Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-core.h"
10#include "dm-rq.h"
11#include "dm-uevent.h"
12#include "dm-ima.h"
13
14#include <linux/bio-integrity.h>
15#include <linux/init.h>
16#include <linux/module.h>
17#include <linux/mutex.h>
18#include <linux/sched/mm.h>
19#include <linux/sched/signal.h>
20#include <linux/blkpg.h>
21#include <linux/bio.h>
22#include <linux/mempool.h>
23#include <linux/dax.h>
24#include <linux/slab.h>
25#include <linux/idr.h>
26#include <linux/uio.h>
27#include <linux/hdreg.h>
28#include <linux/delay.h>
29#include <linux/wait.h>
30#include <linux/pr.h>
31#include <linux/refcount.h>
32#include <linux/part_stat.h>
33#include <linux/blk-crypto.h>
34#include <linux/blk-crypto-profile.h>
35
36#define DM_MSG_PREFIX "core"
37
38/*
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
41 */
42#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43#define DM_COOKIE_LENGTH 24
44
45/*
46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
47 * dm_io into one list, and reuse bio->bi_private as the list head. Before
48 * ending this fs bio, we will recover its ->bi_private.
49 */
50#define REQ_DM_POLL_LIST REQ_DRV
51
52static const char *_name = DM_NAME;
53
54static unsigned int major;
55static unsigned int _major;
56
57static DEFINE_IDR(_minor_idr);
58
59static DEFINE_SPINLOCK(_minor_lock);
60
61static void do_deferred_remove(struct work_struct *w);
62
63static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
64
65static struct workqueue_struct *deferred_remove_workqueue;
66
67atomic_t dm_global_event_nr = ATOMIC_INIT(0);
68DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
69
70void dm_issue_global_event(void)
71{
72 atomic_inc(&dm_global_event_nr);
73 wake_up(&dm_global_eventq);
74}
75
76DEFINE_STATIC_KEY_FALSE(stats_enabled);
77DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
78DEFINE_STATIC_KEY_FALSE(zoned_enabled);
79
80/*
81 * One of these is allocated (on-stack) per original bio.
82 */
83struct clone_info {
84 struct dm_table *map;
85 struct bio *bio;
86 struct dm_io *io;
87 sector_t sector;
88 unsigned int sector_count;
89 bool is_abnormal_io:1;
90 bool submit_as_polled:1;
91};
92
93static inline struct dm_target_io *clone_to_tio(struct bio *clone)
94{
95 return container_of(clone, struct dm_target_io, clone);
96}
97
98void *dm_per_bio_data(struct bio *bio, size_t data_size)
99{
100 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
101 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
102 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
103}
104EXPORT_SYMBOL_GPL(dm_per_bio_data);
105
106struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
107{
108 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
109
110 if (io->magic == DM_IO_MAGIC)
111 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
112 BUG_ON(io->magic != DM_TIO_MAGIC);
113 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
114}
115EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
116
117unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
118{
119 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
120}
121EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
122
123#define MINOR_ALLOCED ((void *)-1)
124
125#define DM_NUMA_NODE NUMA_NO_NODE
126static int dm_numa_node = DM_NUMA_NODE;
127
128#define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
129static int swap_bios = DEFAULT_SWAP_BIOS;
130static int get_swap_bios(void)
131{
132 int latch = READ_ONCE(swap_bios);
133
134 if (unlikely(latch <= 0))
135 latch = DEFAULT_SWAP_BIOS;
136 return latch;
137}
138
139struct table_device {
140 struct list_head list;
141 refcount_t count;
142 struct dm_dev dm_dev;
143};
144
145/*
146 * Bio-based DM's mempools' reserved IOs set by the user.
147 */
148#define RESERVED_BIO_BASED_IOS 16
149static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150
151static int __dm_get_module_param_int(int *module_param, int min, int max)
152{
153 int param = READ_ONCE(*module_param);
154 int modified_param = 0;
155 bool modified = true;
156
157 if (param < min)
158 modified_param = min;
159 else if (param > max)
160 modified_param = max;
161 else
162 modified = false;
163
164 if (modified) {
165 (void)cmpxchg(module_param, param, modified_param);
166 param = modified_param;
167 }
168
169 return param;
170}
171
172unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
173{
174 unsigned int param = READ_ONCE(*module_param);
175 unsigned int modified_param = 0;
176
177 if (!param)
178 modified_param = def;
179 else if (param > max)
180 modified_param = max;
181
182 if (modified_param) {
183 (void)cmpxchg(module_param, param, modified_param);
184 param = modified_param;
185 }
186
187 return param;
188}
189
190unsigned int dm_get_reserved_bio_based_ios(void)
191{
192 return __dm_get_module_param(&reserved_bio_based_ios,
193 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
194}
195EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
196
197static unsigned int dm_get_numa_node(void)
198{
199 return __dm_get_module_param_int(&dm_numa_node,
200 DM_NUMA_NODE, num_online_nodes() - 1);
201}
202
203static int __init local_init(void)
204{
205 int r;
206
207 r = dm_uevent_init();
208 if (r)
209 return r;
210
211 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
212 if (!deferred_remove_workqueue) {
213 r = -ENOMEM;
214 goto out_uevent_exit;
215 }
216
217 _major = major;
218 r = register_blkdev(_major, _name);
219 if (r < 0)
220 goto out_free_workqueue;
221
222 if (!_major)
223 _major = r;
224
225 return 0;
226
227out_free_workqueue:
228 destroy_workqueue(deferred_remove_workqueue);
229out_uevent_exit:
230 dm_uevent_exit();
231
232 return r;
233}
234
235static void local_exit(void)
236{
237 destroy_workqueue(deferred_remove_workqueue);
238
239 unregister_blkdev(_major, _name);
240 dm_uevent_exit();
241
242 _major = 0;
243
244 DMINFO("cleaned up");
245}
246
247static int (*_inits[])(void) __initdata = {
248 local_init,
249 dm_target_init,
250 dm_linear_init,
251 dm_stripe_init,
252 dm_io_init,
253 dm_kcopyd_init,
254 dm_interface_init,
255 dm_statistics_init,
256};
257
258static void (*_exits[])(void) = {
259 local_exit,
260 dm_target_exit,
261 dm_linear_exit,
262 dm_stripe_exit,
263 dm_io_exit,
264 dm_kcopyd_exit,
265 dm_interface_exit,
266 dm_statistics_exit,
267};
268
269static int __init dm_init(void)
270{
271 const int count = ARRAY_SIZE(_inits);
272 int r, i;
273
274#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
275 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
276 " Duplicate IMA measurements will not be recorded in the IMA log.");
277#endif
278
279 for (i = 0; i < count; i++) {
280 r = _inits[i]();
281 if (r)
282 goto bad;
283 }
284
285 return 0;
286bad:
287 while (i--)
288 _exits[i]();
289
290 return r;
291}
292
293static void __exit dm_exit(void)
294{
295 int i = ARRAY_SIZE(_exits);
296
297 while (i--)
298 _exits[i]();
299
300 /*
301 * Should be empty by this point.
302 */
303 idr_destroy(&_minor_idr);
304}
305
306/*
307 * Block device functions
308 */
309int dm_deleting_md(struct mapped_device *md)
310{
311 return test_bit(DMF_DELETING, &md->flags);
312}
313
314static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
315{
316 struct mapped_device *md;
317
318 spin_lock(&_minor_lock);
319
320 md = disk->private_data;
321 if (!md)
322 goto out;
323
324 if (test_bit(DMF_FREEING, &md->flags) ||
325 dm_deleting_md(md)) {
326 md = NULL;
327 goto out;
328 }
329
330 dm_get(md);
331 atomic_inc(&md->open_count);
332out:
333 spin_unlock(&_minor_lock);
334
335 return md ? 0 : -ENXIO;
336}
337
338static void dm_blk_close(struct gendisk *disk)
339{
340 struct mapped_device *md;
341
342 spin_lock(&_minor_lock);
343
344 md = disk->private_data;
345 if (WARN_ON(!md))
346 goto out;
347
348 if (atomic_dec_and_test(&md->open_count) &&
349 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
350 queue_work(deferred_remove_workqueue, &deferred_remove_work);
351
352 dm_put(md);
353out:
354 spin_unlock(&_minor_lock);
355}
356
357int dm_open_count(struct mapped_device *md)
358{
359 return atomic_read(&md->open_count);
360}
361
362/*
363 * Guarantees nothing is using the device before it's deleted.
364 */
365int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
366{
367 int r = 0;
368
369 spin_lock(&_minor_lock);
370
371 if (dm_open_count(md)) {
372 r = -EBUSY;
373 if (mark_deferred)
374 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
375 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
376 r = -EEXIST;
377 else
378 set_bit(DMF_DELETING, &md->flags);
379
380 spin_unlock(&_minor_lock);
381
382 return r;
383}
384
385int dm_cancel_deferred_remove(struct mapped_device *md)
386{
387 int r = 0;
388
389 spin_lock(&_minor_lock);
390
391 if (test_bit(DMF_DELETING, &md->flags))
392 r = -EBUSY;
393 else
394 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
395
396 spin_unlock(&_minor_lock);
397
398 return r;
399}
400
401static void do_deferred_remove(struct work_struct *w)
402{
403 dm_deferred_remove();
404}
405
406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407{
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411}
412
413static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
414 struct block_device **bdev)
415{
416 struct dm_target *ti;
417 struct dm_table *map;
418 int r;
419
420retry:
421 r = -ENOTTY;
422 map = dm_get_live_table(md, srcu_idx);
423 if (!map || !dm_table_get_size(map))
424 return r;
425
426 /* We only support devices that have a single target */
427 if (map->num_targets != 1)
428 return r;
429
430 ti = dm_table_get_target(map, 0);
431 if (!ti->type->prepare_ioctl)
432 return r;
433
434 if (dm_suspended_md(md))
435 return -EAGAIN;
436
437 r = ti->type->prepare_ioctl(ti, bdev);
438 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
439 dm_put_live_table(md, *srcu_idx);
440 fsleep(10000);
441 goto retry;
442 }
443
444 return r;
445}
446
447static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
448{
449 dm_put_live_table(md, srcu_idx);
450}
451
452static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
453 unsigned int cmd, unsigned long arg)
454{
455 struct mapped_device *md = bdev->bd_disk->private_data;
456 int r, srcu_idx;
457
458 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
459 if (r < 0)
460 goto out;
461
462 if (r > 0) {
463 /*
464 * Target determined this ioctl is being issued against a
465 * subset of the parent bdev; require extra privileges.
466 */
467 if (!capable(CAP_SYS_RAWIO)) {
468 DMDEBUG_LIMIT(
469 "%s: sending ioctl %x to DM device without required privilege.",
470 current->comm, cmd);
471 r = -ENOIOCTLCMD;
472 goto out;
473 }
474 }
475
476 if (!bdev->bd_disk->fops->ioctl)
477 r = -ENOTTY;
478 else
479 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
480out:
481 dm_unprepare_ioctl(md, srcu_idx);
482 return r;
483}
484
485u64 dm_start_time_ns_from_clone(struct bio *bio)
486{
487 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
488}
489EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
490
491static inline bool bio_is_flush_with_data(struct bio *bio)
492{
493 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
494}
495
496static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
497{
498 /*
499 * If REQ_PREFLUSH set, don't account payload, it will be
500 * submitted (and accounted) after this flush completes.
501 */
502 if (bio_is_flush_with_data(bio))
503 return 0;
504 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
505 return io->sectors;
506 return bio_sectors(bio);
507}
508
509static void dm_io_acct(struct dm_io *io, bool end)
510{
511 struct bio *bio = io->orig_bio;
512
513 if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
514 if (!end)
515 bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
516 io->start_time);
517 else
518 bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
519 dm_io_sectors(io, bio),
520 io->start_time);
521 }
522
523 if (static_branch_unlikely(&stats_enabled) &&
524 unlikely(dm_stats_used(&io->md->stats))) {
525 sector_t sector;
526
527 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
528 sector = bio_end_sector(bio) - io->sector_offset;
529 else
530 sector = bio->bi_iter.bi_sector;
531
532 dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
533 sector, dm_io_sectors(io, bio),
534 end, io->start_time, &io->stats_aux);
535 }
536}
537
538static void __dm_start_io_acct(struct dm_io *io)
539{
540 dm_io_acct(io, false);
541}
542
543static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
544{
545 /*
546 * Ensure IO accounting is only ever started once.
547 */
548 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
549 return;
550
551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
553 dm_io_set_flag(io, DM_IO_ACCOUNTED);
554 } else {
555 unsigned long flags;
556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
557 spin_lock_irqsave(&io->lock, flags);
558 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
559 spin_unlock_irqrestore(&io->lock, flags);
560 return;
561 }
562 dm_io_set_flag(io, DM_IO_ACCOUNTED);
563 spin_unlock_irqrestore(&io->lock, flags);
564 }
565
566 __dm_start_io_acct(io);
567}
568
569static void dm_end_io_acct(struct dm_io *io)
570{
571 dm_io_acct(io, true);
572}
573
574static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
575{
576 struct dm_io *io;
577 struct dm_target_io *tio;
578 struct bio *clone;
579
580 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
581 if (unlikely(!clone))
582 return NULL;
583 tio = clone_to_tio(clone);
584 tio->flags = 0;
585 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
586 tio->io = NULL;
587
588 io = container_of(tio, struct dm_io, tio);
589 io->magic = DM_IO_MAGIC;
590 io->status = BLK_STS_OK;
591
592 /* one ref is for submission, the other is for completion */
593 atomic_set(&io->io_count, 2);
594 this_cpu_inc(*md->pending_io);
595 io->orig_bio = bio;
596 io->md = md;
597 spin_lock_init(&io->lock);
598 io->start_time = jiffies;
599 io->flags = 0;
600 if (blk_queue_io_stat(md->queue))
601 dm_io_set_flag(io, DM_IO_BLK_STAT);
602
603 if (static_branch_unlikely(&stats_enabled) &&
604 unlikely(dm_stats_used(&md->stats)))
605 dm_stats_record_start(&md->stats, &io->stats_aux);
606
607 return io;
608}
609
610static void free_io(struct dm_io *io)
611{
612 bio_put(&io->tio.clone);
613}
614
615static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
616 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
617{
618 struct mapped_device *md = ci->io->md;
619 struct dm_target_io *tio;
620 struct bio *clone;
621
622 if (!ci->io->tio.io) {
623 /* the dm_target_io embedded in ci->io is available */
624 tio = &ci->io->tio;
625 /* alloc_io() already initialized embedded clone */
626 clone = &tio->clone;
627 } else {
628 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
629 &md->mempools->bs);
630 if (!clone)
631 return NULL;
632
633 /* REQ_DM_POLL_LIST shouldn't be inherited */
634 clone->bi_opf &= ~REQ_DM_POLL_LIST;
635
636 tio = clone_to_tio(clone);
637 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
638 }
639
640 tio->magic = DM_TIO_MAGIC;
641 tio->io = ci->io;
642 tio->ti = ti;
643 tio->target_bio_nr = target_bio_nr;
644 tio->len_ptr = len;
645 tio->old_sector = 0;
646
647 /* Set default bdev, but target must bio_set_dev() before issuing IO */
648 clone->bi_bdev = md->disk->part0;
649 if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
650 bio_set_dev(clone, md->disk->part0);
651
652 if (len) {
653 clone->bi_iter.bi_size = to_bytes(*len);
654 if (bio_integrity(clone))
655 bio_integrity_trim(clone);
656 }
657
658 return clone;
659}
660
661static void free_tio(struct bio *clone)
662{
663 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
664 return;
665 bio_put(clone);
666}
667
668/*
669 * Add the bio to the list of deferred io.
670 */
671static void queue_io(struct mapped_device *md, struct bio *bio)
672{
673 unsigned long flags;
674
675 spin_lock_irqsave(&md->deferred_lock, flags);
676 bio_list_add(&md->deferred, bio);
677 spin_unlock_irqrestore(&md->deferred_lock, flags);
678 queue_work(md->wq, &md->work);
679}
680
681/*
682 * Everyone (including functions in this file), should use this
683 * function to access the md->map field, and make sure they call
684 * dm_put_live_table() when finished.
685 */
686struct dm_table *dm_get_live_table(struct mapped_device *md,
687 int *srcu_idx) __acquires(md->io_barrier)
688{
689 *srcu_idx = srcu_read_lock(&md->io_barrier);
690
691 return srcu_dereference(md->map, &md->io_barrier);
692}
693
694void dm_put_live_table(struct mapped_device *md,
695 int srcu_idx) __releases(md->io_barrier)
696{
697 srcu_read_unlock(&md->io_barrier, srcu_idx);
698}
699
700void dm_sync_table(struct mapped_device *md)
701{
702 synchronize_srcu(&md->io_barrier);
703 synchronize_rcu_expedited();
704}
705
706/*
707 * A fast alternative to dm_get_live_table/dm_put_live_table.
708 * The caller must not block between these two functions.
709 */
710static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
711{
712 rcu_read_lock();
713 return rcu_dereference(md->map);
714}
715
716static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
717{
718 rcu_read_unlock();
719}
720
721static char *_dm_claim_ptr = "I belong to device-mapper";
722
723/*
724 * Open a table device so we can use it as a map destination.
725 */
726static struct table_device *open_table_device(struct mapped_device *md,
727 dev_t dev, blk_mode_t mode)
728{
729 struct table_device *td;
730 struct file *bdev_file;
731 struct block_device *bdev;
732 u64 part_off;
733 int r;
734
735 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
736 if (!td)
737 return ERR_PTR(-ENOMEM);
738 refcount_set(&td->count, 1);
739
740 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
741 if (IS_ERR(bdev_file)) {
742 r = PTR_ERR(bdev_file);
743 goto out_free_td;
744 }
745
746 bdev = file_bdev(bdev_file);
747
748 /*
749 * We can be called before the dm disk is added. In that case we can't
750 * register the holder relation here. It will be done once add_disk was
751 * called.
752 */
753 if (md->disk->slave_dir) {
754 r = bd_link_disk_holder(bdev, md->disk);
755 if (r)
756 goto out_blkdev_put;
757 }
758
759 td->dm_dev.mode = mode;
760 td->dm_dev.bdev = bdev;
761 td->dm_dev.bdev_file = bdev_file;
762 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
763 NULL, NULL);
764 format_dev_t(td->dm_dev.name, dev);
765 list_add(&td->list, &md->table_devices);
766 return td;
767
768out_blkdev_put:
769 __fput_sync(bdev_file);
770out_free_td:
771 kfree(td);
772 return ERR_PTR(r);
773}
774
775/*
776 * Close a table device that we've been using.
777 */
778static void close_table_device(struct table_device *td, struct mapped_device *md)
779{
780 if (md->disk->slave_dir)
781 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
782
783 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */
784 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
785 fput(td->dm_dev.bdev_file);
786 else
787 __fput_sync(td->dm_dev.bdev_file);
788
789 put_dax(td->dm_dev.dax_dev);
790 list_del(&td->list);
791 kfree(td);
792}
793
794static struct table_device *find_table_device(struct list_head *l, dev_t dev,
795 blk_mode_t mode)
796{
797 struct table_device *td;
798
799 list_for_each_entry(td, l, list)
800 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
801 return td;
802
803 return NULL;
804}
805
806int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
807 struct dm_dev **result)
808{
809 struct table_device *td;
810
811 mutex_lock(&md->table_devices_lock);
812 td = find_table_device(&md->table_devices, dev, mode);
813 if (!td) {
814 td = open_table_device(md, dev, mode);
815 if (IS_ERR(td)) {
816 mutex_unlock(&md->table_devices_lock);
817 return PTR_ERR(td);
818 }
819 } else {
820 refcount_inc(&td->count);
821 }
822 mutex_unlock(&md->table_devices_lock);
823
824 *result = &td->dm_dev;
825 return 0;
826}
827
828void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
829{
830 struct table_device *td = container_of(d, struct table_device, dm_dev);
831
832 mutex_lock(&md->table_devices_lock);
833 if (refcount_dec_and_test(&td->count))
834 close_table_device(td, md);
835 mutex_unlock(&md->table_devices_lock);
836}
837
838/*
839 * Get the geometry associated with a dm device
840 */
841int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
842{
843 *geo = md->geometry;
844
845 return 0;
846}
847
848/*
849 * Set the geometry of a device.
850 */
851int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
852{
853 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
854
855 if (geo->start > sz) {
856 DMERR("Start sector is beyond the geometry limits.");
857 return -EINVAL;
858 }
859
860 md->geometry = *geo;
861
862 return 0;
863}
864
865static int __noflush_suspending(struct mapped_device *md)
866{
867 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
868}
869
870static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
871{
872 struct mapped_device *md = io->md;
873
874 if (first_stage) {
875 struct dm_io *next = md->requeue_list;
876
877 md->requeue_list = io;
878 io->next = next;
879 } else {
880 bio_list_add_head(&md->deferred, io->orig_bio);
881 }
882}
883
884static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
885{
886 if (first_stage)
887 queue_work(md->wq, &md->requeue_work);
888 else
889 queue_work(md->wq, &md->work);
890}
891
892/*
893 * Return true if the dm_io's original bio is requeued.
894 * io->status is updated with error if requeue disallowed.
895 */
896static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
897{
898 struct bio *bio = io->orig_bio;
899 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
900 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
901 (bio->bi_opf & REQ_POLLED));
902 struct mapped_device *md = io->md;
903 bool requeued = false;
904
905 if (handle_requeue || handle_polled_eagain) {
906 unsigned long flags;
907
908 if (bio->bi_opf & REQ_POLLED) {
909 /*
910 * Upper layer won't help us poll split bio
911 * (io->orig_bio may only reflect a subset of the
912 * pre-split original) so clear REQ_POLLED.
913 */
914 bio_clear_polled(bio);
915 }
916
917 /*
918 * Target requested pushing back the I/O or
919 * polled IO hit BLK_STS_AGAIN.
920 */
921 spin_lock_irqsave(&md->deferred_lock, flags);
922 if ((__noflush_suspending(md) &&
923 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
924 handle_polled_eagain || first_stage) {
925 dm_requeue_add_io(io, first_stage);
926 requeued = true;
927 } else {
928 /*
929 * noflush suspend was interrupted or this is
930 * a write to a zoned target.
