Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4#include "e1000.h"
5#include <net/ip6_checksum.h>
6#include <linux/io.h>
7#include <linux/prefetch.h>
8#include <linux/bitops.h>
9#include <linux/if_vlan.h>
10
11char e1000_driver_name[] = "e1000";
12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14
15/* e1000_pci_tbl - PCI Device ID Table
16 *
17 * Last entry must be all 0s
18 *
19 * Macro expands to...
20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21 */
22static const struct pci_device_id e1000_pci_tbl[] = {
23 INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 /* required last entry */
61 {0,}
62};
63
64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65
66int e1000_up(struct e1000_adapter *adapter);
67void e1000_down(struct e1000_adapter *adapter);
68void e1000_reinit_locked(struct e1000_adapter *adapter);
69void e1000_reset(struct e1000_adapter *adapter);
70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 struct e1000_tx_ring *txdr);
76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 struct e1000_rx_ring *rxdr);
78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 struct e1000_tx_ring *tx_ring);
80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 struct e1000_rx_ring *rx_ring);
82void e1000_update_stats(struct e1000_adapter *adapter);
83
84static int e1000_init_module(void);
85static void e1000_exit_module(void);
86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87static void e1000_remove(struct pci_dev *pdev);
88static int e1000_alloc_queues(struct e1000_adapter *adapter);
89static int e1000_sw_init(struct e1000_adapter *adapter);
90int e1000_open(struct net_device *netdev);
91int e1000_close(struct net_device *netdev);
92static void e1000_configure_tx(struct e1000_adapter *adapter);
93static void e1000_configure_rx(struct e1000_adapter *adapter);
94static void e1000_setup_rctl(struct e1000_adapter *adapter);
95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *tx_ring);
99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rx_ring);
101static void e1000_set_rx_mode(struct net_device *netdev);
102static void e1000_update_phy_info_task(struct work_struct *work);
103static void e1000_watchdog(struct work_struct *work);
104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 struct net_device *netdev);
107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108static int e1000_set_mac(struct net_device *netdev, void *p);
109static irqreturn_t e1000_intr(int irq, void *data);
110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 struct e1000_tx_ring *tx_ring);
112static int e1000_clean(struct napi_struct *napi, int budget);
113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 struct e1000_rx_ring *rx_ring,
115 int *work_done, int work_to_do);
116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 struct e1000_rx_ring *rx_ring,
118 int *work_done, int work_to_do);
119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 struct e1000_rx_ring *rx_ring,
121 int cleaned_count)
122{
123}
124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 struct e1000_rx_ring *rx_ring,
126 int cleaned_count);
127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring,
129 int cleaned_count);
130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 int cmd);
133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136static void e1000_reset_task(struct work_struct *work);
137static void e1000_smartspeed(struct e1000_adapter *adapter);
138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 struct sk_buff *skb);
140
141static bool e1000_vlan_used(struct e1000_adapter *adapter);
142static void e1000_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 bool filter_on);
146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 __be16 proto, u16 vid);
148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 __be16 proto, u16 vid);
150static void e1000_restore_vlan(struct e1000_adapter *adapter);
151
152static int e1000_suspend(struct device *dev);
153static int e1000_resume(struct device *dev);
154static void e1000_shutdown(struct pci_dev *pdev);
155
156#ifdef CONFIG_NET_POLL_CONTROLLER
157/* for netdump / net console */
158static void e1000_netpoll (struct net_device *netdev);
159#endif
160
161#define COPYBREAK_DEFAULT 256
162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163module_param(copybreak, uint, 0644);
164MODULE_PARM_DESC(copybreak,
165 "Maximum size of packet that is copied to a new buffer on receive");
166
167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 pci_channel_state_t state);
169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170static void e1000_io_resume(struct pci_dev *pdev);
171
172static const struct pci_error_handlers e1000_err_handler = {
173 .error_detected = e1000_io_error_detected,
174 .slot_reset = e1000_io_slot_reset,
175 .resume = e1000_io_resume,
176};
177
178static DEFINE_SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179
180static struct pci_driver e1000_driver = {
181 .name = e1000_driver_name,
182 .id_table = e1000_pci_tbl,
183 .probe = e1000_probe,
184 .remove = e1000_remove,
185 .driver.pm = pm_sleep_ptr(&e1000_pm_ops),
186 .shutdown = e1000_shutdown,
187 .err_handler = &e1000_err_handler
188};
189
190MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
191MODULE_LICENSE("GPL v2");
192
193#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
194static int debug = -1;
195module_param(debug, int, 0);
196MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
197
198/**
199 * e1000_get_hw_dev - helper function for getting netdev
200 * @hw: pointer to HW struct
201 *
202 * return device used by hardware layer to print debugging information
203 *
204 **/
205struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
206{
207 struct e1000_adapter *adapter = hw->back;
208 return adapter->netdev;
209}
210
211/**
212 * e1000_init_module - Driver Registration Routine
213 *
214 * e1000_init_module is the first routine called when the driver is
215 * loaded. All it does is register with the PCI subsystem.
216 **/
217static int __init e1000_init_module(void)
218{
219 int ret;
220 pr_info("%s\n", e1000_driver_string);
221
222 pr_info("%s\n", e1000_copyright);
223
224 ret = pci_register_driver(&e1000_driver);
225 if (copybreak != COPYBREAK_DEFAULT) {
226 if (copybreak == 0)
227 pr_info("copybreak disabled\n");
228 else
229 pr_info("copybreak enabled for "
230 "packets <= %u bytes\n", copybreak);
231 }
232 return ret;
233}
234
235module_init(e1000_init_module);
236
237/**
238 * e1000_exit_module - Driver Exit Cleanup Routine
239 *
240 * e1000_exit_module is called just before the driver is removed
241 * from memory.
242 **/
243static void __exit e1000_exit_module(void)
244{
245 pci_unregister_driver(&e1000_driver);
246}
247
248module_exit(e1000_exit_module);
249
250static int e1000_request_irq(struct e1000_adapter *adapter)
251{
252 struct net_device *netdev = adapter->netdev;
253 irq_handler_t handler = e1000_intr;
254 int irq_flags = IRQF_SHARED;
255 int err;
256
257 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
258 netdev);
259 if (err) {
260 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
261 }
262
263 return err;
264}
265
266static void e1000_free_irq(struct e1000_adapter *adapter)
267{
268 struct net_device *netdev = adapter->netdev;
269
270 free_irq(adapter->pdev->irq, netdev);
271}
272
273/**
274 * e1000_irq_disable - Mask off interrupt generation on the NIC
275 * @adapter: board private structure
276 **/
277static void e1000_irq_disable(struct e1000_adapter *adapter)
278{
279 struct e1000_hw *hw = &adapter->hw;
280
281 ew32(IMC, ~0);
282 E1000_WRITE_FLUSH();
283 synchronize_irq(adapter->pdev->irq);
284}
285
286/**
287 * e1000_irq_enable - Enable default interrupt generation settings
288 * @adapter: board private structure
289 **/
290static void e1000_irq_enable(struct e1000_adapter *adapter)
291{
292 struct e1000_hw *hw = &adapter->hw;
293
294 ew32(IMS, IMS_ENABLE_MASK);
295 E1000_WRITE_FLUSH();
296}
297
298static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
299{
300 struct e1000_hw *hw = &adapter->hw;
301 struct net_device *netdev = adapter->netdev;
302 u16 vid = hw->mng_cookie.vlan_id;
303 u16 old_vid = adapter->mng_vlan_id;
304
305 if (!e1000_vlan_used(adapter))
306 return;
307
308 if (!test_bit(vid, adapter->active_vlans)) {
309 if (hw->mng_cookie.status &
310 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
311 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
312 adapter->mng_vlan_id = vid;
313 } else {
314 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
315 }
316 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
317 (vid != old_vid) &&
318 !test_bit(old_vid, adapter->active_vlans))
319 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
320 old_vid);
321 } else {
322 adapter->mng_vlan_id = vid;
323 }
324}
325
326static void e1000_init_manageability(struct e1000_adapter *adapter)
327{
328 struct e1000_hw *hw = &adapter->hw;
329
330 if (adapter->en_mng_pt) {
331 u32 manc = er32(MANC);
332
333 /* disable hardware interception of ARP */
334 manc &= ~(E1000_MANC_ARP_EN);
335
336 ew32(MANC, manc);
337 }
338}
339
340static void e1000_release_manageability(struct e1000_adapter *adapter)
341{
342 struct e1000_hw *hw = &adapter->hw;
343
344 if (adapter->en_mng_pt) {
345 u32 manc = er32(MANC);
346
347 /* re-enable hardware interception of ARP */
348 manc |= E1000_MANC_ARP_EN;
349
350 ew32(MANC, manc);
351 }
352}
353
354/**
355 * e1000_configure - configure the hardware for RX and TX
356 * @adapter: private board structure
357 **/
358static void e1000_configure(struct e1000_adapter *adapter)
359{
360 struct net_device *netdev = adapter->netdev;
361 int i;
362
363 e1000_set_rx_mode(netdev);
364
365 e1000_restore_vlan(adapter);
366 e1000_init_manageability(adapter);
367
368 e1000_configure_tx(adapter);
369 e1000_setup_rctl(adapter);
370 e1000_configure_rx(adapter);
371 /* call E1000_DESC_UNUSED which always leaves
372 * at least 1 descriptor unused to make sure
373 * next_to_use != next_to_clean
374 */
375 for (i = 0; i < adapter->num_rx_queues; i++) {
376 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
377 adapter->alloc_rx_buf(adapter, ring,
378 E1000_DESC_UNUSED(ring));
379 }
380}
381
382int e1000_up(struct e1000_adapter *adapter)
383{
384 struct e1000_hw *hw = &adapter->hw;
385
386 /* hardware has been reset, we need to reload some things */
387 e1000_configure(adapter);
388
389 clear_bit(__E1000_DOWN, &adapter->flags);
390
391 napi_enable(&adapter->napi);
392
393 e1000_irq_enable(adapter);
394
395 netif_wake_queue(adapter->netdev);
396
397 /* fire a link change interrupt to start the watchdog */
398 ew32(ICS, E1000_ICS_LSC);
399 return 0;
400}
401
402/**
403 * e1000_power_up_phy - restore link in case the phy was powered down
404 * @adapter: address of board private structure
405 *
406 * The phy may be powered down to save power and turn off link when the
407 * driver is unloaded and wake on lan is not enabled (among others)
408 * *** this routine MUST be followed by a call to e1000_reset ***
409 **/
410void e1000_power_up_phy(struct e1000_adapter *adapter)
411{
412 struct e1000_hw *hw = &adapter->hw;
413 u16 mii_reg = 0;
414
415 /* Just clear the power down bit to wake the phy back up */
416 if (hw->media_type == e1000_media_type_copper) {
417 /* according to the manual, the phy will retain its
418 * settings across a power-down/up cycle
419 */
420 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
421 mii_reg &= ~MII_CR_POWER_DOWN;
422 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
423 }
424}
425
426static void e1000_power_down_phy(struct e1000_adapter *adapter)
427{
428 struct e1000_hw *hw = &adapter->hw;
429
430 /* Power down the PHY so no link is implied when interface is down *
431 * The PHY cannot be powered down if any of the following is true *
432 * (a) WoL is enabled
433 * (b) AMT is active
434 * (c) SoL/IDER session is active
435 */
436 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
437 hw->media_type == e1000_media_type_copper) {
438 u16 mii_reg = 0;
439
440 switch (hw->mac_type) {
441 case e1000_82540:
442 case e1000_82545:
443 case e1000_82545_rev_3:
444 case e1000_82546:
445 case e1000_ce4100:
446 case e1000_82546_rev_3:
447 case e1000_82541:
448 case e1000_82541_rev_2:
449 case e1000_82547:
450 case e1000_82547_rev_2:
451 if (er32(MANC) & E1000_MANC_SMBUS_EN)
452 goto out;
453 break;
454 default:
455 goto out;
456 }
457 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
458 mii_reg |= MII_CR_POWER_DOWN;
459 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
460 msleep(1);
461 }
462out:
463 return;
464}
465
466static void e1000_down_and_stop(struct e1000_adapter *adapter)
467{
468 set_bit(__E1000_DOWN, &adapter->flags);
469
470 cancel_delayed_work_sync(&adapter->watchdog_task);
471
472 /*
473 * Since the watchdog task can reschedule other tasks, we should cancel
474 * it first, otherwise we can run into the situation when a work is
475 * still running after the adapter has been turned down.
476 */
477
478 cancel_delayed_work_sync(&adapter->phy_info_task);
479 cancel_delayed_work_sync(&adapter->fifo_stall_task);
480
481 /* Only kill reset task if adapter is not resetting */
482 if (!test_bit(__E1000_RESETTING, &adapter->flags))
483 cancel_work_sync(&adapter->reset_task);
484}
485
486void e1000_down(struct e1000_adapter *adapter)
487{
488 struct e1000_hw *hw = &adapter->hw;
489 struct net_device *netdev = adapter->netdev;
490 u32 rctl, tctl;
491
492 /* disable receives in the hardware */
493 rctl = er32(RCTL);
494 ew32(RCTL, rctl & ~E1000_RCTL_EN);
495 /* flush and sleep below */
496
497 netif_tx_disable(netdev);
498
499 /* disable transmits in the hardware */
500 tctl = er32(TCTL);
501 tctl &= ~E1000_TCTL_EN;
502 ew32(TCTL, tctl);
503 /* flush both disables and wait for them to finish */
504 E1000_WRITE_FLUSH();
505 msleep(10);
506
507 /* Set the carrier off after transmits have been disabled in the
508 * hardware, to avoid race conditions with e1000_watchdog() (which
509 * may be running concurrently to us, checking for the carrier
510 * bit to decide whether it should enable transmits again). Such
511 * a race condition would result into transmission being disabled
512 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
513 */
514 netif_carrier_off(netdev);
515
516 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
517 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
518 napi_disable(&adapter->napi);
519
520 e1000_irq_disable(adapter);
521
522 /* Setting DOWN must be after irq_disable to prevent
523 * a screaming interrupt. Setting DOWN also prevents
524 * tasks from rescheduling.
525 */
526 e1000_down_and_stop(adapter);
527
528 adapter->link_speed = 0;
529 adapter->link_duplex = 0;
530
531 e1000_reset(adapter);
532 e1000_clean_all_tx_rings(adapter);
533 e1000_clean_all_rx_rings(adapter);
534}
535
536void e1000_reinit_locked(struct e1000_adapter *adapter)
537{
538 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
539 msleep(1);
540
541 /* only run the task if not already down */
542 if (!test_bit(__E1000_DOWN, &adapter->flags)) {
543 e1000_down(adapter);
544 e1000_up(adapter);
545 }
546
547 clear_bit(__E1000_RESETTING, &adapter->flags);
548}
549
550void e1000_reset(struct e1000_adapter *adapter)
551{
552 struct e1000_hw *hw = &adapter->hw;
553 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
554 bool legacy_pba_adjust = false;
555 u16 hwm;
556
557 /* Repartition Pba for greater than 9k mtu
558 * To take effect CTRL.RST is required.
559 */
560
561 switch (hw->mac_type) {
562 case e1000_82542_rev2_0:
563 case e1000_82542_rev2_1:
564 case e1000_82543:
565 case e1000_82544:
566 case e1000_82540:
567 case e1000_82541:
568 case e1000_82541_rev_2:
569 legacy_pba_adjust = true;
570 pba = E1000_PBA_48K;
571 break;
572 case e1000_82545:
573 case e1000_82545_rev_3:
574 case e1000_82546:
575 case e1000_ce4100:
576 case e1000_82546_rev_3:
577 pba = E1000_PBA_48K;
578 break;
579 case e1000_82547:
580 case e1000_82547_rev_2:
581 legacy_pba_adjust = true;
582 pba = E1000_PBA_30K;
583 break;
584 case e1000_undefined:
585 case e1000_num_macs:
586 break;
587 }
588
589 if (legacy_pba_adjust) {
590 if (hw->max_frame_size > E1000_RXBUFFER_8192)
591 pba -= 8; /* allocate more FIFO for Tx */
592
593 if (hw->mac_type == e1000_82547) {
594 adapter->tx_fifo_head = 0;
595 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596 adapter->tx_fifo_size =
597 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598 atomic_set(&adapter->tx_fifo_stall, 0);
599 }
600 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
601 /* adjust PBA for jumbo frames */
602 ew32(PBA, pba);
603
604 /* To maintain wire speed transmits, the Tx FIFO should be
605 * large enough to accommodate two full transmit packets,
606 * rounded up to the next 1KB and expressed in KB. Likewise,
607 * the Rx FIFO should be large enough to accommodate at least
608 * one full receive packet and is similarly rounded up and
609 * expressed in KB.
610 */
611 pba = er32(PBA);
612 /* upper 16 bits has Tx packet buffer allocation size in KB */
613 tx_space = pba >> 16;
614 /* lower 16 bits has Rx packet buffer allocation size in KB */
615 pba &= 0xffff;
616 /* the Tx fifo also stores 16 bytes of information about the Tx
617 * but don't include ethernet FCS because hardware appends it
618 */
619 min_tx_space = (hw->max_frame_size +
620 sizeof(struct e1000_tx_desc) -
621 ETH_FCS_LEN) * 2;
622 min_tx_space = ALIGN(min_tx_space, 1024);
623 min_tx_space >>= 10;
624 /* software strips receive CRC, so leave room for it */
625 min_rx_space = hw->max_frame_size;
626 min_rx_space = ALIGN(min_rx_space, 1024);
627 min_rx_space >>= 10;
628
629 /* If current Tx allocation is less than the min Tx FIFO size,
630 * and the min Tx FIFO size is less than the current Rx FIFO
631 * allocation, take space away from current Rx allocation
632 */
633 if (tx_space < min_tx_space &&
634 ((min_tx_space - tx_space) < pba)) {
635 pba = pba - (min_tx_space - tx_space);
636
637 /* PCI/PCIx hardware has PBA alignment constraints */
638 switch (hw->mac_type) {
639 case e1000_82545 ... e1000_82546_rev_3:
640 pba &= ~(E1000_PBA_8K - 1);
641 break;
642 default:
643 break;
644 }
645
646 /* if short on Rx space, Rx wins and must trump Tx
647 * adjustment or use Early Receive if available
648 */
649 if (pba < min_rx_space)
650 pba = min_rx_space;
651 }
652 }
653
654 ew32(PBA, pba);
655
656 /* flow control settings:
657 * The high water mark must be low enough to fit one full frame
658 * (or the size used for early receive) above it in the Rx FIFO.
659 * Set it to the lower of:
660 * - 90% of the Rx FIFO size, and
661 * - the full Rx FIFO size minus the early receive size (for parts
662 * with ERT support assuming ERT set to E1000_ERT_2048), or
663 * - the full Rx FIFO size minus one full frame
664 */
665 hwm = min(((pba << 10) * 9 / 10),
666 ((pba << 10) - hw->max_frame_size));
667
668 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
669 hw->fc_low_water = hw->fc_high_water - 8;
670 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
671 hw->fc_send_xon = 1;
672 hw->fc = hw->original_fc;
673
674 /* Allow time for pending master requests to run */
675 e1000_reset_hw(hw);
676 if (hw->mac_type >= e1000_82544)
677 ew32(WUC, 0);
678
679 if (e1000_init_hw(hw))
680 e_dev_err("Hardware Error\n");
681 e1000_update_mng_vlan(adapter);
682
683 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
684 if (hw->mac_type >= e1000_82544 &&
685 hw->autoneg == 1 &&
686 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
687 u32 ctrl = er32(CTRL);
688 /* clear phy power management bit if we are in gig only mode,
689 * which if enabled will attempt negotiation to 100Mb, which
690 * can cause a loss of link at power off or driver unload
691 */
692 ctrl &= ~E1000_CTRL_SWDPIN3;
693 ew32(CTRL, ctrl);
694 }
695
696 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
697 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
698
699 e1000_reset_adaptive(hw);
700 e1000_phy_get_info(hw, &adapter->phy_info);
701
702 e1000_release_manageability(adapter);
703}
704
705/* Dump the eeprom for users having checksum issues */
706static void e1000_dump_eeprom(struct e1000_adapter *adapter)
707{
708 struct net_device *netdev = adapter->netdev;
709 struct ethtool_eeprom eeprom;
710 const struct ethtool_ops *ops = netdev->ethtool_ops;
711 u8 *data;
712 int i;
713 u16 csum_old, csum_new = 0;
714
715 eeprom.len = ops->get_eeprom_len(netdev);
716 eeprom.offset = 0;
717
718 data = kmalloc(eeprom.len, GFP_KERNEL);
719 if (!data)
720 return;
721
722 ops->get_eeprom(netdev, &eeprom, data);
723
724 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
725 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
726 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
727 csum_new += data[i] + (data[i + 1] << 8);
728 csum_new = EEPROM_SUM - csum_new;
729
730 pr_err("/*********************/\n");
731 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
732 pr_err("Calculated : 0x%04x\n", csum_new);
733
734 pr_err("Offset Values\n");
735 pr_err("======== ======\n");
736 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
737
738 pr_err("Include this output when contacting your support provider.\n");
739 pr_err("This is not a software error! Something bad happened to\n");
740 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
741 pr_err("result in further problems, possibly loss of data,\n");
742 pr_err("corruption or system hangs!\n");
743 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
744 pr_err("which is invalid and requires you to set the proper MAC\n");
745 pr_err("address manually before continuing to enable this network\n");
746 pr_err("device. Please inspect the EEPROM dump and report the\n");
747 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
748 pr_err("/*********************/\n");
749
750 kfree(data);
751}
752
753/**
754 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
755 * @pdev: PCI device information struct
756 *
757 * Return true if an adapter needs ioport resources
758 **/
759static int e1000_is_need_ioport(struct pci_dev *pdev)
760{
761 switch (pdev->device) {
762 case E1000_DEV_ID_82540EM:
763 case E1000_DEV_ID_82540EM_LOM:
764 case E1000_DEV_ID_82540EP:
765 case E1000_DEV_ID_82540EP_LOM:
766 case E1000_DEV_ID_82540EP_LP:
767 case E1000_DEV_ID_82541EI:
768 case E1000_DEV_ID_82541EI_MOBILE:
769 case E1000_DEV_ID_82541ER:
770 case E1000_DEV_ID_82541ER_LOM:
771 case E1000_DEV_ID_82541GI:
772 case E1000_DEV_ID_82541GI_LF:
773 case E1000_DEV_ID_82541GI_MOBILE:
774 case E1000_DEV_ID_82544EI_COPPER:
775 case E1000_DEV_ID_82544EI_FIBER:
776 case E1000_DEV_ID_82544GC_COPPER:
777 case E1000_DEV_ID_82544GC_LOM:
778 case E1000_DEV_ID_82545EM_COPPER:
779 case E1000_DEV_ID_82545EM_FIBER:
780 case E1000_DEV_ID_82546EB_COPPER:
781 case E1000_DEV_ID_82546EB_FIBER:
782 case E1000_DEV_ID_82546EB_QUAD_COPPER:
783 return true;
784 default:
785 return false;
786 }
787}
788
789static netdev_features_t e1000_fix_features(struct net_device *netdev,
790 netdev_features_t features)
791{
792 /* Since there is no support for separate Rx/Tx vlan accel
793 * enable/disable make sure Tx flag is always in same state as Rx.
794 */
795 if (features & NETIF_F_HW_VLAN_CTAG_RX)
796 features |= NETIF_F_HW_VLAN_CTAG_TX;
797 else
798 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
799
800 return features;
801}
802
803static int e1000_set_features(struct net_device *netdev,
804 netdev_features_t features)
805{
806 struct e1000_adapter *adapter = netdev_priv(netdev);
807 netdev_features_t changed = features ^ netdev->features;
808
809 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
810 e1000_vlan_mode(netdev, features);
811
812 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
813 return 0;
814
815 netdev->features = features;
816 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
817
818 if (netif_running(netdev))
819 e1000_reinit_locked(adapter);
820 else
821 e1000_reset(adapter);
822
823 return 1;
824}
825
826static const struct net_device_ops e1000_netdev_ops = {
827 .ndo_open = e1000_open,
828 .ndo_stop = e1000_close,
829 .ndo_start_xmit = e1000_xmit_frame,
830 .ndo_set_rx_mode = e1000_set_rx_mode,
831 .ndo_set_mac_address = e1000_set_mac,
832 .ndo_tx_timeout = e1000_tx_timeout,
833 .ndo_change_mtu = e1000_change_mtu,
834 .ndo_eth_ioctl = e1000_ioctl,
835 .ndo_validate_addr = eth_validate_addr,
836 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
837 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
838#ifdef CONFIG_NET_POLL_CONTROLLER
839 .ndo_poll_controller = e1000_netpoll,
840#endif
841 .ndo_fix_features = e1000_fix_features,
842 .ndo_set_features = e1000_set_features,
843};
844
845/**
846 * e1000_init_hw_struct - initialize members of hw struct
847 * @adapter: board private struct
848 * @hw: structure used by e1000_hw.c
849 *
850 * Factors out initialization of the e1000_hw struct to its own function
851 * that can be called very early at init (just after struct allocation).
852 * Fields are initialized based on PCI device information and
853 * OS network device settings (MTU size).
854 * Returns negative error codes if MAC type setup fails.
855 */
856static int e1000_init_hw_struct(struct e1000_adapter *adapter,
857 struct e1000_hw *hw)
858{
859 struct pci_dev *pdev = adapter->pdev;
860
861 /* PCI config space info */
862 hw->vendor_id = pdev->vendor;
863 hw->device_id = pdev->device;
864 hw->subsystem_vendor_id = pdev->subsystem_vendor;
865 hw->subsystem_id = pdev->subsystem_device;
866 hw->revision_id = pdev->revision;
867
868 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
869
870 hw->max_frame_size = adapter->netdev->mtu +
871 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
872 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
873
874 /* identify the MAC */
875 if (e1000_set_mac_type(hw)) {
876 e_err(probe, "Unknown MAC Type\n");
877 return -EIO;
878 }
879
880 switch (hw->mac_type) {
881 default:
882 break;
883 case e1000_82541:
884 case e1000_82547:
885 case e1000_82541_rev_2:
886 case e1000_82547_rev_2:
887 hw->phy_init_script = 1;
888 break;
889 }
890
891 e1000_set_media_type(hw);
892 e1000_get_bus_info(hw);
893
894 hw->wait_autoneg_complete = false;
895 hw->tbi_compatibility_en = true;
896 hw->adaptive_ifs = true;
897
898 /* Copper options */
899
900 if (hw->media_type == e1000_media_type_copper) {
901 hw->mdix = AUTO_ALL_MODES;
902 hw->disable_polarity_correction = false;
903 hw->master_slave = E1000_MASTER_SLAVE;
904 }
905
906 return 0;
907}
908
909/**
910 * e1000_probe - Device Initialization Routine
911 * @pdev: PCI device information struct
912 * @ent: entry in e1000_pci_tbl
913 *
914 * Returns 0 on success, negative on failure
915 *
916 * e1000_probe initializes an adapter identified by a pci_dev structure.
917 * The OS initialization, configuring of the adapter private structure,
918 * and a hardware reset occur.
919 **/
920static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
921{
922 struct net_device *netdev;
923 struct e1000_adapter *adapter = NULL;
924 struct e1000_hw *hw;
925
926 static int cards_found;
927 static int global_quad_port_a; /* global ksp3 port a indication */
928 int i, err, pci_using_dac;
929 u16 eeprom_data = 0;
930 u16 tmp = 0;
931 u16 eeprom_apme_mask = E1000_EEPROM_APME;
932 int bars, need_ioport;
933 bool disable_dev = false;
934
935 /* do not allocate ioport bars when not needed */
936 need_ioport = e1000_is_need_ioport(pdev);
937 if (need_ioport) {
938 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
939 err = pci_enable_device(pdev);
940 } else {
941 bars = pci_select_bars(pdev, IORESOURCE_MEM);
942 err = pci_enable_device_mem(pdev);
943 }
944 if (err)
945 return err;
946
947 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
948 if (err)
949 goto err_pci_reg;
950
951 pci_set_master(pdev);
952 err = pci_save_state(pdev);
953 if (err)
954 goto err_alloc_etherdev;
955
956 err = -ENOMEM;
957 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
958 if (!netdev)
959 goto err_alloc_etherdev;
960
961 SET_NETDEV_DEV(netdev, &pdev->dev);
962
963 pci_set_drvdata(pdev, netdev);
964 adapter = netdev_priv(netdev);
965 adapter->netdev = netdev;
966 adapter->pdev = pdev;
967 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
968 adapter->bars = bars;
969 adapter->need_ioport = need_ioport;
970
971 hw = &adapter->hw;
972 hw->back = adapter;
973
974 err = -EIO;
975 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
976 if (!hw->hw_addr)
977 goto err_ioremap;
978
979 if (adapter->need_ioport) {
980 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
981 if (pci_resource_len(pdev, i) == 0)
982 continue;
983 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
984 hw->io_base = pci_resource_start(pdev, i);
985 break;
986 }
987 }
988 }
989
990 /* make ready for any if (hw->...) below */
991 err = e1000_init_hw_struct(adapter, hw);
992 if (err)
993 goto err_sw_init;
994
995 /* there is a workaround being applied below that limits
996 * 64-bit DMA addresses to 64-bit hardware. There are some
997 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
998 */
999 pci_using_dac = 0;
1000 if ((hw->bus_type == e1000_bus_type_pcix) &&
1001 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002 pci_using_dac = 1;
1003 } else {
1004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005 if (err) {
1006 pr_err("No usable DMA config, aborting\n");
1007 goto err_dma;
1008 }
1009 }
1010
1011 netdev->netdev_ops = &e1000_netdev_ops;
1012 e1000_set_ethtool_ops(netdev);
1013 netdev->watchdog_timeo = 5 * HZ;
1014 netif_napi_add(netdev, &adapter->napi, e1000_clean);
1015
1016 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1017
1018 adapter->bd_number = cards_found;
1019
1020 /* setup the private structure */
1021
1022 err = e1000_sw_init(adapter);
1023 if (err)
1024 goto err_sw_init;
1025
1026 err = -EIO;
1027 if (hw->mac_type == e1000_ce4100) {
1028 hw->ce4100_gbe_mdio_base_virt =
1029 ioremap(pci_resource_start(pdev, BAR_1),
1030 pci_resource_len(pdev, BAR_1));
1031
1032 if (!hw->ce4100_gbe_mdio_base_virt)
1033 goto err_mdio_ioremap;
1034 }
1035
1036 if (hw->mac_type >= e1000_82543) {
1037 netdev->hw_features = NETIF_F_SG |
1038 NETIF_F_HW_CSUM |
1039 NETIF_F_HW_VLAN_CTAG_RX;
1040 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041 NETIF_F_HW_VLAN_CTAG_FILTER;
1042 }
1043
1044 if ((hw->mac_type >= e1000_82544) &&
1045 (hw->mac_type != e1000_82547))
1046 netdev->hw_features |= NETIF_F_TSO;
1047
1048 netdev->priv_flags |= IFF_SUPP_NOFCS;
1049
1050 netdev->features |= netdev->hw_features;
1051 netdev->hw_features |= (NETIF_F_RXCSUM |
1052 NETIF_F_RXALL |
1053 NETIF_F_RXFCS);
1054
1055 if (pci_using_dac) {
1056 netdev->features |= NETIF_F_HIGHDMA;
1057 netdev->vlan_features |= NETIF_F_HIGHDMA;
1058 }
1059
1060 netdev->vlan_features |= (NETIF_F_TSO |
1061 NETIF_F_HW_CSUM |
1062 NETIF_F_SG);
1063
1064 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067 netdev->priv_flags |= IFF_UNICAST_FLT;
1068
1069 /* MTU range: 46 - 16110 */
1070 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072
1073 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075 /* initialize eeprom parameters */
1076 if (e1000_init_eeprom_params(hw)) {
1077 e_err(probe, "EEPROM initialization failed\n");
1078 goto err_eeprom;
1079 }
1080
1081 /* before reading the EEPROM, reset the controller to
1082 * put the device in a known good starting state
1083 */
1084
1085 e1000_reset_hw(hw);
1086
1087 /* make sure the EEPROM is good */
1088 if (e1000_validate_eeprom_checksum(hw) < 0) {
1089 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090 e1000_dump_eeprom(adapter);
1091 /* set MAC address to all zeroes to invalidate and temporary
1092 * disable this device for the user. This blocks regular
1093 * traffic while still permitting ethtool ioctls from reaching
1094 * the hardware as well as allowing the user to run the
1095 * interface after manually setting a hw addr using
1096 * `ip set address`
1097 */
1098 memset(hw->mac_addr, 0, netdev->addr_len);
1099 } else {
1100 /* copy the MAC address out of the EEPROM */
1101 if (e1000_read_mac_addr(hw))
1102 e_err(probe, "EEPROM Read Error\n");
1103 }
1104 /* don't block initialization here due to bad MAC address */
1105 eth_hw_addr_set(netdev, hw->mac_addr);
1106
1107 if (!is_valid_ether_addr(netdev->dev_addr))
1108 e_err(probe, "Invalid MAC Address\n");
1109
1110
1111 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113 e1000_82547_tx_fifo_stall_task);
1114 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116
1117 e1000_check_options(adapter);
1118
1119 /* Initial Wake on LAN setting
1120 * If APM wake is enabled in the EEPROM,
1121 * enable the ACPI Magic Packet filter
1122 */
1123
1124 switch (hw->mac_type) {
1125 case e1000_82542_rev2_0:
1126 case e1000_82542_rev2_1:
1127 case e1000_82543:
1128 break;
1129 case e1000_82544:
1130 e1000_read_eeprom(hw,
1131 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133 break;
1134 case e1000_82546:
1135 case e1000_82546_rev_3:
1136 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137 e1000_read_eeprom(hw,
1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139 break;
1140 }
1141 fallthrough;
1142 default:
1143 e1000_read_eeprom(hw,
1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145 break;
1146 }
1147 if (eeprom_data & eeprom_apme_mask)
1148 adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150 /* now that we have the eeprom settings, apply the special cases
1151 * where the eeprom may be wrong or the board simply won't support
1152 * wake on lan on a particular port
1153 */
1154 switch (pdev->device) {
1155 case E1000_DEV_ID_82546GB_PCIE:
1156 adapter->eeprom_wol = 0;
1157 break;
1158 case E1000_DEV_ID_82546EB_FIBER:
1159 case E1000_DEV_ID_82546GB_FIBER:
1160 /* Wake events only supported on port A for dual fiber
1161 * regardless of eeprom setting
1162 */
1163 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164 adapter->eeprom_wol = 0;
1165 break;
1166 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167 /* if quad port adapter, disable WoL on all but port A */
1168 if (global_quad_port_a != 0)
1169 adapter->eeprom_wol = 0;
1170 else
1171 adapter->quad_port_a = true;
1172 /* Reset for multiple quad port adapters */
1173 if (++global_quad_port_a == 4)
1174 global_quad_port_a = 0;
1175 break;
1176 }
1177
1178 /* initialize the wol settings based on the eeprom settings */
1179 adapter->wol = adapter->eeprom_wol;
1180 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181
1182 /* Auto detect PHY address */
1183 if (hw->mac_type == e1000_ce4100) {
1184 for (i = 0; i < 32; i++) {
1185 hw->phy_addr = i;
1186 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187
1188 if (tmp != 0 && tmp != 0xFF)
1189 break;
1190 }
1191
1192 if (i >= 32)
1193 goto err_eeprom;
1194 }
1195
1196 /* reset the hardware with the new settings */
1197 e1000_reset(adapter);
1198
1199 strcpy(netdev->name, "eth%d");
1200 err = register_netdev(netdev);
1201 if (err)
1202 goto err_register;
1203
1204 e1000_vlan_filter_on_off(adapter, false);
1205
1206 /* print bus type/speed/width info */
1207 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214 netdev->dev_addr);
1215
1216 /* carrier off reporting is important to ethtool even BEFORE open */
1217 netif_carrier_off(netdev);
1218
1219 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220
1221 cards_found++;
1222 return 0;
1223
1224err_register:
1225err_eeprom:
1226 e1000_phy_hw_reset(hw);
1227
1228 if (hw->flash_address)
1229 iounmap(hw->flash_address);
1230 kfree(adapter->tx_ring);
1231 kfree(adapter->rx_ring);
1232err_dma:
1233err_sw_init:
1234err_mdio_ioremap:
1235 iounmap(hw->ce4100_gbe_mdio_base_virt);
1236 iounmap(hw->hw_addr);
1237err_ioremap:
1238 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239 free_netdev(netdev);
1240err_alloc_etherdev:
1241 pci_release_selected_regions(pdev, bars);
1242err_pci_reg:
1243 if (!adapter || disable_dev)
1244 pci_disable_device(pdev);
1245 return err;
1246}
1247
1248/**
1249 * e1000_remove - Device Removal Routine
1250 * @pdev: PCI device information struct
1251 *
1252 * e1000_remove is called by the PCI subsystem to alert the driver
1253 * that it should release a PCI device. That could be caused by a
1254 * Hot-Plug event, or because the driver is going to be removed from
1255 * memory.
1256 **/
1257static void e1000_remove(struct pci_dev *pdev)
1258{
1259 struct net_device *netdev = pci_get_drvdata(pdev);
1260 struct e1000_adapter *adapter = netdev_priv(netdev);
1261 struct e1000_hw *hw = &adapter->hw;
1262 bool disable_dev;
1263
1264 e1000_down_and_stop(adapter);
1265 e1000_release_manageability(adapter);
1266
1267 unregister_netdev(netdev);
1268
1269 e1000_phy_hw_reset(hw);
1270
1271 kfree(adapter->tx_ring);
1272 kfree(adapter->rx_ring);
1273
1274 if (hw->mac_type == e1000_ce4100)
1275 iounmap(hw->ce4100_gbe_mdio_base_virt);
1276 iounmap(hw->hw_addr);
1277 if (hw->flash_address)
1278 iounmap(hw->flash_address);
1279 pci_release_selected_regions(pdev, adapter->bars);
1280
1281 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282 free_netdev(netdev);
1283
1284 if (disable_dev)
1285 pci_disable_device(pdev);
1286}
1287
1288/**
1289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290 * @adapter: board private structure to initialize
1291 *
1292 * e1000_sw_init initializes the Adapter private data structure.
1293 * e1000_init_hw_struct MUST be called before this function
1294 **/
1295static int e1000_sw_init(struct e1000_adapter *adapter)
1296{
1297 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298
1299 adapter->num_tx_queues = 1;
1300 adapter->num_rx_queues = 1;
1301
1302 if (e1000_alloc_queues(adapter)) {
1303 e_err(probe, "Unable to allocate memory for queues\n");
1304 return -ENOMEM;
1305 }
1306
1307 /* Explicitly disable IRQ since the NIC can be in any state. */
1308 e1000_irq_disable(adapter);
1309
1310 spin_lock_init(&adapter->stats_lock);
1311
1312 set_bit(__E1000_DOWN, &adapter->flags);
1313
1314 return 0;
1315}
1316
1317/**
1318 * e1000_alloc_queues - Allocate memory for all rings
1319 * @adapter: board private structure to initialize
1320 *
1321 * We allocate one ring per queue at run-time since we don't know the
1322 * number of queues at compile-time.
1323 **/
1324static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325{
1326 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328 if (!adapter->tx_ring)
1329 return -ENOMEM;
1330
1331 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333 if (!adapter->rx_ring) {
1334 kfree(adapter->tx_ring);
1335 return -ENOMEM;
1336 }
1337
1338 return E1000_SUCCESS;
1339}
1340
1341/**
1342 * e1000_open - Called when a network interface is made active
1343 * @netdev: network interface device structure
1344 *
1345 * Returns 0 on success, negative value on failure
1346 *
1347 * The open entry point is called when a network interface is made
1348 * active by the system (IFF_UP). At this point all resources needed
1349 * for transmit and receive operations are allocated, the interrupt
1350 * handler is registered with the OS, the watchdog task is started,
1351 * and the stack is notified that the interface is ready.
