Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-core.h"
  10#include "dm-rq.h"
  11#include "dm-uevent.h"
  12#include "dm-ima.h"
  13
  14#include <linux/bio-integrity.h>
  15#include <linux/init.h>
  16#include <linux/module.h>
  17#include <linux/mutex.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/signal.h>
  20#include <linux/blkpg.h>
  21#include <linux/bio.h>
  22#include <linux/mempool.h>
  23#include <linux/dax.h>
  24#include <linux/slab.h>
  25#include <linux/idr.h>
  26#include <linux/uio.h>
  27#include <linux/hdreg.h>
  28#include <linux/delay.h>
  29#include <linux/wait.h>
  30#include <linux/pr.h>
  31#include <linux/refcount.h>
  32#include <linux/part_stat.h>
  33#include <linux/blk-crypto.h>
  34#include <linux/blk-crypto-profile.h>
  35
  36#define DM_MSG_PREFIX "core"
  37
  38/*
  39 * Cookies are numeric values sent with CHANGE and REMOVE
  40 * uevents while resuming, removing or renaming the device.
  41 */
  42#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  43#define DM_COOKIE_LENGTH 24
  44
  45/*
  46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
  47 * dm_io into one list, and reuse bio->bi_private as the list head. Before
  48 * ending this fs bio, we will recover its ->bi_private.
  49 */
  50#define REQ_DM_POLL_LIST	REQ_DRV
  51
  52static const char *_name = DM_NAME;
  53
  54static unsigned int major;
  55static unsigned int _major;
  56
  57static DEFINE_IDR(_minor_idr);
  58
  59static DEFINE_SPINLOCK(_minor_lock);
  60
  61static void do_deferred_remove(struct work_struct *w);
  62
  63static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  64
  65static struct workqueue_struct *deferred_remove_workqueue;
  66
  67atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  68DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  69
  70void dm_issue_global_event(void)
  71{
  72	atomic_inc(&dm_global_event_nr);
  73	wake_up(&dm_global_eventq);
  74}
  75
  76DEFINE_STATIC_KEY_FALSE(stats_enabled);
  77DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
  78DEFINE_STATIC_KEY_FALSE(zoned_enabled);
  79
  80/*
  81 * One of these is allocated (on-stack) per original bio.
  82 */
  83struct clone_info {
  84	struct dm_table *map;
  85	struct bio *bio;
  86	struct dm_io *io;
  87	sector_t sector;
  88	unsigned int sector_count;
  89	bool is_abnormal_io:1;
  90	bool submit_as_polled:1;
  91};
  92
  93static inline struct dm_target_io *clone_to_tio(struct bio *clone)
  94{
  95	return container_of(clone, struct dm_target_io, clone);
  96}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97
  98void *dm_per_bio_data(struct bio *bio, size_t data_size)
  99{
 100	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
 101		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 102	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 
 103}
 104EXPORT_SYMBOL_GPL(dm_per_bio_data);
 105
 106struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 107{
 108	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 109
 110	if (io->magic == DM_IO_MAGIC)
 111		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 112	BUG_ON(io->magic != DM_TIO_MAGIC);
 113	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 114}
 115EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 116
 117unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
 118{
 119	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 120}
 121EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 122
 123#define MINOR_ALLOCED ((void *)-1)
 124
 
 
 
 
 
 
 
 
 
 
 
 
 125#define DM_NUMA_NODE NUMA_NO_NODE
 126static int dm_numa_node = DM_NUMA_NODE;
 127
 128#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 129static int swap_bios = DEFAULT_SWAP_BIOS;
 130static int get_swap_bios(void)
 131{
 132	int latch = READ_ONCE(swap_bios);
 133
 134	if (unlikely(latch <= 0))
 135		latch = DEFAULT_SWAP_BIOS;
 136	return latch;
 137}
 138
 139struct table_device {
 140	struct list_head list;
 141	refcount_t count;
 142	struct dm_dev dm_dev;
 143};
 144
 145/*
 146 * Bio-based DM's mempools' reserved IOs set by the user.
 147 */
 148#define RESERVED_BIO_BASED_IOS		16
 149static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 150
 151static int __dm_get_module_param_int(int *module_param, int min, int max)
 152{
 153	int param = READ_ONCE(*module_param);
 154	int modified_param = 0;
 155	bool modified = true;
 156
 157	if (param < min)
 158		modified_param = min;
 159	else if (param > max)
 160		modified_param = max;
 161	else
 162		modified = false;
 163
 164	if (modified) {
 165		(void)cmpxchg(module_param, param, modified_param);
 166		param = modified_param;
 167	}
 168
 169	return param;
 170}
 171
 172unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
 
 173{
 174	unsigned int param = READ_ONCE(*module_param);
 175	unsigned int modified_param = 0;
 176
 177	if (!param)
 178		modified_param = def;
 179	else if (param > max)
 180		modified_param = max;
 181
 182	if (modified_param) {
 183		(void)cmpxchg(module_param, param, modified_param);
 184		param = modified_param;
 185	}
 186
 187	return param;
 188}
 189
 190unsigned int dm_get_reserved_bio_based_ios(void)
 191{
 192	return __dm_get_module_param(&reserved_bio_based_ios,
 193				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 194}
 195EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 196
 197static unsigned int dm_get_numa_node(void)
 198{
 199	return __dm_get_module_param_int(&dm_numa_node,
 200					 DM_NUMA_NODE, num_online_nodes() - 1);
 201}
 202
 203static int __init local_init(void)
 204{
 205	int r;
 206
 207	r = dm_uevent_init();
 208	if (r)
 209		return r;
 210
 211	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
 212	if (!deferred_remove_workqueue) {
 213		r = -ENOMEM;
 214		goto out_uevent_exit;
 215	}
 216
 217	_major = major;
 218	r = register_blkdev(_major, _name);
 219	if (r < 0)
 220		goto out_free_workqueue;
 221
 222	if (!_major)
 223		_major = r;
 224
 225	return 0;
 226
 227out_free_workqueue:
 228	destroy_workqueue(deferred_remove_workqueue);
 229out_uevent_exit:
 230	dm_uevent_exit();
 231
 232	return r;
 233}
 234
 235static void local_exit(void)
 236{
 
 237	destroy_workqueue(deferred_remove_workqueue);
 238
 239	unregister_blkdev(_major, _name);
 240	dm_uevent_exit();
 241
 242	_major = 0;
 243
 244	DMINFO("cleaned up");
 245}
 246
 247static int (*_inits[])(void) __initdata = {
 248	local_init,
 249	dm_target_init,
 250	dm_linear_init,
 251	dm_stripe_init,
 252	dm_io_init,
 253	dm_kcopyd_init,
 254	dm_interface_init,
 255	dm_statistics_init,
 256};
 257
 258static void (*_exits[])(void) = {
 259	local_exit,
 260	dm_target_exit,
 261	dm_linear_exit,
 262	dm_stripe_exit,
 263	dm_io_exit,
 264	dm_kcopyd_exit,
 265	dm_interface_exit,
 266	dm_statistics_exit,
 267};
 268
 269static int __init dm_init(void)
 270{
 271	const int count = ARRAY_SIZE(_inits);
 272	int r, i;
 273
 274#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 275	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 276	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 277#endif
 278
 279	for (i = 0; i < count; i++) {
 280		r = _inits[i]();
 281		if (r)
 282			goto bad;
 283	}
 284
 285	return 0;
 286bad:
 
 287	while (i--)
 288		_exits[i]();
 289
 290	return r;
 291}
 292
 293static void __exit dm_exit(void)
 294{
 295	int i = ARRAY_SIZE(_exits);
 296
 297	while (i--)
 298		_exits[i]();
 299
 300	/*
 301	 * Should be empty by this point.
 302	 */
 303	idr_destroy(&_minor_idr);
 304}
 305
 306/*
 307 * Block device functions
 308 */
 309int dm_deleting_md(struct mapped_device *md)
 310{
 311	return test_bit(DMF_DELETING, &md->flags);
 312}
 313
 314static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
 315{
 316	struct mapped_device *md;
 317
 318	spin_lock(&_minor_lock);
 319
 320	md = disk->private_data;
 321	if (!md)
 322		goto out;
 323
 324	if (test_bit(DMF_FREEING, &md->flags) ||
 325	    dm_deleting_md(md)) {
 326		md = NULL;
 327		goto out;
 328	}
 329
 330	dm_get(md);
 331	atomic_inc(&md->open_count);
 332out:
 333	spin_unlock(&_minor_lock);
 334
 335	return md ? 0 : -ENXIO;
 336}
 337
 338static void dm_blk_close(struct gendisk *disk)
 339{
 340	struct mapped_device *md;
 341
 342	spin_lock(&_minor_lock);
 343
 344	md = disk->private_data;
 345	if (WARN_ON(!md))
 346		goto out;
 347
 348	if (atomic_dec_and_test(&md->open_count) &&
 349	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 350		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 351
 352	dm_put(md);
 353out:
 354	spin_unlock(&_minor_lock);
 355}
 356
 357int dm_open_count(struct mapped_device *md)
 358{
 359	return atomic_read(&md->open_count);
 360}
 361
 362/*
 363 * Guarantees nothing is using the device before it's deleted.
 364 */
 365int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 366{
 367	int r = 0;
 368
 369	spin_lock(&_minor_lock);
 370
 371	if (dm_open_count(md)) {
 372		r = -EBUSY;
 373		if (mark_deferred)
 374			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 375	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 376		r = -EEXIST;
 377	else
 378		set_bit(DMF_DELETING, &md->flags);
 379
 380	spin_unlock(&_minor_lock);
 381
 382	return r;
 383}
 384
 385int dm_cancel_deferred_remove(struct mapped_device *md)
 386{
 387	int r = 0;
 388
 389	spin_lock(&_minor_lock);
 390
 391	if (test_bit(DMF_DELETING, &md->flags))
 392		r = -EBUSY;
 393	else
 394		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 395
 396	spin_unlock(&_minor_lock);
 397
 398	return r;
 399}
 400
 401static void do_deferred_remove(struct work_struct *w)
 402{
 403	dm_deferred_remove();
 404}
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409
 410	return dm_get_geometry(md, geo);
 411}
 412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 414			    struct block_device **bdev)
 
 415{
 416	struct dm_target *ti;
 417	struct dm_table *map;
 418	int r;
 419
 420retry:
 421	r = -ENOTTY;
 422	map = dm_get_live_table(md, srcu_idx);
 423	if (!map || !dm_table_get_size(map))
 424		return r;
 425
 426	/* We only support devices that have a single target */
 427	if (map->num_targets != 1)
 428		return r;
 429
 430	ti = dm_table_get_target(map, 0);
 431	if (!ti->type->prepare_ioctl)
 432		return r;
 433
 434	if (dm_suspended_md(md))
 435		return -EAGAIN;
 436
 437	r = ti->type->prepare_ioctl(ti, bdev);
 438	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 439		dm_put_live_table(md, *srcu_idx);
 440		fsleep(10000);
 441		goto retry;
 442	}
 443
 444	return r;
 445}
 446
 447static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 
 448{
 449	dm_put_live_table(md, srcu_idx);
 450}
 451
 452static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
 453			unsigned int cmd, unsigned long arg)
 454{
 455	struct mapped_device *md = bdev->bd_disk->private_data;
 456	int r, srcu_idx;
 457
 458	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 459	if (r < 0)
 460		goto out;
 461
 462	if (r > 0) {
 463		/*
 464		 * Target determined this ioctl is being issued against a
 465		 * subset of the parent bdev; require extra privileges.
 466		 */
 467		if (!capable(CAP_SYS_RAWIO)) {
 468			DMDEBUG_LIMIT(
 469	"%s: sending ioctl %x to DM device without required privilege.",
 470				current->comm, cmd);
 471			r = -ENOIOCTLCMD;
 472			goto out;
 473		}
 474	}
 475
 476	if (!bdev->bd_disk->fops->ioctl)
 477		r = -ENOTTY;
 478	else
 479		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 480out:
 481	dm_unprepare_ioctl(md, srcu_idx);
 482	return r;
 483}
 484
 485u64 dm_start_time_ns_from_clone(struct bio *bio)
 486{
 487	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 488}
 489EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 490
 491static inline bool bio_is_flush_with_data(struct bio *bio)
 492{
 493	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 494}
 495
 496static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
 497{
 498	/*
 499	 * If REQ_PREFLUSH set, don't account payload, it will be
 500	 * submitted (and accounted) after this flush completes.
 501	 */
 502	if (bio_is_flush_with_data(bio))
 503		return 0;
 504	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 505		return io->sectors;
 506	return bio_sectors(bio);
 507}
 508
 509static void dm_io_acct(struct dm_io *io, bool end)
 510{
 511	struct bio *bio = io->orig_bio;
 512
 513	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
 514		if (!end)
 515			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
 516					   io->start_time);
 517		else
 518			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
 519					 dm_io_sectors(io, bio),
 520					 io->start_time);
 521	}
 522
 523	if (static_branch_unlikely(&stats_enabled) &&
 524	    unlikely(dm_stats_used(&io->md->stats))) {
 525		sector_t sector;
 526
 527		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 528			sector = bio_end_sector(bio) - io->sector_offset;
 529		else
 530			sector = bio->bi_iter.bi_sector;
 531
 532		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
 533				    sector, dm_io_sectors(io, bio),
 534				    end, io->start_time, &io->stats_aux);
 535	}
 536}
 537
 538static void __dm_start_io_acct(struct dm_io *io)
 539{
 540	dm_io_acct(io, false);
 541}
 542
 543static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 544{
 545	/*
 546	 * Ensure IO accounting is only ever started once.
 547	 */
 548	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 549		return;
 550
 551	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 552	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 553		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 554	} else {
 555		unsigned long flags;
 556		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 557		spin_lock_irqsave(&io->lock, flags);
 558		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 559			spin_unlock_irqrestore(&io->lock, flags);
 560			return;
 561		}
 562		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 563		spin_unlock_irqrestore(&io->lock, flags);
 564	}
 565
 566	__dm_start_io_acct(io);
 567}
 568
 569static void dm_end_io_acct(struct dm_io *io)
 570{
 571	dm_io_acct(io, true);
 572}
 573
 574static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
 575{
 576	struct dm_io *io;
 577	struct dm_target_io *tio;
 578	struct bio *clone;
 579
 580	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
 581	if (unlikely(!clone))
 582		return NULL;
 583	tio = clone_to_tio(clone);
 584	tio->flags = 0;
 585	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 586	tio->io = NULL;
 587
 588	io = container_of(tio, struct dm_io, tio);
 589	io->magic = DM_IO_MAGIC;
 590	io->status = BLK_STS_OK;
 591
 592	/* one ref is for submission, the other is for completion */
 593	atomic_set(&io->io_count, 2);
 594	this_cpu_inc(*md->pending_io);
 595	io->orig_bio = bio;
 596	io->md = md;
 597	spin_lock_init(&io->lock);
 598	io->start_time = jiffies;
 599	io->flags = 0;
 600	if (blk_queue_io_stat(md->queue))
 601		dm_io_set_flag(io, DM_IO_BLK_STAT);
 602
 603	if (static_branch_unlikely(&stats_enabled) &&
 604	    unlikely(dm_stats_used(&md->stats)))
 605		dm_stats_record_start(&md->stats, &io->stats_aux);
 606
 607	return io;
 608}
 609
 610static void free_io(struct dm_io *io)
 611{
 612	bio_put(&io->tio.clone);
 613}
 614
 615static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 616			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
 617{
 618	struct mapped_device *md = ci->io->md;
 619	struct dm_target_io *tio;
 620	struct bio *clone;
 621
 622	if (!ci->io->tio.io) {
 623		/* the dm_target_io embedded in ci->io is available */
 624		tio = &ci->io->tio;
 625		/* alloc_io() already initialized embedded clone */
 626		clone = &tio->clone;
 627	} else {
 628		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 629					&md->mempools->bs);
 630		if (!clone)
 631			return NULL;
 632
 633		/* REQ_DM_POLL_LIST shouldn't be inherited */
 634		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 635
 636		tio = clone_to_tio(clone);
 637		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 638	}
 639
 640	tio->magic = DM_TIO_MAGIC;
 641	tio->io = ci->io;
 642	tio->ti = ti;
 643	tio->target_bio_nr = target_bio_nr;
 644	tio->len_ptr = len;
 645	tio->old_sector = 0;
 646
 647	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 648	clone->bi_bdev = md->disk->part0;
 649	if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
 650		bio_set_dev(clone, md->disk->part0);
 
 
 
 
 
 
 
 
 
 
 
 651
 652	if (len) {
 653		clone->bi_iter.bi_size = to_bytes(*len);
 654		if (bio_integrity(clone))
 655			bio_integrity_trim(clone);
 656	}
 657
 658	return clone;
 659}
 660
 661static void free_tio(struct bio *clone)
 662{
 663	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 664		return;
 665	bio_put(clone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666}
 667
 668/*
 669 * Add the bio to the list of deferred io.
 670 */
 671static void queue_io(struct mapped_device *md, struct bio *bio)
 672{
 673	unsigned long flags;
 674
 675	spin_lock_irqsave(&md->deferred_lock, flags);
 676	bio_list_add(&md->deferred, bio);
 677	spin_unlock_irqrestore(&md->deferred_lock, flags);
 678	queue_work(md->wq, &md->work);
 679}
 680
 681/*
 682 * Everyone (including functions in this file), should use this
 683 * function to access the md->map field, and make sure they call
 684 * dm_put_live_table() when finished.
 685 */
 686struct dm_table *dm_get_live_table(struct mapped_device *md,
 687				   int *srcu_idx) __acquires(md->io_barrier)
 688{
 689	*srcu_idx = srcu_read_lock(&md->io_barrier);
 690
 691	return srcu_dereference(md->map, &md->io_barrier);
 692}
 693
 694void dm_put_live_table(struct mapped_device *md,
 695		       int srcu_idx) __releases(md->io_barrier)
 696{
 697	srcu_read_unlock(&md->io_barrier, srcu_idx);
 698}
 699
 700void dm_sync_table(struct mapped_device *md)
 701{
 702	synchronize_srcu(&md->io_barrier);
 703	synchronize_rcu_expedited();
 704}
 705
 706/*
 707 * A fast alternative to dm_get_live_table/dm_put_live_table.
 708 * The caller must not block between these two functions.
 709 */
 710static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 711{
 712	rcu_read_lock();
 713	return rcu_dereference(md->map);
 714}
 715
 716static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 717{
 718	rcu_read_unlock();
 719}
 720
 721static char *_dm_claim_ptr = "I belong to device-mapper";
 722
 723/*
 724 * Open a table device so we can use it as a map destination.
 725 */
 726static struct table_device *open_table_device(struct mapped_device *md,
 727		dev_t dev, blk_mode_t mode)
 728{
 729	struct table_device *td;
 730	struct file *bdev_file;
 731	struct block_device *bdev;
 732	u64 part_off;
 733	int r;
 734
 735	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 736	if (!td)
 737		return ERR_PTR(-ENOMEM);
 738	refcount_set(&td->count, 1);
 739
 740	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
 741	if (IS_ERR(bdev_file)) {
 742		r = PTR_ERR(bdev_file);
 743		goto out_free_td;
 744	}
 745
 746	bdev = file_bdev(bdev_file);
 
 
 747
 748	/*
 749	 * We can be called before the dm disk is added.  In that case we can't
 750	 * register the holder relation here.  It will be done once add_disk was
 751	 * called.
 752	 */
 753	if (md->disk->slave_dir) {
 754		r = bd_link_disk_holder(bdev, md->disk);
 755		if (r)
 756			goto out_blkdev_put;
 757	}
 758
 759	td->dm_dev.mode = mode;
 760	td->dm_dev.bdev = bdev;
 761	td->dm_dev.bdev_file = bdev_file;
 762	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
 763						NULL, NULL);
 764	format_dev_t(td->dm_dev.name, dev);
 765	list_add(&td->list, &md->table_devices);
 766	return td;
 767
 768out_blkdev_put:
 769	__fput_sync(bdev_file);
 770out_free_td:
 771	kfree(td);
 772	return ERR_PTR(r);
 773}
 774
 775/*
 776 * Close a table device that we've been using.
 777 */
 778static void close_table_device(struct table_device *td, struct mapped_device *md)
 779{
 780	if (md->disk->slave_dir)
 781		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 782
 783	/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
 784	if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 785		fput(td->dm_dev.bdev_file);
 786	else
 787		__fput_sync(td->dm_dev.bdev_file);
 788
 
 
 789	put_dax(td->dm_dev.dax_dev);
 790	list_del(&td->list);
 791	kfree(td);
 792}
 793
 794static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 795					      blk_mode_t mode)
 796{
 797	struct table_device *td;
 798
 799	list_for_each_entry(td, l, list)
 800		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 801			return td;
 802
 803	return NULL;
 804}
 805
 806int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
 807			struct dm_dev **result)
 808{
 
 809	struct table_device *td;
 810
 811	mutex_lock(&md->table_devices_lock);
 812	td = find_table_device(&md->table_devices, dev, mode);
 813	if (!td) {
 814		td = open_table_device(md, dev, mode);
 815		if (IS_ERR(td)) {
 
 
 
 
 
 
 
 
 816			mutex_unlock(&md->table_devices_lock);
 817			return PTR_ERR(td);
 
 818		}
 
 
 
 
 
 819	} else {
 820		refcount_inc(&td->count);
 821	}
 822	mutex_unlock(&md->table_devices_lock);
 823
 824	*result = &td->dm_dev;
 825	return 0;
 826}
 
 827
 828void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 829{
 830	struct table_device *td = container_of(d, struct table_device, dm_dev);
 831
 832	mutex_lock(&md->table_devices_lock);
 833	if (refcount_dec_and_test(&td->count))
 834		close_table_device(td, md);
 
 
 
 835	mutex_unlock(&md->table_devices_lock);
 836}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837
 838/*
 839 * Get the geometry associated with a dm device
 840 */
 841int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 842{
 843	*geo = md->geometry;
 844
 845	return 0;
 846}
 847
 848/*
 849 * Set the geometry of a device.
 850 */
 851int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 852{
 853	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 854
 855	if (geo->start > sz) {
 856		DMERR("Start sector is beyond the geometry limits.");
 857		return -EINVAL;
 858	}
 859
 860	md->geometry = *geo;
 861
 862	return 0;
 863}
 864
 865static int __noflush_suspending(struct mapped_device *md)
 866{
 867	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 868}
 869
 870static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 871{
 872	struct mapped_device *md = io->md;
 873
 874	if (first_stage) {
 875		struct dm_io *next = md->requeue_list;
 876
 877		md->requeue_list = io;
 878		io->next = next;
 879	} else {
 880		bio_list_add_head(&md->deferred, io->orig_bio);
 881	}
 882}
 883
 884static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 885{
 886	if (first_stage)
 887		queue_work(md->wq, &md->requeue_work);
 888	else
 889		queue_work(md->wq, &md->work);
 890}
 891
 892/*
 893 * Return true if the dm_io's original bio is requeued.
 894 * io->status is updated with error if requeue disallowed.
 895 */
 896static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 897{
 898	struct bio *bio = io->orig_bio;
 899	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 900	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 901				     (bio->bi_opf & REQ_POLLED));
 902	struct mapped_device *md = io->md;
 903	bool requeued = false;
 904
 905	if (handle_requeue || handle_polled_eagain) {
 906		unsigned long flags;
 
 
 
 
 
 907
 908		if (bio->bi_opf & REQ_POLLED) {
 
 909			/*
 910			 * Upper layer won't help us poll split bio
 911			 * (io->orig_bio may only reflect a subset of the
 912			 * pre-split original) so clear REQ_POLLED.
 913			 */
 914			bio_clear_polled(bio);
 915		}
 
 
 
 
 
 
 
 
 
 
 
 
 916
 917		/*
 918		 * Target requested pushing back the I/O or
 919		 * polled IO hit BLK_STS_AGAIN.
 920		 */
 921		spin_lock_irqsave(&md->deferred_lock, flags);
 922		if ((__noflush_suspending(md) &&
 923		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 924		    handle_polled_eagain || first_stage) {
 925			dm_requeue_add_io(io, first_stage);
 926			requeued = true;
 927		} else {
 928			/*
 929			 * noflush suspend was interrupted or this is
 930			 * a write to a zoned target.
 931			 */
 932			io->status = BLK_STS_IOERR;
 
 
 
 
 