931 */
932 io->status = BLK_STS_IOERR;
933 }
934 spin_unlock_irqrestore(&md->deferred_lock, flags);
935 }
936
937 if (requeued)
938 dm_kick_requeue(md, first_stage);
939
940 return requeued;
941}
942
943static void __dm_io_complete(struct dm_io *io, bool first_stage)
944{
945 struct bio *bio = io->orig_bio;
946 struct mapped_device *md = io->md;
947 blk_status_t io_error;
948 bool requeued;
949
950 requeued = dm_handle_requeue(io, first_stage);
951 if (requeued && first_stage)
952 return;
953
954 io_error = io->status;
955 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
956 dm_end_io_acct(io);
957 else if (!io_error) {
958 /*
959 * Must handle target that DM_MAPIO_SUBMITTED only to
960 * then bio_endio() rather than dm_submit_bio_remap()
961 */
962 __dm_start_io_acct(io);
963 dm_end_io_acct(io);
964 }
965 free_io(io);
966 smp_wmb();
967 this_cpu_dec(*md->pending_io);
968
969 /* nudge anyone waiting on suspend queue */
970 if (unlikely(wq_has_sleeper(&md->wait)))
971 wake_up(&md->wait);
972
973 /* Return early if the original bio was requeued */
974 if (requeued)
975 return;
976
977 if (bio_is_flush_with_data(bio)) {
978 /*
979 * Preflush done for flush with data, reissue
980 * without REQ_PREFLUSH.
981 */
982 bio->bi_opf &= ~REQ_PREFLUSH;
983 queue_io(md, bio);
984 } else {
985 /* done with normal IO or empty flush */
986 if (io_error)
987 bio->bi_status = io_error;
988 bio_endio(bio);
989 }
990}
991
992static void dm_wq_requeue_work(struct work_struct *work)
993{
994 struct mapped_device *md = container_of(work, struct mapped_device,
995 requeue_work);
996 unsigned long flags;
997 struct dm_io *io;
998
999 /* reuse deferred lock to simplify dm_handle_requeue */
1000 spin_lock_irqsave(&md->deferred_lock, flags);
1001 io = md->requeue_list;
1002 md->requeue_list = NULL;
1003 spin_unlock_irqrestore(&md->deferred_lock, flags);
1004
1005 while (io) {
1006 struct dm_io *next = io->next;
1007
1008 dm_io_rewind(io, &md->disk->bio_split);
1009
1010 io->next = NULL;
1011 __dm_io_complete(io, false);
1012 io = next;
1013 cond_resched();
1014 }
1015}
1016
1017/*
1018 * Two staged requeue:
1019 *
1020 * 1) io->orig_bio points to the real original bio, and the part mapped to
1021 * this io must be requeued, instead of other parts of the original bio.
1022 *
1023 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1024 */
1025static void dm_io_complete(struct dm_io *io)
1026{
1027 bool first_requeue;
1028
1029 /*
1030 * Only dm_io that has been split needs two stage requeue, otherwise
1031 * we may run into long bio clone chain during suspend and OOM could
1032 * be triggered.
1033 *
1034 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1035 * also aren't handled via the first stage requeue.
1036 */
1037 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1038 first_requeue = true;
1039 else
1040 first_requeue = false;
1041
1042 __dm_io_complete(io, first_requeue);
1043}
1044
1045/*
1046 * Decrements the number of outstanding ios that a bio has been
1047 * cloned into, completing the original io if necc.
1048 */
1049static inline void __dm_io_dec_pending(struct dm_io *io)
1050{
1051 if (atomic_dec_and_test(&io->io_count))
1052 dm_io_complete(io);
1053}
1054
1055static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1056{
1057 unsigned long flags;
1058
1059 /* Push-back supersedes any I/O errors */
1060 spin_lock_irqsave(&io->lock, flags);
1061 if (!(io->status == BLK_STS_DM_REQUEUE &&
1062 __noflush_suspending(io->md))) {
1063 io->status = error;
1064 }
1065 spin_unlock_irqrestore(&io->lock, flags);
1066}
1067
1068static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1069{
1070 if (unlikely(error))
1071 dm_io_set_error(io, error);
1072
1073 __dm_io_dec_pending(io);
1074}
1075
1076/*
1077 * The queue_limits are only valid as long as you have a reference
1078 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1079 */
1080static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1081{
1082 return &md->queue->limits;
1083}
1084
1085void disable_discard(struct mapped_device *md)
1086{
1087 struct queue_limits *limits = dm_get_queue_limits(md);
1088
1089 /* device doesn't really support DISCARD, disable it */
1090 limits->max_hw_discard_sectors = 0;
1091}
1092
1093void disable_write_zeroes(struct mapped_device *md)
1094{
1095 struct queue_limits *limits = dm_get_queue_limits(md);
1096
1097 /* device doesn't really support WRITE ZEROES, disable it */
1098 limits->max_write_zeroes_sectors = 0;
1099}
1100
1101static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1102{
1103 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1104}
1105
1106static void clone_endio(struct bio *bio)
1107{
1108 blk_status_t error = bio->bi_status;
1109 struct dm_target_io *tio = clone_to_tio(bio);
1110 struct dm_target *ti = tio->ti;
1111 dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1112 struct dm_io *io = tio->io;
1113 struct mapped_device *md = io->md;
1114
1115 if (unlikely(error == BLK_STS_TARGET)) {
1116 if (bio_op(bio) == REQ_OP_DISCARD &&
1117 !bdev_max_discard_sectors(bio->bi_bdev))
1118 disable_discard(md);
1119 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1120 !bdev_write_zeroes_sectors(bio->bi_bdev))
1121 disable_write_zeroes(md);
1122 }
1123
1124 if (static_branch_unlikely(&zoned_enabled) &&
1125 unlikely(bdev_is_zoned(bio->bi_bdev)))
1126 dm_zone_endio(io, bio);
1127
1128 if (endio) {
1129 int r = endio(ti, bio, &error);
1130
1131 switch (r) {
1132 case DM_ENDIO_REQUEUE:
1133 if (static_branch_unlikely(&zoned_enabled)) {
1134 /*
1135 * Requeuing writes to a sequential zone of a zoned
1136 * target will break the sequential write pattern:
1137 * fail such IO.
1138 */
1139 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1140 error = BLK_STS_IOERR;
1141 else
1142 error = BLK_STS_DM_REQUEUE;
1143 } else
1144 error = BLK_STS_DM_REQUEUE;
1145 fallthrough;
1146 case DM_ENDIO_DONE:
1147 break;
1148 case DM_ENDIO_INCOMPLETE:
1149 /* The target will handle the io */
1150 return;
1151 default:
1152 DMCRIT("unimplemented target endio return value: %d", r);
1153 BUG();
1154 }
1155 }
1156
1157 if (static_branch_unlikely(&swap_bios_enabled) &&
1158 likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1159 up(&md->swap_bios_semaphore);
1160
1161 free_tio(bio);
1162 dm_io_dec_pending(io, error);
1163}
1164
1165/*
1166 * Return maximum size of I/O possible at the supplied sector up to the current
1167 * target boundary.
1168 */
1169static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1170 sector_t target_offset)
1171{
1172 return ti->len - target_offset;
1173}
1174
1175static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1176 unsigned int max_granularity,
1177 unsigned int max_sectors)
1178{
1179 sector_t target_offset = dm_target_offset(ti, sector);
1180 sector_t len = max_io_len_target_boundary(ti, target_offset);
1181
1182 /*
1183 * Does the target need to split IO even further?
1184 * - varied (per target) IO splitting is a tenet of DM; this
1185 * explains why stacked chunk_sectors based splitting via
1186 * bio_split_to_limits() isn't possible here.
1187 */
1188 if (!max_granularity)
1189 return len;
1190 return min_t(sector_t, len,
1191 min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1192 blk_boundary_sectors_left(target_offset, max_granularity)));
1193}
1194
1195static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1196{
1197 return __max_io_len(ti, sector, ti->max_io_len, 0);
1198}
1199
1200int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1201{
1202 if (len > UINT_MAX) {
1203 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1204 (unsigned long long)len, UINT_MAX);
1205 ti->error = "Maximum size of target IO is too large";
1206 return -EINVAL;
1207 }
1208
1209 ti->max_io_len = (uint32_t) len;
1210
1211 return 0;
1212}
1213EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1214
1215static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1216 sector_t sector, int *srcu_idx)
1217 __acquires(md->io_barrier)
1218{
1219 struct dm_table *map;
1220 struct dm_target *ti;
1221
1222 map = dm_get_live_table(md, srcu_idx);
1223 if (!map)
1224 return NULL;
1225
1226 ti = dm_table_find_target(map, sector);
1227 if (!ti)
1228 return NULL;
1229
1230 return ti;
1231}
1232
1233static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1234 long nr_pages, enum dax_access_mode mode, void **kaddr,
1235 pfn_t *pfn)
1236{
1237 struct mapped_device *md = dax_get_private(dax_dev);
1238 sector_t sector = pgoff * PAGE_SECTORS;
1239 struct dm_target *ti;
1240 long len, ret = -EIO;
1241 int srcu_idx;
1242
1243 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1244
1245 if (!ti)
1246 goto out;
1247 if (!ti->type->direct_access)
1248 goto out;
1249 len = max_io_len(ti, sector) / PAGE_SECTORS;
1250 if (len < 1)
1251 goto out;
1252 nr_pages = min(len, nr_pages);
1253 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1254
1255 out:
1256 dm_put_live_table(md, srcu_idx);
1257
1258 return ret;
1259}
1260
1261static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1262 size_t nr_pages)
1263{
1264 struct mapped_device *md = dax_get_private(dax_dev);
1265 sector_t sector = pgoff * PAGE_SECTORS;
1266 struct dm_target *ti;
1267 int ret = -EIO;
1268 int srcu_idx;
1269
1270 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1271
1272 if (!ti)
1273 goto out;
1274 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1275 /*
1276 * ->zero_page_range() is mandatory dax operation. If we are
1277 * here, something is wrong.
1278 */
1279 goto out;
1280 }
1281 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1282 out:
1283 dm_put_live_table(md, srcu_idx);
1284
1285 return ret;
1286}
1287
1288static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1289 void *addr, size_t bytes, struct iov_iter *i)
1290{
1291 struct mapped_device *md = dax_get_private(dax_dev);
1292 sector_t sector = pgoff * PAGE_SECTORS;
1293 struct dm_target *ti;
1294 int srcu_idx;
1295 long ret = 0;
1296
1297 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1298 if (!ti || !ti->type->dax_recovery_write)
1299 goto out;
1300
1301 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1302out:
1303 dm_put_live_table(md, srcu_idx);
1304 return ret;
1305}
1306
1307/*
1308 * A target may call dm_accept_partial_bio only from the map routine. It is
1309 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1310 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1311 * __send_duplicate_bios().
1312 *
1313 * dm_accept_partial_bio informs the dm that the target only wants to process
1314 * additional n_sectors sectors of the bio and the rest of the data should be
1315 * sent in a next bio.
1316 *
1317 * A diagram that explains the arithmetics:
1318 * +--------------------+---------------+-------+
1319 * | 1 | 2 | 3 |
1320 * +--------------------+---------------+-------+
1321 *
1322 * <-------------- *tio->len_ptr --------------->
1323 * <----- bio_sectors ----->
1324 * <-- n_sectors -->
1325 *
1326 * Region 1 was already iterated over with bio_advance or similar function.
1327 * (it may be empty if the target doesn't use bio_advance)
1328 * Region 2 is the remaining bio size that the target wants to process.
1329 * (it may be empty if region 1 is non-empty, although there is no reason
1330 * to make it empty)
1331 * The target requires that region 3 is to be sent in the next bio.
1332 *
1333 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1334 * the partially processed part (the sum of regions 1+2) must be the same for all
1335 * copies of the bio.
1336 */
1337void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1338{
1339 struct dm_target_io *tio = clone_to_tio(bio);
1340 struct dm_io *io = tio->io;
1341 unsigned int bio_sectors = bio_sectors(bio);
1342
1343 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1344 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1345 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1346 BUG_ON(bio_sectors > *tio->len_ptr);
1347 BUG_ON(n_sectors > bio_sectors);
1348
1349 *tio->len_ptr -= bio_sectors - n_sectors;
1350 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1351
1352 /*
1353 * __split_and_process_bio() may have already saved mapped part
1354 * for accounting but it is being reduced so update accordingly.
1355 */
1356 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1357 io->sectors = n_sectors;
1358 io->sector_offset = bio_sectors(io->orig_bio);
1359}
1360EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1361
1362/*
1363 * @clone: clone bio that DM core passed to target's .map function
1364 * @tgt_clone: clone of @clone bio that target needs submitted
1365 *
1366 * Targets should use this interface to submit bios they take
1367 * ownership of when returning DM_MAPIO_SUBMITTED.
1368 *
1369 * Target should also enable ti->accounts_remapped_io
1370 */
1371void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1372{
1373 struct dm_target_io *tio = clone_to_tio(clone);
1374 struct dm_io *io = tio->io;
1375
1376 /* establish bio that will get submitted */
1377 if (!tgt_clone)
1378 tgt_clone = clone;
1379
1380 /*
1381 * Account io->origin_bio to DM dev on behalf of target
1382 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1383 */
1384 dm_start_io_acct(io, clone);
1385
1386 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1387 tio->old_sector);
1388 submit_bio_noacct(tgt_clone);
1389}
1390EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1391
1392static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1393{
1394 mutex_lock(&md->swap_bios_lock);
1395 while (latch < md->swap_bios) {
1396 cond_resched();
1397 down(&md->swap_bios_semaphore);
1398 md->swap_bios--;
1399 }
1400 while (latch > md->swap_bios) {
1401 cond_resched();
1402 up(&md->swap_bios_semaphore);
1403 md->swap_bios++;
1404 }
1405 mutex_unlock(&md->swap_bios_lock);
1406}
1407
1408static void __map_bio(struct bio *clone)
1409{
1410 struct dm_target_io *tio = clone_to_tio(clone);
1411 struct dm_target *ti = tio->ti;
1412 struct dm_io *io = tio->io;
1413 struct mapped_device *md = io->md;
1414 int r;
1415
1416 clone->bi_end_io = clone_endio;
1417
1418 /*
1419 * Map the clone.
1420 */
1421 tio->old_sector = clone->bi_iter.bi_sector;
1422
1423 if (static_branch_unlikely(&swap_bios_enabled) &&
1424 unlikely(swap_bios_limit(ti, clone))) {
1425 int latch = get_swap_bios();
1426
1427 if (unlikely(latch != md->swap_bios))
1428 __set_swap_bios_limit(md, latch);
1429 down(&md->swap_bios_semaphore);
1430 }
1431
1432 if (likely(ti->type->map == linear_map))
1433 r = linear_map(ti, clone);
1434 else if (ti->type->map == stripe_map)
1435 r = stripe_map(ti, clone);
1436 else
1437 r = ti->type->map(ti, clone);
1438
1439 switch (r) {
1440 case DM_MAPIO_SUBMITTED:
1441 /* target has assumed ownership of this io */
1442 if (!ti->accounts_remapped_io)
1443 dm_start_io_acct(io, clone);
1444 break;
1445 case DM_MAPIO_REMAPPED:
1446 dm_submit_bio_remap(clone, NULL);
1447 break;
1448 case DM_MAPIO_KILL:
1449 case DM_MAPIO_REQUEUE:
1450 if (static_branch_unlikely(&swap_bios_enabled) &&
1451 unlikely(swap_bios_limit(ti, clone)))
1452 up(&md->swap_bios_semaphore);
1453 free_tio(clone);
1454 if (r == DM_MAPIO_KILL)
1455 dm_io_dec_pending(io, BLK_STS_IOERR);
1456 else
1457 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1458 break;
1459 default:
1460 DMCRIT("unimplemented target map return value: %d", r);
1461 BUG();
1462 }
1463}
1464
1465static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1466{
1467 struct dm_io *io = ci->io;
1468
1469 if (ci->sector_count > len) {
1470 /*
1471 * Split needed, save the mapped part for accounting.
1472 * NOTE: dm_accept_partial_bio() will update accordingly.
1473 */
1474 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1475 io->sectors = len;
1476 io->sector_offset = bio_sectors(ci->bio);
1477 }
1478}
1479
1480static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1481 struct dm_target *ti, unsigned int num_bios,
1482 unsigned *len, gfp_t gfp_flag)
1483{
1484 struct bio *bio;
1485 int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1486
1487 for (; try < 2; try++) {
1488 int bio_nr;
1489
1490 if (try && num_bios > 1)
1491 mutex_lock(&ci->io->md->table_devices_lock);
1492 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1493 bio = alloc_tio(ci, ti, bio_nr, len,
1494 try ? GFP_NOIO : GFP_NOWAIT);
1495 if (!bio)
1496 break;
1497
1498 bio_list_add(blist, bio);
1499 }
1500 if (try && num_bios > 1)
1501 mutex_unlock(&ci->io->md->table_devices_lock);
1502 if (bio_nr == num_bios)
1503 return;
1504
1505 while ((bio = bio_list_pop(blist)))
1506 free_tio(bio);
1507 }
1508}
1509
1510static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1511 unsigned int num_bios, unsigned int *len,
1512 gfp_t gfp_flag)
1513{
1514 struct bio_list blist = BIO_EMPTY_LIST;
1515 struct bio *clone;
1516 unsigned int ret = 0;
1517
1518 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1519 return 0;
1520
1521 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1522 if (len)
1523 setup_split_accounting(ci, *len);
1524
1525 /*
1526 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1527 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1528 */
1529 alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1530 while ((clone = bio_list_pop(&blist))) {
1531 if (num_bios > 1)
1532 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1533 __map_bio(clone);
1534 ret += 1;
1535 }
1536
1537 return ret;
1538}
1539
1540static void __send_empty_flush(struct clone_info *ci)
1541{
1542 struct dm_table *t = ci->map;
1543 struct bio flush_bio;
1544
1545 /*
1546 * Use an on-stack bio for this, it's safe since we don't
1547 * need to reference it after submit. It's just used as
1548 * the basis for the clone(s).
1549 */
1550 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1551 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1552
1553 ci->bio = &flush_bio;
1554 ci->sector_count = 0;
1555 ci->io->tio.clone.bi_iter.bi_size = 0;
1556
1557 if (!t->flush_bypasses_map) {
1558 for (unsigned int i = 0; i < t->num_targets; i++) {
1559 unsigned int bios;
1560 struct dm_target *ti = dm_table_get_target(t, i);
1561
1562 if (unlikely(ti->num_flush_bios == 0))
1563 continue;
1564
1565 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1566 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1567 NULL, GFP_NOWAIT);
1568 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1569 }
1570 } else {
1571 /*
1572 * Note that there's no need to grab t->devices_lock here
1573 * because the targets that support flush optimization don't
1574 * modify the list of devices.
1575 */
1576 struct list_head *devices = dm_table_get_devices(t);
1577 unsigned int len = 0;
1578 struct dm_dev_internal *dd;
1579 list_for_each_entry(dd, devices, list) {
1580 struct bio *clone;
1581 /*
1582 * Note that the structure dm_target_io is not
1583 * associated with any target (because the device may be
1584 * used by multiple targets), so we set tio->ti = NULL.
1585 * We must check for NULL in the I/O processing path, to
1586 * avoid NULL pointer dereference.
1587 */
1588 clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1589 atomic_add(1, &ci->io->io_count);
1590 bio_set_dev(clone, dd->dm_dev->bdev);
1591 clone->bi_end_io = clone_endio;
1592 dm_submit_bio_remap(clone, NULL);
1593 }
1594 }
1595
1596 /*
1597 * alloc_io() takes one extra reference for submission, so the
1598 * reference won't reach 0 without the following subtraction
1599 */
1600 atomic_sub(1, &ci->io->io_count);
1601
1602 bio_uninit(ci->bio);
1603}
1604
1605static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1606 unsigned int num_bios, unsigned int max_granularity,
1607 unsigned int max_sectors)
1608{
1609 unsigned int len, bios;
1610
1611 len = min_t(sector_t, ci->sector_count,
1612 __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1613
1614 atomic_add(num_bios, &ci->io->io_count);
1615 bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1616 /*
1617 * alloc_io() takes one extra reference for submission, so the
1618 * reference won't reach 0 without the following (+1) subtraction
1619 */
1620 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1621
1622 ci->sector += len;
1623 ci->sector_count -= len;
1624}
1625
1626static bool is_abnormal_io(struct bio *bio)
1627{
1628 switch (bio_op(bio)) {
1629 case REQ_OP_READ:
1630 case REQ_OP_WRITE:
1631 case REQ_OP_FLUSH:
1632 return false;
1633 case REQ_OP_DISCARD:
1634 case REQ_OP_SECURE_ERASE:
1635 case REQ_OP_WRITE_ZEROES:
1636 case REQ_OP_ZONE_RESET_ALL:
1637 return true;
1638 default:
1639 return false;
1640 }
1641}
1642
1643static blk_status_t __process_abnormal_io(struct clone_info *ci,
1644 struct dm_target *ti)
1645{
1646 unsigned int num_bios = 0;
1647 unsigned int max_granularity = 0;
1648 unsigned int max_sectors = 0;
1649 struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1650
1651 switch (bio_op(ci->bio)) {
1652 case REQ_OP_DISCARD:
1653 num_bios = ti->num_discard_bios;
1654 max_sectors = limits->max_discard_sectors;
1655 if (ti->max_discard_granularity)
1656 max_granularity = max_sectors;
1657 break;
1658 case REQ_OP_SECURE_ERASE:
1659 num_bios = ti->num_secure_erase_bios;
1660 max_sectors = limits->max_secure_erase_sectors;
1661 break;
1662 case REQ_OP_WRITE_ZEROES:
1663 num_bios = ti->num_write_zeroes_bios;
1664 max_sectors = limits->max_write_zeroes_sectors;
1665 break;
1666 default:
1667 break;
1668 }
1669
1670 /*
1671 * Even though the device advertised support for this type of
1672 * request, that does not mean every target supports it, and
1673 * reconfiguration might also have changed that since the
1674 * check was performed.