1352 **/
1353int e1000_open(struct net_device *netdev)
1354{
1355 struct e1000_adapter *adapter = netdev_priv(netdev);
1356 struct e1000_hw *hw = &adapter->hw;
1357 int err;
1358
1359 /* disallow open during test */
1360 if (test_bit(__E1000_TESTING, &adapter->flags))
1361 return -EBUSY;
1362
1363 netif_carrier_off(netdev);
1364
1365 /* allocate transmit descriptors */
1366 err = e1000_setup_all_tx_resources(adapter);
1367 if (err)
1368 goto err_setup_tx;
1369
1370 /* allocate receive descriptors */
1371 err = e1000_setup_all_rx_resources(adapter);
1372 if (err)
1373 goto err_setup_rx;
1374
1375 e1000_power_up_phy(adapter);
1376
1377 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378 if ((hw->mng_cookie.status &
1379 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380 e1000_update_mng_vlan(adapter);
1381 }
1382
1383 /* before we allocate an interrupt, we must be ready to handle it.
1384 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385 * as soon as we call pci_request_irq, so we have to setup our
1386 * clean_rx handler before we do so.
1387 */
1388 e1000_configure(adapter);
1389
1390 err = e1000_request_irq(adapter);
1391 if (err)
1392 goto err_req_irq;
1393
1394 /* From here on the code is the same as e1000_up() */
1395 clear_bit(__E1000_DOWN, &adapter->flags);
1396
1397 netif_napi_set_irq(&adapter->napi, adapter->pdev->irq);
1398 napi_enable(&adapter->napi);
1399 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
1400 netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
1401
1402 e1000_irq_enable(adapter);
1403
1404 netif_start_queue(netdev);
1405
1406 /* fire a link status change interrupt to start the watchdog */
1407 ew32(ICS, E1000_ICS_LSC);
1408
1409 return E1000_SUCCESS;
1410
1411err_req_irq:
1412 e1000_power_down_phy(adapter);
1413 e1000_free_all_rx_resources(adapter);
1414err_setup_rx:
1415 e1000_free_all_tx_resources(adapter);
1416err_setup_tx:
1417 e1000_reset(adapter);
1418
1419 return err;
1420}
1421
1422/**
1423 * e1000_close - Disables a network interface
1424 * @netdev: network interface device structure
1425 *
1426 * Returns 0, this is not allowed to fail
1427 *
1428 * The close entry point is called when an interface is de-activated
1429 * by the OS. The hardware is still under the drivers control, but
1430 * needs to be disabled. A global MAC reset is issued to stop the
1431 * hardware, and all transmit and receive resources are freed.
1432 **/
1433int e1000_close(struct net_device *netdev)
1434{
1435 struct e1000_adapter *adapter = netdev_priv(netdev);
1436 struct e1000_hw *hw = &adapter->hw;
1437 int count = E1000_CHECK_RESET_COUNT;
1438
1439 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1440 usleep_range(10000, 20000);
1441
1442 WARN_ON(count < 0);
1443
1444 /* signal that we're down so that the reset task will no longer run */
1445 set_bit(__E1000_DOWN, &adapter->flags);
1446 clear_bit(__E1000_RESETTING, &adapter->flags);
1447
1448 e1000_down(adapter);
1449 e1000_power_down_phy(adapter);
1450 e1000_free_irq(adapter);
1451
1452 e1000_free_all_tx_resources(adapter);
1453 e1000_free_all_rx_resources(adapter);
1454
1455 /* kill manageability vlan ID if supported, but not if a vlan with
1456 * the same ID is registered on the host OS (let 8021q kill it)
1457 */
1458 if ((hw->mng_cookie.status &
1459 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1460 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1461 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1462 adapter->mng_vlan_id);
1463 }
1464
1465 return 0;
1466}
1467
1468/**
1469 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1470 * @adapter: address of board private structure
1471 * @start: address of beginning of memory
1472 * @len: length of memory
1473 **/
1474static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1475 unsigned long len)
1476{
1477 struct e1000_hw *hw = &adapter->hw;
1478 unsigned long begin = (unsigned long)start;
1479 unsigned long end = begin + len;
1480
1481 /* First rev 82545 and 82546 need to not allow any memory
1482 * write location to cross 64k boundary due to errata 23
1483 */
1484 if (hw->mac_type == e1000_82545 ||
1485 hw->mac_type == e1000_ce4100 ||
1486 hw->mac_type == e1000_82546) {
1487 return ((begin ^ (end - 1)) >> 16) == 0;
1488 }
1489
1490 return true;
1491}
1492
1493/**
1494 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1495 * @adapter: board private structure
1496 * @txdr: tx descriptor ring (for a specific queue) to setup
1497 *
1498 * Return 0 on success, negative on failure
1499 **/
1500static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1501 struct e1000_tx_ring *txdr)
1502{
1503 struct pci_dev *pdev = adapter->pdev;
1504 int size;
1505
1506 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1507 txdr->buffer_info = vzalloc(size);
1508 if (!txdr->buffer_info)
1509 return -ENOMEM;
1510
1511 /* round up to nearest 4K */
1512
1513 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1514 txdr->size = ALIGN(txdr->size, 4096);
1515
1516 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1517 GFP_KERNEL);
1518 if (!txdr->desc) {
1519setup_tx_desc_die:
1520 vfree(txdr->buffer_info);
1521 return -ENOMEM;
1522 }
1523
1524 /* Fix for errata 23, can't cross 64kB boundary */
1525 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1526 void *olddesc = txdr->desc;
1527 dma_addr_t olddma = txdr->dma;
1528 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1529 txdr->size, txdr->desc);
1530 /* Try again, without freeing the previous */
1531 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1532 &txdr->dma, GFP_KERNEL);
1533 /* Failed allocation, critical failure */
1534 if (!txdr->desc) {
1535 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1536 olddma);
1537 goto setup_tx_desc_die;
1538 }
1539
1540 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1541 /* give up */
1542 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1543 txdr->dma);
1544 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545 olddma);
1546 e_err(probe, "Unable to allocate aligned memory "
1547 "for the transmit descriptor ring\n");
1548 vfree(txdr->buffer_info);
1549 return -ENOMEM;
1550 } else {
1551 /* Free old allocation, new allocation was successful */
1552 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553 olddma);
1554 }
1555 }
1556 memset(txdr->desc, 0, txdr->size);
1557
1558 txdr->next_to_use = 0;
1559 txdr->next_to_clean = 0;
1560
1561 return 0;
1562}
1563
1564/**
1565 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1566 * (Descriptors) for all queues
1567 * @adapter: board private structure
1568 *
1569 * Return 0 on success, negative on failure
1570 **/
1571int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1572{
1573 int i, err = 0;
1574
1575 for (i = 0; i < adapter->num_tx_queues; i++) {
1576 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1577 if (err) {
1578 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1579 for (i-- ; i >= 0; i--)
1580 e1000_free_tx_resources(adapter,
1581 &adapter->tx_ring[i]);
1582 break;
1583 }
1584 }
1585
1586 return err;
1587}
1588
1589/**
1590 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1591 * @adapter: board private structure
1592 *
1593 * Configure the Tx unit of the MAC after a reset.
1594 **/
1595static void e1000_configure_tx(struct e1000_adapter *adapter)
1596{
1597 u64 tdba;
1598 struct e1000_hw *hw = &adapter->hw;
1599 u32 tdlen, tctl, tipg;
1600 u32 ipgr1, ipgr2;
1601
1602 /* Setup the HW Tx Head and Tail descriptor pointers */
1603
1604 switch (adapter->num_tx_queues) {
1605 case 1:
1606 default:
1607 tdba = adapter->tx_ring[0].dma;
1608 tdlen = adapter->tx_ring[0].count *
1609 sizeof(struct e1000_tx_desc);
1610 ew32(TDLEN, tdlen);
1611 ew32(TDBAH, (tdba >> 32));
1612 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1613 ew32(TDT, 0);
1614 ew32(TDH, 0);
1615 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1616 E1000_TDH : E1000_82542_TDH);
1617 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1618 E1000_TDT : E1000_82542_TDT);
1619 break;
1620 }
1621
1622 /* Set the default values for the Tx Inter Packet Gap timer */
1623 if ((hw->media_type == e1000_media_type_fiber ||
1624 hw->media_type == e1000_media_type_internal_serdes))
1625 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1626 else
1627 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1628
1629 switch (hw->mac_type) {
1630 case e1000_82542_rev2_0:
1631 case e1000_82542_rev2_1:
1632 tipg = DEFAULT_82542_TIPG_IPGT;
1633 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1634 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1635 break;
1636 default:
1637 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1638 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1639 break;
1640 }
1641 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1642 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1643 ew32(TIPG, tipg);
1644
1645 /* Set the Tx Interrupt Delay register */
1646
1647 ew32(TIDV, adapter->tx_int_delay);
1648 if (hw->mac_type >= e1000_82540)
1649 ew32(TADV, adapter->tx_abs_int_delay);
1650
1651 /* Program the Transmit Control Register */
1652
1653 tctl = er32(TCTL);
1654 tctl &= ~E1000_TCTL_CT;
1655 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1656 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1657
1658 e1000_config_collision_dist(hw);
1659
1660 /* Setup Transmit Descriptor Settings for eop descriptor */
1661 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1662
1663 /* only set IDE if we are delaying interrupts using the timers */
1664 if (adapter->tx_int_delay)
1665 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1666
1667 if (hw->mac_type < e1000_82543)
1668 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1669 else
1670 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1671
1672 /* Cache if we're 82544 running in PCI-X because we'll
1673 * need this to apply a workaround later in the send path.
1674 */
1675 if (hw->mac_type == e1000_82544 &&
1676 hw->bus_type == e1000_bus_type_pcix)
1677 adapter->pcix_82544 = true;
1678
1679 ew32(TCTL, tctl);
1680
1681}
1682
1683/**
1684 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1685 * @adapter: board private structure
1686 * @rxdr: rx descriptor ring (for a specific queue) to setup
1687 *
1688 * Returns 0 on success, negative on failure
1689 **/
1690static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1691 struct e1000_rx_ring *rxdr)
1692{
1693 struct pci_dev *pdev = adapter->pdev;
1694 int size, desc_len;
1695
1696 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1697 rxdr->buffer_info = vzalloc(size);
1698 if (!rxdr->buffer_info)
1699 return -ENOMEM;
1700
1701 desc_len = sizeof(struct e1000_rx_desc);
1702
1703 /* Round up to nearest 4K */
1704
1705 rxdr->size = rxdr->count * desc_len;
1706 rxdr->size = ALIGN(rxdr->size, 4096);
1707
1708 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1709 GFP_KERNEL);
1710 if (!rxdr->desc) {
1711setup_rx_desc_die:
1712 vfree(rxdr->buffer_info);
1713 return -ENOMEM;
1714 }
1715
1716 /* Fix for errata 23, can't cross 64kB boundary */
1717 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1718 void *olddesc = rxdr->desc;
1719 dma_addr_t olddma = rxdr->dma;
1720 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1721 rxdr->size, rxdr->desc);
1722 /* Try again, without freeing the previous */
1723 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1724 &rxdr->dma, GFP_KERNEL);
1725 /* Failed allocation, critical failure */
1726 if (!rxdr->desc) {
1727 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1728 olddma);
1729 goto setup_rx_desc_die;
1730 }
1731
1732 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1733 /* give up */
1734 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1735 rxdr->dma);
1736 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737 olddma);
1738 e_err(probe, "Unable to allocate aligned memory for "
1739 "the Rx descriptor ring\n");
1740 goto setup_rx_desc_die;
1741 } else {
1742 /* Free old allocation, new allocation was successful */
1743 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1744 olddma);
1745 }
1746 }
1747 memset(rxdr->desc, 0, rxdr->size);
1748
1749 rxdr->next_to_clean = 0;
1750 rxdr->next_to_use = 0;
1751 rxdr->rx_skb_top = NULL;
1752
1753 return 0;
1754}
1755
1756/**
1757 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1758 * (Descriptors) for all queues
1759 * @adapter: board private structure
1760 *
1761 * Return 0 on success, negative on failure
1762 **/
1763int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1764{
1765 int i, err = 0;
1766
1767 for (i = 0; i < adapter->num_rx_queues; i++) {
1768 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1769 if (err) {
1770 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1771 for (i-- ; i >= 0; i--)
1772 e1000_free_rx_resources(adapter,
1773 &adapter->rx_ring[i]);
1774 break;
1775 }
1776 }
1777
1778 return err;
1779}
1780
1781/**
1782 * e1000_setup_rctl - configure the receive control registers
1783 * @adapter: Board private structure
1784 **/
1785static void e1000_setup_rctl(struct e1000_adapter *adapter)
1786{
1787 struct e1000_hw *hw = &adapter->hw;
1788 u32 rctl;
1789
1790 rctl = er32(RCTL);
1791
1792 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1793
1794 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1795 E1000_RCTL_RDMTS_HALF |
1796 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1797
1798 if (hw->tbi_compatibility_on == 1)
1799 rctl |= E1000_RCTL_SBP;
1800 else
1801 rctl &= ~E1000_RCTL_SBP;
1802
1803 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1804 rctl &= ~E1000_RCTL_LPE;
1805 else
1806 rctl |= E1000_RCTL_LPE;
1807
1808 /* Setup buffer sizes */
1809 rctl &= ~E1000_RCTL_SZ_4096;
1810 rctl |= E1000_RCTL_BSEX;
1811 switch (adapter->rx_buffer_len) {
1812 case E1000_RXBUFFER_2048:
1813 default:
1814 rctl |= E1000_RCTL_SZ_2048;
1815 rctl &= ~E1000_RCTL_BSEX;
1816 break;
1817 case E1000_RXBUFFER_4096:
1818 rctl |= E1000_RCTL_SZ_4096;
1819 break;
1820 case E1000_RXBUFFER_8192:
1821 rctl |= E1000_RCTL_SZ_8192;
1822 break;
1823 case E1000_RXBUFFER_16384:
1824 rctl |= E1000_RCTL_SZ_16384;
1825 break;
1826 }
1827
1828 /* This is useful for sniffing bad packets. */
1829 if (adapter->netdev->features & NETIF_F_RXALL) {
1830 /* UPE and MPE will be handled by normal PROMISC logic
1831 * in e1000e_set_rx_mode
1832 */
1833 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1834 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1835 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1836
1837 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1838 E1000_RCTL_DPF | /* Allow filtered pause */
1839 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1840 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1841 * and that breaks VLANs.
1842 */
1843 }
1844
1845 ew32(RCTL, rctl);
1846}
1847
1848/**
1849 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850 * @adapter: board private structure
1851 *
1852 * Configure the Rx unit of the MAC after a reset.
1853 **/
1854static void e1000_configure_rx(struct e1000_adapter *adapter)
1855{
1856 u64 rdba;
1857 struct e1000_hw *hw = &adapter->hw;
1858 u32 rdlen, rctl, rxcsum;
1859
1860 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1861 rdlen = adapter->rx_ring[0].count *
1862 sizeof(struct e1000_rx_desc);
1863 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1864 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1865 } else {
1866 rdlen = adapter->rx_ring[0].count *
1867 sizeof(struct e1000_rx_desc);
1868 adapter->clean_rx = e1000_clean_rx_irq;
1869 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870 }
1871
1872 /* disable receives while setting up the descriptors */
1873 rctl = er32(RCTL);
1874 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1875
1876 /* set the Receive Delay Timer Register */
1877 ew32(RDTR, adapter->rx_int_delay);
1878
1879 if (hw->mac_type >= e1000_82540) {
1880 ew32(RADV, adapter->rx_abs_int_delay);
1881 if (adapter->itr_setting != 0)
1882 ew32(ITR, 1000000000 / (adapter->itr * 256));
1883 }
1884
1885 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1886 * the Base and Length of the Rx Descriptor Ring
1887 */
1888 switch (adapter->num_rx_queues) {
1889 case 1:
1890 default:
1891 rdba = adapter->rx_ring[0].dma;
1892 ew32(RDLEN, rdlen);
1893 ew32(RDBAH, (rdba >> 32));
1894 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895 ew32(RDT, 0);
1896 ew32(RDH, 0);
1897 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1898 E1000_RDH : E1000_82542_RDH);
1899 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1900 E1000_RDT : E1000_82542_RDT);
1901 break;
1902 }
1903
1904 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1905 if (hw->mac_type >= e1000_82543) {
1906 rxcsum = er32(RXCSUM);
1907 if (adapter->rx_csum)
1908 rxcsum |= E1000_RXCSUM_TUOFL;
1909 else
1910 /* don't need to clear IPPCSE as it defaults to 0 */
1911 rxcsum &= ~E1000_RXCSUM_TUOFL;
1912 ew32(RXCSUM, rxcsum);
1913 }
1914
1915 /* Enable Receives */
1916 ew32(RCTL, rctl | E1000_RCTL_EN);
1917}
1918
1919/**
1920 * e1000_free_tx_resources - Free Tx Resources per Queue
1921 * @adapter: board private structure
1922 * @tx_ring: Tx descriptor ring for a specific queue
1923 *
1924 * Free all transmit software resources
1925 **/
1926static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1927 struct e1000_tx_ring *tx_ring)
1928{
1929 struct pci_dev *pdev = adapter->pdev;
1930
1931 e1000_clean_tx_ring(adapter, tx_ring);
1932
1933 vfree(tx_ring->buffer_info);
1934 tx_ring->buffer_info = NULL;
1935
1936 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1937 tx_ring->dma);
1938
1939 tx_ring->desc = NULL;
1940}
1941
1942/**
1943 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1944 * @adapter: board private structure
1945 *
1946 * Free all transmit software resources
1947 **/
1948void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1949{
1950 int i;
1951
1952 for (i = 0; i < adapter->num_tx_queues; i++)
1953 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1954}
1955
1956static void
1957e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1958 struct e1000_tx_buffer *buffer_info,
1959 int budget)
1960{
1961 if (buffer_info->dma) {
1962 if (buffer_info->mapped_as_page)
1963 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1964 buffer_info->length, DMA_TO_DEVICE);
1965 else
1966 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1967 buffer_info->length,
1968 DMA_TO_DEVICE);
1969 buffer_info->dma = 0;
1970 }
1971 if (buffer_info->skb) {
1972 napi_consume_skb(buffer_info->skb, budget);
1973 buffer_info->skb = NULL;
1974 }
1975 buffer_info->time_stamp = 0;
1976 /* buffer_info must be completely set up in the transmit path */
1977}
1978
1979/**
1980 * e1000_clean_tx_ring - Free Tx Buffers
1981 * @adapter: board private structure
1982 * @tx_ring: ring to be cleaned
1983 **/
1984static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1985 struct e1000_tx_ring *tx_ring)
1986{
1987 struct e1000_hw *hw = &adapter->hw;
1988 struct e1000_tx_buffer *buffer_info;
1989 unsigned long size;
1990 unsigned int i;
1991
1992 /* Free all the Tx ring sk_buffs */
1993
1994 for (i = 0; i < tx_ring->count; i++) {
1995 buffer_info = &tx_ring->buffer_info[i];
1996 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1997 }
1998
1999 netdev_reset_queue(adapter->netdev);
2000 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2001 memset(tx_ring->buffer_info, 0, size);
2002
2003 /* Zero out the descriptor ring */
2004
2005 memset(tx_ring->desc, 0, tx_ring->size);
2006
2007 tx_ring->next_to_use = 0;
2008 tx_ring->next_to_clean = 0;
2009 tx_ring->last_tx_tso = false;
2010
2011 writel(0, hw->hw_addr + tx_ring->tdh);
2012 writel(0, hw->hw_addr + tx_ring->tdt);
2013}
2014
2015/**
2016 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2017 * @adapter: board private structure
2018 **/
2019static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2020{
2021 int i;
2022
2023 for (i = 0; i < adapter->num_tx_queues; i++)
2024 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2025}
2026
2027/**
2028 * e1000_free_rx_resources - Free Rx Resources
2029 * @adapter: board private structure
2030 * @rx_ring: ring to clean the resources from
2031 *
2032 * Free all receive software resources
2033 **/
2034static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2035 struct e1000_rx_ring *rx_ring)
2036{
2037 struct pci_dev *pdev = adapter->pdev;
2038
2039 e1000_clean_rx_ring(adapter, rx_ring);
2040
2041 vfree(rx_ring->buffer_info);
2042 rx_ring->buffer_info = NULL;
2043
2044 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2045 rx_ring->dma);
2046
2047 rx_ring->desc = NULL;
2048}
2049
2050/**
2051 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052 * @adapter: board private structure
2053 *
2054 * Free all receive software resources
2055 **/
2056void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2057{
2058 int i;
2059
2060 for (i = 0; i < adapter->num_rx_queues; i++)
2061 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2062}
2063
2064#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2065static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2066{
2067 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2068 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2069}
2070
2071static void *e1000_alloc_frag(const struct e1000_adapter *a)
2072{
2073 unsigned int len = e1000_frag_len(a);
2074 u8 *data = netdev_alloc_frag(len);
2075
2076 if (likely(data))
2077 data += E1000_HEADROOM;
2078 return data;
2079}
2080
2081/**
2082 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2083 * @adapter: board private structure
2084 * @rx_ring: ring to free buffers from
2085 **/
2086static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2087 struct e1000_rx_ring *rx_ring)
2088{
2089 struct e1000_hw *hw = &adapter->hw;
2090 struct e1000_rx_buffer *buffer_info;
2091 struct pci_dev *pdev = adapter->pdev;
2092 unsigned long size;
2093 unsigned int i;
2094
2095 /* Free all the Rx netfrags */
2096 for (i = 0; i < rx_ring->count; i++) {
2097 buffer_info = &rx_ring->buffer_info[i];
2098 if (adapter->clean_rx == e1000_clean_rx_irq) {
2099 if (buffer_info->dma)
2100 dma_unmap_single(&pdev->dev, buffer_info->dma,
2101 adapter->rx_buffer_len,
2102 DMA_FROM_DEVICE);
2103 if (buffer_info->rxbuf.data) {
2104 skb_free_frag(buffer_info->rxbuf.data);
2105 buffer_info->rxbuf.data = NULL;
2106 }
2107 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2108 if (buffer_info->dma)
2109 dma_unmap_page(&pdev->dev, buffer_info->dma,
2110 adapter->rx_buffer_len,
2111 DMA_FROM_DEVICE);
2112 if (buffer_info->rxbuf.page) {
2113 put_page(buffer_info->rxbuf.page);
2114 buffer_info->rxbuf.page = NULL;
2115 }
2116 }
2117
2118 buffer_info->dma = 0;
2119 }
2120
2121 /* there also may be some cached data from a chained receive */
2122 napi_free_frags(&adapter->napi);
2123 rx_ring->rx_skb_top = NULL;
2124
2125 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2126 memset(rx_ring->buffer_info, 0, size);
2127
2128 /* Zero out the descriptor ring */
2129 memset(rx_ring->desc, 0, rx_ring->size);
2130
2131 rx_ring->next_to_clean = 0;
2132 rx_ring->next_to_use = 0;
2133
2134 writel(0, hw->hw_addr + rx_ring->rdh);
2135 writel(0, hw->hw_addr + rx_ring->rdt);
2136}
2137
2138/**
2139 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2140 * @adapter: board private structure
2141 **/
2142static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2143{
2144 int i;
2145
2146 for (i = 0; i < adapter->num_rx_queues; i++)
2147 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2148}
2149
2150/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2151 * and memory write and invalidate disabled for certain operations
2152 */
2153static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2154{
2155 struct e1000_hw *hw = &adapter->hw;
2156 struct net_device *netdev = adapter->netdev;
2157 u32 rctl;
2158
2159 e1000_pci_clear_mwi(hw);
2160
2161 rctl = er32(RCTL);
2162 rctl |= E1000_RCTL_RST;
2163 ew32(RCTL, rctl);
2164 E1000_WRITE_FLUSH();
2165 mdelay(5);
2166
2167 if (netif_running(netdev))
2168 e1000_clean_all_rx_rings(adapter);
2169}
2170
2171static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2172{
2173 struct e1000_hw *hw = &adapter->hw;
2174 struct net_device *netdev = adapter->netdev;
2175 u32 rctl;
2176
2177 rctl = er32(RCTL);
2178 rctl &= ~E1000_RCTL_RST;
2179 ew32(RCTL, rctl);
2180 E1000_WRITE_FLUSH();
2181 mdelay(5);
2182
2183 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2184 e1000_pci_set_mwi(hw);
2185
2186 if (netif_running(netdev)) {
2187 /* No need to loop, because 82542 supports only 1 queue */
2188 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2189 e1000_configure_rx(adapter);
2190 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2191 }
2192}
2193
2194/**
2195 * e1000_set_mac - Change the Ethernet Address of the NIC
2196 * @netdev: network interface device structure
2197 * @p: pointer to an address structure
2198 *
2199 * Returns 0 on success, negative on failure
2200 **/
2201static int e1000_set_mac(struct net_device *netdev, void *p)
2202{
2203 struct e1000_adapter *adapter = netdev_priv(netdev);
2204 struct e1000_hw *hw = &adapter->hw;
2205 struct sockaddr *addr = p;
2206
2207 if (!is_valid_ether_addr(addr->sa_data))
2208 return -EADDRNOTAVAIL;
2209
2210 /* 82542 2.0 needs to be in reset to write receive address registers */
2211
2212 if (hw->mac_type == e1000_82542_rev2_0)
2213 e1000_enter_82542_rst(adapter);
2214
2215 eth_hw_addr_set(netdev, addr->sa_data);
2216 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2217
2218 e1000_rar_set(hw, hw->mac_addr, 0);
2219
2220 if (hw->mac_type == e1000_82542_rev2_0)
2221 e1000_leave_82542_rst(adapter);
2222
2223 return 0;
2224}
2225
2226/**
2227 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2228 * @netdev: network interface device structure
2229 *
2230 * The set_rx_mode entry point is called whenever the unicast or multicast
2231 * address lists or the network interface flags are updated. This routine is
2232 * responsible for configuring the hardware for proper unicast, multicast,
2233 * promiscuous mode, and all-multi behavior.
2234 **/
2235static void e1000_set_rx_mode(struct net_device *netdev)
2236{
2237 struct e1000_adapter *adapter = netdev_priv(netdev);
2238 struct e1000_hw *hw = &adapter->hw;
2239 struct netdev_hw_addr *ha;
2240 bool use_uc = false;
2241 u32 rctl;
2242 u32 hash_value;
2243 int i, rar_entries = E1000_RAR_ENTRIES;
2244 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2245 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2246
2247 if (!mcarray)
2248 return;
2249
2250 /* Check for Promiscuous and All Multicast modes */
2251
2252 rctl = er32(RCTL);
2253
2254 if (netdev->flags & IFF_PROMISC) {
2255 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2256 rctl &= ~E1000_RCTL_VFE;
2257 } else {
2258 if (netdev->flags & IFF_ALLMULTI)
2259 rctl |= E1000_RCTL_MPE;
2260 else
2261 rctl &= ~E1000_RCTL_MPE;
2262 /* Enable VLAN filter if there is a VLAN */
2263 if (e1000_vlan_used(adapter))
2264 rctl |= E1000_RCTL_VFE;
2265 }
2266
2267 if (netdev_uc_count(netdev) > rar_entries - 1) {
2268 rctl |= E1000_RCTL_UPE;
2269 } else if (!(netdev->flags & IFF_PROMISC)) {
2270 rctl &= ~E1000_RCTL_UPE;
2271 use_uc = true;
2272 }
2273
2274 ew32(RCTL, rctl);
2275
2276 /* 82542 2.0 needs to be in reset to write receive address registers */
2277
2278 if (hw->mac_type == e1000_82542_rev2_0)
2279 e1000_enter_82542_rst(adapter);
2280
2281 /* load the first 14 addresses into the exact filters 1-14. Unicast
2282 * addresses take precedence to avoid disabling unicast filtering
2283 * when possible.
2284 *
2285 * RAR 0 is used for the station MAC address
2286 * if there are not 14 addresses, go ahead and clear the filters
2287 */
2288 i = 1;
2289 if (use_uc)
2290 netdev_for_each_uc_addr(ha, netdev) {
2291 if (i == rar_entries)
2292 break;
2293 e1000_rar_set(hw, ha->addr, i++);
2294 }
2295
2296 netdev_for_each_mc_addr(ha, netdev) {
2297 if (i == rar_entries) {
2298 /* load any remaining addresses into the hash table */
2299 u32 hash_reg, hash_bit, mta;
2300 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2301 hash_reg = (hash_value >> 5) & 0x7F;
2302 hash_bit = hash_value & 0x1F;
2303 mta = (1 << hash_bit);
2304 mcarray[hash_reg] |= mta;
2305 } else {
2306 e1000_rar_set(hw, ha->addr, i++);
2307 }
2308 }
2309
2310 for (; i < rar_entries; i++) {
2311 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2312 E1000_WRITE_FLUSH();
2313 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2314 E1000_WRITE_FLUSH();
2315 }
2316
2317 /* write the hash table completely, write from bottom to avoid
2318 * both stupid write combining chipsets, and flushing each write
2319 */
2320 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2321 /* If we are on an 82544 has an errata where writing odd
2322 * offsets overwrites the previous even offset, but writing
2323 * backwards over the range solves the issue by always
2324 * writing the odd offset first
2325 */
2326 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2327 }
2328 E1000_WRITE_FLUSH();
2329
2330 if (hw->mac_type == e1000_82542_rev2_0)
2331 e1000_leave_82542_rst(adapter);
2332
2333 kfree(mcarray);
2334}
2335
2336/**
2337 * e1000_update_phy_info_task - get phy info
2338 * @work: work struct contained inside adapter struct
2339 *
2340 * Need to wait a few seconds after link up to get diagnostic information from
2341 * the phy
2342 */
2343static void e1000_update_phy_info_task(struct work_struct *work)
2344{
2345 struct e1000_adapter *adapter = container_of(work,
2346 struct e1000_adapter,
2347 phy_info_task.work);
2348
2349 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2350}
2351
2352/**
2353 * e1000_82547_tx_fifo_stall_task - task to complete work
2354 * @work: work struct contained inside adapter struct
2355 **/
2356static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2357{
2358 struct e1000_adapter *adapter = container_of(work,
2359 struct e1000_adapter,
2360 fifo_stall_task.work);
2361 struct e1000_hw *hw = &adapter->hw;
2362 struct net_device *netdev = adapter->netdev;
2363 u32 tctl;
2364
2365 if (atomic_read(&adapter->tx_fifo_stall)) {
2366 if ((er32(TDT) == er32(TDH)) &&
2367 (er32(TDFT) == er32(TDFH)) &&
2368 (er32(TDFTS) == er32(TDFHS))) {
2369 tctl = er32(TCTL);
2370 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2371 ew32(TDFT, adapter->tx_head_addr);
2372 ew32(TDFH, adapter->tx_head_addr);
2373 ew32(TDFTS, adapter->tx_head_addr);
2374 ew32(TDFHS, adapter->tx_head_addr);
2375 ew32(TCTL, tctl);
2376 E1000_WRITE_FLUSH();
2377
2378 adapter->tx_fifo_head = 0;
2379 atomic_set(&adapter->tx_fifo_stall, 0);
2380 netif_wake_queue(netdev);
2381 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2382 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2383 }
2384 }
2385}
2386
2387bool e1000_has_link(struct e1000_adapter *adapter)
2388{
2389 struct e1000_hw *hw = &adapter->hw;
2390 bool link_active = false;
2391
2392 /* get_link_status is set on LSC (link status) interrupt or rx
2393 * sequence error interrupt (except on intel ce4100).
2394 * get_link_status will stay false until the
2395 * e1000_check_for_link establishes link for copper adapters
2396 * ONLY
2397 */
2398 switch (hw->media_type) {
2399 case e1000_media_type_copper:
2400 if (hw->mac_type == e1000_ce4100)
2401 hw->get_link_status = 1;
2402 if (hw->get_link_status) {
2403 e1000_check_for_link(hw);
2404 link_active = !hw->get_link_status;
2405 } else {
2406 link_active = true;
2407 }
2408 break;
2409 case e1000_media_type_fiber:
2410 e1000_check_for_link(hw);
2411 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2412 break;
2413 case e1000_media_type_internal_serdes:
2414 e1000_check_for_link(hw);
2415 link_active = hw->serdes_has_link;
2416 break;
2417 default:
2418 break;
2419 }
2420
2421 return link_active;
2422}
2423
2424/**
2425 * e1000_watchdog - work function
2426 * @work: work struct contained inside adapter struct
2427 **/
2428static void e1000_watchdog(struct work_struct *work)
2429{
2430 struct e1000_adapter *adapter = container_of(work,
2431 struct e1000_adapter,
2432 watchdog_task.work);
2433 struct e1000_hw *hw = &adapter->hw;
2434 struct net_device *netdev = adapter->netdev;
2435 struct e1000_tx_ring *txdr = adapter->tx_ring;
2436 u32 link, tctl;
2437
2438 link = e1000_has_link(adapter);
2439 if ((netif_carrier_ok(netdev)) && link)
2440 goto link_up;
2441
2442 if (link) {
2443 if (!netif_carrier_ok(netdev)) {
2444 u32 ctrl;
2445 /* update snapshot of PHY registers on LSC */
2446 e1000_get_speed_and_duplex(hw,
2447 &adapter->link_speed,
2448 &adapter->link_duplex);
2449
2450 ctrl = er32(CTRL);
2451 pr_info("%s NIC Link is Up %d Mbps %s, "
2452 "Flow Control: %s\n",
2453 netdev->name,
2454 adapter->link_speed,
2455 adapter->link_duplex == FULL_DUPLEX ?
2456 "Full Duplex" : "Half Duplex",
2457 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2458 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2459 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2460 E1000_CTRL_TFCE) ? "TX" : "None")));
2461
2462 /* adjust timeout factor according to speed/duplex */
2463 adapter->tx_timeout_factor = 1;
2464 switch (adapter->link_speed) {
2465 case SPEED_10:
2466 adapter->tx_timeout_factor = 16;
2467 break;
2468 case SPEED_100:
2469 /* maybe add some timeout factor ? */
2470 break;
2471 }
2472
2473 /* enable transmits in the hardware */
2474 tctl = er32(TCTL);
2475 tctl |= E1000_TCTL_EN;
2476 ew32(TCTL, tctl);
2477
2478 netif_carrier_on(netdev);
2479 if (!test_bit(__E1000_DOWN, &adapter->flags))
2480 schedule_delayed_work(&adapter->phy_info_task,
2481 2 * HZ);
2482 adapter->smartspeed = 0;
2483 }
2484 } else {
2485 if (netif_carrier_ok(netdev)) {
2486 adapter->link_speed = 0;
2487 adapter->link_duplex = 0;
2488 pr_info("%s NIC Link is Down\n",
2489 netdev->name);
2490 netif_carrier_off(netdev);
2491
2492 if (!test_bit(__E1000_DOWN, &adapter->flags))
2493 schedule_delayed_work(&adapter->phy_info_task,
2494 2 * HZ);
2495 }
2496
2497 e1000_smartspeed(adapter);
2498 }
2499
2500link_up:
2501 e1000_update_stats(adapter);
2502
2503 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2504 adapter->tpt_old = adapter->stats.tpt;
2505 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2506 adapter->colc_old = adapter->stats.colc;
2507
2508 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2509 adapter->gorcl_old = adapter->stats.gorcl;
2510 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2511 adapter->gotcl_old = adapter->stats.gotcl;
2512
2513 e1000_update_adaptive(hw);
2514
2515 if (!netif_carrier_ok(netdev)) {
2516 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2517 /* We've lost link, so the controller stops DMA,
2518 * but we've got queued Tx work that's never going
2519 * to get done, so reset controller to flush Tx.
2520 * (Do the reset outside of interrupt context).
2521 */
2522 adapter->tx_timeout_count++;
2523 schedule_work(&adapter->reset_task);
2524 /* exit immediately since reset is imminent */
2525 return;
2526 }
2527 }
2528
2529 /* Simple mode for Interrupt Throttle Rate (ITR) */
2530 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2532 * Total asymmetrical Tx or Rx gets ITR=8000;
2533 * everyone else is between 2000-8000.
2534 */
2535 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2536 u32 dif = (adapter->gotcl > adapter->gorcl ?
2537 adapter->gotcl - adapter->gorcl :
2538 adapter->gorcl - adapter->gotcl) / 10000;
2539 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2540
2541 ew32(ITR, 1000000000 / (itr * 256));
2542 }
2543
2544 /* Cause software interrupt to ensure rx ring is cleaned */
2545 ew32(ICS, E1000_ICS_RXDMT0);
2546
2547 /* Force detection of hung controller every watchdog period */
2548 adapter->detect_tx_hung = true;
2549
2550 /* Reschedule the task */
2551 if (!test_bit(__E1000_DOWN, &adapter->flags))
2552 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2553}
2554
2555enum latency_range {
2556 lowest_latency = 0,
2557 low_latency = 1,
2558 bulk_latency = 2,
2559 latency_invalid = 255
2560};
2561
2562/**
2563 * e1000_update_itr - update the dynamic ITR value based on statistics
2564 * @adapter: pointer to adapter
2565 * @itr_setting: current adapter->itr
2566 * @packets: the number of packets during this measurement interval
2567 * @bytes: the number of bytes during this measurement interval
2568 *
2569 * Stores a new ITR value based on packets and byte
2570 * counts during the last interrupt. The advantage of per interrupt
2571 * computation is faster updates and more accurate ITR for the current
2572 * traffic pattern. Constants in this function were computed
2573 * based on theoretical maximum wire speed and thresholds were set based
2574 * on testing data as well as attempting to minimize response time
2575 * while increasing bulk throughput.
2576 * this functionality is controlled by the InterruptThrottleRate module
2577 * parameter (see e1000_param.c)
2578 **/
2579static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2580 u16 itr_setting, int packets, int bytes)
2581{
2582 unsigned int retval = itr_setting;
2583 struct e1000_hw *hw = &adapter->hw;
2584
2585 if (unlikely(hw->mac_type < e1000_82540))
2586 goto update_itr_done;
2587
2588 if (packets == 0)
2589 goto update_itr_done;
2590
2591 switch (itr_setting) {
2592 case lowest_latency:
2593 /* jumbo frames get bulk treatment*/
2594 if (bytes/packets > 8000)
2595 retval = bulk_latency;
2596 else if ((packets < 5) && (bytes > 512))
2597 retval = low_latency;
2598 break;
2599 case low_latency: /* 50 usec aka 20000 ints/s */
2600 if (bytes > 10000) {
2601 /* jumbo frames need bulk latency setting */
2602 if (bytes/packets > 8000)
2603 retval = bulk_latency;
2604 else if ((packets < 10) || ((bytes/packets) > 1200))
2605 retval = bulk_latency;
2606 else if ((packets > 35))
2607 retval = lowest_latency;
2608 } else if (bytes/packets > 2000)
2609 retval = bulk_latency;
2610 else if (packets <= 2 && bytes < 512)
2611 retval = lowest_latency;
2612 break;
2613 case bulk_latency: /* 250 usec aka 4000 ints/s */
2614 if (bytes > 25000) {
2615 if (packets > 35)
2616 retval = low_latency;
2617 } else if (bytes < 6000) {
2618 retval = low_latency;
2619 }
2620 break;
2621 }
2622
2623update_itr_done:
2624 return retval;
2625}
2626
2627static void e1000_set_itr(struct e1000_adapter *adapter)
2628{
2629 struct e1000_hw *hw = &adapter->hw;
2630 u16 current_itr;
2631 u32 new_itr = adapter->itr;
2632
2633 if (unlikely(hw->mac_type < e1000_82540))
2634 return;
2635
2636 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2637 if (unlikely(adapter->link_speed != SPEED_1000)) {
2638 new_itr = 4000;
2639 goto set_itr_now;
2640 }
2641
2642 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2643 adapter->total_tx_packets,
2644 adapter->total_tx_bytes);
2645 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2646 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2647 adapter->tx_itr = low_latency;
2648
2649 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2650 adapter->total_rx_packets,
2651 adapter->total_rx_bytes);
2652 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2653 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2654 adapter->rx_itr = low_latency;
2655
2656 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2657
2658 switch (current_itr) {
2659 /* counts and packets in update_itr are dependent on these numbers */
2660 case lowest_latency:
2661 new_itr = 70000;
2662 break;
2663 case low_latency:
2664 new_itr = 20000; /* aka hwitr = ~200 */
2665 break;
2666 case bulk_latency:
2667 new_itr = 4000;
2668 break;
2669 default:
2670 break;
2671 }
2672
2673set_itr_now:
2674 if (new_itr != adapter->itr) {
2675 /* this attempts to bias the interrupt rate towards Bulk
2676 * by adding intermediate steps when interrupt rate is
2677 * increasing
2678 */
2679 new_itr = new_itr > adapter->itr ?