 
 933		}
 934		spin_unlock_irqrestore(&md->deferred_lock, flags);
 935	}
 936
 937	if (requeued)
 938		dm_kick_requeue(md, first_stage);
 939
 940	return requeued;
 941}
 942
 943static void __dm_io_complete(struct dm_io *io, bool first_stage)
 944{
 945	struct bio *bio = io->orig_bio;
 946	struct mapped_device *md = io->md;
 947	blk_status_t io_error;
 948	bool requeued;
 949
 950	requeued = dm_handle_requeue(io, first_stage);
 951	if (requeued && first_stage)
 952		return;
 953
 954	io_error = io->status;
 955	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 956		dm_end_io_acct(io);
 957	else if (!io_error) {
 958		/*
 959		 * Must handle target that DM_MAPIO_SUBMITTED only to
 960		 * then bio_endio() rather than dm_submit_bio_remap()
 961		 */
 962		__dm_start_io_acct(io);
 963		dm_end_io_acct(io);
 964	}
 965	free_io(io);
 966	smp_wmb();
 967	this_cpu_dec(*md->pending_io);
 968
 969	/* nudge anyone waiting on suspend queue */
 970	if (unlikely(wq_has_sleeper(&md->wait)))
 971		wake_up(&md->wait);
 972
 973	/* Return early if the original bio was requeued */
 974	if (requeued)
 975		return;
 976
 977	if (bio_is_flush_with_data(bio)) {
 978		/*
 979		 * Preflush done for flush with data, reissue
 980		 * without REQ_PREFLUSH.
 981		 */
 982		bio->bi_opf &= ~REQ_PREFLUSH;
 983		queue_io(md, bio);
 984	} else {
 985		/* done with normal IO or empty flush */
 986		if (io_error)
 987			bio->bi_status = io_error;
 988		bio_endio(bio);
 989	}
 990}
 991
 992static void dm_wq_requeue_work(struct work_struct *work)
 993{
 994	struct mapped_device *md = container_of(work, struct mapped_device,
 995						requeue_work);
 996	unsigned long flags;
 997	struct dm_io *io;
 998
 999	/* reuse deferred lock to simplify dm_handle_requeue */
1000	spin_lock_irqsave(&md->deferred_lock, flags);
1001	io = md->requeue_list;
1002	md->requeue_list = NULL;
1003	spin_unlock_irqrestore(&md->deferred_lock, flags);
1004
1005	while (io) {
1006		struct dm_io *next = io->next;
1007
1008		dm_io_rewind(io, &md->disk->bio_split);
1009
1010		io->next = NULL;
1011		__dm_io_complete(io, false);
1012		io = next;
1013		cond_resched();
1014	}
1015}
1016
1017/*
1018 * Two staged requeue:
1019 *
1020 * 1) io->orig_bio points to the real original bio, and the part mapped to
1021 *    this io must be requeued, instead of other parts of the original bio.
1022 *
1023 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1024 */
1025static void dm_io_complete(struct dm_io *io)
1026{
1027	bool first_requeue;
1028
1029	/*
1030	 * Only dm_io that has been split needs two stage requeue, otherwise
1031	 * we may run into long bio clone chain during suspend and OOM could
1032	 * be triggered.
1033	 *
1034	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1035	 * also aren't handled via the first stage requeue.
1036	 */
1037	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1038		first_requeue = true;
1039	else
1040		first_requeue = false;
1041
1042	__dm_io_complete(io, first_requeue);
1043}
1044
1045/*
1046 * Decrements the number of outstanding ios that a bio has been
1047 * cloned into, completing the original io if necc.
1048 */
1049static inline void __dm_io_dec_pending(struct dm_io *io)
1050{
1051	if (atomic_dec_and_test(&io->io_count))
1052		dm_io_complete(io);
1053}
1054
1055static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1056{
1057	unsigned long flags;
1058
1059	/* Push-back supersedes any I/O errors */
1060	spin_lock_irqsave(&io->lock, flags);
1061	if (!(io->status == BLK_STS_DM_REQUEUE &&
1062	      __noflush_suspending(io->md))) {
1063		io->status = error;
1064	}
1065	spin_unlock_irqrestore(&io->lock, flags);
1066}
1067
1068static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1069{
1070	if (unlikely(error))
1071		dm_io_set_error(io, error);
1072
1073	__dm_io_dec_pending(io);
1074}
1075
1076/*
1077 * The queue_limits are only valid as long as you have a reference
1078 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1079 */
1080static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1081{
1082	return &md->queue->limits;
1083}
1084
1085void disable_discard(struct mapped_device *md)
1086{
1087	struct queue_limits *limits = dm_get_queue_limits(md);
1088
1089	/* device doesn't really support DISCARD, disable it */
1090	limits->max_hw_discard_sectors = 0;
1091}
1092
1093void disable_write_zeroes(struct mapped_device *md)
1094{
1095	struct queue_limits *limits = dm_get_queue_limits(md);
1096
1097	/* device doesn't really support WRITE ZEROES, disable it */
1098	limits->max_write_zeroes_sectors = 0;
1099}
1100
1101static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1102{
1103	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1104}
1105
1106static void clone_endio(struct bio *bio)
1107{
1108	blk_status_t error = bio->bi_status;
1109	struct dm_target_io *tio = clone_to_tio(bio);
1110	struct dm_target *ti = tio->ti;
1111	dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1112	struct dm_io *io = tio->io;
1113	struct mapped_device *md = io->md;
 
1114
1115	if (unlikely(error == BLK_STS_TARGET)) {
1116		if (bio_op(bio) == REQ_OP_DISCARD &&
1117		    !bdev_max_discard_sectors(bio->bi_bdev))
1118			disable_discard(md);
 
 
 
1119		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1120			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1121			disable_write_zeroes(md);
1122	}
1123
1124	if (static_branch_unlikely(&zoned_enabled) &&
1125	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1126		dm_zone_endio(io, bio);
1127
1128	if (endio) {
1129		int r = endio(ti, bio, &error);
1130
1131		switch (r) {
1132		case DM_ENDIO_REQUEUE:
1133			if (static_branch_unlikely(&zoned_enabled)) {
1134				/*
1135				 * Requeuing writes to a sequential zone of a zoned
1136				 * target will break the sequential write pattern:
1137				 * fail such IO.
1138				 */
1139				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1140					error = BLK_STS_IOERR;
1141				else
1142					error = BLK_STS_DM_REQUEUE;
1143			} else
1144				error = BLK_STS_DM_REQUEUE;
1145			fallthrough;
1146		case DM_ENDIO_DONE:
1147			break;
1148		case DM_ENDIO_INCOMPLETE:
1149			/* The target will handle the io */
1150			return;
1151		default:
1152			DMCRIT("unimplemented target endio return value: %d", r);
1153			BUG();
1154		}
1155	}
1156
1157	if (static_branch_unlikely(&swap_bios_enabled) &&
1158	    likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1159		up(&md->swap_bios_semaphore);
1160
1161	free_tio(bio);
1162	dm_io_dec_pending(io, error);
1163}
1164
1165/*
1166 * Return maximum size of I/O possible at the supplied sector up to the current
1167 * target boundary.
1168 */
1169static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1170						  sector_t target_offset)
1171{
 
 
1172	return ti->len - target_offset;
1173}
1174
1175static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1176			     unsigned int max_granularity,
1177			     unsigned int max_sectors)
1178{
1179	sector_t target_offset = dm_target_offset(ti, sector);
1180	sector_t len = max_io_len_target_boundary(ti, target_offset);
1181
1182	/*
1183	 * Does the target need to split IO even further?
1184	 * - varied (per target) IO splitting is a tenet of DM; this
1185	 *   explains why stacked chunk_sectors based splitting via
1186	 *   bio_split_to_limits() isn't possible here.
1187	 */
1188	if (!max_granularity)
1189		return len;
1190	return min_t(sector_t, len,
1191		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1192		    blk_boundary_sectors_left(target_offset, max_granularity)));
1193}
 
1194
1195static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1196{
1197	return __max_io_len(ti, sector, ti->max_io_len, 0);
 
 
1198}
1199
1200int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1201{
1202	if (len > UINT_MAX) {
1203		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1204		      (unsigned long long)len, UINT_MAX);
1205		ti->error = "Maximum size of target IO is too large";
1206		return -EINVAL;
1207	}
1208
1209	ti->max_io_len = (uint32_t) len;
1210
1211	return 0;
1212}
1213EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1214
1215static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1216						sector_t sector, int *srcu_idx)
1217	__acquires(md->io_barrier)
1218{
1219	struct dm_table *map;
1220	struct dm_target *ti;
1221
1222	map = dm_get_live_table(md, srcu_idx);
1223	if (!map)
1224		return NULL;
1225
1226	ti = dm_table_find_target(map, sector);
1227	if (!ti)
1228		return NULL;
1229
1230	return ti;
1231}
1232
1233static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1234		long nr_pages, enum dax_access_mode mode, void **kaddr,
1235		pfn_t *pfn)
1236{
1237	struct mapped_device *md = dax_get_private(dax_dev);
1238	sector_t sector = pgoff * PAGE_SECTORS;
1239	struct dm_target *ti;
1240	long len, ret = -EIO;
1241	int srcu_idx;
1242
1243	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1244
1245	if (!ti)
1246		goto out;
1247	if (!ti->type->direct_access)
1248		goto out;
1249	len = max_io_len(ti, sector) / PAGE_SECTORS;
1250	if (len < 1)
1251		goto out;
1252	nr_pages = min(len, nr_pages);
1253	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1254
1255 out:
1256	dm_put_live_table(md, srcu_idx);
1257
1258	return ret;
1259}
1260
1261static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1262				  size_t nr_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263{
1264	struct mapped_device *md = dax_get_private(dax_dev);
1265	sector_t sector = pgoff * PAGE_SECTORS;
1266	struct dm_target *ti;
1267	int ret = -EIO;
1268	int srcu_idx;
1269
1270	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1271
1272	if (!ti)
1273		goto out;
1274	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1275		/*
1276		 * ->zero_page_range() is mandatory dax operation. If we are
1277		 *  here, something is wrong.
1278		 */
1279		goto out;
1280	}
1281	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1282 out:
1283	dm_put_live_table(md, srcu_idx);
1284
1285	return ret;
1286}
1287
1288static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1289		void *addr, size_t bytes, struct iov_iter *i)
1290{
1291	struct mapped_device *md = dax_get_private(dax_dev);
1292	sector_t sector = pgoff * PAGE_SECTORS;
1293	struct dm_target *ti;
1294	int srcu_idx;
1295	long ret = 0;
 
1296
1297	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1298	if (!ti || !ti->type->dax_recovery_write)
1299		goto out;
1300
1301	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1302out:
 
 
 
 
 
 
1303	dm_put_live_table(md, srcu_idx);
 
1304	return ret;
1305}
1306
1307/*
1308 * A target may call dm_accept_partial_bio only from the map routine.  It is
1309 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1310 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1311 * __send_duplicate_bios().
1312 *
1313 * dm_accept_partial_bio informs the dm that the target only wants to process
1314 * additional n_sectors sectors of the bio and the rest of the data should be
1315 * sent in a next bio.
1316 *
1317 * A diagram that explains the arithmetics:
1318 * +--------------------+---------------+-------+
1319 * |         1          |       2       |   3   |
1320 * +--------------------+---------------+-------+
1321 *
1322 * <-------------- *tio->len_ptr --------------->
1323 *                      <----- bio_sectors ----->
1324 *                      <-- n_sectors -->
1325 *
1326 * Region 1 was already iterated over with bio_advance or similar function.
1327 *	(it may be empty if the target doesn't use bio_advance)
1328 * Region 2 is the remaining bio size that the target wants to process.
1329 *	(it may be empty if region 1 is non-empty, although there is no reason
1330 *	 to make it empty)
1331 * The target requires that region 3 is to be sent in the next bio.
1332 *
1333 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1334 * the partially processed part (the sum of regions 1+2) must be the same for all
1335 * copies of the bio.
1336 */
1337void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1338{
1339	struct dm_target_io *tio = clone_to_tio(bio);
1340	struct dm_io *io = tio->io;
1341	unsigned int bio_sectors = bio_sectors(bio);
1342
1343	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1344	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1345	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1346	BUG_ON(bio_sectors > *tio->len_ptr);
1347	BUG_ON(n_sectors > bio_sectors);
1348
1349	*tio->len_ptr -= bio_sectors - n_sectors;
1350	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1351
1352	/*
1353	 * __split_and_process_bio() may have already saved mapped part
1354	 * for accounting but it is being reduced so update accordingly.
1355	 */
1356	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1357	io->sectors = n_sectors;
1358	io->sector_offset = bio_sectors(io->orig_bio);
1359}
1360EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1361
1362/*
1363 * @clone: clone bio that DM core passed to target's .map function
1364 * @tgt_clone: clone of @clone bio that target needs submitted
1365 *
1366 * Targets should use this interface to submit bios they take
1367 * ownership of when returning DM_MAPIO_SUBMITTED.
1368 *
1369 * Target should also enable ti->accounts_remapped_io
1370 */
1371void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
 
1372{
1373	struct dm_target_io *tio = clone_to_tio(clone);
1374	struct dm_io *io = tio->io;
1375
1376	/* establish bio that will get submitted */
1377	if (!tgt_clone)
1378		tgt_clone = clone;
1379
1380	/*
1381	 * Account io->origin_bio to DM dev on behalf of target
1382	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1383	 */
1384	dm_start_io_acct(io, clone);
 
 
 
 
 
 
 
1385
1386	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1387			      tio->old_sector);
1388	submit_bio_noacct(tgt_clone);
1389}
1390EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1391
1392static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1393{
1394	mutex_lock(&md->swap_bios_lock);
1395	while (latch < md->swap_bios) {
1396		cond_resched();
1397		down(&md->swap_bios_semaphore);
1398		md->swap_bios--;
1399	}
1400	while (latch > md->swap_bios) {
1401		cond_resched();
1402		up(&md->swap_bios_semaphore);
1403		md->swap_bios++;
1404	}
1405	mutex_unlock(&md->swap_bios_lock);
 
 
 
 
1406}
 
1407
1408static void __map_bio(struct bio *clone)
1409{
1410	struct dm_target_io *tio = clone_to_tio(clone);
1411	struct dm_target *ti = tio->ti;
 
1412	struct dm_io *io = tio->io;
1413	struct mapped_device *md = io->md;
1414	int r;
 
1415
1416	clone->bi_end_io = clone_endio;
1417
1418	/*
1419	 * Map the clone.
 
 
1420	 */
1421	tio->old_sector = clone->bi_iter.bi_sector;
1422
1423	if (static_branch_unlikely(&swap_bios_enabled) &&
1424	    unlikely(swap_bios_limit(ti, clone))) {
1425		int latch = get_swap_bios();
1426
1427		if (unlikely(latch != md->swap_bios))
1428			__set_swap_bios_limit(md, latch);
1429		down(&md->swap_bios_semaphore);
1430	}
1431
1432	if (likely(ti->type->map == linear_map))
1433		r = linear_map(ti, clone);
1434	else if (ti->type->map == stripe_map)
1435		r = stripe_map(ti, clone);
1436	else
1437		r = ti->type->map(ti, clone);
1438
 
1439	switch (r) {
1440	case DM_MAPIO_SUBMITTED:
1441		/* target has assumed ownership of this io */
1442		if (!ti->accounts_remapped_io)
1443			dm_start_io_acct(io, clone);
1444		break;
1445	case DM_MAPIO_REMAPPED:
1446		dm_submit_bio_remap(clone, NULL);
 
 
 
 
 
 
1447		break;
1448	case DM_MAPIO_KILL:
 
 
 
1449	case DM_MAPIO_REQUEUE:
1450		if (static_branch_unlikely(&swap_bios_enabled) &&
1451		    unlikely(swap_bios_limit(ti, clone)))
1452			up(&md->swap_bios_semaphore);
1453		free_tio(clone);
1454		if (r == DM_MAPIO_KILL)
1455			dm_io_dec_pending(io, BLK_STS_IOERR);
1456		else
1457			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1458		break;
1459	default:
1460		DMCRIT("unimplemented target map return value: %d", r);
1461		BUG();
1462	}
 
 
1463}
1464
1465static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1466{
1467	struct dm_io *io = ci->io;
 
 
1468
1469	if (ci->sector_count > len) {
1470		/*
1471		 * Split needed, save the mapped part for accounting.
1472		 * NOTE: dm_accept_partial_bio() will update accordingly.
1473		 */
1474		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1475		io->sectors = len;
1476		io->sector_offset = bio_sectors(ci->bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477	}
 
 
 
 
 
 
 
 
1478}
1479
1480static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1481				struct dm_target *ti, unsigned int num_bios,
1482				unsigned *len, gfp_t gfp_flag)
1483{
1484	struct bio *bio;
1485	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
 
 
 
1486
1487	for (; try < 2; try++) {
 
 
 
 
 
 
1488		int bio_nr;
 
1489
1490		if (try && num_bios > 1)
1491			mutex_lock(&ci->io->md->table_devices_lock);
1492		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1493			bio = alloc_tio(ci, ti, bio_nr, len,
1494					try ? GFP_NOIO : GFP_NOWAIT);
1495			if (!bio)
1496				break;
1497
1498			bio_list_add(blist, bio);
1499		}
1500		if (try && num_bios > 1)
1501			mutex_unlock(&ci->io->md->table_devices_lock);
1502		if (bio_nr == num_bios)
1503			return;
1504
1505		while ((bio = bio_list_pop(blist)))
1506			free_tio(bio);
 
 
1507	}
1508}
1509
1510static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1511					  unsigned int num_bios, unsigned int *len,
1512					  gfp_t gfp_flag)
1513{
1514	struct bio_list blist = BIO_EMPTY_LIST;
1515	struct bio *clone;
1516	unsigned int ret = 0;
1517
1518	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1519		return 0;
1520
1521	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1522	if (len)
1523		setup_split_accounting(ci, *len);
1524
1525	/*
1526	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1527	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1528	 */
1529	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1530	while ((clone = bio_list_pop(&blist))) {
1531		if (num_bios > 1)
1532			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1533		__map_bio(clone);
1534		ret += 1;
1535	}
1536
1537	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1538}
1539
1540static void __send_empty_flush(struct clone_info *ci)
1541{
1542	struct dm_table *t = ci->map;
1543	struct bio flush_bio;
1544
1545	/*
1546	 * Use an on-stack bio for this, it's safe since we don't
1547	 * need to reference it after submit. It's just used as
1548	 * the basis for the clone(s).
1549	 */
1550	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1551		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
 
 
 
 
 
1552
1553	ci->bio = &flush_bio;
1554	ci->sector_count = 0;
1555	ci->io->tio.clone.bi_iter.bi_size = 0;
1556
1557	if (!t->flush_bypasses_map) {
1558		for (unsigned int i = 0; i < t->num_targets; i++) {
1559			unsigned int bios;
1560			struct dm_target *ti = dm_table_get_target(t, i);
1561
1562			if (unlikely(ti->num_flush_bios == 0))
1563				continue;
 
 
 
 
1564
1565			atomic_add(ti->num_flush_bios, &ci->io->io_count);
1566			bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1567						     NULL, GFP_NOWAIT);
1568			atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1569		}
1570	} else {
1571		/*
1572		 * Note that there's no need to grab t->devices_lock here
1573		 * because the targets that support flush optimization don't
1574		 * modify the list of devices.
1575		 */
1576		struct list_head *devices = dm_table_get_devices(t);
1577		unsigned int len = 0;
1578		struct dm_dev_internal *dd;
1579		list_for_each_entry(dd, devices, list) {
1580			struct bio *clone;
1581			/*
1582			 * Note that the structure dm_target_io is not
1583			 * associated with any target (because the device may be
1584			 * used by multiple targets), so we set tio->ti = NULL.
1585			 * We must check for NULL in the I/O processing path, to
1586			 * avoid NULL pointer dereference.
1587			 */
1588			clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1589			atomic_add(1, &ci->io->io_count);
1590			bio_set_dev(clone, dd->dm_dev->bdev);
1591			clone->bi_end_io = clone_endio;
1592			dm_submit_bio_remap(clone, NULL);
1593		}
1594	}
 
1595
1596	/*
1597	 * alloc_io() takes one extra reference for submission, so the
1598	 * reference won't reach 0 without the following subtraction
1599	 */
1600	atomic_sub(1, &ci->io->io_count);
1601
1602	bio_uninit(ci->bio);
1603}
1604
1605static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1606			       unsigned int num_bios, unsigned int max_granularity,
1607			       unsigned int max_sectors)
1608{
1609	unsigned int len, bios;
1610
1611	len = min_t(sector_t, ci->sector_count,
1612		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1613
1614	atomic_add(num_bios, &ci->io->io_count);
1615	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1616	/*
1617	 * alloc_io() takes one extra reference for submission, so the
1618	 * reference won't reach 0 without the following (+1) subtraction
1619	 */
1620	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1621
1622	ci->sector += len;
1623	ci->sector_count -= len;
 
1624}
1625
1626static bool is_abnormal_io(struct bio *bio)
1627{
1628	switch (bio_op(bio)) {
1629	case REQ_OP_READ:
1630	case REQ_OP_WRITE:
1631	case REQ_OP_FLUSH:
1632		return false;
1633	case REQ_OP_DISCARD:
1634	case REQ_OP_SECURE_ERASE:
1635	case REQ_OP_WRITE_ZEROES:
1636	case REQ_OP_ZONE_RESET_ALL:
1637		return true;
1638	default:
1639		return false;
1640	}
1641}
1642
1643static blk_status_t __process_abnormal_io(struct clone_info *ci,
1644					  struct dm_target *ti)
1645{
1646	unsigned int num_bios = 0;
1647	unsigned int max_granularity = 0;
1648	unsigned int max_sectors = 0;
1649	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1650
1651	switch (bio_op(ci->bio)) {
1652	case REQ_OP_DISCARD:
1653		num_bios = ti->num_discard_bios;
1654		max_sectors = limits->max_discard_sectors;
1655		if (ti->max_discard_granularity)
1656			max_granularity = max_sectors;
1657		break;
1658	case REQ_OP_SECURE_ERASE:
1659		num_bios = ti->num_secure_erase_bios;
1660		max_sectors = limits->max_secure_erase_sectors;
1661		break;
1662	case REQ_OP_WRITE_ZEROES:
1663		num_bios = ti->num_write_zeroes_bios;
1664		max_sectors = limits->max_write_zeroes_sectors;
1665		break;
1666	default:
1667		break;
1668	}
1669
1670	/*
1671	 * Even though the device advertised support for this type of
1672	 * request, that does not mean every target supports it, and
1673	 * reconfiguration might also have changed that since the
1674	 * check was performed.
1675	 */
1676	if (unlikely(!num_bios))
1677		return BLK_STS_NOTSUPP;
 
 
1678
1679	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
 
 
 
1680
1681	return BLK_STS_OK;
1682}
1683
1684/*
1685 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1686 * associated with this bio, and this bio's bi_private needs to be
1687 * stored in dm_io->data before the reuse.
1688 *
1689 * bio->bi_private is owned by fs or upper layer, so block layer won't
1690 * touch it after splitting. Meantime it won't be changed by anyone after
1691 * bio is submitted. So this reuse is safe.
1692 */
1693static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1694{
1695	return (struct dm_io **)&bio->bi_private;
1696}
1697
1698static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1699{
1700	struct dm_io **head = dm_poll_list_head(bio);
 
1701
1702	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1703		bio->bi_opf |= REQ_DM_POLL_LIST;
1704		/*
1705		 * Save .bi_private into dm_io, so that we can reuse
1706		 * .bi_private as dm_io list head for storing dm_io list
1707		 */
1708		io->data = bio->bi_private;
1709
1710		/* tell block layer to poll for completion */
1711		bio->bi_cookie = ~BLK_QC_T_NONE;
 
 
1712
1713		io->next = NULL;
1714	} else {
1715		/*
1716		 * bio recursed due to split, reuse original poll list,
1717		 * and save bio->bi_private too.
1718		 */
1719		io->data = (*head)->data;
1720		io->next = *head;
 
 
 
1721	}
1722
1723	*head = io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1724}
1725
1726/*
1727 * Select the correct strategy for processing a non-flush bio.
1728 */
1729static blk_status_t __split_and_process_bio(struct clone_info *ci)
1730{
1731	struct bio *clone;
1732	struct dm_target *ti;
1733	unsigned int len;
 