1675 */
1676 if (unlikely(!num_bios))
1677 return BLK_STS_NOTSUPP;
1678
1679 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1680
1681 return BLK_STS_OK;
1682}
1683
1684/*
1685 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1686 * associated with this bio, and this bio's bi_private needs to be
1687 * stored in dm_io->data before the reuse.
1688 *
1689 * bio->bi_private is owned by fs or upper layer, so block layer won't
1690 * touch it after splitting. Meantime it won't be changed by anyone after
1691 * bio is submitted. So this reuse is safe.
1692 */
1693static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1694{
1695 return (struct dm_io **)&bio->bi_private;
1696}
1697
1698static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1699{
1700 struct dm_io **head = dm_poll_list_head(bio);
1701
1702 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1703 bio->bi_opf |= REQ_DM_POLL_LIST;
1704 /*
1705 * Save .bi_private into dm_io, so that we can reuse
1706 * .bi_private as dm_io list head for storing dm_io list
1707 */
1708 io->data = bio->bi_private;
1709
1710 /* tell block layer to poll for completion */
1711 bio->bi_cookie = ~BLK_QC_T_NONE;
1712
1713 io->next = NULL;
1714 } else {
1715 /*
1716 * bio recursed due to split, reuse original poll list,
1717 * and save bio->bi_private too.
1718 */
1719 io->data = (*head)->data;
1720 io->next = *head;
1721 }
1722
1723 *head = io;
1724}
1725
1726/*
1727 * Select the correct strategy for processing a non-flush bio.
1728 */
1729static blk_status_t __split_and_process_bio(struct clone_info *ci)
1730{
1731 struct bio *clone;
1732 struct dm_target *ti;
1733 unsigned int len;
1734
1735 ti = dm_table_find_target(ci->map, ci->sector);
1736 if (unlikely(!ti))
1737 return BLK_STS_IOERR;
1738
1739 if (unlikely(ci->is_abnormal_io))
1740 return __process_abnormal_io(ci, ti);
1741
1742 /*
1743 * Only support bio polling for normal IO, and the target io is
1744 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1745 */
1746 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1747
1748 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1749 setup_split_accounting(ci, len);
1750
1751 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1752 if (unlikely(!dm_target_supports_nowait(ti->type)))
1753 return BLK_STS_NOTSUPP;
1754
1755 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1756 if (unlikely(!clone))
1757 return BLK_STS_AGAIN;
1758 } else {
1759 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1760 }
1761 __map_bio(clone);
1762
1763 ci->sector += len;
1764 ci->sector_count -= len;
1765
1766 return BLK_STS_OK;
1767}
1768
1769static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1770 struct dm_table *map, struct bio *bio, bool is_abnormal)
1771{
1772 ci->map = map;
1773 ci->io = io;
1774 ci->bio = bio;
1775 ci->is_abnormal_io = is_abnormal;
1776 ci->submit_as_polled = false;
1777 ci->sector = bio->bi_iter.bi_sector;
1778 ci->sector_count = bio_sectors(bio);
1779
1780 /* Shouldn't happen but sector_count was being set to 0 so... */
1781 if (static_branch_unlikely(&zoned_enabled) &&
1782 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1783 ci->sector_count = 0;
1784}
1785
1786#ifdef CONFIG_BLK_DEV_ZONED
1787static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1788 struct bio *bio)
1789{
1790 /*
1791 * For mapped device that need zone append emulation, we must
1792 * split any large BIO that straddles zone boundaries.
1793 */
1794 return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
1795 !bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
1796}
1797static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1798{
1799 return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
1800}
1801
1802static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1803 struct dm_target *ti)
1804{
1805 struct bio_list blist = BIO_EMPTY_LIST;
1806 struct mapped_device *md = ci->io->md;
1807 unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1808 unsigned long *need_reset;
1809 unsigned int i, nr_zones, nr_reset;
1810 unsigned int num_bios = 0;
1811 blk_status_t sts = BLK_STS_OK;
1812 sector_t sector = ti->begin;
1813 struct bio *clone;
1814 int ret;
1815
1816 nr_zones = ti->len >> ilog2(zone_sectors);
1817 need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1818 if (!need_reset)
1819 return BLK_STS_RESOURCE;
1820
1821 ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1822 nr_zones, need_reset);
1823 if (ret) {
1824 sts = BLK_STS_IOERR;
1825 goto free_bitmap;
1826 }
1827
1828 /* If we have no zone to reset, we are done. */
1829 nr_reset = bitmap_weight(need_reset, nr_zones);
1830 if (!nr_reset)
1831 goto free_bitmap;
1832
1833 atomic_add(nr_zones, &ci->io->io_count);
1834
1835 for (i = 0; i < nr_zones; i++) {
1836
1837 if (!test_bit(i, need_reset)) {
1838 sector += zone_sectors;
1839 continue;
1840 }
1841
1842 if (bio_list_empty(&blist)) {
1843 /* This may take a while, so be nice to others */
1844 if (num_bios)
1845 cond_resched();
1846
1847 /*
1848 * We may need to reset thousands of zones, so let's
1849 * not go crazy with the clone allocation.
1850 */
1851 alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1852 NULL, GFP_NOIO);
1853 }
1854
1855 /* Get a clone and change it to a regular reset operation. */
1856 clone = bio_list_pop(&blist);
1857 clone->bi_opf &= ~REQ_OP_MASK;
1858 clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1859 clone->bi_iter.bi_sector = sector;
1860 clone->bi_iter.bi_size = 0;
1861 __map_bio(clone);
1862
1863 sector += zone_sectors;
1864 num_bios++;
1865 nr_reset--;
1866 }
1867
1868 WARN_ON_ONCE(!bio_list_empty(&blist));
1869 atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1870 ci->sector_count = 0;
1871
1872free_bitmap:
1873 bitmap_free(need_reset);
1874
1875 return sts;
1876}
1877
1878static void __send_zone_reset_all_native(struct clone_info *ci,
1879 struct dm_target *ti)
1880{
1881 unsigned int bios;
1882
1883 atomic_add(1, &ci->io->io_count);
1884 bios = __send_duplicate_bios(ci, ti, 1, NULL, GFP_NOIO);
1885 atomic_sub(1 - bios, &ci->io->io_count);
1886
1887 ci->sector_count = 0;
1888}
1889
1890static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1891{
1892 struct dm_table *t = ci->map;
1893 blk_status_t sts = BLK_STS_OK;
1894
1895 for (unsigned int i = 0; i < t->num_targets; i++) {
1896 struct dm_target *ti = dm_table_get_target(t, i);
1897
1898 if (ti->zone_reset_all_supported) {
1899 __send_zone_reset_all_native(ci, ti);
1900 continue;
1901 }
1902
1903 sts = __send_zone_reset_all_emulated(ci, ti);
1904 if (sts != BLK_STS_OK)
1905 break;
1906 }
1907
1908 /* Release the reference that alloc_io() took for submission. */
1909 atomic_sub(1, &ci->io->io_count);
1910
1911 return sts;
1912}
1913
1914#else
1915static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1916 struct bio *bio)
1917{
1918 return false;
1919}
1920static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1921{
1922 return false;
1923}
1924static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1925{
1926 return BLK_STS_NOTSUPP;
1927}
1928#endif
1929
1930/*
1931 * Entry point to split a bio into clones and submit them to the targets.
1932 */
1933static void dm_split_and_process_bio(struct mapped_device *md,
1934 struct dm_table *map, struct bio *bio)
1935{
1936 struct clone_info ci;
1937 struct dm_io *io;
1938 blk_status_t error = BLK_STS_OK;
1939 bool is_abnormal, need_split;
1940
1941 is_abnormal = is_abnormal_io(bio);
1942 if (static_branch_unlikely(&zoned_enabled)) {
1943 /* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */
1944 need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) &&
1945 (is_abnormal || dm_zone_bio_needs_split(md, bio));
1946 } else {
1947 need_split = is_abnormal;
1948 }
1949
1950 if (unlikely(need_split)) {
1951 /*
1952 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1953 * otherwise associated queue_limits won't be imposed.
1954 * Also split the BIO for mapped devices needing zone append
1955 * emulation to ensure that the BIO does not cross zone
1956 * boundaries.
1957 */
1958 bio = bio_split_to_limits(bio);
1959 if (!bio)
1960 return;
1961 }
1962
1963 /*
1964 * Use the block layer zone write plugging for mapped devices that
1965 * need zone append emulation (e.g. dm-crypt).
1966 */
1967 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1968 return;
1969
1970 /* Only support nowait for normal IO */
1971 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1972 io = alloc_io(md, bio, GFP_NOWAIT);
1973 if (unlikely(!io)) {
1974 /* Unable to do anything without dm_io. */
1975 bio_wouldblock_error(bio);
1976 return;
1977 }
1978 } else {
1979 io = alloc_io(md, bio, GFP_NOIO);
1980 }
1981 init_clone_info(&ci, io, map, bio, is_abnormal);
1982
1983 if (bio->bi_opf & REQ_PREFLUSH) {
1984 __send_empty_flush(&ci);
1985 /* dm_io_complete submits any data associated with flush */
1986 goto out;
1987 }
1988
1989 if (static_branch_unlikely(&zoned_enabled) &&
1990 (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
1991 error = __send_zone_reset_all(&ci);
1992 goto out;
1993 }
1994
1995 error = __split_and_process_bio(&ci);
1996 if (error || !ci.sector_count)
1997 goto out;
1998 /*
1999 * Remainder must be passed to submit_bio_noacct() so it gets handled
2000 * *after* bios already submitted have been completely processed.
2001 */
2002 bio_trim(bio, io->sectors, ci.sector_count);
2003 trace_block_split(bio, bio->bi_iter.bi_sector);
2004 bio_inc_remaining(bio);
2005 submit_bio_noacct(bio);
2006out:
2007 /*
2008 * Drop the extra reference count for non-POLLED bio, and hold one
2009 * reference for POLLED bio, which will be released in dm_poll_bio
2010 *
2011 * Add every dm_io instance into the dm_io list head which is stored
2012 * in bio->bi_private, so that dm_poll_bio can poll them all.
2013 */
2014 if (error || !ci.submit_as_polled) {
2015 /*
2016 * In case of submission failure, the extra reference for
2017 * submitting io isn't consumed yet
2018 */
2019 if (error)
2020 atomic_dec(&io->io_count);
2021 dm_io_dec_pending(io, error);
2022 } else
2023 dm_queue_poll_io(bio, io);
2024}
2025
2026static void dm_submit_bio(struct bio *bio)
2027{
2028 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2029 int srcu_idx;
2030 struct dm_table *map;
2031
2032 map = dm_get_live_table(md, &srcu_idx);
2033 if (unlikely(!map)) {
2034 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2035 dm_device_name(md));
2036 bio_io_error(bio);
2037 goto out;
2038 }
2039
2040 /* If suspended, queue this IO for later */
2041 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2042 if (bio->bi_opf & REQ_NOWAIT)
2043 bio_wouldblock_error(bio);
2044 else if (bio->bi_opf & REQ_RAHEAD)
2045 bio_io_error(bio);
2046 else
2047 queue_io(md, bio);
2048 goto out;
2049 }
2050
2051 dm_split_and_process_bio(md, map, bio);
2052out:
2053 dm_put_live_table(md, srcu_idx);
2054}
2055
2056static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2057 unsigned int flags)
2058{
2059 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2060
2061 /* don't poll if the mapped io is done */
2062 if (atomic_read(&io->io_count) > 1)
2063 bio_poll(&io->tio.clone, iob, flags);
2064
2065 /* bio_poll holds the last reference */
2066 return atomic_read(&io->io_count) == 1;
2067}
2068
2069static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2070 unsigned int flags)
2071{
2072 struct dm_io **head = dm_poll_list_head(bio);
2073 struct dm_io *list = *head;
2074 struct dm_io *tmp = NULL;
2075 struct dm_io *curr, *next;
2076
2077 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2078 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2079 return 0;
2080
2081 WARN_ON_ONCE(!list);
2082
2083 /*
2084 * Restore .bi_private before possibly completing dm_io.
2085 *
2086 * bio_poll() is only possible once @bio has been completely
2087 * submitted via submit_bio_noacct()'s depth-first submission.
2088 * So there is no dm_queue_poll_io() race associated with
2089 * clearing REQ_DM_POLL_LIST here.
2090 */
2091 bio->bi_opf &= ~REQ_DM_POLL_LIST;
2092 bio->bi_private = list->data;
2093
2094 for (curr = list, next = curr->next; curr; curr = next, next =
2095 curr ? curr->next : NULL) {
2096 if (dm_poll_dm_io(curr, iob, flags)) {
2097 /*
2098 * clone_endio() has already occurred, so no
2099 * error handling is needed here.
2100 */
2101 __dm_io_dec_pending(curr);
2102 } else {
2103 curr->next = tmp;
2104 tmp = curr;
2105 }
2106 }
2107
2108 /* Not done? */
2109 if (tmp) {
2110 bio->bi_opf |= REQ_DM_POLL_LIST;
2111 /* Reset bio->bi_private to dm_io list head */
2112 *head = tmp;
2113 return 0;
2114 }
2115 return 1;
2116}
2117
2118/*
2119 *---------------------------------------------------------------
2120 * An IDR is used to keep track of allocated minor numbers.
2121 *---------------------------------------------------------------
2122 */
2123static void free_minor(int minor)
2124{
2125 spin_lock(&_minor_lock);
2126 idr_remove(&_minor_idr, minor);
2127 spin_unlock(&_minor_lock);
2128}
2129
2130/*
2131 * See if the device with a specific minor # is free.
2132 */
2133static int specific_minor(int minor)
2134{
2135 int r;
2136
2137 if (minor >= (1 << MINORBITS))
2138 return -EINVAL;
2139
2140 idr_preload(GFP_KERNEL);
2141 spin_lock(&_minor_lock);
2142
2143 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2144
2145 spin_unlock(&_minor_lock);
2146 idr_preload_end();
2147 if (r < 0)
2148 return r == -ENOSPC ? -EBUSY : r;
2149 return 0;
2150}
2151
2152static int next_free_minor(int *minor)
2153{
2154 int r;
2155
2156 idr_preload(GFP_KERNEL);
2157 spin_lock(&_minor_lock);
2158
2159 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2160
2161 spin_unlock(&_minor_lock);
2162 idr_preload_end();
2163 if (r < 0)
2164 return r;
2165 *minor = r;
2166 return 0;
2167}
2168
2169static const struct block_device_operations dm_blk_dops;
2170static const struct block_device_operations dm_rq_blk_dops;
2171static const struct dax_operations dm_dax_ops;
2172
2173static void dm_wq_work(struct work_struct *work);
2174
2175#ifdef CONFIG_BLK_INLINE_ENCRYPTION
2176static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2177{
2178 dm_destroy_crypto_profile(q->crypto_profile);
2179}
2180
2181#else /* CONFIG_BLK_INLINE_ENCRYPTION */
2182
2183static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2184{
2185}
2186#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2187
2188static void cleanup_mapped_device(struct mapped_device *md)
2189{
2190 if (md->wq)
2191 destroy_workqueue(md->wq);
2192 dm_free_md_mempools(md->mempools);
2193
2194 if (md->dax_dev) {
2195 dax_remove_host(md->disk);
2196 kill_dax(md->dax_dev);
2197 put_dax(md->dax_dev);
2198 md->dax_dev = NULL;
2199 }
2200
2201 if (md->disk) {
2202 spin_lock(&_minor_lock);
2203 md->disk->private_data = NULL;
2204 spin_unlock(&_minor_lock);
2205 if (dm_get_md_type(md) != DM_TYPE_NONE) {
2206 struct table_device *td;
2207
2208 dm_sysfs_exit(md);
2209 list_for_each_entry(td, &md->table_devices, list) {
2210 bd_unlink_disk_holder(td->dm_dev.bdev,
2211 md->disk);
2212 }
2213
2214 /*
2215 * Hold lock to make sure del_gendisk() won't concurrent
2216 * with open/close_table_device().
2217 */
2218 mutex_lock(&md->table_devices_lock);
2219 del_gendisk(md->disk);
2220 mutex_unlock(&md->table_devices_lock);
2221 }
2222 dm_queue_destroy_crypto_profile(md->queue);
2223 put_disk(md->disk);
2224 }
2225
2226 if (md->pending_io) {
2227 free_percpu(md->pending_io);
2228 md->pending_io = NULL;
2229 }
2230
2231 cleanup_srcu_struct(&md->io_barrier);
2232
2233 mutex_destroy(&md->suspend_lock);
2234 mutex_destroy(&md->type_lock);
2235 mutex_destroy(&md->table_devices_lock);
2236 mutex_destroy(&md->swap_bios_lock);
2237
2238 dm_mq_cleanup_mapped_device(md);
2239}
2240
2241/*
2242 * Allocate and initialise a blank device with a given minor.
2243 */
2244static struct mapped_device *alloc_dev(int minor)
2245{
2246 int r, numa_node_id = dm_get_numa_node();
2247 struct dax_device *dax_dev;
2248 struct mapped_device *md;
2249 void *old_md;
2250
2251 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2252 if (!md) {
2253 DMERR("unable to allocate device, out of memory.");
2254 return NULL;
2255 }
2256
2257 if (!try_module_get(THIS_MODULE))
2258 goto bad_module_get;
2259
2260 /* get a minor number for the dev */
2261 if (minor == DM_ANY_MINOR)
2262 r = next_free_minor(&minor);
2263 else
2264 r = specific_minor(minor);
2265 if (r < 0)
2266 goto bad_minor;
2267
2268 r = init_srcu_struct(&md->io_barrier);
2269 if (r < 0)
2270 goto bad_io_barrier;
2271
2272 md->numa_node_id = numa_node_id;
2273 md->init_tio_pdu = false;
2274 md->type = DM_TYPE_NONE;
2275 mutex_init(&md->suspend_lock);
2276 mutex_init(&md->type_lock);
2277 mutex_init(&md->table_devices_lock);
2278 spin_lock_init(&md->deferred_lock);
2279 atomic_set(&md->holders, 1);
2280 atomic_set(&md->open_count, 0);
2281 atomic_set(&md->event_nr, 0);
2282 atomic_set(&md->uevent_seq, 0);
2283 INIT_LIST_HEAD(&md->uevent_list);
2284 INIT_LIST_HEAD(&md->table_devices);
2285 spin_lock_init(&md->uevent_lock);
2286
2287 /*
2288 * default to bio-based until DM table is loaded and md->type
2289 * established. If request-based table is loaded: blk-mq will
2290 * override accordingly.
2291 */
2292 md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2293 if (IS_ERR(md->disk)) {
2294 md->disk = NULL;
2295 goto bad;
2296 }
2297 md->queue = md->disk->queue;
2298
2299 init_waitqueue_head(&md->wait);
2300 INIT_WORK(&md->work, dm_wq_work);
2301 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2302 init_waitqueue_head(&md->eventq);
2303 init_completion(&md->kobj_holder.completion);
2304
2305 md->requeue_list = NULL;
2306 md->swap_bios = get_swap_bios();
2307 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2308 mutex_init(&md->swap_bios_lock);
2309
2310 md->disk->major = _major;
2311 md->disk->first_minor = minor;
2312 md->disk->minors = 1;
2313 md->disk->flags |= GENHD_FL_NO_PART;
2314 md->disk->fops = &dm_blk_dops;
2315 md->disk->private_data = md;
2316 sprintf(md->disk->disk_name, "dm-%d", minor);
2317
2318 dax_dev = alloc_dax(md, &dm_dax_ops);
2319 if (IS_ERR(dax_dev)) {
2320 if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2321 goto bad;
2322 } else {
2323 set_dax_nocache(dax_dev);
2324 set_dax_nomc(dax_dev);
2325 md->dax_dev = dax_dev;
2326 if (dax_add_host(dax_dev, md->disk))
2327 goto bad;
2328 }
2329
2330 format_dev_t(md->name, MKDEV(_major, minor));
2331
2332 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2333 if (!md->wq)
2334 goto bad;
2335
2336 md->pending_io = alloc_percpu(unsigned long);
2337 if (!md->pending_io)
2338 goto bad;
2339
2340 r = dm_stats_init(&md->stats);
2341 if (r < 0)
2342 goto bad;
2343
2344 /* Populate the mapping, nobody knows we exist yet */
2345 spin_lock(&_minor_lock);
2346 old_md = idr_replace(&_minor_idr, md, minor);
2347 spin_unlock(&_minor_lock);
2348
2349 BUG_ON(old_md != MINOR_ALLOCED);
2350
2351 return md;
2352
2353bad:
2354 cleanup_mapped_device(md);
2355bad_io_barrier:
2356 free_minor(minor);
2357bad_minor:
2358 module_put(THIS_MODULE);
2359bad_module_get:
2360 kvfree(md);
2361 return NULL;
2362}
2363
2364static void unlock_fs(struct mapped_device *md);
2365
2366static void free_dev(struct mapped_device *md)
2367{
2368 int minor = MINOR(disk_devt(md->disk));
2369
2370 unlock_fs(md);
2371
2372 cleanup_mapped_device(md);
2373
2374 WARN_ON_ONCE(!list_empty(&md->table_devices));
2375 dm_stats_cleanup(&md->stats);
2376 free_minor(minor);
2377
2378 module_put(THIS_MODULE);
2379 kvfree(md);
2380}
2381
2382/*
2383 * Bind a table to the device.
2384 */
2385static void event_callback(void *context)
2386{
2387 unsigned long flags;
2388 LIST_HEAD(uevents);
2389 struct mapped_device *md = context;
2390
2391 spin_lock_irqsave(&md->uevent_lock, flags);
2392 list_splice_init(&md->uevent_list, &uevents);
2393 spin_unlock_irqrestore(&md->uevent_lock, flags);
2394
2395 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2396
2397 atomic_inc(&md->event_nr);
2398 wake_up(&md->eventq);
2399 dm_issue_global_event();
2400}
2401
2402/*
2403 * Returns old map, which caller must destroy.
2404 */
2405static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2406 struct queue_limits *limits)
2407{
2408 struct dm_table *old_map;
2409 sector_t size;
2410 int ret;
2411
2412 lockdep_assert_held(&md->suspend_lock);
2413
2414 size = dm_table_get_size(t);
2415
2416 /*
2417 * Wipe any geometry if the size of the table changed.
