mprc++;
4061
4062	if (frame_len == hw->max_frame_size) {
4063		/* In this case, the hardware has overcounted the number of
4064		 * oversize frames.
4065		 */
4066		if (stats->roc > 0)
4067			stats->roc--;
4068	}
4069
4070	/* Adjust the bin counters when the extra byte put the frame in the
4071	 * wrong bin. Remember that the frame_len was adjusted above.
4072	 */
4073	if (frame_len == 64) {
4074		stats->prc64++;
4075		stats->prc127--;
4076	} else if (frame_len == 127) {
4077		stats->prc127++;
4078		stats->prc255--;
4079	} else if (frame_len == 255) {
4080		stats->prc255++;
4081		stats->prc511--;
4082	} else if (frame_len == 511) {
4083		stats->prc511++;
4084		stats->prc1023--;
4085	} else if (frame_len == 1023) {
4086		stats->prc1023++;
4087		stats->prc1522--;
4088	} else if (frame_len == 1522) {
4089		stats->prc1522++;
4090	}
4091}
4092
4093static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4094				    u8 status, u8 errors,
4095				    u32 length, const u8 *data)
4096{
4097	struct e1000_hw *hw = &adapter->hw;
4098	u8 last_byte = *(data + length - 1);
4099
4100	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4101		unsigned long irq_flags;
4102
4103		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4104		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4105		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4106
4107		return true;
4108	}
4109
4110	return false;
4111}
4112
4113static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4114					  unsigned int bufsz)
4115{
4116	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4117
4118	if (unlikely(!skb))
4119		adapter->alloc_rx_buff_failed++;
4120	return skb;
4121}
4122
4123/**
4124 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4125 * @adapter: board private structure
4126 * @rx_ring: ring to clean
4127 * @work_done: amount of napi work completed this call
4128 * @work_to_do: max amount of work allowed for this call to do
4129 *
4130 * the return value indicates whether actual cleaning was done, there
4131 * is no guarantee that everything was cleaned
4132 */
4133static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4134				     struct e1000_rx_ring *rx_ring,
4135				     int *work_done, int work_to_do)
4136{
4137	struct net_device *netdev = adapter->netdev;
4138	struct pci_dev *pdev = adapter->pdev;
4139	struct e1000_rx_desc *rx_desc, *next_rxd;
4140	struct e1000_rx_buffer *buffer_info, *next_buffer;
4141	u32 length;
4142	unsigned int i;
4143	int cleaned_count = 0;
4144	bool cleaned = false;
4145	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4146
4147	i = rx_ring->next_to_clean;
4148	rx_desc = E1000_RX_DESC(*rx_ring, i);
4149	buffer_info = &rx_ring->buffer_info[i];
4150
4151	while (rx_desc->status & E1000_RXD_STAT_DD) {
4152		struct sk_buff *skb;
4153		u8 status;
4154
4155		if (*work_done >= work_to_do)
4156			break;
4157		(*work_done)++;
4158		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4159
4160		status = rx_desc->status;
4161
4162		if (++i == rx_ring->count)
4163			i = 0;
4164
4165		next_rxd = E1000_RX_DESC(*rx_ring, i);
4166		prefetch(next_rxd);
4167
4168		next_buffer = &rx_ring->buffer_info[i];
4169
4170		cleaned = true;
4171		cleaned_count++;
4172		dma_unmap_page(&pdev->dev, buffer_info->dma,
4173			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4174		buffer_info->dma = 0;
4175
4176		length = le16_to_cpu(rx_desc->length);
4177
4178		/* errors is only valid for DD + EOP descriptors */
4179		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4180		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4181			u8 *mapped = page_address(buffer_info->rxbuf.page);
4182
4183			if (e1000_tbi_should_accept(adapter, status,
4184						    rx_desc->errors,
4185						    length, mapped)) {
4186				length--;
4187			} else if (netdev->features & NETIF_F_RXALL) {
4188				goto process_skb;
4189			} else {
4190				/* an error means any chain goes out the window
4191				 * too
4192				 */
4193				dev_kfree_skb(rx_ring->rx_skb_top);
 
4194				rx_ring->rx_skb_top = NULL;
4195				goto next_desc;
4196			}
4197		}
4198
4199#define rxtop rx_ring->rx_skb_top
4200process_skb:
4201		if (!(status & E1000_RXD_STAT_EOP)) {
4202			/* this descriptor is only the beginning (or middle) */
4203			if (!rxtop) {
4204				/* this is the beginning of a chain */
4205				rxtop = napi_get_frags(&adapter->napi);
4206				if (!rxtop)
4207					break;
4208
4209				skb_fill_page_desc(rxtop, 0,
4210						   buffer_info->rxbuf.page,
4211						   0, length);
4212			} else {
4213				/* this is the middle of a chain */
4214				skb_fill_page_desc(rxtop,
4215				    skb_shinfo(rxtop)->nr_frags,
4216				    buffer_info->rxbuf.page, 0, length);
4217			}
4218			e1000_consume_page(buffer_info, rxtop, length);
4219			goto next_desc;
4220		} else {
4221			if (rxtop) {
4222				/* end of the chain */
4223				skb_fill_page_desc(rxtop,
4224				    skb_shinfo(rxtop)->nr_frags,
4225				    buffer_info->rxbuf.page, 0, length);
4226				skb = rxtop;
4227				rxtop = NULL;
4228				e1000_consume_page(buffer_info, skb, length);
4229			} else {
4230				struct page *p;
4231				/* no chain, got EOP, this buf is the packet
4232				 * copybreak to save the put_page/alloc_page
4233				 */
4234				p = buffer_info->rxbuf.page;
4235				if (length <= copybreak) {
 
 
4236					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237						length -= 4;
4238					skb = e1000_alloc_rx_skb(adapter,
4239								 length);
4240					if (!skb)
4241						break;
4242
4243					memcpy(skb_tail_pointer(skb),
4244					       page_address(p), length);
4245
 
4246					/* re-use the page, so don't erase
4247					 * buffer_info->rxbuf.page
4248					 */
4249					skb_put(skb, length);
4250					e1000_rx_checksum(adapter,
4251							  status | rx_desc->errors << 24,
4252							  le16_to_cpu(rx_desc->csum), skb);
4253
4254					total_rx_bytes += skb->len;
4255					total_rx_packets++;
4256
4257					e1000_receive_skb(adapter, status,
4258							  rx_desc->special, skb);
4259					goto next_desc;
4260				} else {
4261					skb = napi_get_frags(&adapter->napi);
4262					if (!skb) {
4263						adapter->alloc_rx_buff_failed++;
4264						break;
4265					}
4266					skb_fill_page_desc(skb, 0, p, 0,
4267							   length);
4268					e1000_consume_page(buffer_info, skb,
4269							   length);
4270				}
4271			}
4272		}
4273
4274		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4275		e1000_rx_checksum(adapter,
4276				  (u32)(status) |
4277				  ((u32)(rx_desc->errors) << 24),
4278				  le16_to_cpu(rx_desc->csum), skb);
4279
4280		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4281		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4282			pskb_trim(skb, skb->len - 4);
4283		total_rx_packets++;
4284
4285		if (status & E1000_RXD_STAT_VP) {
4286			__le16 vlan = rx_desc->special;
4287			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4288
4289			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4290		}
4291
4292		napi_gro_frags(&adapter->napi);
4293
4294next_desc:
4295		rx_desc->status = 0;
4296
4297		/* return some buffers to hardware, one at a time is too slow */
4298		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4299			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300			cleaned_count = 0;
4301		}
4302
4303		/* use prefetched values */
4304		rx_desc = next_rxd;
4305		buffer_info = next_buffer;
4306	}
4307	rx_ring->next_to_clean = i;
4308
4309	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4310	if (cleaned_count)
4311		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4312
4313	adapter->total_rx_packets += total_rx_packets;
4314	adapter->total_rx_bytes += total_rx_bytes;
4315	netdev->stats.rx_bytes += total_rx_bytes;
4316	netdev->stats.rx_packets += total_rx_packets;
4317	return cleaned;
4318}
4319
4320/* this should improve performance for small packets with large amounts
4321 * of reassembly being done in the stack
4322 */
4323static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4324				       struct e1000_rx_buffer *buffer_info,
4325				       u32 length, const void *data)
4326{
4327	struct sk_buff *skb;
4328
4329	if (length > copybreak)
4330		return NULL;
4331
4332	skb = e1000_alloc_rx_skb(adapter, length);
4333	if (!skb)
4334		return NULL;
4335
4336	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4337				length, DMA_FROM_DEVICE);
4338
4339	skb_put_data(skb, data, length);
4340
4341	return skb;
4342}
4343
4344/**
4345 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4346 * @adapter: board private structure
4347 * @rx_ring: ring to clean
4348 * @work_done: amount of napi work completed this call
4349 * @work_to_do: max amount of work allowed for this call to do
4350 */
4351static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4352			       struct e1000_rx_ring *rx_ring,
4353			       int *work_done, int work_to_do)
4354{
4355	struct net_device *netdev = adapter->netdev;
4356	struct pci_dev *pdev = adapter->pdev;
4357	struct e1000_rx_desc *rx_desc, *next_rxd;
4358	struct e1000_rx_buffer *buffer_info, *next_buffer;
4359	u32 length;
4360	unsigned int i;
4361	int cleaned_count = 0;
4362	bool cleaned = false;
4363	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4364
4365	i = rx_ring->next_to_clean;
4366	rx_desc = E1000_RX_DESC(*rx_ring, i);
4367	buffer_info = &rx_ring->buffer_info[i];
4368
4369	while (rx_desc->status & E1000_RXD_STAT_DD) {
4370		struct sk_buff *skb;
4371		u8 *data;
4372		u8 status;
4373
4374		if (*work_done >= work_to_do)
4375			break;
4376		(*work_done)++;
4377		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4378
4379		status = rx_desc->status;
4380		length = le16_to_cpu(rx_desc->length);
4381
4382		data = buffer_info->rxbuf.data;
4383		prefetch(data);
4384		skb = e1000_copybreak(adapter, buffer_info, length, data);
4385		if (!skb) {
4386			unsigned int frag_len = e1000_frag_len(adapter);
4387
4388			skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4389			if (!skb) {
4390				adapter->alloc_rx_buff_failed++;
4391				break;
4392			}
4393
4394			skb_reserve(skb, E1000_HEADROOM);
4395			dma_unmap_single(&pdev->dev, buffer_info->dma,
4396					 adapter->rx_buffer_len,
4397					 DMA_FROM_DEVICE);
4398			buffer_info->dma = 0;
4399			buffer_info->rxbuf.data = NULL;
4400		}
4401
4402		if (++i == rx_ring->count)
4403			i = 0;
4404
4405		next_rxd = E1000_RX_DESC(*rx_ring, i);
4406		prefetch(next_rxd);
4407
4408		next_buffer = &rx_ring->buffer_info[i];
4409
4410		cleaned = true;
4411		cleaned_count++;
4412
4413		/* !EOP means multiple descriptors were used to store a single
4414		 * packet, if thats the case we need to toss it.  In fact, we
4415		 * to toss every packet with the EOP bit clear and the next
4416		 * frame that _does_ have the EOP bit set, as it is by
4417		 * definition only a frame fragment
4418		 */
4419		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4420			adapter->discarding = true;
4421
4422		if (adapter->discarding) {
4423			/* All receives must fit into a single buffer */
4424			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4425			dev_kfree_skb(skb);
4426			if (status & E1000_RXD_STAT_EOP)
4427				adapter->discarding = false;
4428			goto next_desc;
4429		}
4430
4431		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4432			if (e1000_tbi_should_accept(adapter, status,
4433						    rx_desc->errors,
4434						    length, data)) {
4435				length--;
4436			} else if (netdev->features & NETIF_F_RXALL) {
4437				goto process_skb;
4438			} else {
4439				dev_kfree_skb(skb);
4440				goto next_desc;
4441			}
4442		}
4443
4444process_skb:
4445		total_rx_bytes += (length - 4); /* don't count FCS */
4446		total_rx_packets++;
4447
4448		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4449			/* adjust length to remove Ethernet CRC, this must be
4450			 * done after the TBI_ACCEPT workaround above
4451			 */
4452			length -= 4;
4453
4454		if (buffer_info->rxbuf.data == NULL)
4455			skb_put(skb, length);
4456		else /* copybreak skb */
4457			skb_trim(skb, length);
4458
4459		/* Receive Checksum Offload */
4460		e1000_rx_checksum(adapter,
4461				  (u32)(status) |
4462				  ((u32)(rx_desc->errors) << 24),
4463				  le16_to_cpu(rx_desc->csum), skb);
4464
4465		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4466
4467next_desc:
4468		rx_desc->status = 0;
4469
4470		/* return some buffers to hardware, one at a time is too slow */
4471		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4472			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473			cleaned_count = 0;
4474		}
4475
4476		/* use prefetched values */
4477		rx_desc = next_rxd;
4478		buffer_info = next_buffer;
4479	}
4480	rx_ring->next_to_clean = i;
4481
4482	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4483	if (cleaned_count)
4484		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4485
4486	adapter->total_rx_packets += total_rx_packets;
4487	adapter->total_rx_bytes += total_rx_bytes;
4488	netdev->stats.rx_bytes += total_rx_bytes;
4489	netdev->stats.rx_packets += total_rx_packets;
4490	return cleaned;
4491}
4492
4493/**
4494 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4495 * @adapter: address of board private structure
4496 * @rx_ring: pointer to receive ring structure
4497 * @cleaned_count: number of buffers to allocate this pass
4498 **/
4499static void
4500e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4501			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4502{
4503	struct pci_dev *pdev = adapter->pdev;
4504	struct e1000_rx_desc *rx_desc;
4505	struct e1000_rx_buffer *buffer_info;
4506	unsigned int i;
4507
4508	i = rx_ring->next_to_use;
4509	buffer_info = &rx_ring->buffer_info[i];
4510
4511	while (cleaned_count--) {
4512		/* allocate a new page if necessary */
4513		if (!buffer_info->rxbuf.page) {
4514			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4515			if (unlikely(!buffer_info->rxbuf.page)) {
4516				adapter->alloc_rx_buff_failed++;
4517				break;
4518			}
4519		}
4520
4521		if (!buffer_info->dma) {
4522			buffer_info->dma = dma_map_page(&pdev->dev,
4523							buffer_info->rxbuf.page, 0,
4524							adapter->rx_buffer_len,
4525							DMA_FROM_DEVICE);
4526			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4527				put_page(buffer_info->rxbuf.page);
4528				buffer_info->rxbuf.page = NULL;
4529				buffer_info->dma = 0;
4530				adapter->alloc_rx_buff_failed++;
4531				break;
4532			}
4533		}
4534
4535		rx_desc = E1000_RX_DESC(*rx_ring, i);
4536		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4537
4538		if (unlikely(++i == rx_ring->count))
4539			i = 0;
4540		buffer_info = &rx_ring->buffer_info[i];
4541	}
4542
4543	if (likely(rx_ring->next_to_use != i)) {
4544		rx_ring->next_to_use = i;
4545		if (unlikely(i-- == 0))
4546			i = (rx_ring->count - 1);
4547
4548		/* Force memory writes to complete before letting h/w
4549		 * know there are new descriptors to fetch.  (Only
4550		 * applicable for weak-ordered memory model archs,
4551		 * such as IA-64).
4552		 */
4553		dma_wmb();
4554		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4555	}
4556}
4557
4558/**
4559 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4560 * @adapter: address of board private structure
4561 * @rx_ring: pointer to ring struct
4562 * @cleaned_count: number of new Rx buffers to try to allocate
4563 **/
4564static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4565				   struct e1000_rx_ring *rx_ring,
4566				   int cleaned_count)
4567{
4568	struct e1000_hw *hw = &adapter->hw;
4569	struct pci_dev *pdev = adapter->pdev;
4570	struct e1000_rx_desc *rx_desc;
4571	struct e1000_rx_buffer *buffer_info;
4572	unsigned int i;
4573	unsigned int bufsz = adapter->rx_buffer_len;
4574
4575	i = rx_ring->next_to_use;
4576	buffer_info = &rx_ring->buffer_info[i];
4577
4578	while (cleaned_count--) {
4579		void *data;
4580
4581		if (buffer_info->rxbuf.data)
4582			goto skip;
4583
4584		data = e1000_alloc_frag(adapter);
4585		if (!data) {
4586			/* Better luck next round */
4587			adapter->alloc_rx_buff_failed++;
4588			break;
4589		}
4590
4591		/* Fix for errata 23, can't cross 64kB boundary */
4592		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4593			void *olddata = data;
4594			e_err(rx_err, "skb align check failed: %u bytes at "
4595			      "%p\n", bufsz, data);
4596			/* Try again, without freeing the previous */
4597			data = e1000_alloc_frag(adapter);
4598			/* Failed allocation, critical failure */
4599			if (!data) {
4600				skb_free_frag(olddata);
4601				adapter->alloc_rx_buff_failed++;
4602				break;
4603			}
4604
4605			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4606				/* give up */
4607				skb_free_frag(data);
4608				skb_free_frag(olddata);
4609				adapter->alloc_rx_buff_failed++;
4610				break;
4611			}
4612
4613			/* Use new allocation */
4614			skb_free_frag(olddata);
4615		}
4616		buffer_info->dma = dma_map_single(&pdev->dev,
4617						  data,
4618						  adapter->rx_buffer_len,
4619						  DMA_FROM_DEVICE);
4620		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4621			skb_free_frag(data);
4622			buffer_info->dma = 0;
4623			adapter->alloc_rx_buff_failed++;
4624			break;
4625		}
4626
4627		/* XXX if it was allocated cleanly it will never map to a
4628		 * boundary crossing
4629		 */
4630
4631		/* Fix for errata 23, can't cross 64kB boundary */
4632		if (!e1000_check_64k_bound(adapter,
4633					(void *)(unsigned long)buffer_info->dma,
4634					adapter->rx_buffer_len)) {
4635			e_err(rx_err, "dma align check failed: %u bytes at "
4636			      "%p\n", adapter->rx_buffer_len,
4637			      (void *)(unsigned long)buffer_info->dma);
4638
4639			dma_unmap_single(&pdev->dev, buffer_info->dma,
4640					 adapter->rx_buffer_len,
4641					 DMA_FROM_DEVICE);
4642
4643			skb_free_frag(data);
4644			buffer_info->rxbuf.data = NULL;
4645			buffer_info->dma = 0;
4646
4647			adapter->alloc_rx_buff_failed++;
4648			break;
4649		}
4650		buffer_info->rxbuf.data = data;
4651 skip:
4652		rx_desc = E1000_RX_DESC(*rx_ring, i);
4653		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4654
4655		if (unlikely(++i == rx_ring->count))
4656			i = 0;
4657		buffer_info = &rx_ring->buffer_info[i];
4658	}
4659
4660	if (likely(rx_ring->next_to_use != i)) {
4661		rx_ring->next_to_use = i;
4662		if (unlikely(i-- == 0))
4663			i = (rx_ring->count - 1);
4664
4665		/* Force memory writes to complete before letting h/w
4666		 * know there are new descriptors to fetch.  (Only
4667		 * applicable for weak-ordered memory model archs,
4668		 * such as IA-64).
4669		 */
4670		dma_wmb();
4671		writel(i, hw->hw_addr + rx_ring->rdt);
4672	}
4673}
4674
4675/**
4676 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4677 * @adapter: address of board private structure
4678 **/
4679static void e1000_smartspeed(struct e1000_adapter *adapter)
4680{
4681	struct e1000_hw *hw = &adapter->hw;
4682	u16 phy_status;
4683	u16 phy_ctrl;
4684
4685	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4686	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4687		return;
4688
4689	if (adapter->smartspeed == 0) {
4690		/* If Master/Slave config fault is asserted twice,
4691		 * we assume back-to-back
4692		 */
4693		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4695			return;
4696		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4697		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4698			return;
4699		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4700		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4701			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4702			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4703					    phy_ctrl);
4704			adapter->smartspeed++;
4705			if (!e1000_phy_setup_autoneg(hw) &&
4706			   !e1000_read_phy_reg(hw, PHY_CTRL,
4707					       &phy_ctrl)) {
4708				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4709					     MII_CR_RESTART_AUTO_NEG);
4710				e1000_write_phy_reg(hw, PHY_CTRL,
4711						    phy_ctrl);
4712			}
4713		}
4714		return;
4715	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4716		/* If still no link, perhaps using 2/3 pair cable */
4717		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4718		phy_ctrl |= CR_1000T_MS_ENABLE;
4719		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4720		if (!e1000_phy_setup_autoneg(hw) &&
4721		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4722			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723				     MII_CR_RESTART_AUTO_NEG);
4724			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4725		}
4726	}
4727	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4728	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4729		adapter->smartspeed = 0;
4730}
4731
4732/**
4733 * e1000_ioctl - handle ioctl calls
4734 * @netdev: pointer to our netdev
4735 * @ifr: pointer to interface request structure
4736 * @cmd: ioctl data
4737 **/
4738static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4739{
4740	switch (cmd) {
4741	case SIOCGMIIPHY:
4742	case SIOCGMIIREG:
4743	case SIOCSMIIREG:
4744		return e1000_mii_ioctl(netdev, ifr, cmd);
4745	default:
4746		return -EOPNOTSUPP;
4747	}
4748}
4749
4750/**
4751 * e1000_mii_ioctl -
4752 * @netdev: pointer to our netdev
4753 * @ifr: pointer to interface request structure
4754 * @cmd: ioctl data
4755 **/
4756static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4757			   int cmd)
4758{
4759	struct e1000_adapter *adapter = netdev_priv(netdev);
4760	struct e1000_hw *hw = &adapter->hw;
4761	struct mii_ioctl_data *data = if_mii(ifr);
4762	int retval;
4763	u16 mii_reg;
4764	unsigned long flags;
4765
4766	if (hw->media_type != e1000_media_type_copper)
4767		return -EOPNOTSUPP;
4768
4769	switch (cmd) {
4770	case SIOCGMIIPHY:
4771		data->phy_id = hw->phy_addr;
4772		break;
4773	case SIOCGMIIREG:
4774		spin_lock_irqsave(&adapter->stats_lock, flags);
4775		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4776				   &data->val_out)) {
4777			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778			return -EIO;
4779		}
4780		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781		break;
4782	case SIOCSMIIREG:
4783		if (data->reg_num & ~(0x1F))
4784			return -EFAULT;
4785		mii_reg = data->val_in;
4786		spin_lock_irqsave(&adapter->stats_lock, flags);
4787		if (e1000_write_phy_reg(hw, data->reg_num,
4788					mii_reg)) {
4789			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790			return -EIO;
4791		}
4792		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4793		if (hw->media_type == e1000_media_type_copper) {
4794			switch (data->reg_num) {
4795			case PHY_CTRL:
4796				if (mii_reg & MII_CR_POWER_DOWN)
4797					break;
4798				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4799					hw->autoneg = 1;
4800					hw->autoneg_advertised = 0x2F;
4801				} else {
4802					u32 speed;
4803					if (mii_reg & 0x40)
4804						speed = SPEED_1000;
4805					else if (mii_reg & 0x2000)
4806						speed = SPEED_100;
4807					else
4808						speed = SPEED_10;
4809					retval = e1000_set_spd_dplx(
4810						adapter, speed,
4811						((mii_reg & 0x100)
4812						 ? DUPLEX_FULL :
4813						 DUPLEX_HALF));
4814					if (retval)
4815						return retval;
4816				}
4817				if (netif_running(adapter->netdev))
4818					e1000_reinit_locked(adapter);
4819				else
4820					e1000_reset(adapter);
4821				break;
4822			case M88E1000_PHY_SPEC_CTRL:
4823			case M88E1000_EXT_PHY_SPEC_CTRL:
4824				if (e1000_phy_reset(hw))
4825					return -EIO;
4826				break;
4827			}
4828		} else {
4829			switch (data->reg_num) {
4830			case PHY_CTRL:
4831				if (mii_reg & MII_CR_POWER_DOWN)
4832					break;
4833				if (netif_running(adapter->netdev))
4834					e1000_reinit_locked(adapter);
4835				else
4836					e1000_reset(adapter);
4837				break;
4838			}
4839		}
4840		break;
4841	default:
4842		return -EOPNOTSUPP;
4843	}
4844	return E1000_SUCCESS;
4845}
4846
4847void e1000_pci_set_mwi(struct e1000_hw *hw)
4848{
4849	struct e1000_adapter *adapter = hw->back;
4850	int ret_val = pci_set_mwi(adapter->pdev);
4851
4852	if (ret_val)
4853		e_err(probe, "Error in setting MWI\n");
4854}
4855
4856void e1000_pci_clear_mwi(struct e1000_hw *hw)
4857{
4858	struct e1000_adapter *adapter = hw->back;
4859
4860	pci_clear_mwi(adapter->pdev);
4861}
4862
4863int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4864{
4865	struct e1000_adapter *adapter = hw->back;
4866	return pcix_get_mmrbc(adapter->pdev);
4867}
4868
4869void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4870{
4871	struct e1000_adapter *adapter = hw->back;
4872	pcix_set_mmrbc(adapter->pdev, mmrbc);
4873}
4874
4875void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4876{
4877	outl(value, port);
4878}
4879
4880static bool e1000_vlan_used(struct e1000_adapter *adapter)
4881{
4882	u16 vid;
4883
4884	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4885		return true;
4886	return false;
4887}
4888
4889static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4890			      netdev_features_t features)
4891{
4892	struct e1000_hw *hw = &adapter->hw;
4893	u32 ctrl;
4894
4895	ctrl = er32(CTRL);
4896	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4897		/* enable VLAN tag insert/strip */
4898		ctrl |= E1000_CTRL_VME;
4899	} else {
4900		/* disable VLAN tag insert/strip */
4901		ctrl &= ~E1000_CTRL_VME;
4902	}
4903	ew32(CTRL, ctrl);
4904}
4905static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4906				     bool filter_on)
4907{
4908	struct e1000_hw *hw = &adapter->hw;
4909	u32 rctl;
4910
4911	if (!test_bit(__E1000_DOWN, &adapter->flags))
4912		e1000_irq_disable(adapter);
4913
4914	__e1000_vlan_mode(adapter, adapter->netdev->features);
4915	if (filter_on) {
4916		/* enable VLAN receive filtering */
4917		rctl = er32(RCTL);
4918		rctl &= ~E1000_RCTL_CFIEN;
4919		if (!(adapter->netdev->flags & IFF_PROMISC))
4920			rctl |= E1000_RCTL_VFE;
4921		ew32(RCTL, rctl);
4922		e1000_update_mng_vlan(adapter);
4923	} else {
4924		/* disable VLAN receive filtering */
4925		rctl = er32(RCTL);
4926		rctl &= ~E1000_RCTL_VFE;
4927		ew32(RCTL, rctl);
4928	}
4929
4930	if (!test_bit(__E1000_DOWN, &adapter->flags))
4931		e1000_irq_enable(adapter);
4932}
4933
4934static void e1000_vlan_mode(struct net_device *netdev,
4935			    netdev_features_t features)
4936{
4937	struct e1000_adapter *adapter = netdev_priv(netdev);
4938
4939	if (!test_bit(__E1000_DOWN, &adapter->flags))
4940		e1000_irq_disable(adapter);
4941
4942	__e1000_vlan_mode(adapter, features);
4943
4944	if (!test_bit(__E1000_DOWN, &adapter->flags))
4945		e1000_irq_enable(adapter);
4946}
4947
4948static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4949				 __be16 proto, u16 vid)
4950{
4951	struct e1000_adapter *adapter = netdev_priv(netdev);
4952	struct e1000_hw *hw = &adapter->hw;
4953	u32 vfta, index;
4954
4955	if ((hw->mng_cookie.status &
4956	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4957	    (vid == adapter->mng_vlan_id))
4958		return 0;
4959
4960	if (!e1000_vlan_used(adapter))
4961		e1000_vlan_filter_on_off(adapter, true);
4962
4963	/* add VID to filter table */
4964	index = (vid >> 5) & 0x7F;
4965	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4966	vfta |= (1 << (vid & 0x1F));
4967	e1000_write_vfta(hw, index, vfta);
4968
4969	set_bit(vid, adapter->active_vlans);
4970
4971	return 0;
4972}
4973
4974static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4975				  __be16 proto, u16 vid)
4976{
4977	struct e1000_adapter *adapter = netdev_priv(netdev);
4978	struct e1000_hw *hw = &adapter->hw;
4979	u32 vfta, index;
4980
4981	if (!test_bit(__E1000_DOWN, &adapter->flags))
4982		e1000_irq_disable(adapter);
4983	if (!test_bit(__E1000_DOWN, &adapter->flags))
4984		e1000_irq_enable(adapter);
4985
4986	/* remove VID from filter table */
4987	index = (vid >> 5) & 0x7F;
4988	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4989	vfta &= ~(1 << (vid & 0x1F));
4990	e1000_write_vfta(hw, index, vfta);
4991
4992	clear_bit(vid, adapter->active_vlans);
4993
4994	if (!e1000_vlan_used(adapter))
4995		e1000_vlan_filter_on_off(adapter, false);
4996
4997	return 0;
4998}
4999
5000static void e1000_restore_vlan(struct e1000_adapter *adapter)
5001{
5002	u16 vid;
5003
5004	if (!e1000_vlan_used(adapter))
5005		return;
5006
5007	e1000_vlan_filter_on_off(adapter, true);
5008	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5009		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5010}
5011
5012int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5013{
5014	struct e1000_hw *hw = &adapter->hw;
5015
5016	hw->autoneg = 0;
5017
5018	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5019	 * for the switch() below to work
5020	 */
5021	if ((spd & 1) || (dplx & ~1))
5022		goto err_inval;
5023
5024	/* Fiber NICs only allow 1000 gbps Full duplex */
5025	if ((hw->media_type == e1000_media_type_fiber) &&
5026	    spd != SPEED_1000 &&
5027	    dplx != DUPLEX_FULL)
5028		goto err_inval;
5029
5030	switch (spd + dplx) {
5031	case SPEED_10 + DUPLEX_HALF:
5032		hw->forced_speed_duplex = e1000_10_half;
5033		break;
5034	case SPEED_10 + DUPLEX_FULL:
5035		hw->forced_speed_duplex = e1000_10_full;
5036		break;
5037	case SPEED_100 + DUPLEX_HALF:
5038		hw->forced_speed_duplex = e1000_100_half;
5039		break;
5040	case SPEED_100 + DUPLEX_FULL:
5041		hw->forced_speed_duplex = e1000_100_full;
5042		break;
5043	case SPEED_1000 + DUPLEX_FULL:
5044		hw->autoneg = 1;
5045		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5046		break;
5047	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5048	default:
5049		goto err_inval;
5050	}
5051
5052	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5053	hw->mdix = AUTO_ALL_MODES;
5054
5055	return 0;
5056
5057err_inval:
5058	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5059	return -EINVAL;
5060}
5061
5062static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5063{
5064	struct net_device *netdev = pci_get_drvdata(pdev);
5065	struct e1000_adapter *adapter = netdev_priv(netdev);
5066	struct e1000_hw *hw = &adapter->hw;
5067	u32 ctrl, ctrl_ext, rctl, status;
5068	u32 wufc = adapter->wol;
 