1734
1735	ti = dm_table_find_target(ci->map, ci->sector);
1736	if (unlikely(!ti))
1737		return BLK_STS_IOERR;
1738
1739	if (unlikely(ci->is_abnormal_io))
1740		return __process_abnormal_io(ci, ti);
1741
1742	/*
1743	 * Only support bio polling for normal IO, and the target io is
1744	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1745	 */
1746	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1747
1748	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1749	setup_split_accounting(ci, len);
1750
1751	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1752		if (unlikely(!dm_target_supports_nowait(ti->type)))
1753			return BLK_STS_NOTSUPP;
1754
1755		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1756		if (unlikely(!clone))
1757			return BLK_STS_AGAIN;
1758	} else {
1759		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1760	}
1761	__map_bio(clone);
1762
1763	ci->sector += len;
1764	ci->sector_count -= len;
1765
1766	return BLK_STS_OK;
1767}
1768
1769static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1770			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1771{
1772	ci->map = map;
1773	ci->io = io;
1774	ci->bio = bio;
1775	ci->is_abnormal_io = is_abnormal;
1776	ci->submit_as_polled = false;
1777	ci->sector = bio->bi_iter.bi_sector;
1778	ci->sector_count = bio_sectors(bio);
1779
1780	/* Shouldn't happen but sector_count was being set to 0 so... */
1781	if (static_branch_unlikely(&zoned_enabled) &&
1782	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1783		ci->sector_count = 0;
1784}
1785
1786#ifdef CONFIG_BLK_DEV_ZONED
1787static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1788					   struct bio *bio)
1789{
1790	/*
1791	 * For mapped device that need zone append emulation, we must
1792	 * split any large BIO that straddles zone boundaries.
1793	 */
1794	return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
1795		!bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
1796}
1797static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1798{
1799	return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
1800}
1801
1802static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1803						   struct dm_target *ti)
 
 
 
1804{
1805	struct bio_list blist = BIO_EMPTY_LIST;
1806	struct mapped_device *md = ci->io->md;
1807	unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1808	unsigned long *need_reset;
1809	unsigned int i, nr_zones, nr_reset;
1810	unsigned int num_bios = 0;
1811	blk_status_t sts = BLK_STS_OK;
1812	sector_t sector = ti->begin;
1813	struct bio *clone;
1814	int ret;
1815
1816	nr_zones = ti->len >> ilog2(zone_sectors);
1817	need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1818	if (!need_reset)
1819		return BLK_STS_RESOURCE;
1820
1821	ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1822				       nr_zones, need_reset);
1823	if (ret) {
1824		sts = BLK_STS_IOERR;
1825		goto free_bitmap;
1826	}
1827
1828	/* If we have no zone to reset, we are done. */
1829	nr_reset = bitmap_weight(need_reset, nr_zones);
1830	if (!nr_reset)
1831		goto free_bitmap;
1832
1833	atomic_add(nr_zones, &ci->io->io_count);
1834
1835	for (i = 0; i < nr_zones; i++) {
1836
1837		if (!test_bit(i, need_reset)) {
1838			sector += zone_sectors;
1839			continue;
1840		}
1841
1842		if (bio_list_empty(&blist)) {
1843			/* This may take a while, so be nice to others */
1844			if (num_bios)
1845				cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1846
1847			/*
1848			 * We may need to reset thousands of zones, so let's
1849			 * not go crazy with the clone allocation.
1850			 */
1851			alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1852					    NULL, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
1853		}
1854
1855		/* Get a clone and change it to a regular reset operation. */
1856		clone = bio_list_pop(&blist);
1857		clone->bi_opf &= ~REQ_OP_MASK;
1858		clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1859		clone->bi_iter.bi_sector = sector;
1860		clone->bi_iter.bi_size = 0;
1861		__map_bio(clone);
1862
1863		sector += zone_sectors;
1864		num_bios++;
1865		nr_reset--;
1866	}
1867
1868	WARN_ON_ONCE(!bio_list_empty(&blist));
1869	atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1870	ci->sector_count = 0;
1871
1872free_bitmap:
1873	bitmap_free(need_reset);
1874
1875	return sts;
1876}
1877
1878static void __send_zone_reset_all_native(struct clone_info *ci,
1879					 struct dm_target *ti)
 
 
 
 
1880{
1881	unsigned int bios;
1882
1883	atomic_add(1, &ci->io->io_count);
1884	bios = __send_duplicate_bios(ci, ti, 1, NULL, GFP_NOIO);
1885	atomic_sub(1 - bios, &ci->io->io_count);
1886
1887	ci->sector_count = 0;
1888}
1889
1890static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1891{
1892	struct dm_table *t = ci->map;
1893	blk_status_t sts = BLK_STS_OK;
1894
1895	for (unsigned int i = 0; i < t->num_targets; i++) {
1896		struct dm_target *ti = dm_table_get_target(t, i);
 
 
 
 
 
 
 
 
 
 
 
1897
1898		if (ti->zone_reset_all_supported) {
1899			__send_zone_reset_all_native(ci, ti);
1900			continue;
1901		}
1902
1903		sts = __send_zone_reset_all_emulated(ci, ti);
1904		if (sts != BLK_STS_OK)
1905			break;
1906	}
1907
1908	/* Release the reference that alloc_io() took for submission. */
1909	atomic_sub(1, &ci->io->io_count);
1910
1911	return sts;
1912}
1913
1914#else
1915static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1916					   struct bio *bio)
1917{
1918	return false;
1919}
1920static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1921{
1922	return false;
1923}
1924static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1925{
1926	return BLK_STS_NOTSUPP;
1927}
1928#endif
1929
1930/*
1931 * Entry point to split a bio into clones and submit them to the targets.
1932 */
1933static void dm_split_and_process_bio(struct mapped_device *md,
1934				     struct dm_table *map, struct bio *bio)
1935{
1936	struct clone_info ci;
1937	struct dm_io *io;
1938	blk_status_t error = BLK_STS_OK;
1939	bool is_abnormal, need_split;
1940
1941	is_abnormal = is_abnormal_io(bio);
1942	if (static_branch_unlikely(&zoned_enabled)) {
1943		/* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */
1944		need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) &&
1945			(is_abnormal || dm_zone_bio_needs_split(md, bio));
1946	} else {
1947		need_split = is_abnormal;
1948	}
1949
1950	if (unlikely(need_split)) {
1951		/*
1952		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1953		 * otherwise associated queue_limits won't be imposed.
1954		 * Also split the BIO for mapped devices needing zone append
1955		 * emulation to ensure that the BIO does not cross zone
1956		 * boundaries.
1957		 */
1958		bio = bio_split_to_limits(bio);
1959		if (!bio)
1960			return;
1961	}
 
1962
1963	/*
1964	 * Use the block layer zone write plugging for mapped devices that
1965	 * need zone append emulation (e.g. dm-crypt).
1966	 */
1967	if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1968		return;
1969
1970	/* Only support nowait for normal IO */
1971	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1972		io = alloc_io(md, bio, GFP_NOWAIT);
1973		if (unlikely(!io)) {
1974			/* Unable to do anything without dm_io. */
1975			bio_wouldblock_error(bio);
1976			return;
1977		}
1978	} else {
1979		io = alloc_io(md, bio, GFP_NOIO);
1980	}
1981	init_clone_info(&ci, io, map, bio, is_abnormal);
1982
1983	if (bio->bi_opf & REQ_PREFLUSH) {
1984		__send_empty_flush(&ci);
1985		/* dm_io_complete submits any data associated with flush */
1986		goto out;
1987	}
1988
1989	if (static_branch_unlikely(&zoned_enabled) &&
1990	    (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
1991		error = __send_zone_reset_all(&ci);
1992		goto out;
 
 
1993	}
1994
1995	error = __split_and_process_bio(&ci);
1996	if (error || !ci.sector_count)
1997		goto out;
1998	/*
1999	 * Remainder must be passed to submit_bio_noacct() so it gets handled
2000	 * *after* bios already submitted have been completely processed.
2001	 */
2002	bio_trim(bio, io->sectors, ci.sector_count);
2003	trace_block_split(bio, bio->bi_iter.bi_sector);
2004	bio_inc_remaining(bio);
2005	submit_bio_noacct(bio);
2006out:
2007	/*
2008	 * Drop the extra reference count for non-POLLED bio, and hold one
2009	 * reference for POLLED bio, which will be released in dm_poll_bio
2010	 *
2011	 * Add every dm_io instance into the dm_io list head which is stored
2012	 * in bio->bi_private, so that dm_poll_bio can poll them all.
2013	 */
2014	if (error || !ci.submit_as_polled) {
2015		/*
2016		 * In case of submission failure, the extra reference for
2017		 * submitting io isn't consumed yet
2018		 */
2019		if (error)
2020			atomic_dec(&io->io_count);
2021		dm_io_dec_pending(io, error);
2022	} else
2023		dm_queue_poll_io(bio, io);
2024}
2025
2026static void dm_submit_bio(struct bio *bio)
2027{
2028	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
 
2029	int srcu_idx;
2030	struct dm_table *map;
2031
2032	map = dm_get_live_table(md, &srcu_idx);
2033	if (unlikely(!map)) {
2034		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2035			    dm_device_name(md));
2036		bio_io_error(bio);
2037		goto out;
2038	}
2039
2040	/* If suspended, queue this IO for later */
2041	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2042		if (bio->bi_opf & REQ_NOWAIT)
2043			bio_wouldblock_error(bio);
2044		else if (bio->bi_opf & REQ_RAHEAD)
2045			bio_io_error(bio);
2046		else
2047			queue_io(md, bio);
2048		goto out;
 
 
2049	}
2050
2051	dm_split_and_process_bio(md, map, bio);
2052out:
2053	dm_put_live_table(md, srcu_idx);
2054}
2055
2056static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2057			  unsigned int flags)
2058{
2059	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2060
2061	/* don't poll if the mapped io is done */
2062	if (atomic_read(&io->io_count) > 1)
2063		bio_poll(&io->tio.clone, iob, flags);
2064
2065	/* bio_poll holds the last reference */
2066	return atomic_read(&io->io_count) == 1;
2067}
2068
2069static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2070		       unsigned int flags)
2071{
2072	struct dm_io **head = dm_poll_list_head(bio);
2073	struct dm_io *list = *head;
2074	struct dm_io *tmp = NULL;
2075	struct dm_io *curr, *next;
2076
2077	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2078	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2079		return 0;
2080
2081	WARN_ON_ONCE(!list);
2082
2083	/*
2084	 * Restore .bi_private before possibly completing dm_io.
2085	 *
2086	 * bio_poll() is only possible once @bio has been completely
2087	 * submitted via submit_bio_noacct()'s depth-first submission.
2088	 * So there is no dm_queue_poll_io() race associated with
2089	 * clearing REQ_DM_POLL_LIST here.
2090	 */
2091	bio->bi_opf &= ~REQ_DM_POLL_LIST;
2092	bio->bi_private = list->data;
2093
2094	for (curr = list, next = curr->next; curr; curr = next, next =
2095			curr ? curr->next : NULL) {
2096		if (dm_poll_dm_io(curr, iob, flags)) {
2097			/*
2098			 * clone_endio() has already occurred, so no
2099			 * error handling is needed here.
2100			 */
2101			__dm_io_dec_pending(curr);
2102		} else {
2103			curr->next = tmp;
2104			tmp = curr;
 
 
2105		}
2106	}
2107
2108	/* Not done? */
2109	if (tmp) {
2110		bio->bi_opf |= REQ_DM_POLL_LIST;
2111		/* Reset bio->bi_private to dm_io list head */
2112		*head = tmp;
2113		return 0;
2114	}
2115	return 1;
2116}
2117
2118/*
2119 *---------------------------------------------------------------
2120 * An IDR is used to keep track of allocated minor numbers.
2121 *---------------------------------------------------------------
2122 */
2123static void free_minor(int minor)
2124{
2125	spin_lock(&_minor_lock);
2126	idr_remove(&_minor_idr, minor);
2127	spin_unlock(&_minor_lock);
2128}
2129
2130/*
2131 * See if the device with a specific minor # is free.
2132 */
2133static int specific_minor(int minor)
2134{
2135	int r;
2136
2137	if (minor >= (1 << MINORBITS))
2138		return -EINVAL;
2139
2140	idr_preload(GFP_KERNEL);
2141	spin_lock(&_minor_lock);
2142
2143	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2144
2145	spin_unlock(&_minor_lock);
2146	idr_preload_end();
2147	if (r < 0)
2148		return r == -ENOSPC ? -EBUSY : r;
2149	return 0;
2150}
2151
2152static int next_free_minor(int *minor)
2153{
2154	int r;
2155
2156	idr_preload(GFP_KERNEL);
2157	spin_lock(&_minor_lock);
2158
2159	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2160
2161	spin_unlock(&_minor_lock);
2162	idr_preload_end();
2163	if (r < 0)
2164		return r;
2165	*minor = r;
2166	return 0;
2167}
2168
2169static const struct block_device_operations dm_blk_dops;
2170static const struct block_device_operations dm_rq_blk_dops;
2171static const struct dax_operations dm_dax_ops;
2172
2173static void dm_wq_work(struct work_struct *work);
2174
2175#ifdef CONFIG_BLK_INLINE_ENCRYPTION
2176static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2177{
2178	dm_destroy_crypto_profile(q->crypto_profile);
2179}
2180
2181#else /* CONFIG_BLK_INLINE_ENCRYPTION */
2182
2183static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2184{
 
 
 
 
2185}
2186#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2187
2188static void cleanup_mapped_device(struct mapped_device *md)
2189{
2190	if (md->wq)
2191		destroy_workqueue(md->wq);
2192	dm_free_md_mempools(md->mempools);
 
2193
2194	if (md->dax_dev) {
2195		dax_remove_host(md->disk);
2196		kill_dax(md->dax_dev);
2197		put_dax(md->dax_dev);
2198		md->dax_dev = NULL;
2199	}
2200
2201	if (md->disk) {
2202		spin_lock(&_minor_lock);
2203		md->disk->private_data = NULL;
2204		spin_unlock(&_minor_lock);
2205		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2206			struct table_device *td;
2207
2208			dm_sysfs_exit(md);
2209			list_for_each_entry(td, &md->table_devices, list) {
2210				bd_unlink_disk_holder(td->dm_dev.bdev,
2211						      md->disk);
2212			}
2213
2214			/*
2215			 * Hold lock to make sure del_gendisk() won't concurrent
2216			 * with open/close_table_device().
2217			 */
2218			mutex_lock(&md->table_devices_lock);
2219			del_gendisk(md->disk);
2220			mutex_unlock(&md->table_devices_lock);
2221		}
2222		dm_queue_destroy_crypto_profile(md->queue);
2223		put_disk(md->disk);
2224	}
2225
2226	if (md->pending_io) {
2227		free_percpu(md->pending_io);
2228		md->pending_io = NULL;
2229	}
2230
2231	cleanup_srcu_struct(&md->io_barrier);
2232
 
 
 
 
 
2233	mutex_destroy(&md->suspend_lock);
2234	mutex_destroy(&md->type_lock);
2235	mutex_destroy(&md->table_devices_lock);
2236	mutex_destroy(&md->swap_bios_lock);
2237
2238	dm_mq_cleanup_mapped_device(md);
2239}
2240
2241/*
2242 * Allocate and initialise a blank device with a given minor.
2243 */
2244static struct mapped_device *alloc_dev(int minor)
2245{
2246	int r, numa_node_id = dm_get_numa_node();
2247	struct dax_device *dax_dev;
2248	struct mapped_device *md;
2249	void *old_md;
2250
2251	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2252	if (!md) {
2253		DMERR("unable to allocate device, out of memory.");
2254		return NULL;
2255	}
2256
2257	if (!try_module_get(THIS_MODULE))
2258		goto bad_module_get;
2259
2260	/* get a minor number for the dev */
2261	if (minor == DM_ANY_MINOR)
2262		r = next_free_minor(&minor);
2263	else
2264		r = specific_minor(minor);
2265	if (r < 0)
2266		goto bad_minor;
2267
2268	r = init_srcu_struct(&md->io_barrier);
2269	if (r < 0)
2270		goto bad_io_barrier;
2271
2272	md->numa_node_id = numa_node_id;
2273	md->init_tio_pdu = false;
2274	md->type = DM_TYPE_NONE;
2275	mutex_init(&md->suspend_lock);
2276	mutex_init(&md->type_lock);
2277	mutex_init(&md->table_devices_lock);
2278	spin_lock_init(&md->deferred_lock);
2279	atomic_set(&md->holders, 1);
2280	atomic_set(&md->open_count, 0);
2281	atomic_set(&md->event_nr, 0);
2282	atomic_set(&md->uevent_seq, 0);
2283	INIT_LIST_HEAD(&md->uevent_list);
2284	INIT_LIST_HEAD(&md->table_devices);
2285	spin_lock_init(&md->uevent_lock);
2286
2287	/*
2288	 * default to bio-based until DM table is loaded and md->type
2289	 * established. If request-based table is loaded: blk-mq will
2290	 * override accordingly.
2291	 */
2292	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2293	if (IS_ERR(md->disk)) {
2294		md->disk = NULL;
2295		goto bad;
2296	}
2297	md->queue = md->disk->queue;
2298
2299	init_waitqueue_head(&md->wait);
2300	INIT_WORK(&md->work, dm_wq_work);
2301	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2302	init_waitqueue_head(&md->eventq);
2303	init_completion(&md->kobj_holder.completion);
2304
2305	md->requeue_list = NULL;
2306	md->swap_bios = get_swap_bios();
2307	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2308	mutex_init(&md->swap_bios_lock);
2309
2310	md->disk->major = _major;
2311	md->disk->first_minor = minor;
2312	md->disk->minors = 1;
2313	md->disk->flags |= GENHD_FL_NO_PART;
2314	md->disk->fops = &dm_blk_dops;
 
2315	md->disk->private_data = md;
2316	sprintf(md->disk->disk_name, "dm-%d", minor);
2317
2318	dax_dev = alloc_dax(md, &dm_dax_ops);
2319	if (IS_ERR(dax_dev)) {
2320		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2321			goto bad;
2322	} else {
2323		set_dax_nocache(dax_dev);
2324		set_dax_nomc(dax_dev);
2325		md->dax_dev = dax_dev;
2326		if (dax_add_host(dax_dev, md->disk))
2327			goto bad;
2328	}
2329
 
2330	format_dev_t(md->name, MKDEV(_major, minor));
2331
2332	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2333	if (!md->wq)
2334		goto bad;
2335
2336	md->pending_io = alloc_percpu(unsigned long);
2337	if (!md->pending_io)
2338		goto bad;
2339
2340	r = dm_stats_init(&md->stats);
2341	if (r < 0)
2342		goto bad;
2343
2344	/* Populate the mapping, nobody knows we exist yet */
2345	spin_lock(&_minor_lock);
2346	old_md = idr_replace(&_minor_idr, md, minor);
2347	spin_unlock(&_minor_lock);
2348
2349	BUG_ON(old_md != MINOR_ALLOCED);
2350
2351	return md;
2352
2353bad:
2354	cleanup_mapped_device(md);
2355bad_io_barrier:
2356	free_minor(minor);
2357bad_minor:
2358	module_put(THIS_MODULE);
2359bad_module_get:
2360	kvfree(md);
2361	return NULL;
2362}
2363
2364static void unlock_fs(struct mapped_device *md);
2365
2366static void free_dev(struct mapped_device *md)
2367{
2368	int minor = MINOR(disk_devt(md->disk));
2369
2370	unlock_fs(md);
2371
2372	cleanup_mapped_device(md);
2373
2374	WARN_ON_ONCE(!list_empty(&md->table_devices));
2375	dm_stats_cleanup(&md->stats);
2376	free_minor(minor);
2377
2378	module_put(THIS_MODULE);
2379	kvfree(md);
2380}
2381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2382/*
2383 * Bind a table to the device.
2384 */
2385static void event_callback(void *context)
2386{
2387	unsigned long flags;
2388	LIST_HEAD(uevents);
2389	struct mapped_device *md = context;
2390
2391	spin_lock_irqsave(&md->uevent_lock, flags);
2392	list_splice_init(&md->uevent_list, &uevents);
2393	spin_unlock_irqrestore(&md->uevent_lock, flags);
2394
2395	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2396
2397	atomic_inc(&md->event_nr);
2398	wake_up(&md->eventq);
2399	dm_issue_global_event();
2400}
2401
2402/*
 
 
 
 
 
 
 
 
 
 
 
 
2403 * Returns old map, which caller must destroy.
2404 */
2405static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2406			       struct queue_limits *limits)
2407{
2408	struct dm_table *old_map;
 
 
2409	sector_t size;
2410	int ret;
2411
2412	lockdep_assert_held(&md->suspend_lock);
2413
2414	size = dm_table_get_size(t);
2415
2416	/*
2417	 * Wipe any geometry if the size of the table changed.
2418	 */
2419	if (size != dm_get_size(md))
2420		memset(&md->geometry, 0, sizeof(md->geometry));
2421
2422	set_capacity(md->disk, size);
2423
2424	dm_table_event_callback(t, event_callback, md);
2425
2426	if (dm_table_request_based(t)) {
2427		/*
2428		 * Leverage the fact that request-based DM targets are
2429		 * immutable singletons - used to optimize dm_mq_queue_rq.
2430		 */
2431		md->immutable_target = dm_table_get_immutable_target(t);
 
 
 
2432
 
2433		/*
2434		 * There is no need to reload with request-based dm because the
2435		 * size of front_pad doesn't change.
2436		 *
2437		 * Note for future: If you are to reload bioset, prep-ed
2438		 * requests in the queue may refer to bio from the old bioset,
2439		 * so you must walk through the queue to unprep.
2440		 */
2441		if (!md->mempools) {
2442			md->mempools = t->mempools;
2443			t->mempools = NULL;
2444		}
2445	} else {
2446		/*
2447		 * The md may already have mempools that need changing.
2448		 * If so, reload bioset because front_pad may have changed
2449		 * because a different table was loaded.
2450		 */
2451		dm_free_md_mempools(md->mempools);
2452		md->mempools = t->mempools;
2453		t->mempools = NULL;
2454	}
2455
2456	ret = dm_table_set_restrictions(t, md->queue, limits);
2457	if (ret) {
2458		old_map = ERR_PTR(ret);
2459		goto out;
2460	}
2461
2462	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2463	rcu_assign_pointer(md->map, (void *)t);
2464	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2465
 
2466	if (old_map)
2467		dm_sync_table(md);
 
2468out:
2469	return old_map;
2470}
2471
2472/*
2473 * Returns unbound table for the caller to free.
2474 */
2475static struct dm_table *__unbind(struct mapped_device *md)
2476{
2477	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2478
2479	if (!map)
2480		return NULL;
2481
2482	dm_table_event_callback(map, NULL, NULL);
2483	RCU_INIT_POINTER(md->map, NULL);
2484	dm_sync_table(md);
2485
2486	return map;
2487}
2488
2489/*
2490 * Constructor for a new device.
2491 */
2492int dm_create(int minor, struct mapped_device **result)
2493{
 
2494	struct mapped_device *md;
2495
2496	md = alloc_dev(minor);
2497	if (!md)
2498		return -ENXIO;
2499
2500	dm_ima_reset_data(md);
 
 
 
 
2501
2502	*result = md;
2503	return 0;
2504}
2505
2506/*
2507 * Functions to manage md->type.
2508 * All are required to hold md->type_lock.
2509 */
2510void dm_lock_md_type(struct mapped_device *md)
2511{
2512	mutex_lock(&md->type_lock);
2513}
2514
2515void dm_unlock_md_type(struct mapped_device *md)
2516{
2517	mutex_unlock(&md->type_lock);
2518}
2519
 
 
 
 
 
 
2520enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2521{
2522	return md->type;
2523}
2524
2525struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2526{
2527	return md->immutable_target_type;
2528}
2529
2530/*
 
 
 
 
 
 
 
 
 
 
 
2531 * Setup the DM device's queue based on md's type
2532 */
2533int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2534{
2535	enum dm_queue_mode type = dm_table_get_type(t);
2536	struct queue_limits limits;
2537	struct table_device *td;
2538	int r;
 
 
2539
2540	WARN_ON_ONCE(type == DM_TYPE_NONE);
2541
2542	if (type == DM_TYPE_REQUEST_BASED) {
2543		md->disk->fops = &dm_rq_blk_dops;
2544		r = dm_mq_init_request_queue(md, t);
2545		if (r) {
2546			DMERR("Cannot initialize queue for request-based dm mapped device");
2547			return r;
2548		}
 
 
 
 
 
 
 
 
 