2680 min(adapter->itr + (new_itr >> 2), new_itr) :
2681 new_itr;
2682 adapter->itr = new_itr;
2683 ew32(ITR, 1000000000 / (new_itr * 256));
2684 }
2685}
2686
2687#define E1000_TX_FLAGS_CSUM 0x00000001
2688#define E1000_TX_FLAGS_VLAN 0x00000002
2689#define E1000_TX_FLAGS_TSO 0x00000004
2690#define E1000_TX_FLAGS_IPV4 0x00000008
2691#define E1000_TX_FLAGS_NO_FCS 0x00000010
2692#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2693#define E1000_TX_FLAGS_VLAN_SHIFT 16
2694
2695static int e1000_tso(struct e1000_adapter *adapter,
2696 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2697 __be16 protocol)
2698{
2699 struct e1000_context_desc *context_desc;
2700 struct e1000_tx_buffer *buffer_info;
2701 unsigned int i;
2702 u32 cmd_length = 0;
2703 u16 ipcse = 0, tucse, mss;
2704 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2705
2706 if (skb_is_gso(skb)) {
2707 int err;
2708
2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
2711 return err;
2712
2713 hdr_len = skb_tcp_all_headers(skb);
2714 mss = skb_shinfo(skb)->gso_size;
2715 if (protocol == htons(ETH_P_IP)) {
2716 struct iphdr *iph = ip_hdr(skb);
2717 iph->tot_len = 0;
2718 iph->check = 0;
2719 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2720 iph->daddr, 0,
2721 IPPROTO_TCP,
2722 0);
2723 cmd_length = E1000_TXD_CMD_IP;
2724 ipcse = skb_transport_offset(skb) - 1;
2725 } else if (skb_is_gso_v6(skb)) {
2726 tcp_v6_gso_csum_prep(skb);
2727 ipcse = 0;
2728 }
2729 ipcss = skb_network_offset(skb);
2730 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2731 tucss = skb_transport_offset(skb);
2732 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2733 tucse = 0;
2734
2735 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2736 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2737
2738 i = tx_ring->next_to_use;
2739 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2740 buffer_info = &tx_ring->buffer_info[i];
2741
2742 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2743 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2744 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2745 context_desc->upper_setup.tcp_fields.tucss = tucss;
2746 context_desc->upper_setup.tcp_fields.tucso = tucso;
2747 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2748 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2749 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2750 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2751
2752 buffer_info->time_stamp = jiffies;
2753 buffer_info->next_to_watch = i;
2754
2755 if (++i == tx_ring->count)
2756 i = 0;
2757
2758 tx_ring->next_to_use = i;
2759
2760 return true;
2761 }
2762 return false;
2763}
2764
2765static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2767 __be16 protocol)
2768{
2769 struct e1000_context_desc *context_desc;
2770 struct e1000_tx_buffer *buffer_info;
2771 unsigned int i;
2772 u8 css;
2773 u32 cmd_len = E1000_TXD_CMD_DEXT;
2774
2775 if (skb->ip_summed != CHECKSUM_PARTIAL)
2776 return false;
2777
2778 switch (protocol) {
2779 case cpu_to_be16(ETH_P_IP):
2780 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781 cmd_len |= E1000_TXD_CMD_TCP;
2782 break;
2783 case cpu_to_be16(ETH_P_IPV6):
2784 /* XXX not handling all IPV6 headers */
2785 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786 cmd_len |= E1000_TXD_CMD_TCP;
2787 break;
2788 default:
2789 if (unlikely(net_ratelimit()))
2790 e_warn(drv, "checksum_partial proto=%x!\n",
2791 skb->protocol);
2792 break;
2793 }
2794
2795 css = skb_checksum_start_offset(skb);
2796
2797 i = tx_ring->next_to_use;
2798 buffer_info = &tx_ring->buffer_info[i];
2799 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800
2801 context_desc->lower_setup.ip_config = 0;
2802 context_desc->upper_setup.tcp_fields.tucss = css;
2803 context_desc->upper_setup.tcp_fields.tucso =
2804 css + skb->csum_offset;
2805 context_desc->upper_setup.tcp_fields.tucse = 0;
2806 context_desc->tcp_seg_setup.data = 0;
2807 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808
2809 buffer_info->time_stamp = jiffies;
2810 buffer_info->next_to_watch = i;
2811
2812 if (unlikely(++i == tx_ring->count))
2813 i = 0;
2814
2815 tx_ring->next_to_use = i;
2816
2817 return true;
2818}
2819
2820#define E1000_MAX_TXD_PWR 12
2821#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2822
2823static int e1000_tx_map(struct e1000_adapter *adapter,
2824 struct e1000_tx_ring *tx_ring,
2825 struct sk_buff *skb, unsigned int first,
2826 unsigned int max_per_txd, unsigned int nr_frags,
2827 unsigned int mss)
2828{
2829 struct e1000_hw *hw = &adapter->hw;
2830 struct pci_dev *pdev = adapter->pdev;
2831 struct e1000_tx_buffer *buffer_info;
2832 unsigned int len = skb_headlen(skb);
2833 unsigned int offset = 0, size, count = 0, i;
2834 unsigned int f, bytecount, segs;
2835
2836 i = tx_ring->next_to_use;
2837
2838 while (len) {
2839 buffer_info = &tx_ring->buffer_info[i];
2840 size = min(len, max_per_txd);
2841 /* Workaround for Controller erratum --
2842 * descriptor for non-tso packet in a linear SKB that follows a
2843 * tso gets written back prematurely before the data is fully
2844 * DMA'd to the controller
2845 */
2846 if (!skb->data_len && tx_ring->last_tx_tso &&
2847 !skb_is_gso(skb)) {
2848 tx_ring->last_tx_tso = false;
2849 size -= 4;
2850 }
2851
2852 /* Workaround for premature desc write-backs
2853 * in TSO mode. Append 4-byte sentinel desc
2854 */
2855 if (unlikely(mss && !nr_frags && size == len && size > 8))
2856 size -= 4;
2857 /* work-around for errata 10 and it applies
2858 * to all controllers in PCI-X mode
2859 * The fix is to make sure that the first descriptor of a
2860 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2861 */
2862 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2863 (size > 2015) && count == 0))
2864 size = 2015;
2865
2866 /* Workaround for potential 82544 hang in PCI-X. Avoid
2867 * terminating buffers within evenly-aligned dwords.
2868 */
2869 if (unlikely(adapter->pcix_82544 &&
2870 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2871 size > 4))
2872 size -= 4;
2873
2874 buffer_info->length = size;
2875 /* set time_stamp *before* dma to help avoid a possible race */
2876 buffer_info->time_stamp = jiffies;
2877 buffer_info->mapped_as_page = false;
2878 buffer_info->dma = dma_map_single(&pdev->dev,
2879 skb->data + offset,
2880 size, DMA_TO_DEVICE);
2881 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2882 goto dma_error;
2883 buffer_info->next_to_watch = i;
2884
2885 len -= size;
2886 offset += size;
2887 count++;
2888 if (len) {
2889 i++;
2890 if (unlikely(i == tx_ring->count))
2891 i = 0;
2892 }
2893 }
2894
2895 for (f = 0; f < nr_frags; f++) {
2896 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2897
2898 len = skb_frag_size(frag);
2899 offset = 0;
2900
2901 while (len) {
2902 unsigned long bufend;
2903 i++;
2904 if (unlikely(i == tx_ring->count))
2905 i = 0;
2906
2907 buffer_info = &tx_ring->buffer_info[i];
2908 size = min(len, max_per_txd);
2909 /* Workaround for premature desc write-backs
2910 * in TSO mode. Append 4-byte sentinel desc
2911 */
2912 if (unlikely(mss && f == (nr_frags-1) &&
2913 size == len && size > 8))
2914 size -= 4;
2915 /* Workaround for potential 82544 hang in PCI-X.
2916 * Avoid terminating buffers within evenly-aligned
2917 * dwords.
2918 */
2919 bufend = (unsigned long)
2920 page_to_phys(skb_frag_page(frag));
2921 bufend += offset + size - 1;
2922 if (unlikely(adapter->pcix_82544 &&
2923 !(bufend & 4) &&
2924 size > 4))
2925 size -= 4;
2926
2927 buffer_info->length = size;
2928 buffer_info->time_stamp = jiffies;
2929 buffer_info->mapped_as_page = true;
2930 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2931 offset, size, DMA_TO_DEVICE);
2932 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2933 goto dma_error;
2934 buffer_info->next_to_watch = i;
2935
2936 len -= size;
2937 offset += size;
2938 count++;
2939 }
2940 }
2941
2942 segs = skb_shinfo(skb)->gso_segs ?: 1;
2943 /* multiply data chunks by size of headers */
2944 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2945
2946 tx_ring->buffer_info[i].skb = skb;
2947 tx_ring->buffer_info[i].segs = segs;
2948 tx_ring->buffer_info[i].bytecount = bytecount;
2949 tx_ring->buffer_info[first].next_to_watch = i;
2950
2951 return count;
2952
2953dma_error:
2954 dev_err(&pdev->dev, "TX DMA map failed\n");
2955 buffer_info->dma = 0;
2956 if (count)
2957 count--;
2958
2959 while (count--) {
2960 if (i == 0)
2961 i += tx_ring->count;
2962 i--;
2963 buffer_info = &tx_ring->buffer_info[i];
2964 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2965 }
2966
2967 return 0;
2968}
2969
2970static void e1000_tx_queue(struct e1000_adapter *adapter,
2971 struct e1000_tx_ring *tx_ring, int tx_flags,
2972 int count)
2973{
2974 struct e1000_tx_desc *tx_desc = NULL;
2975 struct e1000_tx_buffer *buffer_info;
2976 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977 unsigned int i;
2978
2979 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981 E1000_TXD_CMD_TSE;
2982 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
2984 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986 }
2987
2988 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991 }
2992
2993 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994 txd_lower |= E1000_TXD_CMD_VLE;
2995 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996 }
2997
2998 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000
3001 i = tx_ring->next_to_use;
3002
3003 while (count--) {
3004 buffer_info = &tx_ring->buffer_info[i];
3005 tx_desc = E1000_TX_DESC(*tx_ring, i);
3006 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007 tx_desc->lower.data =
3008 cpu_to_le32(txd_lower | buffer_info->length);
3009 tx_desc->upper.data = cpu_to_le32(txd_upper);
3010 if (unlikely(++i == tx_ring->count))
3011 i = 0;
3012 }
3013
3014 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3015
3016 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3017 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3019
3020 /* Force memory writes to complete before letting h/w
3021 * know there are new descriptors to fetch. (Only
3022 * applicable for weak-ordered memory model archs,
3023 * such as IA-64).
3024 */
3025 dma_wmb();
3026
3027 tx_ring->next_to_use = i;
3028}
3029
3030/* 82547 workaround to avoid controller hang in half-duplex environment.
3031 * The workaround is to avoid queuing a large packet that would span
3032 * the internal Tx FIFO ring boundary by notifying the stack to resend
3033 * the packet at a later time. This gives the Tx FIFO an opportunity to
3034 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3035 * to the beginning of the Tx FIFO.
3036 */
3037
3038#define E1000_FIFO_HDR 0x10
3039#define E1000_82547_PAD_LEN 0x3E0
3040
3041static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3042 struct sk_buff *skb)
3043{
3044 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3045 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3046
3047 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3048
3049 if (adapter->link_duplex != HALF_DUPLEX)
3050 goto no_fifo_stall_required;
3051
3052 if (atomic_read(&adapter->tx_fifo_stall))
3053 return 1;
3054
3055 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3056 atomic_set(&adapter->tx_fifo_stall, 1);
3057 return 1;
3058 }
3059
3060no_fifo_stall_required:
3061 adapter->tx_fifo_head += skb_fifo_len;
3062 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3063 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064 return 0;
3065}
3066
3067static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3068{
3069 struct e1000_adapter *adapter = netdev_priv(netdev);
3070 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3071
3072 netif_stop_queue(netdev);
3073 /* Herbert's original patch had:
3074 * smp_mb__after_netif_stop_queue();
3075 * but since that doesn't exist yet, just open code it.
3076 */
3077 smp_mb();
3078
3079 /* We need to check again in a case another CPU has just
3080 * made room available.
3081 */
3082 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083 return -EBUSY;
3084
3085 /* A reprieve! */
3086 netif_start_queue(netdev);
3087 ++adapter->restart_queue;
3088 return 0;
3089}
3090
3091static int e1000_maybe_stop_tx(struct net_device *netdev,
3092 struct e1000_tx_ring *tx_ring, int size)
3093{
3094 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3095 return 0;
3096 return __e1000_maybe_stop_tx(netdev, size);
3097}
3098
3099#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3100static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3101 struct net_device *netdev)
3102{
3103 struct e1000_adapter *adapter = netdev_priv(netdev);
3104 struct e1000_hw *hw = &adapter->hw;
3105 struct e1000_tx_ring *tx_ring;
3106 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3107 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3108 unsigned int tx_flags = 0;
3109 unsigned int len = skb_headlen(skb);
3110 unsigned int nr_frags;
3111 unsigned int mss;
3112 int count = 0;
3113 int tso;
3114 unsigned int f;
3115 __be16 protocol = vlan_get_protocol(skb);
3116
3117 /* This goes back to the question of how to logically map a Tx queue
3118 * to a flow. Right now, performance is impacted slightly negatively
3119 * if using multiple Tx queues. If the stack breaks away from a
3120 * single qdisc implementation, we can look at this again.
3121 */
3122 tx_ring = adapter->tx_ring;
3123
3124 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3125 * packets may get corrupted during padding by HW.
3126 * To WA this issue, pad all small packets manually.
3127 */
3128 if (eth_skb_pad(skb))
3129 return NETDEV_TX_OK;
3130
3131 mss = skb_shinfo(skb)->gso_size;
3132 /* The controller does a simple calculation to
3133 * make sure there is enough room in the FIFO before
3134 * initiating the DMA for each buffer. The calc is:
3135 * 4 = ceil(buffer len/mss). To make sure we don't
3136 * overrun the FIFO, adjust the max buffer len if mss
3137 * drops.
3138 */
3139 if (mss) {
3140 u8 hdr_len;
3141 max_per_txd = min(mss << 2, max_per_txd);
3142 max_txd_pwr = fls(max_per_txd) - 1;
3143
3144 hdr_len = skb_tcp_all_headers(skb);
3145 if (skb->data_len && hdr_len == len) {
3146 switch (hw->mac_type) {
3147 case e1000_82544: {
3148 unsigned int pull_size;
3149
3150 /* Make sure we have room to chop off 4 bytes,
3151 * and that the end alignment will work out to
3152 * this hardware's requirements
3153 * NOTE: this is a TSO only workaround
3154 * if end byte alignment not correct move us
3155 * into the next dword
3156 */
3157 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3158 & 4)
3159 break;
3160 pull_size = min((unsigned int)4, skb->data_len);
3161 if (!__pskb_pull_tail(skb, pull_size)) {
3162 e_err(drv, "__pskb_pull_tail "
3163 "failed.\n");
3164 dev_kfree_skb_any(skb);
3165 return NETDEV_TX_OK;
3166 }
3167 len = skb_headlen(skb);
3168 break;
3169 }
3170 default:
3171 /* do nothing */
3172 break;
3173 }
3174 }
3175 }
3176
3177 /* reserve a descriptor for the offload context */
3178 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3179 count++;
3180 count++;
3181
3182 /* Controller Erratum workaround */
3183 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3184 count++;
3185
3186 count += TXD_USE_COUNT(len, max_txd_pwr);
3187
3188 if (adapter->pcix_82544)
3189 count++;
3190
3191 /* work-around for errata 10 and it applies to all controllers
3192 * in PCI-X mode, so add one more descriptor to the count
3193 */
3194 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3195 (len > 2015)))
3196 count++;
3197
3198 nr_frags = skb_shinfo(skb)->nr_frags;
3199 for (f = 0; f < nr_frags; f++)
3200 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3201 max_txd_pwr);
3202 if (adapter->pcix_82544)
3203 count += nr_frags;
3204
3205 /* need: count + 2 desc gap to keep tail from touching
3206 * head, otherwise try next time
3207 */
3208 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3209 return NETDEV_TX_BUSY;
3210
3211 if (unlikely((hw->mac_type == e1000_82547) &&
3212 (e1000_82547_fifo_workaround(adapter, skb)))) {
3213 netif_stop_queue(netdev);
3214 if (!test_bit(__E1000_DOWN, &adapter->flags))
3215 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3216 return NETDEV_TX_BUSY;
3217 }
3218
3219 if (skb_vlan_tag_present(skb)) {
3220 tx_flags |= E1000_TX_FLAGS_VLAN;
3221 tx_flags |= (skb_vlan_tag_get(skb) <<
3222 E1000_TX_FLAGS_VLAN_SHIFT);
3223 }
3224
3225 first = tx_ring->next_to_use;
3226
3227 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3228 if (tso < 0) {
3229 dev_kfree_skb_any(skb);
3230 return NETDEV_TX_OK;
3231 }
3232
3233 if (likely(tso)) {
3234 if (likely(hw->mac_type != e1000_82544))
3235 tx_ring->last_tx_tso = true;
3236 tx_flags |= E1000_TX_FLAGS_TSO;
3237 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3238 tx_flags |= E1000_TX_FLAGS_CSUM;
3239
3240 if (protocol == htons(ETH_P_IP))
3241 tx_flags |= E1000_TX_FLAGS_IPV4;
3242
3243 if (unlikely(skb->no_fcs))
3244 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3245
3246 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3247 nr_frags, mss);
3248
3249 if (count) {
3250 /* The descriptors needed is higher than other Intel drivers
3251 * due to a number of workarounds. The breakdown is below:
3252 * Data descriptors: MAX_SKB_FRAGS + 1
3253 * Context Descriptor: 1
3254 * Keep head from touching tail: 2
3255 * Workarounds: 3
3256 */
3257 int desc_needed = MAX_SKB_FRAGS + 7;
3258
3259 netdev_sent_queue(netdev, skb->len);
3260 skb_tx_timestamp(skb);
3261
3262 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263
3264 /* 82544 potentially requires twice as many data descriptors
3265 * in order to guarantee buffers don't end on evenly-aligned
3266 * dwords
3267 */
3268 if (adapter->pcix_82544)
3269 desc_needed += MAX_SKB_FRAGS + 1;
3270
3271 /* Make sure there is space in the ring for the next send. */
3272 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3273
3274 if (!netdev_xmit_more() ||
3275 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3276 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3277 }
3278 } else {
3279 dev_kfree_skb_any(skb);
3280 tx_ring->buffer_info[first].time_stamp = 0;
3281 tx_ring->next_to_use = first;
3282 }
3283
3284 return NETDEV_TX_OK;
3285}
3286
3287#define NUM_REGS 38 /* 1 based count */
3288static void e1000_regdump(struct e1000_adapter *adapter)
3289{
3290 struct e1000_hw *hw = &adapter->hw;
3291 u32 regs[NUM_REGS];
3292 u32 *regs_buff = regs;
3293 int i = 0;
3294
3295 static const char * const reg_name[] = {
3296 "CTRL", "STATUS",
3297 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3298 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3299 "TIDV", "TXDCTL", "TADV", "TARC0",
3300 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3301 "TXDCTL1", "TARC1",
3302 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3303 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3304 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3305 };
3306
3307 regs_buff[0] = er32(CTRL);
3308 regs_buff[1] = er32(STATUS);
3309
3310 regs_buff[2] = er32(RCTL);
3311 regs_buff[3] = er32(RDLEN);
3312 regs_buff[4] = er32(RDH);
3313 regs_buff[5] = er32(RDT);
3314 regs_buff[6] = er32(RDTR);
3315
3316 regs_buff[7] = er32(TCTL);
3317 regs_buff[8] = er32(TDBAL);
3318 regs_buff[9] = er32(TDBAH);
3319 regs_buff[10] = er32(TDLEN);
3320 regs_buff[11] = er32(TDH);
3321 regs_buff[12] = er32(TDT);
3322 regs_buff[13] = er32(TIDV);
3323 regs_buff[14] = er32(TXDCTL);
3324 regs_buff[15] = er32(TADV);
3325 regs_buff[16] = er32(TARC0);
3326
3327 regs_buff[17] = er32(TDBAL1);
3328 regs_buff[18] = er32(TDBAH1);
3329 regs_buff[19] = er32(TDLEN1);
3330 regs_buff[20] = er32(TDH1);
3331 regs_buff[21] = er32(TDT1);
3332 regs_buff[22] = er32(TXDCTL1);
3333 regs_buff[23] = er32(TARC1);
3334 regs_buff[24] = er32(CTRL_EXT);
3335 regs_buff[25] = er32(ERT);
3336 regs_buff[26] = er32(RDBAL0);
3337 regs_buff[27] = er32(RDBAH0);
3338 regs_buff[28] = er32(TDFH);
3339 regs_buff[29] = er32(TDFT);
3340 regs_buff[30] = er32(TDFHS);
3341 regs_buff[31] = er32(TDFTS);
3342 regs_buff[32] = er32(TDFPC);
3343 regs_buff[33] = er32(RDFH);
3344 regs_buff[34] = er32(RDFT);
3345 regs_buff[35] = er32(RDFHS);
3346 regs_buff[36] = er32(RDFTS);
3347 regs_buff[37] = er32(RDFPC);
3348
3349 pr_info("Register dump\n");
3350 for (i = 0; i < NUM_REGS; i++)
3351 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3352}
3353
3354/*
3355 * e1000_dump: Print registers, tx ring and rx ring
3356 */
3357static void e1000_dump(struct e1000_adapter *adapter)
3358{
3359 /* this code doesn't handle multiple rings */
3360 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3361 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3362 int i;
3363
3364 if (!netif_msg_hw(adapter))
3365 return;
3366
3367 /* Print Registers */
3368 e1000_regdump(adapter);
3369
3370 /* transmit dump */
3371 pr_info("TX Desc ring0 dump\n");
3372
3373 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3374 *
3375 * Legacy Transmit Descriptor
3376 * +--------------------------------------------------------------+
3377 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3378 * +--------------------------------------------------------------+
3379 * 8 | Special | CSS | Status | CMD | CSO | Length |
3380 * +--------------------------------------------------------------+
3381 * 63 48 47 36 35 32 31 24 23 16 15 0
3382 *
3383 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3384 * 63 48 47 40 39 32 31 16 15 8 7 0
3385 * +----------------------------------------------------------------+
3386 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3387 * +----------------------------------------------------------------+
3388 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3389 * +----------------------------------------------------------------+
3390 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3391 *
3392 * Extended Data Descriptor (DTYP=0x1)
3393 * +----------------------------------------------------------------+
3394 * 0 | Buffer Address [63:0] |
3395 * +----------------------------------------------------------------+
3396 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3397 * +----------------------------------------------------------------+
3398 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3399 */
3400 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3401 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3402
3403 if (!netif_msg_tx_done(adapter))
3404 goto rx_ring_summary;
3405
3406 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3407 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3408 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3409 struct my_u { __le64 a; __le64 b; };
3410 struct my_u *u = (struct my_u *)tx_desc;
3411 const char *type;
3412
3413 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3414 type = "NTC/U";
3415 else if (i == tx_ring->next_to_use)
3416 type = "NTU";
3417 else if (i == tx_ring->next_to_clean)
3418 type = "NTC";
3419 else
3420 type = "";
3421
3422 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3423 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3424 le64_to_cpu(u->a), le64_to_cpu(u->b),
3425 (u64)buffer_info->dma, buffer_info->length,
3426 buffer_info->next_to_watch,
3427 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3428 }
3429
3430rx_ring_summary:
3431 /* receive dump */
3432 pr_info("\nRX Desc ring dump\n");
3433
3434 /* Legacy Receive Descriptor Format
3435 *
3436 * +-----------------------------------------------------+
3437 * | Buffer Address [63:0] |
3438 * +-----------------------------------------------------+
3439 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440 * +-----------------------------------------------------+
3441 * 63 48 47 40 39 32 31 16 15 0
3442 */
3443 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3444
3445 if (!netif_msg_rx_status(adapter))
3446 goto exit;
3447
3448 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3451 struct my_u { __le64 a; __le64 b; };
3452 struct my_u *u = (struct my_u *)rx_desc;
3453 const char *type;
3454
3455 if (i == rx_ring->next_to_use)
3456 type = "NTU";
3457 else if (i == rx_ring->next_to_clean)
3458 type = "NTC";
3459 else
3460 type = "";
3461
3462 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3463 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3465 } /* for */
3466
3467 /* dump the descriptor caches */
3468 /* rx */
3469 pr_info("Rx descriptor cache in 64bit format\n");
3470 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472 i,
3473 readl(adapter->hw.hw_addr + i+4),
3474 readl(adapter->hw.hw_addr + i),
3475 readl(adapter->hw.hw_addr + i+12),
3476 readl(adapter->hw.hw_addr + i+8));
3477 }
3478 /* tx */
3479 pr_info("Tx descriptor cache in 64bit format\n");
3480 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482 i,
3483 readl(adapter->hw.hw_addr + i+4),
3484 readl(adapter->hw.hw_addr + i),
3485 readl(adapter->hw.hw_addr + i+12),
3486 readl(adapter->hw.hw_addr + i+8));
3487 }
3488exit:
3489 return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 * @txqueue: number of the Tx queue that hung (unused)
3496 **/
3497static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3498{
3499 struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501 /* Do the reset outside of interrupt context */
3502 adapter->tx_timeout_count++;
3503 schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508 struct e1000_adapter *adapter =
3509 container_of(work, struct e1000_adapter, reset_task);
3510
3511 e_err(drv, "Reset adapter\n");
3512 rtnl_lock();
3513 e1000_reinit_locked(adapter);
3514 rtnl_unlock();
3515}
3516
3517/**
3518 * e1000_change_mtu - Change the Maximum Transfer Unit
3519 * @netdev: network interface device structure
3520 * @new_mtu: new value for maximum frame size
3521 *
3522 * Returns 0 on success, negative on failure
3523 **/
3524static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525{
3526 struct e1000_adapter *adapter = netdev_priv(netdev);
3527 struct e1000_hw *hw = &adapter->hw;
3528 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3529
3530 /* Adapter-specific max frame size limits. */
3531 switch (hw->mac_type) {
3532 case e1000_undefined ... e1000_82542_rev2_1:
3533 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3534 e_err(probe, "Jumbo Frames not supported.\n");
3535 return -EINVAL;
3536 }
3537 break;
3538 default:
3539 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3540 break;
3541 }
3542
3543 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3544 msleep(1);
3545 /* e1000_down has a dependency on max_frame_size */
3546 hw->max_frame_size = max_frame;
3547 if (netif_running(netdev)) {
3548 /* prevent buffers from being reallocated */
3549 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3550 e1000_down(adapter);
3551 }
3552
3553 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3554 * means we reserve 2 more, this pushes us to allocate from the next
3555 * larger slab size.
3556 * i.e. RXBUFFER_2048 --> size-4096 slab
3557 * however with the new *_jumbo_rx* routines, jumbo receives will use
3558 * fragmented skbs
3559 */
3560
3561 if (max_frame <= E1000_RXBUFFER_2048)
3562 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3563 else
3564#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3565 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3566#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3567 adapter->rx_buffer_len = PAGE_SIZE;
3568#endif
3569
3570 /* adjust allocation if LPE protects us, and we aren't using SBP */
3571 if (!hw->tbi_compatibility_on &&
3572 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3573 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3574 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3575
3576 netdev_dbg(netdev, "changing MTU from %d to %d\n",
3577 netdev->mtu, new_mtu);
3578 WRITE_ONCE(netdev->mtu, new_mtu);
3579
3580 if (netif_running(netdev))
3581 e1000_up(adapter);
3582 else
3583 e1000_reset(adapter);
3584
3585 clear_bit(__E1000_RESETTING, &adapter->flags);
3586
3587 return 0;
3588}
3589
3590/**
3591 * e1000_update_stats - Update the board statistics counters
3592 * @adapter: board private structure
3593 **/
3594void e1000_update_stats(struct e1000_adapter *adapter)
3595{
3596 struct net_device *netdev = adapter->netdev;
3597 struct e1000_hw *hw = &adapter->hw;
3598 struct pci_dev *pdev = adapter->pdev;
3599 unsigned long flags;
3600 u16 phy_tmp;
3601
3602#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3603
3604 /* Prevent stats update while adapter is being reset, or if the pci
3605 * connection is down.
3606 */
3607 if (adapter->link_speed == 0)
3608 return;
3609 if (pci_channel_offline(pdev))
3610 return;
3611
3612 spin_lock_irqsave(&adapter->stats_lock, flags);
3613
3614 /* these counters are modified from e1000_tbi_adjust_stats,
3615 * called from the interrupt context, so they must only
3616 * be written while holding adapter->stats_lock
3617 */
3618
3619 adapter->stats.crcerrs += er32(CRCERRS);
3620 adapter->stats.gprc += er32(GPRC);
3621 adapter->stats.gorcl += er32(GORCL);
3622 adapter->stats.gorch += er32(GORCH);
3623 adapter->stats.bprc += er32(BPRC);
3624 adapter->stats.mprc += er32(MPRC);
3625 adapter->stats.roc += er32(ROC);
3626
3627 adapter->stats.prc64 += er32(PRC64);
3628 adapter->stats.prc127 += er32(PRC127);
3629 adapter->stats.prc255 += er32(PRC255);
3630 adapter->stats.prc511 += er32(PRC511);
3631 adapter->stats.prc1023 += er32(PRC1023);
3632 adapter->stats.prc1522 += er32(PRC1522);
3633
3634 adapter->stats.symerrs += er32(SYMERRS);
3635 adapter->stats.mpc += er32(MPC);
3636 adapter->stats.scc += er32(SCC);
3637 adapter->stats.ecol += er32(ECOL);
3638 adapter->stats.mcc += er32(MCC);
3639 adapter->stats.latecol += er32(LATECOL);
3640 adapter->stats.dc += er32(DC);
3641 adapter->stats.sec += er32(SEC);
3642 adapter->stats.rlec += er32(RLEC);
3643 adapter->stats.xonrxc += er32(XONRXC);
3644 adapter->stats.xontxc += er32(XONTXC);
3645 adapter->stats.xoffrxc += er32(XOFFRXC);
3646 adapter->stats.xofftxc += er32(XOFFTXC);
3647 adapter->stats.fcruc += er32(FCRUC);
3648 adapter->stats.gptc += er32(GPTC);
3649 adapter->stats.gotcl += er32(GOTCL);
3650 adapter->stats.gotch += er32(GOTCH);
3651 adapter->stats.rnbc += er32(RNBC);
3652 adapter->stats.ruc += er32(RUC);
3653 adapter->stats.rfc += er32(RFC);
3654 adapter->stats.rjc += er32(RJC);
3655 adapter->stats.torl += er32(TORL);
3656 adapter->stats.torh += er32(TORH);
3657 adapter->stats.totl += er32(TOTL);
3658 adapter->stats.toth += er32(TOTH);
3659 adapter->stats.tpr += er32(TPR);
3660
3661 adapter->stats.ptc64 += er32(PTC64);
3662 adapter->stats.ptc127 += er32(PTC127);
3663 adapter->stats.ptc255 += er32(PTC255);
3664 adapter->stats.ptc511 += er32(PTC511);
3665 adapter->stats.ptc1023 += er32(PTC1023);
3666 adapter->stats.ptc1522 += er32(PTC1522);
3667
3668 adapter->stats.mptc += er32(MPTC);
3669 adapter->stats.bptc += er32(BPTC);
3670
3671 /* used for adaptive IFS */
3672
3673 hw->tx_packet_delta = er32(TPT);
3674 adapter->stats.tpt += hw->tx_packet_delta;
3675 hw->collision_delta = er32(COLC);
3676 adapter->stats.colc += hw->collision_delta;
3677
3678 if (hw->mac_type >= e1000_82543) {
3679 adapter->stats.algnerrc += er32(ALGNERRC);
3680 adapter->stats.rxerrc += er32(RXERRC);
3681 adapter->stats.tncrs += er32(TNCRS);
3682 adapter->stats.cexterr += er32(CEXTERR);
3683 adapter->stats.tsctc += er32(TSCTC);
3684 adapter->stats.tsctfc += er32(TSCTFC);
3685 }
3686
3687 /* Fill out the OS statistics structure */
3688 netdev->stats.multicast = adapter->stats.mprc;
3689 netdev->stats.collisions = adapter->stats.colc;
3690
3691 /* Rx Errors */
3692
3693 /* RLEC on some newer hardware can be incorrect so build
3694 * our own version based on RUC and ROC
3695 */
3696 netdev->stats.rx_errors = adapter->stats.rxerrc +
3697 adapter->stats.crcerrs + adapter->stats.algnerrc +
3698 adapter->stats.ruc + adapter->stats.roc +
3699 adapter->stats.cexterr;
3700 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3701 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3702 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3703 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3704 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3705
3706 /* Tx Errors */
3707 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3708 netdev->stats.tx_errors = adapter->stats.txerrc;
3709 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3710 netdev->stats.tx_window_errors = adapter->stats.latecol;
3711 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3712 if (hw->bad_tx_carr_stats_fd &&
3713 adapter->link_duplex == FULL_DUPLEX) {
3714 netdev->stats.tx_carrier_errors = 0;
3715 adapter->stats.tncrs = 0;
3716 }
3717
3718 /* Tx Dropped needs to be maintained elsewhere */
3719
3720 /* Phy Stats */
3721 if (hw->media_type == e1000_media_type_copper) {
3722 if ((adapter->link_speed == SPEED_1000) &&
3723 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3724 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3725 adapter->phy_stats.idle_errors += phy_tmp;
3726 }
3727
3728 if ((hw->mac_type <= e1000_82546) &&
3729 (hw->phy_type == e1000_phy_m88) &&
3730 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3731 adapter->phy_stats.receive_errors += phy_tmp;
3732 }
3733
3734 /* Management Stats */
3735 if (hw->has_smbus) {
3736 adapter->stats.mgptc += er32(MGTPTC);
3737 adapter->stats.mgprc += er32(MGTPRC);
3738 adapter->stats.mgpdc += er32(MGTPDC);
3739 }
3740
3741 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3742}
3743
3744/**
3745 * e1000_intr - Interrupt Handler
3746 * @irq: interrupt number
3747 * @data: pointer to a network interface device structure
3748 **/
3749static irqreturn_t e1000_intr(int irq, void *data)
3750{
3751 struct net_device *netdev = data;
3752 struct e1000_adapter *adapter = netdev_priv(netdev);
3753 struct e1000_hw *hw = &adapter->hw;
3754 u32 icr = er32(ICR);
3755
3756 if (unlikely((!icr)))
3757 return IRQ_NONE; /* Not our interrupt */
3758
3759 /* we might have caused the interrupt, but the above
3760 * read cleared it, and just in case the driver is
3761 * down there is nothing to do so return handled
3762 */
3763 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3764 return IRQ_HANDLED;
3765
3766 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3767 hw->get_link_status = 1;
3768 /* guard against interrupt when we're going down */
3769 if (!test_bit(__E1000_DOWN, &adapter->flags))
3770 schedule_delayed_work(&adapter->watchdog_task, 1);
3771 }
3772
3773 /* disable interrupts, without the synchronize_irq bit */
3774 ew32(IMC, ~0);
3775 E1000_WRITE_FLUSH();
3776
3777 if (likely(napi_schedule_prep(&adapter->napi))) {
3778 adapter->total_tx_bytes = 0;
3779 adapter->total_tx_packets = 0;
3780 adapter->total_rx_bytes = 0;
3781 adapter->total_rx_packets = 0;
3782 __napi_schedule(&adapter->napi);
3783 } else {
3784 /* this really should not happen! if it does it is basically a
3785 * bug, but not a hard error, so enable ints and continue
3786 */
3787 if (!test_bit(__E1000_DOWN, &adapter->flags))
3788 e1000_irq_enable(adapter);
3789 }
3790
3791 return IRQ_HANDLED;
3792}
3793
3794/**
3795 * e1000_clean - NAPI Rx polling callback
3796 * @napi: napi struct containing references to driver info
3797 * @budget: budget given to driver for receive packets
3798 **/
3799static int e1000_clean(struct napi_struct *napi, int budget)
3800{
3801 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3802 napi);
3803 int tx_clean_complete = 0, work_done = 0;
3804
3805 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3806
3807 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3808
3809 if (!tx_clean_complete || work_done == budget)
3810 return budget;
3811
3812 /* Exit the polling mode, but don't re-enable interrupts if stack might
3813 * poll us due to busy-polling
3814 */
3815 if (likely(napi_complete_done(napi, work_done))) {
3816 if (likely(adapter->itr_setting & 3))
3817 e1000_set_itr(adapter);
3818 if (!test_bit(__E1000_DOWN, &adapter->flags))
3819 e1000_irq_enable(adapter);
3820 }
3821
3822 return work_done;
3823}
3824
3825/**
3826 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827 * @adapter: board private structure
3828 * @tx_ring: ring to clean
3829 **/
3830static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3831 struct e1000_tx_ring *tx_ring)
3832{
3833 struct e1000_hw *hw = &adapter->hw;
3834 struct net_device *netdev = adapter->netdev;
3835 struct e1000_tx_desc *tx_desc, *eop_desc;
3836 struct e1000_tx_buffer *buffer_info;
3837 unsigned int i, eop;
3838 unsigned int count = 0;
3839 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3840 unsigned int bytes_compl = 0, pkts_compl = 0;
3841
3842 i = tx_ring->next_to_clean;
3843 eop = tx_ring->buffer_info[i].next_to_watch;
3844 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845
3846 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3847 (count < tx_ring->count)) {
3848 bool cleaned = false;
3849 dma_rmb(); /* read buffer_info after eop_desc */
3850 for ( ; !cleaned; count++) {
3851 tx_desc = E1000_TX_DESC(*tx_ring, i);
3852 buffer_info = &tx_ring->buffer_info[i];
3853 cleaned = (i == eop);
3854
3855 if (cleaned) {
3856 total_tx_packets += buffer_info->segs;
3857 total_tx_bytes += buffer_info->bytecount;
3858 if (buffer_info->skb) {
3859 bytes_compl += buffer_info->skb->len;
3860 pkts_compl++;
3861 }
3862
3863 }
3864 e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3865 64);
3866 tx_desc->upper.data = 0;
3867
3868 if (unlikely(++i == tx_ring->count))
3869 i = 0;
3870 }
3871
3872 eop = tx_ring->buffer_info[i].next_to_watch;
3873 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3874 }
3875
3876 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3877 * which will reuse the cleaned buffers.
3878 */
3879 smp_store_release(&tx_ring->next_to_clean, i);
3880
3881 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3882
3883#define TX_WAKE_THRESHOLD 32
3884 if (unlikely(count && netif_carrier_ok(netdev) &&
3885 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3886 /* Make sure that anybody stopping the queue after this
3887 * sees the new next_to_clean.