2418 */
2419 if (size != dm_get_size(md))
2420 memset(&md->geometry, 0, sizeof(md->geometry));
2421
2422 set_capacity(md->disk, size);
2423
2424 dm_table_event_callback(t, event_callback, md);
2425
2426 if (dm_table_request_based(t)) {
2427 /*
2428 * Leverage the fact that request-based DM targets are
2429 * immutable singletons - used to optimize dm_mq_queue_rq.
2430 */
2431 md->immutable_target = dm_table_get_immutable_target(t);
2432
2433 /*
2434 * There is no need to reload with request-based dm because the
2435 * size of front_pad doesn't change.
2436 *
2437 * Note for future: If you are to reload bioset, prep-ed
2438 * requests in the queue may refer to bio from the old bioset,
2439 * so you must walk through the queue to unprep.
2440 */
2441 if (!md->mempools) {
2442 md->mempools = t->mempools;
2443 t->mempools = NULL;
2444 }
2445 } else {
2446 /*
2447 * The md may already have mempools that need changing.
2448 * If so, reload bioset because front_pad may have changed
2449 * because a different table was loaded.
2450 */
2451 dm_free_md_mempools(md->mempools);
2452 md->mempools = t->mempools;
2453 t->mempools = NULL;
2454 }
2455
2456 ret = dm_table_set_restrictions(t, md->queue, limits);
2457 if (ret) {
2458 old_map = ERR_PTR(ret);
2459 goto out;
2460 }
2461
2462 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2463 rcu_assign_pointer(md->map, (void *)t);
2464 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2465
2466 if (old_map)
2467 dm_sync_table(md);
2468out:
2469 return old_map;
2470}
2471
2472/*
2473 * Returns unbound table for the caller to free.
2474 */
2475static struct dm_table *__unbind(struct mapped_device *md)
2476{
2477 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2478
2479 if (!map)
2480 return NULL;
2481
2482 dm_table_event_callback(map, NULL, NULL);
2483 RCU_INIT_POINTER(md->map, NULL);
2484 dm_sync_table(md);
2485
2486 return map;
2487}
2488
2489/*
2490 * Constructor for a new device.
2491 */
2492int dm_create(int minor, struct mapped_device **result)
2493{
2494 struct mapped_device *md;
2495
2496 md = alloc_dev(minor);
2497 if (!md)
2498 return -ENXIO;
2499
2500 dm_ima_reset_data(md);
2501
2502 *result = md;
2503 return 0;
2504}
2505
2506/*
2507 * Functions to manage md->type.
2508 * All are required to hold md->type_lock.
2509 */
2510void dm_lock_md_type(struct mapped_device *md)
2511{
2512 mutex_lock(&md->type_lock);
2513}
2514
2515void dm_unlock_md_type(struct mapped_device *md)
2516{
2517 mutex_unlock(&md->type_lock);
2518}
2519
2520enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2521{
2522 return md->type;
2523}
2524
2525struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2526{
2527 return md->immutable_target_type;
2528}
2529
2530/*
2531 * Setup the DM device's queue based on md's type
2532 */
2533int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2534{
2535 enum dm_queue_mode type = dm_table_get_type(t);
2536 struct queue_limits limits;
2537 struct table_device *td;
2538 int r;
2539
2540 WARN_ON_ONCE(type == DM_TYPE_NONE);
2541
2542 if (type == DM_TYPE_REQUEST_BASED) {
2543 md->disk->fops = &dm_rq_blk_dops;
2544 r = dm_mq_init_request_queue(md, t);
2545 if (r) {
2546 DMERR("Cannot initialize queue for request-based dm mapped device");
2547 return r;
2548 }
2549 }
2550
2551 r = dm_calculate_queue_limits(t, &limits);
2552 if (r) {
2553 DMERR("Cannot calculate initial queue limits");
2554 return r;
2555 }
2556 r = dm_table_set_restrictions(t, md->queue, &limits);
2557 if (r)
2558 return r;
2559
2560 /*
2561 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2562 * with open_table_device() and close_table_device().
2563 */
2564 mutex_lock(&md->table_devices_lock);
2565 r = add_disk(md->disk);
2566 mutex_unlock(&md->table_devices_lock);
2567 if (r)
2568 return r;
2569
2570 /*
2571 * Register the holder relationship for devices added before the disk
2572 * was live.
2573 */
2574 list_for_each_entry(td, &md->table_devices, list) {
2575 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2576 if (r)
2577 goto out_undo_holders;
2578 }
2579
2580 r = dm_sysfs_init(md);
2581 if (r)
2582 goto out_undo_holders;
2583
2584 md->type = type;
2585 return 0;
2586
2587out_undo_holders:
2588 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2589 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2590 mutex_lock(&md->table_devices_lock);
2591 del_gendisk(md->disk);
2592 mutex_unlock(&md->table_devices_lock);
2593 return r;
2594}
2595
2596struct mapped_device *dm_get_md(dev_t dev)
2597{
2598 struct mapped_device *md;
2599 unsigned int minor = MINOR(dev);
2600
2601 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2602 return NULL;
2603
2604 spin_lock(&_minor_lock);
2605
2606 md = idr_find(&_minor_idr, minor);
2607 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2608 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2609 md = NULL;
2610 goto out;
2611 }
2612 dm_get(md);
2613out:
2614 spin_unlock(&_minor_lock);
2615
2616 return md;
2617}
2618EXPORT_SYMBOL_GPL(dm_get_md);
2619
2620void *dm_get_mdptr(struct mapped_device *md)
2621{
2622 return md->interface_ptr;
2623}
2624
2625void dm_set_mdptr(struct mapped_device *md, void *ptr)
2626{
2627 md->interface_ptr = ptr;
2628}
2629
2630void dm_get(struct mapped_device *md)
2631{
2632 atomic_inc(&md->holders);
2633 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2634}
2635
2636int dm_hold(struct mapped_device *md)
2637{
2638 spin_lock(&_minor_lock);
2639 if (test_bit(DMF_FREEING, &md->flags)) {
2640 spin_unlock(&_minor_lock);
2641 return -EBUSY;
2642 }
2643 dm_get(md);
2644 spin_unlock(&_minor_lock);
2645 return 0;
2646}
2647EXPORT_SYMBOL_GPL(dm_hold);
2648
2649const char *dm_device_name(struct mapped_device *md)
2650{
2651 return md->name;
2652}
2653EXPORT_SYMBOL_GPL(dm_device_name);
2654
2655static void __dm_destroy(struct mapped_device *md, bool wait)
2656{
2657 struct dm_table *map;
2658 int srcu_idx;
2659
2660 might_sleep();
2661
2662 spin_lock(&_minor_lock);
2663 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2664 set_bit(DMF_FREEING, &md->flags);
2665 spin_unlock(&_minor_lock);
2666
2667 blk_mark_disk_dead(md->disk);
2668
2669 /*
2670 * Take suspend_lock so that presuspend and postsuspend methods
2671 * do not race with internal suspend.
2672 */
2673 mutex_lock(&md->suspend_lock);
2674 map = dm_get_live_table(md, &srcu_idx);
2675 if (!dm_suspended_md(md)) {
2676 dm_table_presuspend_targets(map);
2677 set_bit(DMF_SUSPENDED, &md->flags);
2678 set_bit(DMF_POST_SUSPENDING, &md->flags);
2679 dm_table_postsuspend_targets(map);
2680 }
2681 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2682 dm_put_live_table(md, srcu_idx);
2683 mutex_unlock(&md->suspend_lock);
2684
2685 /*
2686 * Rare, but there may be I/O requests still going to complete,
2687 * for example. Wait for all references to disappear.
2688 * No one should increment the reference count of the mapped_device,
2689 * after the mapped_device state becomes DMF_FREEING.
2690 */
2691 if (wait)
2692 while (atomic_read(&md->holders))
2693 fsleep(1000);
2694 else if (atomic_read(&md->holders))
2695 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2696 dm_device_name(md), atomic_read(&md->holders));
2697
2698 dm_table_destroy(__unbind(md));
2699 free_dev(md);
2700}
2701
2702void dm_destroy(struct mapped_device *md)
2703{
2704 __dm_destroy(md, true);
2705}
2706
2707void dm_destroy_immediate(struct mapped_device *md)
2708{
2709 __dm_destroy(md, false);
2710}
2711
2712void dm_put(struct mapped_device *md)
2713{
2714 atomic_dec(&md->holders);
2715}
2716EXPORT_SYMBOL_GPL(dm_put);
2717
2718static bool dm_in_flight_bios(struct mapped_device *md)
2719{
2720 int cpu;
2721 unsigned long sum = 0;
2722
2723 for_each_possible_cpu(cpu)
2724 sum += *per_cpu_ptr(md->pending_io, cpu);
2725
2726 return sum != 0;
2727}
2728
2729static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2730{
2731 int r = 0;
2732 DEFINE_WAIT(wait);
2733
2734 while (true) {
2735 prepare_to_wait(&md->wait, &wait, task_state);
2736
2737 if (!dm_in_flight_bios(md))
2738 break;
2739
2740 if (signal_pending_state(task_state, current)) {
2741 r = -ERESTARTSYS;
2742 break;
2743 }
2744
2745 io_schedule();
2746 }
2747 finish_wait(&md->wait, &wait);
2748
2749 smp_rmb();
2750
2751 return r;
2752}
2753
2754static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2755{
2756 int r = 0;
2757
2758 if (!queue_is_mq(md->queue))
2759 return dm_wait_for_bios_completion(md, task_state);
2760
2761 while (true) {
2762 if (!blk_mq_queue_inflight(md->queue))
2763 break;
2764
2765 if (signal_pending_state(task_state, current)) {
2766 r = -ERESTARTSYS;
2767 break;
2768 }
2769
2770 fsleep(5000);
2771 }
2772
2773 return r;
2774}
2775
2776/*
2777 * Process the deferred bios
2778 */
2779static void dm_wq_work(struct work_struct *work)
2780{
2781 struct mapped_device *md = container_of(work, struct mapped_device, work);
2782 struct bio *bio;
2783
2784 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2785 spin_lock_irq(&md->deferred_lock);
2786 bio = bio_list_pop(&md->deferred);
2787 spin_unlock_irq(&md->deferred_lock);
2788
2789 if (!bio)
2790 break;
2791
2792 submit_bio_noacct(bio);
2793 cond_resched();
2794 }
2795}
2796
2797static void dm_queue_flush(struct mapped_device *md)
2798{
2799 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2800 smp_mb__after_atomic();
2801 queue_work(md->wq, &md->work);
2802}
2803
2804/*
2805 * Swap in a new table, returning the old one for the caller to destroy.
2806 */
2807struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2808{
2809 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2810 struct queue_limits limits;
2811 int r;
2812
2813 mutex_lock(&md->suspend_lock);
2814
2815 /* device must be suspended */
2816 if (!dm_suspended_md(md))
2817 goto out;
2818
2819 /*
2820 * If the new table has no data devices, retain the existing limits.
2821 * This helps multipath with queue_if_no_path if all paths disappear,
2822 * then new I/O is queued based on these limits, and then some paths
2823 * reappear.
2824 */
2825 if (dm_table_has_no_data_devices(table)) {
2826 live_map = dm_get_live_table_fast(md);
2827 if (live_map)
2828 limits = md->queue->limits;
2829 dm_put_live_table_fast(md);
2830 }
2831
2832 if (!live_map) {
2833 r = dm_calculate_queue_limits(table, &limits);
2834 if (r) {
2835 map = ERR_PTR(r);
2836 goto out;
2837 }
2838 }
2839
2840 map = __bind(md, table, &limits);
2841 dm_issue_global_event();
2842
2843out:
2844 mutex_unlock(&md->suspend_lock);
2845 return map;
2846}
2847
2848/*
2849 * Functions to lock and unlock any filesystem running on the
2850 * device.
2851 */
2852static int lock_fs(struct mapped_device *md)
2853{
2854 int r;
2855
2856 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2857
2858 r = bdev_freeze(md->disk->part0);
2859 if (!r)
2860 set_bit(DMF_FROZEN, &md->flags);
2861 return r;
2862}
2863
2864static void unlock_fs(struct mapped_device *md)
2865{
2866 if (!test_bit(DMF_FROZEN, &md->flags))
2867 return;
2868 bdev_thaw(md->disk->part0);
2869 clear_bit(DMF_FROZEN, &md->flags);
2870}
2871
2872/*
2873 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2874 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2875 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2876 *
2877 * If __dm_suspend returns 0, the device is completely quiescent
2878 * now. There is no request-processing activity. All new requests
2879 * are being added to md->deferred list.
2880 */
2881static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2882 unsigned int suspend_flags, unsigned int task_state,
2883 int dmf_suspended_flag)
2884{
2885 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2886 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2887 int r;
2888
2889 lockdep_assert_held(&md->suspend_lock);
2890
2891 /*
2892 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2893 * This flag is cleared before dm_suspend returns.
2894 */
2895 if (noflush)
2896 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2897 else
2898 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2899
2900 /*
2901 * This gets reverted if there's an error later and the targets
2902 * provide the .presuspend_undo hook.
2903 */
2904 dm_table_presuspend_targets(map);
2905
2906 /*
2907 * Flush I/O to the device.
2908 * Any I/O submitted after lock_fs() may not be flushed.
2909 * noflush takes precedence over do_lockfs.
2910 * (lock_fs() flushes I/Os and waits for them to complete.)
2911 */
2912 if (!noflush && do_lockfs) {
2913 r = lock_fs(md);
2914 if (r) {
2915 dm_table_presuspend_undo_targets(map);
2916 return r;
2917 }
2918 }
2919
2920 /*
2921 * Here we must make sure that no processes are submitting requests
2922 * to target drivers i.e. no one may be executing
2923 * dm_split_and_process_bio from dm_submit_bio.
2924 *
2925 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2926 * we take the write lock. To prevent any process from reentering
2927 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2928 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2929 * flush_workqueue(md->wq).
2930 */
2931 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2932 if (map)
2933 synchronize_srcu(&md->io_barrier);
2934
2935 /*
2936 * Stop md->queue before flushing md->wq in case request-based
2937 * dm defers requests to md->wq from md->queue.
2938 */
2939 if (dm_request_based(md))
2940 dm_stop_queue(md->queue);
2941
2942 flush_workqueue(md->wq);
2943
2944 /*
2945 * At this point no more requests are entering target request routines.
2946 * We call dm_wait_for_completion to wait for all existing requests
2947 * to finish.
2948 */
2949 r = dm_wait_for_completion(md, task_state);
2950 if (!r)
2951 set_bit(dmf_suspended_flag, &md->flags);
2952
2953 if (noflush)
2954 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2955 if (map)
2956 synchronize_srcu(&md->io_barrier);
2957
2958 /* were we interrupted ? */
2959 if (r < 0) {
2960 dm_queue_flush(md);
2961
2962 if (dm_request_based(md))
2963 dm_start_queue(md->queue);
2964
2965 unlock_fs(md);
2966 dm_table_presuspend_undo_targets(map);
2967 /* pushback list is already flushed, so skip flush */
2968 }
2969
2970 return r;
2971}
2972
2973/*
2974 * We need to be able to change a mapping table under a mounted
2975 * filesystem. For example we might want to move some data in
2976 * the background. Before the table can be swapped with
2977 * dm_bind_table, dm_suspend must be called to flush any in
2978 * flight bios and ensure that any further io gets deferred.
2979 */
2980/*
2981 * Suspend mechanism in request-based dm.
2982 *
2983 * 1. Flush all I/Os by lock_fs() if needed.
2984 * 2. Stop dispatching any I/O by stopping the request_queue.
2985 * 3. Wait for all in-flight I/Os to be completed or requeued.
2986 *
2987 * To abort suspend, start the request_queue.
2988 */
2989int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2990{
2991 struct dm_table *map = NULL;
2992 int r = 0;
2993
2994retry:
2995 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2996
2997 if (dm_suspended_md(md)) {
2998 r = -EINVAL;
2999 goto out_unlock;
3000 }
3001
3002 if (dm_suspended_internally_md(md)) {
3003 /* already internally suspended, wait for internal resume */
3004 mutex_unlock(&md->suspend_lock);
3005 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3006 if (r)
3007 return r;
3008 goto retry;
3009 }
3010
3011 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3012 if (!map) {
3013 /* avoid deadlock with fs/namespace.c:do_mount() */
3014 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3015 }
3016
3017 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3018 if (r)
3019 goto out_unlock;
3020
3021 set_bit(DMF_POST_SUSPENDING, &md->flags);
3022 dm_table_postsuspend_targets(map);
3023 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3024
3025out_unlock:
3026 mutex_unlock(&md->suspend_lock);
3027 return r;
3028}
3029
3030static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3031{
3032 if (map) {
3033 int r = dm_table_resume_targets(map);
3034
3035 if (r)
3036 return r;
3037 }
3038
3039 dm_queue_flush(md);
3040
3041 /*
3042 * Flushing deferred I/Os must be done after targets are resumed
3043 * so that mapping of targets can work correctly.
3044 * Request-based dm is queueing the deferred I/Os in its request_queue.
3045 */
3046 if (dm_request_based(md))
3047 dm_start_queue(md->queue);
3048
3049 unlock_fs(md);
3050
3051 return 0;
3052}
3053
3054int dm_resume(struct mapped_device *md)
3055{
3056 int r;
3057 struct dm_table *map = NULL;
3058
3059retry:
3060 r = -EINVAL;
3061 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3062
3063 if (!dm_suspended_md(md))
3064 goto out;
3065
3066 if (dm_suspended_internally_md(md)) {
3067 /* already internally suspended, wait for internal resume */
3068 mutex_unlock(&md->suspend_lock);
3069 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3070 if (r)
3071 return r;
3072 goto retry;
3073 }
3074
3075 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3076 if (!map || !dm_table_get_size(map))
3077 goto out;
3078
3079 r = __dm_resume(md, map);
3080 if (r)
3081 goto out;
3082
3083 clear_bit(DMF_SUSPENDED, &md->flags);
3084out:
3085 mutex_unlock(&md->suspend_lock);
3086
3087 return r;
3088}
3089
3090/*
3091 * Internal suspend/resume works like userspace-driven suspend. It waits
3092 * until all bios finish and prevents issuing new bios to the target drivers.
3093 * It may be used only from the kernel.
3094 */
3095
3096static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3097{
3098 struct dm_table *map = NULL;
3099
3100 lockdep_assert_held(&md->suspend_lock);
3101
3102 if (md->internal_suspend_count++)
3103 return; /* nested internal suspend */
3104
3105 if (dm_suspended_md(md)) {
3106 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3107 return; /* nest suspend */
3108 }
3109
3110 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3111
3112 /*
3113 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3114 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3115 * would require changing .presuspend to return an error -- avoid this
3116 * until there is a need for more elaborate variants of internal suspend.
3117 */
3118 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3119 DMF_SUSPENDED_INTERNALLY);
3120
3121 set_bit(DMF_POST_SUSPENDING, &md->flags);
3122 dm_table_postsuspend_targets(map);
3123 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3124}
3125
3126static void __dm_internal_resume(struct mapped_device *md)
3127{
3128 int r;
3129 struct dm_table *map;
3130
3131 BUG_ON(!md->internal_suspend_count);
3132
3133 if (--md->internal_suspend_count)
3134 return; /* resume from nested internal suspend */
3135
3136 if (dm_suspended_md(md))
3137 goto done; /* resume from nested suspend */
3138
3139 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3140 r = __dm_resume(md, map);
3141 if (r) {
3142 /*
3143 * If a preresume method of some target failed, we are in a
3144 * tricky situation. We can't return an error to the caller. We
3145 * can't fake success because then the "resume" and
3146 * "postsuspend" methods would not be paired correctly, and it
3147 * would break various targets, for example it would cause list
3148 * corruption in the "origin" target.
3149 *
3150 * So, we fake normal suspend here, to make sure that the
3151 * "resume" and "postsuspend" methods will be paired correctly.
3152 */
3153 DMERR("Preresume method failed: %d", r);
3154 set_bit(DMF_SUSPENDED, &md->flags);
3155 }
3156done:
3157 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3158 smp_mb__after_atomic();
3159 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3160}
3161
3162void dm_internal_suspend_noflush(struct mapped_device *md)
3163{
3164 mutex_lock(&md->suspend_lock);
3165 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3166 mutex_unlock(&md->suspend_lock);
3167}
3168EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3169
3170void dm_internal_resume(struct mapped_device *md)
3171{
3172 mutex_lock(&md->suspend_lock);
3173 __dm_internal_resume(md);
3174 mutex_unlock(&md->suspend_lock);
3175}
3176EXPORT_SYMBOL_GPL(dm_internal_resume);
3177
3178/*
3179 * Fast variants of internal suspend/resume hold md->suspend_lock,
3180 * which prevents interaction with userspace-driven suspend.
3181 */
3182
3183void dm_internal_suspend_fast(struct mapped_device *md)
3184{
3185 mutex_lock(&md->suspend_lock);
3186 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3187 return;
3188
3189 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3190 synchronize_srcu(&md->io_barrier);
3191 flush_workqueue(md->wq);
3192 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3193}
3194EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3195
3196void dm_internal_resume_fast(struct mapped_device *md)
3197{
3198 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3199 goto done;
3200
3201 dm_queue_flush(md);
3202
3203done:
3204 mutex_unlock(&md->suspend_lock);
3205}
3206EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3207
3208/*
3209 *---------------------------------------------------------------
3210 * Event notification.