 
2549	}
2550
2551	r = dm_calculate_queue_limits(t, &limits);
2552	if (r) {
2553		DMERR("Cannot calculate initial queue limits");
2554		return r;
2555	}
2556	r = dm_table_set_restrictions(t, md->queue, &limits);
2557	if (r)
2558		return r;
2559
2560	/*
2561	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2562	 * with open_table_device() and close_table_device().
2563	 */
2564	mutex_lock(&md->table_devices_lock);
2565	r = add_disk(md->disk);
2566	mutex_unlock(&md->table_devices_lock);
2567	if (r)
2568		return r;
2569
2570	/*
2571	 * Register the holder relationship for devices added before the disk
2572	 * was live.
2573	 */
2574	list_for_each_entry(td, &md->table_devices, list) {
2575		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2576		if (r)
2577			goto out_undo_holders;
2578	}
2579
2580	r = dm_sysfs_init(md);
2581	if (r)
2582		goto out_undo_holders;
2583
2584	md->type = type;
2585	return 0;
2586
2587out_undo_holders:
2588	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2589		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2590	mutex_lock(&md->table_devices_lock);
2591	del_gendisk(md->disk);
2592	mutex_unlock(&md->table_devices_lock);
2593	return r;
2594}
2595
2596struct mapped_device *dm_get_md(dev_t dev)
2597{
2598	struct mapped_device *md;
2599	unsigned int minor = MINOR(dev);
2600
2601	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2602		return NULL;
2603
2604	spin_lock(&_minor_lock);
2605
2606	md = idr_find(&_minor_idr, minor);
2607	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2608	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2609		md = NULL;
2610		goto out;
2611	}
2612	dm_get(md);
2613out:
2614	spin_unlock(&_minor_lock);
2615
2616	return md;
2617}
2618EXPORT_SYMBOL_GPL(dm_get_md);
2619
2620void *dm_get_mdptr(struct mapped_device *md)
2621{
2622	return md->interface_ptr;
2623}
2624
2625void dm_set_mdptr(struct mapped_device *md, void *ptr)
2626{
2627	md->interface_ptr = ptr;
2628}
2629
2630void dm_get(struct mapped_device *md)
2631{
2632	atomic_inc(&md->holders);
2633	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2634}
2635
2636int dm_hold(struct mapped_device *md)
2637{
2638	spin_lock(&_minor_lock);
2639	if (test_bit(DMF_FREEING, &md->flags)) {
2640		spin_unlock(&_minor_lock);
2641		return -EBUSY;
2642	}
2643	dm_get(md);
2644	spin_unlock(&_minor_lock);
2645	return 0;
2646}
2647EXPORT_SYMBOL_GPL(dm_hold);
2648
2649const char *dm_device_name(struct mapped_device *md)
2650{
2651	return md->name;
2652}
2653EXPORT_SYMBOL_GPL(dm_device_name);
2654
2655static void __dm_destroy(struct mapped_device *md, bool wait)
2656{
2657	struct dm_table *map;
2658	int srcu_idx;
2659
2660	might_sleep();
2661
2662	spin_lock(&_minor_lock);
2663	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2664	set_bit(DMF_FREEING, &md->flags);
2665	spin_unlock(&_minor_lock);
2666
2667	blk_mark_disk_dead(md->disk);
2668
2669	/*
2670	 * Take suspend_lock so that presuspend and postsuspend methods
2671	 * do not race with internal suspend.
2672	 */
2673	mutex_lock(&md->suspend_lock);
2674	map = dm_get_live_table(md, &srcu_idx);
2675	if (!dm_suspended_md(md)) {
2676		dm_table_presuspend_targets(map);
2677		set_bit(DMF_SUSPENDED, &md->flags);
2678		set_bit(DMF_POST_SUSPENDING, &md->flags);
2679		dm_table_postsuspend_targets(map);
2680	}
2681	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2682	dm_put_live_table(md, srcu_idx);
2683	mutex_unlock(&md->suspend_lock);
2684
2685	/*
2686	 * Rare, but there may be I/O requests still going to complete,
2687	 * for example.  Wait for all references to disappear.
2688	 * No one should increment the reference count of the mapped_device,
2689	 * after the mapped_device state becomes DMF_FREEING.
2690	 */
2691	if (wait)
2692		while (atomic_read(&md->holders))
2693			fsleep(1000);
2694	else if (atomic_read(&md->holders))
2695		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2696		       dm_device_name(md), atomic_read(&md->holders));
2697
 
2698	dm_table_destroy(__unbind(md));
2699	free_dev(md);
2700}
2701
2702void dm_destroy(struct mapped_device *md)
2703{
2704	__dm_destroy(md, true);
2705}
2706
2707void dm_destroy_immediate(struct mapped_device *md)
2708{
2709	__dm_destroy(md, false);
2710}
2711
2712void dm_put(struct mapped_device *md)
2713{
2714	atomic_dec(&md->holders);
2715}
2716EXPORT_SYMBOL_GPL(dm_put);
2717
2718static bool dm_in_flight_bios(struct mapped_device *md)
2719{
2720	int cpu;
2721	unsigned long sum = 0;
2722
2723	for_each_possible_cpu(cpu)
2724		sum += *per_cpu_ptr(md->pending_io, cpu);
2725
2726	return sum != 0;
2727}
2728
2729static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2730{
2731	int r = 0;
2732	DEFINE_WAIT(wait);
2733
2734	while (true) {
2735		prepare_to_wait(&md->wait, &wait, task_state);
2736
2737		if (!dm_in_flight_bios(md))
2738			break;
2739
2740		if (signal_pending_state(task_state, current)) {
2741			r = -ERESTARTSYS;
2742			break;
2743		}
2744
2745		io_schedule();
2746	}
2747	finish_wait(&md->wait, &wait);
2748
2749	smp_rmb();
2750
2751	return r;
2752}
2753
2754static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2755{
2756	int r = 0;
2757
2758	if (!queue_is_mq(md->queue))
2759		return dm_wait_for_bios_completion(md, task_state);
2760
2761	while (true) {
2762		if (!blk_mq_queue_inflight(md->queue))
2763			break;
2764
2765		if (signal_pending_state(task_state, current)) {
2766			r = -ERESTARTSYS;
2767			break;
2768		}
2769
2770		fsleep(5000);
2771	}
2772
2773	return r;
2774}
2775
2776/*
2777 * Process the deferred bios
2778 */
2779static void dm_wq_work(struct work_struct *work)
2780{
2781	struct mapped_device *md = container_of(work, struct mapped_device, work);
2782	struct bio *bio;
 
 
 
 
 
2783
2784	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2785		spin_lock_irq(&md->deferred_lock);
2786		bio = bio_list_pop(&md->deferred);
2787		spin_unlock_irq(&md->deferred_lock);
2788
2789		if (!bio)
2790			break;
2791
2792		submit_bio_noacct(bio);
2793		cond_resched();
 
 
2794	}
 
 
2795}
2796
2797static void dm_queue_flush(struct mapped_device *md)
2798{
2799	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2800	smp_mb__after_atomic();
2801	queue_work(md->wq, &md->work);
2802}
2803
2804/*
2805 * Swap in a new table, returning the old one for the caller to destroy.
2806 */
2807struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2808{
2809	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2810	struct queue_limits limits;
2811	int r;
2812
2813	mutex_lock(&md->suspend_lock);
2814
2815	/* device must be suspended */
2816	if (!dm_suspended_md(md))
2817		goto out;
2818
2819	/*
2820	 * If the new table has no data devices, retain the existing limits.
2821	 * This helps multipath with queue_if_no_path if all paths disappear,
2822	 * then new I/O is queued based on these limits, and then some paths
2823	 * reappear.
2824	 */
2825	if (dm_table_has_no_data_devices(table)) {
2826		live_map = dm_get_live_table_fast(md);
2827		if (live_map)
2828			limits = md->queue->limits;
2829		dm_put_live_table_fast(md);
2830	}
2831
2832	if (!live_map) {
2833		r = dm_calculate_queue_limits(table, &limits);
2834		if (r) {
2835			map = ERR_PTR(r);
2836			goto out;
2837		}
2838	}
2839
2840	map = __bind(md, table, &limits);
2841	dm_issue_global_event();
2842
2843out:
2844	mutex_unlock(&md->suspend_lock);
2845	return map;
2846}
2847
2848/*
2849 * Functions to lock and unlock any filesystem running on the
2850 * device.
2851 */
2852static int lock_fs(struct mapped_device *md)
2853{
2854	int r;
2855
2856	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2857
2858	r = bdev_freeze(md->disk->part0);
2859	if (!r)
2860		set_bit(DMF_FROZEN, &md->flags);
2861	return r;
 
 
 
 
 
 
2862}
2863
2864static void unlock_fs(struct mapped_device *md)
2865{
2866	if (!test_bit(DMF_FROZEN, &md->flags))
2867		return;
2868	bdev_thaw(md->disk->part0);
 
 
2869	clear_bit(DMF_FROZEN, &md->flags);
2870}
2871
2872/*
2873 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2874 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2875 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2876 *
2877 * If __dm_suspend returns 0, the device is completely quiescent
2878 * now. There is no request-processing activity. All new requests
2879 * are being added to md->deferred list.
2880 */
2881static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2882			unsigned int suspend_flags, unsigned int task_state,
2883			int dmf_suspended_flag)
2884{
2885	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2886	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2887	int r;
2888
2889	lockdep_assert_held(&md->suspend_lock);
2890
2891	/*
2892	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2893	 * This flag is cleared before dm_suspend returns.
2894	 */
2895	if (noflush)
2896		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2897	else
2898		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2899
2900	/*
2901	 * This gets reverted if there's an error later and the targets
2902	 * provide the .presuspend_undo hook.
2903	 */
2904	dm_table_presuspend_targets(map);
2905
2906	/*
2907	 * Flush I/O to the device.
2908	 * Any I/O submitted after lock_fs() may not be flushed.
2909	 * noflush takes precedence over do_lockfs.
2910	 * (lock_fs() flushes I/Os and waits for them to complete.)
2911	 */
2912	if (!noflush && do_lockfs) {
2913		r = lock_fs(md);
2914		if (r) {
2915			dm_table_presuspend_undo_targets(map);
2916			return r;
2917		}
2918	}
2919
2920	/*
2921	 * Here we must make sure that no processes are submitting requests
2922	 * to target drivers i.e. no one may be executing
2923	 * dm_split_and_process_bio from dm_submit_bio.
 
2924	 *
2925	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2926	 * we take the write lock. To prevent any process from reentering
2927	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2928	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2929	 * flush_workqueue(md->wq).
2930	 */
2931	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2932	if (map)
2933		synchronize_srcu(&md->io_barrier);
2934
2935	/*
2936	 * Stop md->queue before flushing md->wq in case request-based
2937	 * dm defers requests to md->wq from md->queue.
2938	 */
2939	if (dm_request_based(md))
2940		dm_stop_queue(md->queue);
2941
2942	flush_workqueue(md->wq);
2943
2944	/*
2945	 * At this point no more requests are entering target request routines.
2946	 * We call dm_wait_for_completion to wait for all existing requests
2947	 * to finish.
2948	 */
2949	r = dm_wait_for_completion(md, task_state);
2950	if (!r)
2951		set_bit(dmf_suspended_flag, &md->flags);
2952
2953	if (noflush)
2954		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2955	if (map)
2956		synchronize_srcu(&md->io_barrier);
2957
2958	/* were we interrupted ? */
2959	if (r < 0) {
2960		dm_queue_flush(md);
2961
2962		if (dm_request_based(md))
2963			dm_start_queue(md->queue);
2964
2965		unlock_fs(md);
2966		dm_table_presuspend_undo_targets(map);
2967		/* pushback list is already flushed, so skip flush */
2968	}
2969
2970	return r;
2971}
2972
2973/*
2974 * We need to be able to change a mapping table under a mounted
2975 * filesystem.  For example we might want to move some data in
2976 * the background.  Before the table can be swapped with
2977 * dm_bind_table, dm_suspend must be called to flush any in
2978 * flight bios and ensure that any further io gets deferred.
2979 */
2980/*
2981 * Suspend mechanism in request-based dm.
2982 *
2983 * 1. Flush all I/Os by lock_fs() if needed.
2984 * 2. Stop dispatching any I/O by stopping the request_queue.
2985 * 3. Wait for all in-flight I/Os to be completed or requeued.
2986 *
2987 * To abort suspend, start the request_queue.
2988 */
2989int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2990{
2991	struct dm_table *map = NULL;
2992	int r = 0;
2993
2994retry:
2995	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2996
2997	if (dm_suspended_md(md)) {
2998		r = -EINVAL;
2999		goto out_unlock;
3000	}
3001
3002	if (dm_suspended_internally_md(md)) {
3003		/* already internally suspended, wait for internal resume */
3004		mutex_unlock(&md->suspend_lock);
3005		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3006		if (r)
3007			return r;
3008		goto retry;
3009	}
3010
3011	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3012	if (!map) {
3013		/* avoid deadlock with fs/namespace.c:do_mount() */
3014		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3015	}
3016
3017	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3018	if (r)
3019		goto out_unlock;
3020
3021	set_bit(DMF_POST_SUSPENDING, &md->flags);
3022	dm_table_postsuspend_targets(map);
3023	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3024
3025out_unlock:
3026	mutex_unlock(&md->suspend_lock);
3027	return r;
3028}
3029
3030static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3031{
3032	if (map) {
3033		int r = dm_table_resume_targets(map);
3034
3035		if (r)
3036			return r;
3037	}
3038
3039	dm_queue_flush(md);
3040
3041	/*
3042	 * Flushing deferred I/Os must be done after targets are resumed
3043	 * so that mapping of targets can work correctly.
3044	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3045	 */
3046	if (dm_request_based(md))
3047		dm_start_queue(md->queue);
3048
3049	unlock_fs(md);
3050
3051	return 0;
3052}
3053
3054int dm_resume(struct mapped_device *md)
3055{
3056	int r;
3057	struct dm_table *map = NULL;
3058
3059retry:
3060	r = -EINVAL;
3061	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3062
3063	if (!dm_suspended_md(md))
3064		goto out;
3065
3066	if (dm_suspended_internally_md(md)) {
3067		/* already internally suspended, wait for internal resume */
3068		mutex_unlock(&md->suspend_lock);
3069		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3070		if (r)
3071			return r;
3072		goto retry;
3073	}
3074
3075	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3076	if (!map || !dm_table_get_size(map))
3077		goto out;
3078
3079	r = __dm_resume(md, map);
3080	if (r)
3081		goto out;
3082
3083	clear_bit(DMF_SUSPENDED, &md->flags);
3084out:
3085	mutex_unlock(&md->suspend_lock);
3086
3087	return r;
3088}
3089
3090/*
3091 * Internal suspend/resume works like userspace-driven suspend. It waits
3092 * until all bios finish and prevents issuing new bios to the target drivers.
3093 * It may be used only from the kernel.
3094 */
3095
3096static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3097{
3098	struct dm_table *map = NULL;
3099
3100	lockdep_assert_held(&md->suspend_lock);
3101
3102	if (md->internal_suspend_count++)
3103		return; /* nested internal suspend */
3104
3105	if (dm_suspended_md(md)) {
3106		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3107		return; /* nest suspend */
3108	}
3109
3110	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3111
3112	/*
3113	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3114	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3115	 * would require changing .presuspend to return an error -- avoid this
3116	 * until there is a need for more elaborate variants of internal suspend.
3117	 */
3118	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3119			    DMF_SUSPENDED_INTERNALLY);
3120
3121	set_bit(DMF_POST_SUSPENDING, &md->flags);
3122	dm_table_postsuspend_targets(map);
3123	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3124}
3125
3126static void __dm_internal_resume(struct mapped_device *md)
3127{
3128	int r;
3129	struct dm_table *map;
3130
3131	BUG_ON(!md->internal_suspend_count);
3132
3133	if (--md->internal_suspend_count)
3134		return; /* resume from nested internal suspend */
3135
3136	if (dm_suspended_md(md))
3137		goto done; /* resume from nested suspend */
3138
3139	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3140	r = __dm_resume(md, map);
3141	if (r) {
3142		/*
3143		 * If a preresume method of some target failed, we are in a
3144		 * tricky situation. We can't return an error to the caller. We
3145		 * can't fake success because then the "resume" and
3146		 * "postsuspend" methods would not be paired correctly, and it
3147		 * would break various targets, for example it would cause list
3148		 * corruption in the "origin" target.
3149		 *
3150		 * So, we fake normal suspend here, to make sure that the
3151		 * "resume" and "postsuspend" methods will be paired correctly.
3152		 */
3153		DMERR("Preresume method failed: %d", r);
3154		set_bit(DMF_SUSPENDED, &md->flags);
3155	}
3156done:
3157	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3158	smp_mb__after_atomic();
3159	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3160}
3161
3162void dm_internal_suspend_noflush(struct mapped_device *md)
3163{
3164	mutex_lock(&md->suspend_lock);
3165	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3166	mutex_unlock(&md->suspend_lock);
3167}
3168EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3169
3170void dm_internal_resume(struct mapped_device *md)
3171{
3172	mutex_lock(&md->suspend_lock);
3173	__dm_internal_resume(md);
3174	mutex_unlock(&md->suspend_lock);
3175}
3176EXPORT_SYMBOL_GPL(dm_internal_resume);
3177
3178/*
3179 * Fast variants of internal suspend/resume hold md->suspend_lock,
3180 * which prevents interaction with userspace-driven suspend.
3181 */
3182
3183void dm_internal_suspend_fast(struct mapped_device *md)
3184{
3185	mutex_lock(&md->suspend_lock);
3186	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3187		return;
3188
3189	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3190	synchronize_srcu(&md->io_barrier);
3191	flush_workqueue(md->wq);
3192	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3193}
3194EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3195
3196void dm_internal_resume_fast(struct mapped_device *md)
3197{
3198	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3199		goto done;
3200
3201	dm_queue_flush(md);
3202
3203done:
3204	mutex_unlock(&md->suspend_lock);
3205}
3206EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3207
3208/*
3209 *---------------------------------------------------------------
3210 * Event notification.
3211 *---------------------------------------------------------------
3212 */
3213int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3214		      unsigned int cookie, bool need_resize_uevent)
3215{
3216	int r;
3217	unsigned int noio_flag;
3218	char udev_cookie[DM_COOKIE_LENGTH];
3219	char *envp[3] = { NULL, NULL, NULL };
3220	char **envpp = envp;
3221	if (cookie) {
 
 
3222		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3223			 DM_COOKIE_ENV_VAR_NAME, cookie);
3224		*envpp++ = udev_cookie;
3225	}
3226	if (need_resize_uevent) {
3227		*envpp++ = "RESIZE=1";
3228	}
3229
3230	noio_flag = memalloc_noio_save();
3231
3232	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3233
3234	memalloc_noio_restore(noio_flag);
3235
3236	return r;
3237}
3238
3239uint32_t dm_next_uevent_seq(struct mapped_device *md)
3240{
3241	return atomic_add_return(1, &md->uevent_seq);
3242}
3243
3244uint32_t dm_get_event_nr(struct mapped_device *md)
3245{
3246	return atomic_read(&md->event_nr);
3247}
3248
3249int dm_wait_event(struct mapped_device *md, int event_nr)
3250{
3251	return wait_event_interruptible(md->eventq,
3252			(event_nr != atomic_read(&md->event_nr)));
3253}
3254
3255void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3256{
3257	unsigned long flags;
3258
3259	spin_lock_irqsave(&md->uevent_lock, flags);
3260	list_add(elist, &md->uevent_list);
3261	spin_unlock_irqrestore(&md->uevent_lock, flags);
3262}
3263
3264/*
3265 * The gendisk is only valid as long as you have a reference
3266 * count on 'md'.
3267 */
3268struct gendisk *dm_disk(struct mapped_device *md)
3269{
3270	return md->disk;
3271}
3272EXPORT_SYMBOL_GPL(dm_disk);
3273
3274struct kobject *dm_kobject(struct mapped_device *md)
3275{
3276	return &md->kobj_holder.kobj;
3277}
3278
3279struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3280{
3281	struct mapped_device *md;
3282
3283	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3284
3285	spin_lock(&_minor_lock);
3286	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3287		md = NULL;
3288		goto out;
3289	}
3290	dm_get(md);
3291out:
3292	spin_unlock(&_minor_lock);
3293
3294	return md;
3295}
3296
3297int dm_suspended_md(struct mapped_device *md)
3298{
3299	return test_bit(DMF_SUSPENDED, &md->flags);
3300}
3301
3302static int dm_post_suspending_md(struct mapped_device *md)
3303{
3304	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3305}
3306
3307int dm_suspended_internally_md(struct mapped_device *md)
3308{
3309	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3310}
3311
3312int dm_test_deferred_remove_flag(struct mapped_device *md)
3313{
3314	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3315}
3316
3317int dm_suspended(struct dm_target *ti)
3318{
3319	return dm_suspended_md(ti->table->md);
3320}
3321EXPORT_SYMBOL_GPL(dm_suspended);
3322
3323int dm_post_suspending(struct dm_target *ti)
3324{
3325	return dm_post_suspending_md(ti->table->md);
3326}
3327EXPORT_SYMBOL_GPL(dm_post_suspending);
3328
3329int dm_noflush_suspending(struct dm_target *ti)
3330{
3331	return __noflush_suspending(ti->table->md);
3332}
3333EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3334
3335void dm_free_md_mempools(struct dm_md_mempools *pools)
3336{
 
 
 
 
 
 
 
3337	if (!pools)
3338		return;
3339
3340	bioset_exit(&pools->bs);
3341	bioset_exit(&pools->io_bs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3342
3343	kfree(pools);
3344}
 
3345
3346struct dm_blkdev_id {
3347	u8 *id;
3348	enum blk_unique_id type;
3349};
3350
3351static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
3352				sector_t start, sector_t len, void *data)
3353{
3354	struct dm_blkdev_id *dm_id = data;
3355	const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
3356
3357	if (!fops->get_unique_id)
3358		return 0;
3359
3360	return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
3361}
3362
3363/*
3364 * Allow access to get_unique_id() for the first device returning a
3365 * non-zero result.  Reasonable use expects all devices to have the
3366 * same unique id.
3367 */
3368static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
3369		enum blk_unique_id type)
3370{
3371	struct mapped_device *md = disk->private_data;
3372	struct dm_table *table;
3373	struct dm_target *ti;
3374	int ret = 0, srcu_idx;
3375
3376	struct dm_blkdev_id dm_id = {
3377		.id = id,
3378		.type = type,
3379	};
3380
3381	table = dm_get_live_table(md, &srcu_idx);
3382	if (!table || !dm_table_get_size(table))
3383		goto out;
3384
3385	/* We only support devices that have a single target */
3386	if (table->num_targets != 1)
3387		goto out;
3388	ti = dm_table_get_target(table, 0);
3389
3390	if (!ti->type->iterate_devices)
3391		goto out;
3392
3393	ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
3394out:
3395	dm_put_live_table(md, srcu_idx);
3396	return ret;
3397}
3398
3399struct dm_pr {
3400	u64	old_key;
3401	u64	new_key;
3402	u32	flags;
3403	bool	abort;
3404	bool	fail_early;
3405	int	ret;
3406	enum pr_type type;
3407	struct pr_keys *read_keys;
3408	struct pr_held_reservation *rsv;
3409};
3410
3411static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3412		      struct dm_pr *pr)
3413{
3414	struct mapped_device *md = bdev->bd_disk->private_data;
3415	struct dm_table *table;
3416	struct dm_target *ti;
3417	int ret = -ENOTTY, srcu_idx;
3418
3419	table = dm_get_live_table(md, &srcu_idx);
3420	if (!table || !dm_table_get_size(table))
3421		goto out;
3422
3423	/* We only support devices that have a single target */
3424	if (table->num_targets != 1)
3425		goto out;
3426	ti = dm_table_get_target(table, 0);
3427
3428	if (dm_suspended_md(md)) {
3429		ret = -EAGAIN;
3430		goto out;
3431	}
3432
3433	ret = -EINVAL;
3434	if (!ti->type->iterate_devices)
3435		goto out;
3436
3437	ti->type->iterate_devices(ti, fn, pr);
3438	ret = 0;
3439out:
3440	dm_put_live_table(md, srcu_idx);
3441	return ret;
3442}
3443
3444/*
3445 * For register / unregister we need to manually call out to every path.
3446 */
3447static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3448			    sector_t start, sector_t len, void *data)
3449{
3450	struct dm_pr *pr = data;
3451	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3452	int ret;
3453
3454	if (!ops || !ops->pr_register) {
3455		pr->ret = -EOPNOTSUPP;
3456		return -1;
3457	}
3458
3459	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3460	if (!ret)
3461		return 0;
3462
3463	if (!pr->ret)
3464		pr->ret = ret;
3465
3466	if (pr->fail_early)
3467		return -1;
3468
3469	return 0;
3470}
3471
3472static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3473			  u32 flags)
3474{
3475	struct dm_pr pr = {
3476		.old_key	= old_key,
3477		.new_key	= new_key,
3478		.flags		= flags,
3479		.fail_early	= true,
3480		.ret		= 0,
3481	};
3482	int ret;
3483
3484	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3485	if (ret) {
3486		/* Didn't even get to register a path */
3487		return ret;
 