 
 
5069
5070	netif_device_detach(netdev);
5071
5072	if (netif_running(netdev)) {
5073		int count = E1000_CHECK_RESET_COUNT;
5074
5075		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5076			usleep_range(10000, 20000);
5077
5078		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5079		rtnl_lock();
5080		e1000_down(adapter);
5081		rtnl_unlock();
5082	}
5083
 
 
 
 
 
 
5084	status = er32(STATUS);
5085	if (status & E1000_STATUS_LU)
5086		wufc &= ~E1000_WUFC_LNKC;
5087
5088	if (wufc) {
5089		e1000_setup_rctl(adapter);
5090		e1000_set_rx_mode(netdev);
5091
5092		rctl = er32(RCTL);
5093
5094		/* turn on all-multi mode if wake on multicast is enabled */
5095		if (wufc & E1000_WUFC_MC)
5096			rctl |= E1000_RCTL_MPE;
5097
5098		/* enable receives in the hardware */
5099		ew32(RCTL, rctl | E1000_RCTL_EN);
5100
5101		if (hw->mac_type >= e1000_82540) {
5102			ctrl = er32(CTRL);
5103			/* advertise wake from D3Cold */
5104			#define E1000_CTRL_ADVD3WUC 0x00100000
5105			/* phy power management enable */
5106			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5107			ctrl |= E1000_CTRL_ADVD3WUC |
5108				E1000_CTRL_EN_PHY_PWR_MGMT;
5109			ew32(CTRL, ctrl);
5110		}
5111
5112		if (hw->media_type == e1000_media_type_fiber ||
5113		    hw->media_type == e1000_media_type_internal_serdes) {
5114			/* keep the laser running in D3 */
5115			ctrl_ext = er32(CTRL_EXT);
5116			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5117			ew32(CTRL_EXT, ctrl_ext);
5118		}
5119
5120		ew32(WUC, E1000_WUC_PME_EN);
5121		ew32(WUFC, wufc);
5122	} else {
5123		ew32(WUC, 0);
5124		ew32(WUFC, 0);
5125	}
5126
5127	e1000_release_manageability(adapter);
5128
5129	*enable_wake = !!wufc;
5130
5131	/* make sure adapter isn't asleep if manageability is enabled */
5132	if (adapter->en_mng_pt)
5133		*enable_wake = true;
5134
5135	if (netif_running(netdev))
5136		e1000_free_irq(adapter);
5137
5138	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5139		pci_disable_device(pdev);
5140
5141	return 0;
5142}
5143
5144static int e1000_suspend(struct device *dev)
 
5145{
5146	int retval;
5147	struct pci_dev *pdev = to_pci_dev(dev);
5148	bool wake;
5149
5150	retval = __e1000_shutdown(pdev, &wake);
5151	device_set_wakeup_enable(dev, wake);
 
5152
5153	return retval;
 
 
 
 
 
 
 
5154}
5155
5156static int e1000_resume(struct device *dev)
5157{
5158	struct pci_dev *pdev = to_pci_dev(dev);
5159	struct net_device *netdev = pci_get_drvdata(pdev);
5160	struct e1000_adapter *adapter = netdev_priv(netdev);
5161	struct e1000_hw *hw = &adapter->hw;
5162	u32 err;
5163
 
 
 
 
5164	if (adapter->need_ioport)
5165		err = pci_enable_device(pdev);
5166	else
5167		err = pci_enable_device_mem(pdev);
5168	if (err) {
5169		pr_err("Cannot enable PCI device from suspend\n");
5170		return err;
5171	}
5172
5173	/* flush memory to make sure state is correct */
5174	smp_mb__before_atomic();
5175	clear_bit(__E1000_DISABLED, &adapter->flags);
5176	pci_set_master(pdev);
5177
5178	pci_enable_wake(pdev, PCI_D3hot, 0);
5179	pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181	if (netif_running(netdev)) {
5182		err = e1000_request_irq(adapter);
5183		if (err)
5184			return err;
5185	}
5186
5187	e1000_power_up_phy(adapter);
5188	e1000_reset(adapter);
5189	ew32(WUS, ~0);
5190
5191	e1000_init_manageability(adapter);
5192
5193	if (netif_running(netdev))
5194		e1000_up(adapter);
5195
5196	netif_device_attach(netdev);
5197
5198	return 0;
5199}
 
5200
5201static void e1000_shutdown(struct pci_dev *pdev)
5202{
5203	bool wake;
5204
5205	__e1000_shutdown(pdev, &wake);
5206
5207	if (system_state == SYSTEM_POWER_OFF) {
5208		pci_wake_from_d3(pdev, wake);
5209		pci_set_power_state(pdev, PCI_D3hot);
5210	}
5211}
5212
5213#ifdef CONFIG_NET_POLL_CONTROLLER
5214/* Polling 'interrupt' - used by things like netconsole to send skbs
5215 * without having to re-enable interrupts. It's not called while
5216 * the interrupt routine is executing.
5217 */
5218static void e1000_netpoll(struct net_device *netdev)
5219{
5220	struct e1000_adapter *adapter = netdev_priv(netdev);
5221
5222	if (disable_hardirq(adapter->pdev->irq))
5223		e1000_intr(adapter->pdev->irq, netdev);
5224	enable_irq(adapter->pdev->irq);
5225}
5226#endif
5227
5228/**
5229 * e1000_io_error_detected - called when PCI error is detected
5230 * @pdev: Pointer to PCI device
5231 * @state: The current pci connection state
5232 *
5233 * This function is called after a PCI bus error affecting
5234 * this device has been detected.
5235 */
5236static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5237						pci_channel_state_t state)
5238{
5239	struct net_device *netdev = pci_get_drvdata(pdev);
5240	struct e1000_adapter *adapter = netdev_priv(netdev);
5241
5242	rtnl_lock();
5243	netif_device_detach(netdev);
5244
5245	if (state == pci_channel_io_perm_failure) {
5246		rtnl_unlock();
5247		return PCI_ERS_RESULT_DISCONNECT;
5248	}
5249
5250	if (netif_running(netdev))
5251		e1000_down(adapter);
 
5252
5253	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5254		pci_disable_device(pdev);
5255	rtnl_unlock();
5256
5257	/* Request a slot reset. */
5258	return PCI_ERS_RESULT_NEED_RESET;
5259}
5260
5261/**
5262 * e1000_io_slot_reset - called after the pci bus has been reset.
5263 * @pdev: Pointer to PCI device
5264 *
5265 * Restart the card from scratch, as if from a cold-boot. Implementation
5266 * resembles the first-half of the e1000_resume routine.
5267 */
5268static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5269{
5270	struct net_device *netdev = pci_get_drvdata(pdev);
5271	struct e1000_adapter *adapter = netdev_priv(netdev);
5272	struct e1000_hw *hw = &adapter->hw;
5273	int err;
5274
5275	if (adapter->need_ioport)
5276		err = pci_enable_device(pdev);
5277	else
5278		err = pci_enable_device_mem(pdev);
5279	if (err) {
5280		pr_err("Cannot re-enable PCI device after reset.\n");
5281		return PCI_ERS_RESULT_DISCONNECT;
5282	}
5283
5284	/* flush memory to make sure state is correct */
5285	smp_mb__before_atomic();
5286	clear_bit(__E1000_DISABLED, &adapter->flags);
5287	pci_set_master(pdev);
5288
5289	pci_enable_wake(pdev, PCI_D3hot, 0);
5290	pci_enable_wake(pdev, PCI_D3cold, 0);
5291
5292	e1000_reset(adapter);
5293	ew32(WUS, ~0);
5294
5295	return PCI_ERS_RESULT_RECOVERED;
5296}
5297
5298/**
5299 * e1000_io_resume - called when traffic can start flowing again.
5300 * @pdev: Pointer to PCI device
5301 *
5302 * This callback is called when the error recovery driver tells us that
5303 * its OK to resume normal operation. Implementation resembles the
5304 * second-half of the e1000_resume routine.
5305 */
5306static void e1000_io_resume(struct pci_dev *pdev)
5307{
5308	struct net_device *netdev = pci_get_drvdata(pdev);
5309	struct e1000_adapter *adapter = netdev_priv(netdev);
5310
5311	e1000_init_manageability(adapter);
5312
5313	if (netif_running(netdev)) {
5314		if (e1000_up(adapter)) {
5315			pr_info("can't bring device back up after reset\n");
5316			return;
5317		}
5318	}
5319
5320	netif_device_attach(netdev);
5321}
5322
5323/* e1000_main.c */
v4.10.11
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30#include <net/ip6_checksum.h>
  31#include <linux/io.h>
  32#include <linux/prefetch.h>
  33#include <linux/bitops.h>
  34#include <linux/if_vlan.h>
  35
  36char e1000_driver_name[] = "e1000";
  37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  38#define DRV_VERSION "7.3.21-k8-NAPI"
  39const char e1000_driver_version[] = DRV_VERSION;
  40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  41
  42/* e1000_pci_tbl - PCI Device ID Table
  43 *
  44 * Last entry must be all 0s
  45 *
  46 * Macro expands to...
  47 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  48 */
  49static const struct pci_device_id e1000_pci_tbl[] = {
  50	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  53	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  54	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  55	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  57	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  58	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  59	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  60	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  61	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  62	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  63	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  64	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  65	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  66	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  67	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  68	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  69	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  70	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  71	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  72	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  73	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  74	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  75	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  76	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  77	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  78	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  79	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  80	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  81	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  82	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  83	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  84	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  85	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  86	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  87	/* required last entry */
  88	{0,}
  89};
  90
  91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  92
  93int e1000_up(struct e1000_adapter *adapter);
  94void e1000_down(struct e1000_adapter *adapter);
  95void e1000_reinit_locked(struct e1000_adapter *adapter);
  96void e1000_reset(struct e1000_adapter *adapter);
  97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
 101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 102				    struct e1000_tx_ring *txdr);
 103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 104				    struct e1000_rx_ring *rxdr);
 105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 106				    struct e1000_tx_ring *tx_ring);
 107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 108				    struct e1000_rx_ring *rx_ring);
 109void e1000_update_stats(struct e1000_adapter *adapter);
 110
 111static int e1000_init_module(void);
 112static void e1000_exit_module(void);
 113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 114static void e1000_remove(struct pci_dev *pdev);
 115static int e1000_alloc_queues(struct e1000_adapter *adapter);
 116static int e1000_sw_init(struct e1000_adapter *adapter);
 117int e1000_open(struct net_device *netdev);
 118int e1000_close(struct net_device *netdev);
 119static void e1000_configure_tx(struct e1000_adapter *adapter);
 120static void e1000_configure_rx(struct e1000_adapter *adapter);
 121static void e1000_setup_rctl(struct e1000_adapter *adapter);
 122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 125				struct e1000_tx_ring *tx_ring);
 126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 127				struct e1000_rx_ring *rx_ring);
 128static void e1000_set_rx_mode(struct net_device *netdev);
 129static void e1000_update_phy_info_task(struct work_struct *work);
 130static void e1000_watchdog(struct work_struct *work);
 131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 133				    struct net_device *netdev);
 134static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
 135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 136static int e1000_set_mac(struct net_device *netdev, void *p);
 137static irqreturn_t e1000_intr(int irq, void *data);
 138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 139			       struct e1000_tx_ring *tx_ring);
 140static int e1000_clean(struct napi_struct *napi, int budget);
 141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 142			       struct e1000_rx_ring *rx_ring,
 143			       int *work_done, int work_to_do);
 144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 145				     struct e1000_rx_ring *rx_ring,
 146				     int *work_done, int work_to_do);
 147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 148					 struct e1000_rx_ring *rx_ring,
 149					 int cleaned_count)
 150{
 151}
 152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 153				   struct e1000_rx_ring *rx_ring,
 154				   int cleaned_count);
 155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 156					 struct e1000_rx_ring *rx_ring,
 157					 int cleaned_count);
 158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 160			   int cmd);
 161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 163static void e1000_tx_timeout(struct net_device *dev);
 164static void e1000_reset_task(struct work_struct *work);
 165static void e1000_smartspeed(struct e1000_adapter *adapter);
 166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 167				       struct sk_buff *skb);
 168
 169static bool e1000_vlan_used(struct e1000_adapter *adapter);
 170static void e1000_vlan_mode(struct net_device *netdev,
 171			    netdev_features_t features);
 172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 173				     bool filter_on);
 174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 175				 __be16 proto, u16 vid);
 176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 177				  __be16 proto, u16 vid);
 178static void e1000_restore_vlan(struct e1000_adapter *adapter);
 179
 180#ifdef CONFIG_PM
 181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 182static int e1000_resume(struct pci_dev *pdev);
 183#endif
 184static void e1000_shutdown(struct pci_dev *pdev);
 185
 186#ifdef CONFIG_NET_POLL_CONTROLLER
 187/* for netdump / net console */
 188static void e1000_netpoll (struct net_device *netdev);
 189#endif
 190
 191#define COPYBREAK_DEFAULT 256
 192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 193module_param(copybreak, uint, 0644);
 194MODULE_PARM_DESC(copybreak,
 195	"Maximum size of packet that is copied to a new buffer on receive");
 196
 197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 198						pci_channel_state_t state);
 199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 200static void e1000_io_resume(struct pci_dev *pdev);
 201
 202static const struct pci_error_handlers e1000_err_handler = {
 203	.error_detected = e1000_io_error_detected,
 204	.slot_reset = e1000_io_slot_reset,
 205	.resume = e1000_io_resume,
 206};
 207
 
 
 208static struct pci_driver e1000_driver = {
 209	.name     = e1000_driver_name,
 210	.id_table = e1000_pci_tbl,
 211	.probe    = e1000_probe,
 212	.remove   = e1000_remove,
 213#ifdef CONFIG_PM
 214	/* Power Management Hooks */
 215	.suspend  = e1000_suspend,
 216	.resume   = e1000_resume,
 217#endif
 218	.shutdown = e1000_shutdown,
 219	.err_handler = &e1000_err_handler
 220};
 221
 222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 224MODULE_LICENSE("GPL");
 225MODULE_VERSION(DRV_VERSION);
 226
 227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 228static int debug = -1;
 229module_param(debug, int, 0);
 230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 231
 232/**
 233 * e1000_get_hw_dev - return device
 234 * used by hardware layer to print debugging information
 
 
 235 *
 236 **/
 237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 238{
 239	struct e1000_adapter *adapter = hw->back;
 240	return adapter->netdev;
 241}
 242
 243/**
 244 * e1000_init_module - Driver Registration Routine
 245 *
 246 * e1000_init_module is the first routine called when the driver is
 247 * loaded. All it does is register with the PCI subsystem.
 248 **/
 249static int __init e1000_init_module(void)
 250{
 251	int ret;
 252	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 253
 254	pr_info("%s\n", e1000_copyright);
 255
 256	ret = pci_register_driver(&e1000_driver);
 257	if (copybreak != COPYBREAK_DEFAULT) {
 258		if (copybreak == 0)
 259			pr_info("copybreak disabled\n");
 260		else
 261			pr_info("copybreak enabled for "
 262				   "packets <= %u bytes\n", copybreak);
 263	}
 264	return ret;
 265}
 266
 267module_init(e1000_init_module);
 268
 269/**
 270 * e1000_exit_module - Driver Exit Cleanup Routine
 271 *
 272 * e1000_exit_module is called just before the driver is removed
 273 * from memory.
 274 **/
 275static void __exit e1000_exit_module(void)
 276{
 277	pci_unregister_driver(&e1000_driver);
 278}
 279
 280module_exit(e1000_exit_module);
 281
 282static int e1000_request_irq(struct e1000_adapter *adapter)
 283{
 284	struct net_device *netdev = adapter->netdev;
 285	irq_handler_t handler = e1000_intr;
 286	int irq_flags = IRQF_SHARED;
 287	int err;
 288
 289	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 290			  netdev);
 291	if (err) {
 292		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 293	}
 294
 295	return err;
 296}
 297
 298static void e1000_free_irq(struct e1000_adapter *adapter)
 299{
 300	struct net_device *netdev = adapter->netdev;
 301
 302	free_irq(adapter->pdev->irq, netdev);
 303}
 304
 305/**
 306 * e1000_irq_disable - Mask off interrupt generation on the NIC
 307 * @adapter: board private structure
 308 **/
 309static void e1000_irq_disable(struct e1000_adapter *adapter)
 310{
 311	struct e1000_hw *hw = &adapter->hw;
 312
 313	ew32(IMC, ~0);
 314	E1000_WRITE_FLUSH();
 315	synchronize_irq(adapter->pdev->irq);
 316}
 317
 318/**
 319 * e1000_irq_enable - Enable default interrupt generation settings
 320 * @adapter: board private structure
 321 **/
 322static void e1000_irq_enable(struct e1000_adapter *adapter)
 323{
 324	struct e1000_hw *hw = &adapter->hw;
 325
 326	ew32(IMS, IMS_ENABLE_MASK);
 327	E1000_WRITE_FLUSH();
 328}
 329
 330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 331{
 332	struct e1000_hw *hw = &adapter->hw;
 333	struct net_device *netdev = adapter->netdev;
 334	u16 vid = hw->mng_cookie.vlan_id;
 335	u16 old_vid = adapter->mng_vlan_id;
 336
 337	if (!e1000_vlan_used(adapter))
 338		return;
 339
 340	if (!test_bit(vid, adapter->active_vlans)) {
 341		if (hw->mng_cookie.status &
 342		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 343			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 344			adapter->mng_vlan_id = vid;
 345		} else {
 346			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 347		}
 348		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 349		    (vid != old_vid) &&
 350		    !test_bit(old_vid, adapter->active_vlans))
 351			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 352					       old_vid);
 353	} else {
 354		adapter->mng_vlan_id = vid;
 355	}
 356}
 357
 358static void e1000_init_manageability(struct e1000_adapter *adapter)
 359{
 360	struct e1000_hw *hw = &adapter->hw;
 361
 362	if (adapter->en_mng_pt) {
 363		u32 manc = er32(MANC);
 364
 365		/* disable hardware interception of ARP */
 366		manc &= ~(E1000_MANC_ARP_EN);
 367
 368		ew32(MANC, manc);
 369	}
 370}
 371
 372static void e1000_release_manageability(struct e1000_adapter *adapter)
 373{
 374	struct e1000_hw *hw = &adapter->hw;
 375
 376	if (adapter->en_mng_pt) {
 377		u32 manc = er32(MANC);
 378
 379		/* re-enable hardware interception of ARP */
 380		manc |= E1000_MANC_ARP_EN;
 381
 382		ew32(MANC, manc);
 383	}
 384}
 385
 386/**
 387 * e1000_configure - configure the hardware for RX and TX
 388 * @adapter = private board structure
 389 **/
 390static void e1000_configure(struct e1000_adapter *adapter)
 391{
 392	struct net_device *netdev = adapter->netdev;
 393	int i;
 394
 395	e1000_set_rx_mode(netdev);
 396
 397	e1000_restore_vlan(adapter);
 398	e1000_init_manageability(adapter);
 399
 400	e1000_configure_tx(adapter);
 401	e1000_setup_rctl(adapter);
 402	e1000_configure_rx(adapter);
 403	/* call E1000_DESC_UNUSED which always leaves
 404	 * at least 1 descriptor unused to make sure
 405	 * next_to_use != next_to_clean
 406	 */
 407	for (i = 0; i < adapter->num_rx_queues; i++) {
 408		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 409		adapter->alloc_rx_buf(adapter, ring,
 410				      E1000_DESC_UNUSED(ring));
 411	}
 412}
 413
 414int e1000_up(struct e1000_adapter *adapter)
 415{
 416	struct e1000_hw *hw = &adapter->hw;
 417
 418	/* hardware has been reset, we need to reload some things */
 419	e1000_configure(adapter);
 420
 421	clear_bit(__E1000_DOWN, &adapter->flags);
 422
 423	napi_enable(&adapter->napi);
 424
 425	e1000_irq_enable(adapter);
 426
 427	netif_wake_queue(adapter->netdev);
 428
 429	/* fire a link change interrupt to start the watchdog */
 430	ew32(ICS, E1000_ICS_LSC);
 431	return 0;
 432}
 433
 434/**
 435 * e1000_power_up_phy - restore link in case the phy was powered down
 436 * @adapter: address of board private structure
 437 *
 438 * The phy may be powered down to save power and turn off link when the
 439 * driver is unloaded and wake on lan is not enabled (among others)
 440 * *** this routine MUST be followed by a call to e1000_reset ***
 441 **/
 442void e1000_power_up_phy(struct e1000_adapter *adapter)
 443{
 444	struct e1000_hw *hw = &adapter->hw;
 445	u16 mii_reg = 0;
 446
 447	/* Just clear the power down bit to wake the phy back up */
 448	if (hw->media_type == e1000_media_type_copper) {
 449		/* according to the manual, the phy will retain its
 450		 * settings across a power-down/up cycle
 451		 */
 452		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 453		mii_reg &= ~MII_CR_POWER_DOWN;
 454		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 455	}
 456}
 457
 458static void e1000_power_down_phy(struct e1000_adapter *adapter)
 459{
 460	struct e1000_hw *hw = &adapter->hw;
 461
 462	/* Power down the PHY so no link is implied when interface is down *
 463	 * The PHY cannot be powered down if any of the following is true *
 464	 * (a) WoL is enabled
 465	 * (b) AMT is active
 466	 * (c) SoL/IDER session is active
 467	 */
 468	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 469	   hw->media_type == e1000_media_type_copper) {
 470		u16 mii_reg = 0;
 471
 472		switch (hw->mac_type) {
 473		case e1000_82540:
 474		case e1000_82545:
 475		case e1000_82545_rev_3:
 476		case e1000_82546:
 477		case e1000_ce4100:
 478		case e1000_82546_rev_3:
 479		case e1000_82541:
 480		case e1000_82541_rev_2:
 481		case e1000_82547:
 482		case e1000_82547_rev_2:
 483			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 484				goto out;
 485			break;
 486		default:
 487			goto out;
 488		}
 489		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 490		mii_reg |= MII_CR_POWER_DOWN;
 491		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 492		msleep(1);
 493	}
 494out:
 495	return;
 496}
 497
 498static void e1000_down_and_stop(struct e1000_adapter *adapter)
 499{
 500	set_bit(__E1000_DOWN, &adapter->flags);
 501
 502	cancel_delayed_work_sync(&adapter->watchdog_task);
 503
 504	/*
 505	 * Since the watchdog task can reschedule other tasks, we should cancel
 506	 * it first, otherwise we can run into the situation when a work is
 507	 * still running after the adapter has been turned down.
 508	 */
 509
 510	cancel_delayed_work_sync(&adapter->phy_info_task);
 511	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 512
 513	/* Only kill reset task if adapter is not resetting */
 514	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 515		cancel_work_sync(&adapter->reset_task);
 516}
 517
 518void e1000_down(struct e1000_adapter *adapter)
 519{
 520	struct e1000_hw *hw = &adapter->hw;
 521	struct net_device *netdev = adapter->netdev;
 522	u32 rctl, tctl;
 523
 524	netif_carrier_off(netdev);
 525
 526	/* disable receives in the hardware */
 527	rctl = er32(RCTL);
 528	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 529	/* flush and sleep below */
 530
 531	netif_tx_disable(netdev);
 532
 533	/* disable transmits in the hardware */
 534	tctl = er32(TCTL);
 535	tctl &= ~E1000_TCTL_EN;
 536	ew32(TCTL, tctl);
 537	/* flush both disables and wait for them to finish */
 538	E1000_WRITE_FLUSH();
 539	msleep(10);
 540
 