3211 *---------------------------------------------------------------
3212 */
3213int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3214 unsigned int cookie, bool need_resize_uevent)
3215{
3216 int r;
3217 unsigned int noio_flag;
3218 char udev_cookie[DM_COOKIE_LENGTH];
3219 char *envp[3] = { NULL, NULL, NULL };
3220 char **envpp = envp;
3221 if (cookie) {
3222 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3223 DM_COOKIE_ENV_VAR_NAME, cookie);
3224 *envpp++ = udev_cookie;
3225 }
3226 if (need_resize_uevent) {
3227 *envpp++ = "RESIZE=1";
3228 }
3229
3230 noio_flag = memalloc_noio_save();
3231
3232 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3233
3234 memalloc_noio_restore(noio_flag);
3235
3236 return r;
3237}
3238
3239uint32_t dm_next_uevent_seq(struct mapped_device *md)
3240{
3241 return atomic_add_return(1, &md->uevent_seq);
3242}
3243
3244uint32_t dm_get_event_nr(struct mapped_device *md)
3245{
3246 return atomic_read(&md->event_nr);
3247}
3248
3249int dm_wait_event(struct mapped_device *md, int event_nr)
3250{
3251 return wait_event_interruptible(md->eventq,
3252 (event_nr != atomic_read(&md->event_nr)));
3253}
3254
3255void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3256{
3257 unsigned long flags;
3258
3259 spin_lock_irqsave(&md->uevent_lock, flags);
3260 list_add(elist, &md->uevent_list);
3261 spin_unlock_irqrestore(&md->uevent_lock, flags);
3262}
3263
3264/*
3265 * The gendisk is only valid as long as you have a reference
3266 * count on 'md'.
3267 */
3268struct gendisk *dm_disk(struct mapped_device *md)
3269{
3270 return md->disk;
3271}
3272EXPORT_SYMBOL_GPL(dm_disk);
3273
3274struct kobject *dm_kobject(struct mapped_device *md)
3275{
3276 return &md->kobj_holder.kobj;
3277}
3278
3279struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3280{
3281 struct mapped_device *md;
3282
3283 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3284
3285 spin_lock(&_minor_lock);
3286 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3287 md = NULL;
3288 goto out;
3289 }
3290 dm_get(md);
3291out:
3292 spin_unlock(&_minor_lock);
3293
3294 return md;
3295}
3296
3297int dm_suspended_md(struct mapped_device *md)
3298{
3299 return test_bit(DMF_SUSPENDED, &md->flags);
3300}
3301
3302static int dm_post_suspending_md(struct mapped_device *md)
3303{
3304 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3305}
3306
3307int dm_suspended_internally_md(struct mapped_device *md)
3308{
3309 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3310}
3311
3312int dm_test_deferred_remove_flag(struct mapped_device *md)
3313{
3314 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3315}
3316
3317int dm_suspended(struct dm_target *ti)
3318{
3319 return dm_suspended_md(ti->table->md);
3320}
3321EXPORT_SYMBOL_GPL(dm_suspended);
3322
3323int dm_post_suspending(struct dm_target *ti)
3324{
3325 return dm_post_suspending_md(ti->table->md);
3326}
3327EXPORT_SYMBOL_GPL(dm_post_suspending);
3328
3329int dm_noflush_suspending(struct dm_target *ti)
3330{
3331 return __noflush_suspending(ti->table->md);
3332}
3333EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3334
3335void dm_free_md_mempools(struct dm_md_mempools *pools)
3336{
3337 if (!pools)
3338 return;
3339
3340 bioset_exit(&pools->bs);
3341 bioset_exit(&pools->io_bs);
3342
3343 kfree(pools);
3344}
3345
3346struct dm_blkdev_id {
3347 u8 *id;
3348 enum blk_unique_id type;
3349};
3350
3351static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
3352 sector_t start, sector_t len, void *data)
3353{
3354 struct dm_blkdev_id *dm_id = data;
3355 const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
3356
3357 if (!fops->get_unique_id)
3358 return 0;
3359
3360 return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
3361}
3362
3363/*
3364 * Allow access to get_unique_id() for the first device returning a
3365 * non-zero result. Reasonable use expects all devices to have the
3366 * same unique id.
3367 */
3368static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
3369 enum blk_unique_id type)
3370{
3371 struct mapped_device *md = disk->private_data;
3372 struct dm_table *table;
3373 struct dm_target *ti;
3374 int ret = 0, srcu_idx;
3375
3376 struct dm_blkdev_id dm_id = {
3377 .id = id,
3378 .type = type,
3379 };
3380
3381 table = dm_get_live_table(md, &srcu_idx);
3382 if (!table || !dm_table_get_size(table))
3383 goto out;
3384
3385 /* We only support devices that have a single target */
3386 if (table->num_targets != 1)
3387 goto out;
3388 ti = dm_table_get_target(table, 0);
3389
3390 if (!ti->type->iterate_devices)
3391 goto out;
3392
3393 ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
3394out:
3395 dm_put_live_table(md, srcu_idx);
3396 return ret;
3397}
3398
3399struct dm_pr {
3400 u64 old_key;
3401 u64 new_key;
3402 u32 flags;
3403 bool abort;
3404 bool fail_early;
3405 int ret;
3406 enum pr_type type;
3407 struct pr_keys *read_keys;
3408 struct pr_held_reservation *rsv;
3409};
3410
3411static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3412 struct dm_pr *pr)
3413{
3414 struct mapped_device *md = bdev->bd_disk->private_data;
3415 struct dm_table *table;
3416 struct dm_target *ti;
3417 int ret = -ENOTTY, srcu_idx;
3418
3419 table = dm_get_live_table(md, &srcu_idx);
3420 if (!table || !dm_table_get_size(table))
3421 goto out;
3422
3423 /* We only support devices that have a single target */
3424 if (table->num_targets != 1)
3425 goto out;
3426 ti = dm_table_get_target(table, 0);
3427
3428 if (dm_suspended_md(md)) {
3429 ret = -EAGAIN;
3430 goto out;
3431 }
3432
3433 ret = -EINVAL;
3434 if (!ti->type->iterate_devices)
3435 goto out;
3436
3437 ti->type->iterate_devices(ti, fn, pr);
3438 ret = 0;
3439out:
3440 dm_put_live_table(md, srcu_idx);
3441 return ret;
3442}
3443
3444/*
3445 * For register / unregister we need to manually call out to every path.
3446 */
3447static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3448 sector_t start, sector_t len, void *data)
3449{
3450 struct dm_pr *pr = data;
3451 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3452 int ret;
3453
3454 if (!ops || !ops->pr_register) {
3455 pr->ret = -EOPNOTSUPP;
3456 return -1;
3457 }
3458
3459 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3460 if (!ret)
3461 return 0;
3462
3463 if (!pr->ret)
3464 pr->ret = ret;
3465
3466 if (pr->fail_early)
3467 return -1;
3468
3469 return 0;
3470}
3471
3472static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3473 u32 flags)
3474{
3475 struct dm_pr pr = {
3476 .old_key = old_key,
3477 .new_key = new_key,
3478 .flags = flags,
3479 .fail_early = true,
3480 .ret = 0,
3481 };
3482 int ret;
3483
3484 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3485 if (ret) {
3486 /* Didn't even get to register a path */
3487 return ret;
3488 }
3489
3490 if (!pr.ret)
3491 return 0;
3492 ret = pr.ret;
3493
3494 if (!new_key)
3495 return ret;
3496
3497 /* unregister all paths if we failed to register any path */
3498 pr.old_key = new_key;
3499 pr.new_key = 0;
3500 pr.flags = 0;
3501 pr.fail_early = false;
3502 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3503 return ret;
3504}
3505
3506
3507static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3508 sector_t start, sector_t len, void *data)
3509{
3510 struct dm_pr *pr = data;
3511 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3512
3513 if (!ops || !ops->pr_reserve) {
3514 pr->ret = -EOPNOTSUPP;
3515 return -1;
3516 }
3517
3518 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3519 if (!pr->ret)
3520 return -1;
3521
3522 return 0;
3523}
3524
3525static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3526 u32 flags)
3527{
3528 struct dm_pr pr = {
3529 .old_key = key,
3530 .flags = flags,
3531 .type = type,
3532 .fail_early = false,
3533 .ret = 0,
3534 };
3535 int ret;
3536
3537 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3538 if (ret)
3539 return ret;
3540
3541 return pr.ret;
3542}
3543
3544/*
3545 * If there is a non-All Registrants type of reservation, the release must be
3546 * sent down the holding path. For the cases where there is no reservation or
3547 * the path is not the holder the device will also return success, so we must
3548 * try each path to make sure we got the correct path.
3549 */
3550static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3551 sector_t start, sector_t len, void *data)
3552{
3553 struct dm_pr *pr = data;
3554 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3555
3556 if (!ops || !ops->pr_release) {
3557 pr->ret = -EOPNOTSUPP;
3558 return -1;
3559 }
3560
3561 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3562 if (pr->ret)
3563 return -1;
3564
3565 return 0;
3566}
3567
3568static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3569{
3570 struct dm_pr pr = {
3571 .old_key = key,
3572 .type = type,
3573 .fail_early = false,
3574 };
3575 int ret;
3576
3577 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3578 if (ret)
3579 return ret;
3580
3581 return pr.ret;
3582}
3583
3584static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3585 sector_t start, sector_t len, void *data)
3586{
3587 struct dm_pr *pr = data;
3588 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3589
3590 if (!ops || !ops->pr_preempt) {
3591 pr->ret = -EOPNOTSUPP;
3592 return -1;
3593 }
3594
3595 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3596 pr->abort);
3597 if (!pr->ret)
3598 return -1;
3599
3600 return 0;
3601}
3602
3603static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3604 enum pr_type type, bool abort)
3605{
3606 struct dm_pr pr = {
3607 .new_key = new_key,
3608 .old_key = old_key,
3609 .type = type,
3610 .fail_early = false,
3611 };
3612 int ret;
3613
3614 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3615 if (ret)
3616 return ret;
3617
3618 return pr.ret;
3619}
3620
3621static int dm_pr_clear(struct block_device *bdev, u64 key)
3622{
3623 struct mapped_device *md = bdev->bd_disk->private_data;
3624 const struct pr_ops *ops;
3625 int r, srcu_idx;
3626
3627 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3628 if (r < 0)
3629 goto out;
3630
3631 ops = bdev->bd_disk->fops->pr_ops;
3632 if (ops && ops->pr_clear)
3633 r = ops->pr_clear(bdev, key);
3634 else
3635 r = -EOPNOTSUPP;
3636out:
3637 dm_unprepare_ioctl(md, srcu_idx);
3638 return r;
3639}
3640
3641static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3642 sector_t start, sector_t len, void *data)
3643{
3644 struct dm_pr *pr = data;
3645 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3646
3647 if (!ops || !ops->pr_read_keys) {
3648 pr->ret = -EOPNOTSUPP;
3649 return -1;
3650 }
3651
3652 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3653 if (!pr->ret)
3654 return -1;
3655
3656 return 0;
3657}
3658
3659static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3660{
3661 struct dm_pr pr = {
3662 .read_keys = keys,
3663 };
3664 int ret;
3665
3666 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3667 if (ret)
3668 return ret;
3669
3670 return pr.ret;
3671}
3672
3673static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3674 sector_t start, sector_t len, void *data)
3675{
3676 struct dm_pr *pr = data;
3677 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3678
3679 if (!ops || !ops->pr_read_reservation) {
3680 pr->ret = -EOPNOTSUPP;
3681 return -1;
3682 }
3683
3684 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3685 if (!pr->ret)
3686 return -1;
3687
3688 return 0;
3689}
3690
3691static int dm_pr_read_reservation(struct block_device *bdev,
3692 struct pr_held_reservation *rsv)
3693{
3694 struct dm_pr pr = {
3695 .rsv = rsv,
3696 };
3697 int ret;
3698
3699 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3700 if (ret)
3701 return ret;
3702
3703 return pr.ret;
3704}
3705
3706static const struct pr_ops dm_pr_ops = {
3707 .pr_register = dm_pr_register,
3708 .pr_reserve = dm_pr_reserve,
3709 .pr_release = dm_pr_release,
3710 .pr_preempt = dm_pr_preempt,
3711 .pr_clear = dm_pr_clear,
3712 .pr_read_keys = dm_pr_read_keys,
3713 .pr_read_reservation = dm_pr_read_reservation,
3714};
3715
3716static const struct block_device_operations dm_blk_dops = {
3717 .submit_bio = dm_submit_bio,
3718 .poll_bio = dm_poll_bio,
3719 .open = dm_blk_open,
3720 .release = dm_blk_close,
3721 .ioctl = dm_blk_ioctl,
3722 .getgeo = dm_blk_getgeo,
3723 .report_zones = dm_blk_report_zones,
3724 .get_unique_id = dm_blk_get_unique_id,
3725 .pr_ops = &dm_pr_ops,
3726 .owner = THIS_MODULE
3727};
3728
3729static const struct block_device_operations dm_rq_blk_dops = {
3730 .open = dm_blk_open,
3731 .release = dm_blk_close,
3732 .ioctl = dm_blk_ioctl,
3733 .getgeo = dm_blk_getgeo,
3734 .get_unique_id = dm_blk_get_unique_id,
3735 .pr_ops = &dm_pr_ops,
3736 .owner = THIS_MODULE
3737};
3738
3739static const struct dax_operations dm_dax_ops = {
3740 .direct_access = dm_dax_direct_access,
3741 .zero_page_range = dm_dax_zero_page_range,
3742 .recovery_write = dm_dax_recovery_write,
3743};
3744
3745/*
3746 * module hooks
3747 */
3748module_init(dm_init);
3749module_exit(dm_exit);
3750
3751module_param(major, uint, 0);
3752MODULE_PARM_DESC(major, "The major number of the device mapper");
3753
3754module_param(reserved_bio_based_ios, uint, 0644);
3755MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3756
3757module_param(dm_numa_node, int, 0644);
3758MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3759
3760module_param(swap_bios, int, 0644);
3761MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3762
3763MODULE_DESCRIPTION(DM_NAME " driver");
3764MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3765MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9#include "dm-rq.h"
10#include "dm-uevent.h"
11
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/blkpg.h>
16#include <linux/bio.h>
17#include <linux/mempool.h>
18#include <linux/slab.h>
19#include <linux/idr.h>
20#include <linux/hdreg.h>
21#include <linux/delay.h>
22#include <linux/wait.h>
23#include <linux/pr.h>
24
25#define DM_MSG_PREFIX "core"
26
27#ifdef CONFIG_PRINTK
28/*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34EXPORT_SYMBOL(dm_ratelimit_state);
35#endif
36
37/*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42#define DM_COOKIE_LENGTH 24
43
44static const char *_name = DM_NAME;
45
46static unsigned int major = 0;
47static unsigned int _major = 0;
48
49static DEFINE_IDR(_minor_idr);
50
51static DEFINE_SPINLOCK(_minor_lock);
52
53static void do_deferred_remove(struct work_struct *w);
54
55static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
56
57static struct workqueue_struct *deferred_remove_workqueue;
58
59/*
60 * One of these is allocated per bio.
61 */
62struct dm_io {
63 struct mapped_device *md;
64 int error;
65 atomic_t io_count;
66 struct bio *bio;
67 unsigned long start_time;
68 spinlock_t endio_lock;
69 struct dm_stats_aux stats_aux;
70};
71
72#define MINOR_ALLOCED ((void *)-1)
73
74/*
75 * Bits for the md->flags field.
76 */
77#define DMF_BLOCK_IO_FOR_SUSPEND 0
78#define DMF_SUSPENDED 1
79#define DMF_FROZEN 2
80#define DMF_FREEING 3
81#define DMF_DELETING 4
82#define DMF_NOFLUSH_SUSPENDING 5
83#define DMF_DEFERRED_REMOVE 6
84#define DMF_SUSPENDED_INTERNALLY 7
85
86#define DM_NUMA_NODE NUMA_NO_NODE
87static int dm_numa_node = DM_NUMA_NODE;
88
89/*
90 * For mempools pre-allocation at the table loading time.
91 */
92struct dm_md_mempools {
93 mempool_t *io_pool;
94 mempool_t *rq_pool;
95 struct bio_set *bs;
96};
97
98struct table_device {
99 struct list_head list;
100 atomic_t count;
101 struct dm_dev dm_dev;
102};
103
104static struct kmem_cache *_io_cache;
105static struct kmem_cache *_rq_tio_cache;
106static struct kmem_cache *_rq_cache;
107
108/*
109 * Bio-based DM's mempools' reserved IOs set by the user.
110 */
111#define RESERVED_BIO_BASED_IOS 16
112static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
113
114static int __dm_get_module_param_int(int *module_param, int min, int max)
115{
116 int param = ACCESS_ONCE(*module_param);
117 int modified_param = 0;
118 bool modified = true;
119
120 if (param < min)
121 modified_param = min;
122 else if (param > max)
123 modified_param = max;
124 else
125 modified = false;
126
127 if (modified) {
128 (void)cmpxchg(module_param, param, modified_param);
129 param = modified_param;
130 }
131
132 return param;
133}
134
135unsigned __dm_get_module_param(unsigned *module_param,
136 unsigned def, unsigned max)
137{
138 unsigned param = ACCESS_ONCE(*module_param);
139 unsigned modified_param = 0;
140
141 if (!param)
142 modified_param = def;
143 else if (param > max)
144 modified_param = max;
145
146 if (modified_param) {
147 (void)cmpxchg(module_param, param, modified_param);
148 param = modified_param;
149 }
150
151 return param;
152}
153
154unsigned dm_get_reserved_bio_based_ios(void)
155{
156 return __dm_get_module_param(&reserved_bio_based_ios,
157 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
158}
159EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
160
161static unsigned dm_get_numa_node(void)
162{
163 return __dm_get_module_param_int(&dm_numa_node,
164 DM_NUMA_NODE, num_online_nodes() - 1);
165}
166
167static int __init local_init(void)
168{
169 int r = -ENOMEM;
170
171 /* allocate a slab for the dm_ios */
172 _io_cache = KMEM_CACHE(dm_io, 0);
173 if (!_io_cache)
174 return r;
175
176 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
177 if (!_rq_tio_cache)
178 goto out_free_io_cache;
179
180 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
181 __alignof__(struct request), 0, NULL);
182 if (!_rq_cache)
183 goto out_free_rq_tio_cache;
184
185 r = dm_uevent_init();
186 if (r)
187 goto out_free_rq_cache;
188
189 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
190 if (!deferred_remove_workqueue) {
191 r = -ENOMEM;
192 goto out_uevent_exit;
193 }
194
195 _major = major;
196 r = register_blkdev(_major, _name);
197 if (r < 0)
198 goto out_free_workqueue;
199
200 if (!_major)
201 _major = r;
202
203 return 0;
204
205out_free_workqueue:
206 destroy_workqueue(deferred_remove_workqueue);
207out_uevent_exit:
208 dm_uevent_exit();
209out_free_rq_cache:
210 kmem_cache_destroy(_rq_cache);
211out_free_rq_tio_cache:
212 kmem_cache_destroy(_rq_tio_cache);
213out_free_io_cache:
214 kmem_cache_destroy(_io_cache);
215
216 return r;
217}
218
219static void local_exit(void)
220{
221 flush_scheduled_work();
222 destroy_workqueue(deferred_remove_workqueue);
223
224 kmem_cache_destroy(_rq_cache);
225 kmem_cache_destroy(_rq_tio_cache);
226 kmem_cache_destroy(_io_cache);
227 unregister_blkdev(_major, _name);
228 dm_uevent_exit();
229
230 _major = 0;
231
232 DMINFO("cleaned up");
233}
234
235static int (*_inits[])(void) __initdata = {
236 local_init,
237 dm_target_init,
238 dm_linear_init,
239 dm_stripe_init,
240 dm_io_init,
241 dm_kcopyd_init,
242 dm_interface_init,
243 dm_statistics_init,
244};
245
246static void (*_exits[])(void) = {
247 local_exit,
248 dm_target_exit,
249 dm_linear_exit,
250 dm_stripe_exit,
251 dm_io_exit,
252 dm_kcopyd_exit,
253 dm_interface_exit,
254 dm_statistics_exit,
255};
256
257static int __init dm_init(void)
258{
259 const int count = ARRAY_SIZE(_inits);
260
261 int r, i;
262
263 for (i = 0; i < count; i++) {
264 r = _inits[i]();
265 if (r)
266 goto bad;
267 }
268
269 return 0;
270
271 bad:
272 while (i--)
273 _exits[i]();
274
275 return r;
276}
277
278static void __exit dm_exit(void)
279{
280 int i = ARRAY_SIZE(_exits);
281
282 while (i--)
283 _exits[i]();
284
285 /*
286 * Should be empty by this point.
287 */
288 idr_destroy(&_minor_idr);
289}
290
291/*
292 * Block device functions
293 */
294int dm_deleting_md(struct mapped_device *md)
295{
296 return test_bit(DMF_DELETING, &md->flags);
297}
298
299static int dm_blk_open(struct block_device *bdev, fmode_t mode)
300{
301 struct mapped_device *md;
302
303 spin_lock(&_minor_lock);
304
305 md = bdev->bd_disk->private_data;
306 if (!md)
307 goto out;
308
309 if (test_bit(DMF_FREEING, &md->flags) ||
310 dm_deleting_md(md)) {
311 md = NULL;
312 goto out;
313 }
314
315 dm_get(md);
316 atomic_inc(&md->open_count);
317out:
318 spin_unlock(&_minor_lock);
319
320 return md ? 0 : -ENXIO;
321}
322
323static void dm_blk_close(struct gendisk *disk, fmode_t mode)
324{
325 struct mapped_device *md;
326
327 spin_lock(&_minor_lock);
328
329 md = disk->private_data;
330 if (WARN_ON(!md))
331 goto out;
332
333 if (atomic_dec_and_test(&md->open_count) &&
334 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
335 queue_work(deferred_remove_workqueue, &deferred_remove_work);
336
337 dm_put(md);
338out:
339 spin_unlock(&_minor_lock);
340}
341
342int dm_open_count(struct mapped_device *md)
343{
344 return atomic_read(&md->open_count);
345}
346
347/*
348 * Guarantees nothing is using the device before it's deleted.