 
 
 
3488	}
3489
3490	if (!pr.ret)
3491		return 0;
3492	ret = pr.ret;
3493
3494	if (!new_key)
3495		return ret;
3496
3497	/* unregister all paths if we failed to register any path */
3498	pr.old_key = new_key;
3499	pr.new_key = 0;
3500	pr.flags = 0;
3501	pr.fail_early = false;
3502	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3503	return ret;
3504}
3505
3506
3507static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3508			   sector_t start, sector_t len, void *data)
3509{
3510	struct dm_pr *pr = data;
3511	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3512
3513	if (!ops || !ops->pr_reserve) {
3514		pr->ret = -EOPNOTSUPP;
3515		return -1;
3516	}
3517
3518	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3519	if (!pr->ret)
3520		return -1;
3521
3522	return 0;
3523}
3524
3525static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3526			 u32 flags)
3527{
3528	struct dm_pr pr = {
3529		.old_key	= key,
3530		.flags		= flags,
3531		.type		= type,
3532		.fail_early	= false,
3533		.ret		= 0,
3534	};
3535	int ret;
3536
3537	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3538	if (ret)
3539		return ret;
3540
3541	return pr.ret;
3542}
3543
3544/*
3545 * If there is a non-All Registrants type of reservation, the release must be
3546 * sent down the holding path. For the cases where there is no reservation or
3547 * the path is not the holder the device will also return success, so we must
3548 * try each path to make sure we got the correct path.
3549 */
3550static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3551			   sector_t start, sector_t len, void *data)
3552{
3553	struct dm_pr *pr = data;
3554	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3555
3556	if (!ops || !ops->pr_release) {
3557		pr->ret = -EOPNOTSUPP;
3558		return -1;
3559	}
3560
3561	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3562	if (pr->ret)
3563		return -1;
3564
3565	return 0;
 
 
 
 
 
 
 
3566}
3567
3568static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3569{
3570	struct dm_pr pr = {
3571		.old_key	= key,
3572		.type		= type,
3573		.fail_early	= false,
3574	};
3575	int ret;
3576
3577	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3578	if (ret)
3579		return ret;
3580
3581	return pr.ret;
3582}
3583
3584static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3585			   sector_t start, sector_t len, void *data)
3586{
3587	struct dm_pr *pr = data;
3588	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3589
3590	if (!ops || !ops->pr_preempt) {
3591		pr->ret = -EOPNOTSUPP;
3592		return -1;
3593	}
3594
3595	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3596				  pr->abort);
3597	if (!pr->ret)
3598		return -1;
3599
3600	return 0;
 
 
 
 
 
 
 
3601}
3602
3603static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3604			 enum pr_type type, bool abort)
3605{
3606	struct dm_pr pr = {
3607		.new_key	= new_key,
3608		.old_key	= old_key,
3609		.type		= type,
3610		.fail_early	= false,
3611	};
3612	int ret;
3613
3614	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3615	if (ret)
3616		return ret;
3617
3618	return pr.ret;
 
 
 
 
 
 
 
3619}
3620
3621static int dm_pr_clear(struct block_device *bdev, u64 key)
3622{
3623	struct mapped_device *md = bdev->bd_disk->private_data;
3624	const struct pr_ops *ops;
3625	int r, srcu_idx;
3626
3627	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3628	if (r < 0)
3629		goto out;
3630
3631	ops = bdev->bd_disk->fops->pr_ops;
3632	if (ops && ops->pr_clear)
3633		r = ops->pr_clear(bdev, key);
3634	else
3635		r = -EOPNOTSUPP;
3636out:
3637	dm_unprepare_ioctl(md, srcu_idx);
3638	return r;
3639}
3640
3641static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3642			     sector_t start, sector_t len, void *data)
3643{
3644	struct dm_pr *pr = data;
3645	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3646
3647	if (!ops || !ops->pr_read_keys) {
3648		pr->ret = -EOPNOTSUPP;
3649		return -1;
3650	}
3651
3652	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3653	if (!pr->ret)
3654		return -1;
3655
3656	return 0;
3657}
3658
3659static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3660{
3661	struct dm_pr pr = {
3662		.read_keys = keys,
3663	};
3664	int ret;
3665
3666	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3667	if (ret)
3668		return ret;
3669
3670	return pr.ret;
3671}
3672
3673static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3674				    sector_t start, sector_t len, void *data)
3675{
3676	struct dm_pr *pr = data;
3677	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3678
3679	if (!ops || !ops->pr_read_reservation) {
3680		pr->ret = -EOPNOTSUPP;
3681		return -1;
3682	}
3683
3684	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3685	if (!pr->ret)
3686		return -1;
3687
3688	return 0;
3689}
3690
3691static int dm_pr_read_reservation(struct block_device *bdev,
3692				  struct pr_held_reservation *rsv)
3693{
3694	struct dm_pr pr = {
3695		.rsv = rsv,
3696	};
3697	int ret;
3698
3699	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3700	if (ret)
3701		return ret;
3702
3703	return pr.ret;
3704}
3705
3706static const struct pr_ops dm_pr_ops = {
3707	.pr_register	= dm_pr_register,
3708	.pr_reserve	= dm_pr_reserve,
3709	.pr_release	= dm_pr_release,
3710	.pr_preempt	= dm_pr_preempt,
3711	.pr_clear	= dm_pr_clear,
3712	.pr_read_keys	= dm_pr_read_keys,
3713	.pr_read_reservation = dm_pr_read_reservation,
3714};
3715
3716static const struct block_device_operations dm_blk_dops = {
3717	.submit_bio = dm_submit_bio,
3718	.poll_bio = dm_poll_bio,
3719	.open = dm_blk_open,
3720	.release = dm_blk_close,
3721	.ioctl = dm_blk_ioctl,
3722	.getgeo = dm_blk_getgeo,
3723	.report_zones = dm_blk_report_zones,
3724	.get_unique_id = dm_blk_get_unique_id,
3725	.pr_ops = &dm_pr_ops,
3726	.owner = THIS_MODULE
3727};
3728
3729static const struct block_device_operations dm_rq_blk_dops = {
3730	.open = dm_blk_open,
3731	.release = dm_blk_close,
3732	.ioctl = dm_blk_ioctl,
3733	.getgeo = dm_blk_getgeo,
3734	.get_unique_id = dm_blk_get_unique_id,
3735	.pr_ops = &dm_pr_ops,
3736	.owner = THIS_MODULE
3737};
3738
3739static const struct dax_operations dm_dax_ops = {
3740	.direct_access = dm_dax_direct_access,
3741	.zero_page_range = dm_dax_zero_page_range,
3742	.recovery_write = dm_dax_recovery_write,
 
3743};
3744
3745/*
3746 * module hooks
3747 */
3748module_init(dm_init);
3749module_exit(dm_exit);
3750
3751module_param(major, uint, 0);
3752MODULE_PARM_DESC(major, "The major number of the device mapper");
3753
3754module_param(reserved_bio_based_ios, uint, 0644);
3755MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3756
3757module_param(dm_numa_node, int, 0644);
3758MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3759
3760module_param(swap_bios, int, 0644);
3761MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3762
3763MODULE_DESCRIPTION(DM_NAME " driver");
3764MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3765MODULE_LICENSE("GPL");
v5.4
 
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
 
  11
 
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
 
  15#include <linux/sched/signal.h>
  16#include <linux/blkpg.h>
  17#include <linux/bio.h>
  18#include <linux/mempool.h>
  19#include <linux/dax.h>
  20#include <linux/slab.h>
  21#include <linux/idr.h>
  22#include <linux/uio.h>
  23#include <linux/hdreg.h>
  24#include <linux/delay.h>
  25#include <linux/wait.h>
  26#include <linux/pr.h>
  27#include <linux/refcount.h>
 
 
 
  28
  29#define DM_MSG_PREFIX "core"
  30
  31/*
  32 * Cookies are numeric values sent with CHANGE and REMOVE
  33 * uevents while resuming, removing or renaming the device.
  34 */
  35#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  36#define DM_COOKIE_LENGTH 24
  37
 
 
 
 
 
 
 
  38static const char *_name = DM_NAME;
  39
  40static unsigned int major = 0;
  41static unsigned int _major = 0;
  42
  43static DEFINE_IDR(_minor_idr);
  44
  45static DEFINE_SPINLOCK(_minor_lock);
  46
  47static void do_deferred_remove(struct work_struct *w);
  48
  49static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  50
  51static struct workqueue_struct *deferred_remove_workqueue;
  52
  53atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  54DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  55
  56void dm_issue_global_event(void)
  57{
  58	atomic_inc(&dm_global_event_nr);
  59	wake_up(&dm_global_eventq);
  60}
  61
 
 
 
 
  62/*
  63 * One of these is allocated (on-stack) per original bio.
  64 */
  65struct clone_info {
  66	struct dm_table *map;
  67	struct bio *bio;
  68	struct dm_io *io;
  69	sector_t sector;
  70	unsigned sector_count;
 
 
  71};
  72
  73/*
  74 * One of these is allocated per clone bio.
  75 */
  76#define DM_TIO_MAGIC 7282014
  77struct dm_target_io {
  78	unsigned magic;
  79	struct dm_io *io;
  80	struct dm_target *ti;
  81	unsigned target_bio_nr;
  82	unsigned *len_ptr;
  83	bool inside_dm_io;
  84	struct bio clone;
  85};
  86
  87/*
  88 * One of these is allocated per original bio.
  89 * It contains the first clone used for that original.
  90 */
  91#define DM_IO_MAGIC 5191977
  92struct dm_io {
  93	unsigned magic;
  94	struct mapped_device *md;
  95	blk_status_t status;
  96	atomic_t io_count;
  97	struct bio *orig_bio;
  98	unsigned long start_time;
  99	spinlock_t endio_lock;
 100	struct dm_stats_aux stats_aux;
 101	/* last member of dm_target_io is 'struct bio' */
 102	struct dm_target_io tio;
 103};
 104
 105void *dm_per_bio_data(struct bio *bio, size_t data_size)
 106{
 107	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 108	if (!tio->inside_dm_io)
 109		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 110	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 111}
 112EXPORT_SYMBOL_GPL(dm_per_bio_data);
 113
 114struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 115{
 116	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 
 117	if (io->magic == DM_IO_MAGIC)
 118		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 119	BUG_ON(io->magic != DM_TIO_MAGIC);
 120	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 121}
 122EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 123
 124unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 125{
 126	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 127}
 128EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 129
 130#define MINOR_ALLOCED ((void *)-1)
 131
 132/*
 133 * Bits for the md->flags field.
 134 */
 135#define DMF_BLOCK_IO_FOR_SUSPEND 0
 136#define DMF_SUSPENDED 1
 137#define DMF_FROZEN 2
 138#define DMF_FREEING 3
 139#define DMF_DELETING 4
 140#define DMF_NOFLUSH_SUSPENDING 5
 141#define DMF_DEFERRED_REMOVE 6
 142#define DMF_SUSPENDED_INTERNALLY 7
 143
 144#define DM_NUMA_NODE NUMA_NO_NODE
 145static int dm_numa_node = DM_NUMA_NODE;
 146
 147/*
 148 * For mempools pre-allocation at the table loading time.
 149 */
 150struct dm_md_mempools {
 151	struct bio_set bs;
 152	struct bio_set io_bs;
 153};
 
 
 
 154
 155struct table_device {
 156	struct list_head list;
 157	refcount_t count;
 158	struct dm_dev dm_dev;
 159};
 160
 161/*
 162 * Bio-based DM's mempools' reserved IOs set by the user.
 163 */
 164#define RESERVED_BIO_BASED_IOS		16
 165static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 166
 167static int __dm_get_module_param_int(int *module_param, int min, int max)
 168{
 169	int param = READ_ONCE(*module_param);
 170	int modified_param = 0;
 171	bool modified = true;
 172
 173	if (param < min)
 174		modified_param = min;
 175	else if (param > max)
 176		modified_param = max;
 177	else
 178		modified = false;
 179
 180	if (modified) {
 181		(void)cmpxchg(module_param, param, modified_param);
 182		param = modified_param;
 183	}
 184
 185	return param;
 186}
 187
 188unsigned __dm_get_module_param(unsigned *module_param,
 189			       unsigned def, unsigned max)
 190{
 191	unsigned param = READ_ONCE(*module_param);
 192	unsigned modified_param = 0;
 193
 194	if (!param)
 195		modified_param = def;
 196	else if (param > max)
 197		modified_param = max;
 198
 199	if (modified_param) {
 200		(void)cmpxchg(module_param, param, modified_param);
 201		param = modified_param;
 202	}
 203
 204	return param;
 205}
 206
 207unsigned dm_get_reserved_bio_based_ios(void)
 208{
 209	return __dm_get_module_param(&reserved_bio_based_ios,
 210				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 211}
 212EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 213
 214static unsigned dm_get_numa_node(void)
 215{
 216	return __dm_get_module_param_int(&dm_numa_node,
 217					 DM_NUMA_NODE, num_online_nodes() - 1);
 218}
 219
 220static int __init local_init(void)
 221{
 222	int r;
 223
 224	r = dm_uevent_init();
 225	if (r)
 226		return r;
 227
 228	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 229	if (!deferred_remove_workqueue) {
 230		r = -ENOMEM;
 231		goto out_uevent_exit;
 232	}
 233
 234	_major = major;
 235	r = register_blkdev(_major, _name);
 236	if (r < 0)
 237		goto out_free_workqueue;
 238
 239	if (!_major)
 240		_major = r;
 241
 242	return 0;
 243
 244out_free_workqueue:
 245	destroy_workqueue(deferred_remove_workqueue);
 246out_uevent_exit:
 247	dm_uevent_exit();
 248
 249	return r;
 250}
 251
 252static void local_exit(void)
 253{
 254	flush_scheduled_work();
 255	destroy_workqueue(deferred_remove_workqueue);
 256
 257	unregister_blkdev(_major, _name);
 258	dm_uevent_exit();
 259
 260	_major = 0;
 261
 262	DMINFO("cleaned up");
 263}
 264
 265static int (*_inits[])(void) __initdata = {
 266	local_init,
 267	dm_target_init,
 268	dm_linear_init,
 269	dm_stripe_init,
 270	dm_io_init,
 271	dm_kcopyd_init,
 272	dm_interface_init,
 273	dm_statistics_init,
 274};
 275
 276static void (*_exits[])(void) = {
 277	local_exit,
 278	dm_target_exit,
 279	dm_linear_exit,
 280	dm_stripe_exit,
 281	dm_io_exit,
 282	dm_kcopyd_exit,
 283	dm_interface_exit,
 284	dm_statistics_exit,
 285};
 286
 287static int __init dm_init(void)
 288{
 289	const int count = ARRAY_SIZE(_inits);
 
 290
 291	int r, i;
 
 
 
 292
 293	for (i = 0; i < count; i++) {
 294		r = _inits[i]();
 295		if (r)
 296			goto bad;
 297	}
 298
 299	return 0;
 300
 301      bad:
 302	while (i--)
 303		_exits[i]();
 304
 305	return r;
 306}
 307
 308static void __exit dm_exit(void)
 309{
 310	int i = ARRAY_SIZE(_exits);
 311
 312	while (i--)
 313		_exits[i]();
 314
 315	/*
 316	 * Should be empty by this point.
 317	 */
 318	idr_destroy(&_minor_idr);
 319}
 320
 321/*
 322 * Block device functions
 323 */
 324int dm_deleting_md(struct mapped_device *md)
 325{
 326	return test_bit(DMF_DELETING, &md->flags);
 327}
 328
 329static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 330{
 331	struct mapped_device *md;
 332
 333	spin_lock(&_minor_lock);
 334
 335	md = bdev->bd_disk->private_data;
 336	if (!md)
 337		goto out;
 338
 339	if (test_bit(DMF_FREEING, &md->flags) ||
 340	    dm_deleting_md(md)) {
 341		md = NULL;
 342		goto out;
 343	}
 344
 345	dm_get(md);
 346	atomic_inc(&md->open_count);
 347out:
 348	spin_unlock(&_minor_lock);
 349
 350	return md ? 0 : -ENXIO;
 351}
 352
 353static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 354{
 355	struct mapped_device *md;
 356
 357	spin_lock(&_minor_lock);
 358
 359	md = disk->private_data;
 360	if (WARN_ON(!md))
 361		goto out;
 362
 363	if (atomic_dec_and_test(&md->open_count) &&
 364	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 365		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 366
 367	dm_put(md);
 368out:
 369	spin_unlock(&_minor_lock);
 370}
 371
 372int dm_open_count(struct mapped_device *md)
 373{
 374	return atomic_read(&md->open_count);
 375}
 376
 377/*
 378 * Guarantees nothing is using the device before it's deleted.
 379 */
 380int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 381{
 382	int r = 0;
 383
 384	spin_lock(&_minor_lock);
 385
 386	if (dm_open_count(md)) {
 387		r = -EBUSY;
 388		if (mark_deferred)
 389			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 390	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 391		r = -EEXIST;
 392	else
 393		set_bit(DMF_DELETING, &md->flags);
 394
 395	spin_unlock(&_minor_lock);
 396
 397	return r;
 398}
 399
 400int dm_cancel_deferred_remove(struct mapped_device *md)
 401{
 402	int r = 0;
 403
 404	spin_lock(&_minor_lock);
 405
 406	if (test_bit(DMF_DELETING, &md->flags))
 407		r = -EBUSY;
 408	else
 409		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 410
 411	spin_unlock(&_minor_lock);
 412
 413	return r;
 414}
 415
 416static void do_deferred_remove(struct work_struct *w)
 417{
 418	dm_deferred_remove();
 419}
 420
 421sector_t dm_get_size(struct mapped_device *md)
 422{
 423	return get_capacity(md->disk);
 424}
 425
 426struct request_queue *dm_get_md_queue(struct mapped_device *md)
 427{
 428	return md->queue;
 429}
 430
 431struct dm_stats *dm_get_stats(struct mapped_device *md)
 432{
 433	return &md->stats;
 434}
 435
 436static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 437{
 438	struct mapped_device *md = bdev->bd_disk->private_data;
 439
 440	return dm_get_geometry(md, geo);
 441}
 442
 443static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
 444			       struct blk_zone *zones, unsigned int *nr_zones)
 445{
 446#ifdef CONFIG_BLK_DEV_ZONED
 447	struct mapped_device *md = disk->private_data;
 448	struct dm_target *tgt;
 449	struct dm_table *map;
 450	int srcu_idx, ret;
 451
 452	if (dm_suspended_md(md))
 453		return -EAGAIN;
 454
 455	map = dm_get_live_table(md, &srcu_idx);
 456	if (!map)
 457		return -EIO;
 458
 459	tgt = dm_table_find_target(map, sector);
 460	if (!tgt) {
 461		ret = -EIO;
 462		goto out;
 463	}
 464
 465	/*
 466	 * If we are executing this, we already know that the block device
 467	 * is a zoned device and so each target should have support for that
 468	 * type of drive. A missing report_zones method means that the target
 469	 * driver has a problem.
 470	 */
 471	if (WARN_ON(!tgt->type->report_zones)) {
 472		ret = -EIO;
 473		goto out;
 474	}
 475
 476	/*
 477	 * blkdev_report_zones() will loop and call this again to cover all the
 478	 * zones of the target, eventually moving on to the next target.
 479	 * So there is no need to loop here trying to fill the entire array
 480	 * of zones.
 481	 */
 482	ret = tgt->type->report_zones(tgt, sector, zones, nr_zones);
 483
 484out:
 485	dm_put_live_table(md, srcu_idx);
 486	return ret;
 487#else
 488	return -ENOTSUPP;
 489#endif
 490}
 491
 492static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 493			    struct block_device **bdev)
 494	__acquires(md->io_barrier)
 495{
 496	struct dm_target *tgt;
 497	struct dm_table *map;
 498	int r;
 499
 500retry:
 501	r = -ENOTTY;
 502	map = dm_get_live_table(md, srcu_idx);
 503	if (!map || !dm_table_get_size(map))
 504		return r;
 505
 506	/* We only support devices that have a single target */
 507	if (dm_table_get_num_targets(map) != 1)
 508		return r;
 509
 510	tgt = dm_table_get_target(map, 0);
 511	if (!tgt->type->prepare_ioctl)
 512		return r;
 513
 514	if (dm_suspended_md(md))
 515		return -EAGAIN;
 516
 517	r = tgt->type->prepare_ioctl(tgt, bdev);
 518	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 519		dm_put_live_table(md, *srcu_idx);
 520		msleep(10);
 521		goto retry;
 522	}
 523
 524	return r;
 525}
 526
 527static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 528	__releases(md->io_barrier)
 529{
 530	dm_put_live_table(md, srcu_idx);
 531}
 532
 533static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 534			unsigned int cmd, unsigned long arg)
 535{
 536	struct mapped_device *md = bdev->bd_disk->private_data;
 537	int r, srcu_idx;
 538
 539	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 540	if (r < 0)
 541		goto out;
 542
 543	if (r > 0) {
 544		/*
 545		 * Target determined this ioctl is being issued against a
 546		 * subset of the parent bdev; require extra privileges.
 547		 */
 548		if (!capable(CAP_SYS_RAWIO)) {
 549			DMWARN_LIMIT(
 550	"%s: sending ioctl %x to DM device without required privilege.",
 551				current->comm, cmd);
 552			r = -ENOIOCTLCMD;
 553			goto out;
 554		}
 555	}
 556
 557	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 
 
 
 558out:
 559	dm_unprepare_ioctl(md, srcu_idx);
 560	return r;
 561}
 562
 563static void start_io_acct(struct dm_io *io);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564
 565static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 566{
 567	struct dm_io *io;
 568	struct dm_target_io *tio;
 569	struct bio *clone;
 570
 571	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 572	if (!clone)
 573		return NULL;
 574
 575	tio = container_of(clone, struct dm_target_io, clone);
 576	tio->inside_dm_io = true;
 577	tio->io = NULL;
 578
 579	io = container_of(tio, struct dm_io, tio);
 580	io->magic = DM_IO_MAGIC;
 581	io->status = 0;
 582	atomic_set(&io->io_count, 1);
 
 
 
 583	io->orig_bio = bio;
 584	io->md = md;
 585	spin_lock_init(&io->endio_lock);
 586
 587	start_io_acct(io);
 
 
 
 
 
 
 588
 589	return io;
 590}
 591
 592static void free_io(struct mapped_device *md, struct dm_io *io)
 593{
 594	bio_put(&io->tio.clone);
 595}
 596
 597static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 598				      unsigned target_bio_nr, gfp_t gfp_mask)
 599{
 
 600	struct dm_target_io *tio;
 
 601
 602	if (!ci->io->tio.io) {
 603		/* the dm_target_io embedded in ci->io is available */
 604		tio = &ci->io->tio;
 
 
 605	} else {
 606		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 
 607		if (!clone)
 608			return NULL;
 609
 610		tio = container_of(clone, struct dm_target_io, clone);
 611		tio->inside_dm_io = false;
 
 
 
 612	}
 613
 614	tio->magic = DM_TIO_MAGIC;
 615	tio->io = ci->io;
 616	tio->ti = ti;
 617	tio->target_bio_nr = target_bio_nr;
 
 
 618
 619	return tio;
 620}
 621
 622static void free_tio(struct dm_target_io *tio)
 623{
 624	if (tio->inside_dm_io)
 625		return;
 626	bio_put(&tio->clone);
 627}
 628
 629static bool md_in_flight_bios(struct mapped_device *md)
 630{
 631	int cpu;
 632	struct hd_struct *part = &dm_disk(md)->part0;
 633	long sum = 0;
 634
 635	for_each_possible_cpu(cpu) {
 636		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
 637		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
 