3888 */
3889 smp_mb();
3890
3891 if (netif_queue_stopped(netdev) &&
3892 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3893 netif_wake_queue(netdev);
3894 ++adapter->restart_queue;
3895 }
3896 }
3897
3898 if (adapter->detect_tx_hung) {
3899 /* Detect a transmit hang in hardware, this serializes the
3900 * check with the clearing of time_stamp and movement of i
3901 */
3902 adapter->detect_tx_hung = false;
3903 if (tx_ring->buffer_info[eop].time_stamp &&
3904 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3905 (adapter->tx_timeout_factor * HZ)) &&
3906 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3907
3908 /* detected Tx unit hang */
3909 e_err(drv, "Detected Tx Unit Hang\n"
3910 " Tx Queue <%lu>\n"
3911 " TDH <%x>\n"
3912 " TDT <%x>\n"
3913 " next_to_use <%x>\n"
3914 " next_to_clean <%x>\n"
3915 "buffer_info[next_to_clean]\n"
3916 " time_stamp <%lx>\n"
3917 " next_to_watch <%x>\n"
3918 " jiffies <%lx>\n"
3919 " next_to_watch.status <%x>\n",
3920 (unsigned long)(tx_ring - adapter->tx_ring),
3921 readl(hw->hw_addr + tx_ring->tdh),
3922 readl(hw->hw_addr + tx_ring->tdt),
3923 tx_ring->next_to_use,
3924 tx_ring->next_to_clean,
3925 tx_ring->buffer_info[eop].time_stamp,
3926 eop,
3927 jiffies,
3928 eop_desc->upper.fields.status);
3929 e1000_dump(adapter);
3930 netif_stop_queue(netdev);
3931 }
3932 }
3933 adapter->total_tx_bytes += total_tx_bytes;
3934 adapter->total_tx_packets += total_tx_packets;
3935 netdev->stats.tx_bytes += total_tx_bytes;
3936 netdev->stats.tx_packets += total_tx_packets;
3937 return count < tx_ring->count;
3938}
3939
3940/**
3941 * e1000_rx_checksum - Receive Checksum Offload for 82543
3942 * @adapter: board private structure
3943 * @status_err: receive descriptor status and error fields
3944 * @csum: receive descriptor csum field
3945 * @skb: socket buffer with received data
3946 **/
3947static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3948 u32 csum, struct sk_buff *skb)
3949{
3950 struct e1000_hw *hw = &adapter->hw;
3951 u16 status = (u16)status_err;
3952 u8 errors = (u8)(status_err >> 24);
3953
3954 skb_checksum_none_assert(skb);
3955
3956 /* 82543 or newer only */
3957 if (unlikely(hw->mac_type < e1000_82543))
3958 return;
3959 /* Ignore Checksum bit is set */
3960 if (unlikely(status & E1000_RXD_STAT_IXSM))
3961 return;
3962 /* TCP/UDP checksum error bit is set */
3963 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3964 /* let the stack verify checksum errors */
3965 adapter->hw_csum_err++;
3966 return;
3967 }
3968 /* TCP/UDP Checksum has not been calculated */
3969 if (!(status & E1000_RXD_STAT_TCPCS))
3970 return;
3971
3972 /* It must be a TCP or UDP packet with a valid checksum */
3973 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3974 /* TCP checksum is good */
3975 skb->ip_summed = CHECKSUM_UNNECESSARY;
3976 }
3977 adapter->hw_csum_good++;
3978}
3979
3980/**
3981 * e1000_consume_page - helper function for jumbo Rx path
3982 * @bi: software descriptor shadow data
3983 * @skb: skb being modified
3984 * @length: length of data being added
3985 **/
3986static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987 u16 length)
3988{
3989 bi->rxbuf.page = NULL;
3990 skb->len += length;
3991 skb->data_len += length;
3992 skb->truesize += PAGE_SIZE;
3993}
3994
3995/**
3996 * e1000_receive_skb - helper function to handle rx indications
3997 * @adapter: board private structure
3998 * @status: descriptor status field as written by hardware
3999 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000 * @skb: pointer to sk_buff to be indicated to stack
4001 */
4002static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003 __le16 vlan, struct sk_buff *skb)
4004{
4005 skb->protocol = eth_type_trans(skb, adapter->netdev);
4006
4007 if (status & E1000_RXD_STAT_VP) {
4008 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009
4010 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011 }
4012 napi_gro_receive(&adapter->napi, skb);
4013}
4014
4015/**
4016 * e1000_tbi_adjust_stats
4017 * @hw: Struct containing variables accessed by shared code
4018 * @stats: point to stats struct
4019 * @frame_len: The length of the frame in question
4020 * @mac_addr: The Ethernet destination address of the frame in question
4021 *
4022 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4023 */
4024static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4025 struct e1000_hw_stats *stats,
4026 u32 frame_len, const u8 *mac_addr)
4027{
4028 u64 carry_bit;
4029
4030 /* First adjust the frame length. */
4031 frame_len--;
4032 /* We need to adjust the statistics counters, since the hardware
4033 * counters overcount this packet as a CRC error and undercount
4034 * the packet as a good packet
4035 */
4036 /* This packet should not be counted as a CRC error. */
4037 stats->crcerrs--;
4038 /* This packet does count as a Good Packet Received. */
4039 stats->gprc++;
4040
4041 /* Adjust the Good Octets received counters */
4042 carry_bit = 0x80000000 & stats->gorcl;
4043 stats->gorcl += frame_len;
4044 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4045 * Received Count) was one before the addition,
4046 * AND it is zero after, then we lost the carry out,
4047 * need to add one to Gorch (Good Octets Received Count High).
4048 * This could be simplified if all environments supported
4049 * 64-bit integers.
4050 */
4051 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4052 stats->gorch++;
4053 /* Is this a broadcast or multicast? Check broadcast first,
4054 * since the test for a multicast frame will test positive on
4055 * a broadcast frame.
4056 */
4057 if (is_broadcast_ether_addr(mac_addr))
4058 stats->bprc++;
4059 else if (is_multicast_ether_addr(mac_addr))
4060 stats->mprc++;
4061
4062 if (frame_len == hw->max_frame_size) {
4063 /* In this case, the hardware has overcounted the number of
4064 * oversize frames.
4065 */
4066 if (stats->roc > 0)
4067 stats->roc--;
4068 }
4069
4070 /* Adjust the bin counters when the extra byte put the frame in the
4071 * wrong bin. Remember that the frame_len was adjusted above.
4072 */
4073 if (frame_len == 64) {
4074 stats->prc64++;
4075 stats->prc127--;
4076 } else if (frame_len == 127) {
4077 stats->prc127++;
4078 stats->prc255--;
4079 } else if (frame_len == 255) {
4080 stats->prc255++;
4081 stats->prc511--;
4082 } else if (frame_len == 511) {
4083 stats->prc511++;
4084 stats->prc1023--;
4085 } else if (frame_len == 1023) {
4086 stats->prc1023++;
4087 stats->prc1522--;
4088 } else if (frame_len == 1522) {
4089 stats->prc1522++;
4090 }
4091}
4092
4093static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4094 u8 status, u8 errors,
4095 u32 length, const u8 *data)
4096{
4097 struct e1000_hw *hw = &adapter->hw;
4098 u8 last_byte = *(data + length - 1);
4099
4100 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4101 unsigned long irq_flags;
4102
4103 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4104 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4105 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4106
4107 return true;
4108 }
4109
4110 return false;
4111}
4112
4113static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4114 unsigned int bufsz)
4115{
4116 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4117
4118 if (unlikely(!skb))
4119 adapter->alloc_rx_buff_failed++;
4120 return skb;
4121}
4122
4123/**
4124 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4125 * @adapter: board private structure
4126 * @rx_ring: ring to clean
4127 * @work_done: amount of napi work completed this call
4128 * @work_to_do: max amount of work allowed for this call to do
4129 *
4130 * the return value indicates whether actual cleaning was done, there
4131 * is no guarantee that everything was cleaned
4132 */
4133static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4134 struct e1000_rx_ring *rx_ring,
4135 int *work_done, int work_to_do)
4136{
4137 struct net_device *netdev = adapter->netdev;
4138 struct pci_dev *pdev = adapter->pdev;
4139 struct e1000_rx_desc *rx_desc, *next_rxd;
4140 struct e1000_rx_buffer *buffer_info, *next_buffer;
4141 u32 length;
4142 unsigned int i;
4143 int cleaned_count = 0;
4144 bool cleaned = false;
4145 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4146
4147 i = rx_ring->next_to_clean;
4148 rx_desc = E1000_RX_DESC(*rx_ring, i);
4149 buffer_info = &rx_ring->buffer_info[i];
4150
4151 while (rx_desc->status & E1000_RXD_STAT_DD) {
4152 struct sk_buff *skb;
4153 u8 status;
4154
4155 if (*work_done >= work_to_do)
4156 break;
4157 (*work_done)++;
4158 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4159
4160 status = rx_desc->status;
4161
4162 if (++i == rx_ring->count)
4163 i = 0;
4164
4165 next_rxd = E1000_RX_DESC(*rx_ring, i);
4166 prefetch(next_rxd);
4167
4168 next_buffer = &rx_ring->buffer_info[i];
4169
4170 cleaned = true;
4171 cleaned_count++;
4172 dma_unmap_page(&pdev->dev, buffer_info->dma,
4173 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4174 buffer_info->dma = 0;
4175
4176 length = le16_to_cpu(rx_desc->length);
4177
4178 /* errors is only valid for DD + EOP descriptors */
4179 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4180 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4181 u8 *mapped = page_address(buffer_info->rxbuf.page);
4182
4183 if (e1000_tbi_should_accept(adapter, status,
4184 rx_desc->errors,
4185 length, mapped)) {
4186 length--;
4187 } else if (netdev->features & NETIF_F_RXALL) {
4188 goto process_skb;
4189 } else {
4190 /* an error means any chain goes out the window
4191 * too
4192 */
4193 dev_kfree_skb(rx_ring->rx_skb_top);
4194 rx_ring->rx_skb_top = NULL;
4195 goto next_desc;
4196 }
4197 }
4198
4199#define rxtop rx_ring->rx_skb_top
4200process_skb:
4201 if (!(status & E1000_RXD_STAT_EOP)) {
4202 /* this descriptor is only the beginning (or middle) */
4203 if (!rxtop) {
4204 /* this is the beginning of a chain */
4205 rxtop = napi_get_frags(&adapter->napi);
4206 if (!rxtop)
4207 break;
4208
4209 skb_fill_page_desc(rxtop, 0,
4210 buffer_info->rxbuf.page,
4211 0, length);
4212 } else {
4213 /* this is the middle of a chain */
4214 skb_fill_page_desc(rxtop,
4215 skb_shinfo(rxtop)->nr_frags,
4216 buffer_info->rxbuf.page, 0, length);
4217 }
4218 e1000_consume_page(buffer_info, rxtop, length);
4219 goto next_desc;
4220 } else {
4221 if (rxtop) {
4222 /* end of the chain */
4223 skb_fill_page_desc(rxtop,
4224 skb_shinfo(rxtop)->nr_frags,
4225 buffer_info->rxbuf.page, 0, length);
4226 skb = rxtop;
4227 rxtop = NULL;
4228 e1000_consume_page(buffer_info, skb, length);
4229 } else {
4230 struct page *p;
4231 /* no chain, got EOP, this buf is the packet
4232 * copybreak to save the put_page/alloc_page
4233 */
4234 p = buffer_info->rxbuf.page;
4235 if (length <= copybreak) {
4236 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237 length -= 4;
4238 skb = e1000_alloc_rx_skb(adapter,
4239 length);
4240 if (!skb)
4241 break;
4242
4243 memcpy(skb_tail_pointer(skb),
4244 page_address(p), length);
4245
4246 /* re-use the page, so don't erase
4247 * buffer_info->rxbuf.page
4248 */
4249 skb_put(skb, length);
4250 e1000_rx_checksum(adapter,
4251 status | rx_desc->errors << 24,
4252 le16_to_cpu(rx_desc->csum), skb);
4253
4254 total_rx_bytes += skb->len;
4255 total_rx_packets++;
4256
4257 e1000_receive_skb(adapter, status,
4258 rx_desc->special, skb);
4259 goto next_desc;
4260 } else {
4261 skb = napi_get_frags(&adapter->napi);
4262 if (!skb) {
4263 adapter->alloc_rx_buff_failed++;
4264 break;
4265 }
4266 skb_fill_page_desc(skb, 0, p, 0,
4267 length);
4268 e1000_consume_page(buffer_info, skb,
4269 length);
4270 }
4271 }
4272 }
4273
4274 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4275 e1000_rx_checksum(adapter,
4276 (u32)(status) |
4277 ((u32)(rx_desc->errors) << 24),
4278 le16_to_cpu(rx_desc->csum), skb);
4279
4280 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4281 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4282 pskb_trim(skb, skb->len - 4);
4283 total_rx_packets++;
4284
4285 if (status & E1000_RXD_STAT_VP) {
4286 __le16 vlan = rx_desc->special;
4287 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4288
4289 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4290 }
4291
4292 napi_gro_frags(&adapter->napi);
4293
4294next_desc:
4295 rx_desc->status = 0;
4296
4297 /* return some buffers to hardware, one at a time is too slow */
4298 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4299 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300 cleaned_count = 0;
4301 }
4302
4303 /* use prefetched values */
4304 rx_desc = next_rxd;
4305 buffer_info = next_buffer;
4306 }
4307 rx_ring->next_to_clean = i;
4308
4309 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4310 if (cleaned_count)
4311 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4312
4313 adapter->total_rx_packets += total_rx_packets;
4314 adapter->total_rx_bytes += total_rx_bytes;
4315 netdev->stats.rx_bytes += total_rx_bytes;
4316 netdev->stats.rx_packets += total_rx_packets;
4317 return cleaned;
4318}
4319
4320/* this should improve performance for small packets with large amounts
4321 * of reassembly being done in the stack
4322 */
4323static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4324 struct e1000_rx_buffer *buffer_info,
4325 u32 length, const void *data)
4326{
4327 struct sk_buff *skb;
4328
4329 if (length > copybreak)
4330 return NULL;
4331
4332 skb = e1000_alloc_rx_skb(adapter, length);
4333 if (!skb)
4334 return NULL;
4335
4336 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4337 length, DMA_FROM_DEVICE);
4338
4339 skb_put_data(skb, data, length);
4340
4341 return skb;
4342}
4343
4344/**
4345 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4346 * @adapter: board private structure
4347 * @rx_ring: ring to clean
4348 * @work_done: amount of napi work completed this call
4349 * @work_to_do: max amount of work allowed for this call to do
4350 */
4351static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4352 struct e1000_rx_ring *rx_ring,
4353 int *work_done, int work_to_do)
4354{
4355 struct net_device *netdev = adapter->netdev;
4356 struct pci_dev *pdev = adapter->pdev;
4357 struct e1000_rx_desc *rx_desc, *next_rxd;
4358 struct e1000_rx_buffer *buffer_info, *next_buffer;
4359 u32 length;
4360 unsigned int i;
4361 int cleaned_count = 0;
4362 bool cleaned = false;
4363 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4364
4365 i = rx_ring->next_to_clean;
4366 rx_desc = E1000_RX_DESC(*rx_ring, i);
4367 buffer_info = &rx_ring->buffer_info[i];
4368
4369 while (rx_desc->status & E1000_RXD_STAT_DD) {
4370 struct sk_buff *skb;
4371 u8 *data;
4372 u8 status;
4373
4374 if (*work_done >= work_to_do)
4375 break;
4376 (*work_done)++;
4377 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4378
4379 status = rx_desc->status;
4380 length = le16_to_cpu(rx_desc->length);
4381
4382 data = buffer_info->rxbuf.data;
4383 prefetch(data);
4384 skb = e1000_copybreak(adapter, buffer_info, length, data);
4385 if (!skb) {
4386 unsigned int frag_len = e1000_frag_len(adapter);
4387
4388 skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4389 if (!skb) {
4390 adapter->alloc_rx_buff_failed++;
4391 break;
4392 }
4393
4394 skb_reserve(skb, E1000_HEADROOM);
4395 dma_unmap_single(&pdev->dev, buffer_info->dma,
4396 adapter->rx_buffer_len,
4397 DMA_FROM_DEVICE);
4398 buffer_info->dma = 0;
4399 buffer_info->rxbuf.data = NULL;
4400 }
4401
4402 if (++i == rx_ring->count)
4403 i = 0;
4404
4405 next_rxd = E1000_RX_DESC(*rx_ring, i);
4406 prefetch(next_rxd);
4407
4408 next_buffer = &rx_ring->buffer_info[i];
4409
4410 cleaned = true;
4411 cleaned_count++;
4412
4413 /* !EOP means multiple descriptors were used to store a single
4414 * packet, if thats the case we need to toss it. In fact, we
4415 * to toss every packet with the EOP bit clear and the next
4416 * frame that _does_ have the EOP bit set, as it is by
4417 * definition only a frame fragment
4418 */
4419 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4420 adapter->discarding = true;
4421
4422 if (adapter->discarding) {
4423 /* All receives must fit into a single buffer */
4424 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4425 dev_kfree_skb(skb);
4426 if (status & E1000_RXD_STAT_EOP)
4427 adapter->discarding = false;
4428 goto next_desc;
4429 }
4430
4431 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4432 if (e1000_tbi_should_accept(adapter, status,
4433 rx_desc->errors,
4434 length, data)) {
4435 length--;
4436 } else if (netdev->features & NETIF_F_RXALL) {
4437 goto process_skb;
4438 } else {
4439 dev_kfree_skb(skb);
4440 goto next_desc;
4441 }
4442 }
4443
4444process_skb:
4445 total_rx_bytes += (length - 4); /* don't count FCS */
4446 total_rx_packets++;
4447
4448 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4449 /* adjust length to remove Ethernet CRC, this must be
4450 * done after the TBI_ACCEPT workaround above
4451 */
4452 length -= 4;
4453
4454 if (buffer_info->rxbuf.data == NULL)
4455 skb_put(skb, length);
4456 else /* copybreak skb */
4457 skb_trim(skb, length);
4458
4459 /* Receive Checksum Offload */
4460 e1000_rx_checksum(adapter,
4461 (u32)(status) |
4462 ((u32)(rx_desc->errors) << 24),
4463 le16_to_cpu(rx_desc->csum), skb);
4464
4465 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4466
4467next_desc:
4468 rx_desc->status = 0;
4469
4470 /* return some buffers to hardware, one at a time is too slow */
4471 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4472 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473 cleaned_count = 0;
4474 }
4475
4476 /* use prefetched values */
4477 rx_desc = next_rxd;
4478 buffer_info = next_buffer;
4479 }
4480 rx_ring->next_to_clean = i;
4481
4482 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4483 if (cleaned_count)
4484 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4485
4486 adapter->total_rx_packets += total_rx_packets;
4487 adapter->total_rx_bytes += total_rx_bytes;
4488 netdev->stats.rx_bytes += total_rx_bytes;
4489 netdev->stats.rx_packets += total_rx_packets;
4490 return cleaned;
4491}
4492
4493/**
4494 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4495 * @adapter: address of board private structure
4496 * @rx_ring: pointer to receive ring structure
4497 * @cleaned_count: number of buffers to allocate this pass
4498 **/
4499static void
4500e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4501 struct e1000_rx_ring *rx_ring, int cleaned_count)
4502{
4503 struct pci_dev *pdev = adapter->pdev;
4504 struct e1000_rx_desc *rx_desc;
4505 struct e1000_rx_buffer *buffer_info;
4506 unsigned int i;
4507
4508 i = rx_ring->next_to_use;
4509 buffer_info = &rx_ring->buffer_info[i];
4510
4511 while (cleaned_count--) {
4512 /* allocate a new page if necessary */
4513 if (!buffer_info->rxbuf.page) {
4514 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4515 if (unlikely(!buffer_info->rxbuf.page)) {
4516 adapter->alloc_rx_buff_failed++;
4517 break;
4518 }
4519 }
4520
4521 if (!buffer_info->dma) {
4522 buffer_info->dma = dma_map_page(&pdev->dev,
4523 buffer_info->rxbuf.page, 0,
4524 adapter->rx_buffer_len,
4525 DMA_FROM_DEVICE);
4526 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4527 put_page(buffer_info->rxbuf.page);
4528 buffer_info->rxbuf.page = NULL;
4529 buffer_info->dma = 0;
4530 adapter->alloc_rx_buff_failed++;
4531 break;
4532 }
4533 }
4534
4535 rx_desc = E1000_RX_DESC(*rx_ring, i);
4536 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4537
4538 if (unlikely(++i == rx_ring->count))
4539 i = 0;
4540 buffer_info = &rx_ring->buffer_info[i];
4541 }
4542
4543 if (likely(rx_ring->next_to_use != i)) {
4544 rx_ring->next_to_use = i;
4545 if (unlikely(i-- == 0))
4546 i = (rx_ring->count - 1);
4547
4548 /* Force memory writes to complete before letting h/w
4549 * know there are new descriptors to fetch. (Only
4550 * applicable for weak-ordered memory model archs,
4551 * such as IA-64).
4552 */
4553 dma_wmb();
4554 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4555 }
4556}
4557
4558/**
4559 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4560 * @adapter: address of board private structure
4561 * @rx_ring: pointer to ring struct
4562 * @cleaned_count: number of new Rx buffers to try to allocate
4563 **/
4564static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4565 struct e1000_rx_ring *rx_ring,
4566 int cleaned_count)
4567{
4568 struct e1000_hw *hw = &adapter->hw;
4569 struct pci_dev *pdev = adapter->pdev;
4570 struct e1000_rx_desc *rx_desc;
4571 struct e1000_rx_buffer *buffer_info;
4572 unsigned int i;
4573 unsigned int bufsz = adapter->rx_buffer_len;
4574
4575 i = rx_ring->next_to_use;
4576 buffer_info = &rx_ring->buffer_info[i];
4577
4578 while (cleaned_count--) {
4579 void *data;
4580
4581 if (buffer_info->rxbuf.data)
4582 goto skip;
4583
4584 data = e1000_alloc_frag(adapter);
4585 if (!data) {
4586 /* Better luck next round */
4587 adapter->alloc_rx_buff_failed++;
4588 break;
4589 }
4590
4591 /* Fix for errata 23, can't cross 64kB boundary */
4592 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4593 void *olddata = data;
4594 e_err(rx_err, "skb align check failed: %u bytes at "
4595 "%p\n", bufsz, data);
4596 /* Try again, without freeing the previous */
4597 data = e1000_alloc_frag(adapter);
4598 /* Failed allocation, critical failure */
4599 if (!data) {
4600 skb_free_frag(olddata);
4601 adapter->alloc_rx_buff_failed++;
4602 break;
4603 }
4604
4605 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4606 /* give up */
4607 skb_free_frag(data);
4608 skb_free_frag(olddata);
4609 adapter->alloc_rx_buff_failed++;
4610 break;
4611 }
4612
4613 /* Use new allocation */
4614 skb_free_frag(olddata);
4615 }
4616 buffer_info->dma = dma_map_single(&pdev->dev,
4617 data,
4618 adapter->rx_buffer_len,
4619 DMA_FROM_DEVICE);
4620 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4621 skb_free_frag(data);
4622 buffer_info->dma = 0;
4623 adapter->alloc_rx_buff_failed++;
4624 break;
4625 }
4626
4627 /* XXX if it was allocated cleanly it will never map to a
4628 * boundary crossing
4629 */
4630
4631 /* Fix for errata 23, can't cross 64kB boundary */
4632 if (!e1000_check_64k_bound(adapter,
4633 (void *)(unsigned long)buffer_info->dma,
4634 adapter->rx_buffer_len)) {
4635 e_err(rx_err, "dma align check failed: %u bytes at "
4636 "%p\n", adapter->rx_buffer_len,
4637 (void *)(unsigned long)buffer_info->dma);
4638
4639 dma_unmap_single(&pdev->dev, buffer_info->dma,
4640 adapter->rx_buffer_len,
4641 DMA_FROM_DEVICE);
4642
4643 skb_free_frag(data);
4644 buffer_info->rxbuf.data = NULL;
4645 buffer_info->dma = 0;
4646
4647 adapter->alloc_rx_buff_failed++;
4648 break;
4649 }
4650 buffer_info->rxbuf.data = data;
4651 skip:
4652 rx_desc = E1000_RX_DESC(*rx_ring, i);
4653 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4654
4655 if (unlikely(++i == rx_ring->count))
4656 i = 0;
4657 buffer_info = &rx_ring->buffer_info[i];
4658 }
4659
4660 if (likely(rx_ring->next_to_use != i)) {
4661 rx_ring->next_to_use = i;
4662 if (unlikely(i-- == 0))
4663 i = (rx_ring->count - 1);
4664
4665 /* Force memory writes to complete before letting h/w
4666 * know there are new descriptors to fetch. (Only
4667 * applicable for weak-ordered memory model archs,
4668 * such as IA-64).
4669 */
4670 dma_wmb();
4671 writel(i, hw->hw_addr + rx_ring->rdt);
4672 }
4673}
4674
4675/**
4676 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4677 * @adapter: address of board private structure
4678 **/
4679static void e1000_smartspeed(struct e1000_adapter *adapter)
4680{
4681 struct e1000_hw *hw = &adapter->hw;
4682 u16 phy_status;
4683 u16 phy_ctrl;
4684
4685 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4686 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4687 return;
4688
4689 if (adapter->smartspeed == 0) {
4690 /* If Master/Slave config fault is asserted twice,
4691 * we assume back-to-back
4692 */
4693 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4695 return;
4696 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4697 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4698 return;
4699 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4700 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4701 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4702 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4703 phy_ctrl);
4704 adapter->smartspeed++;
4705 if (!e1000_phy_setup_autoneg(hw) &&
4706 !e1000_read_phy_reg(hw, PHY_CTRL,
4707 &phy_ctrl)) {
4708 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4709 MII_CR_RESTART_AUTO_NEG);
4710 e1000_write_phy_reg(hw, PHY_CTRL,
4711 phy_ctrl);
4712 }
4713 }
4714 return;
4715 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4716 /* If still no link, perhaps using 2/3 pair cable */
4717 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4718 phy_ctrl |= CR_1000T_MS_ENABLE;
4719 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4720 if (!e1000_phy_setup_autoneg(hw) &&
4721 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4722 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723 MII_CR_RESTART_AUTO_NEG);
4724 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4725 }
4726 }
4727 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4728 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4729 adapter->smartspeed = 0;
4730}
4731
4732/**
4733 * e1000_ioctl - handle ioctl calls
4734 * @netdev: pointer to our netdev
4735 * @ifr: pointer to interface request structure
4736 * @cmd: ioctl data
4737 **/
4738static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4739{
4740 switch (cmd) {
4741 case SIOCGMIIPHY:
4742 case SIOCGMIIREG:
4743 case SIOCSMIIREG:
4744 return e1000_mii_ioctl(netdev, ifr, cmd);
4745 default:
4746 return -EOPNOTSUPP;
4747 }
4748}
4749
4750/**
4751 * e1000_mii_ioctl -
4752 * @netdev: pointer to our netdev
4753 * @ifr: pointer to interface request structure
4754 * @cmd: ioctl data
4755 **/
4756static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4757 int cmd)
4758{
4759 struct e1000_adapter *adapter = netdev_priv(netdev);
4760 struct e1000_hw *hw = &adapter->hw;
4761 struct mii_ioctl_data *data = if_mii(ifr);
4762 int retval;
4763 u16 mii_reg;
4764 unsigned long flags;
4765
4766 if (hw->media_type != e1000_media_type_copper)
4767 return -EOPNOTSUPP;
4768
4769 switch (cmd) {
4770 case SIOCGMIIPHY:
4771 data->phy_id = hw->phy_addr;
4772 break;
4773 case SIOCGMIIREG:
4774 spin_lock_irqsave(&adapter->stats_lock, flags);
4775 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4776 &data->val_out)) {
4777 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778 return -EIO;
4779 }
4780 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781 break;
4782 case SIOCSMIIREG:
4783 if (data->reg_num & ~(0x1F))
4784 return -EFAULT;
4785 mii_reg = data->val_in;
4786 spin_lock_irqsave(&adapter->stats_lock, flags);
4787 if (e1000_write_phy_reg(hw, data->reg_num,
4788 mii_reg)) {
4789 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790 return -EIO;
4791 }
4792 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4793 if (hw->media_type == e1000_media_type_copper) {
4794 switch (data->reg_num) {
4795 case PHY_CTRL:
4796 if (mii_reg & MII_CR_POWER_DOWN)
4797 break;
4798 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4799 hw->autoneg = 1;
4800 hw->autoneg_advertised = 0x2F;
4801 } else {
4802 u32 speed;
4803 if (mii_reg & 0x40)
4804 speed = SPEED_1000;
4805 else if (mii_reg & 0x2000)
4806 speed = SPEED_100;
4807 else
4808 speed = SPEED_10;
4809 retval = e1000_set_spd_dplx(
4810 adapter, speed,
4811 ((mii_reg & 0x100)
4812 ? DUPLEX_FULL :
4813 DUPLEX_HALF));
4814 if (retval)
4815 return retval;
4816 }
4817 if (netif_running(adapter->netdev))
4818 e1000_reinit_locked(adapter);
4819 else
4820 e1000_reset(adapter);
4821 break;
4822 case M88E1000_PHY_SPEC_CTRL:
4823 case M88E1000_EXT_PHY_SPEC_CTRL:
4824 if (e1000_phy_reset(hw))
4825 return -EIO;
4826 break;
4827 }
4828 } else {
4829 switch (data->reg_num) {
4830 case PHY_CTRL:
4831 if (mii_reg & MII_CR_POWER_DOWN)
4832 break;
4833 if (netif_running(adapter->netdev))
4834 e1000_reinit_locked(adapter);
4835 else
4836 e1000_reset(adapter);
4837 break;
4838 }
4839 }
4840 break;
4841 default:
4842 return -EOPNOTSUPP;
4843 }
4844 return E1000_SUCCESS;
4845}
4846
4847void e1000_pci_set_mwi(struct e1000_hw *hw)
4848{
4849 struct e1000_adapter *adapter = hw->back;
4850 int ret_val = pci_set_mwi(adapter->pdev);
4851
4852 if (ret_val)
4853 e_err(probe, "Error in setting MWI\n");
4854}
4855
4856void e1000_pci_clear_mwi(struct e1000_hw *hw)
4857{
4858 struct e1000_adapter *adapter = hw->back;
4859
4860 pci_clear_mwi(adapter->pdev);
4861}
4862
4863int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4864{
4865 struct e1000_adapter *adapter = hw->back;
4866 return pcix_get_mmrbc(adapter->pdev);
4867}
4868
4869void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4870{
4871 struct e1000_adapter *adapter = hw->back;
4872 pcix_set_mmrbc(adapter->pdev, mmrbc);
4873}
4874
4875void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4876{
4877 outl(value, port);
4878}
4879
4880static bool e1000_vlan_used(struct e1000_adapter *adapter)
4881{
4882 u16 vid;
4883
4884 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4885 return true;
4886 return false;
4887}
4888
4889static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4890 netdev_features_t features)
4891{
4892 struct e1000_hw *hw = &adapter->hw;
4893 u32 ctrl;
4894
4895 ctrl = er32(CTRL);
4896 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4897 /* enable VLAN tag insert/strip */
4898 ctrl |= E1000_CTRL_VME;
4899 } else {
4900 /* disable VLAN tag insert/strip */
4901 ctrl &= ~E1000_CTRL_VME;
4902 }
4903 ew32(CTRL, ctrl);
4904}
4905static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4906 bool filter_on)
4907{
4908 struct e1000_hw *hw = &adapter->hw;
4909 u32 rctl;
4910
4911 if (!test_bit(__E1000_DOWN, &adapter->flags))
4912 e1000_irq_disable(adapter);
4913
4914 __e1000_vlan_mode(adapter, adapter->netdev->features);
4915 if (filter_on) {
4916 /* enable VLAN receive filtering */
4917 rctl = er32(RCTL);
4918 rctl &= ~E1000_RCTL_CFIEN;
4919 if (!(adapter->netdev->flags & IFF_PROMISC))
4920 rctl |= E1000_RCTL_VFE;
4921 ew32(RCTL, rctl);
4922 e1000_update_mng_vlan(adapter);
4923 } else {
4924 /* disable VLAN receive filtering */
4925 rctl = er32(RCTL);
4926 rctl &= ~E1000_RCTL_VFE;
4927 ew32(RCTL, rctl);
4928 }
4929
4930 if (!test_bit(__E1000_DOWN, &adapter->flags))
4931 e1000_irq_enable(adapter);
4932}
4933
4934static void e1000_vlan_mode(struct net_device *netdev,
4935 netdev_features_t features)
4936{
4937 struct e1000_adapter *adapter = netdev_priv(netdev);
4938
4939 if (!test_bit(__E1000_DOWN, &adapter->flags))
4940 e1000_irq_disable(adapter);
4941
4942 __e1000_vlan_mode(adapter, features);
4943
4944 if (!test_bit(__E1000_DOWN, &adapter->flags))
4945 e1000_irq_enable(adapter);
4946}
4947
4948static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4949 __be16 proto, u16 vid)
4950{
4951 struct e1000_adapter *adapter = netdev_priv(netdev);
4952 struct e1000_hw *hw = &adapter->hw;
4953 u32 vfta, index;
4954
4955 if ((hw->mng_cookie.status &
4956 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4957 (vid == adapter->mng_vlan_id))
4958 return 0;
4959
4960 if (!e1000_vlan_used(adapter))
4961 e1000_vlan_filter_on_off(adapter, true);
4962
4963 /* add VID to filter table */
4964 index = (vid >> 5) & 0x7F;
4965 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4966 vfta |= (1 << (vid & 0x1F));
4967 e1000_write_vfta(hw, index, vfta);
4968
4969 set_bit(vid, adapter->active_vlans);
4970
4971 return 0;
4972}
4973
4974static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4975 __be16 proto, u16 vid)
4976{
4977 struct e1000_adapter *adapter = netdev_priv(netdev);
4978 struct e1000_hw *hw = &adapter->hw;
4979 u32 vfta, index;
4980
4981 if (!test_bit(__E1000_DOWN, &adapter->flags))
4982 e1000_irq_disable(adapter);
4983 if (!test_bit(__E1000_DOWN, &adapter->flags))
4984 e1000_irq_enable(adapter);
4985
4986 /* remove VID from filter table */
4987 index = (vid >> 5) & 0x7F;
4988 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4989 vfta &= ~(1 << (vid & 0x1F));
4990 e1000_write_vfta(hw, index, vfta);
4991
4992 clear_bit(vid, adapter->active_vlans);
4993
4994 if (!e1000_vlan_used(adapter))
4995 e1000_vlan_filter_on_off(adapter, false);
4996
4997 return 0;
4998}
4999
5000static void e1000_restore_vlan(struct e1000_adapter *adapter)
5001{
5002 u16 vid;
5003
5004 if (!e1000_vlan_used(adapter))
5005 return;
5006
5007 e1000_vlan_filter_on_off(adapter, true);
5008 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5009 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5010}
5011
5012int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5013{
5014 struct e1000_hw *hw = &adapter->hw;
5015
5016 hw->autoneg = 0;
5017
5018 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5019 * for the switch() below to work
5020 */
5021 if ((spd & 1) || (dplx & ~1))
5022 goto err_inval;
5023
5024 /* Fiber NICs only allow 1000 gbps Full duplex */
5025 if ((hw->media_type == e1000_media_type_fiber) &&
5026 spd != SPEED_1000 &&
5027 dplx != DUPLEX_FULL)
5028 goto err_inval;
5029
5030 switch (spd + dplx) {
5031 case SPEED_10 + DUPLEX_HALF:
5032 hw->forced_speed_duplex = e1000_10_half;
5033 break;
5034 case SPEED_10 + DUPLEX_FULL:
5035 hw->forced_speed_duplex = e1000_10_full;
5036 break;
5037 case SPEED_100 + DUPLEX_HALF:
5038 hw->forced_speed_duplex = e1000_100_half;
5039 break;
5040 case SPEED_100 + DUPLEX_FULL:
5041 hw->forced_speed_duplex = e1000_100_full;
5042 break;
5043 case SPEED_1000 + DUPLEX_FULL:
5044 hw->autoneg = 1;
5045 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5046 break;
5047 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5048 default:
5049 goto err_inval;
5050 }
5051
5052 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5053 hw->mdix = AUTO_ALL_MODES;
5054
5055 return 0;
5056
5057err_inval:
5058 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5059 return -EINVAL;
5060}
5061
5062static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5063{
5064 struct net_device *netdev = pci_get_drvdata(pdev);
5065 struct e1000_adapter *adapter = netdev_priv(netdev);
5066 struct e1000_hw *hw = &adapter->hw;
5067 u32 ctrl, ctrl_ext, rctl, status;
5068 u32 wufc = adapter->wol;
5069
5070 netif_device_detach(netdev);
5071
5072 if (netif_running(netdev)) {
5073 int count = E1000_CHECK_RESET_COUNT;
5074
5075 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5076 usleep_range(10000, 20000);
5077
5078 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5079 rtnl_lock();
5080 e1000_down(adapter);
5081 rtnl_unlock();
5082 }
5083
5084 status = er32(STATUS);
5085 if (status & E1000_STATUS_LU)
5086 wufc &= ~E1000_WUFC_LNKC;
5087
5088 if (wufc) {
5089 e1000_setup_rctl(adapter);
5090 e1000_set_rx_mode(netdev);
5091
5092 rctl = er32(RCTL);
5093
5094 /* turn on all-multi mode if wake on multicast is enabled */
5095 if (wufc & E1000_WUFC_MC)
5096 rctl |= E1000_RCTL_MPE;
5097
5098 /* enable receives in the hardware */
5099 ew32(RCTL, rctl | E1000_RCTL_EN);
5100
5101 if (hw->mac_type >= e1000_82540) {
5102 ctrl = er32(CTRL);
5103 /* advertise wake from D3Cold */
5104 #define E1000_CTRL_ADVD3WUC 0x00100000
5105 /* phy power management enable */
5106 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5107 ctrl |= E1000_CTRL_ADVD3WUC |
5108 E1000_CTRL_EN_PHY_PWR_MGMT;
5109 ew32(CTRL, ctrl);
5110 }
5111
5112 if (hw->media_type == e1000_media_type_fiber ||
5113 hw->media_type == e1000_media_type_internal_serdes) {
5114 /* keep the laser running in D3 */
5115 ctrl_ext = er32(CTRL_EXT);
5116 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5117 ew32(CTRL_EXT, ctrl_ext);
5118 }
5119
5120 ew32(WUC, E1000_WUC_PME_EN);
5121 ew32(WUFC, wufc);
5122 } else {
5123 ew32(WUC, 0);
5124 ew32(WUFC, 0);
5125 }
5126
5127 e1000_release_manageability(adapter);
5128
5129 *enable_wake = !!wufc;
5130
5131 /* make sure adapter isn't asleep if manageability is enabled */
5132 if (adapter->en_mng_pt)
5133 *enable_wake = true;
5134
5135 if (netif_running(netdev))
5136 e1000_free_irq(adapter);
5137
5138 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5139 pci_disable_device(pdev);
5140
5141 return 0;
5142}
5143
5144static int e1000_suspend(struct device *dev)
5145{
5146 int retval;
5147 struct pci_dev *pdev = to_pci_dev(dev);
5148 bool wake;
5149
5150 retval = __e1000_shutdown(pdev, &wake);
5151 device_set_wakeup_enable(dev, wake);
5152
5153 return retval;
5154}
5155
5156static int e1000_resume(struct device *dev)
5157{
5158 struct pci_dev *pdev = to_pci_dev(dev);
5159 struct net_device *netdev = pci_get_drvdata(pdev);
5160 struct e1000_adapter *adapter = netdev_priv(netdev);
5161 struct e1000_hw *hw = &adapter->hw;
5162 u32 err;
5163
5164 if (adapter->need_ioport)
5165 err = pci_enable_device(pdev);
5166 else
5167 err = pci_enable_device_mem(pdev);
5168 if (err) {
5169 pr_err("Cannot enable PCI device from suspend\n");
5170 return err;
5171 }
5172
5173 /* flush memory to make sure state is correct */
5174 smp_mb__before_atomic();
5175 clear_bit(__E1000_DISABLED, &adapter->flags);
5176 pci_set_master(pdev);
5177
5178 pci_enable_wake(pdev, PCI_D3hot, 0);
5179 pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181 if (netif_running(netdev)) {
5182 err = e1000_request_irq(adapter);
5183 if (err)
5184 return err;
5185 }
5186
5187 e1000_power_up_phy(adapter);
5188 e1000_reset(adapter);
5189 ew32(WUS, ~0);
5190
5191 e1000_init_manageability(adapter);
5192
5193 if (netif_running(netdev))
5194 e1000_up(adapter);
5195
5196 netif_device_attach(netdev);
5197
5198 return 0;
5199}
5200
5201static void e1000_shutdown(struct pci_dev *pdev)
5202{
5203 bool wake;
5204
5205 __e1000_shutdown(pdev, &wake);
5206
5207 if (system_state == SYSTEM_POWER_OFF) {
5208 pci_wake_from_d3(pdev, wake);
5209 pci_set_power_state(pdev, PCI_D3hot);
5210 }
5211}
5212
5213#ifdef CONFIG_NET_POLL_CONTROLLER
5214/* Polling 'interrupt' - used by things like netconsole to send skbs
5215 * without having to re-enable interrupts. It's not called while
5216 * the interrupt routine is executing.
5217 */
5218static void e1000_netpoll(struct net_device *netdev)
5219{
5220 struct e1000_adapter *adapter = netdev_priv(netdev);
5221
5222 if (disable_hardirq(adapter->pdev->irq))
5223 e1000_intr(adapter->pdev->irq, netdev);
5224 enable_irq(adapter->pdev->irq);
5225}
5226#endif
5227
5228/**
5229 * e1000_io_error_detected - called when PCI error is detected
5230 * @pdev: Pointer to PCI device
5231 * @state: The current pci connection state
5232 *
5233 * This function is called after a PCI bus error affecting
5234 * this device has been detected.