 
 
 
 
 
 
 
 
 
 
 541	napi_disable(&adapter->napi);
 542
 543	e1000_irq_disable(adapter);
 544
 545	/* Setting DOWN must be after irq_disable to prevent
 546	 * a screaming interrupt.  Setting DOWN also prevents
 547	 * tasks from rescheduling.
 548	 */
 549	e1000_down_and_stop(adapter);
 550
 551	adapter->link_speed = 0;
 552	adapter->link_duplex = 0;
 553
 554	e1000_reset(adapter);
 555	e1000_clean_all_tx_rings(adapter);
 556	e1000_clean_all_rx_rings(adapter);
 557}
 558
 559void e1000_reinit_locked(struct e1000_adapter *adapter)
 560{
 561	WARN_ON(in_interrupt());
 562	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 563		msleep(1);
 564	e1000_down(adapter);
 565	e1000_up(adapter);
 
 
 
 
 
 566	clear_bit(__E1000_RESETTING, &adapter->flags);
 567}
 568
 569void e1000_reset(struct e1000_adapter *adapter)
 570{
 571	struct e1000_hw *hw = &adapter->hw;
 572	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 573	bool legacy_pba_adjust = false;
 574	u16 hwm;
 575
 576	/* Repartition Pba for greater than 9k mtu
 577	 * To take effect CTRL.RST is required.
 578	 */
 579
 580	switch (hw->mac_type) {
 581	case e1000_82542_rev2_0:
 582	case e1000_82542_rev2_1:
 583	case e1000_82543:
 584	case e1000_82544:
 585	case e1000_82540:
 586	case e1000_82541:
 587	case e1000_82541_rev_2:
 588		legacy_pba_adjust = true;
 589		pba = E1000_PBA_48K;
 590		break;
 591	case e1000_82545:
 592	case e1000_82545_rev_3:
 593	case e1000_82546:
 594	case e1000_ce4100:
 595	case e1000_82546_rev_3:
 596		pba = E1000_PBA_48K;
 597		break;
 598	case e1000_82547:
 599	case e1000_82547_rev_2:
 600		legacy_pba_adjust = true;
 601		pba = E1000_PBA_30K;
 602		break;
 603	case e1000_undefined:
 604	case e1000_num_macs:
 605		break;
 606	}
 607
 608	if (legacy_pba_adjust) {
 609		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 610			pba -= 8; /* allocate more FIFO for Tx */
 611
 612		if (hw->mac_type == e1000_82547) {
 613			adapter->tx_fifo_head = 0;
 614			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 615			adapter->tx_fifo_size =
 616				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 617			atomic_set(&adapter->tx_fifo_stall, 0);
 618		}
 619	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 620		/* adjust PBA for jumbo frames */
 621		ew32(PBA, pba);
 622
 623		/* To maintain wire speed transmits, the Tx FIFO should be
 624		 * large enough to accommodate two full transmit packets,
 625		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 626		 * the Rx FIFO should be large enough to accommodate at least
 627		 * one full receive packet and is similarly rounded up and
 628		 * expressed in KB.
 629		 */
 630		pba = er32(PBA);
 631		/* upper 16 bits has Tx packet buffer allocation size in KB */
 632		tx_space = pba >> 16;
 633		/* lower 16 bits has Rx packet buffer allocation size in KB */
 634		pba &= 0xffff;
 635		/* the Tx fifo also stores 16 bytes of information about the Tx
 636		 * but don't include ethernet FCS because hardware appends it
 637		 */
 638		min_tx_space = (hw->max_frame_size +
 639				sizeof(struct e1000_tx_desc) -
 640				ETH_FCS_LEN) * 2;
 641		min_tx_space = ALIGN(min_tx_space, 1024);
 642		min_tx_space >>= 10;
 643		/* software strips receive CRC, so leave room for it */
 644		min_rx_space = hw->max_frame_size;
 645		min_rx_space = ALIGN(min_rx_space, 1024);
 646		min_rx_space >>= 10;
 647
 648		/* If current Tx allocation is less than the min Tx FIFO size,
 649		 * and the min Tx FIFO size is less than the current Rx FIFO
 650		 * allocation, take space away from current Rx allocation
 651		 */
 652		if (tx_space < min_tx_space &&
 653		    ((min_tx_space - tx_space) < pba)) {
 654			pba = pba - (min_tx_space - tx_space);
 655
 656			/* PCI/PCIx hardware has PBA alignment constraints */
 657			switch (hw->mac_type) {
 658			case e1000_82545 ... e1000_82546_rev_3:
 659				pba &= ~(E1000_PBA_8K - 1);
 660				break;
 661			default:
 662				break;
 663			}
 664
 665			/* if short on Rx space, Rx wins and must trump Tx
 666			 * adjustment or use Early Receive if available
 667			 */
 668			if (pba < min_rx_space)
 669				pba = min_rx_space;
 670		}
 671	}
 672
 673	ew32(PBA, pba);
 674
 675	/* flow control settings:
 676	 * The high water mark must be low enough to fit one full frame
 677	 * (or the size used for early receive) above it in the Rx FIFO.
 678	 * Set it to the lower of:
 679	 * - 90% of the Rx FIFO size, and
 680	 * - the full Rx FIFO size minus the early receive size (for parts
 681	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 682	 * - the full Rx FIFO size minus one full frame
 683	 */
 684	hwm = min(((pba << 10) * 9 / 10),
 685		  ((pba << 10) - hw->max_frame_size));
 686
 687	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 688	hw->fc_low_water = hw->fc_high_water - 8;
 689	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 690	hw->fc_send_xon = 1;
 691	hw->fc = hw->original_fc;
 692
 693	/* Allow time for pending master requests to run */
 694	e1000_reset_hw(hw);
 695	if (hw->mac_type >= e1000_82544)
 696		ew32(WUC, 0);
 697
 698	if (e1000_init_hw(hw))
 699		e_dev_err("Hardware Error\n");
 700	e1000_update_mng_vlan(adapter);
 701
 702	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 703	if (hw->mac_type >= e1000_82544 &&
 704	    hw->autoneg == 1 &&
 705	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 706		u32 ctrl = er32(CTRL);
 707		/* clear phy power management bit if we are in gig only mode,
 708		 * which if enabled will attempt negotiation to 100Mb, which
 709		 * can cause a loss of link at power off or driver unload
 710		 */
 711		ctrl &= ~E1000_CTRL_SWDPIN3;
 712		ew32(CTRL, ctrl);
 713	}
 714
 715	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 716	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 717
 718	e1000_reset_adaptive(hw);
 719	e1000_phy_get_info(hw, &adapter->phy_info);
 720
 721	e1000_release_manageability(adapter);
 722}
 723
 724/* Dump the eeprom for users having checksum issues */
 725static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 726{
 727	struct net_device *netdev = adapter->netdev;
 728	struct ethtool_eeprom eeprom;
 729	const struct ethtool_ops *ops = netdev->ethtool_ops;
 730	u8 *data;
 731	int i;
 732	u16 csum_old, csum_new = 0;
 733
 734	eeprom.len = ops->get_eeprom_len(netdev);
 735	eeprom.offset = 0;
 736
 737	data = kmalloc(eeprom.len, GFP_KERNEL);
 738	if (!data)
 739		return;
 740
 741	ops->get_eeprom(netdev, &eeprom, data);
 742
 743	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 744		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 745	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 746		csum_new += data[i] + (data[i + 1] << 8);
 747	csum_new = EEPROM_SUM - csum_new;
 748
 749	pr_err("/*********************/\n");
 750	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 751	pr_err("Calculated              : 0x%04x\n", csum_new);
 752
 753	pr_err("Offset    Values\n");
 754	pr_err("========  ======\n");
 755	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 756
 757	pr_err("Include this output when contacting your support provider.\n");
 758	pr_err("This is not a software error! Something bad happened to\n");
 759	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 760	pr_err("result in further problems, possibly loss of data,\n");
 761	pr_err("corruption or system hangs!\n");
 762	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 763	pr_err("which is invalid and requires you to set the proper MAC\n");
 764	pr_err("address manually before continuing to enable this network\n");
 765	pr_err("device. Please inspect the EEPROM dump and report the\n");
 766	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 767	pr_err("/*********************/\n");
 768
 769	kfree(data);
 770}
 771
 772/**
 773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 774 * @pdev: PCI device information struct
 775 *
 776 * Return true if an adapter needs ioport resources
 777 **/
 778static int e1000_is_need_ioport(struct pci_dev *pdev)
 779{
 780	switch (pdev->device) {
 781	case E1000_DEV_ID_82540EM:
 782	case E1000_DEV_ID_82540EM_LOM:
 783	case E1000_DEV_ID_82540EP:
 784	case E1000_DEV_ID_82540EP_LOM:
 785	case E1000_DEV_ID_82540EP_LP:
 786	case E1000_DEV_ID_82541EI:
 787	case E1000_DEV_ID_82541EI_MOBILE:
 788	case E1000_DEV_ID_82541ER:
 789	case E1000_DEV_ID_82541ER_LOM:
 790	case E1000_DEV_ID_82541GI:
 791	case E1000_DEV_ID_82541GI_LF:
 792	case E1000_DEV_ID_82541GI_MOBILE:
 793	case E1000_DEV_ID_82544EI_COPPER:
 794	case E1000_DEV_ID_82544EI_FIBER:
 795	case E1000_DEV_ID_82544GC_COPPER:
 796	case E1000_DEV_ID_82544GC_LOM:
 797	case E1000_DEV_ID_82545EM_COPPER:
 798	case E1000_DEV_ID_82545EM_FIBER:
 799	case E1000_DEV_ID_82546EB_COPPER:
 800	case E1000_DEV_ID_82546EB_FIBER:
 801	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 802		return true;
 803	default:
 804		return false;
 805	}
 806}
 807
 808static netdev_features_t e1000_fix_features(struct net_device *netdev,
 809	netdev_features_t features)
 810{
 811	/* Since there is no support for separate Rx/Tx vlan accel
 812	 * enable/disable make sure Tx flag is always in same state as Rx.
 813	 */
 814	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 815		features |= NETIF_F_HW_VLAN_CTAG_TX;
 816	else
 817		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 818
 819	return features;
 820}
 821
 822static int e1000_set_features(struct net_device *netdev,
 823	netdev_features_t features)
 824{
 825	struct e1000_adapter *adapter = netdev_priv(netdev);
 826	netdev_features_t changed = features ^ netdev->features;
 827
 828	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 829		e1000_vlan_mode(netdev, features);
 830
 831	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 832		return 0;
 833
 834	netdev->features = features;
 835	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 836
 837	if (netif_running(netdev))
 838		e1000_reinit_locked(adapter);
 839	else
 840		e1000_reset(adapter);
 841
 842	return 0;
 843}
 844
 845static const struct net_device_ops e1000_netdev_ops = {
 846	.ndo_open		= e1000_open,
 847	.ndo_stop		= e1000_close,
 848	.ndo_start_xmit		= e1000_xmit_frame,
 849	.ndo_get_stats		= e1000_get_stats,
 850	.ndo_set_rx_mode	= e1000_set_rx_mode,
 851	.ndo_set_mac_address	= e1000_set_mac,
 852	.ndo_tx_timeout		= e1000_tx_timeout,
 853	.ndo_change_mtu		= e1000_change_mtu,
 854	.ndo_do_ioctl		= e1000_ioctl,
 855	.ndo_validate_addr	= eth_validate_addr,
 856	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 857	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 858#ifdef CONFIG_NET_POLL_CONTROLLER
 859	.ndo_poll_controller	= e1000_netpoll,
 860#endif
 861	.ndo_fix_features	= e1000_fix_features,
 862	.ndo_set_features	= e1000_set_features,
 863};
 864
 865/**
 866 * e1000_init_hw_struct - initialize members of hw struct
 867 * @adapter: board private struct
 868 * @hw: structure used by e1000_hw.c
 869 *
 870 * Factors out initialization of the e1000_hw struct to its own function
 871 * that can be called very early at init (just after struct allocation).
 872 * Fields are initialized based on PCI device information and
 873 * OS network device settings (MTU size).
 874 * Returns negative error codes if MAC type setup fails.
 875 */
 876static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 877				struct e1000_hw *hw)
 878{
 879	struct pci_dev *pdev = adapter->pdev;
 880
 881	/* PCI config space info */
 882	hw->vendor_id = pdev->vendor;
 883	hw->device_id = pdev->device;
 884	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 885	hw->subsystem_id = pdev->subsystem_device;
 886	hw->revision_id = pdev->revision;
 887
 888	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 889
 890	hw->max_frame_size = adapter->netdev->mtu +
 891			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 892	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 893
 894	/* identify the MAC */
 895	if (e1000_set_mac_type(hw)) {
 896		e_err(probe, "Unknown MAC Type\n");
 897		return -EIO;
 898	}
 899
 900	switch (hw->mac_type) {
 901	default:
 902		break;
 903	case e1000_82541:
 904	case e1000_82547:
 905	case e1000_82541_rev_2:
 906	case e1000_82547_rev_2:
 907		hw->phy_init_script = 1;
 908		break;
 909	}
 910
 911	e1000_set_media_type(hw);
 912	e1000_get_bus_info(hw);
 913
 914	hw->wait_autoneg_complete = false;
 915	hw->tbi_compatibility_en = true;
 916	hw->adaptive_ifs = true;
 917
 918	/* Copper options */
 919
 920	if (hw->media_type == e1000_media_type_copper) {
 921		hw->mdix = AUTO_ALL_MODES;
 922		hw->disable_polarity_correction = false;
 923		hw->master_slave = E1000_MASTER_SLAVE;
 924	}
 925
 926	return 0;
 927}
 928
 929/**
 930 * e1000_probe - Device Initialization Routine
 931 * @pdev: PCI device information struct
 932 * @ent: entry in e1000_pci_tbl
 933 *
 934 * Returns 0 on success, negative on failure
 935 *
 936 * e1000_probe initializes an adapter identified by a pci_dev structure.
 937 * The OS initialization, configuring of the adapter private structure,
 938 * and a hardware reset occur.
 939 **/
 940static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 941{
 942	struct net_device *netdev;
 943	struct e1000_adapter *adapter;
 944	struct e1000_hw *hw;
 945
 946	static int cards_found;
 947	static int global_quad_port_a; /* global ksp3 port a indication */
 948	int i, err, pci_using_dac;
 949	u16 eeprom_data = 0;
 950	u16 tmp = 0;
 951	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 952	int bars, need_ioport;
 
 953
 954	/* do not allocate ioport bars when not needed */
 955	need_ioport = e1000_is_need_ioport(pdev);
 956	if (need_ioport) {
 957		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 958		err = pci_enable_device(pdev);
 959	} else {
 960		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 961		err = pci_enable_device_mem(pdev);
 962	}
 963	if (err)
 964		return err;
 965
 966	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 967	if (err)
 968		goto err_pci_reg;
 969
 970	pci_set_master(pdev);
 971	err = pci_save_state(pdev);
 972	if (err)
 973		goto err_alloc_etherdev;
 974
 975	err = -ENOMEM;
 976	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 977	if (!netdev)
 978		goto err_alloc_etherdev;
 979
 980	SET_NETDEV_DEV(netdev, &pdev->dev);
 981
 982	pci_set_drvdata(pdev, netdev);
 983	adapter = netdev_priv(netdev);
 984	adapter->netdev = netdev;
 985	adapter->pdev = pdev;
 986	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 987	adapter->bars = bars;
 988	adapter->need_ioport = need_ioport;
 989
 990	hw = &adapter->hw;
 991	hw->back = adapter;
 992
 993	err = -EIO;
 994	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 995	if (!hw->hw_addr)
 996		goto err_ioremap;
 997
 998	if (adapter->need_ioport) {
 999		for (i = BAR_1; i <= BAR_5; i++) {
1000			if (pci_resource_len(pdev, i) == 0)
1001				continue;
1002			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003				hw->io_base = pci_resource_start(pdev, i);
1004				break;
1005			}
1006		}
1007	}
1008
1009	/* make ready for any if (hw->...) below */
1010	err = e1000_init_hw_struct(adapter, hw);
1011	if (err)
1012		goto err_sw_init;
1013
1014	/* there is a workaround being applied below that limits
1015	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1016	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017	 */
1018	pci_using_dac = 0;
1019	if ((hw->bus_type == e1000_bus_type_pcix) &&
1020	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021		pci_using_dac = 1;
1022	} else {
1023		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024		if (err) {
1025			pr_err("No usable DMA config, aborting\n");
1026			goto err_dma;
1027		}
1028	}
1029
1030	netdev->netdev_ops = &e1000_netdev_ops;
1031	e1000_set_ethtool_ops(netdev);
1032	netdev->watchdog_timeo = 5 * HZ;
1033	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034
1035	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036
1037	adapter->bd_number = cards_found;
1038
1039	/* setup the private structure */
1040
1041	err = e1000_sw_init(adapter);
1042	if (err)
1043		goto err_sw_init;
1044
1045	err = -EIO;
1046	if (hw->mac_type == e1000_ce4100) {
1047		hw->ce4100_gbe_mdio_base_virt =
1048					ioremap(pci_resource_start(pdev, BAR_1),
1049						pci_resource_len(pdev, BAR_1));
1050
1051		if (!hw->ce4100_gbe_mdio_base_virt)
1052			goto err_mdio_ioremap;
1053	}
1054
1055	if (hw->mac_type >= e1000_82543) {
1056		netdev->hw_features = NETIF_F_SG |
1057				   NETIF_F_HW_CSUM |
1058				   NETIF_F_HW_VLAN_CTAG_RX;
1059		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060				   NETIF_F_HW_VLAN_CTAG_FILTER;
1061	}
1062
1063	if ((hw->mac_type >= e1000_82544) &&
1064	   (hw->mac_type != e1000_82547))
1065		netdev->hw_features |= NETIF_F_TSO;
1066
1067	netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
1069	netdev->features |= netdev->hw_features;
1070	netdev->hw_features |= (NETIF_F_RXCSUM |
1071				NETIF_F_RXALL |
1072				NETIF_F_RXFCS);
1073
1074	if (pci_using_dac) {
1075		netdev->features |= NETIF_F_HIGHDMA;
1076		netdev->vlan_features |= NETIF_F_HIGHDMA;
1077	}
1078
1079	netdev->vlan_features |= (NETIF_F_TSO |
1080				  NETIF_F_HW_CSUM |
1081				  NETIF_F_SG);
1082
1083	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086		netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088	/* MTU range: 46 - 16110 */
1089	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1090	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1091
1092	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1093
1094	/* initialize eeprom parameters */
1095	if (e1000_init_eeprom_params(hw)) {
1096		e_err(probe, "EEPROM initialization failed\n");
1097		goto err_eeprom;
1098	}
1099
1100	/* before reading the EEPROM, reset the controller to
1101	 * put the device in a known good starting state
1102	 */
1103
1104	e1000_reset_hw(hw);
1105
1106	/* make sure the EEPROM is good */
1107	if (e1000_validate_eeprom_checksum(hw) < 0) {
1108		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1109		e1000_dump_eeprom(adapter);
1110		/* set MAC address to all zeroes to invalidate and temporary
1111		 * disable this device for the user. This blocks regular
1112		 * traffic while still permitting ethtool ioctls from reaching
1113		 * the hardware as well as allowing the user to run the
1114		 * interface after manually setting a hw addr using
1115		 * `ip set address`
1116		 */
1117		memset(hw->mac_addr, 0, netdev->addr_len);
1118	} else {
1119		/* copy the MAC address out of the EEPROM */
1120		if (e1000_read_mac_addr(hw))
1121			e_err(probe, "EEPROM Read Error\n");
1122	}
1123	/* don't block initialization here due to bad MAC address */
1124	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1125
1126	if (!is_valid_ether_addr(netdev->dev_addr))
1127		e_err(probe, "Invalid MAC Address\n");
1128
1129
1130	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1131	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1132			  e1000_82547_tx_fifo_stall_task);
1133	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1134	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1135
1136	e1000_check_options(adapter);
1137
1138	/* Initial Wake on LAN setting
1139	 * If APM wake is enabled in the EEPROM,
1140	 * enable the ACPI Magic Packet filter
1141	 */
1142
1143	switch (hw->mac_type) {
1144	case e1000_82542_rev2_0:
1145	case e1000_82542_rev2_1:
1146	case e1000_82543:
1147		break;
1148	case e1000_82544:
1149		e1000_read_eeprom(hw,
1150			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1151		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1152		break;
1153	case e1000_82546:
1154	case e1000_82546_rev_3:
1155		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1156			e1000_read_eeprom(hw,
1157				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1158			break;
1159		}
1160		/* Fall Through */
1161	default:
1162		e1000_read_eeprom(hw,
1163			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1164		break;
1165	}
1166	if (eeprom_data & eeprom_apme_mask)
1167		adapter->eeprom_wol |= E1000_WUFC_MAG;
1168
1169	/* now that we have the eeprom settings, apply the special cases
1170	 * where the eeprom may be wrong or the board simply won't support
1171	 * wake on lan on a particular port
1172	 */
1173	switch (pdev->device) {
1174	case E1000_DEV_ID_82546GB_PCIE:
1175		adapter->eeprom_wol = 0;
1176		break;
1177	case E1000_DEV_ID_82546EB_FIBER:
1178	case E1000_DEV_ID_82546GB_FIBER:
1179		/* Wake events only supported on port A for dual fiber
1180		 * regardless of eeprom setting
1181		 */
1182		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1183			adapter->eeprom_wol = 0;
1184		break;
1185	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1186		/* if quad port adapter, disable WoL on all but port A */
1187		if (global_quad_port_a != 0)
1188			adapter->eeprom_wol = 0;
1189		else
1190			adapter->quad_port_a = true;
1191		/* Reset for multiple quad port adapters */
1192		if (++global_quad_port_a == 4)
1193			global_quad_port_a = 0;
1194		break;
1195	}
1196
1197	/* initialize the wol settings based on the eeprom settings */
1198	adapter->wol = adapter->eeprom_wol;
1199	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1200
1201	/* Auto detect PHY address */
1202	if (hw->mac_type == e1000_ce4100) {
1203		for (i = 0; i < 32; i++) {
1204			hw->phy_addr = i;
1205			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1206
1207			if (tmp != 0 && tmp != 0xFF)
1208				break;
1209		}
1210
1211		if (i >= 32)
1212			goto err_eeprom;
1213	}
1214
1215	/* reset the hardware with the new settings */
1216	e1000_reset(adapter);
1217
1218	strcpy(netdev->name, "eth%d");
1219	err = register_netdev(netdev);
1220	if (err)
1221		goto err_register;
1222
1223	e1000_vlan_filter_on_off(adapter, false);
1224
1225	/* print bus type/speed/width info */
1226	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1227	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1228	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1229		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1230		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1231		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1232	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1233	       netdev->dev_addr);
1234
1235	/* carrier off reporting is important to ethtool even BEFORE open */
1236	netif_carrier_off(netdev);
1237
1238	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1239
1240	cards_found++;
1241	return 0;
1242
1243err_register:
1244err_eeprom:
1245	e1000_phy_hw_reset(hw);
1246
1247	if (hw->flash_address)
1248		iounmap(hw->flash_address);
1249	kfree(adapter->tx_ring);
1250	kfree(adapter->rx_ring);
1251err_dma:
1252err_sw_init:
1253err_mdio_ioremap:
1254	iounmap(hw->ce4100_gbe_mdio_base_virt);
1255	iounmap(hw->hw_addr);
1256err_ioremap:
 