 638	}
 639
 640	return sum != 0;
 641}
 642
 643static bool md_in_flight(struct mapped_device *md)
 644{
 645	if (queue_is_mq(md->queue))
 646		return blk_mq_queue_inflight(md->queue);
 647	else
 648		return md_in_flight_bios(md);
 649}
 650
 651static void start_io_acct(struct dm_io *io)
 652{
 653	struct mapped_device *md = io->md;
 654	struct bio *bio = io->orig_bio;
 655
 656	io->start_time = jiffies;
 657
 658	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
 659			      &dm_disk(md)->part0);
 660
 661	if (unlikely(dm_stats_used(&md->stats)))
 662		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 663				    bio->bi_iter.bi_sector, bio_sectors(bio),
 664				    false, 0, &io->stats_aux);
 665}
 666
 667static void end_io_acct(struct dm_io *io)
 668{
 669	struct mapped_device *md = io->md;
 670	struct bio *bio = io->orig_bio;
 671	unsigned long duration = jiffies - io->start_time;
 672
 673	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
 674			    io->start_time);
 675
 676	if (unlikely(dm_stats_used(&md->stats)))
 677		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 678				    bio->bi_iter.bi_sector, bio_sectors(bio),
 679				    true, duration, &io->stats_aux);
 680
 681	/* nudge anyone waiting on suspend queue */
 682	if (unlikely(wq_has_sleeper(&md->wait)))
 683		wake_up(&md->wait);
 684}
 685
 686/*
 687 * Add the bio to the list of deferred io.
 688 */
 689static void queue_io(struct mapped_device *md, struct bio *bio)
 690{
 691	unsigned long flags;
 692
 693	spin_lock_irqsave(&md->deferred_lock, flags);
 694	bio_list_add(&md->deferred, bio);
 695	spin_unlock_irqrestore(&md->deferred_lock, flags);
 696	queue_work(md->wq, &md->work);
 697}
 698
 699/*
 700 * Everyone (including functions in this file), should use this
 701 * function to access the md->map field, and make sure they call
 702 * dm_put_live_table() when finished.
 703 */
 704struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 
 705{
 706	*srcu_idx = srcu_read_lock(&md->io_barrier);
 707
 708	return srcu_dereference(md->map, &md->io_barrier);
 709}
 710
 711void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 
 712{
 713	srcu_read_unlock(&md->io_barrier, srcu_idx);
 714}
 715
 716void dm_sync_table(struct mapped_device *md)
 717{
 718	synchronize_srcu(&md->io_barrier);
 719	synchronize_rcu_expedited();
 720}
 721
 722/*
 723 * A fast alternative to dm_get_live_table/dm_put_live_table.
 724 * The caller must not block between these two functions.
 725 */
 726static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 727{
 728	rcu_read_lock();
 729	return rcu_dereference(md->map);
 730}
 731
 732static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 733{
 734	rcu_read_unlock();
 735}
 736
 737static char *_dm_claim_ptr = "I belong to device-mapper";
 738
 739/*
 740 * Open a table device so we can use it as a map destination.
 741 */
 742static int open_table_device(struct table_device *td, dev_t dev,
 743			     struct mapped_device *md)
 744{
 
 
 745	struct block_device *bdev;
 
 
 746
 747	int r;
 
 
 
 748
 749	BUG_ON(td->dm_dev.bdev);
 
 
 
 
 750
 751	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 752	if (IS_ERR(bdev))
 753		return PTR_ERR(bdev);
 754
 755	r = bd_link_disk_holder(bdev, dm_disk(md));
 756	if (r) {
 757		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 758		return r;
 
 
 
 
 
 759	}
 760
 
 761	td->dm_dev.bdev = bdev;
 762	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 763	return 0;
 
 
 
 
 
 
 
 
 
 
 764}
 765
 766/*
 767 * Close a table device that we've been using.
 768 */
 769static void close_table_device(struct table_device *td, struct mapped_device *md)
 770{
 771	if (!td->dm_dev.bdev)
 772		return;
 
 
 
 
 
 
 773
 774	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 775	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 776	put_dax(td->dm_dev.dax_dev);
 777	td->dm_dev.bdev = NULL;
 778	td->dm_dev.dax_dev = NULL;
 779}
 780
 781static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 782					      fmode_t mode)
 783{
 784	struct table_device *td;
 785
 786	list_for_each_entry(td, l, list)
 787		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 788			return td;
 789
 790	return NULL;
 791}
 792
 793int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 794			struct dm_dev **result)
 795{
 796	int r;
 797	struct table_device *td;
 798
 799	mutex_lock(&md->table_devices_lock);
 800	td = find_table_device(&md->table_devices, dev, mode);
 801	if (!td) {
 802		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 803		if (!td) {
 804			mutex_unlock(&md->table_devices_lock);
 805			return -ENOMEM;
 806		}
 807
 808		td->dm_dev.mode = mode;
 809		td->dm_dev.bdev = NULL;
 810
 811		if ((r = open_table_device(td, dev, md))) {
 812			mutex_unlock(&md->table_devices_lock);
 813			kfree(td);
 814			return r;
 815		}
 816
 817		format_dev_t(td->dm_dev.name, dev);
 818
 819		refcount_set(&td->count, 1);
 820		list_add(&td->list, &md->table_devices);
 821	} else {
 822		refcount_inc(&td->count);
 823	}
 824	mutex_unlock(&md->table_devices_lock);
 825
 826	*result = &td->dm_dev;
 827	return 0;
 828}
 829EXPORT_SYMBOL_GPL(dm_get_table_device);
 830
 831void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 832{
 833	struct table_device *td = container_of(d, struct table_device, dm_dev);
 834
 835	mutex_lock(&md->table_devices_lock);
 836	if (refcount_dec_and_test(&td->count)) {
 837		close_table_device(td, md);
 838		list_del(&td->list);
 839		kfree(td);
 840	}
 841	mutex_unlock(&md->table_devices_lock);
 842}
 843EXPORT_SYMBOL(dm_put_table_device);
 844
 845static void free_table_devices(struct list_head *devices)
 846{
 847	struct list_head *tmp, *next;
 848
 849	list_for_each_safe(tmp, next, devices) {
 850		struct table_device *td = list_entry(tmp, struct table_device, list);
 851
 852		DMWARN("dm_destroy: %s still exists with %d references",
 853		       td->dm_dev.name, refcount_read(&td->count));
 854		kfree(td);
 855	}
 856}
 857
 858/*
 859 * Get the geometry associated with a dm device
 860 */
 861int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 862{
 863	*geo = md->geometry;
 864
 865	return 0;
 866}
 867
 868/*
 869 * Set the geometry of a device.
 870 */
 871int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 872{
 873	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 874
 875	if (geo->start > sz) {
 876		DMWARN("Start sector is beyond the geometry limits.");
 877		return -EINVAL;
 878	}
 879
 880	md->geometry = *geo;
 881
 882	return 0;
 883}
 884
 885static int __noflush_suspending(struct mapped_device *md)
 886{
 887	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 888}
 889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 890/*
 891 * Decrements the number of outstanding ios that a bio has been
 892 * cloned into, completing the original io if necc.
 893 */
 894static void dec_pending(struct dm_io *io, blk_status_t error)
 895{
 896	unsigned long flags;
 897	blk_status_t io_error;
 898	struct bio *bio;
 
 899	struct mapped_device *md = io->md;
 
 900
 901	/* Push-back supersedes any I/O errors */
 902	if (unlikely(error)) {
 903		spin_lock_irqsave(&io->endio_lock, flags);
 904		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 905			io->status = error;
 906		spin_unlock_irqrestore(&io->endio_lock, flags);
 907	}
 908
 909	if (atomic_dec_and_test(&io->io_count)) {
 910		if (io->status == BLK_STS_DM_REQUEUE) {
 911			/*
 912			 * Target requested pushing back the I/O.
 
 
 913			 */
 914			spin_lock_irqsave(&md->deferred_lock, flags);
 915			if (__noflush_suspending(md))
 916				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 917				bio_list_add_head(&md->deferred, io->orig_bio);
 918			else
 919				/* noflush suspend was interrupted. */
 920				io->status = BLK_STS_IOERR;
 921			spin_unlock_irqrestore(&md->deferred_lock, flags);
 922		}
 923
 924		io_error = io->status;
 925		bio = io->orig_bio;
 926		end_io_acct(io);
 927		free_io(md, io);
 928
 929		if (io_error == BLK_STS_DM_REQUEUE)
 930			return;
 931
 932		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 
 
 
 
 
 
 
 933			/*
 934			 * Preflush done for flush with data, reissue
 935			 * without REQ_PREFLUSH.
 936			 */
 937			bio->bi_opf &= ~REQ_PREFLUSH;
 938			queue_io(md, bio);
 939		} else {
 940			/* done with normal IO or empty flush */
 941			if (io_error)
 942				bio->bi_status = io_error;
 943			bio_endio(bio);
 944		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945	}
 946}
 947
 948void disable_discard(struct mapped_device *md)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949{
 950	struct queue_limits *limits = dm_get_queue_limits(md);
 
 
 
 
 951
 952	/* device doesn't really support DISCARD, disable it */
 953	limits->max_discard_sectors = 0;
 954	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 
 
 
 
 955}
 956
 957void disable_write_same(struct mapped_device *md)
 958{
 959	struct queue_limits *limits = dm_get_queue_limits(md);
 960
 961	/* device doesn't really support WRITE SAME, disable it */
 962	limits->max_write_same_sectors = 0;
 963}
 964
 965void disable_write_zeroes(struct mapped_device *md)
 966{
 967	struct queue_limits *limits = dm_get_queue_limits(md);
 968
 969	/* device doesn't really support WRITE ZEROES, disable it */
 970	limits->max_write_zeroes_sectors = 0;
 971}
 972
 
 
 
 
 
 973static void clone_endio(struct bio *bio)
 974{
 975	blk_status_t error = bio->bi_status;
 976	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 
 
 977	struct dm_io *io = tio->io;
 978	struct mapped_device *md = tio->io->md;
 979	dm_endio_fn endio = tio->ti->type->end_io;
 980
 981	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 982		if (bio_op(bio) == REQ_OP_DISCARD &&
 983		    !bio->bi_disk->queue->limits.max_discard_sectors)
 984			disable_discard(md);
 985		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 986			 !bio->bi_disk->queue->limits.max_write_same_sectors)
 987			disable_write_same(md);
 988		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 989			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
 990			disable_write_zeroes(md);
 991	}
 992
 
 
 
 
 993	if (endio) {
 994		int r = endio(tio->ti, bio, &error);
 
 995		switch (r) {
 996		case DM_ENDIO_REQUEUE:
 997			error = BLK_STS_DM_REQUEUE;
 998			/*FALLTHRU*/
 
 
 
 
 
 
 
 
 
 
 
 999		case DM_ENDIO_DONE:
1000			break;
1001		case DM_ENDIO_INCOMPLETE:
1002			/* The target will handle the io */
1003			return;
1004		default:
1005			DMWARN("unimplemented target endio return value: %d", r);
1006			BUG();
1007		}
1008	}
1009
1010	free_tio(tio);
1011	dec_pending(io, error);
 
 
 
 
1012}
1013
1014/*
1015 * Return maximum size of I/O possible at the supplied sector up to the current
1016 * target boundary.
1017 */
1018static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 
1019{
1020	sector_t target_offset = dm_target_offset(ti, sector);
1021
1022	return ti->len - target_offset;
1023}
1024
1025static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 
 
1026{
1027	sector_t len = max_io_len_target_boundary(sector, ti);
1028	sector_t offset, max_len;
1029
1030	/*
1031	 * Does the target need to split even further?
 
 
 
1032	 */
1033	if (ti->max_io_len) {
1034		offset = dm_target_offset(ti, sector);
1035		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1036			max_len = sector_div(offset, ti->max_io_len);
1037		else
1038			max_len = offset & (ti->max_io_len - 1);
1039		max_len = ti->max_io_len - max_len;
1040
1041		if (len > max_len)
1042			len = max_len;
1043	}
1044
1045	return len;
1046}
1047
1048int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1049{
1050	if (len > UINT_MAX) {
1051		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1052		      (unsigned long long)len, UINT_MAX);
1053		ti->error = "Maximum size of target IO is too large";
1054		return -EINVAL;
1055	}
1056
1057	ti->max_io_len = (uint32_t) len;
1058
1059	return 0;
1060}
1061EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1062
1063static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1064						sector_t sector, int *srcu_idx)
1065	__acquires(md->io_barrier)
1066{
1067	struct dm_table *map;
1068	struct dm_target *ti;
1069
1070	map = dm_get_live_table(md, srcu_idx);
1071	if (!map)
1072		return NULL;
1073
1074	ti = dm_table_find_target(map, sector);
1075	if (!ti)
1076		return NULL;
1077
1078	return ti;
1079}
1080
1081static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1082				 long nr_pages, void **kaddr, pfn_t *pfn)
 
1083{
1084	struct mapped_device *md = dax_get_private(dax_dev);
1085	sector_t sector = pgoff * PAGE_SECTORS;
1086	struct dm_target *ti;
1087	long len, ret = -EIO;
1088	int srcu_idx;
1089
1090	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1091
1092	if (!ti)
1093		goto out;
1094	if (!ti->type->direct_access)
1095		goto out;
1096	len = max_io_len(sector, ti) / PAGE_SECTORS;
1097	if (len < 1)
1098		goto out;
1099	nr_pages = min(len, nr_pages);
1100	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1101
1102 out:
1103	dm_put_live_table(md, srcu_idx);
1104
1105	return ret;
1106}
1107
1108static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1109		int blocksize, sector_t start, sector_t len)
1110{
1111	struct mapped_device *md = dax_get_private(dax_dev);
1112	struct dm_table *map;
1113	int srcu_idx;
1114	bool ret;
1115
1116	map = dm_get_live_table(md, &srcu_idx);
1117	if (!map)
1118		return false;
1119
1120	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1121
1122	dm_put_live_table(md, srcu_idx);
1123
1124	return ret;
1125}
1126
1127static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1128				    void *addr, size_t bytes, struct iov_iter *i)
1129{
1130	struct mapped_device *md = dax_get_private(dax_dev);
1131	sector_t sector = pgoff * PAGE_SECTORS;
1132	struct dm_target *ti;
1133	long ret = 0;
1134	int srcu_idx;
1135
1136	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1137
1138	if (!ti)
1139		goto out;
1140	if (!ti->type->dax_copy_from_iter) {
1141		ret = copy_from_iter(addr, bytes, i);
 
 
 
1142		goto out;
1143	}
1144	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1145 out:
1146	dm_put_live_table(md, srcu_idx);
1147
1148	return ret;
1149}
1150
1151static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1152		void *addr, size_t bytes, struct iov_iter *i)
1153{
1154	struct mapped_device *md = dax_get_private(dax_dev);
1155	sector_t sector = pgoff * PAGE_SECTORS;
1156	struct dm_target *ti;
 
1157	long ret = 0;
1158	int srcu_idx;
1159
1160	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
 
1161
1162	if (!ti)
1163		goto out;
1164	if (!ti->type->dax_copy_to_iter) {
1165		ret = copy_to_iter(addr, bytes, i);
1166		goto out;
1167	}
1168	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1169 out:
1170	dm_put_live_table(md, srcu_idx);
1171
1172	return ret;
1173}
1174
1175/*
1176 * A target may call dm_accept_partial_bio only from the map routine.  It is
1177 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
 
 
1178 *
1179 * dm_accept_partial_bio informs the dm that the target only wants to process
1180 * additional n_sectors sectors of the bio and the rest of the data should be
1181 * sent in a next bio.
1182 *
1183 * A diagram that explains the arithmetics:
1184 * +--------------------+---------------+-------+
1185 * |         1          |       2       |   3   |
1186 * +--------------------+---------------+-------+
1187 *
1188 * <-------------- *tio->len_ptr --------------->
1189 *                      <------- bi_size ------->
1190 *                      <-- n_sectors -->
1191 *
1192 * Region 1 was already iterated over with bio_advance or similar function.
1193 *	(it may be empty if the target doesn't use bio_advance)
1194 * Region 2 is the remaining bio size that the target wants to process.
1195 *	(it may be empty if region 1 is non-empty, although there is no reason
1196 *	 to make it empty)
1197 * The target requires that region 3 is to be sent in the next bio.
1198 *
1199 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1200 * the partially processed part (the sum of regions 1+2) must be the same for all
1201 * copies of the bio.
1202 */
1203void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1204{
1205	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1206	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1207	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1208	BUG_ON(bi_size > *tio->len_ptr);
1209	BUG_ON(n_sectors > bi_size);
1210	*tio->len_ptr -= bi_size - n_sectors;
 
 
 
 
 
1211	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
 
 
 
 
 
 
 
 
1212}
1213EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1214
1215/*
1216 * The zone descriptors obtained with a zone report indicate
1217 * zone positions within the underlying device of the target. The zone
1218 * descriptors must be remapped to match their position within the dm device.
1219 * The caller target should obtain the zones information using
1220 * blkdev_report_zones() to ensure that remapping for partition offset is
1221 * already handled.
 
1222 */
1223void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1224			  struct blk_zone *zones, unsigned int *nr_zones)
1225{
1226#ifdef CONFIG_BLK_DEV_ZONED
1227	struct blk_zone *zone;
1228	unsigned int nrz = *nr_zones;
1229	int i;
 
 
1230
1231	/*
1232	 * Remap the start sector and write pointer position of the zones in
1233	 * the array. Since we may have obtained from the target underlying
1234	 * device more zones that the target size, also adjust the number
1235	 * of zones.
1236	 */
1237	for (i = 0; i < nrz; i++) {
1238		zone = zones + i;
1239		if (zone->start >= start + ti->len) {
1240			memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1241			break;
1242		}
1243
1244		zone->start = zone->start + ti->begin - start;
1245		if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1246			continue;
 
 
1247
1248		if (zone->cond == BLK_ZONE_COND_FULL)
1249			zone->wp = zone->start + zone->len;
1250		else if (zone->cond == BLK_ZONE_COND_EMPTY)
1251			zone->wp = zone->start;
1252		else
1253			zone->wp = zone->wp + ti->begin - start;
 
 
 
 
 
 
1254	}
1255
1256	*nr_zones = i;
1257#else /* !CONFIG_BLK_DEV_ZONED */
1258	*nr_zones = 0;
1259#endif
1260}
1261EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1262
1263static blk_qc_t __map_bio(struct dm_target_io *tio)
1264{
1265	int r;
1266	sector_t sector;
1267	struct bio *clone = &tio->clone;
1268	struct dm_io *io = tio->io;
1269	struct mapped_device *md = io->md;
1270	struct dm_target *ti = tio->ti;
1271	blk_qc_t ret = BLK_QC_T_NONE;
1272
1273	clone->bi_end_io = clone_endio;
1274
1275	/*
1276	 * Map the clone.  If r == 0 we don't need to do
1277	 * anything, the target has assumed ownership of
1278	 * this io.
1279	 */
1280	atomic_inc(&io->io_count);
1281	sector = clone->bi_iter.bi_sector;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282
1283	r = ti->type->map(ti, clone);
1284	switch (r) {
1285	case DM_MAPIO_SUBMITTED:
 
 
 
1286		break;
1287	case DM_MAPIO_REMAPPED:
1288		/* the bio has been remapped so dispatch it */
1289		trace_block_bio_remap(clone->bi_disk->queue, clone,
1290				      bio_dev(io->orig_bio), sector);
1291		if (md->type == DM_TYPE_NVME_BIO_BASED)
1292			ret = direct_make_request(clone);
1293		else
1294			ret = generic_make_request(clone);
1295		break;
1296	case DM_MAPIO_KILL:
1297		free_tio(tio);
1298		dec_pending(io, BLK_STS_IOERR);
1299		break;
1300	case DM_MAPIO_REQUEUE:
1301		free_tio(tio);
1302		dec_pending(io, BLK_STS_DM_REQUEUE);
 
 
 
 
 
 
1303		break;
1304	default:
1305		DMWARN("unimplemented target map return value: %d", r);
1306		BUG();
1307	}
1308
1309	return ret;
1310}
1311
1312static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1313{
1314	bio->bi_iter.bi_sector = sector;
1315	bio->bi_iter.bi_size = to_bytes(len);
1316}
1317
1318/*
1319 * Creates a bio that consists of range of complete bvecs.
1320 */
1321static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1322		     sector_t sector, unsigned len)
1323{
1324	struct bio *clone = &tio->clone;
1325
1326	__bio_clone_fast(clone, bio);
1327
1328	if (bio_integrity(bio)) {
1329		int r;
1330
1331		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1332			     !dm_target_passes_integrity(tio->ti->type))) {
1333			DMWARN("%s: the target %s doesn't support integrity data.",
1334				dm_device_name(tio->io->md),
1335				tio->ti->type->name);
1336			return -EIO;
1337		}
1338
1339		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1340		if (r < 0)
1341			return r;
1342	}
1343
1344	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1345	clone->bi_iter.bi_size = to_bytes(len);
1346
1347	if (bio_integrity(bio))
1348		bio_integrity_trim(clone);
1349
1350	return 0;
1351}
1352
1353static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1354				struct dm_target *ti, unsigned num_bios)
 
1355{
1356	struct dm_target_io *tio;
1357	int try;
1358
1359	if (!num_bios)
1360		return;
1361
1362	if (num_bios == 1) {
1363		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1364		bio_list_add(blist, &tio->clone);
1365		return;
1366	}
1367
1368	for (try = 0; try < 2; try++) {
1369		int bio_nr;
1370		struct bio *bio;
1371
1372		if (try)
1373			mutex_lock(&ci->io->md->table_devices_lock);
1374		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1375			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1376			if (!tio)
 
1377				break;
1378
1379			bio_list_add(blist, &tio->clone);
1380		}
1381		if (try)
1382			mutex_unlock(&ci->io->md->table_devices_lock);
1383		if (bio_nr == num_bios)
1384			return;
1385
1386		while ((bio = bio_list_pop(blist))) {
1387			tio = container_of(bio, struct dm_target_io, clone);
1388			free_tio(tio);
1389		}
1390	}
1391}
1392
1393static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1394					   struct dm_target_io *tio, unsigned *len)
 
1395{
1396	struct bio *clone = &tio->clone;
 
 
1397
1398	tio->len_ptr = len;
 
1399
1400	__bio_clone_fast(clone, ci->bio);
1401	if (len)
1402		bio_setup_sector(clone, ci->sector, *len);
1403
1404	return __map_bio(tio);
1405}
 
 
 
 
 
 
 
 
 
1406
1407static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1408				  unsigned num_bios, unsigned *len)
1409{
1410	struct bio_list blist = BIO_EMPTY_LIST;
1411	struct bio *bio;
1412	struct dm_target_io *tio;
1413
1414	alloc_multiple_bios(&blist, ci, ti, num_bios);
1415
1416	while ((bio = bio_list_pop(&blist))) {
1417		tio = container_of(bio, struct dm_target_io, clone);
1418		(void) __clone_and_map_simple_bio(ci, tio, len);
1419	}
1420}
1421
1422static int __send_empty_flush(struct clone_info *ci)
1423{
1424	unsigned target_nr = 0;
1425	struct dm_target *ti;
1426
1427	/*
1428	 * Empty flush uses a statically initialized bio, as the base for
1429	 * cloning.  However, blkg association requires that a bdev is
1430	 * associated with a gendisk, which doesn't happen until the bdev is
1431	 * opened.  So, blkg association is done at issue time of the flush
1432	 * rather than when the device is created in alloc_dev().
1433	 */
1434	bio_set_dev(ci->bio, ci->io->md->bdev);
1435
1436	BUG_ON(bio_has_data(ci->bio));
1437	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1438		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1439
1440	bio_disassociate_blkg(ci->bio);
 
 
1441
1442	return 0;
1443}
 
 
1444
1445static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1446				    sector_t sector, unsigned *len)
1447{
1448	struct bio *bio = ci->bio;
1449	struct dm_target_io *tio;
1450	int r;
1451
1452	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1453	tio->len_ptr = len;
1454	r = clone_bio(tio, bio, sector, *len);
1455	if (r < 0) {
1456		free_tio(tio);
1457		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458	}
1459	(void) __map_bio(tio);
1460
1461	return 0;
 
 
 
 
 
 
1462}
1463
1464typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
 
 
 
 
 
 
 
1465
1466static unsigned get_num_discard_bios(struct dm_target *ti)
1467{
1468	return ti->num_discard_bios;
1469}
 
 
 
1470
1471static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1472{
1473	return ti->num_secure_erase_bios;
1474}
1475
1476static unsigned get_num_write_same_bios(struct dm_target *ti)
1477{
1478	return ti->num_write_same_bios;
 
 
 
 
 
 
 
 
 
 
 
 
1479}
1480
1481static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
 
1482{
1483	return ti->num_write_zeroes_bios;
1484}
 
 
1485
1486static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1487				       unsigned num_bios)
1488{
1489	unsigned len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1490
1491	/*
1492	 * Even though the device advertised support for this type of
1493	 * request, that does not mean every target supports it, and
1494	 * reconfiguration might also have changed that since the
1495	 * check was performed.
1496	 */
1497	if (!num_bios)
1498		return -EOPNOTSUPP;
1499
1500	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1501
1502	__send_duplicate_bios(ci, ti, num_bios, &len);
1503
1504	ci->sector += len;
1505	ci->sector_count -= len;
1506
1507	return 0;
1508}
1509
1510static int __send_discard(struct clone_info *ci, struct dm_target *ti)
 
 
 
 
 
 
 
 
 