5235 */
5236static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5237 pci_channel_state_t state)
5238{
5239 struct net_device *netdev = pci_get_drvdata(pdev);
5240 struct e1000_adapter *adapter = netdev_priv(netdev);
5241
5242 rtnl_lock();
5243 netif_device_detach(netdev);
5244
5245 if (state == pci_channel_io_perm_failure) {
5246 rtnl_unlock();
5247 return PCI_ERS_RESULT_DISCONNECT;
5248 }
5249
5250 if (netif_running(netdev))
5251 e1000_down(adapter);
5252
5253 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5254 pci_disable_device(pdev);
5255 rtnl_unlock();
5256
5257 /* Request a slot reset. */
5258 return PCI_ERS_RESULT_NEED_RESET;
5259}
5260
5261/**
5262 * e1000_io_slot_reset - called after the pci bus has been reset.
5263 * @pdev: Pointer to PCI device
5264 *
5265 * Restart the card from scratch, as if from a cold-boot. Implementation
5266 * resembles the first-half of the e1000_resume routine.
5267 */
5268static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5269{
5270 struct net_device *netdev = pci_get_drvdata(pdev);
5271 struct e1000_adapter *adapter = netdev_priv(netdev);
5272 struct e1000_hw *hw = &adapter->hw;
5273 int err;
5274
5275 if (adapter->need_ioport)
5276 err = pci_enable_device(pdev);
5277 else
5278 err = pci_enable_device_mem(pdev);
5279 if (err) {
5280 pr_err("Cannot re-enable PCI device after reset.\n");
5281 return PCI_ERS_RESULT_DISCONNECT;
5282 }
5283
5284 /* flush memory to make sure state is correct */
5285 smp_mb__before_atomic();
5286 clear_bit(__E1000_DISABLED, &adapter->flags);
5287 pci_set_master(pdev);
5288
5289 pci_enable_wake(pdev, PCI_D3hot, 0);
5290 pci_enable_wake(pdev, PCI_D3cold, 0);
5291
5292 e1000_reset(adapter);
5293 ew32(WUS, ~0);
5294
5295 return PCI_ERS_RESULT_RECOVERED;
5296}
5297
5298/**
5299 * e1000_io_resume - called when traffic can start flowing again.
5300 * @pdev: Pointer to PCI device
5301 *
5302 * This callback is called when the error recovery driver tells us that
5303 * its OK to resume normal operation. Implementation resembles the
5304 * second-half of the e1000_resume routine.
5305 */
5306static void e1000_io_resume(struct pci_dev *pdev)
5307{
5308 struct net_device *netdev = pci_get_drvdata(pdev);
5309 struct e1000_adapter *adapter = netdev_priv(netdev);
5310
5311 e1000_init_manageability(adapter);
5312
5313 if (netif_running(netdev)) {
5314 if (e1000_up(adapter)) {
5315 pr_info("can't bring device back up after reset\n");
5316 return;
5317 }
5318 }
5319
5320 netif_device_attach(netdev);
5321}
5322
5323/* e1000_main.c */
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30#include <net/ip6_checksum.h>
31#include <linux/io.h>
32#include <linux/prefetch.h>
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
35
36char e1000_driver_name[] = "e1000";
37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38#define DRV_VERSION "7.3.21-k8-NAPI"
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49static const struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109void e1000_update_stats(struct e1000_adapter *adapter);
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114static void e1000_remove(struct pci_dev *pdev);
115static int e1000_alloc_queues(struct e1000_adapter *adapter);
116static int e1000_sw_init(struct e1000_adapter *adapter);
117int e1000_open(struct net_device *netdev);
118int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128static void e1000_set_rx_mode(struct net_device *netdev);
129static void e1000_update_phy_info_task(struct work_struct *work);
130static void e1000_watchdog(struct work_struct *work);
131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count)
150{
151}
152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 struct e1000_rx_ring *rx_ring,
154 int cleaned_count);
155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int cleaned_count);
158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 int cmd);
161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163static void e1000_tx_timeout(struct net_device *dev);
164static void e1000_reset_task(struct work_struct *work);
165static void e1000_smartspeed(struct e1000_adapter *adapter);
166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 struct sk_buff *skb);
168
169static bool e1000_vlan_used(struct e1000_adapter *adapter);
170static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 bool filter_on);
174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
178static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
180#ifdef CONFIG_PM
181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182static int e1000_resume(struct pci_dev *pdev);
183#endif
184static void e1000_shutdown(struct pci_dev *pdev);
185
186#ifdef CONFIG_NET_POLL_CONTROLLER
187/* for netdump / net console */
188static void e1000_netpoll (struct net_device *netdev);
189#endif
190
191#define COPYBREAK_DEFAULT 256
192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193module_param(copybreak, uint, 0644);
194MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
196
197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 pci_channel_state_t state);
199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200static void e1000_io_resume(struct pci_dev *pdev);
201
202static const struct pci_error_handlers e1000_err_handler = {
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
206};
207
208static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
212 .remove = e1000_remove,
213#ifdef CONFIG_PM
214 /* Power Management Hooks */
215 .suspend = e1000_suspend,
216 .resume = e1000_resume,
217#endif
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
220};
221
222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224MODULE_LICENSE("GPL");
225MODULE_VERSION(DRV_VERSION);
226
227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228static int debug = -1;
229module_param(debug, int, 0);
230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232/**
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
235 *
236 **/
237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238{
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
241}
242
243/**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
249static int __init e1000_init_module(void)
250{
251 int ret;
252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253
254 pr_info("%s\n", e1000_copyright);
255
256 ret = pci_register_driver(&e1000_driver);
257 if (copybreak != COPYBREAK_DEFAULT) {
258 if (copybreak == 0)
259 pr_info("copybreak disabled\n");
260 else
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
263 }
264 return ret;
265}
266
267module_init(e1000_init_module);
268
269/**
270 * e1000_exit_module - Driver Exit Cleanup Routine
271 *
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
274 **/
275static void __exit e1000_exit_module(void)
276{
277 pci_unregister_driver(&e1000_driver);
278}
279
280module_exit(e1000_exit_module);
281
282static int e1000_request_irq(struct e1000_adapter *adapter)
283{
284 struct net_device *netdev = adapter->netdev;
285 irq_handler_t handler = e1000_intr;
286 int irq_flags = IRQF_SHARED;
287 int err;
288
289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 netdev);
291 if (err) {
292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 }
294
295 return err;
296}
297
298static void e1000_free_irq(struct e1000_adapter *adapter)
299{
300 struct net_device *netdev = adapter->netdev;
301
302 free_irq(adapter->pdev->irq, netdev);
303}
304
305/**
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
308 **/
309static void e1000_irq_disable(struct e1000_adapter *adapter)
310{
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMC, ~0);
314 E1000_WRITE_FLUSH();
315 synchronize_irq(adapter->pdev->irq);
316}
317
318/**
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
321 **/
322static void e1000_irq_enable(struct e1000_adapter *adapter)
323{
324 struct e1000_hw *hw = &adapter->hw;
325
326 ew32(IMS, IMS_ENABLE_MASK);
327 E1000_WRITE_FLUSH();
328}
329
330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331{
332 struct e1000_hw *hw = &adapter->hw;
333 struct net_device *netdev = adapter->netdev;
334 u16 vid = hw->mng_cookie.vlan_id;
335 u16 old_vid = adapter->mng_vlan_id;
336
337 if (!e1000_vlan_used(adapter))
338 return;
339
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 adapter->mng_vlan_id = vid;
345 } else {
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 }
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 (vid != old_vid) &&
350 !test_bit(old_vid, adapter->active_vlans))
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 old_vid);
353 } else {
354 adapter->mng_vlan_id = vid;
355 }
356}
357
358static void e1000_init_manageability(struct e1000_adapter *adapter)
359{
360 struct e1000_hw *hw = &adapter->hw;
361
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
364
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
367
368 ew32(MANC, manc);
369 }
370}
371
372static void e1000_release_manageability(struct e1000_adapter *adapter)
373{
374 struct e1000_hw *hw = &adapter->hw;
375
376 if (adapter->en_mng_pt) {
377 u32 manc = er32(MANC);
378
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
381
382 ew32(MANC, manc);
383 }
384}
385
386/**
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
389 **/
390static void e1000_configure(struct e1000_adapter *adapter)
391{
392 struct net_device *netdev = adapter->netdev;
393 int i;
394
395 e1000_set_rx_mode(netdev);
396
397 e1000_restore_vlan(adapter);
398 e1000_init_manageability(adapter);
399
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
405 * next_to_use != next_to_clean
406 */
407 for (i = 0; i < adapter->num_rx_queues; i++) {
408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 adapter->alloc_rx_buf(adapter, ring,
410 E1000_DESC_UNUSED(ring));
411 }
412}
413
414int e1000_up(struct e1000_adapter *adapter)
415{
416 struct e1000_hw *hw = &adapter->hw;
417
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
420
421 clear_bit(__E1000_DOWN, &adapter->flags);
422
423 napi_enable(&adapter->napi);
424
425 e1000_irq_enable(adapter);
426
427 netif_wake_queue(adapter->netdev);
428
429 /* fire a link change interrupt to start the watchdog */
430 ew32(ICS, E1000_ICS_LSC);
431 return 0;
432}
433
434/**
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
437 *
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
441 **/
442void e1000_power_up_phy(struct e1000_adapter *adapter)
443{
444 struct e1000_hw *hw = &adapter->hw;
445 u16 mii_reg = 0;
446
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw->media_type == e1000_media_type_copper) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle
451 */
452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 mii_reg &= ~MII_CR_POWER_DOWN;
454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 }
456}
457
458static void e1000_power_down_phy(struct e1000_adapter *adapter)
459{
460 struct e1000_hw *hw = &adapter->hw;
461
462 /* Power down the PHY so no link is implied when interface is down *
463 * The PHY cannot be powered down if any of the following is true *
464 * (a) WoL is enabled
465 * (b) AMT is active
466 * (c) SoL/IDER session is active
467 */
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
470 u16 mii_reg = 0;
471
472 switch (hw->mac_type) {
473 case e1000_82540:
474 case e1000_82545:
475 case e1000_82545_rev_3:
476 case e1000_82546:
477 case e1000_ce4100:
478 case e1000_82546_rev_3:
479 case e1000_82541:
480 case e1000_82541_rev_2:
481 case e1000_82547:
482 case e1000_82547_rev_2:
483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 goto out;
485 break;
486 default:
487 goto out;
488 }
489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 mii_reg |= MII_CR_POWER_DOWN;
491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 msleep(1);
493 }
494out:
495 return;
496}
497
498static void e1000_down_and_stop(struct e1000_adapter *adapter)
499{
500 set_bit(__E1000_DOWN, &adapter->flags);
501
502 cancel_delayed_work_sync(&adapter->watchdog_task);
503
504 /*
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
508 */
509
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
512
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
516}
517
518void e1000_down(struct e1000_adapter *adapter)
519{
520 struct e1000_hw *hw = &adapter->hw;
521 struct net_device *netdev = adapter->netdev;
522 u32 rctl, tctl;
523
524 netif_carrier_off(netdev);
525
526 /* disable receives in the hardware */
527 rctl = er32(RCTL);
528 ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 /* flush and sleep below */
530
531 netif_tx_disable(netdev);
532
533 /* disable transmits in the hardware */
534 tctl = er32(TCTL);
535 tctl &= ~E1000_TCTL_EN;
536 ew32(TCTL, tctl);
537 /* flush both disables and wait for them to finish */
538 E1000_WRITE_FLUSH();
539 msleep(10);
540
541 napi_disable(&adapter->napi);
542
543 e1000_irq_disable(adapter);
544
545 /* Setting DOWN must be after irq_disable to prevent
546 * a screaming interrupt. Setting DOWN also prevents
547 * tasks from rescheduling.
548 */
549 e1000_down_and_stop(adapter);
550
551 adapter->link_speed = 0;
552 adapter->link_duplex = 0;
553
554 e1000_reset(adapter);
555 e1000_clean_all_tx_rings(adapter);
556 e1000_clean_all_rx_rings(adapter);
557}
558
559void e1000_reinit_locked(struct e1000_adapter *adapter)
560{
561 WARN_ON(in_interrupt());
562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563 msleep(1);
564 e1000_down(adapter);
565 e1000_up(adapter);
566 clear_bit(__E1000_RESETTING, &adapter->flags);
567}
568
569void e1000_reset(struct e1000_adapter *adapter)
570{
571 struct e1000_hw *hw = &adapter->hw;
572 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573 bool legacy_pba_adjust = false;
574 u16 hwm;
575
576 /* Repartition Pba for greater than 9k mtu
577 * To take effect CTRL.RST is required.
578 */
579
580 switch (hw->mac_type) {
581 case e1000_82542_rev2_0:
582 case e1000_82542_rev2_1:
583 case e1000_82543:
584 case e1000_82544:
585 case e1000_82540:
586 case e1000_82541:
587 case e1000_82541_rev_2:
588 legacy_pba_adjust = true;
589 pba = E1000_PBA_48K;
590 break;
591 case e1000_82545:
592 case e1000_82545_rev_3:
593 case e1000_82546:
594 case e1000_ce4100:
595 case e1000_82546_rev_3:
596 pba = E1000_PBA_48K;
597 break;
598 case e1000_82547:
599 case e1000_82547_rev_2:
600 legacy_pba_adjust = true;
601 pba = E1000_PBA_30K;
602 break;
603 case e1000_undefined:
604 case e1000_num_macs:
605 break;
606 }
607
608 if (legacy_pba_adjust) {
609 if (hw->max_frame_size > E1000_RXBUFFER_8192)
610 pba -= 8; /* allocate more FIFO for Tx */
611
612 if (hw->mac_type == e1000_82547) {
613 adapter->tx_fifo_head = 0;
614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 adapter->tx_fifo_size =
616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 atomic_set(&adapter->tx_fifo_stall, 0);
618 }
619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
620 /* adjust PBA for jumbo frames */
621 ew32(PBA, pba);
622
623 /* To maintain wire speed transmits, the Tx FIFO should be
624 * large enough to accommodate two full transmit packets,
625 * rounded up to the next 1KB and expressed in KB. Likewise,
626 * the Rx FIFO should be large enough to accommodate at least
627 * one full receive packet and is similarly rounded up and
628 * expressed in KB.
629 */
630 pba = er32(PBA);
631 /* upper 16 bits has Tx packet buffer allocation size in KB */
632 tx_space = pba >> 16;
633 /* lower 16 bits has Rx packet buffer allocation size in KB */
634 pba &= 0xffff;
635 /* the Tx fifo also stores 16 bytes of information about the Tx
636 * but don't include ethernet FCS because hardware appends it
637 */
638 min_tx_space = (hw->max_frame_size +
639 sizeof(struct e1000_tx_desc) -
640 ETH_FCS_LEN) * 2;
641 min_tx_space = ALIGN(min_tx_space, 1024);
642 min_tx_space >>= 10;
643 /* software strips receive CRC, so leave room for it */
644 min_rx_space = hw->max_frame_size;
645 min_rx_space = ALIGN(min_rx_space, 1024);
646 min_rx_space >>= 10;
647
648 /* If current Tx allocation is less than the min Tx FIFO size,
649 * and the min Tx FIFO size is less than the current Rx FIFO
650 * allocation, take space away from current Rx allocation
651 */
652 if (tx_space < min_tx_space &&
653 ((min_tx_space - tx_space) < pba)) {
654 pba = pba - (min_tx_space - tx_space);
655
656 /* PCI/PCIx hardware has PBA alignment constraints */
657 switch (hw->mac_type) {
658 case e1000_82545 ... e1000_82546_rev_3:
659 pba &= ~(E1000_PBA_8K - 1);
660 break;
661 default:
662 break;
663 }
664
665 /* if short on Rx space, Rx wins and must trump Tx
666 * adjustment or use Early Receive if available
667 */
668 if (pba < min_rx_space)
669 pba = min_rx_space;
670 }
671 }
672
673 ew32(PBA, pba);
674
675 /* flow control settings:
676 * The high water mark must be low enough to fit one full frame
677 * (or the size used for early receive) above it in the Rx FIFO.
678 * Set it to the lower of:
679 * - 90% of the Rx FIFO size, and
680 * - the full Rx FIFO size minus the early receive size (for parts
681 * with ERT support assuming ERT set to E1000_ERT_2048), or
682 * - the full Rx FIFO size minus one full frame
683 */
684 hwm = min(((pba << 10) * 9 / 10),
685 ((pba << 10) - hw->max_frame_size));
686
687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
688 hw->fc_low_water = hw->fc_high_water - 8;
689 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
690 hw->fc_send_xon = 1;
691 hw->fc = hw->original_fc;
692
693 /* Allow time for pending master requests to run */
694 e1000_reset_hw(hw);
695 if (hw->mac_type >= e1000_82544)
696 ew32(WUC, 0);
697
698 if (e1000_init_hw(hw))
699 e_dev_err("Hardware Error\n");
700 e1000_update_mng_vlan(adapter);
701
702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 if (hw->mac_type >= e1000_82544 &&
704 hw->autoneg == 1 &&
705 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 u32 ctrl = er32(CTRL);
707 /* clear phy power management bit if we are in gig only mode,
708 * which if enabled will attempt negotiation to 100Mb, which
709 * can cause a loss of link at power off or driver unload
710 */
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
713 }
714
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
720
721 e1000_release_manageability(adapter);
722}
723
724/* Dump the eeprom for users having checksum issues */
725static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726{
727 struct net_device *netdev = adapter->netdev;
728 struct ethtool_eeprom eeprom;
729 const struct ethtool_ops *ops = netdev->ethtool_ops;
730 u8 *data;
731 int i;
732 u16 csum_old, csum_new = 0;
733
734 eeprom.len = ops->get_eeprom_len(netdev);
735 eeprom.offset = 0;
736
737 data = kmalloc(eeprom.len, GFP_KERNEL);
738 if (!data)
739 return;
740
741 ops->get_eeprom(netdev, &eeprom, data);
742
743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 csum_new += data[i] + (data[i + 1] << 8);
747 csum_new = EEPROM_SUM - csum_new;
748
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 pr_err("Calculated : 0x%04x\n", csum_new);
752
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
768
769 kfree(data);
770}
771
772/**
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
775 *
776 * Return true if an adapter needs ioport resources
777 **/
778static int e1000_is_need_ioport(struct pci_dev *pdev)
779{
780 switch (pdev->device) {
781 case E1000_DEV_ID_82540EM:
782 case E1000_DEV_ID_82540EM_LOM:
783 case E1000_DEV_ID_82540EP:
784 case E1000_DEV_ID_82540EP_LOM:
785 case E1000_DEV_ID_82540EP_LP:
786 case E1000_DEV_ID_82541EI:
787 case E1000_DEV_ID_82541EI_MOBILE:
788 case E1000_DEV_ID_82541ER:
789 case E1000_DEV_ID_82541ER_LOM:
790 case E1000_DEV_ID_82541GI:
791 case E1000_DEV_ID_82541GI_LF:
792 case E1000_DEV_ID_82541GI_MOBILE:
793 case E1000_DEV_ID_82544EI_COPPER:
794 case E1000_DEV_ID_82544EI_FIBER:
795 case E1000_DEV_ID_82544GC_COPPER:
796 case E1000_DEV_ID_82544GC_LOM:
797 case E1000_DEV_ID_82545EM_COPPER:
798 case E1000_DEV_ID_82545EM_FIBER:
799 case E1000_DEV_ID_82546EB_COPPER:
800 case E1000_DEV_ID_82546EB_FIBER:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 return true;
803 default:
804 return false;
805 }
806}
807
808static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 netdev_features_t features)
810{
811 /* Since there is no support for separate Rx/Tx vlan accel
812 * enable/disable make sure Tx flag is always in same state as Rx.
813 */
814 if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 features |= NETIF_F_HW_VLAN_CTAG_TX;
816 else
817 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
818
819 return features;
820}
821
822static int e1000_set_features(struct net_device *netdev,
823 netdev_features_t features)
824{
825 struct e1000_adapter *adapter = netdev_priv(netdev);
826 netdev_features_t changed = features ^ netdev->features;
827
828 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829 e1000_vlan_mode(netdev, features);
830
831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
832 return 0;
833
834 netdev->features = features;
835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836
837 if (netif_running(netdev))
838 e1000_reinit_locked(adapter);
839 else
840 e1000_reset(adapter);
841
842 return 0;
843}
844
845static const struct net_device_ops e1000_netdev_ops = {
846 .ndo_open = e1000_open,
847 .ndo_stop = e1000_close,
848 .ndo_start_xmit = e1000_xmit_frame,
849 .ndo_get_stats = e1000_get_stats,
850 .ndo_set_rx_mode = e1000_set_rx_mode,
851 .ndo_set_mac_address = e1000_set_mac,
852 .ndo_tx_timeout = e1000_tx_timeout,
853 .ndo_change_mtu = e1000_change_mtu,
854 .ndo_do_ioctl = e1000_ioctl,
855 .ndo_validate_addr = eth_validate_addr,
856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
858#ifdef CONFIG_NET_POLL_CONTROLLER
859 .ndo_poll_controller = e1000_netpoll,
860#endif
861 .ndo_fix_features = e1000_fix_features,
862 .ndo_set_features = e1000_set_features,
863};
864
865/**
866 * e1000_init_hw_struct - initialize members of hw struct
867 * @adapter: board private struct
868 * @hw: structure used by e1000_hw.c
869 *
870 * Factors out initialization of the e1000_hw struct to its own function
871 * that can be called very early at init (just after struct allocation).
872 * Fields are initialized based on PCI device information and
873 * OS network device settings (MTU size).
874 * Returns negative error codes if MAC type setup fails.
875 */
876static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877 struct e1000_hw *hw)
878{
879 struct pci_dev *pdev = adapter->pdev;
880
881 /* PCI config space info */
882 hw->vendor_id = pdev->vendor;
883 hw->device_id = pdev->device;
884 hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 hw->subsystem_id = pdev->subsystem_device;
886 hw->revision_id = pdev->revision;
887
888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889
890 hw->max_frame_size = adapter->netdev->mtu +
891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893
894 /* identify the MAC */
895 if (e1000_set_mac_type(hw)) {
896 e_err(probe, "Unknown MAC Type\n");
897 return -EIO;
898 }
899
900 switch (hw->mac_type) {
901 default:
902 break;
903 case e1000_82541:
904 case e1000_82547:
905 case e1000_82541_rev_2:
906 case e1000_82547_rev_2:
907 hw->phy_init_script = 1;
908 break;
909 }
910
911 e1000_set_media_type(hw);
912 e1000_get_bus_info(hw);
913
914 hw->wait_autoneg_complete = false;
915 hw->tbi_compatibility_en = true;
916 hw->adaptive_ifs = true;
917
918 /* Copper options */
919
920 if (hw->media_type == e1000_media_type_copper) {
921 hw->mdix = AUTO_ALL_MODES;
922 hw->disable_polarity_correction = false;
923 hw->master_slave = E1000_MASTER_SLAVE;
924 }
925
926 return 0;
927}
928
929/**
930 * e1000_probe - Device Initialization Routine
931 * @pdev: PCI device information struct
932 * @ent: entry in e1000_pci_tbl
933 *
934 * Returns 0 on success, negative on failure
935 *
936 * e1000_probe initializes an adapter identified by a pci_dev structure.
937 * The OS initialization, configuring of the adapter private structure,
938 * and a hardware reset occur.
939 **/
940static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
941{
942 struct net_device *netdev;
943 struct e1000_adapter *adapter;
944 struct e1000_hw *hw;
945
946 static int cards_found;
947 static int global_quad_port_a; /* global ksp3 port a indication */
948 int i, err, pci_using_dac;
949 u16 eeprom_data = 0;
950 u16 tmp = 0;
951 u16 eeprom_apme_mask = E1000_EEPROM_APME;
952 int bars, need_ioport;
953
954 /* do not allocate ioport bars when not needed */
955 need_ioport = e1000_is_need_ioport(pdev);
956 if (need_ioport) {
957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 err = pci_enable_device(pdev);
959 } else {
960 bars = pci_select_bars(pdev, IORESOURCE_MEM);
961 err = pci_enable_device_mem(pdev);
962 }
963 if (err)
964 return err;
965
966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967 if (err)
968 goto err_pci_reg;
969
970 pci_set_master(pdev);
971 err = pci_save_state(pdev);
972 if (err)
973 goto err_alloc_etherdev;
974
975 err = -ENOMEM;
976 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977 if (!netdev)
978 goto err_alloc_etherdev;
979
980 SET_NETDEV_DEV(netdev, &pdev->dev);
981
982 pci_set_drvdata(pdev, netdev);
983 adapter = netdev_priv(netdev);
984 adapter->netdev = netdev;
985 adapter->pdev = pdev;
986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987 adapter->bars = bars;
988 adapter->need_ioport = need_ioport;
989
990 hw = &adapter->hw;
991 hw->back = adapter;
992
993 err = -EIO;
994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995 if (!hw->hw_addr)
996 goto err_ioremap;
997
998 if (adapter->need_ioport) {
999 for (i = BAR_1; i <= BAR_5; i++) {
1000 if (pci_resource_len(pdev, i) == 0)
1001 continue;
1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 hw->io_base = pci_resource_start(pdev, i);
1004 break;
1005 }
1006 }
1007 }
1008
1009 /* make ready for any if (hw->...) below */
1010 err = e1000_init_hw_struct(adapter, hw);
1011 if (err)
1012 goto err_sw_init;
1013
1014 /* there is a workaround being applied below that limits
1015 * 64-bit DMA addresses to 64-bit hardware. There are some
1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 */
1018 pci_using_dac = 0;
1019 if ((hw->bus_type == e1000_bus_type_pcix) &&
1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021 pci_using_dac = 1;
1022 } else {
1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024 if (err) {
1025 pr_err("No usable DMA config, aborting\n");
1026 goto err_dma;
1027 }
1028 }
1029
1030 netdev->netdev_ops = &e1000_netdev_ops;
1031 e1000_set_ethtool_ops(netdev);
1032 netdev->watchdog_timeo = 5 * HZ;
1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034
1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036
1037 adapter->bd_number = cards_found;
1038
1039 /* setup the private structure */
1040
1041 err = e1000_sw_init(adapter);
1042 if (err)
1043 goto err_sw_init;
1044
1045 err = -EIO;
1046 if (hw->mac_type == e1000_ce4100) {
1047 hw->ce4100_gbe_mdio_base_virt =
1048 ioremap(pci_resource_start(pdev, BAR_1),
1049 pci_resource_len(pdev, BAR_1));
1050
1051 if (!hw->ce4100_gbe_mdio_base_virt)
1052 goto err_mdio_ioremap;
1053 }
1054
1055 if (hw->mac_type >= e1000_82543) {
1056 netdev->hw_features = NETIF_F_SG |
1057 NETIF_F_HW_CSUM |
1058 NETIF_F_HW_VLAN_CTAG_RX;
1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 NETIF_F_HW_VLAN_CTAG_FILTER;
1061 }
1062
1063 if ((hw->mac_type >= e1000_82544) &&
1064 (hw->mac_type != e1000_82547))
1065 netdev->hw_features |= NETIF_F_TSO;
1066
1067 netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
1069 netdev->features |= netdev->hw_features;
1070 netdev->hw_features |= (NETIF_F_RXCSUM |
1071 NETIF_F_RXALL |
1072 NETIF_F_RXFCS);
1073
1074 if (pci_using_dac) {
1075 netdev->features |= NETIF_F_HIGHDMA;
1076 netdev->vlan_features |= NETIF_F_HIGHDMA;
1077 }
1078
1079 netdev->vlan_features |= (NETIF_F_TSO |
1080 NETIF_F_HW_CSUM |
1081 NETIF_F_SG);
1082
1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088 /* MTU range: 46 - 16110 */
1089 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1090 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1091
1092 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1093
1094 /* initialize eeprom parameters */
1095 if (e1000_init_eeprom_params(hw)) {
1096 e_err(probe, "EEPROM initialization failed\n");
1097 goto err_eeprom;
1098 }
1099
1100 /* before reading the EEPROM, reset the controller to
1101 * put the device in a known good starting state
1102 */
1103
1104 e1000_reset_hw(hw);
1105
1106 /* make sure the EEPROM is good */
1107 if (e1000_validate_eeprom_checksum(hw) < 0) {
1108 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1109 e1000_dump_eeprom(adapter);
1110 /* set MAC address to all zeroes to invalidate and temporary
1111 * disable this device for the user. This blocks regular
1112 * traffic while still permitting ethtool ioctls from reaching
1113 * the hardware as well as allowing the user to run the
1114 * interface after manually setting a hw addr using
1115 * `ip set address`
1116 */
1117 memset(hw->mac_addr, 0, netdev->addr_len);
1118 } else {
1119 /* copy the MAC address out of the EEPROM */
1120 if (e1000_read_mac_addr(hw))
1121 e_err(probe, "EEPROM Read Error\n");
1122 }
1123 /* don't block initialization here due to bad MAC address */
1124 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1125
1126 if (!is_valid_ether_addr(netdev->dev_addr))
1127 e_err(probe, "Invalid MAC Address\n");
1128
1129
1130 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1131 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1132 e1000_82547_tx_fifo_stall_task);
1133 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1134 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1135
1136 e1000_check_options(adapter);
1137
1138 /* Initial Wake on LAN setting
1139 * If APM wake is enabled in the EEPROM,
1140 * enable the ACPI Magic Packet filter
1141 */
1142
1143 switch (hw->mac_type) {
1144 case e1000_82542_rev2_0:
1145 case e1000_82542_rev2_1:
1146 case e1000_82543:
1147 break;
1148 case e1000_82544:
1149 e1000_read_eeprom(hw,
1150 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1151 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1152 break;
1153 case e1000_82546:
1154 case e1000_82546_rev_3:
1155 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1156 e1000_read_eeprom(hw,
1157 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1158 break;
1159 }
1160 /* Fall Through */
1161 default:
1162 e1000_read_eeprom(hw,
1163 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1164 break;
1165 }
1166 if (eeprom_data & eeprom_apme_mask)
1167 adapter->eeprom_wol |= E1000_WUFC_MAG;
1168
1169 /* now that we have the eeprom settings, apply the special cases
1170 * where the eeprom may be wrong or the board simply won't support
1171 * wake on lan on a particular port
1172 */
1173 switch (pdev->device) {
1174 case E1000_DEV_ID_82546GB_PCIE:
1175 adapter->eeprom_wol = 0;
1176 break;
1177 case E1000_DEV_ID_82546EB_FIBER:
1178 case E1000_DEV_ID_82546GB_FIBER:
1179 /* Wake events only supported on port A for dual fiber
1180 * regardless of eeprom setting
1181 */
1182 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1183 adapter->eeprom_wol = 0;
1184 break;
1185 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1186 /* if quad port adapter, disable WoL on all but port A */
1187 if (global_quad_port_a != 0)
1188 adapter->eeprom_wol = 0;
1189 else
1190 adapter->quad_port_a = true;
1191 /* Reset for multiple quad port adapters */
1192 if (++global_quad_port_a == 4)
1193 global_quad_port_a = 0;
1194 break;
1195 }
1196
1197 /* initialize the wol settings based on the eeprom settings */
1198 adapter->wol = adapter->eeprom_wol;
1199 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1200
1201 /* Auto detect PHY address */
1202 if (hw->mac_type == e1000_ce4100) {
1203 for (i = 0; i < 32; i++) {
1204 hw->phy_addr = i;
1205 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1206
1207 if (tmp != 0 && tmp != 0xFF)
1208 break;
1209 }
1210
1211 if (i >= 32)
1212 goto err_eeprom;
1213 }
1214
1215 /* reset the hardware with the new settings */
1216 e1000_reset(adapter);
1217
1218 strcpy(netdev->name, "eth%d");
1219 err = register_netdev(netdev);
1220 if (err)
1221 goto err_register;
1222
1223 e1000_vlan_filter_on_off(adapter, false);
1224
1225 /* print bus type/speed/width info */
1226 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1227 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1228 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1229 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1230 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1231 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1232 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1233 netdev->dev_addr);
1234
1235 /* carrier off reporting is important to ethtool even BEFORE open */
1236 netif_carrier_off(netdev);
1237
1238 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1239
1240 cards_found++;
1241 return 0;
1242
1243err_register:
1244err_eeprom:
1245 e1000_phy_hw_reset(hw);
1246
1247 if (hw->flash_address)
1248 iounmap(hw->flash_address);
1249 kfree(adapter->tx_ring);
1250 kfree(adapter->rx_ring);
1251err_dma:
1252err_sw_init:
1253err_mdio_ioremap:
1254 iounmap(hw->ce4100_gbe_mdio_base_virt);
1255 iounmap(hw->hw_addr);
1256err_ioremap:
1257 free_netdev(netdev);
1258err_alloc_etherdev:
1259 pci_release_selected_regions(pdev, bars);
1260err_pci_reg:
1261 pci_disable_device(pdev);
1262 return err;
1263}
1264
1265/**
1266 * e1000_remove - Device Removal Routine
1267 * @pdev: PCI device information struct
1268 *
1269 * e1000_remove is called by the PCI subsystem to alert the driver
1270 * that it should release a PCI device. That could be caused by a
1271 * Hot-Plug event, or because the driver is going to be removed from
1272 * memory.
1273 **/
1274static void e1000_remove(struct pci_dev *pdev)
1275{
1276 struct net_device *netdev = pci_get_drvdata(pdev);
1277 struct e1000_adapter *adapter = netdev_priv(netdev);
1278 struct e1000_hw *hw = &adapter->hw;
1279
1280 e1000_down_and_stop(adapter);
1281 e1000_release_manageability(adapter);
1282
1283 unregister_netdev(netdev);
1284
1285 e1000_phy_hw_reset(hw);
1286
1287 kfree(adapter->tx_ring);
1288 kfree(adapter->rx_ring);
1289
1290 if (hw->mac_type == e1000_ce4100)
1291 iounmap(hw->ce4100_gbe_mdio_base_virt);
1292 iounmap(hw->hw_addr);
1293 if (hw->flash_address)
1294 iounmap(hw->flash_address);
1295 pci_release_selected_regions(pdev, adapter->bars);
1296
1297 free_netdev(netdev);
1298
1299 pci_disable_device(pdev);
1300}
1301
1302/**
1303 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1304 * @adapter: board private structure to initialize
1305 *
1306 * e1000_sw_init initializes the Adapter private data structure.
1307 * e1000_init_hw_struct MUST be called before this function
1308 **/
1309static int e1000_sw_init(struct e1000_adapter *adapter)
1310{
1311 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1312
1313 adapter->num_tx_queues = 1;
1314 adapter->num_rx_queues = 1;
1315
1316 if (e1000_alloc_queues(adapter)) {
1317 e_err(probe, "Unable to allocate memory for queues\n");
1318 return -ENOMEM;
1319 }
1320
1321 /* Explicitly disable IRQ since the NIC can be in any state. */
1322 e1000_irq_disable(adapter);
1323
1324 spin_lock_init(&adapter->stats_lock);
1325
1326 set_bit(__E1000_DOWN, &adapter->flags);
1327
1328 return 0;
1329}
1330
1331/**
1332 * e1000_alloc_queues - Allocate memory for all rings
1333 * @adapter: board private structure to initialize
1334 *
1335 * We allocate one ring per queue at run-time since we don't know the
1336 * number of queues at compile-time.
1337 **/
1338static int e1000_alloc_queues(struct e1000_adapter *adapter)
1339{
1340 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1341 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1342 if (!adapter->tx_ring)
1343 return -ENOMEM;
1344
1345 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1346 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1347 if (!adapter->rx_ring) {
1348 kfree(adapter->tx_ring);
1349 return -ENOMEM;
1350 }
1351
1352 return E1000_SUCCESS;
1353}
1354
1355/**
1356 * e1000_open - Called when a network interface is made active
1357 * @netdev: network interface device structure
1358 *
1359 * Returns 0 on success, negative value on failure
1360 *
1361 * The open entry point is called when a network interface is made
1362 * active by the system (IFF_UP). At this point all resources needed
1363 * for transmit and receive operations are allocated, the interrupt
1364 * handler is registered with the OS, the watchdog task is started,
1365 * and the stack is notified that the interface is ready.
1366 **/
1367int e1000_open(struct net_device *netdev)
1368{
1369 struct e1000_adapter *adapter = netdev_priv(netdev);
1370 struct e1000_hw *hw = &adapter->hw;
1371 int err;
1372
1373 /* disallow open during test */
1374 if (test_bit(__E1000_TESTING, &adapter->flags))
1375 return -EBUSY;
1376
1377 netif_carrier_off(netdev);
1378
1379 /* allocate transmit descriptors */
1380 err = e1000_setup_all_tx_resources(adapter);
1381 if (err)
1382 goto err_setup_tx;
1383
1384 /* allocate receive descriptors */
1385 err = e1000_setup_all_rx_resources(adapter);
1386 if (err)
1387 goto err_setup_rx;
1388
1389 e1000_power_up_phy(adapter);
1390
1391 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1392 if ((hw->mng_cookie.status &
1393 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1394 e1000_update_mng_vlan(adapter);
1395 }
1396
1397 /* before we allocate an interrupt, we must be ready to handle it.
1398 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1399 * as soon as we call pci_request_irq, so we have to setup our
1400 * clean_rx handler before we do so.
1401 */
1402 e1000_configure(adapter);
1403
1404 err = e1000_request_irq(adapter);
1405 if (err)
1406 goto err_req_irq;
1407
1408 /* From here on the code is the same as e1000_up() */
1409 clear_bit(__E1000_DOWN, &adapter->flags);
1410
1411 napi_enable(&adapter->napi);
1412
1413 e1000_irq_enable(adapter);
1414
1415 netif_start_queue(netdev);
1416
1417 /* fire a link status change interrupt to start the watchdog */
1418 ew32(ICS, E1000_ICS_LSC);
1419
1420 return E1000_SUCCESS;
1421
1422err_req_irq:
1423 e1000_power_down_phy(adapter);
1424 e1000_free_all_rx_resources(adapter);
1425err_setup_rx:
1426 e1000_free_all_tx_resources(adapter);
1427err_setup_tx:
1428 e1000_reset(adapter);
1429
1430 return err;
1431}
1432
1433/**
1434 * e1000_close - Disables a network interface
1435 * @netdev: network interface device structure
1436 *
1437 * Returns 0, this is not allowed to fail
1438 *
1439 * The close entry point is called when an interface is de-activated
1440 * by the OS. The hardware is still under the drivers control, but
1441 * needs to be disabled. A global MAC reset is issued to stop the
1442 * hardware, and all transmit and receive resources are freed.