1257	free_netdev(netdev);
1258err_alloc_etherdev:
1259	pci_release_selected_regions(pdev, bars);
1260err_pci_reg:
1261	pci_disable_device(pdev);
 
1262	return err;
1263}
1264
1265/**
1266 * e1000_remove - Device Removal Routine
1267 * @pdev: PCI device information struct
1268 *
1269 * e1000_remove is called by the PCI subsystem to alert the driver
1270 * that it should release a PCI device. That could be caused by a
1271 * Hot-Plug event, or because the driver is going to be removed from
1272 * memory.
1273 **/
1274static void e1000_remove(struct pci_dev *pdev)
1275{
1276	struct net_device *netdev = pci_get_drvdata(pdev);
1277	struct e1000_adapter *adapter = netdev_priv(netdev);
1278	struct e1000_hw *hw = &adapter->hw;
 
1279
1280	e1000_down_and_stop(adapter);
1281	e1000_release_manageability(adapter);
1282
1283	unregister_netdev(netdev);
1284
1285	e1000_phy_hw_reset(hw);
1286
1287	kfree(adapter->tx_ring);
1288	kfree(adapter->rx_ring);
1289
1290	if (hw->mac_type == e1000_ce4100)
1291		iounmap(hw->ce4100_gbe_mdio_base_virt);
1292	iounmap(hw->hw_addr);
1293	if (hw->flash_address)
1294		iounmap(hw->flash_address);
1295	pci_release_selected_regions(pdev, adapter->bars);
1296
 
1297	free_netdev(netdev);
1298
1299	pci_disable_device(pdev);
 
1300}
1301
1302/**
1303 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1304 * @adapter: board private structure to initialize
1305 *
1306 * e1000_sw_init initializes the Adapter private data structure.
1307 * e1000_init_hw_struct MUST be called before this function
1308 **/
1309static int e1000_sw_init(struct e1000_adapter *adapter)
1310{
1311	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1312
1313	adapter->num_tx_queues = 1;
1314	adapter->num_rx_queues = 1;
1315
1316	if (e1000_alloc_queues(adapter)) {
1317		e_err(probe, "Unable to allocate memory for queues\n");
1318		return -ENOMEM;
1319	}
1320
1321	/* Explicitly disable IRQ since the NIC can be in any state. */
1322	e1000_irq_disable(adapter);
1323
1324	spin_lock_init(&adapter->stats_lock);
1325
1326	set_bit(__E1000_DOWN, &adapter->flags);
1327
1328	return 0;
1329}
1330
1331/**
1332 * e1000_alloc_queues - Allocate memory for all rings
1333 * @adapter: board private structure to initialize
1334 *
1335 * We allocate one ring per queue at run-time since we don't know the
1336 * number of queues at compile-time.
1337 **/
1338static int e1000_alloc_queues(struct e1000_adapter *adapter)
1339{
1340	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1341				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1342	if (!adapter->tx_ring)
1343		return -ENOMEM;
1344
1345	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1346				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1347	if (!adapter->rx_ring) {
1348		kfree(adapter->tx_ring);
1349		return -ENOMEM;
1350	}
1351
1352	return E1000_SUCCESS;
1353}
1354
1355/**
1356 * e1000_open - Called when a network interface is made active
1357 * @netdev: network interface device structure
1358 *
1359 * Returns 0 on success, negative value on failure
1360 *
1361 * The open entry point is called when a network interface is made
1362 * active by the system (IFF_UP).  At this point all resources needed
1363 * for transmit and receive operations are allocated, the interrupt
1364 * handler is registered with the OS, the watchdog task is started,
1365 * and the stack is notified that the interface is ready.
1366 **/
1367int e1000_open(struct net_device *netdev)
1368{
1369	struct e1000_adapter *adapter = netdev_priv(netdev);
1370	struct e1000_hw *hw = &adapter->hw;
1371	int err;
1372
1373	/* disallow open during test */
1374	if (test_bit(__E1000_TESTING, &adapter->flags))
1375		return -EBUSY;
1376
1377	netif_carrier_off(netdev);
1378
1379	/* allocate transmit descriptors */
1380	err = e1000_setup_all_tx_resources(adapter);
1381	if (err)
1382		goto err_setup_tx;
1383
1384	/* allocate receive descriptors */
1385	err = e1000_setup_all_rx_resources(adapter);
1386	if (err)
1387		goto err_setup_rx;
1388
1389	e1000_power_up_phy(adapter);
1390
1391	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1392	if ((hw->mng_cookie.status &
1393			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1394		e1000_update_mng_vlan(adapter);
1395	}
1396
1397	/* before we allocate an interrupt, we must be ready to handle it.
1398	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1399	 * as soon as we call pci_request_irq, so we have to setup our
1400	 * clean_rx handler before we do so.
1401	 */
1402	e1000_configure(adapter);
1403
1404	err = e1000_request_irq(adapter);
1405	if (err)
1406		goto err_req_irq;
1407
1408	/* From here on the code is the same as e1000_up() */
1409	clear_bit(__E1000_DOWN, &adapter->flags);
1410
 
1411	napi_enable(&adapter->napi);
 
 
1412
1413	e1000_irq_enable(adapter);
1414
1415	netif_start_queue(netdev);
1416
1417	/* fire a link status change interrupt to start the watchdog */
1418	ew32(ICS, E1000_ICS_LSC);
1419
1420	return E1000_SUCCESS;
1421
1422err_req_irq:
1423	e1000_power_down_phy(adapter);
1424	e1000_free_all_rx_resources(adapter);
1425err_setup_rx:
1426	e1000_free_all_tx_resources(adapter);
1427err_setup_tx:
1428	e1000_reset(adapter);
1429
1430	return err;
1431}
1432
1433/**
1434 * e1000_close - Disables a network interface
1435 * @netdev: network interface device structure
1436 *
1437 * Returns 0, this is not allowed to fail
1438 *
1439 * The close entry point is called when an interface is de-activated
1440 * by the OS.  The hardware is still under the drivers control, but
1441 * needs to be disabled.  A global MAC reset is issued to stop the
1442 * hardware, and all transmit and receive resources are freed.
1443 **/
1444int e1000_close(struct net_device *netdev)
1445{
1446	struct e1000_adapter *adapter = netdev_priv(netdev);
1447	struct e1000_hw *hw = &adapter->hw;
1448	int count = E1000_CHECK_RESET_COUNT;
1449
1450	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1451		usleep_range(10000, 20000);
1452
1453	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 
 
 
 
 
1454	e1000_down(adapter);
1455	e1000_power_down_phy(adapter);
1456	e1000_free_irq(adapter);
1457
1458	e1000_free_all_tx_resources(adapter);
1459	e1000_free_all_rx_resources(adapter);
1460
1461	/* kill manageability vlan ID if supported, but not if a vlan with
1462	 * the same ID is registered on the host OS (let 8021q kill it)
1463	 */
1464	if ((hw->mng_cookie.status &
1465	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1466	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1467		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1468				       adapter->mng_vlan_id);
1469	}
1470
1471	return 0;
1472}
1473
1474/**
1475 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1476 * @adapter: address of board private structure
1477 * @start: address of beginning of memory
1478 * @len: length of memory
1479 **/
1480static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1481				  unsigned long len)
1482{
1483	struct e1000_hw *hw = &adapter->hw;
1484	unsigned long begin = (unsigned long)start;
1485	unsigned long end = begin + len;
1486
1487	/* First rev 82545 and 82546 need to not allow any memory
1488	 * write location to cross 64k boundary due to errata 23
1489	 */
1490	if (hw->mac_type == e1000_82545 ||
1491	    hw->mac_type == e1000_ce4100 ||
1492	    hw->mac_type == e1000_82546) {
1493		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1494	}
1495
1496	return true;
1497}
1498
1499/**
1500 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1501 * @adapter: board private structure
1502 * @txdr:    tx descriptor ring (for a specific queue) to setup
1503 *
1504 * Return 0 on success, negative on failure
1505 **/
1506static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1507				    struct e1000_tx_ring *txdr)
1508{
1509	struct pci_dev *pdev = adapter->pdev;
1510	int size;
1511
1512	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1513	txdr->buffer_info = vzalloc(size);
1514	if (!txdr->buffer_info)
1515		return -ENOMEM;
1516
1517	/* round up to nearest 4K */
1518
1519	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1520	txdr->size = ALIGN(txdr->size, 4096);
1521
1522	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1523					GFP_KERNEL);
1524	if (!txdr->desc) {
1525setup_tx_desc_die:
1526		vfree(txdr->buffer_info);
1527		return -ENOMEM;
1528	}
1529
1530	/* Fix for errata 23, can't cross 64kB boundary */
1531	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1532		void *olddesc = txdr->desc;
1533		dma_addr_t olddma = txdr->dma;
1534		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1535		      txdr->size, txdr->desc);
1536		/* Try again, without freeing the previous */
1537		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1538						&txdr->dma, GFP_KERNEL);
1539		/* Failed allocation, critical failure */
1540		if (!txdr->desc) {
1541			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1542					  olddma);
1543			goto setup_tx_desc_die;
1544		}
1545
1546		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1547			/* give up */
1548			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1549					  txdr->dma);
1550			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551					  olddma);
1552			e_err(probe, "Unable to allocate aligned memory "
1553			      "for the transmit descriptor ring\n");
1554			vfree(txdr->buffer_info);
1555			return -ENOMEM;
1556		} else {
1557			/* Free old allocation, new allocation was successful */
1558			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1559					  olddma);
1560		}
1561	}
1562	memset(txdr->desc, 0, txdr->size);
1563
1564	txdr->next_to_use = 0;
1565	txdr->next_to_clean = 0;
1566
1567	return 0;
1568}
1569
1570/**
1571 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1572 * 				  (Descriptors) for all queues
1573 * @adapter: board private structure
1574 *
1575 * Return 0 on success, negative on failure
1576 **/
1577int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1578{
1579	int i, err = 0;
1580
1581	for (i = 0; i < adapter->num_tx_queues; i++) {
1582		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1583		if (err) {
1584			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1585			for (i-- ; i >= 0; i--)
1586				e1000_free_tx_resources(adapter,
1587							&adapter->tx_ring[i]);
1588			break;
1589		}
1590	}
1591
1592	return err;
1593}
1594
1595/**
1596 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1597 * @adapter: board private structure
1598 *
1599 * Configure the Tx unit of the MAC after a reset.
1600 **/
1601static void e1000_configure_tx(struct e1000_adapter *adapter)
1602{
1603	u64 tdba;
1604	struct e1000_hw *hw = &adapter->hw;
1605	u32 tdlen, tctl, tipg;
1606	u32 ipgr1, ipgr2;
1607
1608	/* Setup the HW Tx Head and Tail descriptor pointers */
1609
1610	switch (adapter->num_tx_queues) {
1611	case 1:
1612	default:
1613		tdba = adapter->tx_ring[0].dma;
1614		tdlen = adapter->tx_ring[0].count *
1615			sizeof(struct e1000_tx_desc);
1616		ew32(TDLEN, tdlen);
1617		ew32(TDBAH, (tdba >> 32));
1618		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1619		ew32(TDT, 0);
1620		ew32(TDH, 0);
1621		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1622					   E1000_TDH : E1000_82542_TDH);
1623		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1624					   E1000_TDT : E1000_82542_TDT);
1625		break;
1626	}
1627
1628	/* Set the default values for the Tx Inter Packet Gap timer */
1629	if ((hw->media_type == e1000_media_type_fiber ||
1630	     hw->media_type == e1000_media_type_internal_serdes))
1631		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1632	else
1633		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1634
1635	switch (hw->mac_type) {
1636	case e1000_82542_rev2_0:
1637	case e1000_82542_rev2_1:
1638		tipg = DEFAULT_82542_TIPG_IPGT;
1639		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1640		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1641		break;
1642	default:
1643		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1644		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1645		break;
1646	}
1647	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1648	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1649	ew32(TIPG, tipg);
1650
1651	/* Set the Tx Interrupt Delay register */
1652
1653	ew32(TIDV, adapter->tx_int_delay);
1654	if (hw->mac_type >= e1000_82540)
1655		ew32(TADV, adapter->tx_abs_int_delay);
1656
1657	/* Program the Transmit Control Register */
1658
1659	tctl = er32(TCTL);
1660	tctl &= ~E1000_TCTL_CT;
1661	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1662		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1663
1664	e1000_config_collision_dist(hw);
1665
1666	/* Setup Transmit Descriptor Settings for eop descriptor */
1667	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1668
1669	/* only set IDE if we are delaying interrupts using the timers */
1670	if (adapter->tx_int_delay)
1671		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1672
1673	if (hw->mac_type < e1000_82543)
1674		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1675	else
1676		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1677
1678	/* Cache if we're 82544 running in PCI-X because we'll
1679	 * need this to apply a workaround later in the send path.
1680	 */
1681	if (hw->mac_type == e1000_82544 &&
1682	    hw->bus_type == e1000_bus_type_pcix)
1683		adapter->pcix_82544 = true;
1684
1685	ew32(TCTL, tctl);
1686
1687}
1688
1689/**
1690 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1691 * @adapter: board private structure
1692 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1693 *
1694 * Returns 0 on success, negative on failure
1695 **/
1696static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1697				    struct e1000_rx_ring *rxdr)
1698{
1699	struct pci_dev *pdev = adapter->pdev;
1700	int size, desc_len;
1701
1702	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1703	rxdr->buffer_info = vzalloc(size);
1704	if (!rxdr->buffer_info)
1705		return -ENOMEM;
1706
1707	desc_len = sizeof(struct e1000_rx_desc);
1708
1709	/* Round up to nearest 4K */
1710
1711	rxdr->size = rxdr->count * desc_len;
1712	rxdr->size = ALIGN(rxdr->size, 4096);
1713
1714	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1715					GFP_KERNEL);
1716	if (!rxdr->desc) {
1717setup_rx_desc_die:
1718		vfree(rxdr->buffer_info);
1719		return -ENOMEM;
1720	}
1721
1722	/* Fix for errata 23, can't cross 64kB boundary */
1723	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1724		void *olddesc = rxdr->desc;
1725		dma_addr_t olddma = rxdr->dma;
1726		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1727		      rxdr->size, rxdr->desc);
1728		/* Try again, without freeing the previous */
1729		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1730						&rxdr->dma, GFP_KERNEL);
1731		/* Failed allocation, critical failure */
1732		if (!rxdr->desc) {
1733			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1734					  olddma);
1735			goto setup_rx_desc_die;
1736		}
1737
1738		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1739			/* give up */
1740			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1741					  rxdr->dma);
1742			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1743					  olddma);
1744			e_err(probe, "Unable to allocate aligned memory for "
1745			      "the Rx descriptor ring\n");
1746			goto setup_rx_desc_die;
1747		} else {
1748			/* Free old allocation, new allocation was successful */
1749			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1750					  olddma);
1751		}
1752	}
1753	memset(rxdr->desc, 0, rxdr->size);
1754
1755	rxdr->next_to_clean = 0;
1756	rxdr->next_to_use = 0;
1757	rxdr->rx_skb_top = NULL;
1758
1759	return 0;
1760}
1761
1762/**
1763 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1764 * 				  (Descriptors) for all queues
1765 * @adapter: board private structure
1766 *
1767 * Return 0 on success, negative on failure
1768 **/
1769int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1770{
1771	int i, err = 0;
1772
1773	for (i = 0; i < adapter->num_rx_queues; i++) {
1774		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1775		if (err) {
1776			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1777			for (i-- ; i >= 0; i--)
1778				e1000_free_rx_resources(adapter,
1779							&adapter->rx_ring[i]);
1780			break;
1781		}
1782	}
1783
1784	return err;
1785}
1786
1787/**
1788 * e1000_setup_rctl - configure the receive control registers
1789 * @adapter: Board private structure
1790 **/
1791static void e1000_setup_rctl(struct e1000_adapter *adapter)
1792{
1793	struct e1000_hw *hw = &adapter->hw;
1794	u32 rctl;
1795
1796	rctl = er32(RCTL);
1797
1798	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1799
1800	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1801		E1000_RCTL_RDMTS_HALF |
1802		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1803
1804	if (hw->tbi_compatibility_on == 1)
1805		rctl |= E1000_RCTL_SBP;
1806	else
1807		rctl &= ~E1000_RCTL_SBP;
1808
1809	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1810		rctl &= ~E1000_RCTL_LPE;
1811	else
1812		rctl |= E1000_RCTL_LPE;
1813
1814	/* Setup buffer sizes */
1815	rctl &= ~E1000_RCTL_SZ_4096;
1816	rctl |= E1000_RCTL_BSEX;
1817	switch (adapter->rx_buffer_len) {
1818	case E1000_RXBUFFER_2048:
1819	default:
1820		rctl |= E1000_RCTL_SZ_2048;
1821		rctl &= ~E1000_RCTL_BSEX;
1822		break;
1823	case E1000_RXBUFFER_4096:
1824		rctl |= E1000_RCTL_SZ_4096;
1825		break;
1826	case E1000_RXBUFFER_8192:
1827		rctl |= E1000_RCTL_SZ_8192;
1828		break;
1829	case E1000_RXBUFFER_16384:
1830		rctl |= E1000_RCTL_SZ_16384;
1831		break;
1832	}
1833
1834	/* This is useful for sniffing bad packets. */
1835	if (adapter->netdev->features & NETIF_F_RXALL) {
1836		/* UPE and MPE will be handled by normal PROMISC logic
1837		 * in e1000e_set_rx_mode
1838		 */
1839		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1840			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1841			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1842
1843		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1844			  E1000_RCTL_DPF | /* Allow filtered pause */
1845			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1846		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1847		 * and that breaks VLANs.
1848		 */
1849	}
1850
1851	ew32(RCTL, rctl);
1852}
1853
1854/**
1855 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1856 * @adapter: board private structure
1857 *
1858 * Configure the Rx unit of the MAC after a reset.
1859 **/
1860static void e1000_configure_rx(struct e1000_adapter *adapter)
1861{
1862	u64 rdba;
1863	struct e1000_hw *hw = &adapter->hw;
1864	u32 rdlen, rctl, rxcsum;
1865
1866	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1867		rdlen = adapter->rx_ring[0].count *
1868			sizeof(struct e1000_rx_desc);
1869		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1870		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1871	} else {
1872		rdlen = adapter->rx_ring[0].count *
1873			sizeof(struct e1000_rx_desc);
1874		adapter->clean_rx = e1000_clean_rx_irq;
1875		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1876	}
1877
1878	/* disable receives while setting up the descriptors */
1879	rctl = er32(RCTL);
1880	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1881
1882	/* set the Receive Delay Timer Register */
1883	ew32(RDTR, adapter->rx_int_delay);
1884
1885	if (hw->mac_type >= e1000_82540) {
1886		ew32(RADV, adapter->rx_abs_int_delay);
1887		if (adapter->itr_setting != 0)
1888			ew32(ITR, 1000000000 / (adapter->itr * 256));
1889	}
1890
1891	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1892	 * the Base and Length of the Rx Descriptor Ring
1893	 */
1894	switch (adapter->num_rx_queues) {
1895	case 1:
1896	default:
1897		rdba = adapter->rx_ring[0].dma;
1898		ew32(RDLEN, rdlen);
1899		ew32(RDBAH, (rdba >> 32));
1900		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1901		ew32(RDT, 0);
1902		ew32(RDH, 0);
1903		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1904					   E1000_RDH : E1000_82542_RDH);
1905		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1906					   E1000_RDT : E1000_82542_RDT);
1907		break;
1908	}
1909
1910	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1911	if (hw->mac_type >= e1000_82543) {
1912		rxcsum = er32(RXCSUM);
1913		if (adapter->rx_csum)
1914			rxcsum |= E1000_RXCSUM_TUOFL;
1915		else
1916			/* don't need to clear IPPCSE as it defaults to 0 */
1917			rxcsum &= ~E1000_RXCSUM_TUOFL;
1918		ew32(RXCSUM, rxcsum);
1919	}
1920
1921	/* Enable Receives */
1922	ew32(RCTL, rctl | E1000_RCTL_EN);
1923}
1924
1925/**
1926 * e1000_free_tx_resources - Free Tx Resources per Queue
1927 * @adapter: board private structure
1928 * @tx_ring: Tx descriptor ring for a specific queue
1929 *
1930 * Free all transmit software resources
1931 **/
1932static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1933				    struct e1000_tx_ring *tx_ring)
1934{
1935	struct pci_dev *pdev = adapter->pdev;
1936
1937	e1000_clean_tx_ring(adapter, tx_ring);
1938
1939	vfree(tx_ring->buffer_info);
1940	tx_ring->buffer_info = NULL;
1941
1942	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1943			  tx_ring->dma);
1944
1945	tx_ring->desc = NULL;
1946}
1947
1948/**
1949 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1950 * @adapter: board private structure
1951 *
1952 * Free all transmit software resources
1953 **/
1954void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1955{
1956	int i;
1957
1958	for (i = 0; i < adapter->num_tx_queues; i++)
1959		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1960}
1961
1962static void
1963e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1964				 struct e1000_tx_buffer *buffer_info)
 