1511{
1512	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1513}
1514
1515static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1516{
1517	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1518}
1519
1520static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1521{
1522	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1523}
 
 
 
1524
1525static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1526{
1527	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1528}
1529
1530static bool is_abnormal_io(struct bio *bio)
1531{
1532	bool r = false;
1533
1534	switch (bio_op(bio)) {
1535	case REQ_OP_DISCARD:
1536	case REQ_OP_SECURE_ERASE:
1537	case REQ_OP_WRITE_SAME:
1538	case REQ_OP_WRITE_ZEROES:
1539		r = true;
1540		break;
1541	}
1542
1543	return r;
1544}
1545
1546static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1547				  int *result)
1548{
1549	struct bio *bio = ci->bio;
1550
1551	if (bio_op(bio) == REQ_OP_DISCARD)
1552		*result = __send_discard(ci, ti);
1553	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1554		*result = __send_secure_erase(ci, ti);
1555	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1556		*result = __send_write_same(ci, ti);
1557	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1558		*result = __send_write_zeroes(ci, ti);
1559	else
1560		return false;
1561
1562	return true;
1563}
1564
1565/*
1566 * Select the correct strategy for processing a non-flush bio.
1567 */
1568static int __split_and_process_non_flush(struct clone_info *ci)
1569{
 
1570	struct dm_target *ti;
1571	unsigned len;
1572	int r;
1573
1574	ti = dm_table_find_target(ci->map, ci->sector);
1575	if (!ti)
1576		return -EIO;
 
 
 
 
 
 
 
 
 
1577
1578	if (__process_abnormal_io(ci, ti, &r))
1579		return r;
1580
1581	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
 
 
1582
1583	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1584	if (r < 0)
1585		return r;
 
 
 
 
1586
1587	ci->sector += len;
1588	ci->sector_count -= len;
1589
1590	return 0;
1591}
1592
1593static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1594			    struct dm_table *map, struct bio *bio)
1595{
1596	ci->map = map;
1597	ci->io = alloc_io(md, bio);
 
 
 
1598	ci->sector = bio->bi_iter.bi_sector;
 
 
 
 
 
 
1599}
1600
1601#define __dm_part_stat_sub(part, field, subnd)	\
1602	(part_stat_get(part, field) -= (subnd))
 
 
 
 
 
 
 
 
 
 
 
 
 
1603
1604/*
1605 * Entry point to split a bio into clones and submit them to the targets.
1606 */
1607static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1608					struct dm_table *map, struct bio *bio)
1609{
1610	struct clone_info ci;
1611	blk_qc_t ret = BLK_QC_T_NONE;
1612	int error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1613
1614	init_clone_info(&ci, md, map, bio);
1615
1616	if (bio->bi_opf & REQ_PREFLUSH) {
1617		struct bio flush_bio;
 
 
1618
1619		/*
1620		 * Use an on-stack bio for this, it's safe since we don't
1621		 * need to reference it after submit. It's just used as
1622		 * the basis for the clone(s).
1623		 */
1624		bio_init(&flush_bio, NULL, 0);
1625		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1626		ci.bio = &flush_bio;
1627		ci.sector_count = 0;
1628		error = __send_empty_flush(&ci);
1629		/* dec_pending submits any data associated with flush */
1630	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1631		ci.bio = bio;
1632		ci.sector_count = 0;
1633		error = __split_and_process_non_flush(&ci);
1634	} else {
1635		ci.bio = bio;
1636		ci.sector_count = bio_sectors(bio);
1637		while (ci.sector_count && !error) {
1638			error = __split_and_process_non_flush(&ci);
1639			if (current->bio_list && ci.sector_count && !error) {
1640				/*
1641				 * Remainder must be passed to generic_make_request()
1642				 * so that it gets handled *after* bios already submitted
1643				 * have been completely processed.
1644				 * We take a clone of the original to store in
1645				 * ci.io->orig_bio to be used by end_io_acct() and
1646				 * for dec_pending to use for completion handling.
1647				 */
1648				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1649							  GFP_NOIO, &md->queue->bio_split);
1650				ci.io->orig_bio = b;
1651
1652				/*
1653				 * Adjust IO stats for each split, otherwise upon queue
1654				 * reentry there will be redundant IO accounting.
1655				 * NOTE: this is a stop-gap fix, a proper fix involves
1656				 * significant refactoring of DM core's bio splitting
1657				 * (by eliminating DM's splitting and just using bio_split)
1658				 */
1659				part_stat_lock();
1660				__dm_part_stat_sub(&dm_disk(md)->part0,
1661						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1662				part_stat_unlock();
1663
1664				bio_chain(b, bio);
1665				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1666				ret = generic_make_request(bio);
1667				break;
1668			}
1669		}
 
 
 
 
 
 
 
 
 
 
 
 
1670	}
1671
1672	/* drop the extra reference count */
1673	dec_pending(ci.io, errno_to_blk_status(error));
1674	return ret;
 
 
 
 
 
1675}
1676
1677/*
1678 * Optimized variant of __split_and_process_bio that leverages the
1679 * fact that targets that use it do _not_ have a need to split bios.
1680 */
1681static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1682			      struct bio *bio, struct dm_target *ti)
1683{
1684	struct clone_info ci;
1685	blk_qc_t ret = BLK_QC_T_NONE;
1686	int error = 0;
 
 
1687
1688	init_clone_info(&ci, md, map, bio);
 
1689
1690	if (bio->bi_opf & REQ_PREFLUSH) {
1691		struct bio flush_bio;
 
 
1692
1693		/*
1694		 * Use an on-stack bio for this, it's safe since we don't
1695		 * need to reference it after submit. It's just used as
1696		 * the basis for the clone(s).
1697		 */
1698		bio_init(&flush_bio, NULL, 0);
1699		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1700		ci.bio = &flush_bio;
1701		ci.sector_count = 0;
1702		error = __send_empty_flush(&ci);
1703		/* dec_pending submits any data associated with flush */
1704	} else {
1705		struct dm_target_io *tio;
1706
1707		ci.bio = bio;
1708		ci.sector_count = bio_sectors(bio);
1709		if (__process_abnormal_io(&ci, ti, &error))
1710			goto out;
1711
1712		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1713		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
 
1714	}
1715out:
1716	/* drop the extra reference count */
1717	dec_pending(ci.io, errno_to_blk_status(error));
1718	return ret;
 
1719}
1720
1721static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
 
 
1722{
1723	unsigned len, sector_count;
 
 
 
 
 
 
 
 
 
 
1724
1725	sector_count = bio_sectors(*bio);
1726	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
 
 
 
 
 
 
 
 
1727
1728	if (sector_count > len) {
1729		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
 
 
 
 
 
 
1730
1731		bio_chain(split, *bio);
1732		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1733		generic_make_request(*bio);
1734		*bio = split;
 
 
 
 
 
 
 
1735	}
1736}
1737
1738static blk_qc_t dm_process_bio(struct mapped_device *md,
1739			       struct dm_table *map, struct bio *bio)
1740{
1741	blk_qc_t ret = BLK_QC_T_NONE;
1742	struct dm_target *ti = md->immutable_target;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1743
1744	if (unlikely(!map)) {
1745		bio_io_error(bio);
1746		return ret;
 
1747	}
1748
1749	if (!ti) {
1750		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1751		if (unlikely(!ti)) {
1752			bio_io_error(bio);
1753			return ret;
1754		}
1755	}
1756
 
 
 
1757	/*
1758	 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1759	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1760	 * won't be imposed.
 
 
 
 
 
 
 
 
 
 
 
1761	 */
1762	if (current->bio_list) {
1763		blk_queue_split(md->queue, &bio);
1764		if (!is_abnormal_io(bio))
1765			dm_queue_split(md, ti, &bio);
1766	}
1767
1768	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1769		return __process_bio(md, map, bio, ti);
1770	else
1771		return __split_and_process_bio(md, map, bio);
1772}
1773
1774static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1775{
1776	struct mapped_device *md = q->queuedata;
1777	blk_qc_t ret = BLK_QC_T_NONE;
1778	int srcu_idx;
1779	struct dm_table *map;
1780
1781	map = dm_get_live_table(md, &srcu_idx);
 
 
 
 
 
 
1782
1783	/* if we're suspended, we have to queue this io for later */
1784	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1785		dm_put_live_table(md, srcu_idx);
1786
1787		if (!(bio->bi_opf & REQ_RAHEAD))
 
 
1788			queue_io(md, bio);
1789		else
1790			bio_io_error(bio);
1791		return ret;
1792	}
1793
1794	ret = dm_process_bio(md, map, bio);
 
 
 
 
 
 
 
 
 
 
 
 
1795
1796	dm_put_live_table(md, srcu_idx);
1797	return ret;
1798}
1799
1800static int dm_any_congested(void *congested_data, int bdi_bits)
 
1801{
1802	int r = bdi_bits;
1803	struct mapped_device *md = congested_data;
1804	struct dm_table *map;
 
 
 
 
 
 
 
1805
1806	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1807		if (dm_request_based(md)) {
 
 
 
 
 
 
 
 
 
 
 
 
1808			/*
1809			 * With request-based DM we only need to check the
1810			 * top-level queue for congestion.
1811			 */
1812			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1813		} else {
1814			map = dm_get_live_table_fast(md);
1815			if (map)
1816				r = dm_table_any_congested(map, bdi_bits);
1817			dm_put_live_table_fast(md);
1818		}
1819	}
1820
1821	return r;
 
 
 
 
 
 
 
1822}
1823
1824/*-----------------------------------------------------------------
 
1825 * An IDR is used to keep track of allocated minor numbers.
1826 *---------------------------------------------------------------*/
 
1827static void free_minor(int minor)
1828{
1829	spin_lock(&_minor_lock);
1830	idr_remove(&_minor_idr, minor);
1831	spin_unlock(&_minor_lock);
1832}
1833
1834/*
1835 * See if the device with a specific minor # is free.
1836 */
1837static int specific_minor(int minor)
1838{
1839	int r;
1840
1841	if (minor >= (1 << MINORBITS))
1842		return -EINVAL;
1843
1844	idr_preload(GFP_KERNEL);
1845	spin_lock(&_minor_lock);
1846
1847	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1848
1849	spin_unlock(&_minor_lock);
1850	idr_preload_end();
1851	if (r < 0)
1852		return r == -ENOSPC ? -EBUSY : r;
1853	return 0;
1854}
1855
1856static int next_free_minor(int *minor)
1857{
1858	int r;
1859
1860	idr_preload(GFP_KERNEL);
1861	spin_lock(&_minor_lock);
1862
1863	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1864
1865	spin_unlock(&_minor_lock);
1866	idr_preload_end();
1867	if (r < 0)
1868		return r;
1869	*minor = r;
1870	return 0;
1871}
1872
1873static const struct block_device_operations dm_blk_dops;
 
1874static const struct dax_operations dm_dax_ops;
1875
1876static void dm_wq_work(struct work_struct *work);
1877
1878static void dm_init_normal_md_queue(struct mapped_device *md)
 
 
 
 
 
 
 
 
1879{
1880	/*
1881	 * Initialize aspects of queue that aren't relevant for blk-mq
1882	 */
1883	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1884}
 
1885
1886static void cleanup_mapped_device(struct mapped_device *md)
1887{
1888	if (md->wq)
1889		destroy_workqueue(md->wq);
1890	bioset_exit(&md->bs);
1891	bioset_exit(&md->io_bs);
1892
1893	if (md->dax_dev) {
 
1894		kill_dax(md->dax_dev);
1895		put_dax(md->dax_dev);
1896		md->dax_dev = NULL;
1897	}
1898
1899	if (md->disk) {
1900		spin_lock(&_minor_lock);
1901		md->disk->private_data = NULL;
1902		spin_unlock(&_minor_lock);
1903		del_gendisk(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904		put_disk(md->disk);
1905	}
1906
1907	if (md->queue)
1908		blk_cleanup_queue(md->queue);
 
 
1909
1910	cleanup_srcu_struct(&md->io_barrier);
1911
1912	if (md->bdev) {
1913		bdput(md->bdev);
1914		md->bdev = NULL;
1915	}
1916
1917	mutex_destroy(&md->suspend_lock);
1918	mutex_destroy(&md->type_lock);
1919	mutex_destroy(&md->table_devices_lock);
 
1920
1921	dm_mq_cleanup_mapped_device(md);
1922}
1923
1924/*
1925 * Allocate and initialise a blank device with a given minor.
1926 */
1927static struct mapped_device *alloc_dev(int minor)
1928{
1929	int r, numa_node_id = dm_get_numa_node();
 
1930	struct mapped_device *md;
1931	void *old_md;
1932
1933	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1934	if (!md) {
1935		DMWARN("unable to allocate device, out of memory.");
1936		return NULL;
1937	}
1938
1939	if (!try_module_get(THIS_MODULE))
1940		goto bad_module_get;
1941
1942	/* get a minor number for the dev */
1943	if (minor == DM_ANY_MINOR)
1944		r = next_free_minor(&minor);
1945	else
1946		r = specific_minor(minor);
1947	if (r < 0)
1948		goto bad_minor;
1949
1950	r = init_srcu_struct(&md->io_barrier);
1951	if (r < 0)
1952		goto bad_io_barrier;
1953
1954	md->numa_node_id = numa_node_id;
1955	md->init_tio_pdu = false;
1956	md->type = DM_TYPE_NONE;
1957	mutex_init(&md->suspend_lock);
1958	mutex_init(&md->type_lock);
1959	mutex_init(&md->table_devices_lock);
1960	spin_lock_init(&md->deferred_lock);
1961	atomic_set(&md->holders, 1);
1962	atomic_set(&md->open_count, 0);
1963	atomic_set(&md->event_nr, 0);
1964	atomic_set(&md->uevent_seq, 0);
1965	INIT_LIST_HEAD(&md->uevent_list);
1966	INIT_LIST_HEAD(&md->table_devices);
1967	spin_lock_init(&md->uevent_lock);
1968
1969	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1970	if (!md->queue)
1971		goto bad;
1972	md->queue->queuedata = md;
1973	md->queue->backing_dev_info->congested_data = md;
1974
1975	md->disk = alloc_disk_node(1, md->numa_node_id);
1976	if (!md->disk)
1977		goto bad;
 
 
1978
1979	init_waitqueue_head(&md->wait);
1980	INIT_WORK(&md->work, dm_wq_work);
 
1981	init_waitqueue_head(&md->eventq);
1982	init_completion(&md->kobj_holder.completion);
1983
 
 
 
 
 
1984	md->disk->major = _major;
1985	md->disk->first_minor = minor;
 
 
1986	md->disk->fops = &dm_blk_dops;
1987	md->disk->queue = md->queue;
1988	md->disk->private_data = md;
1989	sprintf(md->disk->disk_name, "dm-%d", minor);
1990
1991	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1992		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1993					&dm_dax_ops, 0);
1994		if (!md->dax_dev)
 
 
 
 
 
1995			goto bad;
1996	}
1997
1998	add_disk_no_queue_reg(md->disk);
1999	format_dev_t(md->name, MKDEV(_major, minor));
2000
2001	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2002	if (!md->wq)
2003		goto bad;
2004
2005	md->bdev = bdget_disk(md->disk, 0);
2006	if (!md->bdev)
2007		goto bad;
2008
2009	dm_stats_init(&md->stats);
 
 
2010
2011	/* Populate the mapping, nobody knows we exist yet */
2012	spin_lock(&_minor_lock);
2013	old_md = idr_replace(&_minor_idr, md, minor);
2014	spin_unlock(&_minor_lock);
2015
2016	BUG_ON(old_md != MINOR_ALLOCED);
2017
2018	return md;
2019
2020bad:
2021	cleanup_mapped_device(md);
2022bad_io_barrier:
2023	free_minor(minor);
2024bad_minor:
2025	module_put(THIS_MODULE);
2026bad_module_get:
2027	kvfree(md);
2028	return NULL;
2029}
2030
2031static void unlock_fs(struct mapped_device *md);
2032
2033static void free_dev(struct mapped_device *md)
2034{
2035	int minor = MINOR(disk_devt(md->disk));
2036
2037	unlock_fs(md);
2038
2039	cleanup_mapped_device(md);
2040
2041	free_table_devices(&md->table_devices);
2042	dm_stats_cleanup(&md->stats);
2043	free_minor(minor);
2044
2045	module_put(THIS_MODULE);
2046	kvfree(md);
2047}
2048
2049static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2050{
2051	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2052	int ret = 0;
2053
2054	if (dm_table_bio_based(t)) {
2055		/*
2056		 * The md may already have mempools that need changing.
2057		 * If so, reload bioset because front_pad may have changed
2058		 * because a different table was loaded.
2059		 */
2060		bioset_exit(&md->bs);
2061		bioset_exit(&md->io_bs);
2062
2063	} else if (bioset_initialized(&md->bs)) {
2064		/*
2065		 * There's no need to reload with request-based dm
2066		 * because the size of front_pad doesn't change.
2067		 * Note for future: If you are to reload bioset,
2068		 * prep-ed requests in the queue may refer
2069		 * to bio from the old bioset, so you must walk
2070		 * through the queue to unprep.
2071		 */
2072		goto out;
2073	}
2074
2075	BUG_ON(!p ||
2076	       bioset_initialized(&md->bs) ||
2077	       bioset_initialized(&md->io_bs));
2078
2079	ret = bioset_init_from_src(&md->bs, &p->bs);
2080	if (ret)
2081		goto out;
2082	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2083	if (ret)
2084		bioset_exit(&md->bs);
2085out:
2086	/* mempool bind completed, no longer need any mempools in the table */
2087	dm_table_free_md_mempools(t);
2088	return ret;
2089}
2090
2091/*
2092 * Bind a table to the device.
2093 */
2094static void event_callback(void *context)
2095{
2096	unsigned long flags;
2097	LIST_HEAD(uevents);
2098	struct mapped_device *md = (struct mapped_device *) context;
2099
2100	spin_lock_irqsave(&md->uevent_lock, flags);
2101	list_splice_init(&md->uevent_list, &uevents);
2102	spin_unlock_irqrestore(&md->uevent_lock, flags);
2103
2104	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2105
2106	atomic_inc(&md->event_nr);
2107	wake_up(&md->eventq);
2108	dm_issue_global_event();
2109}
2110
2111/*
2112 * Protected by md->suspend_lock obtained by dm_swap_table().
2113 */
2114static void __set_size(struct mapped_device *md, sector_t size)
2115{
2116	lockdep_assert_held(&md->suspend_lock);
2117
2118	set_capacity(md->disk, size);
2119
2120	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2121}
2122
2123/*
2124 * Returns old map, which caller must destroy.
2125 */
2126static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2127			       struct queue_limits *limits)
2128{
2129	struct dm_table *old_map;
2130	struct request_queue *q = md->queue;
2131	bool request_based = dm_table_request_based(t);
2132	sector_t size;
2133	int ret;
2134
2135	lockdep_assert_held(&md->suspend_lock);
2136
2137	size = dm_table_get_size(t);
2138
2139	/*
2140	 * Wipe any geometry if the size of the table changed.
2141	 */
2142	if (size != dm_get_size(md))
2143		memset(&md->geometry, 0, sizeof(md->geometry));
2144
2145	__set_size(md, size);
2146
2147	dm_table_event_callback(t, event_callback, md);
2148
2149	/*
2150	 * The queue hasn't been stopped yet, if the old table type wasn't
2151	 * for request-based during suspension.  So stop it to prevent
2152	 * I/O mapping before resume.
2153	 * This must be done before setting the queue restrictions,
2154	 * because request-based dm may be run just after the setting.
2155	 */
2156	if (request_based)
2157		dm_stop_queue(q);
2158
2159	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2160		/*
2161		 * Leverage the fact that request-based DM targets and
2162		 * NVMe bio based targets are immutable singletons
2163		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2164		 *   and __process_bio.
 
 
 
 
 
 
 
 
 
 
 
 
2165		 */
2166		md->immutable_target = dm_table_get_immutable_target(t);
 
 
2167	}
2168
2169	ret = __bind_mempools(md, t);
2170	if (ret) {
2171		old_map = ERR_PTR(ret);
2172		goto out;
2173	}
2174
2175	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2176	rcu_assign_pointer(md->map, (void *)t);
2177	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2178
2179	dm_table_set_restrictions(t, q, limits);
2180	if (old_map)
2181		dm_sync_table(md);
2182
2183out:
2184	return old_map;
2185}
2186
2187/*
2188 * Returns unbound table for the caller to free.
2189 */
2190static struct dm_table *__unbind(struct mapped_device *md)
2191{
2192	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2193
2194	if (!map)
2195		return NULL;
2196
2197	dm_table_event_callback(map, NULL, NULL);
2198	RCU_INIT_POINTER(md->map, NULL);
2199	dm_sync_table(md);
2200
2201	return map;
2202}
2203
2204/*
2205 * Constructor for a new device.
2206 */
2207int dm_create(int minor, struct mapped_device **result)
2208{
2209	int r;
2210	struct mapped_device *md;
2211
2212	md = alloc_dev(minor);
2213	if (!md)
2214		return -ENXIO;
2215
2216	r = dm_sysfs_init(md);
2217	if (r) {
2218		free_dev(md);
2219		return r;
2220	}
2221
2222	*result = md;
2223	return 0;
2224}
2225
2226/*
2227 * Functions to manage md->type.
2228 * All are required to hold md->type_lock.
2229 */
2230void dm_lock_md_type(struct mapped_device *md)
2231{
2232	mutex_lock(&md->type_lock);
2233}
2234
2235void dm_unlock_md_type(struct mapped_device *md)
2236{
2237	mutex_unlock(&md->type_lock);
2238}
2239
2240void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2241{
2242	BUG_ON(!mutex_is_locked(&md->type_lock));
2243	md->type = type;
2244}
2245
2246enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2247{
2248	return md->type;
2249}
2250
2251struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2252{
2253	return md->immutable_target_type;
2254}
2255
2256/*
2257 * The queue_limits are only valid as long as you have a reference
2258 * count on 'md'.
2259 */
2260struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2261{
2262	BUG_ON(!atomic_read(&md->holders));
2263	return &md->queue->limits;
2264}
2265EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2266
2267/*
2268 * Setup the DM device's queue based on md's type
2269 */
2270int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2271{
 
 
 
2272	int r;
2273	struct queue_limits limits;
2274	enum dm_queue_mode type = dm_get_md_type(md);
2275
2276	switch (type) {
2277	case DM_TYPE_REQUEST_BASED:
 
 
2278		r = dm_mq_init_request_queue(md, t);
2279		if (r) {
2280			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2281			return r;
2282		}
2283		break;
2284	case DM_TYPE_BIO_BASED:
2285	case DM_TYPE_DAX_BIO_BASED:
2286	case DM_TYPE_NVME_BIO_BASED:
2287		dm_init_normal_md_queue(md);
2288		blk_queue_make_request(md->queue, dm_make_request);
2289		break;
2290	case DM_TYPE_NONE:
2291		WARN_ON_ONCE(true);
2292		break;
2293	}
2294
2295	r = dm_calculate_queue_limits(t, &limits);
2296	if (r) {
2297		DMERR("Cannot calculate initial queue limits");
2298		return r;
2299	}
2300	dm_table_set_restrictions(t, md->queue, &limits);
2301	blk_register_queue(md->disk);
 
 
 
 
 
 
 
 
 
 
 
2302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2303	return 0;
 
 
 
 
 
 
 
 
2304}
2305
2306struct mapped_device *dm_get_md(dev_t dev)
2307{
2308	struct mapped_device *md;
2309	unsigned minor = MINOR(dev);
2310
2311	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2312		return NULL;
2313
2314	spin_lock(&_minor_lock);
2315
2316	md = idr_find(&_minor_idr, minor);
2317	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2318	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2319		md = NULL;
2320		goto out;
2321	}
2322	dm_get(md);
2323out:
2324	spin_unlock(&_minor_lock);
2325
2326	return md;
2327}
2328EXPORT_SYMBOL_GPL(dm_get_md);
2329
2330void *dm_get_mdptr(struct mapped_device *md)
2331{
2332	return md->interface_ptr;
2333}
2334
2335void dm_set_mdptr(struct mapped_device *md, void *ptr)
2336{
2337	md->interface_ptr = ptr;
2338}
2339
2340void dm_get(struct mapped_device *md)
2341{
2342	atomic_inc(&md->holders);
2343	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2344}
2345
2346int dm_hold(struct mapped_device *md)
2347{
2348	spin_lock(&_minor_lock);
2349	if (test_bit(DMF_FREEING, &md->flags)) {
2350		spin_unlock(&_minor_lock);
2351		return -EBUSY;
2352	}
2353	dm_get(md);
2354	spin_unlock(&_minor_lock);
2355	return 0;
2356}
2357EXPORT_SYMBOL_GPL(dm_hold);
2358
2359const char *dm_device_name(struct mapped_device *md)
2360{
2361	return md->name;
2362}
2363EXPORT_SYMBOL_GPL(dm_device_name);
2364
2365static void __dm_destroy(struct mapped_device *md, bool wait)
2366{
2367	struct dm_table *map;
2368	int srcu_idx;
2369
2370	might_sleep();
2371
2372	spin_lock(&_minor_lock);
2373	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2374	set_bit(DMF_FREEING, &md->flags);
2375	spin_unlock(&_minor_lock);
2376
2377	blk_set_queue_dying(md->queue);
2378
2379	/*
2380	 * Take suspend_lock so that presuspend and postsuspend methods
2381	 * do not race with internal suspend.
2382	 */
2383	mutex_lock(&md->suspend_lock);
2384	map = dm_get_live_table(md, &srcu_idx);
2385	if (!dm_suspended_md(md)) {
2386		dm_table_presuspend_targets(map);
 