349 */
350int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
351{
352 int r = 0;
353
354 spin_lock(&_minor_lock);
355
356 if (dm_open_count(md)) {
357 r = -EBUSY;
358 if (mark_deferred)
359 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
360 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
361 r = -EEXIST;
362 else
363 set_bit(DMF_DELETING, &md->flags);
364
365 spin_unlock(&_minor_lock);
366
367 return r;
368}
369
370int dm_cancel_deferred_remove(struct mapped_device *md)
371{
372 int r = 0;
373
374 spin_lock(&_minor_lock);
375
376 if (test_bit(DMF_DELETING, &md->flags))
377 r = -EBUSY;
378 else
379 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
380
381 spin_unlock(&_minor_lock);
382
383 return r;
384}
385
386static void do_deferred_remove(struct work_struct *w)
387{
388 dm_deferred_remove();
389}
390
391sector_t dm_get_size(struct mapped_device *md)
392{
393 return get_capacity(md->disk);
394}
395
396struct request_queue *dm_get_md_queue(struct mapped_device *md)
397{
398 return md->queue;
399}
400
401struct dm_stats *dm_get_stats(struct mapped_device *md)
402{
403 return &md->stats;
404}
405
406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407{
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411}
412
413static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
414 struct block_device **bdev,
415 fmode_t *mode)
416{
417 struct dm_target *tgt;
418 struct dm_table *map;
419 int srcu_idx, r;
420
421retry:
422 r = -ENOTTY;
423 map = dm_get_live_table(md, &srcu_idx);
424 if (!map || !dm_table_get_size(map))
425 goto out;
426
427 /* We only support devices that have a single target */
428 if (dm_table_get_num_targets(map) != 1)
429 goto out;
430
431 tgt = dm_table_get_target(map, 0);
432 if (!tgt->type->prepare_ioctl)
433 goto out;
434
435 if (dm_suspended_md(md)) {
436 r = -EAGAIN;
437 goto out;
438 }
439
440 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
441 if (r < 0)
442 goto out;
443
444 bdgrab(*bdev);
445 dm_put_live_table(md, srcu_idx);
446 return r;
447
448out:
449 dm_put_live_table(md, srcu_idx);
450 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
451 msleep(10);
452 goto retry;
453 }
454 return r;
455}
456
457static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 unsigned int cmd, unsigned long arg)
459{
460 struct mapped_device *md = bdev->bd_disk->private_data;
461 int r;
462
463 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
464 if (r < 0)
465 return r;
466
467 if (r > 0) {
468 /*
469 * Target determined this ioctl is being issued against
470 * a logical partition of the parent bdev; so extra
471 * validation is needed.
472 */
473 r = scsi_verify_blk_ioctl(NULL, cmd);
474 if (r)
475 goto out;
476 }
477
478 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
479out:
480 bdput(bdev);
481 return r;
482}
483
484static struct dm_io *alloc_io(struct mapped_device *md)
485{
486 return mempool_alloc(md->io_pool, GFP_NOIO);
487}
488
489static void free_io(struct mapped_device *md, struct dm_io *io)
490{
491 mempool_free(io, md->io_pool);
492}
493
494static void free_tio(struct dm_target_io *tio)
495{
496 bio_put(&tio->clone);
497}
498
499int md_in_flight(struct mapped_device *md)
500{
501 return atomic_read(&md->pending[READ]) +
502 atomic_read(&md->pending[WRITE]);
503}
504
505static void start_io_acct(struct dm_io *io)
506{
507 struct mapped_device *md = io->md;
508 struct bio *bio = io->bio;
509 int cpu;
510 int rw = bio_data_dir(bio);
511
512 io->start_time = jiffies;
513
514 cpu = part_stat_lock();
515 part_round_stats(cpu, &dm_disk(md)->part0);
516 part_stat_unlock();
517 atomic_set(&dm_disk(md)->part0.in_flight[rw],
518 atomic_inc_return(&md->pending[rw]));
519
520 if (unlikely(dm_stats_used(&md->stats)))
521 dm_stats_account_io(&md->stats, bio_data_dir(bio),
522 bio->bi_iter.bi_sector, bio_sectors(bio),
523 false, 0, &io->stats_aux);
524}
525
526static void end_io_acct(struct dm_io *io)
527{
528 struct mapped_device *md = io->md;
529 struct bio *bio = io->bio;
530 unsigned long duration = jiffies - io->start_time;
531 int pending;
532 int rw = bio_data_dir(bio);
533
534 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
535
536 if (unlikely(dm_stats_used(&md->stats)))
537 dm_stats_account_io(&md->stats, bio_data_dir(bio),
538 bio->bi_iter.bi_sector, bio_sectors(bio),
539 true, duration, &io->stats_aux);
540
541 /*
542 * After this is decremented the bio must not be touched if it is
543 * a flush.
544 */
545 pending = atomic_dec_return(&md->pending[rw]);
546 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
547 pending += atomic_read(&md->pending[rw^0x1]);
548
549 /* nudge anyone waiting on suspend queue */
550 if (!pending)
551 wake_up(&md->wait);
552}
553
554/*
555 * Add the bio to the list of deferred io.
556 */
557static void queue_io(struct mapped_device *md, struct bio *bio)
558{
559 unsigned long flags;
560
561 spin_lock_irqsave(&md->deferred_lock, flags);
562 bio_list_add(&md->deferred, bio);
563 spin_unlock_irqrestore(&md->deferred_lock, flags);
564 queue_work(md->wq, &md->work);
565}
566
567/*
568 * Everyone (including functions in this file), should use this
569 * function to access the md->map field, and make sure they call
570 * dm_put_live_table() when finished.
571 */
572struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
573{
574 *srcu_idx = srcu_read_lock(&md->io_barrier);
575
576 return srcu_dereference(md->map, &md->io_barrier);
577}
578
579void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
580{
581 srcu_read_unlock(&md->io_barrier, srcu_idx);
582}
583
584void dm_sync_table(struct mapped_device *md)
585{
586 synchronize_srcu(&md->io_barrier);
587 synchronize_rcu_expedited();
588}
589
590/*
591 * A fast alternative to dm_get_live_table/dm_put_live_table.
592 * The caller must not block between these two functions.
593 */
594static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
595{
596 rcu_read_lock();
597 return rcu_dereference(md->map);
598}
599
600static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
601{
602 rcu_read_unlock();
603}
604
605/*
606 * Open a table device so we can use it as a map destination.
607 */
608static int open_table_device(struct table_device *td, dev_t dev,
609 struct mapped_device *md)
610{
611 static char *_claim_ptr = "I belong to device-mapper";
612 struct block_device *bdev;
613
614 int r;
615
616 BUG_ON(td->dm_dev.bdev);
617
618 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
619 if (IS_ERR(bdev))
620 return PTR_ERR(bdev);
621
622 r = bd_link_disk_holder(bdev, dm_disk(md));
623 if (r) {
624 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
625 return r;
626 }
627
628 td->dm_dev.bdev = bdev;
629 return 0;
630}
631
632/*
633 * Close a table device that we've been using.
634 */
635static void close_table_device(struct table_device *td, struct mapped_device *md)
636{
637 if (!td->dm_dev.bdev)
638 return;
639
640 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
641 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
642 td->dm_dev.bdev = NULL;
643}
644
645static struct table_device *find_table_device(struct list_head *l, dev_t dev,
646 fmode_t mode) {
647 struct table_device *td;
648
649 list_for_each_entry(td, l, list)
650 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
651 return td;
652
653 return NULL;
654}
655
656int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
657 struct dm_dev **result) {
658 int r;
659 struct table_device *td;
660
661 mutex_lock(&md->table_devices_lock);
662 td = find_table_device(&md->table_devices, dev, mode);
663 if (!td) {
664 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
665 if (!td) {
666 mutex_unlock(&md->table_devices_lock);
667 return -ENOMEM;
668 }
669
670 td->dm_dev.mode = mode;
671 td->dm_dev.bdev = NULL;
672
673 if ((r = open_table_device(td, dev, md))) {
674 mutex_unlock(&md->table_devices_lock);
675 kfree(td);
676 return r;
677 }
678
679 format_dev_t(td->dm_dev.name, dev);
680
681 atomic_set(&td->count, 0);
682 list_add(&td->list, &md->table_devices);
683 }
684 atomic_inc(&td->count);
685 mutex_unlock(&md->table_devices_lock);
686
687 *result = &td->dm_dev;
688 return 0;
689}
690EXPORT_SYMBOL_GPL(dm_get_table_device);
691
692void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
693{
694 struct table_device *td = container_of(d, struct table_device, dm_dev);
695
696 mutex_lock(&md->table_devices_lock);
697 if (atomic_dec_and_test(&td->count)) {
698 close_table_device(td, md);
699 list_del(&td->list);
700 kfree(td);
701 }
702 mutex_unlock(&md->table_devices_lock);
703}
704EXPORT_SYMBOL(dm_put_table_device);
705
706static void free_table_devices(struct list_head *devices)
707{
708 struct list_head *tmp, *next;
709
710 list_for_each_safe(tmp, next, devices) {
711 struct table_device *td = list_entry(tmp, struct table_device, list);
712
713 DMWARN("dm_destroy: %s still exists with %d references",
714 td->dm_dev.name, atomic_read(&td->count));
715 kfree(td);
716 }
717}
718
719/*
720 * Get the geometry associated with a dm device
721 */
722int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
723{
724 *geo = md->geometry;
725
726 return 0;
727}
728
729/*
730 * Set the geometry of a device.
731 */
732int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
733{
734 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
735
736 if (geo->start > sz) {
737 DMWARN("Start sector is beyond the geometry limits.");
738 return -EINVAL;
739 }
740
741 md->geometry = *geo;
742
743 return 0;
744}
745
746/*-----------------------------------------------------------------
747 * CRUD START:
748 * A more elegant soln is in the works that uses the queue
749 * merge fn, unfortunately there are a couple of changes to
750 * the block layer that I want to make for this. So in the
751 * interests of getting something for people to use I give
752 * you this clearly demarcated crap.
753 *---------------------------------------------------------------*/
754
755static int __noflush_suspending(struct mapped_device *md)
756{
757 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
758}
759
760/*
761 * Decrements the number of outstanding ios that a bio has been
762 * cloned into, completing the original io if necc.
763 */
764static void dec_pending(struct dm_io *io, int error)
765{
766 unsigned long flags;
767 int io_error;
768 struct bio *bio;
769 struct mapped_device *md = io->md;
770
771 /* Push-back supersedes any I/O errors */
772 if (unlikely(error)) {
773 spin_lock_irqsave(&io->endio_lock, flags);
774 if (!(io->error > 0 && __noflush_suspending(md)))
775 io->error = error;
776 spin_unlock_irqrestore(&io->endio_lock, flags);
777 }
778
779 if (atomic_dec_and_test(&io->io_count)) {
780 if (io->error == DM_ENDIO_REQUEUE) {
781 /*
782 * Target requested pushing back the I/O.
783 */
784 spin_lock_irqsave(&md->deferred_lock, flags);
785 if (__noflush_suspending(md))
786 bio_list_add_head(&md->deferred, io->bio);
787 else
788 /* noflush suspend was interrupted. */
789 io->error = -EIO;
790 spin_unlock_irqrestore(&md->deferred_lock, flags);
791 }
792
793 io_error = io->error;
794 bio = io->bio;
795 end_io_acct(io);
796 free_io(md, io);
797
798 if (io_error == DM_ENDIO_REQUEUE)
799 return;
800
801 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
802 /*
803 * Preflush done for flush with data, reissue
804 * without REQ_PREFLUSH.
805 */
806 bio->bi_opf &= ~REQ_PREFLUSH;
807 queue_io(md, bio);
808 } else {
809 /* done with normal IO or empty flush */
810 trace_block_bio_complete(md->queue, bio, io_error);
811 bio->bi_error = io_error;
812 bio_endio(bio);
813 }
814 }
815}
816
817void disable_write_same(struct mapped_device *md)
818{
819 struct queue_limits *limits = dm_get_queue_limits(md);
820
821 /* device doesn't really support WRITE SAME, disable it */
822 limits->max_write_same_sectors = 0;
823}
824
825static void clone_endio(struct bio *bio)
826{
827 int error = bio->bi_error;
828 int r = error;
829 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
830 struct dm_io *io = tio->io;
831 struct mapped_device *md = tio->io->md;
832 dm_endio_fn endio = tio->ti->type->end_io;
833
834 if (endio) {
835 r = endio(tio->ti, bio, error);
836 if (r < 0 || r == DM_ENDIO_REQUEUE)
837 /*
838 * error and requeue request are handled
839 * in dec_pending().
840 */
841 error = r;
842 else if (r == DM_ENDIO_INCOMPLETE)
843 /* The target will handle the io */
844 return;
845 else if (r) {
846 DMWARN("unimplemented target endio return value: %d", r);
847 BUG();
848 }
849 }
850
851 if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
852 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
853 disable_write_same(md);
854
855 free_tio(tio);
856 dec_pending(io, error);
857}
858
859/*
860 * Return maximum size of I/O possible at the supplied sector up to the current
861 * target boundary.
862 */
863static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
864{
865 sector_t target_offset = dm_target_offset(ti, sector);
866
867 return ti->len - target_offset;
868}
869
870static sector_t max_io_len(sector_t sector, struct dm_target *ti)
871{
872 sector_t len = max_io_len_target_boundary(sector, ti);
873 sector_t offset, max_len;
874
875 /*
876 * Does the target need to split even further?
877 */
878 if (ti->max_io_len) {
879 offset = dm_target_offset(ti, sector);
880 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
881 max_len = sector_div(offset, ti->max_io_len);
882 else
883 max_len = offset & (ti->max_io_len - 1);
884 max_len = ti->max_io_len - max_len;
885
886 if (len > max_len)
887 len = max_len;
888 }
889
890 return len;
891}
892
893int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
894{
895 if (len > UINT_MAX) {
896 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
897 (unsigned long long)len, UINT_MAX);
898 ti->error = "Maximum size of target IO is too large";
899 return -EINVAL;
900 }
901
902 ti->max_io_len = (uint32_t) len;
903
904 return 0;
905}
906EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
907
908static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
909 void **kaddr, pfn_t *pfn, long size)
910{
911 struct mapped_device *md = bdev->bd_disk->private_data;
912 struct dm_table *map;
913 struct dm_target *ti;
914 int srcu_idx;
915 long len, ret = -EIO;
916
917 map = dm_get_live_table(md, &srcu_idx);
918 if (!map)
919 goto out;
920
921 ti = dm_table_find_target(map, sector);
922 if (!dm_target_is_valid(ti))
923 goto out;
924
925 len = max_io_len(sector, ti) << SECTOR_SHIFT;
926 size = min(len, size);
927
928 if (ti->type->direct_access)
929 ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
930out:
931 dm_put_live_table(md, srcu_idx);
932 return min(ret, size);
933}
934
935/*
936 * A target may call dm_accept_partial_bio only from the map routine. It is
937 * allowed for all bio types except REQ_PREFLUSH.
938 *
939 * dm_accept_partial_bio informs the dm that the target only wants to process
940 * additional n_sectors sectors of the bio and the rest of the data should be
941 * sent in a next bio.
942 *
943 * A diagram that explains the arithmetics:
944 * +--------------------+---------------+-------+
945 * | 1 | 2 | 3 |
946 * +--------------------+---------------+-------+
947 *
948 * <-------------- *tio->len_ptr --------------->
949 * <------- bi_size ------->
950 * <-- n_sectors -->
951 *
952 * Region 1 was already iterated over with bio_advance or similar function.
953 * (it may be empty if the target doesn't use bio_advance)
954 * Region 2 is the remaining bio size that the target wants to process.
955 * (it may be empty if region 1 is non-empty, although there is no reason
956 * to make it empty)
957 * The target requires that region 3 is to be sent in the next bio.
958 *
959 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
960 * the partially processed part (the sum of regions 1+2) must be the same for all
961 * copies of the bio.
962 */
963void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
964{
965 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
966 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
967 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
968 BUG_ON(bi_size > *tio->len_ptr);
969 BUG_ON(n_sectors > bi_size);
970 *tio->len_ptr -= bi_size - n_sectors;
971 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
972}
973EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
974
975/*
976 * Flush current->bio_list when the target map method blocks.
977 * This fixes deadlocks in snapshot and possibly in other targets.
978 */
979struct dm_offload {
980 struct blk_plug plug;
981 struct blk_plug_cb cb;
982};
983
984static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
985{
986 struct dm_offload *o = container_of(cb, struct dm_offload, cb);
987 struct bio_list list;
988 struct bio *bio;
989 int i;
990
991 INIT_LIST_HEAD(&o->cb.list);
992
993 if (unlikely(!current->bio_list))
994 return;
995
996 for (i = 0; i < 2; i++) {
997 list = current->bio_list[i];
998 bio_list_init(¤t->bio_list[i]);
999
1000 while ((bio = bio_list_pop(&list))) {
1001 struct bio_set *bs = bio->bi_pool;
1002 if (unlikely(!bs) || bs == fs_bio_set) {
1003 bio_list_add(¤t->bio_list[i], bio);
1004 continue;
1005 }
1006
1007 spin_lock(&bs->rescue_lock);
1008 bio_list_add(&bs->rescue_list, bio);
1009 queue_work(bs->rescue_workqueue, &bs->rescue_work);
1010 spin_unlock(&bs->rescue_lock);
1011 }
1012 }
1013}
1014
1015static void dm_offload_start(struct dm_offload *o)
1016{
1017 blk_start_plug(&o->plug);
1018 o->cb.callback = flush_current_bio_list;
1019 list_add(&o->cb.list, ¤t->plug->cb_list);
1020}
1021
1022static void dm_offload_end(struct dm_offload *o)
1023{
1024 list_del(&o->cb.list);
1025 blk_finish_plug(&o->plug);
1026}
1027
1028static void __map_bio(struct dm_target_io *tio)
1029{
1030 int r;
1031 sector_t sector;
1032 struct dm_offload o;
1033 struct bio *clone = &tio->clone;
1034 struct dm_target *ti = tio->ti;
1035
1036 clone->bi_end_io = clone_endio;
1037
1038 /*
1039 * Map the clone. If r == 0 we don't need to do
1040 * anything, the target has assumed ownership of
1041 * this io.
1042 */
1043 atomic_inc(&tio->io->io_count);
1044 sector = clone->bi_iter.bi_sector;
1045
1046 dm_offload_start(&o);
1047 r = ti->type->map(ti, clone);
1048 dm_offload_end(&o);
1049
1050 if (r == DM_MAPIO_REMAPPED) {
1051 /* the bio has been remapped so dispatch it */
1052
1053 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1054 tio->io->bio->bi_bdev->bd_dev, sector);
1055
1056 generic_make_request(clone);
1057 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1058 /* error the io and bail out, or requeue it if needed */
1059 dec_pending(tio->io, r);
1060 free_tio(tio);
1061 } else if (r != DM_MAPIO_SUBMITTED) {
1062 DMWARN("unimplemented target map return value: %d", r);
1063 BUG();
1064 }
1065}
1066
1067struct clone_info {
1068 struct mapped_device *md;
1069 struct dm_table *map;
1070 struct bio *bio;
1071 struct dm_io *io;
1072 sector_t sector;
1073 unsigned sector_count;
1074};
1075
1076static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1077{
1078 bio->bi_iter.bi_sector = sector;
1079 bio->bi_iter.bi_size = to_bytes(len);
1080}
1081
1082/*
1083 * Creates a bio that consists of range of complete bvecs.
1084 */
1085static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1086 sector_t sector, unsigned len)
1087{
1088 struct bio *clone = &tio->clone;
1089
1090 __bio_clone_fast(clone, bio);
1091
1092 if (bio_integrity(bio)) {
1093 int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1094 if (r < 0)
1095 return r;
1096 }
1097
1098 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1099 clone->bi_iter.bi_size = to_bytes(len);
1100
1101 if (bio_integrity(bio))
1102 bio_integrity_trim(clone, 0, len);
1103
1104 return 0;
1105}
1106
1107static struct dm_target_io *alloc_tio(struct clone_info *ci,
1108 struct dm_target *ti,
1109 unsigned target_bio_nr)
1110{
1111 struct dm_target_io *tio;
1112 struct bio *clone;
1113
1114 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1115 tio = container_of(clone, struct dm_target_io, clone);
1116
1117 tio->io = ci->io;
1118 tio->ti = ti;
1119 tio->target_bio_nr = target_bio_nr;
1120
1121 return tio;
1122}
1123
1124static void __clone_and_map_simple_bio(struct clone_info *ci,
1125 struct dm_target *ti,
1126 unsigned target_bio_nr, unsigned *len)
1127{
1128 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1129 struct bio *clone = &tio->clone;
1130
1131 tio->len_ptr = len;
1132
1133 __bio_clone_fast(clone, ci->bio);
1134 if (len)
1135 bio_setup_sector(clone, ci->sector, *len);
1136
1137 __map_bio(tio);
1138}
1139
1140static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1141 unsigned num_bios, unsigned *len)
1142{
1143 unsigned target_bio_nr;
1144
1145 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1146 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1147}
1148
1149static int __send_empty_flush(struct clone_info *ci)
1150{
1151 unsigned target_nr = 0;
1152 struct dm_target *ti;
1153
1154 BUG_ON(bio_has_data(ci->bio));
1155 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1156 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1157
1158 return 0;
1159}
1160
1161static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1162 sector_t sector, unsigned *len)
1163{
1164 struct bio *bio = ci->bio;
1165 struct dm_target_io *tio;
1166 unsigned target_bio_nr;
1167 unsigned num_target_bios = 1;
1168 int r = 0;
1169
1170 /*
1171 * Does the target want to receive duplicate copies of the bio?
1172 */
1173 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1174 num_target_bios = ti->num_write_bios(ti, bio);
1175
1176 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1177 tio = alloc_tio(ci, ti, target_bio_nr);
1178 tio->len_ptr = len;
1179 r = clone_bio(tio, bio, sector, *len);
1180 if (r < 0) {
1181 free_tio(tio);
1182 break;
1183 }
1184 __map_bio(tio);
1185 }
1186
1187 return r;
1188}
1189
1190typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1191
1192static unsigned get_num_discard_bios(struct dm_target *ti)
1193{
1194 return ti->num_discard_bios;
1195}
1196
1197static unsigned get_num_write_same_bios(struct dm_target *ti)
1198{
1199 return ti->num_write_same_bios;
1200}
1201
1202typedef bool (*is_split_required_fn)(struct dm_target *ti);
1203
1204static bool is_split_required_for_discard(struct dm_target *ti)
1205{
1206 return ti->split_discard_bios;
1207}
1208
1209static int __send_changing_extent_only(struct clone_info *ci,
1210 get_num_bios_fn get_num_bios,
1211 is_split_required_fn is_split_required)
1212{
1213 struct dm_target *ti;
1214 unsigned len;
1215 unsigned num_bios;
1216
1217 do {
1218 ti = dm_table_find_target(ci->map, ci->sector);
1219 if (!dm_target_is_valid(ti))
1220 return -EIO;
1221
1222 /*
1223 * Even though the device advertised support for this type of
1224 * request, that does not mean every target supports it, and
1225 * reconfiguration might also have changed that since the
1226 * check was performed.