1965{
1966	if (buffer_info->dma) {
1967		if (buffer_info->mapped_as_page)
1968			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1969				       buffer_info->length, DMA_TO_DEVICE);
1970		else
1971			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1972					 buffer_info->length,
1973					 DMA_TO_DEVICE);
1974		buffer_info->dma = 0;
1975	}
1976	if (buffer_info->skb) {
1977		dev_kfree_skb_any(buffer_info->skb);
1978		buffer_info->skb = NULL;
1979	}
1980	buffer_info->time_stamp = 0;
1981	/* buffer_info must be completely set up in the transmit path */
1982}
1983
1984/**
1985 * e1000_clean_tx_ring - Free Tx Buffers
1986 * @adapter: board private structure
1987 * @tx_ring: ring to be cleaned
1988 **/
1989static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1990				struct e1000_tx_ring *tx_ring)
1991{
1992	struct e1000_hw *hw = &adapter->hw;
1993	struct e1000_tx_buffer *buffer_info;
1994	unsigned long size;
1995	unsigned int i;
1996
1997	/* Free all the Tx ring sk_buffs */
1998
1999	for (i = 0; i < tx_ring->count; i++) {
2000		buffer_info = &tx_ring->buffer_info[i];
2001		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2002	}
2003
2004	netdev_reset_queue(adapter->netdev);
2005	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2006	memset(tx_ring->buffer_info, 0, size);
2007
2008	/* Zero out the descriptor ring */
2009
2010	memset(tx_ring->desc, 0, tx_ring->size);
2011
2012	tx_ring->next_to_use = 0;
2013	tx_ring->next_to_clean = 0;
2014	tx_ring->last_tx_tso = false;
2015
2016	writel(0, hw->hw_addr + tx_ring->tdh);
2017	writel(0, hw->hw_addr + tx_ring->tdt);
2018}
2019
2020/**
2021 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2022 * @adapter: board private structure
2023 **/
2024static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2025{
2026	int i;
2027
2028	for (i = 0; i < adapter->num_tx_queues; i++)
2029		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2030}
2031
2032/**
2033 * e1000_free_rx_resources - Free Rx Resources
2034 * @adapter: board private structure
2035 * @rx_ring: ring to clean the resources from
2036 *
2037 * Free all receive software resources
2038 **/
2039static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2040				    struct e1000_rx_ring *rx_ring)
2041{
2042	struct pci_dev *pdev = adapter->pdev;
2043
2044	e1000_clean_rx_ring(adapter, rx_ring);
2045
2046	vfree(rx_ring->buffer_info);
2047	rx_ring->buffer_info = NULL;
2048
2049	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2050			  rx_ring->dma);
2051
2052	rx_ring->desc = NULL;
2053}
2054
2055/**
2056 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2057 * @adapter: board private structure
2058 *
2059 * Free all receive software resources
2060 **/
2061void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2062{
2063	int i;
2064
2065	for (i = 0; i < adapter->num_rx_queues; i++)
2066		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2067}
2068
2069#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2070static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2071{
2072	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2073		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2074}
2075
2076static void *e1000_alloc_frag(const struct e1000_adapter *a)
2077{
2078	unsigned int len = e1000_frag_len(a);
2079	u8 *data = netdev_alloc_frag(len);
2080
2081	if (likely(data))
2082		data += E1000_HEADROOM;
2083	return data;
2084}
2085
2086/**
2087 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2088 * @adapter: board private structure
2089 * @rx_ring: ring to free buffers from
2090 **/
2091static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2092				struct e1000_rx_ring *rx_ring)
2093{
2094	struct e1000_hw *hw = &adapter->hw;
2095	struct e1000_rx_buffer *buffer_info;
2096	struct pci_dev *pdev = adapter->pdev;
2097	unsigned long size;
2098	unsigned int i;
2099
2100	/* Free all the Rx netfrags */
2101	for (i = 0; i < rx_ring->count; i++) {
2102		buffer_info = &rx_ring->buffer_info[i];
2103		if (adapter->clean_rx == e1000_clean_rx_irq) {
2104			if (buffer_info->dma)
2105				dma_unmap_single(&pdev->dev, buffer_info->dma,
2106						 adapter->rx_buffer_len,
2107						 DMA_FROM_DEVICE);
2108			if (buffer_info->rxbuf.data) {
2109				skb_free_frag(buffer_info->rxbuf.data);
2110				buffer_info->rxbuf.data = NULL;
2111			}
2112		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2113			if (buffer_info->dma)
2114				dma_unmap_page(&pdev->dev, buffer_info->dma,
2115					       adapter->rx_buffer_len,
2116					       DMA_FROM_DEVICE);
2117			if (buffer_info->rxbuf.page) {
2118				put_page(buffer_info->rxbuf.page);
2119				buffer_info->rxbuf.page = NULL;
2120			}
2121		}
2122
2123		buffer_info->dma = 0;
2124	}
2125
2126	/* there also may be some cached data from a chained receive */
2127	napi_free_frags(&adapter->napi);
2128	rx_ring->rx_skb_top = NULL;
2129
2130	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2131	memset(rx_ring->buffer_info, 0, size);
2132
2133	/* Zero out the descriptor ring */
2134	memset(rx_ring->desc, 0, rx_ring->size);
2135
2136	rx_ring->next_to_clean = 0;
2137	rx_ring->next_to_use = 0;
2138
2139	writel(0, hw->hw_addr + rx_ring->rdh);
2140	writel(0, hw->hw_addr + rx_ring->rdt);
2141}
2142
2143/**
2144 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2145 * @adapter: board private structure
2146 **/
2147static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2148{
2149	int i;
2150
2151	for (i = 0; i < adapter->num_rx_queues; i++)
2152		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2153}
2154
2155/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2156 * and memory write and invalidate disabled for certain operations
2157 */
2158static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2159{
2160	struct e1000_hw *hw = &adapter->hw;
2161	struct net_device *netdev = adapter->netdev;
2162	u32 rctl;
2163
2164	e1000_pci_clear_mwi(hw);
2165
2166	rctl = er32(RCTL);
2167	rctl |= E1000_RCTL_RST;
2168	ew32(RCTL, rctl);
2169	E1000_WRITE_FLUSH();
2170	mdelay(5);
2171
2172	if (netif_running(netdev))
2173		e1000_clean_all_rx_rings(adapter);
2174}
2175
2176static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2177{
2178	struct e1000_hw *hw = &adapter->hw;
2179	struct net_device *netdev = adapter->netdev;
2180	u32 rctl;
2181
2182	rctl = er32(RCTL);
2183	rctl &= ~E1000_RCTL_RST;
2184	ew32(RCTL, rctl);
2185	E1000_WRITE_FLUSH();
2186	mdelay(5);
2187
2188	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2189		e1000_pci_set_mwi(hw);
2190
2191	if (netif_running(netdev)) {
2192		/* No need to loop, because 82542 supports only 1 queue */
2193		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2194		e1000_configure_rx(adapter);
2195		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2196	}
2197}
2198
2199/**
2200 * e1000_set_mac - Change the Ethernet Address of the NIC
2201 * @netdev: network interface device structure
2202 * @p: pointer to an address structure
2203 *
2204 * Returns 0 on success, negative on failure
2205 **/
2206static int e1000_set_mac(struct net_device *netdev, void *p)
2207{
2208	struct e1000_adapter *adapter = netdev_priv(netdev);
2209	struct e1000_hw *hw = &adapter->hw;
2210	struct sockaddr *addr = p;
2211
2212	if (!is_valid_ether_addr(addr->sa_data))
2213		return -EADDRNOTAVAIL;
2214
2215	/* 82542 2.0 needs to be in reset to write receive address registers */
2216
2217	if (hw->mac_type == e1000_82542_rev2_0)
2218		e1000_enter_82542_rst(adapter);
2219
2220	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2221	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2222
2223	e1000_rar_set(hw, hw->mac_addr, 0);
2224
2225	if (hw->mac_type == e1000_82542_rev2_0)
2226		e1000_leave_82542_rst(adapter);
2227
2228	return 0;
2229}
2230
2231/**
2232 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2233 * @netdev: network interface device structure
2234 *
2235 * The set_rx_mode entry point is called whenever the unicast or multicast
2236 * address lists or the network interface flags are updated. This routine is
2237 * responsible for configuring the hardware for proper unicast, multicast,
2238 * promiscuous mode, and all-multi behavior.
2239 **/
2240static void e1000_set_rx_mode(struct net_device *netdev)
2241{
2242	struct e1000_adapter *adapter = netdev_priv(netdev);
2243	struct e1000_hw *hw = &adapter->hw;
2244	struct netdev_hw_addr *ha;
2245	bool use_uc = false;
2246	u32 rctl;
2247	u32 hash_value;
2248	int i, rar_entries = E1000_RAR_ENTRIES;
2249	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2250	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2251
2252	if (!mcarray)
2253		return;
2254
2255	/* Check for Promiscuous and All Multicast modes */
2256
2257	rctl = er32(RCTL);
2258
2259	if (netdev->flags & IFF_PROMISC) {
2260		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2261		rctl &= ~E1000_RCTL_VFE;
2262	} else {
2263		if (netdev->flags & IFF_ALLMULTI)
2264			rctl |= E1000_RCTL_MPE;
2265		else
2266			rctl &= ~E1000_RCTL_MPE;
2267		/* Enable VLAN filter if there is a VLAN */
2268		if (e1000_vlan_used(adapter))
2269			rctl |= E1000_RCTL_VFE;
2270	}
2271
2272	if (netdev_uc_count(netdev) > rar_entries - 1) {
2273		rctl |= E1000_RCTL_UPE;
2274	} else if (!(netdev->flags & IFF_PROMISC)) {
2275		rctl &= ~E1000_RCTL_UPE;
2276		use_uc = true;
2277	}
2278
2279	ew32(RCTL, rctl);
2280
2281	/* 82542 2.0 needs to be in reset to write receive address registers */
2282
2283	if (hw->mac_type == e1000_82542_rev2_0)
2284		e1000_enter_82542_rst(adapter);
2285
2286	/* load the first 14 addresses into the exact filters 1-14. Unicast
2287	 * addresses take precedence to avoid disabling unicast filtering
2288	 * when possible.
2289	 *
2290	 * RAR 0 is used for the station MAC address
2291	 * if there are not 14 addresses, go ahead and clear the filters
2292	 */
2293	i = 1;
2294	if (use_uc)
2295		netdev_for_each_uc_addr(ha, netdev) {
2296			if (i == rar_entries)
2297				break;
2298			e1000_rar_set(hw, ha->addr, i++);
2299		}
2300
2301	netdev_for_each_mc_addr(ha, netdev) {
2302		if (i == rar_entries) {
2303			/* load any remaining addresses into the hash table */
2304			u32 hash_reg, hash_bit, mta;
2305			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2306			hash_reg = (hash_value >> 5) & 0x7F;
2307			hash_bit = hash_value & 0x1F;
2308			mta = (1 << hash_bit);
2309			mcarray[hash_reg] |= mta;
2310		} else {
2311			e1000_rar_set(hw, ha->addr, i++);
2312		}
2313	}
2314
2315	for (; i < rar_entries; i++) {
2316		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2317		E1000_WRITE_FLUSH();
2318		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2319		E1000_WRITE_FLUSH();
2320	}
2321
2322	/* write the hash table completely, write from bottom to avoid
2323	 * both stupid write combining chipsets, and flushing each write
2324	 */
2325	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2326		/* If we are on an 82544 has an errata where writing odd
2327		 * offsets overwrites the previous even offset, but writing
2328		 * backwards over the range solves the issue by always
2329		 * writing the odd offset first
2330		 */
2331		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2332	}
2333	E1000_WRITE_FLUSH();
2334
2335	if (hw->mac_type == e1000_82542_rev2_0)
2336		e1000_leave_82542_rst(adapter);
2337
2338	kfree(mcarray);
2339}
2340
2341/**
2342 * e1000_update_phy_info_task - get phy info
2343 * @work: work struct contained inside adapter struct
2344 *
2345 * Need to wait a few seconds after link up to get diagnostic information from
2346 * the phy
2347 */
2348static void e1000_update_phy_info_task(struct work_struct *work)
2349{
2350	struct e1000_adapter *adapter = container_of(work,
2351						     struct e1000_adapter,
2352						     phy_info_task.work);
2353
2354	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2355}
2356
2357/**
2358 * e1000_82547_tx_fifo_stall_task - task to complete work
2359 * @work: work struct contained inside adapter struct
2360 **/
2361static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2362{
2363	struct e1000_adapter *adapter = container_of(work,
2364						     struct e1000_adapter,
2365						     fifo_stall_task.work);
2366	struct e1000_hw *hw = &adapter->hw;
2367	struct net_device *netdev = adapter->netdev;
2368	u32 tctl;
2369
2370	if (atomic_read(&adapter->tx_fifo_stall)) {
2371		if ((er32(TDT) == er32(TDH)) &&
2372		   (er32(TDFT) == er32(TDFH)) &&
2373		   (er32(TDFTS) == er32(TDFHS))) {
2374			tctl = er32(TCTL);
2375			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2376			ew32(TDFT, adapter->tx_head_addr);
2377			ew32(TDFH, adapter->tx_head_addr);
2378			ew32(TDFTS, adapter->tx_head_addr);
2379			ew32(TDFHS, adapter->tx_head_addr);
2380			ew32(TCTL, tctl);
2381			E1000_WRITE_FLUSH();
2382
2383			adapter->tx_fifo_head = 0;
2384			atomic_set(&adapter->tx_fifo_stall, 0);
2385			netif_wake_queue(netdev);
2386		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2387			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2388		}
2389	}
2390}
2391
2392bool e1000_has_link(struct e1000_adapter *adapter)
2393{
2394	struct e1000_hw *hw = &adapter->hw;
2395	bool link_active = false;
2396
2397	/* get_link_status is set on LSC (link status) interrupt or rx
2398	 * sequence error interrupt (except on intel ce4100).
2399	 * get_link_status will stay false until the
2400	 * e1000_check_for_link establishes link for copper adapters
2401	 * ONLY
2402	 */
2403	switch (hw->media_type) {
2404	case e1000_media_type_copper:
2405		if (hw->mac_type == e1000_ce4100)
2406			hw->get_link_status = 1;
2407		if (hw->get_link_status) {
2408			e1000_check_for_link(hw);
2409			link_active = !hw->get_link_status;
2410		} else {
2411			link_active = true;
2412		}
2413		break;
2414	case e1000_media_type_fiber:
2415		e1000_check_for_link(hw);
2416		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2417		break;
2418	case e1000_media_type_internal_serdes:
2419		e1000_check_for_link(hw);
2420		link_active = hw->serdes_has_link;
2421		break;
2422	default:
2423		break;
2424	}
2425
2426	return link_active;
2427}
2428
2429/**
2430 * e1000_watchdog - work function
2431 * @work: work struct contained inside adapter struct
2432 **/
2433static void e1000_watchdog(struct work_struct *work)
2434{
2435	struct e1000_adapter *adapter = container_of(work,
2436						     struct e1000_adapter,
2437						     watchdog_task.work);
2438	struct e1000_hw *hw = &adapter->hw;
2439	struct net_device *netdev = adapter->netdev;
2440	struct e1000_tx_ring *txdr = adapter->tx_ring;
2441	u32 link, tctl;
2442
2443	link = e1000_has_link(adapter);
2444	if ((netif_carrier_ok(netdev)) && link)
2445		goto link_up;
2446
2447	if (link) {
2448		if (!netif_carrier_ok(netdev)) {
2449			u32 ctrl;
2450			bool txb2b = true;
2451			/* update snapshot of PHY registers on LSC */
2452			e1000_get_speed_and_duplex(hw,
2453						   &adapter->link_speed,
2454						   &adapter->link_duplex);
2455
2456			ctrl = er32(CTRL);
2457			pr_info("%s NIC Link is Up %d Mbps %s, "
2458				"Flow Control: %s\n",
2459				netdev->name,
2460				adapter->link_speed,
2461				adapter->link_duplex == FULL_DUPLEX ?
2462				"Full Duplex" : "Half Duplex",
2463				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2464				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2465				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2466				E1000_CTRL_TFCE) ? "TX" : "None")));
2467
2468			/* adjust timeout factor according to speed/duplex */
2469			adapter->tx_timeout_factor = 1;
2470			switch (adapter->link_speed) {
2471			case SPEED_10:
2472				txb2b = false;
2473				adapter->tx_timeout_factor = 16;
2474				break;
2475			case SPEED_100:
2476				txb2b = false;
2477				/* maybe add some timeout factor ? */
2478				break;
2479			}
2480
2481			/* enable transmits in the hardware */
2482			tctl = er32(TCTL);
2483			tctl |= E1000_TCTL_EN;
2484			ew32(TCTL, tctl);
2485
2486			netif_carrier_on(netdev);
2487			if (!test_bit(__E1000_DOWN, &adapter->flags))
2488				schedule_delayed_work(&adapter->phy_info_task,
2489						      2 * HZ);
2490			adapter->smartspeed = 0;
2491		}
2492	} else {
2493		if (netif_carrier_ok(netdev)) {
2494			adapter->link_speed = 0;
2495			adapter->link_duplex = 0;
2496			pr_info("%s NIC Link is Down\n",
2497				netdev->name);
2498			netif_carrier_off(netdev);
2499
2500			if (!test_bit(__E1000_DOWN, &adapter->flags))
2501				schedule_delayed_work(&adapter->phy_info_task,
2502						      2 * HZ);
2503		}
2504
2505		e1000_smartspeed(adapter);
2506	}
2507
2508link_up:
2509	e1000_update_stats(adapter);
2510
2511	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2512	adapter->tpt_old = adapter->stats.tpt;
2513	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2514	adapter->colc_old = adapter->stats.colc;
2515
2516	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2517	adapter->gorcl_old = adapter->stats.gorcl;
2518	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2519	adapter->gotcl_old = adapter->stats.gotcl;
2520
2521	e1000_update_adaptive(hw);
2522
2523	if (!netif_carrier_ok(netdev)) {
2524		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2525			/* We've lost link, so the controller stops DMA,
2526			 * but we've got queued Tx work that's never going
2527			 * to get done, so reset controller to flush Tx.
2528			 * (Do the reset outside of interrupt context).
2529			 */
2530			adapter->tx_timeout_count++;
2531			schedule_work(&adapter->reset_task);
2532			/* exit immediately since reset is imminent */
2533			return;
2534		}
2535	}
2536
2537	/* Simple mode for Interrupt Throttle Rate (ITR) */
2538	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2539		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2540		 * Total asymmetrical Tx or Rx gets ITR=8000;
2541		 * everyone else is between 2000-8000.
2542		 */
2543		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2544		u32 dif = (adapter->gotcl > adapter->gorcl ?
2545			    adapter->gotcl - adapter->gorcl :
2546			    adapter->gorcl - adapter->gotcl) / 10000;
2547		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2548
2549		ew32(ITR, 1000000000 / (itr * 256));
2550	}
2551
2552	/* Cause software interrupt to ensure rx ring is cleaned */
2553	ew32(ICS, E1000_ICS_RXDMT0);
2554
2555	/* Force detection of hung controller every watchdog period */
2556	adapter->detect_tx_hung = true;
2557
2558	/* Reschedule the task */
2559	if (!test_bit(__E1000_DOWN, &adapter->flags))
2560		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2561}
2562
2563enum latency_range {
2564	lowest_latency = 0,
2565	low_latency = 1,
2566	bulk_latency = 2,
2567	latency_invalid = 255
2568};
2569
2570/**
2571 * e1000_update_itr - update the dynamic ITR value based on statistics
2572 * @adapter: pointer to adapter
2573 * @itr_setting: current adapter->itr
2574 * @packets: the number of packets during this measurement interval
2575 * @bytes: the number of bytes during this measurement interval
2576 *
2577 *      Stores a new ITR value based on packets and byte
2578 *      counts during the last interrupt.  The advantage of per interrupt
2579 *      computation is faster updates and more accurate ITR for the current
2580 *      traffic pattern.  Constants in this function were computed
2581 *      based on theoretical maximum wire speed and thresholds were set based
2582 *      on testing data as well as attempting to minimize response time
2583 *      while increasing bulk throughput.
2584 *      this functionality is controlled by the InterruptThrottleRate module
2585 *      parameter (see e1000_param.c)
2586 **/
2587static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2588				     u16 itr_setting, int packets, int bytes)
2589{
2590	unsigned int retval = itr_setting;
2591	struct e1000_hw *hw = &adapter->hw;
2592
2593	if (unlikely(hw->mac_type < e1000_82540))
2594		goto update_itr_done;
2595
2596	if (packets == 0)
2597		goto update_itr_done;
2598
2599	switch (itr_setting) {
2600	case lowest_latency:
2601		/* jumbo frames get bulk treatment*/
2602		if (bytes/packets > 8000)
2603			retval = bulk_latency;
2604		else if ((packets < 5) && (bytes > 512))
2605			retval = low_latency;
2606		break;
2607	case low_latency:  /* 50 usec aka 20000 ints/s */
2608		if (bytes > 10000) {
2609			/* jumbo frames need bulk latency setting */
2610			if (bytes/packets > 8000)
2611				retval = bulk_latency;
2612			else if ((packets < 10) || ((bytes/packets) > 1200))
2613				retval = bulk_latency;
2614			else if ((packets > 35))
2615				retval = lowest_latency;
2616		} else if (bytes/packets > 2000)
2617			retval = bulk_latency;
2618		else if (packets <= 2 && bytes < 512)
2619			retval = lowest_latency;
2620		break;
2621	case bulk_latency: /* 250 usec aka 4000 ints/s */
2622		if (bytes > 25000) {
2623			if (packets > 35)
2624				retval = low_latency;
2625		} else if (bytes < 6000) {
2626			retval = low_latency;
2627		}
2628		break;
2629	}
2630
2631update_itr_done:
2632	return retval;
2633}
2634
2635static void e1000_set_itr(struct e1000_adapter *adapter)
2636{
2637	struct e1000_hw *hw = &adapter->hw;
2638	u16 current_itr;
2639	u32 new_itr = adapter->itr;
2640
2641	if (unlikely(hw->mac_type < e1000_82540))
2642		return;
2643
2644	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2645	if (unlikely(adapter->link_speed != SPEED_1000)) {
2646		current_itr = 0;
2647		new_itr = 4000;
2648		goto set_itr_now;
2649	}
2650
2651	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2652					   adapter->total_tx_packets,
2653					   adapter->total_tx_bytes);
2654	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2655	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2656		adapter->tx_itr = low_latency;
2657
2658	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2659					   adapter->total_rx_packets,
2660					   adapter->total_rx_bytes);
2661	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2662	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2663		adapter->rx_itr = low_latency;
2664
2665	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2666
2667	switch (current_itr) {
2668	/* counts and packets in update_itr are dependent on these numbers */
2669	case lowest_latency:
2670		new_itr = 70000;
2671		break;
2672	case low_latency:
2673		new_itr = 20000; /* aka hwitr = ~200 */
2674		break;
2675	case bulk_latency:
2676		new_itr = 4000;
2677		break;
2678	default:
2679		break;
2680	}
2681
2682set_itr_now:
2683	if (new_itr != adapter->itr) {
2684		/* this attempts to bias the interrupt rate towards Bulk
2685		 * by adding intermediate steps when interrupt rate is
2686		 * increasing
2687		 */
2688		new_itr = new_itr > adapter->itr ?
2689			  min(adapter->itr + (new_itr >> 2), new_itr) :
2690			  new_itr;
2691		adapter->itr = new_itr;
2692		ew32(ITR, 1000000000 / (new_itr * 256));
2693	}
2694}
2695
2696#define E1000_TX_FLAGS_CSUM		0x00000001
2697#define E1000_TX_FLAGS_VLAN		0x00000002
2698#define E1000_TX_FLAGS_TSO		0x00000004
2699#define E1000_TX_FLAGS_IPV4		0x00000008
2700#define E1000_TX_FLAGS_NO_FCS		0x00000010
2701#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2702#define E1000_TX_FLAGS_VLAN_SHIFT	16
2703
2704static int e1000_tso(struct e1000_adapter *adapter,
2705		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2706		     __be16 protocol)
2707{
2708	struct e1000_context_desc *context_desc;
2709	struct e1000_tx_buffer *buffer_info;
2710	unsigned int i;
2711	u32 cmd_length = 0;
2712	u16 ipcse = 0, tucse, mss;
2713	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2714
2715	if (skb_is_gso(skb)) {
2716		int err;
2717
2718		err = skb_cow_head(skb, 0);
2719		if (err < 0)
2720			return err;
2721
2722		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2723		mss = skb_shinfo(skb)->gso_size;
2724		if (protocol == htons(ETH_P_IP)) {
2725			struct iphdr *iph = ip_hdr(skb);
2726			iph->tot_len = 0;
2727			iph->check = 0;
2728			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2729								 iph->daddr, 0,
2730								 IPPROTO_TCP,
2731								 0);
2732			cmd_length = E1000_TXD_CMD_IP;
2733			ipcse = skb_transport_offset(skb) - 1;
2734		} else if (skb_is_gso_v6(skb)) {
2735			ipv6_hdr(skb)->payload_len = 0;
2736			tcp_hdr(skb)->check =
2737				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2738						 &ipv6_hdr(skb)->daddr,
2739						 0, IPPROTO_TCP, 0);
2740			ipcse = 0;
2741		}
2742		ipcss = skb_network_offset(skb);
2743		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2744		tucss = skb_transport_offset(skb);
2745		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2746		tucse = 0;
2747
2748		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2749			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2750
2751		i = tx_ring->next_to_use;
2752		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2753		buffer_info = &tx_ring->buffer_info[i];
2754
2755		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2756		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2757		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2758		context_desc->upper_setup.tcp_fields.tucss = tucss;
2759		context_desc->upper_setup.tcp_fields.tucso = tucso;
2760		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2761		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2762		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2763		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2764
2765		buffer_info->time_stamp = jiffies;
2766		buffer_info->next_to_watch = i;
2767
2768		if (++i == tx_ring->count)
2769			i = 0;
2770
2771		tx_ring->next_to_use = i;
2772
2773		return true;
2774	}
2775	return false;
2776}
2777
2778static bool e1000_tx_csum(struct e1000_adapter *adapter,
2779			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2780			  __be16 protocol)
2781{
2782	struct e1000_context_desc *context_desc;
2783	struct e1000_tx_buffer *buffer_info;
2784	unsigned int i;
2785	u8 css;
2786	u32 cmd_len = E1000_TXD_CMD_DEXT;
2787
2788	if (skb->ip_summed != CHECKSUM_PARTIAL)
2789		return false;
2790
2791	switch (protocol) {
2792	case cpu_to_be16(ETH_P_IP):
2793		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2794			cmd_len |= E1000_TXD_CMD_TCP;
2795		break;
2796	case cpu_to_be16(ETH_P_IPV6):
2797		/* XXX not handling all IPV6 headers */
2798		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2799			cmd_len |= E1000_TXD_CMD_TCP;
2800		break;
2801	default:
2802		if (unlikely(net_ratelimit()))
2803			e_warn(drv, "checksum_partial proto=%x!\n",
2804			       skb->protocol);
2805		break;
2806	}
2807
2808	css = skb_checksum_start_offset(skb);
2809
2810	i = tx_ring->next_to_use;
2811	buffer_info = &tx_ring->buffer_info[i];
2812	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2813
2814	context_desc->lower_setup.ip_config = 0;
2815	context_desc->upper_setup.tcp_fields.tucss = css;
2816	context_desc->upper_setup.tcp_fields.tucso =
2817		css + skb->csum_offset;
2818	context_desc->upper_setup.tcp_fields.tucse = 0;
2819	context_desc->tcp_seg_setup.data = 0;
2820	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2821
2822	buffer_info->time_stamp = jiffies;
2823	buffer_info->next_to_watch = i;
2824
2825	if (unlikely(++i == tx_ring->count))
2826		i = 0;
2827
2828	tx_ring->next_to_use = i;
2829
2830	return true;
2831}
2832
2833#define E1000_MAX_TXD_PWR	12
2834#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2835
2836static int e1000_tx_map(struct e1000_adapter *adapter,
2837			struct e1000_tx_ring *tx_ring,
2838			struct sk_buff *skb, unsigned int first,
2839			unsigned int max_per_txd, unsigned int nr_frags,
2840			unsigned int mss)
2841{
2842	struct e1000_hw *hw = &adapter->hw;
2843	struct pci_dev *pdev = adapter->pdev;
2844	struct e1000_tx_buffer *buffer_info;
2845	unsigned int len = skb_headlen(skb);
2846	unsigned int offset = 0, size, count = 0, i;
2847	unsigned int f, bytecount, segs;
2848
2849	i = tx_ring->next_to_use;
2850
2851	while (len) {
2852		buffer_info = &tx_ring->buffer_info[i];
2853		size = min(len, max_per_txd);
2854		/* Workaround for Controller erratum --
2855		 * descriptor for non-tso packet in a linear SKB that follows a
2856		 * tso gets written back prematurely before the data is fully
2857		 * DMA'd to the controller
2858		 */
2859		if (!skb->data_len && tx_ring->last_tx_tso &&
2860		    !skb_is_gso(skb)) {
2861			tx_ring->last_tx_tso = false;
2862			size -= 4;
2863		}
2864
2865		/* Workaround for premature desc write-backs
2866		 * in TSO mode.  Append 4-byte sentinel desc
2867		 */
2868		if (unlikely(mss && !nr_frags && size == len && size > 8))
2869			size -= 4;
2870		/* work-around for errata 10 and it applies
2871		 * to all controllers in PCI-X mode
2872		 * The fix is to make sure that the first descriptor of a
2873		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2874		 */
2875		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2876			     (size > 2015) && count == 0))
2877			size = 2015;
2878
2879		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2880		 * terminating buffers within evenly-aligned dwords.
2881		 */
2882		if (unlikely(adapter->pcix_82544 &&
2883		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2884		   size > 4))
2885			size -= 4;
2886
2887		buffer_info->length = size;
2888		/* set time_stamp *before* dma to help avoid a possible race */
2889		buffer_info->time_stamp = jiffies;
2890		buffer_info->mapped_as_page = false;
2891		buffer_info->dma = dma_map_single(&pdev->dev,
2892						  skb->data + offset,
2893						  size, DMA_TO_DEVICE);
2894		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2895			goto dma_error;
2896		buffer_info->next_to_watch = i;
2897
2898		len -= size;
2899		offset += size;
2900		count++;
2901		if (len) {
2902			i++;
2903			if (unlikely(i == tx_ring->count))
2904				i = 0;
2905		}
2906	}
2907
2908	for (f = 0; f < nr_frags; f++) {
2909		const struct skb_frag_struct *frag;
2910
2911		frag = &skb_shinfo(skb)->frags[f];
2912		len = skb_frag_size(frag);
2913		offset = 0;
2914
2915		while (len) {
2916			unsigned long bufend;
2917			i++;
2918			if (unlikely(i == tx_ring->count))
2919				i = 0;
2920
2921			buffer_info = &tx_ring->buffer_info[i];
2922			size = min(len, max_per_txd);
2923			/* Workaround for premature desc write-backs
2924			 * in TSO mode.  Append 4-byte sentinel desc
2925			 */
2926			if (unlikely(mss && f == (nr_frags-1) &&
2927			    size == len && size > 8))
2928				size -= 4;
2929			/* Workaround for potential 82544 hang in PCI-X.
2930			 * Avoid terminating buffers within evenly-aligned
2931			 * dwords.
2932			 */
2933			bufend = (unsigned long)
2934				page_to_phys(skb_frag_page(frag));
2935			bufend += offset + size - 1;
2936			if (unlikely(adapter->pcix_82544 &&
2937				     !(bufend & 4) &&
2938				     size > 4))
2939				size -= 4;
2940
2941			buffer_info->length = size;
2942			buffer_info->time_stamp = jiffies;
2943			buffer_info->mapped_as_page = true;
2944			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2945						offset, size, DMA_TO_DEVICE);
2946			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2947				goto dma_error;
2948			buffer_info->next_to_watch = i;
2949
2950			len -= size;
2951			offset += size;
2952			count++;
2953		}
2954	}
2955
2956	segs = skb_shinfo(skb)->gso_segs ?: 1;
2957	/* multiply data chunks by size of headers */
2958	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2959
2960	tx_ring->buffer_info[i].skb = skb;
2961	tx_ring->buffer_info[i].segs = segs;
2962	tx_ring->buffer_info[i].bytecount = bytecount;
2963	tx_ring->buffer_info[first].next_to_watch = i;
2964
2965	return count;
2966
2967dma_error:
2968	dev_err(&pdev->dev, "TX DMA map failed\n");
2969	buffer_info->dma = 0;
2970	if (count)
2971		count--;
2972
2973	while (count--) {
2974		if (i == 0)
2975			i += tx_ring->count;
2976		i--;
2977		buffer_info = &tx_ring->buffer_info[i];
2978		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2979	}
2980
2981	return 0;
2982}
2983
2984static void e1000_tx_queue(struct e1000_adapter *adapter,
2985			   struct e1000_tx_ring *tx_ring, int tx_flags,
2986			   int count)
2987{
2988	struct e1000_tx_desc *tx_desc = NULL;
2989	struct e1000_tx_buffer *buffer_info;
2990	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2991	unsigned int i;
2992
2993	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2994		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2995			     E1000_TXD_CMD_TSE;
2996		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2997
2998		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2999			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3000	}
3001
3002	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3003		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3004		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3005	}
3006
3007	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3008		txd_lower |= E1000_TXD_CMD_VLE;
3009		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3010	}
3011
3012	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3013		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3014
3015	i = tx_ring->next_to_use;
3016
3017	while (count--) {
3018		buffer_info = &tx_ring->buffer_info[i];
3019		tx_desc = E1000_TX_DESC(*tx_ring, i);
3020		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3021		tx_desc->lower.data =
3022			cpu_to_le32(txd_lower | buffer_info->length);
3023		tx_desc->upper.data = cpu_to_le32(txd_upper);
3024		if (unlikely(++i == tx_ring->count))
3025			i = 0;
3026	}
3027
3028	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3029
3030	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3031	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3032		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3033
3034	/* Force memory writes to complete before letting h/w
3035	 * know there are new descriptors to fetch.  (Only
3036	 * applicable for weak-ordered memory model archs,
3037	 * such as IA-64).
3038	 */
3039	wmb();
3040
3041	tx_ring->next_to_use = i;
3042}
3043
3044/* 82547 workaround to avoid controller hang in half-duplex environment.
3045 * The workaround is to avoid queuing a large packet that would span
3046 * the internal Tx FIFO ring boundary by notifying the stack to resend
3047 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3048 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3049 * to the beginning of the Tx FIFO.
3050 */
3051
3052#define E1000_FIFO_HDR			0x10
3053#define E1000_82547_PAD_LEN		0x3E0
3054
3055static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3056				       struct sk_buff *skb)
3057{
3058	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3059	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3060
3061	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3062
3063	if (adapter->link_duplex != HALF_DUPLEX)
3064		goto no_fifo_stall_required;
3065
3066	if (atomic_read(&adapter->tx_fifo_stall))
3067		return 1;
3068
3069	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3070		atomic_set(&adapter->tx_fifo_stall, 1);
3071		return 1;
3072	}
3073
3074no_fifo_stall_required:
3075	adapter->tx_fifo_head += skb_fifo_len;
3076	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3077		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3078	return 0;
3079}
3080
3081static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3082{
3083	struct e1000_adapter *adapter = netdev_priv(netdev);
3084	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3085
3086	netif_stop_queue(netdev);
3087	/* Herbert's original patch had:
3088	 *  smp_mb__after_netif_stop_queue();
3089	 * but since that doesn't exist yet, just open code it.
3090	 */
3091	smp_mb();
3092
3093	/* We need to check again in a case another CPU has just
3094	 * made room available.
3095	 */
3096	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3097		return -EBUSY;
3098
3099	/* A reprieve! */
3100	netif_start_queue(netdev);
3101	++adapter->restart_queue;
3102	return 0;
3103}
3104
3105static int e1000_maybe_stop_tx(struct net_device *netdev,
3106			       struct e1000_tx_ring *tx_ring, int size)
3107{
3108	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3109		return 0;
3110	return __e1000_maybe_stop_tx(netdev, size);
3111}
3112
3113#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3114static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3115				    struct net_device *netdev)
3116{
3117	struct e1000_adapter *adapter = netdev_priv(netdev);
3118	struct e1000_hw *hw = &adapter->hw;
3119	struct e1000_tx_ring *tx_ring;
3120	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3121	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3122	unsigned int tx_flags = 0;
3123	unsigned int len = skb_headlen(skb);
3124	unsigned int nr_frags;
3125	unsigned int mss;
3126	int count = 0;
3127	int tso;
3128	unsigned int f;
3129	__be16 protocol = vlan_get_protocol(skb);
3130
3131	/* This goes back to the question of how to logically map a Tx queue
3132	 * to a flow.  Right now, performance is impacted slightly negatively
3133	 * if using multiple Tx queues.  If the stack breaks away from a
3134	 * single qdisc implementation, we can look at this again.
3135	 */
3136	tx_ring = adapter->tx_ring;
3137
3138	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3139	 * packets may get corrupted during padding by HW.
3140	 * To WA this issue, pad all small packets manually.
3141	 */
3142	if (eth_skb_pad(skb))
3143		return NETDEV_TX_OK;
3144
3145	mss = skb_shinfo(skb)->gso_size;
3146	/* The controller does a simple calculation to
3147	 * make sure there is enough room in the FIFO before
3148	 * initiating the DMA for each buffer.  The calc is:
3149	 * 4 = ceil(buffer len/mss).  To make sure we don't
3150	 * overrun the FIFO, adjust the max buffer len if mss
3151	 * drops.
3152	 */
3153	if (mss) {
3154		u8 hdr_len;
3155		max_per_txd = min(mss << 2, max_per_txd);
3156		max_txd_pwr = fls(max_per_txd) - 1;
3157
3158		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3159		if (skb->data_len && hdr_len == len) {
3160			switch (hw->mac_type) {
 