1443 **/
1444int e1000_close(struct net_device *netdev)
1445{
1446 struct e1000_adapter *adapter = netdev_priv(netdev);
1447 struct e1000_hw *hw = &adapter->hw;
1448 int count = E1000_CHECK_RESET_COUNT;
1449
1450 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1451 usleep_range(10000, 20000);
1452
1453 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1454 e1000_down(adapter);
1455 e1000_power_down_phy(adapter);
1456 e1000_free_irq(adapter);
1457
1458 e1000_free_all_tx_resources(adapter);
1459 e1000_free_all_rx_resources(adapter);
1460
1461 /* kill manageability vlan ID if supported, but not if a vlan with
1462 * the same ID is registered on the host OS (let 8021q kill it)
1463 */
1464 if ((hw->mng_cookie.status &
1465 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1466 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1467 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1468 adapter->mng_vlan_id);
1469 }
1470
1471 return 0;
1472}
1473
1474/**
1475 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1476 * @adapter: address of board private structure
1477 * @start: address of beginning of memory
1478 * @len: length of memory
1479 **/
1480static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1481 unsigned long len)
1482{
1483 struct e1000_hw *hw = &adapter->hw;
1484 unsigned long begin = (unsigned long)start;
1485 unsigned long end = begin + len;
1486
1487 /* First rev 82545 and 82546 need to not allow any memory
1488 * write location to cross 64k boundary due to errata 23
1489 */
1490 if (hw->mac_type == e1000_82545 ||
1491 hw->mac_type == e1000_ce4100 ||
1492 hw->mac_type == e1000_82546) {
1493 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1494 }
1495
1496 return true;
1497}
1498
1499/**
1500 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1501 * @adapter: board private structure
1502 * @txdr: tx descriptor ring (for a specific queue) to setup
1503 *
1504 * Return 0 on success, negative on failure
1505 **/
1506static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1507 struct e1000_tx_ring *txdr)
1508{
1509 struct pci_dev *pdev = adapter->pdev;
1510 int size;
1511
1512 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1513 txdr->buffer_info = vzalloc(size);
1514 if (!txdr->buffer_info)
1515 return -ENOMEM;
1516
1517 /* round up to nearest 4K */
1518
1519 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1520 txdr->size = ALIGN(txdr->size, 4096);
1521
1522 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1523 GFP_KERNEL);
1524 if (!txdr->desc) {
1525setup_tx_desc_die:
1526 vfree(txdr->buffer_info);
1527 return -ENOMEM;
1528 }
1529
1530 /* Fix for errata 23, can't cross 64kB boundary */
1531 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1532 void *olddesc = txdr->desc;
1533 dma_addr_t olddma = txdr->dma;
1534 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1535 txdr->size, txdr->desc);
1536 /* Try again, without freeing the previous */
1537 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1538 &txdr->dma, GFP_KERNEL);
1539 /* Failed allocation, critical failure */
1540 if (!txdr->desc) {
1541 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1542 olddma);
1543 goto setup_tx_desc_die;
1544 }
1545
1546 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1547 /* give up */
1548 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1549 txdr->dma);
1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551 olddma);
1552 e_err(probe, "Unable to allocate aligned memory "
1553 "for the transmit descriptor ring\n");
1554 vfree(txdr->buffer_info);
1555 return -ENOMEM;
1556 } else {
1557 /* Free old allocation, new allocation was successful */
1558 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1559 olddma);
1560 }
1561 }
1562 memset(txdr->desc, 0, txdr->size);
1563
1564 txdr->next_to_use = 0;
1565 txdr->next_to_clean = 0;
1566
1567 return 0;
1568}
1569
1570/**
1571 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1572 * (Descriptors) for all queues
1573 * @adapter: board private structure
1574 *
1575 * Return 0 on success, negative on failure
1576 **/
1577int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1578{
1579 int i, err = 0;
1580
1581 for (i = 0; i < adapter->num_tx_queues; i++) {
1582 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1583 if (err) {
1584 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1585 for (i-- ; i >= 0; i--)
1586 e1000_free_tx_resources(adapter,
1587 &adapter->tx_ring[i]);
1588 break;
1589 }
1590 }
1591
1592 return err;
1593}
1594
1595/**
1596 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1597 * @adapter: board private structure
1598 *
1599 * Configure the Tx unit of the MAC after a reset.
1600 **/
1601static void e1000_configure_tx(struct e1000_adapter *adapter)
1602{
1603 u64 tdba;
1604 struct e1000_hw *hw = &adapter->hw;
1605 u32 tdlen, tctl, tipg;
1606 u32 ipgr1, ipgr2;
1607
1608 /* Setup the HW Tx Head and Tail descriptor pointers */
1609
1610 switch (adapter->num_tx_queues) {
1611 case 1:
1612 default:
1613 tdba = adapter->tx_ring[0].dma;
1614 tdlen = adapter->tx_ring[0].count *
1615 sizeof(struct e1000_tx_desc);
1616 ew32(TDLEN, tdlen);
1617 ew32(TDBAH, (tdba >> 32));
1618 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1619 ew32(TDT, 0);
1620 ew32(TDH, 0);
1621 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1622 E1000_TDH : E1000_82542_TDH);
1623 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1624 E1000_TDT : E1000_82542_TDT);
1625 break;
1626 }
1627
1628 /* Set the default values for the Tx Inter Packet Gap timer */
1629 if ((hw->media_type == e1000_media_type_fiber ||
1630 hw->media_type == e1000_media_type_internal_serdes))
1631 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1632 else
1633 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1634
1635 switch (hw->mac_type) {
1636 case e1000_82542_rev2_0:
1637 case e1000_82542_rev2_1:
1638 tipg = DEFAULT_82542_TIPG_IPGT;
1639 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1640 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1641 break;
1642 default:
1643 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1644 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1645 break;
1646 }
1647 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1648 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1649 ew32(TIPG, tipg);
1650
1651 /* Set the Tx Interrupt Delay register */
1652
1653 ew32(TIDV, adapter->tx_int_delay);
1654 if (hw->mac_type >= e1000_82540)
1655 ew32(TADV, adapter->tx_abs_int_delay);
1656
1657 /* Program the Transmit Control Register */
1658
1659 tctl = er32(TCTL);
1660 tctl &= ~E1000_TCTL_CT;
1661 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1662 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1663
1664 e1000_config_collision_dist(hw);
1665
1666 /* Setup Transmit Descriptor Settings for eop descriptor */
1667 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1668
1669 /* only set IDE if we are delaying interrupts using the timers */
1670 if (adapter->tx_int_delay)
1671 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1672
1673 if (hw->mac_type < e1000_82543)
1674 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1675 else
1676 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1677
1678 /* Cache if we're 82544 running in PCI-X because we'll
1679 * need this to apply a workaround later in the send path.
1680 */
1681 if (hw->mac_type == e1000_82544 &&
1682 hw->bus_type == e1000_bus_type_pcix)
1683 adapter->pcix_82544 = true;
1684
1685 ew32(TCTL, tctl);
1686
1687}
1688
1689/**
1690 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1691 * @adapter: board private structure
1692 * @rxdr: rx descriptor ring (for a specific queue) to setup
1693 *
1694 * Returns 0 on success, negative on failure
1695 **/
1696static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1697 struct e1000_rx_ring *rxdr)
1698{
1699 struct pci_dev *pdev = adapter->pdev;
1700 int size, desc_len;
1701
1702 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1703 rxdr->buffer_info = vzalloc(size);
1704 if (!rxdr->buffer_info)
1705 return -ENOMEM;
1706
1707 desc_len = sizeof(struct e1000_rx_desc);
1708
1709 /* Round up to nearest 4K */
1710
1711 rxdr->size = rxdr->count * desc_len;
1712 rxdr->size = ALIGN(rxdr->size, 4096);
1713
1714 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1715 GFP_KERNEL);
1716 if (!rxdr->desc) {
1717setup_rx_desc_die:
1718 vfree(rxdr->buffer_info);
1719 return -ENOMEM;
1720 }
1721
1722 /* Fix for errata 23, can't cross 64kB boundary */
1723 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1724 void *olddesc = rxdr->desc;
1725 dma_addr_t olddma = rxdr->dma;
1726 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1727 rxdr->size, rxdr->desc);
1728 /* Try again, without freeing the previous */
1729 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1730 &rxdr->dma, GFP_KERNEL);
1731 /* Failed allocation, critical failure */
1732 if (!rxdr->desc) {
1733 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1734 olddma);
1735 goto setup_rx_desc_die;
1736 }
1737
1738 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1739 /* give up */
1740 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1741 rxdr->dma);
1742 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1743 olddma);
1744 e_err(probe, "Unable to allocate aligned memory for "
1745 "the Rx descriptor ring\n");
1746 goto setup_rx_desc_die;
1747 } else {
1748 /* Free old allocation, new allocation was successful */
1749 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1750 olddma);
1751 }
1752 }
1753 memset(rxdr->desc, 0, rxdr->size);
1754
1755 rxdr->next_to_clean = 0;
1756 rxdr->next_to_use = 0;
1757 rxdr->rx_skb_top = NULL;
1758
1759 return 0;
1760}
1761
1762/**
1763 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1764 * (Descriptors) for all queues
1765 * @adapter: board private structure
1766 *
1767 * Return 0 on success, negative on failure
1768 **/
1769int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1770{
1771 int i, err = 0;
1772
1773 for (i = 0; i < adapter->num_rx_queues; i++) {
1774 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1775 if (err) {
1776 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1777 for (i-- ; i >= 0; i--)
1778 e1000_free_rx_resources(adapter,
1779 &adapter->rx_ring[i]);
1780 break;
1781 }
1782 }
1783
1784 return err;
1785}
1786
1787/**
1788 * e1000_setup_rctl - configure the receive control registers
1789 * @adapter: Board private structure
1790 **/
1791static void e1000_setup_rctl(struct e1000_adapter *adapter)
1792{
1793 struct e1000_hw *hw = &adapter->hw;
1794 u32 rctl;
1795
1796 rctl = er32(RCTL);
1797
1798 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1799
1800 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1801 E1000_RCTL_RDMTS_HALF |
1802 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1803
1804 if (hw->tbi_compatibility_on == 1)
1805 rctl |= E1000_RCTL_SBP;
1806 else
1807 rctl &= ~E1000_RCTL_SBP;
1808
1809 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1810 rctl &= ~E1000_RCTL_LPE;
1811 else
1812 rctl |= E1000_RCTL_LPE;
1813
1814 /* Setup buffer sizes */
1815 rctl &= ~E1000_RCTL_SZ_4096;
1816 rctl |= E1000_RCTL_BSEX;
1817 switch (adapter->rx_buffer_len) {
1818 case E1000_RXBUFFER_2048:
1819 default:
1820 rctl |= E1000_RCTL_SZ_2048;
1821 rctl &= ~E1000_RCTL_BSEX;
1822 break;
1823 case E1000_RXBUFFER_4096:
1824 rctl |= E1000_RCTL_SZ_4096;
1825 break;
1826 case E1000_RXBUFFER_8192:
1827 rctl |= E1000_RCTL_SZ_8192;
1828 break;
1829 case E1000_RXBUFFER_16384:
1830 rctl |= E1000_RCTL_SZ_16384;
1831 break;
1832 }
1833
1834 /* This is useful for sniffing bad packets. */
1835 if (adapter->netdev->features & NETIF_F_RXALL) {
1836 /* UPE and MPE will be handled by normal PROMISC logic
1837 * in e1000e_set_rx_mode
1838 */
1839 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1840 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1841 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1842
1843 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1844 E1000_RCTL_DPF | /* Allow filtered pause */
1845 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1846 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1847 * and that breaks VLANs.
1848 */
1849 }
1850
1851 ew32(RCTL, rctl);
1852}
1853
1854/**
1855 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1856 * @adapter: board private structure
1857 *
1858 * Configure the Rx unit of the MAC after a reset.
1859 **/
1860static void e1000_configure_rx(struct e1000_adapter *adapter)
1861{
1862 u64 rdba;
1863 struct e1000_hw *hw = &adapter->hw;
1864 u32 rdlen, rctl, rxcsum;
1865
1866 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1867 rdlen = adapter->rx_ring[0].count *
1868 sizeof(struct e1000_rx_desc);
1869 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1870 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1871 } else {
1872 rdlen = adapter->rx_ring[0].count *
1873 sizeof(struct e1000_rx_desc);
1874 adapter->clean_rx = e1000_clean_rx_irq;
1875 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1876 }
1877
1878 /* disable receives while setting up the descriptors */
1879 rctl = er32(RCTL);
1880 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1881
1882 /* set the Receive Delay Timer Register */
1883 ew32(RDTR, adapter->rx_int_delay);
1884
1885 if (hw->mac_type >= e1000_82540) {
1886 ew32(RADV, adapter->rx_abs_int_delay);
1887 if (adapter->itr_setting != 0)
1888 ew32(ITR, 1000000000 / (adapter->itr * 256));
1889 }
1890
1891 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1892 * the Base and Length of the Rx Descriptor Ring
1893 */
1894 switch (adapter->num_rx_queues) {
1895 case 1:
1896 default:
1897 rdba = adapter->rx_ring[0].dma;
1898 ew32(RDLEN, rdlen);
1899 ew32(RDBAH, (rdba >> 32));
1900 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1901 ew32(RDT, 0);
1902 ew32(RDH, 0);
1903 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1904 E1000_RDH : E1000_82542_RDH);
1905 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1906 E1000_RDT : E1000_82542_RDT);
1907 break;
1908 }
1909
1910 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1911 if (hw->mac_type >= e1000_82543) {
1912 rxcsum = er32(RXCSUM);
1913 if (adapter->rx_csum)
1914 rxcsum |= E1000_RXCSUM_TUOFL;
1915 else
1916 /* don't need to clear IPPCSE as it defaults to 0 */
1917 rxcsum &= ~E1000_RXCSUM_TUOFL;
1918 ew32(RXCSUM, rxcsum);
1919 }
1920
1921 /* Enable Receives */
1922 ew32(RCTL, rctl | E1000_RCTL_EN);
1923}
1924
1925/**
1926 * e1000_free_tx_resources - Free Tx Resources per Queue
1927 * @adapter: board private structure
1928 * @tx_ring: Tx descriptor ring for a specific queue
1929 *
1930 * Free all transmit software resources
1931 **/
1932static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1933 struct e1000_tx_ring *tx_ring)
1934{
1935 struct pci_dev *pdev = adapter->pdev;
1936
1937 e1000_clean_tx_ring(adapter, tx_ring);
1938
1939 vfree(tx_ring->buffer_info);
1940 tx_ring->buffer_info = NULL;
1941
1942 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1943 tx_ring->dma);
1944
1945 tx_ring->desc = NULL;
1946}
1947
1948/**
1949 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1950 * @adapter: board private structure
1951 *
1952 * Free all transmit software resources
1953 **/
1954void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1955{
1956 int i;
1957
1958 for (i = 0; i < adapter->num_tx_queues; i++)
1959 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1960}
1961
1962static void
1963e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1964 struct e1000_tx_buffer *buffer_info)
1965{
1966 if (buffer_info->dma) {
1967 if (buffer_info->mapped_as_page)
1968 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1969 buffer_info->length, DMA_TO_DEVICE);
1970 else
1971 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1972 buffer_info->length,
1973 DMA_TO_DEVICE);
1974 buffer_info->dma = 0;
1975 }
1976 if (buffer_info->skb) {
1977 dev_kfree_skb_any(buffer_info->skb);
1978 buffer_info->skb = NULL;
1979 }
1980 buffer_info->time_stamp = 0;
1981 /* buffer_info must be completely set up in the transmit path */
1982}
1983
1984/**
1985 * e1000_clean_tx_ring - Free Tx Buffers
1986 * @adapter: board private structure
1987 * @tx_ring: ring to be cleaned
1988 **/
1989static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1990 struct e1000_tx_ring *tx_ring)
1991{
1992 struct e1000_hw *hw = &adapter->hw;
1993 struct e1000_tx_buffer *buffer_info;
1994 unsigned long size;
1995 unsigned int i;
1996
1997 /* Free all the Tx ring sk_buffs */
1998
1999 for (i = 0; i < tx_ring->count; i++) {
2000 buffer_info = &tx_ring->buffer_info[i];
2001 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2002 }
2003
2004 netdev_reset_queue(adapter->netdev);
2005 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2006 memset(tx_ring->buffer_info, 0, size);
2007
2008 /* Zero out the descriptor ring */
2009
2010 memset(tx_ring->desc, 0, tx_ring->size);
2011
2012 tx_ring->next_to_use = 0;
2013 tx_ring->next_to_clean = 0;
2014 tx_ring->last_tx_tso = false;
2015
2016 writel(0, hw->hw_addr + tx_ring->tdh);
2017 writel(0, hw->hw_addr + tx_ring->tdt);
2018}
2019
2020/**
2021 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2022 * @adapter: board private structure
2023 **/
2024static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2025{
2026 int i;
2027
2028 for (i = 0; i < adapter->num_tx_queues; i++)
2029 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2030}
2031
2032/**
2033 * e1000_free_rx_resources - Free Rx Resources
2034 * @adapter: board private structure
2035 * @rx_ring: ring to clean the resources from
2036 *
2037 * Free all receive software resources
2038 **/
2039static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2040 struct e1000_rx_ring *rx_ring)
2041{
2042 struct pci_dev *pdev = adapter->pdev;
2043
2044 e1000_clean_rx_ring(adapter, rx_ring);
2045
2046 vfree(rx_ring->buffer_info);
2047 rx_ring->buffer_info = NULL;
2048
2049 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2050 rx_ring->dma);
2051
2052 rx_ring->desc = NULL;
2053}
2054
2055/**
2056 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2057 * @adapter: board private structure
2058 *
2059 * Free all receive software resources
2060 **/
2061void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2062{
2063 int i;
2064
2065 for (i = 0; i < adapter->num_rx_queues; i++)
2066 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2067}
2068
2069#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2070static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2071{
2072 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2073 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2074}
2075
2076static void *e1000_alloc_frag(const struct e1000_adapter *a)
2077{
2078 unsigned int len = e1000_frag_len(a);
2079 u8 *data = netdev_alloc_frag(len);
2080
2081 if (likely(data))
2082 data += E1000_HEADROOM;
2083 return data;
2084}
2085
2086/**
2087 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2088 * @adapter: board private structure
2089 * @rx_ring: ring to free buffers from
2090 **/
2091static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2092 struct e1000_rx_ring *rx_ring)
2093{
2094 struct e1000_hw *hw = &adapter->hw;
2095 struct e1000_rx_buffer *buffer_info;
2096 struct pci_dev *pdev = adapter->pdev;
2097 unsigned long size;
2098 unsigned int i;
2099
2100 /* Free all the Rx netfrags */
2101 for (i = 0; i < rx_ring->count; i++) {
2102 buffer_info = &rx_ring->buffer_info[i];
2103 if (adapter->clean_rx == e1000_clean_rx_irq) {
2104 if (buffer_info->dma)
2105 dma_unmap_single(&pdev->dev, buffer_info->dma,
2106 adapter->rx_buffer_len,
2107 DMA_FROM_DEVICE);
2108 if (buffer_info->rxbuf.data) {
2109 skb_free_frag(buffer_info->rxbuf.data);
2110 buffer_info->rxbuf.data = NULL;
2111 }
2112 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2113 if (buffer_info->dma)
2114 dma_unmap_page(&pdev->dev, buffer_info->dma,
2115 adapter->rx_buffer_len,
2116 DMA_FROM_DEVICE);
2117 if (buffer_info->rxbuf.page) {
2118 put_page(buffer_info->rxbuf.page);
2119 buffer_info->rxbuf.page = NULL;
2120 }
2121 }
2122
2123 buffer_info->dma = 0;
2124 }
2125
2126 /* there also may be some cached data from a chained receive */
2127 napi_free_frags(&adapter->napi);
2128 rx_ring->rx_skb_top = NULL;
2129
2130 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2131 memset(rx_ring->buffer_info, 0, size);
2132
2133 /* Zero out the descriptor ring */
2134 memset(rx_ring->desc, 0, rx_ring->size);
2135
2136 rx_ring->next_to_clean = 0;
2137 rx_ring->next_to_use = 0;
2138
2139 writel(0, hw->hw_addr + rx_ring->rdh);
2140 writel(0, hw->hw_addr + rx_ring->rdt);
2141}
2142
2143/**
2144 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2145 * @adapter: board private structure
2146 **/
2147static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2148{
2149 int i;
2150
2151 for (i = 0; i < adapter->num_rx_queues; i++)
2152 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2153}
2154
2155/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2156 * and memory write and invalidate disabled for certain operations
2157 */
2158static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2159{
2160 struct e1000_hw *hw = &adapter->hw;
2161 struct net_device *netdev = adapter->netdev;
2162 u32 rctl;
2163
2164 e1000_pci_clear_mwi(hw);
2165
2166 rctl = er32(RCTL);
2167 rctl |= E1000_RCTL_RST;
2168 ew32(RCTL, rctl);
2169 E1000_WRITE_FLUSH();
2170 mdelay(5);
2171
2172 if (netif_running(netdev))
2173 e1000_clean_all_rx_rings(adapter);
2174}
2175
2176static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2177{
2178 struct e1000_hw *hw = &adapter->hw;
2179 struct net_device *netdev = adapter->netdev;
2180 u32 rctl;
2181
2182 rctl = er32(RCTL);
2183 rctl &= ~E1000_RCTL_RST;
2184 ew32(RCTL, rctl);
2185 E1000_WRITE_FLUSH();
2186 mdelay(5);
2187
2188 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2189 e1000_pci_set_mwi(hw);
2190
2191 if (netif_running(netdev)) {
2192 /* No need to loop, because 82542 supports only 1 queue */
2193 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2194 e1000_configure_rx(adapter);
2195 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2196 }
2197}
2198
2199/**
2200 * e1000_set_mac - Change the Ethernet Address of the NIC
2201 * @netdev: network interface device structure
2202 * @p: pointer to an address structure
2203 *
2204 * Returns 0 on success, negative on failure
2205 **/
2206static int e1000_set_mac(struct net_device *netdev, void *p)
2207{
2208 struct e1000_adapter *adapter = netdev_priv(netdev);
2209 struct e1000_hw *hw = &adapter->hw;
2210 struct sockaddr *addr = p;
2211
2212 if (!is_valid_ether_addr(addr->sa_data))
2213 return -EADDRNOTAVAIL;
2214
2215 /* 82542 2.0 needs to be in reset to write receive address registers */
2216
2217 if (hw->mac_type == e1000_82542_rev2_0)
2218 e1000_enter_82542_rst(adapter);
2219
2220 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2221 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2222
2223 e1000_rar_set(hw, hw->mac_addr, 0);
2224
2225 if (hw->mac_type == e1000_82542_rev2_0)
2226 e1000_leave_82542_rst(adapter);
2227
2228 return 0;
2229}
2230
2231/**
2232 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2233 * @netdev: network interface device structure
2234 *
2235 * The set_rx_mode entry point is called whenever the unicast or multicast
2236 * address lists or the network interface flags are updated. This routine is
2237 * responsible for configuring the hardware for proper unicast, multicast,
2238 * promiscuous mode, and all-multi behavior.
2239 **/
2240static void e1000_set_rx_mode(struct net_device *netdev)
2241{
2242 struct e1000_adapter *adapter = netdev_priv(netdev);
2243 struct e1000_hw *hw = &adapter->hw;
2244 struct netdev_hw_addr *ha;
2245 bool use_uc = false;
2246 u32 rctl;
2247 u32 hash_value;
2248 int i, rar_entries = E1000_RAR_ENTRIES;
2249 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2250 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2251
2252 if (!mcarray)
2253 return;
2254
2255 /* Check for Promiscuous and All Multicast modes */
2256
2257 rctl = er32(RCTL);
2258
2259 if (netdev->flags & IFF_PROMISC) {
2260 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2261 rctl &= ~E1000_RCTL_VFE;
2262 } else {
2263 if (netdev->flags & IFF_ALLMULTI)
2264 rctl |= E1000_RCTL_MPE;
2265 else
2266 rctl &= ~E1000_RCTL_MPE;
2267 /* Enable VLAN filter if there is a VLAN */
2268 if (e1000_vlan_used(adapter))
2269 rctl |= E1000_RCTL_VFE;
2270 }
2271
2272 if (netdev_uc_count(netdev) > rar_entries - 1) {
2273 rctl |= E1000_RCTL_UPE;
2274 } else if (!(netdev->flags & IFF_PROMISC)) {
2275 rctl &= ~E1000_RCTL_UPE;
2276 use_uc = true;
2277 }
2278
2279 ew32(RCTL, rctl);
2280
2281 /* 82542 2.0 needs to be in reset to write receive address registers */
2282
2283 if (hw->mac_type == e1000_82542_rev2_0)
2284 e1000_enter_82542_rst(adapter);
2285
2286 /* load the first 14 addresses into the exact filters 1-14. Unicast
2287 * addresses take precedence to avoid disabling unicast filtering
2288 * when possible.
2289 *
2290 * RAR 0 is used for the station MAC address
2291 * if there are not 14 addresses, go ahead and clear the filters
2292 */
2293 i = 1;
2294 if (use_uc)
2295 netdev_for_each_uc_addr(ha, netdev) {
2296 if (i == rar_entries)
2297 break;
2298 e1000_rar_set(hw, ha->addr, i++);
2299 }
2300
2301 netdev_for_each_mc_addr(ha, netdev) {
2302 if (i == rar_entries) {
2303 /* load any remaining addresses into the hash table */
2304 u32 hash_reg, hash_bit, mta;
2305 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2306 hash_reg = (hash_value >> 5) & 0x7F;
2307 hash_bit = hash_value & 0x1F;
2308 mta = (1 << hash_bit);
2309 mcarray[hash_reg] |= mta;
2310 } else {
2311 e1000_rar_set(hw, ha->addr, i++);
2312 }
2313 }
2314
2315 for (; i < rar_entries; i++) {
2316 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2317 E1000_WRITE_FLUSH();
2318 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2319 E1000_WRITE_FLUSH();
2320 }
2321
2322 /* write the hash table completely, write from bottom to avoid
2323 * both stupid write combining chipsets, and flushing each write
2324 */
2325 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2326 /* If we are on an 82544 has an errata where writing odd
2327 * offsets overwrites the previous even offset, but writing
2328 * backwards over the range solves the issue by always
2329 * writing the odd offset first
2330 */
2331 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2332 }
2333 E1000_WRITE_FLUSH();
2334
2335 if (hw->mac_type == e1000_82542_rev2_0)
2336 e1000_leave_82542_rst(adapter);
2337
2338 kfree(mcarray);
2339}
2340
2341/**
2342 * e1000_update_phy_info_task - get phy info
2343 * @work: work struct contained inside adapter struct
2344 *
2345 * Need to wait a few seconds after link up to get diagnostic information from
2346 * the phy
2347 */
2348static void e1000_update_phy_info_task(struct work_struct *work)
2349{
2350 struct e1000_adapter *adapter = container_of(work,
2351 struct e1000_adapter,
2352 phy_info_task.work);
2353
2354 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2355}
2356
2357/**
2358 * e1000_82547_tx_fifo_stall_task - task to complete work
2359 * @work: work struct contained inside adapter struct
2360 **/
2361static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2362{
2363 struct e1000_adapter *adapter = container_of(work,
2364 struct e1000_adapter,
2365 fifo_stall_task.work);
2366 struct e1000_hw *hw = &adapter->hw;
2367 struct net_device *netdev = adapter->netdev;
2368 u32 tctl;
2369
2370 if (atomic_read(&adapter->tx_fifo_stall)) {
2371 if ((er32(TDT) == er32(TDH)) &&
2372 (er32(TDFT) == er32(TDFH)) &&
2373 (er32(TDFTS) == er32(TDFHS))) {
2374 tctl = er32(TCTL);
2375 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2376 ew32(TDFT, adapter->tx_head_addr);
2377 ew32(TDFH, adapter->tx_head_addr);
2378 ew32(TDFTS, adapter->tx_head_addr);
2379 ew32(TDFHS, adapter->tx_head_addr);
2380 ew32(TCTL, tctl);
2381 E1000_WRITE_FLUSH();
2382
2383 adapter->tx_fifo_head = 0;
2384 atomic_set(&adapter->tx_fifo_stall, 0);
2385 netif_wake_queue(netdev);
2386 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2387 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2388 }
2389 }
2390}
2391
2392bool e1000_has_link(struct e1000_adapter *adapter)
2393{
2394 struct e1000_hw *hw = &adapter->hw;
2395 bool link_active = false;
2396
2397 /* get_link_status is set on LSC (link status) interrupt or rx
2398 * sequence error interrupt (except on intel ce4100).
2399 * get_link_status will stay false until the
2400 * e1000_check_for_link establishes link for copper adapters
2401 * ONLY
2402 */
2403 switch (hw->media_type) {
2404 case e1000_media_type_copper:
2405 if (hw->mac_type == e1000_ce4100)
2406 hw->get_link_status = 1;
2407 if (hw->get_link_status) {
2408 e1000_check_for_link(hw);
2409 link_active = !hw->get_link_status;
2410 } else {
2411 link_active = true;
2412 }
2413 break;
2414 case e1000_media_type_fiber:
2415 e1000_check_for_link(hw);
2416 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2417 break;
2418 case e1000_media_type_internal_serdes:
2419 e1000_check_for_link(hw);
2420 link_active = hw->serdes_has_link;
2421 break;
2422 default:
2423 break;
2424 }
2425
2426 return link_active;
2427}
2428
2429/**
2430 * e1000_watchdog - work function
2431 * @work: work struct contained inside adapter struct
2432 **/
2433static void e1000_watchdog(struct work_struct *work)
2434{
2435 struct e1000_adapter *adapter = container_of(work,
2436 struct e1000_adapter,
2437 watchdog_task.work);
2438 struct e1000_hw *hw = &adapter->hw;
2439 struct net_device *netdev = adapter->netdev;
2440 struct e1000_tx_ring *txdr = adapter->tx_ring;
2441 u32 link, tctl;
2442
2443 link = e1000_has_link(adapter);
2444 if ((netif_carrier_ok(netdev)) && link)
2445 goto link_up;
2446
2447 if (link) {
2448 if (!netif_carrier_ok(netdev)) {
2449 u32 ctrl;
2450 bool txb2b = true;
2451 /* update snapshot of PHY registers on LSC */
2452 e1000_get_speed_and_duplex(hw,
2453 &adapter->link_speed,
2454 &adapter->link_duplex);
2455
2456 ctrl = er32(CTRL);
2457 pr_info("%s NIC Link is Up %d Mbps %s, "
2458 "Flow Control: %s\n",
2459 netdev->name,
2460 adapter->link_speed,
2461 adapter->link_duplex == FULL_DUPLEX ?
2462 "Full Duplex" : "Half Duplex",
2463 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2464 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2465 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2466 E1000_CTRL_TFCE) ? "TX" : "None")));
2467
2468 /* adjust timeout factor according to speed/duplex */
2469 adapter->tx_timeout_factor = 1;
2470 switch (adapter->link_speed) {
2471 case SPEED_10:
2472 txb2b = false;
2473 adapter->tx_timeout_factor = 16;
2474 break;
2475 case SPEED_100:
2476 txb2b = false;
2477 /* maybe add some timeout factor ? */
2478 break;
2479 }
2480
2481 /* enable transmits in the hardware */
2482 tctl = er32(TCTL);
2483 tctl |= E1000_TCTL_EN;
2484 ew32(TCTL, tctl);
2485
2486 netif_carrier_on(netdev);
2487 if (!test_bit(__E1000_DOWN, &adapter->flags))
2488 schedule_delayed_work(&adapter->phy_info_task,
2489 2 * HZ);
2490 adapter->smartspeed = 0;
2491 }
2492 } else {
2493 if (netif_carrier_ok(netdev)) {
2494 adapter->link_speed = 0;
2495 adapter->link_duplex = 0;
2496 pr_info("%s NIC Link is Down\n",
2497 netdev->name);
2498 netif_carrier_off(netdev);
2499
2500 if (!test_bit(__E1000_DOWN, &adapter->flags))
2501 schedule_delayed_work(&adapter->phy_info_task,
2502 2 * HZ);
2503 }
2504
2505 e1000_smartspeed(adapter);
2506 }
2507
2508link_up:
2509 e1000_update_stats(adapter);
2510
2511 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2512 adapter->tpt_old = adapter->stats.tpt;
2513 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2514 adapter->colc_old = adapter->stats.colc;
2515
2516 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2517 adapter->gorcl_old = adapter->stats.gorcl;
2518 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2519 adapter->gotcl_old = adapter->stats.gotcl;
2520
2521 e1000_update_adaptive(hw);
2522
2523 if (!netif_carrier_ok(netdev)) {
2524 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2525 /* We've lost link, so the controller stops DMA,
2526 * but we've got queued Tx work that's never going
2527 * to get done, so reset controller to flush Tx.
2528 * (Do the reset outside of interrupt context).
2529 */
2530 adapter->tx_timeout_count++;
2531 schedule_work(&adapter->reset_task);
2532 /* exit immediately since reset is imminent */
2533 return;
2534 }
2535 }
2536
2537 /* Simple mode for Interrupt Throttle Rate (ITR) */
2538 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2539 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2540 * Total asymmetrical Tx or Rx gets ITR=8000;
2541 * everyone else is between 2000-8000.
2542 */
2543 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2544 u32 dif = (adapter->gotcl > adapter->gorcl ?
2545 adapter->gotcl - adapter->gorcl :
2546 adapter->gorcl - adapter->gotcl) / 10000;
2547 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2548
2549 ew32(ITR, 1000000000 / (itr * 256));
2550 }
2551
2552 /* Cause software interrupt to ensure rx ring is cleaned */
2553 ew32(ICS, E1000_ICS_RXDMT0);
2554
2555 /* Force detection of hung controller every watchdog period */
2556 adapter->detect_tx_hung = true;
2557
2558 /* Reschedule the task */
2559 if (!test_bit(__E1000_DOWN, &adapter->flags))
2560 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2561}
2562
2563enum latency_range {
2564 lowest_latency = 0,
2565 low_latency = 1,
2566 bulk_latency = 2,
2567 latency_invalid = 255
2568};
2569
2570/**
2571 * e1000_update_itr - update the dynamic ITR value based on statistics
2572 * @adapter: pointer to adapter
2573 * @itr_setting: current adapter->itr
2574 * @packets: the number of packets during this measurement interval
2575 * @bytes: the number of bytes during this measurement interval
2576 *
2577 * Stores a new ITR value based on packets and byte
2578 * counts during the last interrupt. The advantage of per interrupt
2579 * computation is faster updates and more accurate ITR for the current
2580 * traffic pattern. Constants in this function were computed
2581 * based on theoretical maximum wire speed and thresholds were set based
2582 * on testing data as well as attempting to minimize response time
2583 * while increasing bulk throughput.
2584 * this functionality is controlled by the InterruptThrottleRate module
2585 * parameter (see e1000_param.c)
2586 **/
2587static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2588 u16 itr_setting, int packets, int bytes)
2589{
2590 unsigned int retval = itr_setting;
2591 struct e1000_hw *hw = &adapter->hw;
2592
2593 if (unlikely(hw->mac_type < e1000_82540))
2594 goto update_itr_done;
2595
2596 if (packets == 0)
2597 goto update_itr_done;
2598
2599 switch (itr_setting) {
2600 case lowest_latency:
2601 /* jumbo frames get bulk treatment*/
2602 if (bytes/packets > 8000)
2603 retval = bulk_latency;
2604 else if ((packets < 5) && (bytes > 512))
2605 retval = low_latency;
2606 break;
2607 case low_latency: /* 50 usec aka 20000 ints/s */
2608 if (bytes > 10000) {
2609 /* jumbo frames need bulk latency setting */
2610 if (bytes/packets > 8000)
2611 retval = bulk_latency;
2612 else if ((packets < 10) || ((bytes/packets) > 1200))
2613 retval = bulk_latency;
2614 else if ((packets > 35))
2615 retval = lowest_latency;
2616 } else if (bytes/packets > 2000)
2617 retval = bulk_latency;
2618 else if (packets <= 2 && bytes < 512)
2619 retval = lowest_latency;
2620 break;
2621 case bulk_latency: /* 250 usec aka 4000 ints/s */
2622 if (bytes > 25000) {
2623 if (packets > 35)
2624 retval = low_latency;
2625 } else if (bytes < 6000) {
2626 retval = low_latency;
2627 }
2628 break;
2629 }
2630
2631update_itr_done:
2632 return retval;
2633}
2634
2635static void e1000_set_itr(struct e1000_adapter *adapter)
2636{
2637 struct e1000_hw *hw = &adapter->hw;
2638 u16 current_itr;
2639 u32 new_itr = adapter->itr;
2640
2641 if (unlikely(hw->mac_type < e1000_82540))
2642 return;
2643
2644 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2645 if (unlikely(adapter->link_speed != SPEED_1000)) {
2646 current_itr = 0;
2647 new_itr = 4000;
2648 goto set_itr_now;
2649 }
2650
2651 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2652 adapter->total_tx_packets,
2653 adapter->total_tx_bytes);
2654 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2655 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2656 adapter->tx_itr = low_latency;
2657
2658 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2659 adapter->total_rx_packets,
2660 adapter->total_rx_bytes);
2661 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2662 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2663 adapter->rx_itr = low_latency;
2664
2665 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2666
2667 switch (current_itr) {
2668 /* counts and packets in update_itr are dependent on these numbers */
2669 case lowest_latency:
2670 new_itr = 70000;
2671 break;
2672 case low_latency:
2673 new_itr = 20000; /* aka hwitr = ~200 */
2674 break;
2675 case bulk_latency:
2676 new_itr = 4000;
2677 break;
2678 default:
2679 break;
2680 }
2681
2682set_itr_now:
2683 if (new_itr != adapter->itr) {
2684 /* this attempts to bias the interrupt rate towards Bulk
2685 * by adding intermediate steps when interrupt rate is
2686 * increasing
2687 */
2688 new_itr = new_itr > adapter->itr ?
2689 min(adapter->itr + (new_itr >> 2), new_itr) :
2690 new_itr;
2691 adapter->itr = new_itr;
2692 ew32(ITR, 1000000000 / (new_itr * 256));
2693 }
2694}
2695
2696#define E1000_TX_FLAGS_CSUM 0x00000001
2697#define E1000_TX_FLAGS_VLAN 0x00000002
2698#define E1000_TX_FLAGS_TSO 0x00000004
2699#define E1000_TX_FLAGS_IPV4 0x00000008
2700#define E1000_TX_FLAGS_NO_FCS 0x00000010
2701#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2702#define E1000_TX_FLAGS_VLAN_SHIFT 16
2703
2704static int e1000_tso(struct e1000_adapter *adapter,
2705 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2706 __be16 protocol)
2707{
2708 struct e1000_context_desc *context_desc;
2709 struct e1000_tx_buffer *buffer_info;
2710 unsigned int i;
2711 u32 cmd_length = 0;
2712 u16 ipcse = 0, tucse, mss;
2713 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2714
2715 if (skb_is_gso(skb)) {
2716 int err;
2717
2718 err = skb_cow_head(skb, 0);
2719 if (err < 0)
2720 return err;
2721
2722 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2723 mss = skb_shinfo(skb)->gso_size;
2724 if (protocol == htons(ETH_P_IP)) {
2725 struct iphdr *iph = ip_hdr(skb);
2726 iph->tot_len = 0;
2727 iph->check = 0;
2728 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2729 iph->daddr, 0,
2730 IPPROTO_TCP,
2731 0);
2732 cmd_length = E1000_TXD_CMD_IP;
2733 ipcse = skb_transport_offset(skb) - 1;
2734 } else if (skb_is_gso_v6(skb)) {
2735 ipv6_hdr(skb)->payload_len = 0;
2736 tcp_hdr(skb)->check =
2737 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2738 &ipv6_hdr(skb)->daddr,
2739 0, IPPROTO_TCP, 0);
2740 ipcse = 0;
2741 }
2742 ipcss = skb_network_offset(skb);
2743 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2744 tucss = skb_transport_offset(skb);
2745 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2746 tucse = 0;
2747
2748 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2749 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2750
2751 i = tx_ring->next_to_use;
2752 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2753 buffer_info = &tx_ring->buffer_info[i];
2754
2755 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2756 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2757 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2758 context_desc->upper_setup.tcp_fields.tucss = tucss;
2759 context_desc->upper_setup.tcp_fields.tucso = tucso;
2760 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2761 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2762 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2763 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2764
2765 buffer_info->time_stamp = jiffies;
2766 buffer_info->next_to_watch = i;
2767
2768 if (++i == tx_ring->count)
2769 i = 0;
2770
2771 tx_ring->next_to_use = i;
2772
2773 return true;
2774 }
2775 return false;
2776}
2777
2778static bool e1000_tx_csum(struct e1000_adapter *adapter,
2779 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2780 __be16 protocol)
2781{
2782 struct e1000_context_desc *context_desc;
2783 struct e1000_tx_buffer *buffer_info;
2784 unsigned int i;
2785 u8 css;
2786 u32 cmd_len = E1000_TXD_CMD_DEXT;
2787
2788 if (skb->ip_summed != CHECKSUM_PARTIAL)
2789 return false;
2790
2791 switch (protocol) {
2792 case cpu_to_be16(ETH_P_IP):
2793 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2794 cmd_len |= E1000_TXD_CMD_TCP;
2795 break;
2796 case cpu_to_be16(ETH_P_IPV6):
2797 /* XXX not handling all IPV6 headers */
2798 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2799 cmd_len |= E1000_TXD_CMD_TCP;
2800 break;
2801 default:
2802 if (unlikely(net_ratelimit()))
2803 e_warn(drv, "checksum_partial proto=%x!\n",
2804 skb->protocol);
2805 break;
2806 }
2807
2808 css = skb_checksum_start_offset(skb);
2809
2810 i = tx_ring->next_to_use;
2811 buffer_info = &tx_ring->buffer_info[i];
2812 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2813
2814 context_desc->lower_setup.ip_config = 0;
2815 context_desc->upper_setup.tcp_fields.tucss = css;
2816 context_desc->upper_setup.tcp_fields.tucso =
2817 css + skb->csum_offset;
2818 context_desc->upper_setup.tcp_fields.tucse = 0;
2819 context_desc->tcp_seg_setup.data = 0;
2820 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2821
2822 buffer_info->time_stamp = jiffies;
2823 buffer_info->next_to_watch = i;
2824
2825 if (unlikely(++i == tx_ring->count))
2826 i = 0;
2827
2828 tx_ring->next_to_use = i;
2829
2830 return true;
2831}
2832
2833#define E1000_MAX_TXD_PWR 12
2834#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2835
2836static int e1000_tx_map(struct e1000_adapter *adapter,
2837 struct e1000_tx_ring *tx_ring,
2838 struct sk_buff *skb, unsigned int first,
2839 unsigned int max_per_txd, unsigned int nr_frags,
2840 unsigned int mss)
2841{
2842 struct e1000_hw *hw = &adapter->hw;
2843 struct pci_dev *pdev = adapter->pdev;
2844 struct e1000_tx_buffer *buffer_info;
2845 unsigned int len = skb_headlen(skb);
2846 unsigned int offset = 0, size, count = 0, i;
2847 unsigned int f, bytecount, segs;
2848
2849 i = tx_ring->next_to_use;
2850
2851 while (len) {
2852 buffer_info = &tx_ring->buffer_info[i];
2853 size = min(len, max_per_txd);
2854 /* Workaround for Controller erratum --
2855 * descriptor for non-tso packet in a linear SKB that follows a
2856 * tso gets written back prematurely before the data is fully
2857 * DMA'd to the controller
2858 */
2859 if (!skb->data_len && tx_ring->last_tx_tso &&
2860 !skb_is_gso(skb)) {
2861 tx_ring->last_tx_tso = false;
2862 size -= 4;
2863 }
2864
2865 /* Workaround for premature desc write-backs
2866 * in TSO mode. Append 4-byte sentinel desc
2867 */
2868 if (unlikely(mss && !nr_frags && size == len && size > 8))
2869 size -= 4;
2870 /* work-around for errata 10 and it applies
2871 * to all controllers in PCI-X mode
2872 * The fix is to make sure that the first descriptor of a
2873 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2874 */
2875 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2876 (size > 2015) && count == 0))
2877 size = 2015;
2878
2879 /* Workaround for potential 82544 hang in PCI-X. Avoid
2880 * terminating buffers within evenly-aligned dwords.