1227 */
1228 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1229 if (!num_bios)
1230 return -EOPNOTSUPP;
1231
1232 if (is_split_required && !is_split_required(ti))
1233 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1234 else
1235 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1236
1237 __send_duplicate_bios(ci, ti, num_bios, &len);
1238
1239 ci->sector += len;
1240 } while (ci->sector_count -= len);
1241
1242 return 0;
1243}
1244
1245static int __send_discard(struct clone_info *ci)
1246{
1247 return __send_changing_extent_only(ci, get_num_discard_bios,
1248 is_split_required_for_discard);
1249}
1250
1251static int __send_write_same(struct clone_info *ci)
1252{
1253 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1254}
1255
1256/*
1257 * Select the correct strategy for processing a non-flush bio.
1258 */
1259static int __split_and_process_non_flush(struct clone_info *ci)
1260{
1261 struct bio *bio = ci->bio;
1262 struct dm_target *ti;
1263 unsigned len;
1264 int r;
1265
1266 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1267 return __send_discard(ci);
1268 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1269 return __send_write_same(ci);
1270
1271 ti = dm_table_find_target(ci->map, ci->sector);
1272 if (!dm_target_is_valid(ti))
1273 return -EIO;
1274
1275 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1276
1277 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1278 if (r < 0)
1279 return r;
1280
1281 ci->sector += len;
1282 ci->sector_count -= len;
1283
1284 return 0;
1285}
1286
1287/*
1288 * Entry point to split a bio into clones and submit them to the targets.
1289 */
1290static void __split_and_process_bio(struct mapped_device *md,
1291 struct dm_table *map, struct bio *bio)
1292{
1293 struct clone_info ci;
1294 int error = 0;
1295
1296 if (unlikely(!map)) {
1297 bio_io_error(bio);
1298 return;
1299 }
1300
1301 ci.map = map;
1302 ci.md = md;
1303 ci.io = alloc_io(md);
1304 ci.io->error = 0;
1305 atomic_set(&ci.io->io_count, 1);
1306 ci.io->bio = bio;
1307 ci.io->md = md;
1308 spin_lock_init(&ci.io->endio_lock);
1309 ci.sector = bio->bi_iter.bi_sector;
1310
1311 start_io_acct(ci.io);
1312
1313 if (bio->bi_opf & REQ_PREFLUSH) {
1314 ci.bio = &ci.md->flush_bio;
1315 ci.sector_count = 0;
1316 error = __send_empty_flush(&ci);
1317 /* dec_pending submits any data associated with flush */
1318 } else {
1319 ci.bio = bio;
1320 ci.sector_count = bio_sectors(bio);
1321 while (ci.sector_count && !error)
1322 error = __split_and_process_non_flush(&ci);
1323 }
1324
1325 /* drop the extra reference count */
1326 dec_pending(ci.io, error);
1327}
1328/*-----------------------------------------------------------------
1329 * CRUD END
1330 *---------------------------------------------------------------*/
1331
1332/*
1333 * The request function that just remaps the bio built up by
1334 * dm_merge_bvec.
1335 */
1336static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1337{
1338 int rw = bio_data_dir(bio);
1339 struct mapped_device *md = q->queuedata;
1340 int srcu_idx;
1341 struct dm_table *map;
1342
1343 map = dm_get_live_table(md, &srcu_idx);
1344
1345 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1346
1347 /* if we're suspended, we have to queue this io for later */
1348 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1349 dm_put_live_table(md, srcu_idx);
1350
1351 if (!(bio->bi_opf & REQ_RAHEAD))
1352 queue_io(md, bio);
1353 else
1354 bio_io_error(bio);
1355 return BLK_QC_T_NONE;
1356 }
1357
1358 __split_and_process_bio(md, map, bio);
1359 dm_put_live_table(md, srcu_idx);
1360 return BLK_QC_T_NONE;
1361}
1362
1363static int dm_any_congested(void *congested_data, int bdi_bits)
1364{
1365 int r = bdi_bits;
1366 struct mapped_device *md = congested_data;
1367 struct dm_table *map;
1368
1369 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1370 if (dm_request_based(md)) {
1371 /*
1372 * With request-based DM we only need to check the
1373 * top-level queue for congestion.
1374 */
1375 r = md->queue->backing_dev_info.wb.state & bdi_bits;
1376 } else {
1377 map = dm_get_live_table_fast(md);
1378 if (map)
1379 r = dm_table_any_congested(map, bdi_bits);
1380 dm_put_live_table_fast(md);
1381 }
1382 }
1383
1384 return r;
1385}
1386
1387/*-----------------------------------------------------------------
1388 * An IDR is used to keep track of allocated minor numbers.
1389 *---------------------------------------------------------------*/
1390static void free_minor(int minor)
1391{
1392 spin_lock(&_minor_lock);
1393 idr_remove(&_minor_idr, minor);
1394 spin_unlock(&_minor_lock);
1395}
1396
1397/*
1398 * See if the device with a specific minor # is free.
1399 */
1400static int specific_minor(int minor)
1401{
1402 int r;
1403
1404 if (minor >= (1 << MINORBITS))
1405 return -EINVAL;
1406
1407 idr_preload(GFP_KERNEL);
1408 spin_lock(&_minor_lock);
1409
1410 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1411
1412 spin_unlock(&_minor_lock);
1413 idr_preload_end();
1414 if (r < 0)
1415 return r == -ENOSPC ? -EBUSY : r;
1416 return 0;
1417}
1418
1419static int next_free_minor(int *minor)
1420{
1421 int r;
1422
1423 idr_preload(GFP_KERNEL);
1424 spin_lock(&_minor_lock);
1425
1426 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1427
1428 spin_unlock(&_minor_lock);
1429 idr_preload_end();
1430 if (r < 0)
1431 return r;
1432 *minor = r;
1433 return 0;
1434}
1435
1436static const struct block_device_operations dm_blk_dops;
1437
1438static void dm_wq_work(struct work_struct *work);
1439
1440void dm_init_md_queue(struct mapped_device *md)
1441{
1442 /*
1443 * Request-based dm devices cannot be stacked on top of bio-based dm
1444 * devices. The type of this dm device may not have been decided yet.
1445 * The type is decided at the first table loading time.
1446 * To prevent problematic device stacking, clear the queue flag
1447 * for request stacking support until then.
1448 *
1449 * This queue is new, so no concurrency on the queue_flags.
1450 */
1451 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1452
1453 /*
1454 * Initialize data that will only be used by a non-blk-mq DM queue
1455 * - must do so here (in alloc_dev callchain) before queue is used
1456 */
1457 md->queue->queuedata = md;
1458 md->queue->backing_dev_info.congested_data = md;
1459}
1460
1461void dm_init_normal_md_queue(struct mapped_device *md)
1462{
1463 md->use_blk_mq = false;
1464 dm_init_md_queue(md);
1465
1466 /*
1467 * Initialize aspects of queue that aren't relevant for blk-mq
1468 */
1469 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1470 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1471}
1472
1473static void cleanup_mapped_device(struct mapped_device *md)
1474{
1475 if (md->wq)
1476 destroy_workqueue(md->wq);
1477 if (md->kworker_task)
1478 kthread_stop(md->kworker_task);
1479 mempool_destroy(md->io_pool);
1480 mempool_destroy(md->rq_pool);
1481 if (md->bs)
1482 bioset_free(md->bs);
1483
1484 if (md->disk) {
1485 spin_lock(&_minor_lock);
1486 md->disk->private_data = NULL;
1487 spin_unlock(&_minor_lock);
1488 del_gendisk(md->disk);
1489 put_disk(md->disk);
1490 }
1491
1492 if (md->queue)
1493 blk_cleanup_queue(md->queue);
1494
1495 cleanup_srcu_struct(&md->io_barrier);
1496
1497 if (md->bdev) {
1498 bdput(md->bdev);
1499 md->bdev = NULL;
1500 }
1501
1502 dm_mq_cleanup_mapped_device(md);
1503}
1504
1505/*
1506 * Allocate and initialise a blank device with a given minor.
1507 */
1508static struct mapped_device *alloc_dev(int minor)
1509{
1510 int r, numa_node_id = dm_get_numa_node();
1511 struct mapped_device *md;
1512 void *old_md;
1513
1514 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1515 if (!md) {
1516 DMWARN("unable to allocate device, out of memory.");
1517 return NULL;
1518 }
1519
1520 if (!try_module_get(THIS_MODULE))
1521 goto bad_module_get;
1522
1523 /* get a minor number for the dev */
1524 if (minor == DM_ANY_MINOR)
1525 r = next_free_minor(&minor);
1526 else
1527 r = specific_minor(minor);
1528 if (r < 0)
1529 goto bad_minor;
1530
1531 r = init_srcu_struct(&md->io_barrier);
1532 if (r < 0)
1533 goto bad_io_barrier;
1534
1535 md->numa_node_id = numa_node_id;
1536 md->use_blk_mq = dm_use_blk_mq_default();
1537 md->init_tio_pdu = false;
1538 md->type = DM_TYPE_NONE;
1539 mutex_init(&md->suspend_lock);
1540 mutex_init(&md->type_lock);
1541 mutex_init(&md->table_devices_lock);
1542 spin_lock_init(&md->deferred_lock);
1543 atomic_set(&md->holders, 1);
1544 atomic_set(&md->open_count, 0);
1545 atomic_set(&md->event_nr, 0);
1546 atomic_set(&md->uevent_seq, 0);
1547 INIT_LIST_HEAD(&md->uevent_list);
1548 INIT_LIST_HEAD(&md->table_devices);
1549 spin_lock_init(&md->uevent_lock);
1550
1551 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1552 if (!md->queue)
1553 goto bad;
1554
1555 dm_init_md_queue(md);
1556
1557 md->disk = alloc_disk_node(1, numa_node_id);
1558 if (!md->disk)
1559 goto bad;
1560
1561 atomic_set(&md->pending[0], 0);
1562 atomic_set(&md->pending[1], 0);
1563 init_waitqueue_head(&md->wait);
1564 INIT_WORK(&md->work, dm_wq_work);
1565 init_waitqueue_head(&md->eventq);
1566 init_completion(&md->kobj_holder.completion);
1567 md->kworker_task = NULL;
1568
1569 md->disk->major = _major;
1570 md->disk->first_minor = minor;
1571 md->disk->fops = &dm_blk_dops;
1572 md->disk->queue = md->queue;
1573 md->disk->private_data = md;
1574 sprintf(md->disk->disk_name, "dm-%d", minor);
1575 add_disk(md->disk);
1576 format_dev_t(md->name, MKDEV(_major, minor));
1577
1578 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1579 if (!md->wq)
1580 goto bad;
1581
1582 md->bdev = bdget_disk(md->disk, 0);
1583 if (!md->bdev)
1584 goto bad;
1585
1586 bio_init(&md->flush_bio, NULL, 0);
1587 md->flush_bio.bi_bdev = md->bdev;
1588 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1589
1590 dm_stats_init(&md->stats);
1591
1592 /* Populate the mapping, nobody knows we exist yet */
1593 spin_lock(&_minor_lock);
1594 old_md = idr_replace(&_minor_idr, md, minor);
1595 spin_unlock(&_minor_lock);
1596
1597 BUG_ON(old_md != MINOR_ALLOCED);
1598
1599 return md;
1600
1601bad:
1602 cleanup_mapped_device(md);
1603bad_io_barrier:
1604 free_minor(minor);
1605bad_minor:
1606 module_put(THIS_MODULE);
1607bad_module_get:
1608 kfree(md);
1609 return NULL;
1610}
1611
1612static void unlock_fs(struct mapped_device *md);
1613
1614static void free_dev(struct mapped_device *md)
1615{
1616 int minor = MINOR(disk_devt(md->disk));
1617
1618 unlock_fs(md);
1619
1620 cleanup_mapped_device(md);
1621
1622 free_table_devices(&md->table_devices);
1623 dm_stats_cleanup(&md->stats);
1624 free_minor(minor);
1625
1626 module_put(THIS_MODULE);
1627 kfree(md);
1628}
1629
1630static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1631{
1632 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1633
1634 if (md->bs) {
1635 /* The md already has necessary mempools. */
1636 if (dm_table_bio_based(t)) {
1637 /*
1638 * Reload bioset because front_pad may have changed
1639 * because a different table was loaded.
1640 */
1641 bioset_free(md->bs);
1642 md->bs = p->bs;
1643 p->bs = NULL;
1644 }
1645 /*
1646 * There's no need to reload with request-based dm
1647 * because the size of front_pad doesn't change.
1648 * Note for future: If you are to reload bioset,
1649 * prep-ed requests in the queue may refer
1650 * to bio from the old bioset, so you must walk
1651 * through the queue to unprep.
1652 */
1653 goto out;
1654 }
1655
1656 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
1657
1658 md->io_pool = p->io_pool;
1659 p->io_pool = NULL;
1660 md->rq_pool = p->rq_pool;
1661 p->rq_pool = NULL;
1662 md->bs = p->bs;
1663 p->bs = NULL;
1664
1665out:
1666 /* mempool bind completed, no longer need any mempools in the table */
1667 dm_table_free_md_mempools(t);
1668}
1669
1670/*
1671 * Bind a table to the device.
1672 */
1673static void event_callback(void *context)
1674{
1675 unsigned long flags;
1676 LIST_HEAD(uevents);
1677 struct mapped_device *md = (struct mapped_device *) context;
1678
1679 spin_lock_irqsave(&md->uevent_lock, flags);
1680 list_splice_init(&md->uevent_list, &uevents);
1681 spin_unlock_irqrestore(&md->uevent_lock, flags);
1682
1683 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1684
1685 atomic_inc(&md->event_nr);
1686 wake_up(&md->eventq);
1687}
1688
1689/*
1690 * Protected by md->suspend_lock obtained by dm_swap_table().
1691 */
1692static void __set_size(struct mapped_device *md, sector_t size)
1693{
1694 set_capacity(md->disk, size);
1695
1696 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1697}
1698
1699/*
1700 * Returns old map, which caller must destroy.
1701 */
1702static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1703 struct queue_limits *limits)
1704{
1705 struct dm_table *old_map;
1706 struct request_queue *q = md->queue;
1707 sector_t size;
1708
1709 lockdep_assert_held(&md->suspend_lock);
1710
1711 size = dm_table_get_size(t);
1712
1713 /*
1714 * Wipe any geometry if the size of the table changed.
1715 */
1716 if (size != dm_get_size(md))
1717 memset(&md->geometry, 0, sizeof(md->geometry));
1718
1719 __set_size(md, size);
1720
1721 dm_table_event_callback(t, event_callback, md);
1722
1723 /*
1724 * The queue hasn't been stopped yet, if the old table type wasn't
1725 * for request-based during suspension. So stop it to prevent
1726 * I/O mapping before resume.
1727 * This must be done before setting the queue restrictions,
1728 * because request-based dm may be run just after the setting.
1729 */
1730 if (dm_table_request_based(t)) {
1731 dm_stop_queue(q);
1732 /*
1733 * Leverage the fact that request-based DM targets are
1734 * immutable singletons and establish md->immutable_target
1735 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1736 */
1737 md->immutable_target = dm_table_get_immutable_target(t);
1738 }
1739
1740 __bind_mempools(md, t);
1741
1742 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1743 rcu_assign_pointer(md->map, (void *)t);
1744 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1745
1746 dm_table_set_restrictions(t, q, limits);
1747 if (old_map)
1748 dm_sync_table(md);
1749
1750 return old_map;
1751}
1752
1753/*
1754 * Returns unbound table for the caller to free.
1755 */
1756static struct dm_table *__unbind(struct mapped_device *md)
1757{
1758 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1759
1760 if (!map)
1761 return NULL;
1762
1763 dm_table_event_callback(map, NULL, NULL);
1764 RCU_INIT_POINTER(md->map, NULL);
1765 dm_sync_table(md);
1766
1767 return map;
1768}
1769
1770/*
1771 * Constructor for a new device.
1772 */
1773int dm_create(int minor, struct mapped_device **result)
1774{
1775 struct mapped_device *md;
1776
1777 md = alloc_dev(minor);
1778 if (!md)
1779 return -ENXIO;
1780
1781 dm_sysfs_init(md);
1782
1783 *result = md;
1784 return 0;
1785}
1786
1787/*
1788 * Functions to manage md->type.
1789 * All are required to hold md->type_lock.
1790 */
1791void dm_lock_md_type(struct mapped_device *md)
1792{
1793 mutex_lock(&md->type_lock);
1794}
1795
1796void dm_unlock_md_type(struct mapped_device *md)
1797{
1798 mutex_unlock(&md->type_lock);
1799}
1800
1801void dm_set_md_type(struct mapped_device *md, unsigned type)
1802{
1803 BUG_ON(!mutex_is_locked(&md->type_lock));
1804 md->type = type;
1805}
1806
1807unsigned dm_get_md_type(struct mapped_device *md)
1808{
1809 return md->type;
1810}
1811
1812struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1813{
1814 return md->immutable_target_type;
1815}
1816
1817/*
1818 * The queue_limits are only valid as long as you have a reference
1819 * count on 'md'.
1820 */
1821struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1822{
1823 BUG_ON(!atomic_read(&md->holders));
1824 return &md->queue->limits;
1825}
1826EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1827
1828/*
1829 * Setup the DM device's queue based on md's type
1830 */
1831int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1832{
1833 int r;
1834 unsigned type = dm_get_md_type(md);
1835
1836 switch (type) {
1837 case DM_TYPE_REQUEST_BASED:
1838 r = dm_old_init_request_queue(md);
1839 if (r) {
1840 DMERR("Cannot initialize queue for request-based mapped device");
1841 return r;
1842 }
1843 break;
1844 case DM_TYPE_MQ_REQUEST_BASED:
1845 r = dm_mq_init_request_queue(md, t);
1846 if (r) {
1847 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1848 return r;
1849 }
1850 break;
1851 case DM_TYPE_BIO_BASED:
1852 case DM_TYPE_DAX_BIO_BASED:
1853 dm_init_normal_md_queue(md);
1854 blk_queue_make_request(md->queue, dm_make_request);
1855 /*
1856 * DM handles splitting bios as needed. Free the bio_split bioset
1857 * since it won't be used (saves 1 process per bio-based DM device).
1858 */
1859 bioset_free(md->queue->bio_split);
1860 md->queue->bio_split = NULL;
1861
1862 if (type == DM_TYPE_DAX_BIO_BASED)
1863 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1864 break;
1865 }
1866
1867 return 0;
1868}
1869
1870struct mapped_device *dm_get_md(dev_t dev)
1871{
1872 struct mapped_device *md;
1873 unsigned minor = MINOR(dev);
1874
1875 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1876 return NULL;
1877
1878 spin_lock(&_minor_lock);
1879
1880 md = idr_find(&_minor_idr, minor);
1881 if (md) {
1882 if ((md == MINOR_ALLOCED ||
1883 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1884 dm_deleting_md(md) ||
1885 test_bit(DMF_FREEING, &md->flags))) {
1886 md = NULL;
1887 goto out;
1888 }
1889 dm_get(md);
1890 }
1891
1892out:
1893 spin_unlock(&_minor_lock);
1894
1895 return md;
1896}
1897EXPORT_SYMBOL_GPL(dm_get_md);
1898
1899void *dm_get_mdptr(struct mapped_device *md)
1900{
1901 return md->interface_ptr;
1902}
1903
1904void dm_set_mdptr(struct mapped_device *md, void *ptr)
1905{
1906 md->interface_ptr = ptr;
1907}
1908
1909void dm_get(struct mapped_device *md)
1910{
1911 atomic_inc(&md->holders);
1912 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1913}
1914
1915int dm_hold(struct mapped_device *md)
1916{
1917 spin_lock(&_minor_lock);
1918 if (test_bit(DMF_FREEING, &md->flags)) {
1919 spin_unlock(&_minor_lock);
1920 return -EBUSY;
1921 }
1922 dm_get(md);
1923 spin_unlock(&_minor_lock);
1924 return 0;
1925}
1926EXPORT_SYMBOL_GPL(dm_hold);
1927
1928const char *dm_device_name(struct mapped_device *md)
1929{
1930 return md->name;
1931}
1932EXPORT_SYMBOL_GPL(dm_device_name);
1933
1934static void __dm_destroy(struct mapped_device *md, bool wait)
1935{
1936 struct request_queue *q = dm_get_md_queue(md);
1937 struct dm_table *map;
1938 int srcu_idx;
1939
1940 might_sleep();
1941
1942 spin_lock(&_minor_lock);
1943 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1944 set_bit(DMF_FREEING, &md->flags);
1945 spin_unlock(&_minor_lock);
1946
1947 blk_set_queue_dying(q);
1948
1949 if (dm_request_based(md) && md->kworker_task)
1950 kthread_flush_worker(&md->kworker);
1951
1952 /*
1953 * Take suspend_lock so that presuspend and postsuspend methods
1954 * do not race with internal suspend.
1955 */
1956 mutex_lock(&md->suspend_lock);
1957 map = dm_get_live_table(md, &srcu_idx);
1958 if (!dm_suspended_md(md)) {
1959 dm_table_presuspend_targets(map);
1960 dm_table_postsuspend_targets(map);
1961 }
1962 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1963 dm_put_live_table(md, srcu_idx);
1964 mutex_unlock(&md->suspend_lock);
1965
1966 /*
1967 * Rare, but there may be I/O requests still going to complete,
1968 * for example. Wait for all references to disappear.
1969 * No one should increment the reference count of the mapped_device,
1970 * after the mapped_device state becomes DMF_FREEING.