3161				unsigned int pull_size;
3162			case e1000_82544:
3163				/* Make sure we have room to chop off 4 bytes,
3164				 * and that the end alignment will work out to
3165				 * this hardware's requirements
3166				 * NOTE: this is a TSO only workaround
3167				 * if end byte alignment not correct move us
3168				 * into the next dword
3169				 */
3170				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3171				    & 4)
3172					break;
3173				/* fall through */
3174				pull_size = min((unsigned int)4, skb->data_len);
3175				if (!__pskb_pull_tail(skb, pull_size)) {
3176					e_err(drv, "__pskb_pull_tail "
3177					      "failed.\n");
3178					dev_kfree_skb_any(skb);
3179					return NETDEV_TX_OK;
3180				}
3181				len = skb_headlen(skb);
3182				break;
 
3183			default:
3184				/* do nothing */
3185				break;
3186			}
3187		}
3188	}
3189
3190	/* reserve a descriptor for the offload context */
3191	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3192		count++;
3193	count++;
3194
3195	/* Controller Erratum workaround */
3196	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3197		count++;
3198
3199	count += TXD_USE_COUNT(len, max_txd_pwr);
3200
3201	if (adapter->pcix_82544)
3202		count++;
3203
3204	/* work-around for errata 10 and it applies to all controllers
3205	 * in PCI-X mode, so add one more descriptor to the count
3206	 */
3207	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3208			(len > 2015)))
3209		count++;
3210
3211	nr_frags = skb_shinfo(skb)->nr_frags;
3212	for (f = 0; f < nr_frags; f++)
3213		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3214				       max_txd_pwr);
3215	if (adapter->pcix_82544)
3216		count += nr_frags;
3217
3218	/* need: count + 2 desc gap to keep tail from touching
3219	 * head, otherwise try next time
3220	 */
3221	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3222		return NETDEV_TX_BUSY;
3223
3224	if (unlikely((hw->mac_type == e1000_82547) &&
3225		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3226		netif_stop_queue(netdev);
3227		if (!test_bit(__E1000_DOWN, &adapter->flags))
3228			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3229		return NETDEV_TX_BUSY;
3230	}
3231
3232	if (skb_vlan_tag_present(skb)) {
3233		tx_flags |= E1000_TX_FLAGS_VLAN;
3234		tx_flags |= (skb_vlan_tag_get(skb) <<
3235			     E1000_TX_FLAGS_VLAN_SHIFT);
3236	}
3237
3238	first = tx_ring->next_to_use;
3239
3240	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3241	if (tso < 0) {
3242		dev_kfree_skb_any(skb);
3243		return NETDEV_TX_OK;
3244	}
3245
3246	if (likely(tso)) {
3247		if (likely(hw->mac_type != e1000_82544))
3248			tx_ring->last_tx_tso = true;
3249		tx_flags |= E1000_TX_FLAGS_TSO;
3250	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3251		tx_flags |= E1000_TX_FLAGS_CSUM;
3252
3253	if (protocol == htons(ETH_P_IP))
3254		tx_flags |= E1000_TX_FLAGS_IPV4;
3255
3256	if (unlikely(skb->no_fcs))
3257		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3258
3259	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3260			     nr_frags, mss);
3261
3262	if (count) {
3263		/* The descriptors needed is higher than other Intel drivers
3264		 * due to a number of workarounds.  The breakdown is below:
3265		 * Data descriptors: MAX_SKB_FRAGS + 1
3266		 * Context Descriptor: 1
3267		 * Keep head from touching tail: 2
3268		 * Workarounds: 3
3269		 */
3270		int desc_needed = MAX_SKB_FRAGS + 7;
3271
3272		netdev_sent_queue(netdev, skb->len);
3273		skb_tx_timestamp(skb);
3274
3275		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3276
3277		/* 82544 potentially requires twice as many data descriptors
3278		 * in order to guarantee buffers don't end on evenly-aligned
3279		 * dwords
3280		 */
3281		if (adapter->pcix_82544)
3282			desc_needed += MAX_SKB_FRAGS + 1;
3283
3284		/* Make sure there is space in the ring for the next send. */
3285		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3286
3287		if (!skb->xmit_more ||
3288		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3289			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3290			/* we need this if more than one processor can write to
3291			 * our tail at a time, it synchronizes IO on IA64/Altix
3292			 * systems
3293			 */
3294			mmiowb();
3295		}
3296	} else {
3297		dev_kfree_skb_any(skb);
3298		tx_ring->buffer_info[first].time_stamp = 0;
3299		tx_ring->next_to_use = first;
3300	}
3301
3302	return NETDEV_TX_OK;
3303}
3304
3305#define NUM_REGS 38 /* 1 based count */
3306static void e1000_regdump(struct e1000_adapter *adapter)
3307{
3308	struct e1000_hw *hw = &adapter->hw;
3309	u32 regs[NUM_REGS];
3310	u32 *regs_buff = regs;
3311	int i = 0;
3312
3313	static const char * const reg_name[] = {
3314		"CTRL",  "STATUS",
3315		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3316		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3317		"TIDV", "TXDCTL", "TADV", "TARC0",
3318		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3319		"TXDCTL1", "TARC1",
3320		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3321		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3322		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3323	};
3324
3325	regs_buff[0]  = er32(CTRL);
3326	regs_buff[1]  = er32(STATUS);
3327
3328	regs_buff[2]  = er32(RCTL);
3329	regs_buff[3]  = er32(RDLEN);
3330	regs_buff[4]  = er32(RDH);
3331	regs_buff[5]  = er32(RDT);
3332	regs_buff[6]  = er32(RDTR);
3333
3334	regs_buff[7]  = er32(TCTL);
3335	regs_buff[8]  = er32(TDBAL);
3336	regs_buff[9]  = er32(TDBAH);
3337	regs_buff[10] = er32(TDLEN);
3338	regs_buff[11] = er32(TDH);
3339	regs_buff[12] = er32(TDT);
3340	regs_buff[13] = er32(TIDV);
3341	regs_buff[14] = er32(TXDCTL);
3342	regs_buff[15] = er32(TADV);
3343	regs_buff[16] = er32(TARC0);
3344
3345	regs_buff[17] = er32(TDBAL1);
3346	regs_buff[18] = er32(TDBAH1);
3347	regs_buff[19] = er32(TDLEN1);
3348	regs_buff[20] = er32(TDH1);
3349	regs_buff[21] = er32(TDT1);
3350	regs_buff[22] = er32(TXDCTL1);
3351	regs_buff[23] = er32(TARC1);
3352	regs_buff[24] = er32(CTRL_EXT);
3353	regs_buff[25] = er32(ERT);
3354	regs_buff[26] = er32(RDBAL0);
3355	regs_buff[27] = er32(RDBAH0);
3356	regs_buff[28] = er32(TDFH);
3357	regs_buff[29] = er32(TDFT);
3358	regs_buff[30] = er32(TDFHS);
3359	regs_buff[31] = er32(TDFTS);
3360	regs_buff[32] = er32(TDFPC);
3361	regs_buff[33] = er32(RDFH);
3362	regs_buff[34] = er32(RDFT);
3363	regs_buff[35] = er32(RDFHS);
3364	regs_buff[36] = er32(RDFTS);
3365	regs_buff[37] = er32(RDFPC);
3366
3367	pr_info("Register dump\n");
3368	for (i = 0; i < NUM_REGS; i++)
3369		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3370}
3371
3372/*
3373 * e1000_dump: Print registers, tx ring and rx ring
3374 */
3375static void e1000_dump(struct e1000_adapter *adapter)
3376{
3377	/* this code doesn't handle multiple rings */
3378	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3379	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3380	int i;
3381
3382	if (!netif_msg_hw(adapter))
3383		return;
3384
3385	/* Print Registers */
3386	e1000_regdump(adapter);
3387
3388	/* transmit dump */
3389	pr_info("TX Desc ring0 dump\n");
3390
3391	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3392	 *
3393	 * Legacy Transmit Descriptor
3394	 *   +--------------------------------------------------------------+
3395	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3396	 *   +--------------------------------------------------------------+
3397	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3398	 *   +--------------------------------------------------------------+
3399	 *   63       48 47        36 35    32 31     24 23    16 15        0
3400	 *
3401	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3402	 *   63      48 47    40 39       32 31             16 15    8 7      0
3403	 *   +----------------------------------------------------------------+
3404	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3405	 *   +----------------------------------------------------------------+
3406	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3407	 *   +----------------------------------------------------------------+
3408	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3409	 *
3410	 * Extended Data Descriptor (DTYP=0x1)
3411	 *   +----------------------------------------------------------------+
3412	 * 0 |                     Buffer Address [63:0]                      |
3413	 *   +----------------------------------------------------------------+
3414	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3415	 *   +----------------------------------------------------------------+
3416	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3417	 */
3418	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3419	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3420
3421	if (!netif_msg_tx_done(adapter))
3422		goto rx_ring_summary;
3423
3424	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3425		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3426		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3427		struct my_u { __le64 a; __le64 b; };
3428		struct my_u *u = (struct my_u *)tx_desc;
3429		const char *type;
3430
3431		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3432			type = "NTC/U";
3433		else if (i == tx_ring->next_to_use)
3434			type = "NTU";
3435		else if (i == tx_ring->next_to_clean)
3436			type = "NTC";
3437		else
3438			type = "";
3439
3440		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3441			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3442			le64_to_cpu(u->a), le64_to_cpu(u->b),
3443			(u64)buffer_info->dma, buffer_info->length,
3444			buffer_info->next_to_watch,
3445			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3446	}
3447
3448rx_ring_summary:
3449	/* receive dump */
3450	pr_info("\nRX Desc ring dump\n");
3451
3452	/* Legacy Receive Descriptor Format
3453	 *
3454	 * +-----------------------------------------------------+
3455	 * |                Buffer Address [63:0]                |
3456	 * +-----------------------------------------------------+
3457	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3458	 * +-----------------------------------------------------+
3459	 * 63       48 47    40 39      32 31         16 15      0
3460	 */
3461	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3462
3463	if (!netif_msg_rx_status(adapter))
3464		goto exit;
3465
3466	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3467		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3468		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3469		struct my_u { __le64 a; __le64 b; };
3470		struct my_u *u = (struct my_u *)rx_desc;
3471		const char *type;
3472
3473		if (i == rx_ring->next_to_use)
3474			type = "NTU";
3475		else if (i == rx_ring->next_to_clean)
3476			type = "NTC";
3477		else
3478			type = "";
3479
3480		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3481			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3482			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3483	} /* for */
3484
3485	/* dump the descriptor caches */
3486	/* rx */
3487	pr_info("Rx descriptor cache in 64bit format\n");
3488	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3489		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3490			i,
3491			readl(adapter->hw.hw_addr + i+4),
3492			readl(adapter->hw.hw_addr + i),
3493			readl(adapter->hw.hw_addr + i+12),
3494			readl(adapter->hw.hw_addr + i+8));
3495	}
3496	/* tx */
3497	pr_info("Tx descriptor cache in 64bit format\n");
3498	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3499		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3500			i,
3501			readl(adapter->hw.hw_addr + i+4),
3502			readl(adapter->hw.hw_addr + i),
3503			readl(adapter->hw.hw_addr + i+12),
3504			readl(adapter->hw.hw_addr + i+8));
3505	}
3506exit:
3507	return;
3508}
3509
3510/**
3511 * e1000_tx_timeout - Respond to a Tx Hang
3512 * @netdev: network interface device structure
 
3513 **/
3514static void e1000_tx_timeout(struct net_device *netdev)
3515{
3516	struct e1000_adapter *adapter = netdev_priv(netdev);
3517
3518	/* Do the reset outside of interrupt context */
3519	adapter->tx_timeout_count++;
3520	schedule_work(&adapter->reset_task);
3521}
3522
3523static void e1000_reset_task(struct work_struct *work)
3524{
3525	struct e1000_adapter *adapter =
3526		container_of(work, struct e1000_adapter, reset_task);
3527
3528	e_err(drv, "Reset adapter\n");
 
3529	e1000_reinit_locked(adapter);
3530}
3531
3532/**
3533 * e1000_get_stats - Get System Network Statistics
3534 * @netdev: network interface device structure
3535 *
3536 * Returns the address of the device statistics structure.
3537 * The statistics are actually updated from the watchdog.
3538 **/
3539static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3540{
3541	/* only return the current stats */
3542	return &netdev->stats;
3543}
3544
3545/**
3546 * e1000_change_mtu - Change the Maximum Transfer Unit
3547 * @netdev: network interface device structure
3548 * @new_mtu: new value for maximum frame size
3549 *
3550 * Returns 0 on success, negative on failure
3551 **/
3552static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3553{
3554	struct e1000_adapter *adapter = netdev_priv(netdev);
3555	struct e1000_hw *hw = &adapter->hw;
3556	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3557
3558	/* Adapter-specific max frame size limits. */
3559	switch (hw->mac_type) {
3560	case e1000_undefined ... e1000_82542_rev2_1:
3561		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3562			e_err(probe, "Jumbo Frames not supported.\n");
3563			return -EINVAL;
3564		}
3565		break;
3566	default:
3567		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3568		break;
3569	}
3570
3571	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3572		msleep(1);
3573	/* e1000_down has a dependency on max_frame_size */
3574	hw->max_frame_size = max_frame;
3575	if (netif_running(netdev)) {
3576		/* prevent buffers from being reallocated */
3577		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3578		e1000_down(adapter);
3579	}
3580
3581	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3582	 * means we reserve 2 more, this pushes us to allocate from the next
3583	 * larger slab size.
3584	 * i.e. RXBUFFER_2048 --> size-4096 slab
3585	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3586	 * fragmented skbs
3587	 */
3588
3589	if (max_frame <= E1000_RXBUFFER_2048)
3590		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3591	else
3592#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3593		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3594#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3595		adapter->rx_buffer_len = PAGE_SIZE;
3596#endif
3597
3598	/* adjust allocation if LPE protects us, and we aren't using SBP */
3599	if (!hw->tbi_compatibility_on &&
3600	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3601	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3602		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3603
3604	pr_info("%s changing MTU from %d to %d\n",
3605		netdev->name, netdev->mtu, new_mtu);
3606	netdev->mtu = new_mtu;
3607
3608	if (netif_running(netdev))
3609		e1000_up(adapter);
3610	else
3611		e1000_reset(adapter);
3612
3613	clear_bit(__E1000_RESETTING, &adapter->flags);
3614
3615	return 0;
3616}
3617
3618/**
3619 * e1000_update_stats - Update the board statistics counters
3620 * @adapter: board private structure
3621 **/
3622void e1000_update_stats(struct e1000_adapter *adapter)
3623{
3624	struct net_device *netdev = adapter->netdev;
3625	struct e1000_hw *hw = &adapter->hw;
3626	struct pci_dev *pdev = adapter->pdev;
3627	unsigned long flags;
3628	u16 phy_tmp;
3629
3630#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3631
3632	/* Prevent stats update while adapter is being reset, or if the pci
3633	 * connection is down.
3634	 */
3635	if (adapter->link_speed == 0)
3636		return;
3637	if (pci_channel_offline(pdev))
3638		return;
3639
3640	spin_lock_irqsave(&adapter->stats_lock, flags);
3641
3642	/* these counters are modified from e1000_tbi_adjust_stats,
3643	 * called from the interrupt context, so they must only
3644	 * be written while holding adapter->stats_lock
3645	 */
3646
3647	adapter->stats.crcerrs += er32(CRCERRS);
3648	adapter->stats.gprc += er32(GPRC);
3649	adapter->stats.gorcl += er32(GORCL);
3650	adapter->stats.gorch += er32(GORCH);
3651	adapter->stats.bprc += er32(BPRC);
3652	adapter->stats.mprc += er32(MPRC);
3653	adapter->stats.roc += er32(ROC);
3654
3655	adapter->stats.prc64 += er32(PRC64);
3656	adapter->stats.prc127 += er32(PRC127);
3657	adapter->stats.prc255 += er32(PRC255);
3658	adapter->stats.prc511 += er32(PRC511);
3659	adapter->stats.prc1023 += er32(PRC1023);
3660	adapter->stats.prc1522 += er32(PRC1522);
3661
3662	adapter->stats.symerrs += er32(SYMERRS);
3663	adapter->stats.mpc += er32(MPC);
3664	adapter->stats.scc += er32(SCC);
3665	adapter->stats.ecol += er32(ECOL);
3666	adapter->stats.mcc += er32(MCC);
3667	adapter->stats.latecol += er32(LATECOL);
3668	adapter->stats.dc += er32(DC);
3669	adapter->stats.sec += er32(SEC);
3670	adapter->stats.rlec += er32(RLEC);
3671	adapter->stats.xonrxc += er32(XONRXC);
3672	adapter->stats.xontxc += er32(XONTXC);
3673	adapter->stats.xoffrxc += er32(XOFFRXC);
3674	adapter->stats.xofftxc += er32(XOFFTXC);
3675	adapter->stats.fcruc += er32(FCRUC);
3676	adapter->stats.gptc += er32(GPTC);
3677	adapter->stats.gotcl += er32(GOTCL);
3678	adapter->stats.gotch += er32(GOTCH);
3679	adapter->stats.rnbc += er32(RNBC);
3680	adapter->stats.ruc += er32(RUC);
3681	adapter->stats.rfc += er32(RFC);
3682	adapter->stats.rjc += er32(RJC);
3683	adapter->stats.torl += er32(TORL);
3684	adapter->stats.torh += er32(TORH);
3685	adapter->stats.totl += er32(TOTL);
3686	adapter->stats.toth += er32(TOTH);
3687	adapter->stats.tpr += er32(TPR);
3688
3689	adapter->stats.ptc64 += er32(PTC64);
3690	adapter->stats.ptc127 += er32(PTC127);
3691	adapter->stats.ptc255 += er32(PTC255);
3692	adapter->stats.ptc511 += er32(PTC511);
3693	adapter->stats.ptc1023 += er32(PTC1023);
3694	adapter->stats.ptc1522 += er32(PTC1522);
3695
3696	adapter->stats.mptc += er32(MPTC);
3697	adapter->stats.bptc += er32(BPTC);
3698
3699	/* used for adaptive IFS */
3700
3701	hw->tx_packet_delta = er32(TPT);
3702	adapter->stats.tpt += hw->tx_packet_delta;
3703	hw->collision_delta = er32(COLC);
3704	adapter->stats.colc += hw->collision_delta;
3705
3706	if (hw->mac_type >= e1000_82543) {
3707		adapter->stats.algnerrc += er32(ALGNERRC);
3708		adapter->stats.rxerrc += er32(RXERRC);
3709		adapter->stats.tncrs += er32(TNCRS);
3710		adapter->stats.cexterr += er32(CEXTERR);
3711		adapter->stats.tsctc += er32(TSCTC);
3712		adapter->stats.tsctfc += er32(TSCTFC);
3713	}
3714
3715	/* Fill out the OS statistics structure */
3716	netdev->stats.multicast = adapter->stats.mprc;
3717	netdev->stats.collisions = adapter->stats.colc;
3718
3719	/* Rx Errors */
3720
3721	/* RLEC on some newer hardware can be incorrect so build
3722	 * our own version based on RUC and ROC
3723	 */
3724	netdev->stats.rx_errors = adapter->stats.rxerrc +
3725		adapter->stats.crcerrs + adapter->stats.algnerrc +
3726		adapter->stats.ruc + adapter->stats.roc +
3727		adapter->stats.cexterr;
3728	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3729	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3730	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3731	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3732	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3733
3734	/* Tx Errors */
3735	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3736	netdev->stats.tx_errors = adapter->stats.txerrc;
3737	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3738	netdev->stats.tx_window_errors = adapter->stats.latecol;
3739	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3740	if (hw->bad_tx_carr_stats_fd &&
3741	    adapter->link_duplex == FULL_DUPLEX) {
3742		netdev->stats.tx_carrier_errors = 0;
3743		adapter->stats.tncrs = 0;
3744	}
3745
3746	/* Tx Dropped needs to be maintained elsewhere */
3747
3748	/* Phy Stats */
3749	if (hw->media_type == e1000_media_type_copper) {
3750		if ((adapter->link_speed == SPEED_1000) &&
3751		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3752			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3753			adapter->phy_stats.idle_errors += phy_tmp;
3754		}
3755
3756		if ((hw->mac_type <= e1000_82546) &&
3757		   (hw->phy_type == e1000_phy_m88) &&
3758		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3759			adapter->phy_stats.receive_errors += phy_tmp;
3760	}
3761
3762	/* Management Stats */
3763	if (hw->has_smbus) {
3764		adapter->stats.mgptc += er32(MGTPTC);
3765		adapter->stats.mgprc += er32(MGTPRC);
3766		adapter->stats.mgpdc += er32(MGTPDC);
3767	}
3768
3769	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3770}
3771
3772/**
3773 * e1000_intr - Interrupt Handler
3774 * @irq: interrupt number
3775 * @data: pointer to a network interface device structure
3776 **/
3777static irqreturn_t e1000_intr(int irq, void *data)
3778{
3779	struct net_device *netdev = data;
3780	struct e1000_adapter *adapter = netdev_priv(netdev);
3781	struct e1000_hw *hw = &adapter->hw;
3782	u32 icr = er32(ICR);
3783
3784	if (unlikely((!icr)))
3785		return IRQ_NONE;  /* Not our interrupt */
3786
3787	/* we might have caused the interrupt, but the above
3788	 * read cleared it, and just in case the driver is
3789	 * down there is nothing to do so return handled
3790	 */
3791	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3792		return IRQ_HANDLED;
3793
3794	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3795		hw->get_link_status = 1;
3796		/* guard against interrupt when we're going down */
3797		if (!test_bit(__E1000_DOWN, &adapter->flags))
3798			schedule_delayed_work(&adapter->watchdog_task, 1);
3799	}
3800
3801	/* disable interrupts, without the synchronize_irq bit */
3802	ew32(IMC, ~0);
3803	E1000_WRITE_FLUSH();
3804
3805	if (likely(napi_schedule_prep(&adapter->napi))) {
3806		adapter->total_tx_bytes = 0;
3807		adapter->total_tx_packets = 0;
3808		adapter->total_rx_bytes = 0;
3809		adapter->total_rx_packets = 0;
3810		__napi_schedule(&adapter->napi);
3811	} else {
3812		/* this really should not happen! if it does it is basically a
3813		 * bug, but not a hard error, so enable ints and continue
3814		 */
3815		if (!test_bit(__E1000_DOWN, &adapter->flags))
3816			e1000_irq_enable(adapter);
3817	}
3818
3819	return IRQ_HANDLED;
3820}
3821
3822/**
3823 * e1000_clean - NAPI Rx polling callback
3824 * @adapter: board private structure
 