 
2387		dm_table_postsuspend_targets(map);
2388	}
2389	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2390	dm_put_live_table(md, srcu_idx);
2391	mutex_unlock(&md->suspend_lock);
2392
2393	/*
2394	 * Rare, but there may be I/O requests still going to complete,
2395	 * for example.  Wait for all references to disappear.
2396	 * No one should increment the reference count of the mapped_device,
2397	 * after the mapped_device state becomes DMF_FREEING.
2398	 */
2399	if (wait)
2400		while (atomic_read(&md->holders))
2401			msleep(1);
2402	else if (atomic_read(&md->holders))
2403		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2404		       dm_device_name(md), atomic_read(&md->holders));
2405
2406	dm_sysfs_exit(md);
2407	dm_table_destroy(__unbind(md));
2408	free_dev(md);
2409}
2410
2411void dm_destroy(struct mapped_device *md)
2412{
2413	__dm_destroy(md, true);
2414}
2415
2416void dm_destroy_immediate(struct mapped_device *md)
2417{
2418	__dm_destroy(md, false);
2419}
2420
2421void dm_put(struct mapped_device *md)
2422{
2423	atomic_dec(&md->holders);
2424}
2425EXPORT_SYMBOL_GPL(dm_put);
2426
2427static int dm_wait_for_completion(struct mapped_device *md, long task_state)
 
 
 
 
 
 
 
 
 
 
 
2428{
2429	int r = 0;
2430	DEFINE_WAIT(wait);
2431
2432	while (1) {
2433		prepare_to_wait(&md->wait, &wait, task_state);
2434
2435		if (!md_in_flight(md))
2436			break;
2437
2438		if (signal_pending_state(task_state, current)) {
2439			r = -EINTR;
2440			break;
2441		}
2442
2443		io_schedule();
2444	}
2445	finish_wait(&md->wait, &wait);
2446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2447	return r;
2448}
2449
2450/*
2451 * Process the deferred bios
2452 */
2453static void dm_wq_work(struct work_struct *work)
2454{
2455	struct mapped_device *md = container_of(work, struct mapped_device,
2456						work);
2457	struct bio *c;
2458	int srcu_idx;
2459	struct dm_table *map;
2460
2461	map = dm_get_live_table(md, &srcu_idx);
2462
2463	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2464		spin_lock_irq(&md->deferred_lock);
2465		c = bio_list_pop(&md->deferred);
2466		spin_unlock_irq(&md->deferred_lock);
2467
2468		if (!c)
2469			break;
2470
2471		if (dm_request_based(md))
2472			(void) generic_make_request(c);
2473		else
2474			(void) dm_process_bio(md, map, c);
2475	}
2476
2477	dm_put_live_table(md, srcu_idx);
2478}
2479
2480static void dm_queue_flush(struct mapped_device *md)
2481{
2482	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2483	smp_mb__after_atomic();
2484	queue_work(md->wq, &md->work);
2485}
2486
2487/*
2488 * Swap in a new table, returning the old one for the caller to destroy.
2489 */
2490struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2491{
2492	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2493	struct queue_limits limits;
2494	int r;
2495
2496	mutex_lock(&md->suspend_lock);
2497
2498	/* device must be suspended */
2499	if (!dm_suspended_md(md))
2500		goto out;
2501
2502	/*
2503	 * If the new table has no data devices, retain the existing limits.
2504	 * This helps multipath with queue_if_no_path if all paths disappear,
2505	 * then new I/O is queued based on these limits, and then some paths
2506	 * reappear.
2507	 */
2508	if (dm_table_has_no_data_devices(table)) {
2509		live_map = dm_get_live_table_fast(md);
2510		if (live_map)
2511			limits = md->queue->limits;
2512		dm_put_live_table_fast(md);
2513	}
2514
2515	if (!live_map) {
2516		r = dm_calculate_queue_limits(table, &limits);
2517		if (r) {
2518			map = ERR_PTR(r);
2519			goto out;
2520		}
2521	}
2522
2523	map = __bind(md, table, &limits);
2524	dm_issue_global_event();
2525
2526out:
2527	mutex_unlock(&md->suspend_lock);
2528	return map;
2529}
2530
2531/*
2532 * Functions to lock and unlock any filesystem running on the
2533 * device.
2534 */
2535static int lock_fs(struct mapped_device *md)
2536{
2537	int r;
2538
2539	WARN_ON(md->frozen_sb);
2540
2541	md->frozen_sb = freeze_bdev(md->bdev);
2542	if (IS_ERR(md->frozen_sb)) {
2543		r = PTR_ERR(md->frozen_sb);
2544		md->frozen_sb = NULL;
2545		return r;
2546	}
2547
2548	set_bit(DMF_FROZEN, &md->flags);
2549
2550	return 0;
2551}
2552
2553static void unlock_fs(struct mapped_device *md)
2554{
2555	if (!test_bit(DMF_FROZEN, &md->flags))
2556		return;
2557
2558	thaw_bdev(md->bdev, md->frozen_sb);
2559	md->frozen_sb = NULL;
2560	clear_bit(DMF_FROZEN, &md->flags);
2561}
2562
2563/*
2564 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2565 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2566 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2567 *
2568 * If __dm_suspend returns 0, the device is completely quiescent
2569 * now. There is no request-processing activity. All new requests
2570 * are being added to md->deferred list.
2571 */
2572static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2573			unsigned suspend_flags, long task_state,
2574			int dmf_suspended_flag)
2575{
2576	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2577	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2578	int r;
2579
2580	lockdep_assert_held(&md->suspend_lock);
2581
2582	/*
2583	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2584	 * This flag is cleared before dm_suspend returns.
2585	 */
2586	if (noflush)
2587		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2588	else
2589		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2590
2591	/*
2592	 * This gets reverted if there's an error later and the targets
2593	 * provide the .presuspend_undo hook.
2594	 */
2595	dm_table_presuspend_targets(map);
2596
2597	/*
2598	 * Flush I/O to the device.
2599	 * Any I/O submitted after lock_fs() may not be flushed.
2600	 * noflush takes precedence over do_lockfs.
2601	 * (lock_fs() flushes I/Os and waits for them to complete.)
2602	 */
2603	if (!noflush && do_lockfs) {
2604		r = lock_fs(md);
2605		if (r) {
2606			dm_table_presuspend_undo_targets(map);
2607			return r;
2608		}
2609	}
2610
2611	/*
2612	 * Here we must make sure that no processes are submitting requests
2613	 * to target drivers i.e. no one may be executing
2614	 * __split_and_process_bio. This is called from dm_request and
2615	 * dm_wq_work.
2616	 *
2617	 * To get all processes out of __split_and_process_bio in dm_request,
2618	 * we take the write lock. To prevent any process from reentering
2619	 * __split_and_process_bio from dm_request and quiesce the thread
2620	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2621	 * flush_workqueue(md->wq).
2622	 */
2623	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2624	if (map)
2625		synchronize_srcu(&md->io_barrier);
2626
2627	/*
2628	 * Stop md->queue before flushing md->wq in case request-based
2629	 * dm defers requests to md->wq from md->queue.
2630	 */
2631	if (dm_request_based(md))
2632		dm_stop_queue(md->queue);
2633
2634	flush_workqueue(md->wq);
2635
2636	/*
2637	 * At this point no more requests are entering target request routines.
2638	 * We call dm_wait_for_completion to wait for all existing requests
2639	 * to finish.
2640	 */
2641	r = dm_wait_for_completion(md, task_state);
2642	if (!r)
2643		set_bit(dmf_suspended_flag, &md->flags);
2644
2645	if (noflush)
2646		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2647	if (map)
2648		synchronize_srcu(&md->io_barrier);
2649
2650	/* were we interrupted ? */
2651	if (r < 0) {
2652		dm_queue_flush(md);
2653
2654		if (dm_request_based(md))
2655			dm_start_queue(md->queue);
2656
2657		unlock_fs(md);
2658		dm_table_presuspend_undo_targets(map);
2659		/* pushback list is already flushed, so skip flush */
2660	}
2661
2662	return r;
2663}
2664
2665/*
2666 * We need to be able to change a mapping table under a mounted
2667 * filesystem.  For example we might want to move some data in
2668 * the background.  Before the table can be swapped with
2669 * dm_bind_table, dm_suspend must be called to flush any in
2670 * flight bios and ensure that any further io gets deferred.
2671 */
2672/*
2673 * Suspend mechanism in request-based dm.
2674 *
2675 * 1. Flush all I/Os by lock_fs() if needed.
2676 * 2. Stop dispatching any I/O by stopping the request_queue.
2677 * 3. Wait for all in-flight I/Os to be completed or requeued.
2678 *
2679 * To abort suspend, start the request_queue.
2680 */
2681int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2682{
2683	struct dm_table *map = NULL;
2684	int r = 0;
2685
2686retry:
2687	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2688
2689	if (dm_suspended_md(md)) {
2690		r = -EINVAL;
2691		goto out_unlock;
2692	}
2693
2694	if (dm_suspended_internally_md(md)) {
2695		/* already internally suspended, wait for internal resume */
2696		mutex_unlock(&md->suspend_lock);
2697		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2698		if (r)
2699			return r;
2700		goto retry;
2701	}
2702
2703	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
 
 
 
 
2704
2705	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2706	if (r)
2707		goto out_unlock;
2708
 
2709	dm_table_postsuspend_targets(map);
 
2710
2711out_unlock:
2712	mutex_unlock(&md->suspend_lock);
2713	return r;
2714}
2715
2716static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2717{
2718	if (map) {
2719		int r = dm_table_resume_targets(map);
 
2720		if (r)
2721			return r;
2722	}
2723
2724	dm_queue_flush(md);
2725
2726	/*
2727	 * Flushing deferred I/Os must be done after targets are resumed
2728	 * so that mapping of targets can work correctly.
2729	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2730	 */
2731	if (dm_request_based(md))
2732		dm_start_queue(md->queue);
2733
2734	unlock_fs(md);
2735
2736	return 0;
2737}
2738
2739int dm_resume(struct mapped_device *md)
2740{
2741	int r;
2742	struct dm_table *map = NULL;
2743
2744retry:
2745	r = -EINVAL;
2746	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2747
2748	if (!dm_suspended_md(md))
2749		goto out;
2750
2751	if (dm_suspended_internally_md(md)) {
2752		/* already internally suspended, wait for internal resume */
2753		mutex_unlock(&md->suspend_lock);
2754		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2755		if (r)
2756			return r;
2757		goto retry;
2758	}
2759
2760	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2761	if (!map || !dm_table_get_size(map))
2762		goto out;
2763
2764	r = __dm_resume(md, map);
2765	if (r)
2766		goto out;
2767
2768	clear_bit(DMF_SUSPENDED, &md->flags);
2769out:
2770	mutex_unlock(&md->suspend_lock);
2771
2772	return r;
2773}
2774
2775/*
2776 * Internal suspend/resume works like userspace-driven suspend. It waits
2777 * until all bios finish and prevents issuing new bios to the target drivers.
2778 * It may be used only from the kernel.
2779 */
2780
2781static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2782{
2783	struct dm_table *map = NULL;
2784
2785	lockdep_assert_held(&md->suspend_lock);
2786
2787	if (md->internal_suspend_count++)
2788		return; /* nested internal suspend */
2789
2790	if (dm_suspended_md(md)) {
2791		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2792		return; /* nest suspend */
2793	}
2794
2795	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2796
2797	/*
2798	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2799	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2800	 * would require changing .presuspend to return an error -- avoid this
2801	 * until there is a need for more elaborate variants of internal suspend.
2802	 */
2803	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2804			    DMF_SUSPENDED_INTERNALLY);
2805
 
2806	dm_table_postsuspend_targets(map);
 
2807}
2808
2809static void __dm_internal_resume(struct mapped_device *md)
2810{
 
 
 
2811	BUG_ON(!md->internal_suspend_count);
2812
2813	if (--md->internal_suspend_count)
2814		return; /* resume from nested internal suspend */
2815
2816	if (dm_suspended_md(md))
2817		goto done; /* resume from nested suspend */
2818
2819	/*
2820	 * NOTE: existing callers don't need to call dm_table_resume_targets
2821	 * (which may fail -- so best to avoid it for now by passing NULL map)
2822	 */
2823	(void) __dm_resume(md, NULL);
2824
 
 
 
 
 
 
 
 
 
 
 
2825done:
2826	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2827	smp_mb__after_atomic();
2828	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2829}
2830
2831void dm_internal_suspend_noflush(struct mapped_device *md)
2832{
2833	mutex_lock(&md->suspend_lock);
2834	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2835	mutex_unlock(&md->suspend_lock);
2836}
2837EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2838
2839void dm_internal_resume(struct mapped_device *md)
2840{
2841	mutex_lock(&md->suspend_lock);
2842	__dm_internal_resume(md);
2843	mutex_unlock(&md->suspend_lock);
2844}
2845EXPORT_SYMBOL_GPL(dm_internal_resume);
2846
2847/*
2848 * Fast variants of internal suspend/resume hold md->suspend_lock,
2849 * which prevents interaction with userspace-driven suspend.
2850 */
2851
2852void dm_internal_suspend_fast(struct mapped_device *md)
2853{
2854	mutex_lock(&md->suspend_lock);
2855	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2856		return;
2857
2858	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2859	synchronize_srcu(&md->io_barrier);
2860	flush_workqueue(md->wq);
2861	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2862}
2863EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2864
2865void dm_internal_resume_fast(struct mapped_device *md)
2866{
2867	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2868		goto done;
2869
2870	dm_queue_flush(md);
2871
2872done:
2873	mutex_unlock(&md->suspend_lock);
2874}
2875EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2876
2877/*-----------------------------------------------------------------
 
2878 * Event notification.
2879 *---------------------------------------------------------------*/
 
2880int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2881		       unsigned cookie)
2882{
 
 
2883	char udev_cookie[DM_COOKIE_LENGTH];
2884	char *envp[] = { udev_cookie, NULL };
2885
2886	if (!cookie)
2887		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2888	else {
2889		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2890			 DM_COOKIE_ENV_VAR_NAME, cookie);
2891		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2892					  action, envp);
 
 
2893	}
 
 
 
 
 
 
 
 
2894}
2895
2896uint32_t dm_next_uevent_seq(struct mapped_device *md)
2897{
2898	return atomic_add_return(1, &md->uevent_seq);
2899}
2900
2901uint32_t dm_get_event_nr(struct mapped_device *md)
2902{
2903	return atomic_read(&md->event_nr);
2904}
2905
2906int dm_wait_event(struct mapped_device *md, int event_nr)
2907{
2908	return wait_event_interruptible(md->eventq,
2909			(event_nr != atomic_read(&md->event_nr)));
2910}
2911
2912void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2913{
2914	unsigned long flags;
2915
2916	spin_lock_irqsave(&md->uevent_lock, flags);
2917	list_add(elist, &md->uevent_list);
2918	spin_unlock_irqrestore(&md->uevent_lock, flags);
2919}
2920
2921/*
2922 * The gendisk is only valid as long as you have a reference
2923 * count on 'md'.
2924 */
2925struct gendisk *dm_disk(struct mapped_device *md)
2926{
2927	return md->disk;
2928}
2929EXPORT_SYMBOL_GPL(dm_disk);
2930
2931struct kobject *dm_kobject(struct mapped_device *md)
2932{
2933	return &md->kobj_holder.kobj;
2934}
2935
2936struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2937{
2938	struct mapped_device *md;
2939
2940	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2941
2942	spin_lock(&_minor_lock);
2943	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2944		md = NULL;
2945		goto out;
2946	}
2947	dm_get(md);
2948out:
2949	spin_unlock(&_minor_lock);
2950
2951	return md;
2952}
2953
2954int dm_suspended_md(struct mapped_device *md)
2955{
2956	return test_bit(DMF_SUSPENDED, &md->flags);
2957}
2958
 
 
 
 
 
2959int dm_suspended_internally_md(struct mapped_device *md)
2960{
2961	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2962}
2963
2964int dm_test_deferred_remove_flag(struct mapped_device *md)
2965{
2966	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2967}
2968
2969int dm_suspended(struct dm_target *ti)
2970{
2971	return dm_suspended_md(dm_table_get_md(ti->table));
2972}
2973EXPORT_SYMBOL_GPL(dm_suspended);
2974
 
 
 
 
 
 
2975int dm_noflush_suspending(struct dm_target *ti)
2976{
2977	return __noflush_suspending(dm_table_get_md(ti->table));
2978}
2979EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2980
2981struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2982					    unsigned integrity, unsigned per_io_data_size,
2983					    unsigned min_pool_size)
2984{
2985	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2986	unsigned int pool_size = 0;
2987	unsigned int front_pad, io_front_pad;
2988	int ret;
2989
2990	if (!pools)
2991		return NULL;
2992
2993	switch (type) {
2994	case DM_TYPE_BIO_BASED:
2995	case DM_TYPE_DAX_BIO_BASED:
2996	case DM_TYPE_NVME_BIO_BASED:
2997		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2998		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2999		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3000		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3001		if (ret)
3002			goto out;
3003		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3004			goto out;
3005		break;
3006	case DM_TYPE_REQUEST_BASED:
3007		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3008		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3009		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3010		break;
3011	default:
3012		BUG();
3013	}
3014
3015	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3016	if (ret)
3017		goto out;
3018
3019	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3020		goto out;
 
 
3021
3022	return pools;
 
 
 
 
3023
3024out:
3025	dm_free_md_mempools(pools);
3026
3027	return NULL;
3028}
3029
3030void dm_free_md_mempools(struct dm_md_mempools *pools)
 
 
 
 
 
 
3031{
3032	if (!pools)
3033		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3034
3035	bioset_exit(&pools->bs);
3036	bioset_exit(&pools->io_bs);
3037
3038	kfree(pools);
 
 
 
3039}
3040
3041struct dm_pr {
3042	u64	old_key;
3043	u64	new_key;
3044	u32	flags;
 
3045	bool	fail_early;
 
 
 
 
3046};
3047
3048static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3049		      void *data)
3050{
3051	struct mapped_device *md = bdev->bd_disk->private_data;
3052	struct dm_table *table;
3053	struct dm_target *ti;
3054	int ret = -ENOTTY, srcu_idx;
3055
3056	table = dm_get_live_table(md, &srcu_idx);
3057	if (!table || !dm_table_get_size(table))
3058		goto out;
3059
3060	/* We only support devices that have a single target */
3061	if (dm_table_get_num_targets(table) != 1)
3062		goto out;
3063	ti = dm_table_get_target(table, 0);
3064
 
 
 
 
 
3065	ret = -EINVAL;
3066	if (!ti->type->iterate_devices)
3067		goto out;
3068
3069	ret = ti->type->iterate_devices(ti, fn, data);
 
3070out:
3071	dm_put_live_table(md, srcu_idx);
3072	return ret;
3073}
3074
3075/*
3076 * For register / unregister we need to manually call out to every path.
3077 */
3078static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3079			    sector_t start, sector_t len, void *data)
3080{
3081	struct dm_pr *pr = data;
3082	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
3083
3084	if (!ops || !ops->pr_register)
3085		return -EOPNOTSUPP;
3086	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
 
3087}
3088
3089static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3090			  u32 flags)
3091{
3092	struct dm_pr pr = {
3093		.old_key	= old_key,
3094		.new_key	= new_key,
3095		.flags		= flags,
3096		.fail_early	= true,
 
3097	};
3098	int ret;
3099
3100	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3101	if (ret && new_key) {
3102		/* unregister all paths if we failed to register any path */
3103		pr.old_key = new_key;
3104		pr.new_key = 0;
3105		pr.flags = 0;
3106		pr.fail_early = false;
3107		dm_call_pr(bdev, __dm_pr_register, &pr);
3108	}
3109
 
 
 
 
 
 
 
 
 
 
 
 
 
3110	return ret;
3111}
3112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3113static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3114			 u32 flags)
3115{
3116	struct mapped_device *md = bdev->bd_disk->private_data;
3117	const struct pr_ops *ops;
3118	int r, srcu_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3119
3120	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3121	if (r < 0)
3122		goto out;
3123
3124	ops = bdev->bd_disk->fops->pr_ops;
3125	if (ops && ops->pr_reserve)
3126		r = ops->pr_reserve(bdev, key, type, flags);
3127	else
3128		r = -EOPNOTSUPP;
3129out:
3130	dm_unprepare_ioctl(md, srcu_idx);
3131	return r;
3132}
3133
3134static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3135{
3136	struct mapped_device *md = bdev->bd_disk->private_data;
3137	const struct pr_ops *ops;
3138	int r, srcu_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3139
3140	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3141	if (r < 0)
3142		goto out;
 
3143
3144	ops = bdev->bd_disk->fops->pr_ops;
3145	if (ops && ops->pr_release)
3146		r = ops->pr_release(bdev, key, type);
3147	else
3148		r = -EOPNOTSUPP;
3149out:
3150	dm_unprepare_ioctl(md, srcu_idx);
3151	return r;
3152}
3153
3154static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3155			 enum pr_type type, bool abort)
3156{
3157	struct mapped_device *md = bdev->bd_disk->private_data;
3158	const struct pr_ops *ops;
3159	int r, srcu_idx;
 
 
 
 
3160
3161	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3162	if (r < 0)
3163		goto out;
3164
3165	ops = bdev->bd_disk->fops->pr_ops;
3166	if (ops && ops->pr_preempt)
3167		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3168	else
3169		r = -EOPNOTSUPP;
3170out:
3171	dm_unprepare_ioctl(md, srcu_idx);
3172	return r;
3173}
3174
3175static int dm_pr_clear(struct block_device *bdev, u64 key)
3176{
3177	struct mapped_device *md = bdev->bd_disk->private_data;
3178	const struct pr_ops *ops;
3179	int r, srcu_idx;
3180
3181	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3182	if (r < 0)
3183		goto out;
3184
3185	ops = bdev->bd_disk->fops->pr_ops;
3186	if (ops && ops->pr_clear)
3187		r = ops->pr_clear(bdev, key);
3188	else
3189		r = -EOPNOTSUPP;
3190out:
3191	dm_unprepare_ioctl(md, srcu_idx);
3192	return r;
3193}
3194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3195static const struct pr_ops dm_pr_ops = {
3196	.pr_register	= dm_pr_register,
3197	.pr_reserve	= dm_pr_reserve,
3198	.pr_release	= dm_pr_release,
3199	.pr_preempt	= dm_pr_preempt,
3200	.pr_clear	= dm_pr_clear,
 
 
3201};
3202
3203static const struct block_device_operations dm_blk_dops = {
 
 
3204	.open = dm_blk_open,
3205	.release = dm_blk_close,
3206	.ioctl = dm_blk_ioctl,
3207	.getgeo = dm_blk_getgeo,
3208	.report_zones = dm_blk_report_zones,
 
 
 
 
 
 
 
 
 
 
 
3209	.pr_ops = &dm_pr_ops,
3210	.owner = THIS_MODULE
3211};
3212
3213static const struct dax_operations dm_dax_ops = {
3214	.direct_access = dm_dax_direct_access,
3215	.dax_supported = dm_dax_supported,
3216	.copy_from_iter = dm_dax_copy_from_iter,
3217	.copy_to_iter = dm_dax_copy_to_iter,
3218};
3219
3220/*
3221 * module hooks
3222 */
3223module_init(dm_init);
3224module_exit(dm_exit);
3225
3226module_param(major, uint, 0);
3227MODULE_PARM_DESC(major, "The major number of the device mapper");
3228
3229module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3230MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3231
3232module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3233MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3234
 
 
 
3235MODULE_DESCRIPTION(DM_NAME " driver");
3236MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3237MODULE_LICENSE("GPL");