2881 */
2882 if (unlikely(adapter->pcix_82544 &&
2883 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2884 size > 4))
2885 size -= 4;
2886
2887 buffer_info->length = size;
2888 /* set time_stamp *before* dma to help avoid a possible race */
2889 buffer_info->time_stamp = jiffies;
2890 buffer_info->mapped_as_page = false;
2891 buffer_info->dma = dma_map_single(&pdev->dev,
2892 skb->data + offset,
2893 size, DMA_TO_DEVICE);
2894 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2895 goto dma_error;
2896 buffer_info->next_to_watch = i;
2897
2898 len -= size;
2899 offset += size;
2900 count++;
2901 if (len) {
2902 i++;
2903 if (unlikely(i == tx_ring->count))
2904 i = 0;
2905 }
2906 }
2907
2908 for (f = 0; f < nr_frags; f++) {
2909 const struct skb_frag_struct *frag;
2910
2911 frag = &skb_shinfo(skb)->frags[f];
2912 len = skb_frag_size(frag);
2913 offset = 0;
2914
2915 while (len) {
2916 unsigned long bufend;
2917 i++;
2918 if (unlikely(i == tx_ring->count))
2919 i = 0;
2920
2921 buffer_info = &tx_ring->buffer_info[i];
2922 size = min(len, max_per_txd);
2923 /* Workaround for premature desc write-backs
2924 * in TSO mode. Append 4-byte sentinel desc
2925 */
2926 if (unlikely(mss && f == (nr_frags-1) &&
2927 size == len && size > 8))
2928 size -= 4;
2929 /* Workaround for potential 82544 hang in PCI-X.
2930 * Avoid terminating buffers within evenly-aligned
2931 * dwords.
2932 */
2933 bufend = (unsigned long)
2934 page_to_phys(skb_frag_page(frag));
2935 bufend += offset + size - 1;
2936 if (unlikely(adapter->pcix_82544 &&
2937 !(bufend & 4) &&
2938 size > 4))
2939 size -= 4;
2940
2941 buffer_info->length = size;
2942 buffer_info->time_stamp = jiffies;
2943 buffer_info->mapped_as_page = true;
2944 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2945 offset, size, DMA_TO_DEVICE);
2946 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2947 goto dma_error;
2948 buffer_info->next_to_watch = i;
2949
2950 len -= size;
2951 offset += size;
2952 count++;
2953 }
2954 }
2955
2956 segs = skb_shinfo(skb)->gso_segs ?: 1;
2957 /* multiply data chunks by size of headers */
2958 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2959
2960 tx_ring->buffer_info[i].skb = skb;
2961 tx_ring->buffer_info[i].segs = segs;
2962 tx_ring->buffer_info[i].bytecount = bytecount;
2963 tx_ring->buffer_info[first].next_to_watch = i;
2964
2965 return count;
2966
2967dma_error:
2968 dev_err(&pdev->dev, "TX DMA map failed\n");
2969 buffer_info->dma = 0;
2970 if (count)
2971 count--;
2972
2973 while (count--) {
2974 if (i == 0)
2975 i += tx_ring->count;
2976 i--;
2977 buffer_info = &tx_ring->buffer_info[i];
2978 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2979 }
2980
2981 return 0;
2982}
2983
2984static void e1000_tx_queue(struct e1000_adapter *adapter,
2985 struct e1000_tx_ring *tx_ring, int tx_flags,
2986 int count)
2987{
2988 struct e1000_tx_desc *tx_desc = NULL;
2989 struct e1000_tx_buffer *buffer_info;
2990 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2991 unsigned int i;
2992
2993 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2994 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2995 E1000_TXD_CMD_TSE;
2996 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2997
2998 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2999 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3000 }
3001
3002 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3003 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3004 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3005 }
3006
3007 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3008 txd_lower |= E1000_TXD_CMD_VLE;
3009 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3010 }
3011
3012 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3013 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3014
3015 i = tx_ring->next_to_use;
3016
3017 while (count--) {
3018 buffer_info = &tx_ring->buffer_info[i];
3019 tx_desc = E1000_TX_DESC(*tx_ring, i);
3020 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3021 tx_desc->lower.data =
3022 cpu_to_le32(txd_lower | buffer_info->length);
3023 tx_desc->upper.data = cpu_to_le32(txd_upper);
3024 if (unlikely(++i == tx_ring->count))
3025 i = 0;
3026 }
3027
3028 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3029
3030 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3031 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3032 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3033
3034 /* Force memory writes to complete before letting h/w
3035 * know there are new descriptors to fetch. (Only
3036 * applicable for weak-ordered memory model archs,
3037 * such as IA-64).
3038 */
3039 wmb();
3040
3041 tx_ring->next_to_use = i;
3042}
3043
3044/* 82547 workaround to avoid controller hang in half-duplex environment.
3045 * The workaround is to avoid queuing a large packet that would span
3046 * the internal Tx FIFO ring boundary by notifying the stack to resend
3047 * the packet at a later time. This gives the Tx FIFO an opportunity to
3048 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3049 * to the beginning of the Tx FIFO.
3050 */
3051
3052#define E1000_FIFO_HDR 0x10
3053#define E1000_82547_PAD_LEN 0x3E0
3054
3055static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3056 struct sk_buff *skb)
3057{
3058 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3059 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3060
3061 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3062
3063 if (adapter->link_duplex != HALF_DUPLEX)
3064 goto no_fifo_stall_required;
3065
3066 if (atomic_read(&adapter->tx_fifo_stall))
3067 return 1;
3068
3069 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3070 atomic_set(&adapter->tx_fifo_stall, 1);
3071 return 1;
3072 }
3073
3074no_fifo_stall_required:
3075 adapter->tx_fifo_head += skb_fifo_len;
3076 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3077 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3078 return 0;
3079}
3080
3081static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3082{
3083 struct e1000_adapter *adapter = netdev_priv(netdev);
3084 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3085
3086 netif_stop_queue(netdev);
3087 /* Herbert's original patch had:
3088 * smp_mb__after_netif_stop_queue();
3089 * but since that doesn't exist yet, just open code it.
3090 */
3091 smp_mb();
3092
3093 /* We need to check again in a case another CPU has just
3094 * made room available.
3095 */
3096 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3097 return -EBUSY;
3098
3099 /* A reprieve! */
3100 netif_start_queue(netdev);
3101 ++adapter->restart_queue;
3102 return 0;
3103}
3104
3105static int e1000_maybe_stop_tx(struct net_device *netdev,
3106 struct e1000_tx_ring *tx_ring, int size)
3107{
3108 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3109 return 0;
3110 return __e1000_maybe_stop_tx(netdev, size);
3111}
3112
3113#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3114static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3115 struct net_device *netdev)
3116{
3117 struct e1000_adapter *adapter = netdev_priv(netdev);
3118 struct e1000_hw *hw = &adapter->hw;
3119 struct e1000_tx_ring *tx_ring;
3120 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3121 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3122 unsigned int tx_flags = 0;
3123 unsigned int len = skb_headlen(skb);
3124 unsigned int nr_frags;
3125 unsigned int mss;
3126 int count = 0;
3127 int tso;
3128 unsigned int f;
3129 __be16 protocol = vlan_get_protocol(skb);
3130
3131 /* This goes back to the question of how to logically map a Tx queue
3132 * to a flow. Right now, performance is impacted slightly negatively
3133 * if using multiple Tx queues. If the stack breaks away from a
3134 * single qdisc implementation, we can look at this again.
3135 */
3136 tx_ring = adapter->tx_ring;
3137
3138 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3139 * packets may get corrupted during padding by HW.
3140 * To WA this issue, pad all small packets manually.
3141 */
3142 if (eth_skb_pad(skb))
3143 return NETDEV_TX_OK;
3144
3145 mss = skb_shinfo(skb)->gso_size;
3146 /* The controller does a simple calculation to
3147 * make sure there is enough room in the FIFO before
3148 * initiating the DMA for each buffer. The calc is:
3149 * 4 = ceil(buffer len/mss). To make sure we don't
3150 * overrun the FIFO, adjust the max buffer len if mss
3151 * drops.
3152 */
3153 if (mss) {
3154 u8 hdr_len;
3155 max_per_txd = min(mss << 2, max_per_txd);
3156 max_txd_pwr = fls(max_per_txd) - 1;
3157
3158 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3159 if (skb->data_len && hdr_len == len) {
3160 switch (hw->mac_type) {
3161 unsigned int pull_size;
3162 case e1000_82544:
3163 /* Make sure we have room to chop off 4 bytes,
3164 * and that the end alignment will work out to
3165 * this hardware's requirements
3166 * NOTE: this is a TSO only workaround
3167 * if end byte alignment not correct move us
3168 * into the next dword
3169 */
3170 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3171 & 4)
3172 break;
3173 /* fall through */
3174 pull_size = min((unsigned int)4, skb->data_len);
3175 if (!__pskb_pull_tail(skb, pull_size)) {
3176 e_err(drv, "__pskb_pull_tail "
3177 "failed.\n");
3178 dev_kfree_skb_any(skb);
3179 return NETDEV_TX_OK;
3180 }
3181 len = skb_headlen(skb);
3182 break;
3183 default:
3184 /* do nothing */
3185 break;
3186 }
3187 }
3188 }
3189
3190 /* reserve a descriptor for the offload context */
3191 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3192 count++;
3193 count++;
3194
3195 /* Controller Erratum workaround */
3196 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3197 count++;
3198
3199 count += TXD_USE_COUNT(len, max_txd_pwr);
3200
3201 if (adapter->pcix_82544)
3202 count++;
3203
3204 /* work-around for errata 10 and it applies to all controllers
3205 * in PCI-X mode, so add one more descriptor to the count
3206 */
3207 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3208 (len > 2015)))
3209 count++;
3210
3211 nr_frags = skb_shinfo(skb)->nr_frags;
3212 for (f = 0; f < nr_frags; f++)
3213 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3214 max_txd_pwr);
3215 if (adapter->pcix_82544)
3216 count += nr_frags;
3217
3218 /* need: count + 2 desc gap to keep tail from touching
3219 * head, otherwise try next time
3220 */
3221 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3222 return NETDEV_TX_BUSY;
3223
3224 if (unlikely((hw->mac_type == e1000_82547) &&
3225 (e1000_82547_fifo_workaround(adapter, skb)))) {
3226 netif_stop_queue(netdev);
3227 if (!test_bit(__E1000_DOWN, &adapter->flags))
3228 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3229 return NETDEV_TX_BUSY;
3230 }
3231
3232 if (skb_vlan_tag_present(skb)) {
3233 tx_flags |= E1000_TX_FLAGS_VLAN;
3234 tx_flags |= (skb_vlan_tag_get(skb) <<
3235 E1000_TX_FLAGS_VLAN_SHIFT);
3236 }
3237
3238 first = tx_ring->next_to_use;
3239
3240 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3241 if (tso < 0) {
3242 dev_kfree_skb_any(skb);
3243 return NETDEV_TX_OK;
3244 }
3245
3246 if (likely(tso)) {
3247 if (likely(hw->mac_type != e1000_82544))
3248 tx_ring->last_tx_tso = true;
3249 tx_flags |= E1000_TX_FLAGS_TSO;
3250 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3251 tx_flags |= E1000_TX_FLAGS_CSUM;
3252
3253 if (protocol == htons(ETH_P_IP))
3254 tx_flags |= E1000_TX_FLAGS_IPV4;
3255
3256 if (unlikely(skb->no_fcs))
3257 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3258
3259 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3260 nr_frags, mss);
3261
3262 if (count) {
3263 /* The descriptors needed is higher than other Intel drivers
3264 * due to a number of workarounds. The breakdown is below:
3265 * Data descriptors: MAX_SKB_FRAGS + 1
3266 * Context Descriptor: 1
3267 * Keep head from touching tail: 2
3268 * Workarounds: 3
3269 */
3270 int desc_needed = MAX_SKB_FRAGS + 7;
3271
3272 netdev_sent_queue(netdev, skb->len);
3273 skb_tx_timestamp(skb);
3274
3275 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3276
3277 /* 82544 potentially requires twice as many data descriptors
3278 * in order to guarantee buffers don't end on evenly-aligned
3279 * dwords
3280 */
3281 if (adapter->pcix_82544)
3282 desc_needed += MAX_SKB_FRAGS + 1;
3283
3284 /* Make sure there is space in the ring for the next send. */
3285 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3286
3287 if (!skb->xmit_more ||
3288 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3289 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3290 /* we need this if more than one processor can write to
3291 * our tail at a time, it synchronizes IO on IA64/Altix
3292 * systems
3293 */
3294 mmiowb();
3295 }
3296 } else {
3297 dev_kfree_skb_any(skb);
3298 tx_ring->buffer_info[first].time_stamp = 0;
3299 tx_ring->next_to_use = first;
3300 }
3301
3302 return NETDEV_TX_OK;
3303}
3304
3305#define NUM_REGS 38 /* 1 based count */
3306static void e1000_regdump(struct e1000_adapter *adapter)
3307{
3308 struct e1000_hw *hw = &adapter->hw;
3309 u32 regs[NUM_REGS];
3310 u32 *regs_buff = regs;
3311 int i = 0;
3312
3313 static const char * const reg_name[] = {
3314 "CTRL", "STATUS",
3315 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3316 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3317 "TIDV", "TXDCTL", "TADV", "TARC0",
3318 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3319 "TXDCTL1", "TARC1",
3320 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3321 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3322 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3323 };
3324
3325 regs_buff[0] = er32(CTRL);
3326 regs_buff[1] = er32(STATUS);
3327
3328 regs_buff[2] = er32(RCTL);
3329 regs_buff[3] = er32(RDLEN);
3330 regs_buff[4] = er32(RDH);
3331 regs_buff[5] = er32(RDT);
3332 regs_buff[6] = er32(RDTR);
3333
3334 regs_buff[7] = er32(TCTL);
3335 regs_buff[8] = er32(TDBAL);
3336 regs_buff[9] = er32(TDBAH);
3337 regs_buff[10] = er32(TDLEN);
3338 regs_buff[11] = er32(TDH);
3339 regs_buff[12] = er32(TDT);
3340 regs_buff[13] = er32(TIDV);
3341 regs_buff[14] = er32(TXDCTL);
3342 regs_buff[15] = er32(TADV);
3343 regs_buff[16] = er32(TARC0);
3344
3345 regs_buff[17] = er32(TDBAL1);
3346 regs_buff[18] = er32(TDBAH1);
3347 regs_buff[19] = er32(TDLEN1);
3348 regs_buff[20] = er32(TDH1);
3349 regs_buff[21] = er32(TDT1);
3350 regs_buff[22] = er32(TXDCTL1);
3351 regs_buff[23] = er32(TARC1);
3352 regs_buff[24] = er32(CTRL_EXT);
3353 regs_buff[25] = er32(ERT);
3354 regs_buff[26] = er32(RDBAL0);
3355 regs_buff[27] = er32(RDBAH0);
3356 regs_buff[28] = er32(TDFH);
3357 regs_buff[29] = er32(TDFT);
3358 regs_buff[30] = er32(TDFHS);
3359 regs_buff[31] = er32(TDFTS);
3360 regs_buff[32] = er32(TDFPC);
3361 regs_buff[33] = er32(RDFH);
3362 regs_buff[34] = er32(RDFT);
3363 regs_buff[35] = er32(RDFHS);
3364 regs_buff[36] = er32(RDFTS);
3365 regs_buff[37] = er32(RDFPC);
3366
3367 pr_info("Register dump\n");
3368 for (i = 0; i < NUM_REGS; i++)
3369 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3370}
3371
3372/*
3373 * e1000_dump: Print registers, tx ring and rx ring
3374 */
3375static void e1000_dump(struct e1000_adapter *adapter)
3376{
3377 /* this code doesn't handle multiple rings */
3378 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3379 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3380 int i;
3381
3382 if (!netif_msg_hw(adapter))
3383 return;
3384
3385 /* Print Registers */
3386 e1000_regdump(adapter);
3387
3388 /* transmit dump */
3389 pr_info("TX Desc ring0 dump\n");
3390
3391 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3392 *
3393 * Legacy Transmit Descriptor
3394 * +--------------------------------------------------------------+
3395 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3396 * +--------------------------------------------------------------+
3397 * 8 | Special | CSS | Status | CMD | CSO | Length |
3398 * +--------------------------------------------------------------+
3399 * 63 48 47 36 35 32 31 24 23 16 15 0
3400 *
3401 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3402 * 63 48 47 40 39 32 31 16 15 8 7 0
3403 * +----------------------------------------------------------------+
3404 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3405 * +----------------------------------------------------------------+
3406 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3407 * +----------------------------------------------------------------+
3408 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3409 *
3410 * Extended Data Descriptor (DTYP=0x1)
3411 * +----------------------------------------------------------------+
3412 * 0 | Buffer Address [63:0] |
3413 * +----------------------------------------------------------------+
3414 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3415 * +----------------------------------------------------------------+
3416 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3417 */
3418 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3419 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3420
3421 if (!netif_msg_tx_done(adapter))
3422 goto rx_ring_summary;
3423
3424 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3425 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3426 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3427 struct my_u { __le64 a; __le64 b; };
3428 struct my_u *u = (struct my_u *)tx_desc;
3429 const char *type;
3430
3431 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3432 type = "NTC/U";
3433 else if (i == tx_ring->next_to_use)
3434 type = "NTU";
3435 else if (i == tx_ring->next_to_clean)
3436 type = "NTC";
3437 else
3438 type = "";
3439
3440 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3441 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3442 le64_to_cpu(u->a), le64_to_cpu(u->b),
3443 (u64)buffer_info->dma, buffer_info->length,
3444 buffer_info->next_to_watch,
3445 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3446 }
3447
3448rx_ring_summary:
3449 /* receive dump */
3450 pr_info("\nRX Desc ring dump\n");
3451
3452 /* Legacy Receive Descriptor Format
3453 *
3454 * +-----------------------------------------------------+
3455 * | Buffer Address [63:0] |
3456 * +-----------------------------------------------------+
3457 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3458 * +-----------------------------------------------------+
3459 * 63 48 47 40 39 32 31 16 15 0
3460 */
3461 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3462
3463 if (!netif_msg_rx_status(adapter))
3464 goto exit;
3465
3466 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3467 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3468 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3469 struct my_u { __le64 a; __le64 b; };
3470 struct my_u *u = (struct my_u *)rx_desc;
3471 const char *type;
3472
3473 if (i == rx_ring->next_to_use)
3474 type = "NTU";
3475 else if (i == rx_ring->next_to_clean)
3476 type = "NTC";
3477 else
3478 type = "";
3479
3480 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3481 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3482 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3483 } /* for */
3484
3485 /* dump the descriptor caches */
3486 /* rx */
3487 pr_info("Rx descriptor cache in 64bit format\n");
3488 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3489 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3490 i,
3491 readl(adapter->hw.hw_addr + i+4),
3492 readl(adapter->hw.hw_addr + i),
3493 readl(adapter->hw.hw_addr + i+12),
3494 readl(adapter->hw.hw_addr + i+8));
3495 }
3496 /* tx */
3497 pr_info("Tx descriptor cache in 64bit format\n");
3498 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3499 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3500 i,
3501 readl(adapter->hw.hw_addr + i+4),
3502 readl(adapter->hw.hw_addr + i),
3503 readl(adapter->hw.hw_addr + i+12),
3504 readl(adapter->hw.hw_addr + i+8));
3505 }
3506exit:
3507 return;
3508}
3509
3510/**
3511 * e1000_tx_timeout - Respond to a Tx Hang
3512 * @netdev: network interface device structure
3513 **/
3514static void e1000_tx_timeout(struct net_device *netdev)
3515{
3516 struct e1000_adapter *adapter = netdev_priv(netdev);
3517
3518 /* Do the reset outside of interrupt context */
3519 adapter->tx_timeout_count++;
3520 schedule_work(&adapter->reset_task);
3521}
3522
3523static void e1000_reset_task(struct work_struct *work)
3524{
3525 struct e1000_adapter *adapter =
3526 container_of(work, struct e1000_adapter, reset_task);
3527
3528 e_err(drv, "Reset adapter\n");
3529 e1000_reinit_locked(adapter);
3530}
3531
3532/**
3533 * e1000_get_stats - Get System Network Statistics
3534 * @netdev: network interface device structure
3535 *
3536 * Returns the address of the device statistics structure.
3537 * The statistics are actually updated from the watchdog.
3538 **/
3539static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3540{
3541 /* only return the current stats */
3542 return &netdev->stats;
3543}
3544
3545/**
3546 * e1000_change_mtu - Change the Maximum Transfer Unit
3547 * @netdev: network interface device structure
3548 * @new_mtu: new value for maximum frame size
3549 *
3550 * Returns 0 on success, negative on failure
3551 **/
3552static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3553{
3554 struct e1000_adapter *adapter = netdev_priv(netdev);
3555 struct e1000_hw *hw = &adapter->hw;
3556 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3557
3558 /* Adapter-specific max frame size limits. */
3559 switch (hw->mac_type) {
3560 case e1000_undefined ... e1000_82542_rev2_1:
3561 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3562 e_err(probe, "Jumbo Frames not supported.\n");
3563 return -EINVAL;
3564 }
3565 break;
3566 default:
3567 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3568 break;
3569 }
3570
3571 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3572 msleep(1);
3573 /* e1000_down has a dependency on max_frame_size */
3574 hw->max_frame_size = max_frame;
3575 if (netif_running(netdev)) {
3576 /* prevent buffers from being reallocated */
3577 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3578 e1000_down(adapter);
3579 }
3580
3581 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3582 * means we reserve 2 more, this pushes us to allocate from the next
3583 * larger slab size.
3584 * i.e. RXBUFFER_2048 --> size-4096 slab
3585 * however with the new *_jumbo_rx* routines, jumbo receives will use
3586 * fragmented skbs
3587 */
3588
3589 if (max_frame <= E1000_RXBUFFER_2048)
3590 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3591 else
3592#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3593 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3594#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3595 adapter->rx_buffer_len = PAGE_SIZE;
3596#endif
3597
3598 /* adjust allocation if LPE protects us, and we aren't using SBP */
3599 if (!hw->tbi_compatibility_on &&
3600 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3601 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3602 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3603
3604 pr_info("%s changing MTU from %d to %d\n",
3605 netdev->name, netdev->mtu, new_mtu);
3606 netdev->mtu = new_mtu;
3607
3608 if (netif_running(netdev))
3609 e1000_up(adapter);
3610 else
3611 e1000_reset(adapter);
3612
3613 clear_bit(__E1000_RESETTING, &adapter->flags);
3614
3615 return 0;
3616}
3617
3618/**
3619 * e1000_update_stats - Update the board statistics counters
3620 * @adapter: board private structure
3621 **/
3622void e1000_update_stats(struct e1000_adapter *adapter)
3623{
3624 struct net_device *netdev = adapter->netdev;
3625 struct e1000_hw *hw = &adapter->hw;
3626 struct pci_dev *pdev = adapter->pdev;
3627 unsigned long flags;
3628 u16 phy_tmp;
3629
3630#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3631
3632 /* Prevent stats update while adapter is being reset, or if the pci
3633 * connection is down.
3634 */
3635 if (adapter->link_speed == 0)
3636 return;
3637 if (pci_channel_offline(pdev))
3638 return;
3639
3640 spin_lock_irqsave(&adapter->stats_lock, flags);
3641
3642 /* these counters are modified from e1000_tbi_adjust_stats,
3643 * called from the interrupt context, so they must only
3644 * be written while holding adapter->stats_lock
3645 */
3646
3647 adapter->stats.crcerrs += er32(CRCERRS);
3648 adapter->stats.gprc += er32(GPRC);
3649 adapter->stats.gorcl += er32(GORCL);
3650 adapter->stats.gorch += er32(GORCH);
3651 adapter->stats.bprc += er32(BPRC);
3652 adapter->stats.mprc += er32(MPRC);
3653 adapter->stats.roc += er32(ROC);
3654
3655 adapter->stats.prc64 += er32(PRC64);
3656 adapter->stats.prc127 += er32(PRC127);
3657 adapter->stats.prc255 += er32(PRC255);
3658 adapter->stats.prc511 += er32(PRC511);
3659 adapter->stats.prc1023 += er32(PRC1023);
3660 adapter->stats.prc1522 += er32(PRC1522);
3661
3662 adapter->stats.symerrs += er32(SYMERRS);
3663 adapter->stats.mpc += er32(MPC);
3664 adapter->stats.scc += er32(SCC);
3665 adapter->stats.ecol += er32(ECOL);
3666 adapter->stats.mcc += er32(MCC);
3667 adapter->stats.latecol += er32(LATECOL);
3668 adapter->stats.dc += er32(DC);
3669 adapter->stats.sec += er32(SEC);
3670 adapter->stats.rlec += er32(RLEC);
3671 adapter->stats.xonrxc += er32(XONRXC);
3672 adapter->stats.xontxc += er32(XONTXC);
3673 adapter->stats.xoffrxc += er32(XOFFRXC);
3674 adapter->stats.xofftxc += er32(XOFFTXC);
3675 adapter->stats.fcruc += er32(FCRUC);
3676 adapter->stats.gptc += er32(GPTC);
3677 adapter->stats.gotcl += er32(GOTCL);
3678 adapter->stats.gotch += er32(GOTCH);
3679 adapter->stats.rnbc += er32(RNBC);
3680 adapter->stats.ruc += er32(RUC);
3681 adapter->stats.rfc += er32(RFC);
3682 adapter->stats.rjc += er32(RJC);
3683 adapter->stats.torl += er32(TORL);
3684 adapter->stats.torh += er32(TORH);
3685 adapter->stats.totl += er32(TOTL);
3686 adapter->stats.toth += er32(TOTH);
3687 adapter->stats.tpr += er32(TPR);
3688
3689 adapter->stats.ptc64 += er32(PTC64);
3690 adapter->stats.ptc127 += er32(PTC127);
3691 adapter->stats.ptc255 += er32(PTC255);
3692 adapter->stats.ptc511 += er32(PTC511);
3693 adapter->stats.ptc1023 += er32(PTC1023);
3694 adapter->stats.ptc1522 += er32(PTC1522);
3695
3696 adapter->stats.mptc += er32(MPTC);
3697 adapter->stats.bptc += er32(BPTC);
3698
3699 /* used for adaptive IFS */
3700
3701 hw->tx_packet_delta = er32(TPT);
3702 adapter->stats.tpt += hw->tx_packet_delta;
3703 hw->collision_delta = er32(COLC);
3704 adapter->stats.colc += hw->collision_delta;
3705
3706 if (hw->mac_type >= e1000_82543) {
3707 adapter->stats.algnerrc += er32(ALGNERRC);
3708 adapter->stats.rxerrc += er32(RXERRC);
3709 adapter->stats.tncrs += er32(TNCRS);
3710 adapter->stats.cexterr += er32(CEXTERR);
3711 adapter->stats.tsctc += er32(TSCTC);
3712 adapter->stats.tsctfc += er32(TSCTFC);
3713 }
3714
3715 /* Fill out the OS statistics structure */
3716 netdev->stats.multicast = adapter->stats.mprc;
3717 netdev->stats.collisions = adapter->stats.colc;
3718
3719 /* Rx Errors */
3720
3721 /* RLEC on some newer hardware can be incorrect so build
3722 * our own version based on RUC and ROC
3723 */
3724 netdev->stats.rx_errors = adapter->stats.rxerrc +
3725 adapter->stats.crcerrs + adapter->stats.algnerrc +
3726 adapter->stats.ruc + adapter->stats.roc +
3727 adapter->stats.cexterr;
3728 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3729 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3730 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3731 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3732 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3733
3734 /* Tx Errors */
3735 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3736 netdev->stats.tx_errors = adapter->stats.txerrc;
3737 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3738 netdev->stats.tx_window_errors = adapter->stats.latecol;
3739 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3740 if (hw->bad_tx_carr_stats_fd &&
3741 adapter->link_duplex == FULL_DUPLEX) {
3742 netdev->stats.tx_carrier_errors = 0;
3743 adapter->stats.tncrs = 0;
3744 }
3745
3746 /* Tx Dropped needs to be maintained elsewhere */
3747
3748 /* Phy Stats */
3749 if (hw->media_type == e1000_media_type_copper) {
3750 if ((adapter->link_speed == SPEED_1000) &&
3751 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3752 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3753 adapter->phy_stats.idle_errors += phy_tmp;
3754 }
3755
3756 if ((hw->mac_type <= e1000_82546) &&
3757 (hw->phy_type == e1000_phy_m88) &&
3758 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3759 adapter->phy_stats.receive_errors += phy_tmp;
3760 }
3761
3762 /* Management Stats */
3763 if (hw->has_smbus) {
3764 adapter->stats.mgptc += er32(MGTPTC);
3765 adapter->stats.mgprc += er32(MGTPRC);
3766 adapter->stats.mgpdc += er32(MGTPDC);
3767 }
3768
3769 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3770}
3771
3772/**
3773 * e1000_intr - Interrupt Handler
3774 * @irq: interrupt number
3775 * @data: pointer to a network interface device structure
3776 **/
3777static irqreturn_t e1000_intr(int irq, void *data)
3778{
3779 struct net_device *netdev = data;
3780 struct e1000_adapter *adapter = netdev_priv(netdev);
3781 struct e1000_hw *hw = &adapter->hw;
3782 u32 icr = er32(ICR);
3783
3784 if (unlikely((!icr)))
3785 return IRQ_NONE; /* Not our interrupt */
3786
3787 /* we might have caused the interrupt, but the above
3788 * read cleared it, and just in case the driver is
3789 * down there is nothing to do so return handled
3790 */
3791 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3792 return IRQ_HANDLED;
3793
3794 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3795 hw->get_link_status = 1;
3796 /* guard against interrupt when we're going down */
3797 if (!test_bit(__E1000_DOWN, &adapter->flags))
3798 schedule_delayed_work(&adapter->watchdog_task, 1);
3799 }
3800
3801 /* disable interrupts, without the synchronize_irq bit */
3802 ew32(IMC, ~0);
3803 E1000_WRITE_FLUSH();
3804
3805 if (likely(napi_schedule_prep(&adapter->napi))) {
3806 adapter->total_tx_bytes = 0;
3807 adapter->total_tx_packets = 0;
3808 adapter->total_rx_bytes = 0;
3809 adapter->total_rx_packets = 0;
3810 __napi_schedule(&adapter->napi);
3811 } else {
3812 /* this really should not happen! if it does it is basically a
3813 * bug, but not a hard error, so enable ints and continue
3814 */
3815 if (!test_bit(__E1000_DOWN, &adapter->flags))
3816 e1000_irq_enable(adapter);
3817 }
3818
3819 return IRQ_HANDLED;
3820}
3821
3822/**
3823 * e1000_clean - NAPI Rx polling callback
3824 * @adapter: board private structure
3825 **/
3826static int e1000_clean(struct napi_struct *napi, int budget)
3827{
3828 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3829 napi);
3830 int tx_clean_complete = 0, work_done = 0;
3831
3832 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3833
3834 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3835
3836 if (!tx_clean_complete)
3837 work_done = budget;
3838
3839 /* If budget not fully consumed, exit the polling mode */
3840 if (work_done < budget) {
3841 if (likely(adapter->itr_setting & 3))
3842 e1000_set_itr(adapter);
3843 napi_complete_done(napi, work_done);
3844 if (!test_bit(__E1000_DOWN, &adapter->flags))
3845 e1000_irq_enable(adapter);
3846 }
3847
3848 return work_done;
3849}
3850
3851/**
3852 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3853 * @adapter: board private structure
3854 **/
3855static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3856 struct e1000_tx_ring *tx_ring)
3857{
3858 struct e1000_hw *hw = &adapter->hw;
3859 struct net_device *netdev = adapter->netdev;
3860 struct e1000_tx_desc *tx_desc, *eop_desc;
3861 struct e1000_tx_buffer *buffer_info;
3862 unsigned int i, eop;
3863 unsigned int count = 0;
3864 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3865 unsigned int bytes_compl = 0, pkts_compl = 0;
3866
3867 i = tx_ring->next_to_clean;
3868 eop = tx_ring->buffer_info[i].next_to_watch;
3869 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870
3871 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3872 (count < tx_ring->count)) {
3873 bool cleaned = false;
3874 dma_rmb(); /* read buffer_info after eop_desc */
3875 for ( ; !cleaned; count++) {
3876 tx_desc = E1000_TX_DESC(*tx_ring, i);
3877 buffer_info = &tx_ring->buffer_info[i];
3878 cleaned = (i == eop);
3879
3880 if (cleaned) {
3881 total_tx_packets += buffer_info->segs;
3882 total_tx_bytes += buffer_info->bytecount;
3883 if (buffer_info->skb) {
3884 bytes_compl += buffer_info->skb->len;
3885 pkts_compl++;
3886 }
3887
3888 }
3889 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3890 tx_desc->upper.data = 0;
3891
3892 if (unlikely(++i == tx_ring->count))
3893 i = 0;
3894 }
3895
3896 eop = tx_ring->buffer_info[i].next_to_watch;
3897 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3898 }
3899
3900 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3901 * which will reuse the cleaned buffers.
3902 */
3903 smp_store_release(&tx_ring->next_to_clean, i);
3904
3905 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3906
3907#define TX_WAKE_THRESHOLD 32
3908 if (unlikely(count && netif_carrier_ok(netdev) &&
3909 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3910 /* Make sure that anybody stopping the queue after this
3911 * sees the new next_to_clean.
3912 */
3913 smp_mb();
3914
3915 if (netif_queue_stopped(netdev) &&
3916 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3917 netif_wake_queue(netdev);
3918 ++adapter->restart_queue;
3919 }
3920 }
3921
3922 if (adapter->detect_tx_hung) {
3923 /* Detect a transmit hang in hardware, this serializes the
3924 * check with the clearing of time_stamp and movement of i
3925 */
3926 adapter->detect_tx_hung = false;
3927 if (tx_ring->buffer_info[eop].time_stamp &&
3928 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3929 (adapter->tx_timeout_factor * HZ)) &&
3930 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3931
3932 /* detected Tx unit hang */
3933 e_err(drv, "Detected Tx Unit Hang\n"
3934 " Tx Queue <%lu>\n"
3935 " TDH <%x>\n"
3936 " TDT <%x>\n"
3937 " next_to_use <%x>\n"
3938 " next_to_clean <%x>\n"
3939 "buffer_info[next_to_clean]\n"
3940 " time_stamp <%lx>\n"
3941 " next_to_watch <%x>\n"
3942 " jiffies <%lx>\n"
3943 " next_to_watch.status <%x>\n",
3944 (unsigned long)(tx_ring - adapter->tx_ring),
3945 readl(hw->hw_addr + tx_ring->tdh),
3946 readl(hw->hw_addr + tx_ring->tdt),
3947 tx_ring->next_to_use,
3948 tx_ring->next_to_clean,
3949 tx_ring->buffer_info[eop].time_stamp,
3950 eop,
3951 jiffies,
3952 eop_desc->upper.fields.status);
3953 e1000_dump(adapter);
3954 netif_stop_queue(netdev);
3955 }
3956 }
3957 adapter->total_tx_bytes += total_tx_bytes;
3958 adapter->total_tx_packets += total_tx_packets;
3959 netdev->stats.tx_bytes += total_tx_bytes;
3960 netdev->stats.tx_packets += total_tx_packets;
3961 return count < tx_ring->count;
3962}
3963
3964/**
3965 * e1000_rx_checksum - Receive Checksum Offload for 82543
3966 * @adapter: board private structure
3967 * @status_err: receive descriptor status and error fields
3968 * @csum: receive descriptor csum field
3969 * @sk_buff: socket buffer with received data
3970 **/
3971static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3972 u32 csum, struct sk_buff *skb)
3973{
3974 struct e1000_hw *hw = &adapter->hw;
3975 u16 status = (u16)status_err;
3976 u8 errors = (u8)(status_err >> 24);
3977
3978 skb_checksum_none_assert(skb);
3979
3980 /* 82543 or newer only */
3981 if (unlikely(hw->mac_type < e1000_82543))
3982 return;
3983 /* Ignore Checksum bit is set */
3984 if (unlikely(status & E1000_RXD_STAT_IXSM))
3985 return;
3986 /* TCP/UDP checksum error bit is set */
3987 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3988 /* let the stack verify checksum errors */
3989 adapter->hw_csum_err++;
3990 return;
3991 }
3992 /* TCP/UDP Checksum has not been calculated */
3993 if (!(status & E1000_RXD_STAT_TCPCS))
3994 return;
3995
3996 /* It must be a TCP or UDP packet with a valid checksum */
3997 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3998 /* TCP checksum is good */
3999 skb->ip_summed = CHECKSUM_UNNECESSARY;
4000 }
4001 adapter->hw_csum_good++;
4002}
4003
4004/**
4005 * e1000_consume_page - helper function for jumbo Rx path
4006 **/
4007static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4008 u16 length)
4009{
4010 bi->rxbuf.page = NULL;
4011 skb->len += length;
4012 skb->data_len += length;
4013 skb->truesize += PAGE_SIZE;
4014}
4015
4016/**
4017 * e1000_receive_skb - helper function to handle rx indications
4018 * @adapter: board private structure
4019 * @status: descriptor status field as written by hardware
4020 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4021 * @skb: pointer to sk_buff to be indicated to stack
4022 */
4023static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4024 __le16 vlan, struct sk_buff *skb)
4025{
4026 skb->protocol = eth_type_trans(skb, adapter->netdev);
4027
4028 if (status & E1000_RXD_STAT_VP) {
4029 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4030
4031 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4032 }
4033 napi_gro_receive(&adapter->napi, skb);
4034}
4035
4036/**
4037 * e1000_tbi_adjust_stats
4038 * @hw: Struct containing variables accessed by shared code
4039 * @frame_len: The length of the frame in question
4040 * @mac_addr: The Ethernet destination address of the frame in question
4041 *
4042 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4043 */
4044static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4045 struct e1000_hw_stats *stats,
4046 u32 frame_len, const u8 *mac_addr)
4047{
4048 u64 carry_bit;
4049
4050 /* First adjust the frame length. */
4051 frame_len--;
4052 /* We need to adjust the statistics counters, since the hardware
4053 * counters overcount this packet as a CRC error and undercount
4054 * the packet as a good packet
4055 */
4056 /* This packet should not be counted as a CRC error. */
4057 stats->crcerrs--;
4058 /* This packet does count as a Good Packet Received. */
4059 stats->gprc++;
4060
4061 /* Adjust the Good Octets received counters */
4062 carry_bit = 0x80000000 & stats->gorcl;
4063 stats->gorcl += frame_len;
4064 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4065 * Received Count) was one before the addition,
4066 * AND it is zero after, then we lost the carry out,
4067 * need to add one to Gorch (Good Octets Received Count High).