3825 **/
3826static int e1000_clean(struct napi_struct *napi, int budget)
3827{
3828	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3829						     napi);
3830	int tx_clean_complete = 0, work_done = 0;
3831
3832	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3833
3834	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3835
3836	if (!tx_clean_complete)
3837		work_done = budget;
3838
3839	/* If budget not fully consumed, exit the polling mode */
3840	if (work_done < budget) {
 
 
3841		if (likely(adapter->itr_setting & 3))
3842			e1000_set_itr(adapter);
3843		napi_complete_done(napi, work_done);
3844		if (!test_bit(__E1000_DOWN, &adapter->flags))
3845			e1000_irq_enable(adapter);
3846	}
3847
3848	return work_done;
3849}
3850
3851/**
3852 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3853 * @adapter: board private structure
 
3854 **/
3855static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3856			       struct e1000_tx_ring *tx_ring)
3857{
3858	struct e1000_hw *hw = &adapter->hw;
3859	struct net_device *netdev = adapter->netdev;
3860	struct e1000_tx_desc *tx_desc, *eop_desc;
3861	struct e1000_tx_buffer *buffer_info;
3862	unsigned int i, eop;
3863	unsigned int count = 0;
3864	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3865	unsigned int bytes_compl = 0, pkts_compl = 0;
3866
3867	i = tx_ring->next_to_clean;
3868	eop = tx_ring->buffer_info[i].next_to_watch;
3869	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870
3871	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3872	       (count < tx_ring->count)) {
3873		bool cleaned = false;
3874		dma_rmb();	/* read buffer_info after eop_desc */
3875		for ( ; !cleaned; count++) {
3876			tx_desc = E1000_TX_DESC(*tx_ring, i);
3877			buffer_info = &tx_ring->buffer_info[i];
3878			cleaned = (i == eop);
3879
3880			if (cleaned) {
3881				total_tx_packets += buffer_info->segs;
3882				total_tx_bytes += buffer_info->bytecount;
3883				if (buffer_info->skb) {
3884					bytes_compl += buffer_info->skb->len;
3885					pkts_compl++;
3886				}
3887
3888			}
3889			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
 
3890			tx_desc->upper.data = 0;
3891
3892			if (unlikely(++i == tx_ring->count))
3893				i = 0;
3894		}
3895
3896		eop = tx_ring->buffer_info[i].next_to_watch;
3897		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3898	}
3899
3900	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3901	 * which will reuse the cleaned buffers.
3902	 */
3903	smp_store_release(&tx_ring->next_to_clean, i);
3904
3905	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3906
3907#define TX_WAKE_THRESHOLD 32
3908	if (unlikely(count && netif_carrier_ok(netdev) &&
3909		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3910		/* Make sure that anybody stopping the queue after this
3911		 * sees the new next_to_clean.
3912		 */
3913		smp_mb();
3914
3915		if (netif_queue_stopped(netdev) &&
3916		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3917			netif_wake_queue(netdev);
3918			++adapter->restart_queue;
3919		}
3920	}
3921
3922	if (adapter->detect_tx_hung) {
3923		/* Detect a transmit hang in hardware, this serializes the
3924		 * check with the clearing of time_stamp and movement of i
3925		 */
3926		adapter->detect_tx_hung = false;
3927		if (tx_ring->buffer_info[eop].time_stamp &&
3928		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3929			       (adapter->tx_timeout_factor * HZ)) &&
3930		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3931
3932			/* detected Tx unit hang */
3933			e_err(drv, "Detected Tx Unit Hang\n"
3934			      "  Tx Queue             <%lu>\n"
3935			      "  TDH                  <%x>\n"
3936			      "  TDT                  <%x>\n"
3937			      "  next_to_use          <%x>\n"
3938			      "  next_to_clean        <%x>\n"
3939			      "buffer_info[next_to_clean]\n"
3940			      "  time_stamp           <%lx>\n"
3941			      "  next_to_watch        <%x>\n"
3942			      "  jiffies              <%lx>\n"
3943			      "  next_to_watch.status <%x>\n",
3944				(unsigned long)(tx_ring - adapter->tx_ring),
3945				readl(hw->hw_addr + tx_ring->tdh),
3946				readl(hw->hw_addr + tx_ring->tdt),
3947				tx_ring->next_to_use,
3948				tx_ring->next_to_clean,
3949				tx_ring->buffer_info[eop].time_stamp,
3950				eop,
3951				jiffies,
3952				eop_desc->upper.fields.status);
3953			e1000_dump(adapter);
3954			netif_stop_queue(netdev);
3955		}
3956	}
3957	adapter->total_tx_bytes += total_tx_bytes;
3958	adapter->total_tx_packets += total_tx_packets;
3959	netdev->stats.tx_bytes += total_tx_bytes;
3960	netdev->stats.tx_packets += total_tx_packets;
3961	return count < tx_ring->count;
3962}
3963
3964/**
3965 * e1000_rx_checksum - Receive Checksum Offload for 82543
3966 * @adapter:     board private structure
3967 * @status_err:  receive descriptor status and error fields
3968 * @csum:        receive descriptor csum field
3969 * @sk_buff:     socket buffer with received data
3970 **/
3971static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3972			      u32 csum, struct sk_buff *skb)
3973{
3974	struct e1000_hw *hw = &adapter->hw;
3975	u16 status = (u16)status_err;
3976	u8 errors = (u8)(status_err >> 24);
3977
3978	skb_checksum_none_assert(skb);
3979
3980	/* 82543 or newer only */
3981	if (unlikely(hw->mac_type < e1000_82543))
3982		return;
3983	/* Ignore Checksum bit is set */
3984	if (unlikely(status & E1000_RXD_STAT_IXSM))
3985		return;
3986	/* TCP/UDP checksum error bit is set */
3987	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3988		/* let the stack verify checksum errors */
3989		adapter->hw_csum_err++;
3990		return;
3991	}
3992	/* TCP/UDP Checksum has not been calculated */
3993	if (!(status & E1000_RXD_STAT_TCPCS))
3994		return;
3995
3996	/* It must be a TCP or UDP packet with a valid checksum */
3997	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3998		/* TCP checksum is good */
3999		skb->ip_summed = CHECKSUM_UNNECESSARY;
4000	}
4001	adapter->hw_csum_good++;
4002}
4003
4004/**
4005 * e1000_consume_page - helper function for jumbo Rx path
 
 
 
4006 **/
4007static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4008			       u16 length)
4009{
4010	bi->rxbuf.page = NULL;
4011	skb->len += length;
4012	skb->data_len += length;
4013	skb->truesize += PAGE_SIZE;
4014}
4015
4016/**
4017 * e1000_receive_skb - helper function to handle rx indications
4018 * @adapter: board private structure
4019 * @status: descriptor status field as written by hardware
4020 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4021 * @skb: pointer to sk_buff to be indicated to stack
4022 */
4023static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4024			      __le16 vlan, struct sk_buff *skb)
4025{
4026	skb->protocol = eth_type_trans(skb, adapter->netdev);
4027
4028	if (status & E1000_RXD_STAT_VP) {
4029		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4030
4031		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4032	}
4033	napi_gro_receive(&adapter->napi, skb);
4034}
4035
4036/**
4037 * e1000_tbi_adjust_stats
4038 * @hw: Struct containing variables accessed by shared code
 
4039 * @frame_len: The length of the frame in question
4040 * @mac_addr: The Ethernet destination address of the frame in question
4041 *
4042 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4043 */
4044static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4045				   struct e1000_hw_stats *stats,
4046				   u32 frame_len, const u8 *mac_addr)
4047{
4048	u64 carry_bit;
4049
4050	/* First adjust the frame length. */
4051	frame_len--;
4052	/* We need to adjust the statistics counters, since the hardware
4053	 * counters overcount this packet as a CRC error and undercount
4054	 * the packet as a good packet
4055	 */
4056	/* This packet should not be counted as a CRC error. */
4057	stats->crcerrs--;
4058	/* This packet does count as a Good Packet Received. */
4059	stats->gprc++;
4060
4061	/* Adjust the Good Octets received counters */
4062	carry_bit = 0x80000000 & stats->gorcl;
4063	stats->gorcl += frame_len;
4064	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4065	 * Received Count) was one before the addition,
4066	 * AND it is zero after, then we lost the carry out,
4067	 * need to add one to Gorch (Good Octets Received Count High).
4068	 * This could be simplified if all environments supported
4069	 * 64-bit integers.
4070	 */
4071	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4072		stats->gorch++;
4073	/* Is this a broadcast or multicast?  Check broadcast first,
4074	 * since the test for a multicast frame will test positive on
4075	 * a broadcast frame.
4076	 */
4077	if (is_broadcast_ether_addr(mac_addr))
4078		stats->bprc++;
4079	else if (is_multicast_ether_addr(mac_addr))
4080		stats->mprc++;
4081
4082	if (frame_len == hw->max_frame_size) {
4083		/* In this case, the hardware has overcounted the number of
4084		 * oversize frames.
4085		 */
4086		if (stats->roc > 0)
4087			stats->roc--;
4088	}
4089
4090	/* Adjust the bin counters when the extra byte put the frame in the
4091	 * wrong bin. Remember that the frame_len was adjusted above.
4092	 */
4093	if (frame_len == 64) {
4094		stats->prc64++;
4095		stats->prc127--;
4096	} else if (frame_len == 127) {
4097		stats->prc127++;
4098		stats->prc255--;
4099	} else if (frame_len == 255) {
4100		stats->prc255++;
4101		stats->prc511--;
4102	} else if (frame_len == 511) {
4103		stats->prc511++;
4104		stats->prc1023--;
4105	} else if (frame_len == 1023) {
4106		stats->prc1023++;
4107		stats->prc1522--;
4108	} else if (frame_len == 1522) {
4109		stats->prc1522++;
4110	}
4111}
4112
4113static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4114				    u8 status, u8 errors,
4115				    u32 length, const u8 *data)
4116{
4117	struct e1000_hw *hw = &adapter->hw;
4118	u8 last_byte = *(data + length - 1);
4119
4120	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4121		unsigned long irq_flags;
4122
4123		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4124		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4125		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4126
4127		return true;
4128	}
4129
4130	return false;
4131}
4132
4133static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4134					  unsigned int bufsz)
4135{
4136	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4137
4138	if (unlikely(!skb))
4139		adapter->alloc_rx_buff_failed++;
4140	return skb;
4141}
4142
4143/**
4144 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4145 * @adapter: board private structure
4146 * @rx_ring: ring to clean
4147 * @work_done: amount of napi work completed this call
4148 * @work_to_do: max amount of work allowed for this call to do
4149 *
4150 * the return value indicates whether actual cleaning was done, there
4151 * is no guarantee that everything was cleaned
4152 */
4153static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4154				     struct e1000_rx_ring *rx_ring,
4155				     int *work_done, int work_to_do)
4156{
4157	struct net_device *netdev = adapter->netdev;
4158	struct pci_dev *pdev = adapter->pdev;
4159	struct e1000_rx_desc *rx_desc, *next_rxd;
4160	struct e1000_rx_buffer *buffer_info, *next_buffer;
4161	u32 length;
4162	unsigned int i;
4163	int cleaned_count = 0;
4164	bool cleaned = false;
4165	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4166
4167	i = rx_ring->next_to_clean;
4168	rx_desc = E1000_RX_DESC(*rx_ring, i);
4169	buffer_info = &rx_ring->buffer_info[i];
4170
4171	while (rx_desc->status & E1000_RXD_STAT_DD) {
4172		struct sk_buff *skb;
4173		u8 status;
4174
4175		if (*work_done >= work_to_do)
4176			break;
4177		(*work_done)++;
4178		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4179
4180		status = rx_desc->status;
4181
4182		if (++i == rx_ring->count)
4183			i = 0;
4184
4185		next_rxd = E1000_RX_DESC(*rx_ring, i);
4186		prefetch(next_rxd);
4187
4188		next_buffer = &rx_ring->buffer_info[i];
4189
4190		cleaned = true;
4191		cleaned_count++;
4192		dma_unmap_page(&pdev->dev, buffer_info->dma,
4193			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4194		buffer_info->dma = 0;
4195
4196		length = le16_to_cpu(rx_desc->length);
4197
4198		/* errors is only valid for DD + EOP descriptors */
4199		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4200		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4201			u8 *mapped = page_address(buffer_info->rxbuf.page);
4202
4203			if (e1000_tbi_should_accept(adapter, status,
4204						    rx_desc->errors,
4205						    length, mapped)) {
4206				length--;
4207			} else if (netdev->features & NETIF_F_RXALL) {
4208				goto process_skb;
4209			} else {
4210				/* an error means any chain goes out the window
4211				 * too
4212				 */
4213				if (rx_ring->rx_skb_top)
4214					dev_kfree_skb(rx_ring->rx_skb_top);
4215				rx_ring->rx_skb_top = NULL;
4216				goto next_desc;
4217			}
4218		}
4219
4220#define rxtop rx_ring->rx_skb_top
4221process_skb:
4222		if (!(status & E1000_RXD_STAT_EOP)) {
4223			/* this descriptor is only the beginning (or middle) */
4224			if (!rxtop) {
4225				/* this is the beginning of a chain */
4226				rxtop = napi_get_frags(&adapter->napi);
4227				if (!rxtop)
4228					break;
4229
4230				skb_fill_page_desc(rxtop, 0,
4231						   buffer_info->rxbuf.page,
4232						   0, length);
4233			} else {
4234				/* this is the middle of a chain */
4235				skb_fill_page_desc(rxtop,
4236				    skb_shinfo(rxtop)->nr_frags,
4237				    buffer_info->rxbuf.page, 0, length);
4238			}
4239			e1000_consume_page(buffer_info, rxtop, length);
4240			goto next_desc;
4241		} else {
4242			if (rxtop) {
4243				/* end of the chain */
4244				skb_fill_page_desc(rxtop,
4245				    skb_shinfo(rxtop)->nr_frags,
4246				    buffer_info->rxbuf.page, 0, length);
4247				skb = rxtop;
4248				rxtop = NULL;
4249				e1000_consume_page(buffer_info, skb, length);
4250			} else {
4251				struct page *p;
4252				/* no chain, got EOP, this buf is the packet
4253				 * copybreak to save the put_page/alloc_page
4254				 */
4255				p = buffer_info->rxbuf.page;
4256				if (length <= copybreak) {
4257					u8 *vaddr;
4258
4259					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4260						length -= 4;
4261					skb = e1000_alloc_rx_skb(adapter,
4262								 length);
4263					if (!skb)
4264						break;
4265
4266					vaddr = kmap_atomic(p);
4267					memcpy(skb_tail_pointer(skb), vaddr,
4268					       length);
4269					kunmap_atomic(vaddr);
4270					/* re-use the page, so don't erase
4271					 * buffer_info->rxbuf.page
4272					 */
4273					skb_put(skb, length);
4274					e1000_rx_checksum(adapter,
4275							  status | rx_desc->errors << 24,
4276							  le16_to_cpu(rx_desc->csum), skb);
4277
4278					total_rx_bytes += skb->len;
4279					total_rx_packets++;
4280
4281					e1000_receive_skb(adapter, status,
4282							  rx_desc->special, skb);
4283					goto next_desc;
4284				} else {
4285					skb = napi_get_frags(&adapter->napi);
4286					if (!skb) {
4287						adapter->alloc_rx_buff_failed++;
4288						break;
4289					}
4290					skb_fill_page_desc(skb, 0, p, 0,
4291							   length);
4292					e1000_consume_page(buffer_info, skb,
4293							   length);
4294				}
4295			}
4296		}
4297
4298		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4299		e1000_rx_checksum(adapter,
4300				  (u32)(status) |
4301				  ((u32)(rx_desc->errors) << 24),
4302				  le16_to_cpu(rx_desc->csum), skb);
4303
4304		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4305		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4306			pskb_trim(skb, skb->len - 4);
4307		total_rx_packets++;
4308
4309		if (status & E1000_RXD_STAT_VP) {
4310			__le16 vlan = rx_desc->special;
4311			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4312
4313			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4314		}
4315
4316		napi_gro_frags(&adapter->napi);
4317
4318next_desc:
4319		rx_desc->status = 0;
4320
4321		/* return some buffers to hardware, one at a time is too slow */
4322		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4323			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4324			cleaned_count = 0;
4325		}
4326
4327		/* use prefetched values */
4328		rx_desc = next_rxd;
4329		buffer_info = next_buffer;
4330	}
4331	rx_ring->next_to_clean = i;
4332
4333	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4334	if (cleaned_count)
4335		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4336
4337	adapter->total_rx_packets += total_rx_packets;
4338	adapter->total_rx_bytes += total_rx_bytes;
4339	netdev->stats.rx_bytes += total_rx_bytes;
4340	netdev->stats.rx_packets += total_rx_packets;
4341	return cleaned;
4342}
4343
4344/* this should improve performance for small packets with large amounts
4345 * of reassembly being done in the stack
4346 */
4347static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4348				       struct e1000_rx_buffer *buffer_info,
4349				       u32 length, const void *data)
4350{
4351	struct sk_buff *skb;
4352
4353	if (length > copybreak)
4354		return NULL;
4355
4356	skb = e1000_alloc_rx_skb(adapter, length);
4357	if (!skb)
4358		return NULL;
4359
4360	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4361				length, DMA_FROM_DEVICE);
4362
4363	memcpy(skb_put(skb, length), data, length);
4364
4365	return skb;
4366}
4367
4368/**
4369 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4370 * @adapter: board private structure
4371 * @rx_ring: ring to clean
4372 * @work_done: amount of napi work completed this call
4373 * @work_to_do: max amount of work allowed for this call to do
4374 */
4375static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4376			       struct e1000_rx_ring *rx_ring,
4377			       int *work_done, int work_to_do)
4378{
4379	struct net_device *netdev = adapter->netdev;
4380	struct pci_dev *pdev = adapter->pdev;
4381	struct e1000_rx_desc *rx_desc, *next_rxd;
4382	struct e1000_rx_buffer *buffer_info, *next_buffer;
4383	u32 length;
4384	unsigned int i;
4385	int cleaned_count = 0;
4386	bool cleaned = false;
4387	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4388
4389	i = rx_ring->next_to_clean;
4390	rx_desc = E1000_RX_DESC(*rx_ring, i);
4391	buffer_info = &rx_ring->buffer_info[i];
4392
4393	while (rx_desc->status & E1000_RXD_STAT_DD) {
4394		struct sk_buff *skb;
4395		u8 *data;
4396		u8 status;
4397
4398		if (*work_done >= work_to_do)
4399			break;
4400		(*work_done)++;
4401		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4402
4403		status = rx_desc->status;
4404		length = le16_to_cpu(rx_desc->length);
4405
4406		data = buffer_info->rxbuf.data;
4407		prefetch(data);
4408		skb = e1000_copybreak(adapter, buffer_info, length, data);
4409		if (!skb) {
4410			unsigned int frag_len = e1000_frag_len(adapter);
4411
4412			skb = build_skb(data - E1000_HEADROOM, frag_len);
4413			if (!skb) {
4414				adapter->alloc_rx_buff_failed++;
4415				break;
4416			}
4417
4418			skb_reserve(skb, E1000_HEADROOM);
4419			dma_unmap_single(&pdev->dev, buffer_info->dma,
4420					 adapter->rx_buffer_len,
4421					 DMA_FROM_DEVICE);
4422			buffer_info->dma = 0;
4423			buffer_info->rxbuf.data = NULL;
4424		}
4425
4426		if (++i == rx_ring->count)
4427			i = 0;
4428
4429		next_rxd = E1000_RX_DESC(*rx_ring, i);
4430		prefetch(next_rxd);
4431
4432		next_buffer = &rx_ring->buffer_info[i];
4433
4434		cleaned = true;
4435		cleaned_count++;
4436
4437		/* !EOP means multiple descriptors were used to store a single
4438		 * packet, if thats the case we need to toss it.  In fact, we
4439		 * to toss every packet with the EOP bit clear and the next
4440		 * frame that _does_ have the EOP bit set, as it is by
4441		 * definition only a frame fragment
4442		 */
4443		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4444			adapter->discarding = true;
4445
4446		if (adapter->discarding) {
4447			/* All receives must fit into a single buffer */
4448			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4449			dev_kfree_skb(skb);
4450			if (status & E1000_RXD_STAT_EOP)
4451				adapter->discarding = false;
4452			goto next_desc;
4453		}
4454
4455		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4456			if (e1000_tbi_should_accept(adapter, status,
4457						    rx_desc->errors,
4458						    length, data)) {
4459				length--;
4460			} else if (netdev->features & NETIF_F_RXALL) {
4461				goto process_skb;
4462			} else {
4463				dev_kfree_skb(skb);
4464				goto next_desc;
4465			}
4466		}
4467
4468process_skb:
4469		total_rx_bytes += (length - 4); /* don't count FCS */
4470		total_rx_packets++;
4471
4472		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4473			/* adjust length to remove Ethernet CRC, this must be
4474			 * done after the TBI_ACCEPT workaround above
4475			 */
4476			length -= 4;
4477
4478		if (buffer_info->rxbuf.data == NULL)
4479			skb_put(skb, length);
4480		else /* copybreak skb */
4481			skb_trim(skb, length);
4482
4483		/* Receive Checksum Offload */
4484		e1000_rx_checksum(adapter,
4485				  (u32)(status) |
4486				  ((u32)(rx_desc->errors) << 24),
4487				  le16_to_cpu(rx_desc->csum), skb);
4488
4489		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4490
4491next_desc:
4492		rx_desc->status = 0;
4493
4494		/* return some buffers to hardware, one at a time is too slow */
4495		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4496			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4497			cleaned_count = 0;
4498		}
4499
4500		/* use prefetched values */
4501		rx_desc = next_rxd;
4502		buffer_info = next_buffer;
4503	}
4504	rx_ring->next_to_clean = i;
4505
4506	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4507	if (cleaned_count)
4508		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4509
4510	adapter->total_rx_packets += total_rx_packets;
4511	adapter->total_rx_bytes += total_rx_bytes;
4512	netdev->stats.rx_bytes += total_rx_bytes;
4513	netdev->stats.rx_packets += total_rx_packets;
4514	return cleaned;
4515}
4516
4517/**
4518 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4519 * @adapter: address of board private structure
4520 * @rx_ring: pointer to receive ring structure
4521 * @cleaned_count: number of buffers to allocate this pass
4522 **/
4523static void
4524e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4525			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4526{
4527	struct pci_dev *pdev = adapter->pdev;
4528	struct e1000_rx_desc *rx_desc;
4529	struct e1000_rx_buffer *buffer_info;
4530	unsigned int i;
4531
4532	i = rx_ring->next_to_use;
4533	buffer_info = &rx_ring->buffer_info[i];
4534
4535	while (cleaned_count--) {
4536		/* allocate a new page if necessary */
4537		if (!buffer_info->rxbuf.page) {
4538			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4539			if (unlikely(!buffer_info->rxbuf.page)) {
4540				adapter->alloc_rx_buff_failed++;
4541				break;
4542			}
4543		}
4544
4545		if (!buffer_info->dma) {
4546			buffer_info->dma = dma_map_page(&pdev->dev,
4547							buffer_info->rxbuf.page, 0,
4548							adapter->rx_buffer_len,
4549							DMA_FROM_DEVICE);
4550			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4551				put_page(buffer_info->rxbuf.page);
4552				buffer_info->rxbuf.page = NULL;
4553				buffer_info->dma = 0;
4554				adapter->alloc_rx_buff_failed++;
4555				break;
4556			}
4557		}
4558
4559		rx_desc = E1000_RX_DESC(*rx_ring, i);
4560		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4561
4562		if (unlikely(++i == rx_ring->count))
4563			i = 0;
4564		buffer_info = &rx_ring->buffer_info[i];
4565	}
4566
4567	if (likely(rx_ring->next_to_use != i)) {
4568		rx_ring->next_to_use = i;
4569		if (unlikely(i-- == 0))
4570			i = (rx_ring->count - 1);
4571
4572		/* Force memory writes to complete before letting h/w
4573		 * know there are new descriptors to fetch.  (Only
4574		 * applicable for weak-ordered memory model archs,
4575		 * such as IA-64).
4576		 */
4577		wmb();
4578		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4579	}
4580}
4581
4582/**
4583 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4584 * @adapter: address of board private structure
 