1971 */
1972 if (wait)
1973 while (atomic_read(&md->holders))
1974 msleep(1);
1975 else if (atomic_read(&md->holders))
1976 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1977 dm_device_name(md), atomic_read(&md->holders));
1978
1979 dm_sysfs_exit(md);
1980 dm_table_destroy(__unbind(md));
1981 free_dev(md);
1982}
1983
1984void dm_destroy(struct mapped_device *md)
1985{
1986 __dm_destroy(md, true);
1987}
1988
1989void dm_destroy_immediate(struct mapped_device *md)
1990{
1991 __dm_destroy(md, false);
1992}
1993
1994void dm_put(struct mapped_device *md)
1995{
1996 atomic_dec(&md->holders);
1997}
1998EXPORT_SYMBOL_GPL(dm_put);
1999
2000static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2001{
2002 int r = 0;
2003 DEFINE_WAIT(wait);
2004
2005 while (1) {
2006 prepare_to_wait(&md->wait, &wait, task_state);
2007
2008 if (!md_in_flight(md))
2009 break;
2010
2011 if (signal_pending_state(task_state, current)) {
2012 r = -EINTR;
2013 break;
2014 }
2015
2016 io_schedule();
2017 }
2018 finish_wait(&md->wait, &wait);
2019
2020 return r;
2021}
2022
2023/*
2024 * Process the deferred bios
2025 */
2026static void dm_wq_work(struct work_struct *work)
2027{
2028 struct mapped_device *md = container_of(work, struct mapped_device,
2029 work);
2030 struct bio *c;
2031 int srcu_idx;
2032 struct dm_table *map;
2033
2034 map = dm_get_live_table(md, &srcu_idx);
2035
2036 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2037 spin_lock_irq(&md->deferred_lock);
2038 c = bio_list_pop(&md->deferred);
2039 spin_unlock_irq(&md->deferred_lock);
2040
2041 if (!c)
2042 break;
2043
2044 if (dm_request_based(md))
2045 generic_make_request(c);
2046 else
2047 __split_and_process_bio(md, map, c);
2048 }
2049
2050 dm_put_live_table(md, srcu_idx);
2051}
2052
2053static void dm_queue_flush(struct mapped_device *md)
2054{
2055 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2056 smp_mb__after_atomic();
2057 queue_work(md->wq, &md->work);
2058}
2059
2060/*
2061 * Swap in a new table, returning the old one for the caller to destroy.
2062 */
2063struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2064{
2065 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2066 struct queue_limits limits;
2067 int r;
2068
2069 mutex_lock(&md->suspend_lock);
2070
2071 /* device must be suspended */
2072 if (!dm_suspended_md(md))
2073 goto out;
2074
2075 /*
2076 * If the new table has no data devices, retain the existing limits.
2077 * This helps multipath with queue_if_no_path if all paths disappear,
2078 * then new I/O is queued based on these limits, and then some paths
2079 * reappear.
2080 */
2081 if (dm_table_has_no_data_devices(table)) {
2082 live_map = dm_get_live_table_fast(md);
2083 if (live_map)
2084 limits = md->queue->limits;
2085 dm_put_live_table_fast(md);
2086 }
2087
2088 if (!live_map) {
2089 r = dm_calculate_queue_limits(table, &limits);
2090 if (r) {
2091 map = ERR_PTR(r);
2092 goto out;
2093 }
2094 }
2095
2096 map = __bind(md, table, &limits);
2097
2098out:
2099 mutex_unlock(&md->suspend_lock);
2100 return map;
2101}
2102
2103/*
2104 * Functions to lock and unlock any filesystem running on the
2105 * device.
2106 */
2107static int lock_fs(struct mapped_device *md)
2108{
2109 int r;
2110
2111 WARN_ON(md->frozen_sb);
2112
2113 md->frozen_sb = freeze_bdev(md->bdev);
2114 if (IS_ERR(md->frozen_sb)) {
2115 r = PTR_ERR(md->frozen_sb);
2116 md->frozen_sb = NULL;
2117 return r;
2118 }
2119
2120 set_bit(DMF_FROZEN, &md->flags);
2121
2122 return 0;
2123}
2124
2125static void unlock_fs(struct mapped_device *md)
2126{
2127 if (!test_bit(DMF_FROZEN, &md->flags))
2128 return;
2129
2130 thaw_bdev(md->bdev, md->frozen_sb);
2131 md->frozen_sb = NULL;
2132 clear_bit(DMF_FROZEN, &md->flags);
2133}
2134
2135/*
2136 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2137 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2138 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2139 *
2140 * If __dm_suspend returns 0, the device is completely quiescent
2141 * now. There is no request-processing activity. All new requests
2142 * are being added to md->deferred list.
2143 *
2144 * Caller must hold md->suspend_lock
2145 */
2146static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2147 unsigned suspend_flags, long task_state,
2148 int dmf_suspended_flag)
2149{
2150 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2151 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2152 int r;
2153
2154 lockdep_assert_held(&md->suspend_lock);
2155
2156 /*
2157 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2158 * This flag is cleared before dm_suspend returns.
2159 */
2160 if (noflush)
2161 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2162
2163 /*
2164 * This gets reverted if there's an error later and the targets
2165 * provide the .presuspend_undo hook.
2166 */
2167 dm_table_presuspend_targets(map);
2168
2169 /*
2170 * Flush I/O to the device.
2171 * Any I/O submitted after lock_fs() may not be flushed.
2172 * noflush takes precedence over do_lockfs.
2173 * (lock_fs() flushes I/Os and waits for them to complete.)
2174 */
2175 if (!noflush && do_lockfs) {
2176 r = lock_fs(md);
2177 if (r) {
2178 dm_table_presuspend_undo_targets(map);
2179 return r;
2180 }
2181 }
2182
2183 /*
2184 * Here we must make sure that no processes are submitting requests
2185 * to target drivers i.e. no one may be executing
2186 * __split_and_process_bio. This is called from dm_request and
2187 * dm_wq_work.
2188 *
2189 * To get all processes out of __split_and_process_bio in dm_request,
2190 * we take the write lock. To prevent any process from reentering
2191 * __split_and_process_bio from dm_request and quiesce the thread
2192 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2193 * flush_workqueue(md->wq).
2194 */
2195 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2196 if (map)
2197 synchronize_srcu(&md->io_barrier);
2198
2199 /*
2200 * Stop md->queue before flushing md->wq in case request-based
2201 * dm defers requests to md->wq from md->queue.
2202 */
2203 if (dm_request_based(md)) {
2204 dm_stop_queue(md->queue);
2205 if (md->kworker_task)
2206 kthread_flush_worker(&md->kworker);
2207 }
2208
2209 flush_workqueue(md->wq);
2210
2211 /*
2212 * At this point no more requests are entering target request routines.
2213 * We call dm_wait_for_completion to wait for all existing requests
2214 * to finish.
2215 */
2216 r = dm_wait_for_completion(md, task_state);
2217 if (!r)
2218 set_bit(dmf_suspended_flag, &md->flags);
2219
2220 if (noflush)
2221 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2222 if (map)
2223 synchronize_srcu(&md->io_barrier);
2224
2225 /* were we interrupted ? */
2226 if (r < 0) {
2227 dm_queue_flush(md);
2228
2229 if (dm_request_based(md))
2230 dm_start_queue(md->queue);
2231
2232 unlock_fs(md);
2233 dm_table_presuspend_undo_targets(map);
2234 /* pushback list is already flushed, so skip flush */
2235 }
2236
2237 return r;
2238}
2239
2240/*
2241 * We need to be able to change a mapping table under a mounted
2242 * filesystem. For example we might want to move some data in
2243 * the background. Before the table can be swapped with
2244 * dm_bind_table, dm_suspend must be called to flush any in
2245 * flight bios and ensure that any further io gets deferred.
2246 */
2247/*
2248 * Suspend mechanism in request-based dm.
2249 *
2250 * 1. Flush all I/Os by lock_fs() if needed.
2251 * 2. Stop dispatching any I/O by stopping the request_queue.
2252 * 3. Wait for all in-flight I/Os to be completed or requeued.
2253 *
2254 * To abort suspend, start the request_queue.
2255 */
2256int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2257{
2258 struct dm_table *map = NULL;
2259 int r = 0;
2260
2261retry:
2262 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2263
2264 if (dm_suspended_md(md)) {
2265 r = -EINVAL;
2266 goto out_unlock;
2267 }
2268
2269 if (dm_suspended_internally_md(md)) {
2270 /* already internally suspended, wait for internal resume */
2271 mutex_unlock(&md->suspend_lock);
2272 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2273 if (r)
2274 return r;
2275 goto retry;
2276 }
2277
2278 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2279
2280 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2281 if (r)
2282 goto out_unlock;
2283
2284 dm_table_postsuspend_targets(map);
2285
2286out_unlock:
2287 mutex_unlock(&md->suspend_lock);
2288 return r;
2289}
2290
2291static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2292{
2293 if (map) {
2294 int r = dm_table_resume_targets(map);
2295 if (r)
2296 return r;
2297 }
2298
2299 dm_queue_flush(md);
2300
2301 /*
2302 * Flushing deferred I/Os must be done after targets are resumed
2303 * so that mapping of targets can work correctly.
2304 * Request-based dm is queueing the deferred I/Os in its request_queue.
2305 */
2306 if (dm_request_based(md))
2307 dm_start_queue(md->queue);
2308
2309 unlock_fs(md);
2310
2311 return 0;
2312}
2313
2314int dm_resume(struct mapped_device *md)
2315{
2316 int r;
2317 struct dm_table *map = NULL;
2318
2319retry:
2320 r = -EINVAL;
2321 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2322
2323 if (!dm_suspended_md(md))
2324 goto out;
2325
2326 if (dm_suspended_internally_md(md)) {
2327 /* already internally suspended, wait for internal resume */
2328 mutex_unlock(&md->suspend_lock);
2329 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2330 if (r)
2331 return r;
2332 goto retry;
2333 }
2334
2335 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2336 if (!map || !dm_table_get_size(map))
2337 goto out;
2338
2339 r = __dm_resume(md, map);
2340 if (r)
2341 goto out;
2342
2343 clear_bit(DMF_SUSPENDED, &md->flags);
2344out:
2345 mutex_unlock(&md->suspend_lock);
2346
2347 return r;
2348}
2349
2350/*
2351 * Internal suspend/resume works like userspace-driven suspend. It waits
2352 * until all bios finish and prevents issuing new bios to the target drivers.
2353 * It may be used only from the kernel.
2354 */
2355
2356static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2357{
2358 struct dm_table *map = NULL;
2359
2360 if (md->internal_suspend_count++)
2361 return; /* nested internal suspend */
2362
2363 if (dm_suspended_md(md)) {
2364 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2365 return; /* nest suspend */
2366 }
2367
2368 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2369
2370 /*
2371 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2372 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2373 * would require changing .presuspend to return an error -- avoid this
2374 * until there is a need for more elaborate variants of internal suspend.
2375 */
2376 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2377 DMF_SUSPENDED_INTERNALLY);
2378
2379 dm_table_postsuspend_targets(map);
2380}
2381
2382static void __dm_internal_resume(struct mapped_device *md)
2383{
2384 BUG_ON(!md->internal_suspend_count);
2385
2386 if (--md->internal_suspend_count)
2387 return; /* resume from nested internal suspend */
2388
2389 if (dm_suspended_md(md))
2390 goto done; /* resume from nested suspend */
2391
2392 /*
2393 * NOTE: existing callers don't need to call dm_table_resume_targets
2394 * (which may fail -- so best to avoid it for now by passing NULL map)
2395 */
2396 (void) __dm_resume(md, NULL);
2397
2398done:
2399 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2400 smp_mb__after_atomic();
2401 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2402}
2403
2404void dm_internal_suspend_noflush(struct mapped_device *md)
2405{
2406 mutex_lock(&md->suspend_lock);
2407 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2408 mutex_unlock(&md->suspend_lock);
2409}
2410EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2411
2412void dm_internal_resume(struct mapped_device *md)
2413{
2414 mutex_lock(&md->suspend_lock);
2415 __dm_internal_resume(md);
2416 mutex_unlock(&md->suspend_lock);
2417}
2418EXPORT_SYMBOL_GPL(dm_internal_resume);
2419
2420/*
2421 * Fast variants of internal suspend/resume hold md->suspend_lock,
2422 * which prevents interaction with userspace-driven suspend.
2423 */
2424
2425void dm_internal_suspend_fast(struct mapped_device *md)
2426{
2427 mutex_lock(&md->suspend_lock);
2428 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2429 return;
2430
2431 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2432 synchronize_srcu(&md->io_barrier);
2433 flush_workqueue(md->wq);
2434 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2435}
2436EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2437
2438void dm_internal_resume_fast(struct mapped_device *md)
2439{
2440 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2441 goto done;
2442
2443 dm_queue_flush(md);
2444
2445done:
2446 mutex_unlock(&md->suspend_lock);
2447}
2448EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2449
2450/*-----------------------------------------------------------------
2451 * Event notification.
2452 *---------------------------------------------------------------*/
2453int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2454 unsigned cookie)
2455{
2456 char udev_cookie[DM_COOKIE_LENGTH];
2457 char *envp[] = { udev_cookie, NULL };
2458
2459 if (!cookie)
2460 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2461 else {
2462 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2463 DM_COOKIE_ENV_VAR_NAME, cookie);
2464 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2465 action, envp);
2466 }
2467}
2468
2469uint32_t dm_next_uevent_seq(struct mapped_device *md)
2470{
2471 return atomic_add_return(1, &md->uevent_seq);
2472}
2473
2474uint32_t dm_get_event_nr(struct mapped_device *md)
2475{
2476 return atomic_read(&md->event_nr);
2477}
2478
2479int dm_wait_event(struct mapped_device *md, int event_nr)
2480{
2481 return wait_event_interruptible(md->eventq,
2482 (event_nr != atomic_read(&md->event_nr)));
2483}
2484
2485void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2486{
2487 unsigned long flags;
2488
2489 spin_lock_irqsave(&md->uevent_lock, flags);
2490 list_add(elist, &md->uevent_list);
2491 spin_unlock_irqrestore(&md->uevent_lock, flags);
2492}
2493
2494/*
2495 * The gendisk is only valid as long as you have a reference
2496 * count on 'md'.
2497 */
2498struct gendisk *dm_disk(struct mapped_device *md)
2499{
2500 return md->disk;
2501}
2502EXPORT_SYMBOL_GPL(dm_disk);
2503
2504struct kobject *dm_kobject(struct mapped_device *md)
2505{
2506 return &md->kobj_holder.kobj;
2507}
2508
2509struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2510{
2511 struct mapped_device *md;
2512
2513 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2514
2515 if (test_bit(DMF_FREEING, &md->flags) ||
2516 dm_deleting_md(md))
2517 return NULL;
2518
2519 dm_get(md);
2520 return md;
2521}
2522
2523int dm_suspended_md(struct mapped_device *md)
2524{
2525 return test_bit(DMF_SUSPENDED, &md->flags);
2526}
2527
2528int dm_suspended_internally_md(struct mapped_device *md)
2529{
2530 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2531}
2532
2533int dm_test_deferred_remove_flag(struct mapped_device *md)
2534{
2535 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2536}
2537
2538int dm_suspended(struct dm_target *ti)
2539{
2540 return dm_suspended_md(dm_table_get_md(ti->table));
2541}
2542EXPORT_SYMBOL_GPL(dm_suspended);
2543
2544int dm_noflush_suspending(struct dm_target *ti)
2545{
2546 return __noflush_suspending(dm_table_get_md(ti->table));
2547}
2548EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2549
2550struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2551 unsigned integrity, unsigned per_io_data_size)
2552{
2553 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2554 struct kmem_cache *cachep = NULL;
2555 unsigned int pool_size = 0;
2556 unsigned int front_pad;
2557
2558 if (!pools)
2559 return NULL;
2560
2561 switch (type) {
2562 case DM_TYPE_BIO_BASED:
2563 case DM_TYPE_DAX_BIO_BASED:
2564 cachep = _io_cache;
2565 pool_size = dm_get_reserved_bio_based_ios();
2566 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2567 break;
2568 case DM_TYPE_REQUEST_BASED:
2569 cachep = _rq_tio_cache;
2570 pool_size = dm_get_reserved_rq_based_ios();
2571 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
2572 if (!pools->rq_pool)
2573 goto out;
2574 /* fall through to setup remaining rq-based pools */
2575 case DM_TYPE_MQ_REQUEST_BASED:
2576 if (!pool_size)
2577 pool_size = dm_get_reserved_rq_based_ios();
2578 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2579 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2580 break;
2581 default:
2582 BUG();
2583 }
2584
2585 if (cachep) {
2586 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2587 if (!pools->io_pool)
2588 goto out;
2589 }
2590
2591 pools->bs = bioset_create_nobvec(pool_size, front_pad);
2592 if (!pools->bs)
2593 goto out;
2594
2595 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2596 goto out;
2597
2598 return pools;
2599
2600out:
2601 dm_free_md_mempools(pools);
2602
2603 return NULL;
2604}
2605
2606void dm_free_md_mempools(struct dm_md_mempools *pools)
2607{
2608 if (!pools)
2609 return;
2610
2611 mempool_destroy(pools->io_pool);
2612 mempool_destroy(pools->rq_pool);
2613
2614 if (pools->bs)
2615 bioset_free(pools->bs);
2616
2617 kfree(pools);
2618}
2619
2620struct dm_pr {
2621 u64 old_key;
2622 u64 new_key;
2623 u32 flags;
2624 bool fail_early;
2625};
2626
2627static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2628 void *data)
2629{
2630 struct mapped_device *md = bdev->bd_disk->private_data;
2631 struct dm_table *table;
2632 struct dm_target *ti;
2633 int ret = -ENOTTY, srcu_idx;
2634
2635 table = dm_get_live_table(md, &srcu_idx);
2636 if (!table || !dm_table_get_size(table))
2637 goto out;
2638
2639 /* We only support devices that have a single target */
2640 if (dm_table_get_num_targets(table) != 1)
2641 goto out;
2642 ti = dm_table_get_target(table, 0);
2643
2644 ret = -EINVAL;
2645 if (!ti->type->iterate_devices)
2646 goto out;
2647
2648 ret = ti->type->iterate_devices(ti, fn, data);
2649out:
2650 dm_put_live_table(md, srcu_idx);
2651 return ret;
2652}
2653
2654/*
2655 * For register / unregister we need to manually call out to every path.
2656 */
2657static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2658 sector_t start, sector_t len, void *data)
2659{
2660 struct dm_pr *pr = data;
2661 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2662
2663 if (!ops || !ops->pr_register)
2664 return -EOPNOTSUPP;
2665 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2666}
2667
2668static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2669 u32 flags)
2670{
2671 struct dm_pr pr = {
2672 .old_key = old_key,
2673 .new_key = new_key,
2674 .flags = flags,
2675 .fail_early = true,
2676 };
2677 int ret;
2678
2679 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2680 if (ret && new_key) {
2681 /* unregister all paths if we failed to register any path */
2682 pr.old_key = new_key;
2683 pr.new_key = 0;
2684 pr.flags = 0;
2685 pr.fail_early = false;
2686 dm_call_pr(bdev, __dm_pr_register, &pr);
2687 }
2688
2689 return ret;
2690}
2691
2692static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2693 u32 flags)
2694{
2695 struct mapped_device *md = bdev->bd_disk->private_data;
2696 const struct pr_ops *ops;
2697 fmode_t mode;
2698 int r;
2699
2700 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2701 if (r < 0)
2702 return r;
2703
2704 ops = bdev->bd_disk->fops->pr_ops;
2705 if (ops && ops->pr_reserve)
2706 r = ops->pr_reserve(bdev, key, type, flags);
2707 else
2708 r = -EOPNOTSUPP;
2709
2710 bdput(bdev);
2711 return r;
2712}
2713
2714static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2715{
2716 struct mapped_device *md = bdev->bd_disk->private_data;
2717 const struct pr_ops *ops;
2718 fmode_t mode;
2719 int r;
2720
2721 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2722 if (r < 0)
2723 return r;
2724
2725 ops = bdev->bd_disk->fops->pr_ops;
2726 if (ops && ops->pr_release)
2727 r = ops->pr_release(bdev, key, type);
2728 else
2729 r = -EOPNOTSUPP;
2730
2731 bdput(bdev);
2732 return r;
2733}
2734
2735static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2736 enum pr_type type, bool abort)
2737{
2738 struct mapped_device *md = bdev->bd_disk->private_data;
2739 const struct pr_ops *ops;
2740 fmode_t mode;
2741 int r;
2742
2743 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2744 if (r < 0)
2745 return r;
2746
2747 ops = bdev->bd_disk->fops->pr_ops;
2748 if (ops && ops->pr_preempt)
2749 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2750 else
2751 r = -EOPNOTSUPP;
2752
2753 bdput(bdev);
2754 return r;
2755}
2756
2757static int dm_pr_clear(struct block_device *bdev, u64 key)
2758{
2759 struct mapped_device *md = bdev->bd_disk->private_data;
2760 const struct pr_ops *ops;
2761 fmode_t mode;
2762 int r;
2763
2764 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2765 if (r < 0)
2766 return r;
2767
2768 ops = bdev->bd_disk->fops->pr_ops;
2769 if (ops && ops->pr_clear)
2770 r = ops->pr_clear(bdev, key);
2771 else
2772 r = -EOPNOTSUPP;
2773
2774 bdput(bdev);
2775 return r;
2776}
2777
2778static const struct pr_ops dm_pr_ops = {
2779 .pr_register = dm_pr_register,
2780 .pr_reserve = dm_pr_reserve,
2781 .pr_release = dm_pr_release,
2782 .pr_preempt = dm_pr_preempt,
2783 .pr_clear = dm_pr_clear,
2784};
2785
2786static const struct block_device_operations dm_blk_dops = {
2787 .open = dm_blk_open,
2788 .release = dm_blk_close,
2789 .ioctl = dm_blk_ioctl,
2790 .direct_access = dm_blk_direct_access,
2791 .getgeo = dm_blk_getgeo,
2792 .pr_ops = &dm_pr_ops,
2793 .owner = THIS_MODULE
2794};
2795
2796/*
2797 * module hooks
2798 */
2799module_init(dm_init);
2800module_exit(dm_exit);
2801
2802module_param(major, uint, 0);
2803MODULE_PARM_DESC(major, "The major number of the device mapper");
2804
2805module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2806MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2807
2808module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2809MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2810
2811MODULE_DESCRIPTION(DM_NAME " driver");
2812MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2813MODULE_LICENSE("GPL");