4068 * This could be simplified if all environments supported
4069 * 64-bit integers.
4070 */
4071 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4072 stats->gorch++;
4073 /* Is this a broadcast or multicast? Check broadcast first,
4074 * since the test for a multicast frame will test positive on
4075 * a broadcast frame.
4076 */
4077 if (is_broadcast_ether_addr(mac_addr))
4078 stats->bprc++;
4079 else if (is_multicast_ether_addr(mac_addr))
4080 stats->mprc++;
4081
4082 if (frame_len == hw->max_frame_size) {
4083 /* In this case, the hardware has overcounted the number of
4084 * oversize frames.
4085 */
4086 if (stats->roc > 0)
4087 stats->roc--;
4088 }
4089
4090 /* Adjust the bin counters when the extra byte put the frame in the
4091 * wrong bin. Remember that the frame_len was adjusted above.
4092 */
4093 if (frame_len == 64) {
4094 stats->prc64++;
4095 stats->prc127--;
4096 } else if (frame_len == 127) {
4097 stats->prc127++;
4098 stats->prc255--;
4099 } else if (frame_len == 255) {
4100 stats->prc255++;
4101 stats->prc511--;
4102 } else if (frame_len == 511) {
4103 stats->prc511++;
4104 stats->prc1023--;
4105 } else if (frame_len == 1023) {
4106 stats->prc1023++;
4107 stats->prc1522--;
4108 } else if (frame_len == 1522) {
4109 stats->prc1522++;
4110 }
4111}
4112
4113static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4114 u8 status, u8 errors,
4115 u32 length, const u8 *data)
4116{
4117 struct e1000_hw *hw = &adapter->hw;
4118 u8 last_byte = *(data + length - 1);
4119
4120 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4121 unsigned long irq_flags;
4122
4123 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4124 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4125 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4126
4127 return true;
4128 }
4129
4130 return false;
4131}
4132
4133static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4134 unsigned int bufsz)
4135{
4136 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4137
4138 if (unlikely(!skb))
4139 adapter->alloc_rx_buff_failed++;
4140 return skb;
4141}
4142
4143/**
4144 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4145 * @adapter: board private structure
4146 * @rx_ring: ring to clean
4147 * @work_done: amount of napi work completed this call
4148 * @work_to_do: max amount of work allowed for this call to do
4149 *
4150 * the return value indicates whether actual cleaning was done, there
4151 * is no guarantee that everything was cleaned
4152 */
4153static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4154 struct e1000_rx_ring *rx_ring,
4155 int *work_done, int work_to_do)
4156{
4157 struct net_device *netdev = adapter->netdev;
4158 struct pci_dev *pdev = adapter->pdev;
4159 struct e1000_rx_desc *rx_desc, *next_rxd;
4160 struct e1000_rx_buffer *buffer_info, *next_buffer;
4161 u32 length;
4162 unsigned int i;
4163 int cleaned_count = 0;
4164 bool cleaned = false;
4165 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4166
4167 i = rx_ring->next_to_clean;
4168 rx_desc = E1000_RX_DESC(*rx_ring, i);
4169 buffer_info = &rx_ring->buffer_info[i];
4170
4171 while (rx_desc->status & E1000_RXD_STAT_DD) {
4172 struct sk_buff *skb;
4173 u8 status;
4174
4175 if (*work_done >= work_to_do)
4176 break;
4177 (*work_done)++;
4178 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4179
4180 status = rx_desc->status;
4181
4182 if (++i == rx_ring->count)
4183 i = 0;
4184
4185 next_rxd = E1000_RX_DESC(*rx_ring, i);
4186 prefetch(next_rxd);
4187
4188 next_buffer = &rx_ring->buffer_info[i];
4189
4190 cleaned = true;
4191 cleaned_count++;
4192 dma_unmap_page(&pdev->dev, buffer_info->dma,
4193 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4194 buffer_info->dma = 0;
4195
4196 length = le16_to_cpu(rx_desc->length);
4197
4198 /* errors is only valid for DD + EOP descriptors */
4199 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4200 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4201 u8 *mapped = page_address(buffer_info->rxbuf.page);
4202
4203 if (e1000_tbi_should_accept(adapter, status,
4204 rx_desc->errors,
4205 length, mapped)) {
4206 length--;
4207 } else if (netdev->features & NETIF_F_RXALL) {
4208 goto process_skb;
4209 } else {
4210 /* an error means any chain goes out the window
4211 * too
4212 */
4213 if (rx_ring->rx_skb_top)
4214 dev_kfree_skb(rx_ring->rx_skb_top);
4215 rx_ring->rx_skb_top = NULL;
4216 goto next_desc;
4217 }
4218 }
4219
4220#define rxtop rx_ring->rx_skb_top
4221process_skb:
4222 if (!(status & E1000_RXD_STAT_EOP)) {
4223 /* this descriptor is only the beginning (or middle) */
4224 if (!rxtop) {
4225 /* this is the beginning of a chain */
4226 rxtop = napi_get_frags(&adapter->napi);
4227 if (!rxtop)
4228 break;
4229
4230 skb_fill_page_desc(rxtop, 0,
4231 buffer_info->rxbuf.page,
4232 0, length);
4233 } else {
4234 /* this is the middle of a chain */
4235 skb_fill_page_desc(rxtop,
4236 skb_shinfo(rxtop)->nr_frags,
4237 buffer_info->rxbuf.page, 0, length);
4238 }
4239 e1000_consume_page(buffer_info, rxtop, length);
4240 goto next_desc;
4241 } else {
4242 if (rxtop) {
4243 /* end of the chain */
4244 skb_fill_page_desc(rxtop,
4245 skb_shinfo(rxtop)->nr_frags,
4246 buffer_info->rxbuf.page, 0, length);
4247 skb = rxtop;
4248 rxtop = NULL;
4249 e1000_consume_page(buffer_info, skb, length);
4250 } else {
4251 struct page *p;
4252 /* no chain, got EOP, this buf is the packet
4253 * copybreak to save the put_page/alloc_page
4254 */
4255 p = buffer_info->rxbuf.page;
4256 if (length <= copybreak) {
4257 u8 *vaddr;
4258
4259 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4260 length -= 4;
4261 skb = e1000_alloc_rx_skb(adapter,
4262 length);
4263 if (!skb)
4264 break;
4265
4266 vaddr = kmap_atomic(p);
4267 memcpy(skb_tail_pointer(skb), vaddr,
4268 length);
4269 kunmap_atomic(vaddr);
4270 /* re-use the page, so don't erase
4271 * buffer_info->rxbuf.page
4272 */
4273 skb_put(skb, length);
4274 e1000_rx_checksum(adapter,
4275 status | rx_desc->errors << 24,
4276 le16_to_cpu(rx_desc->csum), skb);
4277
4278 total_rx_bytes += skb->len;
4279 total_rx_packets++;
4280
4281 e1000_receive_skb(adapter, status,
4282 rx_desc->special, skb);
4283 goto next_desc;
4284 } else {
4285 skb = napi_get_frags(&adapter->napi);
4286 if (!skb) {
4287 adapter->alloc_rx_buff_failed++;
4288 break;
4289 }
4290 skb_fill_page_desc(skb, 0, p, 0,
4291 length);
4292 e1000_consume_page(buffer_info, skb,
4293 length);
4294 }
4295 }
4296 }
4297
4298 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4299 e1000_rx_checksum(adapter,
4300 (u32)(status) |
4301 ((u32)(rx_desc->errors) << 24),
4302 le16_to_cpu(rx_desc->csum), skb);
4303
4304 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4305 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4306 pskb_trim(skb, skb->len - 4);
4307 total_rx_packets++;
4308
4309 if (status & E1000_RXD_STAT_VP) {
4310 __le16 vlan = rx_desc->special;
4311 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4312
4313 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4314 }
4315
4316 napi_gro_frags(&adapter->napi);
4317
4318next_desc:
4319 rx_desc->status = 0;
4320
4321 /* return some buffers to hardware, one at a time is too slow */
4322 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4323 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4324 cleaned_count = 0;
4325 }
4326
4327 /* use prefetched values */
4328 rx_desc = next_rxd;
4329 buffer_info = next_buffer;
4330 }
4331 rx_ring->next_to_clean = i;
4332
4333 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4334 if (cleaned_count)
4335 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4336
4337 adapter->total_rx_packets += total_rx_packets;
4338 adapter->total_rx_bytes += total_rx_bytes;
4339 netdev->stats.rx_bytes += total_rx_bytes;
4340 netdev->stats.rx_packets += total_rx_packets;
4341 return cleaned;
4342}
4343
4344/* this should improve performance for small packets with large amounts
4345 * of reassembly being done in the stack
4346 */
4347static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4348 struct e1000_rx_buffer *buffer_info,
4349 u32 length, const void *data)
4350{
4351 struct sk_buff *skb;
4352
4353 if (length > copybreak)
4354 return NULL;
4355
4356 skb = e1000_alloc_rx_skb(adapter, length);
4357 if (!skb)
4358 return NULL;
4359
4360 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4361 length, DMA_FROM_DEVICE);
4362
4363 memcpy(skb_put(skb, length), data, length);
4364
4365 return skb;
4366}
4367
4368/**
4369 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4370 * @adapter: board private structure
4371 * @rx_ring: ring to clean
4372 * @work_done: amount of napi work completed this call
4373 * @work_to_do: max amount of work allowed for this call to do
4374 */
4375static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4376 struct e1000_rx_ring *rx_ring,
4377 int *work_done, int work_to_do)
4378{
4379 struct net_device *netdev = adapter->netdev;
4380 struct pci_dev *pdev = adapter->pdev;
4381 struct e1000_rx_desc *rx_desc, *next_rxd;
4382 struct e1000_rx_buffer *buffer_info, *next_buffer;
4383 u32 length;
4384 unsigned int i;
4385 int cleaned_count = 0;
4386 bool cleaned = false;
4387 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4388
4389 i = rx_ring->next_to_clean;
4390 rx_desc = E1000_RX_DESC(*rx_ring, i);
4391 buffer_info = &rx_ring->buffer_info[i];
4392
4393 while (rx_desc->status & E1000_RXD_STAT_DD) {
4394 struct sk_buff *skb;
4395 u8 *data;
4396 u8 status;
4397
4398 if (*work_done >= work_to_do)
4399 break;
4400 (*work_done)++;
4401 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4402
4403 status = rx_desc->status;
4404 length = le16_to_cpu(rx_desc->length);
4405
4406 data = buffer_info->rxbuf.data;
4407 prefetch(data);
4408 skb = e1000_copybreak(adapter, buffer_info, length, data);
4409 if (!skb) {
4410 unsigned int frag_len = e1000_frag_len(adapter);
4411
4412 skb = build_skb(data - E1000_HEADROOM, frag_len);
4413 if (!skb) {
4414 adapter->alloc_rx_buff_failed++;
4415 break;
4416 }
4417
4418 skb_reserve(skb, E1000_HEADROOM);
4419 dma_unmap_single(&pdev->dev, buffer_info->dma,
4420 adapter->rx_buffer_len,
4421 DMA_FROM_DEVICE);
4422 buffer_info->dma = 0;
4423 buffer_info->rxbuf.data = NULL;
4424 }
4425
4426 if (++i == rx_ring->count)
4427 i = 0;
4428
4429 next_rxd = E1000_RX_DESC(*rx_ring, i);
4430 prefetch(next_rxd);
4431
4432 next_buffer = &rx_ring->buffer_info[i];
4433
4434 cleaned = true;
4435 cleaned_count++;
4436
4437 /* !EOP means multiple descriptors were used to store a single
4438 * packet, if thats the case we need to toss it. In fact, we
4439 * to toss every packet with the EOP bit clear and the next
4440 * frame that _does_ have the EOP bit set, as it is by
4441 * definition only a frame fragment
4442 */
4443 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4444 adapter->discarding = true;
4445
4446 if (adapter->discarding) {
4447 /* All receives must fit into a single buffer */
4448 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4449 dev_kfree_skb(skb);
4450 if (status & E1000_RXD_STAT_EOP)
4451 adapter->discarding = false;
4452 goto next_desc;
4453 }
4454
4455 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4456 if (e1000_tbi_should_accept(adapter, status,
4457 rx_desc->errors,
4458 length, data)) {
4459 length--;
4460 } else if (netdev->features & NETIF_F_RXALL) {
4461 goto process_skb;
4462 } else {
4463 dev_kfree_skb(skb);
4464 goto next_desc;
4465 }
4466 }
4467
4468process_skb:
4469 total_rx_bytes += (length - 4); /* don't count FCS */
4470 total_rx_packets++;
4471
4472 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4473 /* adjust length to remove Ethernet CRC, this must be
4474 * done after the TBI_ACCEPT workaround above
4475 */
4476 length -= 4;
4477
4478 if (buffer_info->rxbuf.data == NULL)
4479 skb_put(skb, length);
4480 else /* copybreak skb */
4481 skb_trim(skb, length);
4482
4483 /* Receive Checksum Offload */
4484 e1000_rx_checksum(adapter,
4485 (u32)(status) |
4486 ((u32)(rx_desc->errors) << 24),
4487 le16_to_cpu(rx_desc->csum), skb);
4488
4489 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4490
4491next_desc:
4492 rx_desc->status = 0;
4493
4494 /* return some buffers to hardware, one at a time is too slow */
4495 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4496 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4497 cleaned_count = 0;
4498 }
4499
4500 /* use prefetched values */
4501 rx_desc = next_rxd;
4502 buffer_info = next_buffer;
4503 }
4504 rx_ring->next_to_clean = i;
4505
4506 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4507 if (cleaned_count)
4508 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4509
4510 adapter->total_rx_packets += total_rx_packets;
4511 adapter->total_rx_bytes += total_rx_bytes;
4512 netdev->stats.rx_bytes += total_rx_bytes;
4513 netdev->stats.rx_packets += total_rx_packets;
4514 return cleaned;
4515}
4516
4517/**
4518 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4519 * @adapter: address of board private structure
4520 * @rx_ring: pointer to receive ring structure
4521 * @cleaned_count: number of buffers to allocate this pass
4522 **/
4523static void
4524e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4525 struct e1000_rx_ring *rx_ring, int cleaned_count)
4526{
4527 struct pci_dev *pdev = adapter->pdev;
4528 struct e1000_rx_desc *rx_desc;
4529 struct e1000_rx_buffer *buffer_info;
4530 unsigned int i;
4531
4532 i = rx_ring->next_to_use;
4533 buffer_info = &rx_ring->buffer_info[i];
4534
4535 while (cleaned_count--) {
4536 /* allocate a new page if necessary */
4537 if (!buffer_info->rxbuf.page) {
4538 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4539 if (unlikely(!buffer_info->rxbuf.page)) {
4540 adapter->alloc_rx_buff_failed++;
4541 break;
4542 }
4543 }
4544
4545 if (!buffer_info->dma) {
4546 buffer_info->dma = dma_map_page(&pdev->dev,
4547 buffer_info->rxbuf.page, 0,
4548 adapter->rx_buffer_len,
4549 DMA_FROM_DEVICE);
4550 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4551 put_page(buffer_info->rxbuf.page);
4552 buffer_info->rxbuf.page = NULL;
4553 buffer_info->dma = 0;
4554 adapter->alloc_rx_buff_failed++;
4555 break;
4556 }
4557 }
4558
4559 rx_desc = E1000_RX_DESC(*rx_ring, i);
4560 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4561
4562 if (unlikely(++i == rx_ring->count))
4563 i = 0;
4564 buffer_info = &rx_ring->buffer_info[i];
4565 }
4566
4567 if (likely(rx_ring->next_to_use != i)) {
4568 rx_ring->next_to_use = i;
4569 if (unlikely(i-- == 0))
4570 i = (rx_ring->count - 1);
4571
4572 /* Force memory writes to complete before letting h/w
4573 * know there are new descriptors to fetch. (Only
4574 * applicable for weak-ordered memory model archs,
4575 * such as IA-64).
4576 */
4577 wmb();
4578 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4579 }
4580}
4581
4582/**
4583 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4584 * @adapter: address of board private structure
4585 **/
4586static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4587 struct e1000_rx_ring *rx_ring,
4588 int cleaned_count)
4589{
4590 struct e1000_hw *hw = &adapter->hw;
4591 struct pci_dev *pdev = adapter->pdev;
4592 struct e1000_rx_desc *rx_desc;
4593 struct e1000_rx_buffer *buffer_info;
4594 unsigned int i;
4595 unsigned int bufsz = adapter->rx_buffer_len;
4596
4597 i = rx_ring->next_to_use;
4598 buffer_info = &rx_ring->buffer_info[i];
4599
4600 while (cleaned_count--) {
4601 void *data;
4602
4603 if (buffer_info->rxbuf.data)
4604 goto skip;
4605
4606 data = e1000_alloc_frag(adapter);
4607 if (!data) {
4608 /* Better luck next round */
4609 adapter->alloc_rx_buff_failed++;
4610 break;
4611 }
4612
4613 /* Fix for errata 23, can't cross 64kB boundary */
4614 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4615 void *olddata = data;
4616 e_err(rx_err, "skb align check failed: %u bytes at "
4617 "%p\n", bufsz, data);
4618 /* Try again, without freeing the previous */
4619 data = e1000_alloc_frag(adapter);
4620 /* Failed allocation, critical failure */
4621 if (!data) {
4622 skb_free_frag(olddata);
4623 adapter->alloc_rx_buff_failed++;
4624 break;
4625 }
4626
4627 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4628 /* give up */
4629 skb_free_frag(data);
4630 skb_free_frag(olddata);
4631 adapter->alloc_rx_buff_failed++;
4632 break;
4633 }
4634
4635 /* Use new allocation */
4636 skb_free_frag(olddata);
4637 }
4638 buffer_info->dma = dma_map_single(&pdev->dev,
4639 data,
4640 adapter->rx_buffer_len,
4641 DMA_FROM_DEVICE);
4642 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4643 skb_free_frag(data);
4644 buffer_info->dma = 0;
4645 adapter->alloc_rx_buff_failed++;
4646 break;
4647 }
4648
4649 /* XXX if it was allocated cleanly it will never map to a
4650 * boundary crossing
4651 */
4652
4653 /* Fix for errata 23, can't cross 64kB boundary */
4654 if (!e1000_check_64k_bound(adapter,
4655 (void *)(unsigned long)buffer_info->dma,
4656 adapter->rx_buffer_len)) {
4657 e_err(rx_err, "dma align check failed: %u bytes at "
4658 "%p\n", adapter->rx_buffer_len,
4659 (void *)(unsigned long)buffer_info->dma);
4660
4661 dma_unmap_single(&pdev->dev, buffer_info->dma,
4662 adapter->rx_buffer_len,
4663 DMA_FROM_DEVICE);
4664
4665 skb_free_frag(data);
4666 buffer_info->rxbuf.data = NULL;
4667 buffer_info->dma = 0;
4668
4669 adapter->alloc_rx_buff_failed++;
4670 break;
4671 }
4672 buffer_info->rxbuf.data = data;
4673 skip:
4674 rx_desc = E1000_RX_DESC(*rx_ring, i);
4675 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4676
4677 if (unlikely(++i == rx_ring->count))
4678 i = 0;
4679 buffer_info = &rx_ring->buffer_info[i];
4680 }
4681
4682 if (likely(rx_ring->next_to_use != i)) {
4683 rx_ring->next_to_use = i;
4684 if (unlikely(i-- == 0))
4685 i = (rx_ring->count - 1);
4686
4687 /* Force memory writes to complete before letting h/w
4688 * know there are new descriptors to fetch. (Only
4689 * applicable for weak-ordered memory model archs,
4690 * such as IA-64).
4691 */
4692 wmb();
4693 writel(i, hw->hw_addr + rx_ring->rdt);
4694 }
4695}
4696
4697/**
4698 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4699 * @adapter:
4700 **/
4701static void e1000_smartspeed(struct e1000_adapter *adapter)
4702{
4703 struct e1000_hw *hw = &adapter->hw;
4704 u16 phy_status;
4705 u16 phy_ctrl;
4706
4707 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4708 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4709 return;
4710
4711 if (adapter->smartspeed == 0) {
4712 /* If Master/Slave config fault is asserted twice,
4713 * we assume back-to-back
4714 */
4715 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4716 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4717 return;
4718 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4719 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4720 return;
4721 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4722 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4723 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4724 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4725 phy_ctrl);
4726 adapter->smartspeed++;
4727 if (!e1000_phy_setup_autoneg(hw) &&
4728 !e1000_read_phy_reg(hw, PHY_CTRL,
4729 &phy_ctrl)) {
4730 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4731 MII_CR_RESTART_AUTO_NEG);
4732 e1000_write_phy_reg(hw, PHY_CTRL,
4733 phy_ctrl);
4734 }
4735 }
4736 return;
4737 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4738 /* If still no link, perhaps using 2/3 pair cable */
4739 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4740 phy_ctrl |= CR_1000T_MS_ENABLE;
4741 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4742 if (!e1000_phy_setup_autoneg(hw) &&
4743 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4744 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4745 MII_CR_RESTART_AUTO_NEG);
4746 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4747 }
4748 }
4749 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4750 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4751 adapter->smartspeed = 0;
4752}
4753
4754/**
4755 * e1000_ioctl -
4756 * @netdev:
4757 * @ifreq:
4758 * @cmd:
4759 **/
4760static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4761{
4762 switch (cmd) {
4763 case SIOCGMIIPHY:
4764 case SIOCGMIIREG:
4765 case SIOCSMIIREG:
4766 return e1000_mii_ioctl(netdev, ifr, cmd);
4767 default:
4768 return -EOPNOTSUPP;
4769 }
4770}
4771
4772/**
4773 * e1000_mii_ioctl -
4774 * @netdev:
4775 * @ifreq:
4776 * @cmd:
4777 **/
4778static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4779 int cmd)
4780{
4781 struct e1000_adapter *adapter = netdev_priv(netdev);
4782 struct e1000_hw *hw = &adapter->hw;
4783 struct mii_ioctl_data *data = if_mii(ifr);
4784 int retval;
4785 u16 mii_reg;
4786 unsigned long flags;
4787
4788 if (hw->media_type != e1000_media_type_copper)
4789 return -EOPNOTSUPP;
4790
4791 switch (cmd) {
4792 case SIOCGMIIPHY:
4793 data->phy_id = hw->phy_addr;
4794 break;
4795 case SIOCGMIIREG:
4796 spin_lock_irqsave(&adapter->stats_lock, flags);
4797 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4798 &data->val_out)) {
4799 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4800 return -EIO;
4801 }
4802 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4803 break;
4804 case SIOCSMIIREG:
4805 if (data->reg_num & ~(0x1F))
4806 return -EFAULT;
4807 mii_reg = data->val_in;
4808 spin_lock_irqsave(&adapter->stats_lock, flags);
4809 if (e1000_write_phy_reg(hw, data->reg_num,
4810 mii_reg)) {
4811 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4812 return -EIO;
4813 }
4814 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4815 if (hw->media_type == e1000_media_type_copper) {
4816 switch (data->reg_num) {
4817 case PHY_CTRL:
4818 if (mii_reg & MII_CR_POWER_DOWN)
4819 break;
4820 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4821 hw->autoneg = 1;
4822 hw->autoneg_advertised = 0x2F;
4823 } else {
4824 u32 speed;
4825 if (mii_reg & 0x40)
4826 speed = SPEED_1000;
4827 else if (mii_reg & 0x2000)
4828 speed = SPEED_100;
4829 else
4830 speed = SPEED_10;
4831 retval = e1000_set_spd_dplx(
4832 adapter, speed,
4833 ((mii_reg & 0x100)
4834 ? DUPLEX_FULL :
4835 DUPLEX_HALF));
4836 if (retval)
4837 return retval;
4838 }
4839 if (netif_running(adapter->netdev))
4840 e1000_reinit_locked(adapter);
4841 else
4842 e1000_reset(adapter);
4843 break;
4844 case M88E1000_PHY_SPEC_CTRL:
4845 case M88E1000_EXT_PHY_SPEC_CTRL:
4846 if (e1000_phy_reset(hw))
4847 return -EIO;
4848 break;
4849 }
4850 } else {
4851 switch (data->reg_num) {
4852 case PHY_CTRL:
4853 if (mii_reg & MII_CR_POWER_DOWN)
4854 break;
4855 if (netif_running(adapter->netdev))
4856 e1000_reinit_locked(adapter);
4857 else
4858 e1000_reset(adapter);
4859 break;
4860 }
4861 }
4862 break;
4863 default:
4864 return -EOPNOTSUPP;
4865 }
4866 return E1000_SUCCESS;
4867}
4868
4869void e1000_pci_set_mwi(struct e1000_hw *hw)
4870{
4871 struct e1000_adapter *adapter = hw->back;
4872 int ret_val = pci_set_mwi(adapter->pdev);
4873
4874 if (ret_val)
4875 e_err(probe, "Error in setting MWI\n");
4876}
4877
4878void e1000_pci_clear_mwi(struct e1000_hw *hw)
4879{
4880 struct e1000_adapter *adapter = hw->back;
4881
4882 pci_clear_mwi(adapter->pdev);
4883}
4884
4885int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4886{
4887 struct e1000_adapter *adapter = hw->back;
4888 return pcix_get_mmrbc(adapter->pdev);
4889}
4890
4891void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4892{
4893 struct e1000_adapter *adapter = hw->back;
4894 pcix_set_mmrbc(adapter->pdev, mmrbc);
4895}
4896
4897void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4898{
4899 outl(value, port);
4900}
4901
4902static bool e1000_vlan_used(struct e1000_adapter *adapter)
4903{
4904 u16 vid;
4905
4906 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4907 return true;
4908 return false;
4909}
4910
4911static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4912 netdev_features_t features)
4913{
4914 struct e1000_hw *hw = &adapter->hw;
4915 u32 ctrl;
4916
4917 ctrl = er32(CTRL);
4918 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4919 /* enable VLAN tag insert/strip */
4920 ctrl |= E1000_CTRL_VME;
4921 } else {
4922 /* disable VLAN tag insert/strip */
4923 ctrl &= ~E1000_CTRL_VME;
4924 }
4925 ew32(CTRL, ctrl);
4926}
4927static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4928 bool filter_on)
4929{
4930 struct e1000_hw *hw = &adapter->hw;
4931 u32 rctl;
4932
4933 if (!test_bit(__E1000_DOWN, &adapter->flags))
4934 e1000_irq_disable(adapter);
4935
4936 __e1000_vlan_mode(adapter, adapter->netdev->features);
4937 if (filter_on) {
4938 /* enable VLAN receive filtering */
4939 rctl = er32(RCTL);
4940 rctl &= ~E1000_RCTL_CFIEN;
4941 if (!(adapter->netdev->flags & IFF_PROMISC))
4942 rctl |= E1000_RCTL_VFE;
4943 ew32(RCTL, rctl);
4944 e1000_update_mng_vlan(adapter);
4945 } else {
4946 /* disable VLAN receive filtering */
4947 rctl = er32(RCTL);
4948 rctl &= ~E1000_RCTL_VFE;
4949 ew32(RCTL, rctl);
4950 }
4951
4952 if (!test_bit(__E1000_DOWN, &adapter->flags))
4953 e1000_irq_enable(adapter);
4954}
4955
4956static void e1000_vlan_mode(struct net_device *netdev,
4957 netdev_features_t features)
4958{
4959 struct e1000_adapter *adapter = netdev_priv(netdev);
4960
4961 if (!test_bit(__E1000_DOWN, &adapter->flags))
4962 e1000_irq_disable(adapter);
4963
4964 __e1000_vlan_mode(adapter, features);
4965
4966 if (!test_bit(__E1000_DOWN, &adapter->flags))
4967 e1000_irq_enable(adapter);
4968}
4969
4970static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4971 __be16 proto, u16 vid)
4972{
4973 struct e1000_adapter *adapter = netdev_priv(netdev);
4974 struct e1000_hw *hw = &adapter->hw;
4975 u32 vfta, index;
4976
4977 if ((hw->mng_cookie.status &
4978 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4979 (vid == adapter->mng_vlan_id))
4980 return 0;
4981
4982 if (!e1000_vlan_used(adapter))
4983 e1000_vlan_filter_on_off(adapter, true);
4984
4985 /* add VID to filter table */
4986 index = (vid >> 5) & 0x7F;
4987 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4988 vfta |= (1 << (vid & 0x1F));
4989 e1000_write_vfta(hw, index, vfta);
4990
4991 set_bit(vid, adapter->active_vlans);
4992
4993 return 0;
4994}
4995
4996static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4997 __be16 proto, u16 vid)
4998{
4999 struct e1000_adapter *adapter = netdev_priv(netdev);
5000 struct e1000_hw *hw = &adapter->hw;
5001 u32 vfta, index;
5002
5003 if (!test_bit(__E1000_DOWN, &adapter->flags))
5004 e1000_irq_disable(adapter);
5005 if (!test_bit(__E1000_DOWN, &adapter->flags))
5006 e1000_irq_enable(adapter);
5007
5008 /* remove VID from filter table */
5009 index = (vid >> 5) & 0x7F;
5010 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5011 vfta &= ~(1 << (vid & 0x1F));
5012 e1000_write_vfta(hw, index, vfta);
5013
5014 clear_bit(vid, adapter->active_vlans);
5015
5016 if (!e1000_vlan_used(adapter))
5017 e1000_vlan_filter_on_off(adapter, false);
5018
5019 return 0;
5020}
5021
5022static void e1000_restore_vlan(struct e1000_adapter *adapter)
5023{
5024 u16 vid;
5025
5026 if (!e1000_vlan_used(adapter))
5027 return;
5028
5029 e1000_vlan_filter_on_off(adapter, true);
5030 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5031 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5032}
5033
5034int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5035{
5036 struct e1000_hw *hw = &adapter->hw;
5037
5038 hw->autoneg = 0;
5039
5040 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5041 * for the switch() below to work
5042 */
5043 if ((spd & 1) || (dplx & ~1))
5044 goto err_inval;
5045
5046 /* Fiber NICs only allow 1000 gbps Full duplex */
5047 if ((hw->media_type == e1000_media_type_fiber) &&
5048 spd != SPEED_1000 &&
5049 dplx != DUPLEX_FULL)
5050 goto err_inval;
5051
5052 switch (spd + dplx) {
5053 case SPEED_10 + DUPLEX_HALF:
5054 hw->forced_speed_duplex = e1000_10_half;
5055 break;
5056 case SPEED_10 + DUPLEX_FULL:
5057 hw->forced_speed_duplex = e1000_10_full;
5058 break;
5059 case SPEED_100 + DUPLEX_HALF:
5060 hw->forced_speed_duplex = e1000_100_half;
5061 break;
5062 case SPEED_100 + DUPLEX_FULL:
5063 hw->forced_speed_duplex = e1000_100_full;
5064 break;
5065 case SPEED_1000 + DUPLEX_FULL:
5066 hw->autoneg = 1;
5067 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5068 break;
5069 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5070 default:
5071 goto err_inval;
5072 }
5073
5074 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5075 hw->mdix = AUTO_ALL_MODES;
5076
5077 return 0;
5078
5079err_inval:
5080 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5081 return -EINVAL;
5082}
5083
5084static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5085{
5086 struct net_device *netdev = pci_get_drvdata(pdev);
5087 struct e1000_adapter *adapter = netdev_priv(netdev);
5088 struct e1000_hw *hw = &adapter->hw;
5089 u32 ctrl, ctrl_ext, rctl, status;
5090 u32 wufc = adapter->wol;
5091#ifdef CONFIG_PM
5092 int retval = 0;
5093#endif
5094
5095 netif_device_detach(netdev);
5096
5097 if (netif_running(netdev)) {
5098 int count = E1000_CHECK_RESET_COUNT;
5099
5100 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5101 usleep_range(10000, 20000);
5102
5103 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5104 e1000_down(adapter);
5105 }
5106
5107#ifdef CONFIG_PM
5108 retval = pci_save_state(pdev);
5109 if (retval)
5110 return retval;
5111#endif
5112
5113 status = er32(STATUS);
5114 if (status & E1000_STATUS_LU)
5115 wufc &= ~E1000_WUFC_LNKC;
5116
5117 if (wufc) {
5118 e1000_setup_rctl(adapter);
5119 e1000_set_rx_mode(netdev);
5120
5121 rctl = er32(RCTL);
5122
5123 /* turn on all-multi mode if wake on multicast is enabled */
5124 if (wufc & E1000_WUFC_MC)
5125 rctl |= E1000_RCTL_MPE;
5126
5127 /* enable receives in the hardware */
5128 ew32(RCTL, rctl | E1000_RCTL_EN);
5129
5130 if (hw->mac_type >= e1000_82540) {
5131 ctrl = er32(CTRL);
5132 /* advertise wake from D3Cold */
5133 #define E1000_CTRL_ADVD3WUC 0x00100000
5134 /* phy power management enable */
5135 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5136 ctrl |= E1000_CTRL_ADVD3WUC |
5137 E1000_CTRL_EN_PHY_PWR_MGMT;
5138 ew32(CTRL, ctrl);
5139 }
5140
5141 if (hw->media_type == e1000_media_type_fiber ||
5142 hw->media_type == e1000_media_type_internal_serdes) {
5143 /* keep the laser running in D3 */
5144 ctrl_ext = er32(CTRL_EXT);
5145 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5146 ew32(CTRL_EXT, ctrl_ext);
5147 }
5148
5149 ew32(WUC, E1000_WUC_PME_EN);
5150 ew32(WUFC, wufc);
5151 } else {
5152 ew32(WUC, 0);
5153 ew32(WUFC, 0);
5154 }
5155
5156 e1000_release_manageability(adapter);
5157
5158 *enable_wake = !!wufc;
5159
5160 /* make sure adapter isn't asleep if manageability is enabled */
5161 if (adapter->en_mng_pt)
5162 *enable_wake = true;
5163
5164 if (netif_running(netdev))
5165 e1000_free_irq(adapter);
5166
5167 pci_disable_device(pdev);
5168
5169 return 0;
5170}
5171
5172#ifdef CONFIG_PM
5173static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5174{
5175 int retval;
5176 bool wake;
5177
5178 retval = __e1000_shutdown(pdev, &wake);
5179 if (retval)
5180 return retval;
5181
5182 if (wake) {
5183 pci_prepare_to_sleep(pdev);
5184 } else {
5185 pci_wake_from_d3(pdev, false);
5186 pci_set_power_state(pdev, PCI_D3hot);
5187 }
5188
5189 return 0;
5190}
5191
5192static int e1000_resume(struct pci_dev *pdev)
5193{
5194 struct net_device *netdev = pci_get_drvdata(pdev);
5195 struct e1000_adapter *adapter = netdev_priv(netdev);
5196 struct e1000_hw *hw = &adapter->hw;
5197 u32 err;
5198
5199 pci_set_power_state(pdev, PCI_D0);
5200 pci_restore_state(pdev);
5201 pci_save_state(pdev);
5202
5203 if (adapter->need_ioport)
5204 err = pci_enable_device(pdev);
5205 else
5206 err = pci_enable_device_mem(pdev);
5207 if (err) {
5208 pr_err("Cannot enable PCI device from suspend\n");
5209 return err;
5210 }
5211 pci_set_master(pdev);
5212
5213 pci_enable_wake(pdev, PCI_D3hot, 0);
5214 pci_enable_wake(pdev, PCI_D3cold, 0);
5215
5216 if (netif_running(netdev)) {
5217 err = e1000_request_irq(adapter);
5218 if (err)
5219 return err;
5220 }
5221
5222 e1000_power_up_phy(adapter);
5223 e1000_reset(adapter);
5224 ew32(WUS, ~0);
5225
5226 e1000_init_manageability(adapter);
5227
5228 if (netif_running(netdev))
5229 e1000_up(adapter);
5230
5231 netif_device_attach(netdev);
5232
5233 return 0;
5234}
5235#endif
5236
5237static void e1000_shutdown(struct pci_dev *pdev)
5238{
5239 bool wake;
5240
5241 __e1000_shutdown(pdev, &wake);
5242
5243 if (system_state == SYSTEM_POWER_OFF) {
5244 pci_wake_from_d3(pdev, wake);
5245 pci_set_power_state(pdev, PCI_D3hot);
5246 }
5247}
5248
5249#ifdef CONFIG_NET_POLL_CONTROLLER
5250/* Polling 'interrupt' - used by things like netconsole to send skbs
5251 * without having to re-enable interrupts. It's not called while
5252 * the interrupt routine is executing.
5253 */
5254static void e1000_netpoll(struct net_device *netdev)
5255{
5256 struct e1000_adapter *adapter = netdev_priv(netdev);
5257
5258 if (disable_hardirq(adapter->pdev->irq))
5259 e1000_intr(adapter->pdev->irq, netdev);
5260 enable_irq(adapter->pdev->irq);
5261}
5262#endif
5263
5264/**
5265 * e1000_io_error_detected - called when PCI error is detected
5266 * @pdev: Pointer to PCI device
5267 * @state: The current pci connection state
5268 *
5269 * This function is called after a PCI bus error affecting
5270 * this device has been detected.
5271 */
5272static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5273 pci_channel_state_t state)
5274{
5275 struct net_device *netdev = pci_get_drvdata(pdev);
5276 struct e1000_adapter *adapter = netdev_priv(netdev);
5277
5278 netif_device_detach(netdev);
5279
5280 if (state == pci_channel_io_perm_failure)
5281 return PCI_ERS_RESULT_DISCONNECT;
5282
5283 if (netif_running(netdev))
5284 e1000_down(adapter);
5285 pci_disable_device(pdev);
5286
5287 /* Request a slot slot reset. */
5288 return PCI_ERS_RESULT_NEED_RESET;
5289}
5290
5291/**
5292 * e1000_io_slot_reset - called after the pci bus has been reset.
5293 * @pdev: Pointer to PCI device
5294 *
5295 * Restart the card from scratch, as if from a cold-boot. Implementation
5296 * resembles the first-half of the e1000_resume routine.
5297 */
5298static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5299{
5300 struct net_device *netdev = pci_get_drvdata(pdev);
5301 struct e1000_adapter *adapter = netdev_priv(netdev);
5302 struct e1000_hw *hw = &adapter->hw;
5303 int err;
5304
5305 if (adapter->need_ioport)
5306 err = pci_enable_device(pdev);
5307 else
5308 err = pci_enable_device_mem(pdev);
5309 if (err) {
5310 pr_err("Cannot re-enable PCI device after reset.\n");
5311 return PCI_ERS_RESULT_DISCONNECT;
5312 }
5313 pci_set_master(pdev);
5314
5315 pci_enable_wake(pdev, PCI_D3hot, 0);
5316 pci_enable_wake(pdev, PCI_D3cold, 0);
5317
5318 e1000_reset(adapter);
5319 ew32(WUS, ~0);
5320
5321 return PCI_ERS_RESULT_RECOVERED;
5322}
5323
5324/**
5325 * e1000_io_resume - called when traffic can start flowing again.
5326 * @pdev: Pointer to PCI device
5327 *
5328 * This callback is called when the error recovery driver tells us that
5329 * its OK to resume normal operation. Implementation resembles the
5330 * second-half of the e1000_resume routine.
5331 */
5332static void e1000_io_resume(struct pci_dev *pdev)
5333{
5334 struct net_device *netdev = pci_get_drvdata(pdev);
5335 struct e1000_adapter *adapter = netdev_priv(netdev);
5336
5337 e1000_init_manageability(adapter);
5338
5339 if (netif_running(netdev)) {
5340 if (e1000_up(adapter)) {
5341 pr_info("can't bring device back up after reset\n");
5342 return;
5343 }
5344 }
5345
5346 netif_device_attach(netdev);
5347}
5348
5349/* e1000_main.c */