 
4585 **/
4586static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4587				   struct e1000_rx_ring *rx_ring,
4588				   int cleaned_count)
4589{
4590	struct e1000_hw *hw = &adapter->hw;
4591	struct pci_dev *pdev = adapter->pdev;
4592	struct e1000_rx_desc *rx_desc;
4593	struct e1000_rx_buffer *buffer_info;
4594	unsigned int i;
4595	unsigned int bufsz = adapter->rx_buffer_len;
4596
4597	i = rx_ring->next_to_use;
4598	buffer_info = &rx_ring->buffer_info[i];
4599
4600	while (cleaned_count--) {
4601		void *data;
4602
4603		if (buffer_info->rxbuf.data)
4604			goto skip;
4605
4606		data = e1000_alloc_frag(adapter);
4607		if (!data) {
4608			/* Better luck next round */
4609			adapter->alloc_rx_buff_failed++;
4610			break;
4611		}
4612
4613		/* Fix for errata 23, can't cross 64kB boundary */
4614		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4615			void *olddata = data;
4616			e_err(rx_err, "skb align check failed: %u bytes at "
4617			      "%p\n", bufsz, data);
4618			/* Try again, without freeing the previous */
4619			data = e1000_alloc_frag(adapter);
4620			/* Failed allocation, critical failure */
4621			if (!data) {
4622				skb_free_frag(olddata);
4623				adapter->alloc_rx_buff_failed++;
4624				break;
4625			}
4626
4627			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4628				/* give up */
4629				skb_free_frag(data);
4630				skb_free_frag(olddata);
4631				adapter->alloc_rx_buff_failed++;
4632				break;
4633			}
4634
4635			/* Use new allocation */
4636			skb_free_frag(olddata);
4637		}
4638		buffer_info->dma = dma_map_single(&pdev->dev,
4639						  data,
4640						  adapter->rx_buffer_len,
4641						  DMA_FROM_DEVICE);
4642		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4643			skb_free_frag(data);
4644			buffer_info->dma = 0;
4645			adapter->alloc_rx_buff_failed++;
4646			break;
4647		}
4648
4649		/* XXX if it was allocated cleanly it will never map to a
4650		 * boundary crossing
4651		 */
4652
4653		/* Fix for errata 23, can't cross 64kB boundary */
4654		if (!e1000_check_64k_bound(adapter,
4655					(void *)(unsigned long)buffer_info->dma,
4656					adapter->rx_buffer_len)) {
4657			e_err(rx_err, "dma align check failed: %u bytes at "
4658			      "%p\n", adapter->rx_buffer_len,
4659			      (void *)(unsigned long)buffer_info->dma);
4660
4661			dma_unmap_single(&pdev->dev, buffer_info->dma,
4662					 adapter->rx_buffer_len,
4663					 DMA_FROM_DEVICE);
4664
4665			skb_free_frag(data);
4666			buffer_info->rxbuf.data = NULL;
4667			buffer_info->dma = 0;
4668
4669			adapter->alloc_rx_buff_failed++;
4670			break;
4671		}
4672		buffer_info->rxbuf.data = data;
4673 skip:
4674		rx_desc = E1000_RX_DESC(*rx_ring, i);
4675		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4676
4677		if (unlikely(++i == rx_ring->count))
4678			i = 0;
4679		buffer_info = &rx_ring->buffer_info[i];
4680	}
4681
4682	if (likely(rx_ring->next_to_use != i)) {
4683		rx_ring->next_to_use = i;
4684		if (unlikely(i-- == 0))
4685			i = (rx_ring->count - 1);
4686
4687		/* Force memory writes to complete before letting h/w
4688		 * know there are new descriptors to fetch.  (Only
4689		 * applicable for weak-ordered memory model archs,
4690		 * such as IA-64).
4691		 */
4692		wmb();
4693		writel(i, hw->hw_addr + rx_ring->rdt);
4694	}
4695}
4696
4697/**
4698 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4699 * @adapter:
4700 **/
4701static void e1000_smartspeed(struct e1000_adapter *adapter)
4702{
4703	struct e1000_hw *hw = &adapter->hw;
4704	u16 phy_status;
4705	u16 phy_ctrl;
4706
4707	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4708	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4709		return;
4710
4711	if (adapter->smartspeed == 0) {
4712		/* If Master/Slave config fault is asserted twice,
4713		 * we assume back-to-back
4714		 */
4715		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4716		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4717			return;
4718		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4719		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4720			return;
4721		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4722		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4723			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4724			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4725					    phy_ctrl);
4726			adapter->smartspeed++;
4727			if (!e1000_phy_setup_autoneg(hw) &&
4728			   !e1000_read_phy_reg(hw, PHY_CTRL,
4729					       &phy_ctrl)) {
4730				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4731					     MII_CR_RESTART_AUTO_NEG);
4732				e1000_write_phy_reg(hw, PHY_CTRL,
4733						    phy_ctrl);
4734			}
4735		}
4736		return;
4737	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4738		/* If still no link, perhaps using 2/3 pair cable */
4739		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4740		phy_ctrl |= CR_1000T_MS_ENABLE;
4741		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4742		if (!e1000_phy_setup_autoneg(hw) &&
4743		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4744			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4745				     MII_CR_RESTART_AUTO_NEG);
4746			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4747		}
4748	}
4749	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4750	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4751		adapter->smartspeed = 0;
4752}
4753
4754/**
4755 * e1000_ioctl -
4756 * @netdev:
4757 * @ifreq:
4758 * @cmd:
4759 **/
4760static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4761{
4762	switch (cmd) {
4763	case SIOCGMIIPHY:
4764	case SIOCGMIIREG:
4765	case SIOCSMIIREG:
4766		return e1000_mii_ioctl(netdev, ifr, cmd);
4767	default:
4768		return -EOPNOTSUPP;
4769	}
4770}
4771
4772/**
4773 * e1000_mii_ioctl -
4774 * @netdev:
4775 * @ifreq:
4776 * @cmd:
4777 **/
4778static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4779			   int cmd)
4780{
4781	struct e1000_adapter *adapter = netdev_priv(netdev);
4782	struct e1000_hw *hw = &adapter->hw;
4783	struct mii_ioctl_data *data = if_mii(ifr);
4784	int retval;
4785	u16 mii_reg;
4786	unsigned long flags;
4787
4788	if (hw->media_type != e1000_media_type_copper)
4789		return -EOPNOTSUPP;
4790
4791	switch (cmd) {
4792	case SIOCGMIIPHY:
4793		data->phy_id = hw->phy_addr;
4794		break;
4795	case SIOCGMIIREG:
4796		spin_lock_irqsave(&adapter->stats_lock, flags);
4797		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4798				   &data->val_out)) {
4799			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4800			return -EIO;
4801		}
4802		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4803		break;
4804	case SIOCSMIIREG:
4805		if (data->reg_num & ~(0x1F))
4806			return -EFAULT;
4807		mii_reg = data->val_in;
4808		spin_lock_irqsave(&adapter->stats_lock, flags);
4809		if (e1000_write_phy_reg(hw, data->reg_num,
4810					mii_reg)) {
4811			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4812			return -EIO;
4813		}
4814		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4815		if (hw->media_type == e1000_media_type_copper) {
4816			switch (data->reg_num) {
4817			case PHY_CTRL:
4818				if (mii_reg & MII_CR_POWER_DOWN)
4819					break;
4820				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4821					hw->autoneg = 1;
4822					hw->autoneg_advertised = 0x2F;
4823				} else {
4824					u32 speed;
4825					if (mii_reg & 0x40)
4826						speed = SPEED_1000;
4827					else if (mii_reg & 0x2000)
4828						speed = SPEED_100;
4829					else
4830						speed = SPEED_10;
4831					retval = e1000_set_spd_dplx(
4832						adapter, speed,
4833						((mii_reg & 0x100)
4834						 ? DUPLEX_FULL :
4835						 DUPLEX_HALF));
4836					if (retval)
4837						return retval;
4838				}
4839				if (netif_running(adapter->netdev))
4840					e1000_reinit_locked(adapter);
4841				else
4842					e1000_reset(adapter);
4843				break;
4844			case M88E1000_PHY_SPEC_CTRL:
4845			case M88E1000_EXT_PHY_SPEC_CTRL:
4846				if (e1000_phy_reset(hw))
4847					return -EIO;
4848				break;
4849			}
4850		} else {
4851			switch (data->reg_num) {
4852			case PHY_CTRL:
4853				if (mii_reg & MII_CR_POWER_DOWN)
4854					break;
4855				if (netif_running(adapter->netdev))
4856					e1000_reinit_locked(adapter);
4857				else
4858					e1000_reset(adapter);
4859				break;
4860			}
4861		}
4862		break;
4863	default:
4864		return -EOPNOTSUPP;
4865	}
4866	return E1000_SUCCESS;
4867}
4868
4869void e1000_pci_set_mwi(struct e1000_hw *hw)
4870{
4871	struct e1000_adapter *adapter = hw->back;
4872	int ret_val = pci_set_mwi(adapter->pdev);
4873
4874	if (ret_val)
4875		e_err(probe, "Error in setting MWI\n");
4876}
4877
4878void e1000_pci_clear_mwi(struct e1000_hw *hw)
4879{
4880	struct e1000_adapter *adapter = hw->back;
4881
4882	pci_clear_mwi(adapter->pdev);
4883}
4884
4885int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4886{
4887	struct e1000_adapter *adapter = hw->back;
4888	return pcix_get_mmrbc(adapter->pdev);
4889}
4890
4891void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4892{
4893	struct e1000_adapter *adapter = hw->back;
4894	pcix_set_mmrbc(adapter->pdev, mmrbc);
4895}
4896
4897void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4898{
4899	outl(value, port);
4900}
4901
4902static bool e1000_vlan_used(struct e1000_adapter *adapter)
4903{
4904	u16 vid;
4905
4906	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4907		return true;
4908	return false;
4909}
4910
4911static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4912			      netdev_features_t features)
4913{
4914	struct e1000_hw *hw = &adapter->hw;
4915	u32 ctrl;
4916
4917	ctrl = er32(CTRL);
4918	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4919		/* enable VLAN tag insert/strip */
4920		ctrl |= E1000_CTRL_VME;
4921	} else {
4922		/* disable VLAN tag insert/strip */
4923		ctrl &= ~E1000_CTRL_VME;
4924	}
4925	ew32(CTRL, ctrl);
4926}
4927static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4928				     bool filter_on)
4929{
4930	struct e1000_hw *hw = &adapter->hw;
4931	u32 rctl;
4932
4933	if (!test_bit(__E1000_DOWN, &adapter->flags))
4934		e1000_irq_disable(adapter);
4935
4936	__e1000_vlan_mode(adapter, adapter->netdev->features);
4937	if (filter_on) {
4938		/* enable VLAN receive filtering */
4939		rctl = er32(RCTL);
4940		rctl &= ~E1000_RCTL_CFIEN;
4941		if (!(adapter->netdev->flags & IFF_PROMISC))
4942			rctl |= E1000_RCTL_VFE;
4943		ew32(RCTL, rctl);
4944		e1000_update_mng_vlan(adapter);
4945	} else {
4946		/* disable VLAN receive filtering */
4947		rctl = er32(RCTL);
4948		rctl &= ~E1000_RCTL_VFE;
4949		ew32(RCTL, rctl);
4950	}
4951
4952	if (!test_bit(__E1000_DOWN, &adapter->flags))
4953		e1000_irq_enable(adapter);
4954}
4955
4956static void e1000_vlan_mode(struct net_device *netdev,
4957			    netdev_features_t features)
4958{
4959	struct e1000_adapter *adapter = netdev_priv(netdev);
4960
4961	if (!test_bit(__E1000_DOWN, &adapter->flags))
4962		e1000_irq_disable(adapter);
4963
4964	__e1000_vlan_mode(adapter, features);
4965
4966	if (!test_bit(__E1000_DOWN, &adapter->flags))
4967		e1000_irq_enable(adapter);
4968}
4969
4970static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4971				 __be16 proto, u16 vid)
4972{
4973	struct e1000_adapter *adapter = netdev_priv(netdev);
4974	struct e1000_hw *hw = &adapter->hw;
4975	u32 vfta, index;
4976
4977	if ((hw->mng_cookie.status &
4978	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4979	    (vid == adapter->mng_vlan_id))
4980		return 0;
4981
4982	if (!e1000_vlan_used(adapter))
4983		e1000_vlan_filter_on_off(adapter, true);
4984
4985	/* add VID to filter table */
4986	index = (vid >> 5) & 0x7F;
4987	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4988	vfta |= (1 << (vid & 0x1F));
4989	e1000_write_vfta(hw, index, vfta);
4990
4991	set_bit(vid, adapter->active_vlans);
4992
4993	return 0;
4994}
4995
4996static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4997				  __be16 proto, u16 vid)
4998{
4999	struct e1000_adapter *adapter = netdev_priv(netdev);
5000	struct e1000_hw *hw = &adapter->hw;
5001	u32 vfta, index;
5002
5003	if (!test_bit(__E1000_DOWN, &adapter->flags))
5004		e1000_irq_disable(adapter);
5005	if (!test_bit(__E1000_DOWN, &adapter->flags))
5006		e1000_irq_enable(adapter);
5007
5008	/* remove VID from filter table */
5009	index = (vid >> 5) & 0x7F;
5010	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5011	vfta &= ~(1 << (vid & 0x1F));
5012	e1000_write_vfta(hw, index, vfta);
5013
5014	clear_bit(vid, adapter->active_vlans);
5015
5016	if (!e1000_vlan_used(adapter))
5017		e1000_vlan_filter_on_off(adapter, false);
5018
5019	return 0;
5020}
5021
5022static void e1000_restore_vlan(struct e1000_adapter *adapter)
5023{
5024	u16 vid;
5025
5026	if (!e1000_vlan_used(adapter))
5027		return;
5028
5029	e1000_vlan_filter_on_off(adapter, true);
5030	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5031		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5032}
5033
5034int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5035{
5036	struct e1000_hw *hw = &adapter->hw;
5037
5038	hw->autoneg = 0;
5039
5040	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5041	 * for the switch() below to work
5042	 */
5043	if ((spd & 1) || (dplx & ~1))
5044		goto err_inval;
5045
5046	/* Fiber NICs only allow 1000 gbps Full duplex */
5047	if ((hw->media_type == e1000_media_type_fiber) &&
5048	    spd != SPEED_1000 &&
5049	    dplx != DUPLEX_FULL)
5050		goto err_inval;
5051
5052	switch (spd + dplx) {
5053	case SPEED_10 + DUPLEX_HALF:
5054		hw->forced_speed_duplex = e1000_10_half;
5055		break;
5056	case SPEED_10 + DUPLEX_FULL:
5057		hw->forced_speed_duplex = e1000_10_full;
5058		break;
5059	case SPEED_100 + DUPLEX_HALF:
5060		hw->forced_speed_duplex = e1000_100_half;
5061		break;
5062	case SPEED_100 + DUPLEX_FULL:
5063		hw->forced_speed_duplex = e1000_100_full;
5064		break;
5065	case SPEED_1000 + DUPLEX_FULL:
5066		hw->autoneg = 1;
5067		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5068		break;
5069	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5070	default:
5071		goto err_inval;
5072	}
5073
5074	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5075	hw->mdix = AUTO_ALL_MODES;
5076
5077	return 0;
5078
5079err_inval:
5080	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5081	return -EINVAL;
5082}
5083
5084static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5085{
5086	struct net_device *netdev = pci_get_drvdata(pdev);
5087	struct e1000_adapter *adapter = netdev_priv(netdev);
5088	struct e1000_hw *hw = &adapter->hw;
5089	u32 ctrl, ctrl_ext, rctl, status;
5090	u32 wufc = adapter->wol;
5091#ifdef CONFIG_PM
5092	int retval = 0;
5093#endif
5094
5095	netif_device_detach(netdev);
5096
5097	if (netif_running(netdev)) {
5098		int count = E1000_CHECK_RESET_COUNT;
5099
5100		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5101			usleep_range(10000, 20000);
5102
5103		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 
5104		e1000_down(adapter);
 
5105	}
5106
5107#ifdef CONFIG_PM
5108	retval = pci_save_state(pdev);
5109	if (retval)
5110		return retval;
5111#endif
5112
5113	status = er32(STATUS);
5114	if (status & E1000_STATUS_LU)
5115		wufc &= ~E1000_WUFC_LNKC;
5116
5117	if (wufc) {
5118		e1000_setup_rctl(adapter);
5119		e1000_set_rx_mode(netdev);
5120
5121		rctl = er32(RCTL);
5122
5123		/* turn on all-multi mode if wake on multicast is enabled */
5124		if (wufc & E1000_WUFC_MC)
5125			rctl |= E1000_RCTL_MPE;
5126
5127		/* enable receives in the hardware */
5128		ew32(RCTL, rctl | E1000_RCTL_EN);
5129
5130		if (hw->mac_type >= e1000_82540) {
5131			ctrl = er32(CTRL);
5132			/* advertise wake from D3Cold */
5133			#define E1000_CTRL_ADVD3WUC 0x00100000
5134			/* phy power management enable */
5135			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5136			ctrl |= E1000_CTRL_ADVD3WUC |
5137				E1000_CTRL_EN_PHY_PWR_MGMT;
5138			ew32(CTRL, ctrl);
5139		}
5140
5141		if (hw->media_type == e1000_media_type_fiber ||
5142		    hw->media_type == e1000_media_type_internal_serdes) {
5143			/* keep the laser running in D3 */
5144			ctrl_ext = er32(CTRL_EXT);
5145			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5146			ew32(CTRL_EXT, ctrl_ext);
5147		}
5148
5149		ew32(WUC, E1000_WUC_PME_EN);
5150		ew32(WUFC, wufc);
5151	} else {
5152		ew32(WUC, 0);
5153		ew32(WUFC, 0);
5154	}
5155
5156	e1000_release_manageability(adapter);
5157
5158	*enable_wake = !!wufc;
5159
5160	/* make sure adapter isn't asleep if manageability is enabled */
5161	if (adapter->en_mng_pt)
5162		*enable_wake = true;
5163
5164	if (netif_running(netdev))
5165		e1000_free_irq(adapter);
5166
5167	pci_disable_device(pdev);
 
5168
5169	return 0;
5170}
5171
5172#ifdef CONFIG_PM
5173static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5174{
5175	int retval;
 
5176	bool wake;
5177
5178	retval = __e1000_shutdown(pdev, &wake);
5179	if (retval)
5180		return retval;
5181
5182	if (wake) {
5183		pci_prepare_to_sleep(pdev);
5184	} else {
5185		pci_wake_from_d3(pdev, false);
5186		pci_set_power_state(pdev, PCI_D3hot);
5187	}
5188
5189	return 0;
5190}
5191
5192static int e1000_resume(struct pci_dev *pdev)
5193{
 
5194	struct net_device *netdev = pci_get_drvdata(pdev);
5195	struct e1000_adapter *adapter = netdev_priv(netdev);
5196	struct e1000_hw *hw = &adapter->hw;
5197	u32 err;
5198
5199	pci_set_power_state(pdev, PCI_D0);
5200	pci_restore_state(pdev);
5201	pci_save_state(pdev);
5202
5203	if (adapter->need_ioport)
5204		err = pci_enable_device(pdev);
5205	else
5206		err = pci_enable_device_mem(pdev);
5207	if (err) {
5208		pr_err("Cannot enable PCI device from suspend\n");
5209		return err;
5210	}
 
 
 
 
5211	pci_set_master(pdev);
5212
5213	pci_enable_wake(pdev, PCI_D3hot, 0);
5214	pci_enable_wake(pdev, PCI_D3cold, 0);
5215
5216	if (netif_running(netdev)) {
5217		err = e1000_request_irq(adapter);
5218		if (err)
5219			return err;
5220	}
5221
5222	e1000_power_up_phy(adapter);
5223	e1000_reset(adapter);
5224	ew32(WUS, ~0);
5225
5226	e1000_init_manageability(adapter);
5227
5228	if (netif_running(netdev))
5229		e1000_up(adapter);
5230
5231	netif_device_attach(netdev);
5232
5233	return 0;
5234}
5235#endif
5236
5237static void e1000_shutdown(struct pci_dev *pdev)
5238{
5239	bool wake;
5240
5241	__e1000_shutdown(pdev, &wake);
5242
5243	if (system_state == SYSTEM_POWER_OFF) {
5244		pci_wake_from_d3(pdev, wake);
5245		pci_set_power_state(pdev, PCI_D3hot);
5246	}
5247}
5248
5249#ifdef CONFIG_NET_POLL_CONTROLLER
5250/* Polling 'interrupt' - used by things like netconsole to send skbs
5251 * without having to re-enable interrupts. It's not called while
5252 * the interrupt routine is executing.
5253 */
5254static void e1000_netpoll(struct net_device *netdev)
5255{
5256	struct e1000_adapter *adapter = netdev_priv(netdev);
5257
5258	if (disable_hardirq(adapter->pdev->irq))
5259		e1000_intr(adapter->pdev->irq, netdev);
5260	enable_irq(adapter->pdev->irq);
5261}
5262#endif
5263
5264/**
5265 * e1000_io_error_detected - called when PCI error is detected
5266 * @pdev: Pointer to PCI device
5267 * @state: The current pci connection state
5268 *
5269 * This function is called after a PCI bus error affecting
5270 * this device has been detected.
5271 */
5272static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5273						pci_channel_state_t state)
5274{
5275	struct net_device *netdev = pci_get_drvdata(pdev);
5276	struct e1000_adapter *adapter = netdev_priv(netdev);
5277
 
5278	netif_device_detach(netdev);
5279
5280	if (state == pci_channel_io_perm_failure)
 
5281		return PCI_ERS_RESULT_DISCONNECT;
 
5282
5283	if (netif_running(netdev))
5284		e1000_down(adapter);
5285	pci_disable_device(pdev);
5286
5287	/* Request a slot slot reset. */
 
 
 
 
5288	return PCI_ERS_RESULT_NEED_RESET;
5289}
5290
5291/**
5292 * e1000_io_slot_reset - called after the pci bus has been reset.
5293 * @pdev: Pointer to PCI device
5294 *
5295 * Restart the card from scratch, as if from a cold-boot. Implementation
5296 * resembles the first-half of the e1000_resume routine.
5297 */
5298static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5299{
5300	struct net_device *netdev = pci_get_drvdata(pdev);
5301	struct e1000_adapter *adapter = netdev_priv(netdev);
5302	struct e1000_hw *hw = &adapter->hw;
5303	int err;
5304
5305	if (adapter->need_ioport)
5306		err = pci_enable_device(pdev);
5307	else
5308		err = pci_enable_device_mem(pdev);
5309	if (err) {
5310		pr_err("Cannot re-enable PCI device after reset.\n");
5311		return PCI_ERS_RESULT_DISCONNECT;
5312	}
 
 
 
 
5313	pci_set_master(pdev);
5314
5315	pci_enable_wake(pdev, PCI_D3hot, 0);
5316	pci_enable_wake(pdev, PCI_D3cold, 0);
5317
5318	e1000_reset(adapter);
5319	ew32(WUS, ~0);
5320
5321	return PCI_ERS_RESULT_RECOVERED;
5322}
5323
5324/**
5325 * e1000_io_resume - called when traffic can start flowing again.
5326 * @pdev: Pointer to PCI device
5327 *
5328 * This callback is called when the error recovery driver tells us that
5329 * its OK to resume normal operation. Implementation resembles the
5330 * second-half of the e1000_resume routine.
5331 */
5332static void e1000_io_resume(struct pci_dev *pdev)
5333{
5334	struct net_device *netdev = pci_get_drvdata(pdev);
5335	struct e1000_adapter *adapter = netdev_priv(netdev);
5336
5337	e1000_init_manageability(adapter);
5338
5339	if (netif_running(netdev)) {
5340		if (e1000_up(adapter)) {
5341			pr_info("can't bring device back up after reset\n");
5342			return;
5343		}
5344	}
5345
5346	netif_device_attach(netdev);
5347}
5348
5349/* e1000_main.c */